
University of Sydney

Doctoral Thesis

Secure Data Sharing and Collaboration
in the Cloud

Author:

Danan Thilakanathan

Supervisors:

Professor Rafael A. Calvo, Dr.

Shiping Chen

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in the

Faculty of Engineering and Information Technologies

School of Electrical and Information Engineering

June 2016

http://sydney.edu.au
http://sydney.edu.au/engineering)
http://sydney.edu.au/engineering)

UNIVERSITY OF SYDNEY

Abstract

Faculty of Engineering and Information Technologies

School of Electrical and Information Engineering

Doctor of Philosophy

Secure Data Sharing and Collaboration in the Cloud

by Danan Thilakanathan

Cloud technology can be leveraged to enable data-sharing capabilities, which can benefit

the user through greater productivity and efficiency. However, the Cloud is susceptible

to many privacy and security vulnerabilities, which hinders the progress and widescale

adoption of data sharing for the purposes of collaboration. Thus, there is a strong

demand for data owners to not only ensure that their data is kept private and secure in

the Cloud, but to also have a degree of control over their own data contents once they

are shared with data consumers.

Specifically, the main issues for data sharing in the Cloud include key management,

security attacks, and data-owner access control. In terms of key management, it is vital

that data must first be encrypted before storage in the Cloud, to prevent privacy and

security breaches. However, the management of encryption keys is a great challenge.

The sharing of keys with data consumers has proven to be ineffective, especially when

considering data-consumer revocation. Security attacks may also prevent the widescale

usage of the Cloud for data-sharing purposes. Common security attacks include insider

attacks, collusion attacks, and man-in-the-middle attacks. In terms of access control,

authorised data consumers could do anything they wish with an owner’s data, including

sending it to their peers and colleagues without the data owner’s knowledge.

Throughout this thesis, we investigate ways in which to address these issues. We first

propose a key partitioning technique that aims to address the key management problem.

We deploy this technique in a number of scenarios, such as remote healthcare manage-

ment. We also develop secure data-sharing protocols that aim to mitigate and prevent

security attacks on the Cloud. Finally, we focus on giving the data owner greater control,

by developing a self-controlled software object called SafeProtect.

http://sydney.edu.au
Faculty Web Site URL Here (include http://)
http://sydney.edu.au/engineering)

Publications ii

Publications
Book Chapter

• Danan Thilakanathan, Shiping Chen, Surya Nepal, Rafael A. Calvo: Secure

data sharing in the Cloud. Book chapter in Security, Privacy, and Trust in

Cloud Systems, by Springer (2013): 45 - 72. ISBN: 978-3-642-38585-8. Source:

http://dx.doi.org/10.1007/978-3-642-38586-5 2

Journals

• Danan Thilakanathan, Shiping Chen, Surya Nepal, Rafael A. Calvo, Leila Alem

(2012): A Platform for Secure Monitoring and Sharing of Generic Health Data in

the Cloud. Special Issue on Integration of Cloud Computing and Body Sensor

Networks, Future Generation Computer Systems (FGCS): 102 - 113. (Impact

Factor = 2.639)

• Danan Thilakanathan, Shiping Chen, Surya Nepal, Rafael A. Calvo (2015):

SafeProtect: Controlled Data Sharing with User-Defined Policies in Cloud-based

Collaborative Environment. IEEE Transactions on Emerging Topics in Comput-

ing: 1 - 1.

• Danan Thilakanathan, Rafael A. Calvo, Shiping Chen, Surya Nepal, Nick

Glozier (2016): Facilitating Secure Sharing of Personal Health Data in the Cloud

(JMIR Medical Informatics). (Impact Factor = 3.428) (In-Press)

Conferences

• Danan Thilakanathan, Shiping Chen, Surya Nepal, Rafael A. Calvo (2013):

Secure and Controlled Sharing of Data in Distributed Computing. 2nd IEEE

International Conference on Big Data Science and Engineering (BDSE 2013): 825

- 832.

• Danan Thilakanathan, Yu Zhao, Shiping Chen, Surya Nepal, Rafael A. Calvo,

Abelardo Pardo (2014): Protecting and Analysing Health Care Data on Cloud.

Second International Conference on Advanced Cloud and Big Data (CBD 2014):

143 - 149.

Publications iii

• Danan Thilakanathan, Shiping Chen, Surya Nepal, Dongxi Liu, Rafael Calvo,

John Zic (2014): Secure Multiparty Data Sharing in the Cloud using Hardware-

based TPM Devices. IEEE International Conference on Cloud Computing (IEEE

Cloud 2014): 224 - 231. (Acceptance rate: 18%)

• Shiping Chen, Danan Thilakanathan, Donna Xu, Surya Nepal, Rafael A. Calvo

(2015): Self Protecting Data Sharing using Generic Policies. 15th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CCGrid 2015):

1197 - 1200. (ERA Ranking: A) (Best Poster Award)

• Surya Nepal, Shiping Chen, Jinhui Yao, Danan Thilakanathan (2011): DIaaS:

Data Integrity as a Service in the Cloud. IEEE CLOUD 2011: 308-315.

• Weidong Huang, Leila Alem, Surya Nepal, Danan Thilakanathan: Support-

ing tele-assistance and tele-monitoring in safety-critical environments. Australian

Conference on Human-Computer Interaction (OZCHI 2013): 539 - 542.

Acknowledgements

I would like to acknowledge my supervisors, Dr Shiping Chen, Professor Rafael A. Calvo,

and Dr Surya Nepal, for their tremendous support and encouragement throughout my

degree. Their words of advice helped me to learn a great deal and have been very

valuable in helping me to progress.

I would also like to thank the School of Electrical and Information Engineering, The

University of Sydney, and the Digital Productivity Flagship, CSIRO, for giving me the

opportunity to complete my PhD degree and for providing me with support through the

APA scholarship and the CSIRO Top-Up Scholarship.

Finally, I would like to thank my mum, dad, sister and friends, who I am grateful to have

in my life and who have constantly kept me motivated with their encouraging words of

support.

iv

Contents

Abstract i

Publications ii

Acknowledgements iv

Contents v

List of Figures ix

List of Tables xi

Abbreviations xii

1 Introduction 1

1.1 Motivation . 5

1.2 Key Research Problems . 8

1.3 Key Contributions . 11

1.3.1 Key Partitioning Algorithm . 11

1.3.2 Secure Data Sharing Protocol . 13

1.3.3 Self-Controlling Data Object . 15

1.4 Thesis Organisation . 16

2 Literature Review 18

2.1 Reviews on Privacy and Security in the Cloud 18

2.2 Privacy and Security Issues in the Cloud 20

2.2.1 Attackers . 22

2.2.2 Attack Methods . 24

2.2.3 Attack Space . 26

2.2.4 Existing Solutions to Privacy and Security Issues 29

2.2.4.1 Guidelines . 29

2.2.4.2 Technologies . 32

2.3 Private and Secure Data Sharing in the Cloud 36

2.3.1 Traditional Approach . 36

2.3.1.1 The Need for Key Management in the Cloud 37

2.3.1.2 Review of works on Key Management 39

v

Contents vi

2.3.1.3 Discussion . 42

2.3.2 Recent Approaches . 44

2.3.2.1 Attribute-Based Encryption 44

2.3.2.2 Proxy Re-encryption . 47

2.3.2.3 Hybrid ABE and PRE 49

2.3.2.4 Self Management and Control Methods 51

2.3.2.5 Discussion . 53

2.4 Summary . 54

3 The Data Sharing Problem and Preliminaries 56

3.1 Example of Cloud Data Sharing . 56

3.1.1 Key Components . 57

3.2 Key Management . 58

3.2.1 Broadcast Group Key Sharing Example 59

3.3 Secure Data Sharing Protocol . 60

3.4 Data Owner Access Control . 61

3.5 Secure Data Sharing Challenges . 63

3.5.1 Key Management Issues . 63

3.5.2 Issues for Secure Data Sharing Protocols 64

3.5.3 Access Control Challenges . 65

3.6 Problem Statement . 66

3.7 Assumptions and Threat Model . 68

3.7.1 System Assumptions . 68

3.7.2 Trust/Threat Model . 69

3.8 Preliminaries . 70

3.8.1 Symmetric Encryption vs Asymmetric Encryption 70

3.8.2 ElGamal Encryption . 71

3.8.3 CP-ABE . 72

3.8.4 XML . 73

3.8.5 SOA . 73

3.8.6 SCO . 74

3.8.7 TED . 75

3.8.7.1 TED issuer and manager 76

3.8.7.2 Privacy Certifying Authority 77

3.9 Summary . 78

4 An Efficient Solution to the Key Management Problem 79

4.1 Introduction . 79

4.2 Our Approach . 80

4.3 Remote diagnosis of patients with cardiac arrhythmias 84

4.3.1 Introduction . 84

4.3.2 Related Work . 86

4.3.3 The Health Monitoring System . 89

4.3.3.1 Scenario . 89

4.3.3.2 System Requirements . 89

4.3.3.3 System Functionality . 90

4.3.3.4 Data Schema . 91

Contents vii

4.3.3.5 Privacy Issues using a CSP in Remote Healthcare 92

4.3.4 Data Model and Protocol . 93

4.3.4.1 Data Model . 94

4.3.4.2 Protocol . 95

4.3.4.3 Security Analysis . 102

4.3.5 Implementation and Evaluation . 104

4.3.5.1 Implementation . 104

4.3.5.2 System Security . 105

4.3.5.3 Performance Tests . 106

4.3.5.4 Evaluation . 111

4.4 Secure eHealth Self Management in the Cloud 112

4.4.1 Introduction . 112

4.4.1.1 Mental Health Scenario 114

4.4.2 Data Model . 116

4.4.3 Protocol . 118

4.4.4 Security Analysis . 122

4.4.5 Usability Analysis . 127

4.4.6 Performance Tests . 136

4.4.7 Scalability Analysis . 138

4.5 Summary . 140

5 Secure Protection of Outsourced Data 141

5.1 Introduction . 141

5.2 SafeShare . 141

5.2.1 The SafeShare System . 142

5.2.1.1 Model . 143

5.2.1.2 Overview . 145

5.2.1.3 Background monitoring 146

5.2.1.4 Protocol . 147

5.2.2 Security Analysis . 155

5.2.3 Implementation and Evaluation . 157

5.2.3.1 Implementation . 157

5.2.3.2 Experimental Results . 157

5.2.3.3 Evaluation . 160

5.3 Hardware data encapsulation using TED 160

5.3.1 Introduction . 160

5.3.2 Security Model and Protocol . 162

5.3.2.1 Model . 163

5.3.2.2 Protocol . 164

5.3.2.3 Security Evaluation . 167

5.3.3 Implementation and Evaluation . 169

5.3.3.1 Implementation . 169

5.3.3.2 Evaluation . 170

5.3.3.3 Performance and Size Limitations 172

5.4 Summary . 172

6 SelfProtect Object 173

Contents viii

6.1 Introduction . 173

6.1.1 Scenario . 175

6.2 Overview . 176

6.3 Design . 177

6.3.1 Architecture . 177

6.3.2 Key Components . 178

6.3.3 API design . 180

6.4 Implementation . 180

6.4.1 Selected Technologies . 180

6.4.2 Protocol . 182

6.5 Demonstration . 183

6.5.1 Policy Generation . 183

6.5.2 SPO Generation . 185

6.5.3 SPO Consumer Access . 186

6.6 Summary . 186

7 Conclusion 187

7.1 Conclusion . 187

7.1.1 Key Management . 187

7.1.2 Secure Data Sharing Protocol . 189

7.1.3 Self-Controlled Data . 190

7.2 Future Work . 191

Bibliography 194

List of Figures

2.1 Attack Model . 22

2.2 Symmetric and Asymmetric Encryption 33

2.3 Key-Policy Attribute-Based Encryption 45

2.4 Ciphertext-Policy Attribute-Based Encryption 46

2.5 proxyreencryption . 48

3.1 Basic Architecture for Data Sharing in the Cloud 57

3.2 Access Control List . 62

3.3 Access Control Capability List . 62

3.4 TED . 75

3.5 TED’s Credentials managed by TED issuer and manager 76

4.1 Encrypted data and key . 80

4.2 Key Partitioning . 82

4.3 Health Monitoring Database Schema . 91

4.4 Health Monitoring Data Sharing Model 93

4.5 HearbeatSense app . 105

4.6 Uploading times . 107

4.7 Downloading times . 109

4.8 Uploading and Downloading Overhead . 110

4.9 Development Method . 116

4.10 Data Model . 117

4.11 Data Storage Protocol . 119

4.12 Data Sharing Protocol . 120

4.13 Data Access Protocol . 121

4.14 Access Revocation Protocol . 122

4.15 Secure Communication Paths . 126

4.16 Screenshots of Mindfeedback app with login view (a), patient view (b)
and doctor view (c). 130

4.17 Security Responses from potential users 131

4.18 Ease-Of-Use Responses from potential users 132

4.19 Satisfaction Responses from potential users 133

4.20 Security Responses from medical users . 134

4.21 Ease-Of-Use Responses from medical users 135

4.22 Satisfaction Responses from medical users 135

4.23 Upload Overhead . 137

4.24 Download Overhead . 138

4.25 Distribution of login performance . 139

ix

List of Figures x

4.26 Distribution of data access from Cloud performance 139

5.1 SafeShare Data Sharing Model . 143

5.2 SafeShare object . 145

5.3 Data encryption overhead . 158

5.4 Data access overhead . 159

5.5 Data Model . 163

5.6 Encryption overhead . 170

5.7 Decryption overhead . 171

6.1 SPO Architecture . 178

6.2 Resource access workflow within SPO . 182

6.3 The Policy Generator . 185

6.4 Microsoft Word SPO plugin . 186

List of Tables

2.1 Summary of reviews . 20

2.2 Related works on privacy and security protection in the Cloud 35

2.3 Summary of related key management literature 43

2.4 Summary of related literature . 54

5.1 Abbreviations . 144

5.2 Entities . 162

xi

Abbreviations

DO Data Owner

DC Data Consumer

DSS Data Sharing Service

KS Key Service

CDS Cloud Data Service

DKDB Data Key DataBase

UKDB User Key DataBase

CSP Cloud Storage Provider

SSA SafeShare Application

ACP Access Control Policy

TED Trusted Extension Device

TTI Trusted TED Issuer

PCA Private Certifying Authority

SPO Self Protecting Object

xii

This thesis is dedicated to my parents, my sister Cynthuja and my

grandfather.

xiii

Chapter 1

Introduction

Cloud computing is a rapidly growing technology trend in the world today, and nearly

all Internet users and enterprises alike use the Cloud, in some form or another [1].

Ever since Cloud computing began to evolve from the early days of grid and utility

computing [2], its popularity has grown immensely. One of the main reasons for the

Cloud’s popularity is that it allows for the ability to access data anywhere, and at any

time. The most popular usage of the Cloud includes: viewing emails via Hotmail or

Gmail; writing, sharing and collaborating on documents via Google Docs; developing

applications via the Google App Engine; and storing files via Amazon S3, Google Drive

or Windows SkyDrive. Amazon EC2/S3 was one of the first widely available Cloud-

computing services [2]. Cloud computing provides many benefits, such as: low costs

due to the Pay-As-You-Go model: the ability to provide services and resources on-

demand, anywhere, and at any time; high availability, as data is usually replicated

among a number of servers; lowering the chance of data loss; and providing elasticity,

whereby more computing resources can be used when required [3]. Cloud computing also

provides benefits to many fields, such as healthcare [4]. There is also a strong push by

1

Chapter 1. Introduction 2

IT organisations to share their data with one another, which is achieved via the Cloud.

Thus, Cloud technology is very popular amongst both end users and organisations.

The International Organization for Standardization (ISO) [5] defines Cloud computing

as a “paradigm for enabling network access to a scalable and elastic pool of shareable

physical or virtual resources with on-demand self-service provisioning and administra-

tion” To better understand the problem, it is important to have an understanding of

Cloud computing. Thus, we provide the essential characteristics, types of services and

deployment methods, below.

ISO also defines five essential characteristics of the Cloud:

• Broad network access - A feature where the physical and virtual resources are

available over a network and accessed through standard mechanisms that promote

use by heterogeneous client platforms. The focus of this key characteristic is that

cloud computing offers an increased level of convenience in that users can access

physical and virtual resources from wherever they need to work, as long as it is

network accessible, using a wide variety of clients including devices such as mobile

phones, tablets, laptops, and workstations.

• Measured Service - A feature where the metered delivery of cloud services is such

that usage can be monitored, controlled, reported, and billed. This is an important

feature needed to optimize and validate the delivered cloud service. The focus of

this key characteristic is that the customer may only pay for the resources that

they use. From the customers’ perspective, cloud computing offers the users value

by enabling a switch from a low efficiency and asset utilization business model to

a high efficiency one.

Chapter 1. Introduction 3

• Multi-tenancy - A feature where physical or virtual resources are allocated in

such a way that multiple tenants and their computations and data are isolated

from and inaccessible to one another. Typically, and within the context of multi-

tenancy, the group of cloud service users that form a tenant will all belong to the

same cloud service customer organization. There might be cases where the group

of cloud service users involves users from multiple different customers, particularly

in the case of public cloud and community cloud deployments. However, a given

cloud service customer organization might have many different tenancies with a

single cloud service provider representing different groups within the organization

• On-demand self-service - A feature where a cloud service customer can provi-

sion computing capabilities, as needed, automatically or with minimal interaction

with the cloud service provider. The focus of this key characteristic is that cloud

computing offers users a relative reduction in costs, time, and effort needed to take

an action, since it grants the user the ability to do what they need, when they need

it, without requiring additional human user interactions or overhead.

• Rapid elasticity and scalability - A feature where physical or virtual resources

can be rapidly and elastically provisioned, in some cases automatically, to quickly

increase or decrease resources. For the cloud service customer, the physical or

virtual resources available for provisioning often appear to be unlimited and can

be purchased in any quantity at any time, subject to constraints of service agree-

ments. Therefore, the focus of this key characteristic is that cloud computing

means that the customers no longer need to worry about limited resources and

might not need to worry about capacity planning. From the customers’ perspec-

tive, if new resources are needed, they are available automatically, immediately,

and can appear to be infinite, subject to constraints of service agreements.

Chapter 1. Introduction 4

• Resource pooling - A feature where a cloud service provider’s physical or virtual

resources can be aggregated in order to serve one or more cloud service customers.

The focus of this key characteristic is that cloud service providers can support

multi-tenancy while at the same time using abstraction to mask the complexity of

the process from the customer. From the customer’s perspective, all they know is

that the service works, while they generally have no control or knowledge over how

the resources are being provided or where the resources are located. This offloads

some of the customer’s original workload, such as maintenance requirements, to

the provider. Even with this level of abstraction, it should be pointed out that

users might still be able to specify location at a higher level of abstraction (e.g.,

country, state, or datacenter).

The Cloud provides a number of different types of services, and we list the three most

common ones as follows:

• Software as a Service (SaaS) - The consumer can choose to run the application

on demand but has no control of the underlying application. The Cloud provider

has full control over the application.

• Platform as a Service (PaaS) - This allows the consumer to deploy consumer-

created and/or acquired applications created using programming languages, li-

braries, services and tools supported by the Cloud provider [3]. The Cloud provider

has control over the platform and its applications. The Cloud provider has full

control of the hardware, while the client has control over the application.

• Infrastructure as a Service (IaaS) - Basic computing infrastructure such as

servers, storage, software, processing and network equipment is provided as a ser-

vice to Cloud consumers.

Chapter 1. Introduction 5

There are four different deployment models for the Cloud [6]. These include:

• Private cloud - The Cloud infrastructure is owned, operated and managed within

an organisation. Only entities within the organisation are provisioned for using the

services provided by the Cloud. The servers may exist on or outside the premises

of the organisation.

• Community cloud - The Cloud infrastructure is provisioned for use by a com-

munity of users from various organisations who share common goals and concerns.

• Public cloud - The Cloud infrastructure is provisioned for use by the public. The

servers generally exist on the Cloud provider’s premises.

• Hybrid cloud - A composition of two or more of the above deployment models.

1.1 Motivation

Data sharing is becoming increasingly important for end users, enterprises and even

health industries. There is currently a push for IT organisations to increase their data-

sharing efforts. According to a survey by Information Week [1], nearly all organisations

shared their data in some way, with 74% sharing their data with customers and 64%

sharing it with suppliers. A fourth of the surveyed organisations consider data sharing

to be a top priority. The benefits that organisations can gain from data sharing are

higher productivity and revenue. People in general love to share information with one

another. Whether it is with friends or family, or even strangers around the world, many

people benefit greatly through sharing data, as they achieve higher levels of productivity

and a better education. The National Institute of Health (NIH) states that data sharing

“reinforces open scientific inquiry, encourages diversity of analysis and opinion, promotes

Chapter 1. Introduction 6

new research, makes possible the testing of new or alternative hypotheses and methods

of analysis, supports studies on data collection methods and measurement, facilitates

the education of new researchers, enables the exploration of topics not envisioned by the

initial investigators, and permits the creation of new datasets when data from multiple

sources are combined” [7]. Data sharing can also help businesses understand more

about their customers and provide better services for them [8]. Thus, data sharing is

very crucial among users from all walks of life, regardless of their age, gender, race, or

whether they work in industry.

The Cloud [3] can be used to enable data-sharing capabilities, which can provide an

abundant number of benefits to the user. With multiple users from different organisa-

tions contributing to data in the Cloud, less time and money will be spent, compared

with having to manually exchange data that creates a clutter of redundant and possibly

out-of-date documents. Thus, the Cloud makes data sharing with anyone in the world

both more convenient and easier than any other method of sharing.

Some benefits of data sharing in the Cloud include more data reliability and availability,

the ability to work from anywhere, not being constrained to one machine, no server

maintenance, and saved costs to name a few [9].

There are many examples of Cloud usage in today’s world, which brings with it a huge

number of benefits. There are social networking services such as Facebook and Twitter.

The benefits of sharing data through social networks are numerous [10], such as the

ability to share photos, videos, information and events, which creates a sense of enhanced

enjoyment in one’s life and can enrich the lives of some people who are amazed at how

many people are interested in their life and well-being. The sharing of research data

has been shown to benefit the general scientific community [11]. Group collaborative

Chapter 1. Introduction 7

tools have been of major importance to students and group-related projects [12]. Google

Docs provides data-sharing capabilities, whereby groups of students or teams working

on a project can share documents and effectively collaborate with each other. This

allows for higher productivity than the previous method of continually sending updated

versions of a document to members of the group via email attachments. Also, in modern

healthcare environments, healthcare providers are willing to store and share electronic

medical records via the Cloud and hence remove the geographical dependence between

the healthcare provider and the patient [13]. The sharing of medical data allows for the

remote monitoring and diagnosis of patients, without the patient having to leave their

home.

The Cloud, however, is susceptible to many privacy and security attacks [14]. As high-

lighted in [15], the biggest obstacles hindering the progress and wide adoption of the

Cloud are the privacy and security issues associated with it. According to a survey

carried out by IDC Enterprise Panel [16] in August 2008, Cloud users regard security

as the top challenge, with 75% of surveyed users worried about their critical business

and IT systems being vulnerable to attack. Once the data owner stores their data on

the Cloud, they effectively lose full control over their data. The Cloud Service Provider

is able to do whatever they wish with the data, without the data owner’s knowledge.

Evidently, many privacy and security attacks occur from within the Cloud providers

themselves [17], as providers usually have direct access to stored data and steal data to

sell to third parties, in order to gain profits. There are many examples of this happening

in the real world, as highlighted in [18]. In today’s world, there is a strong need to share

information to groups of people around the world. Since the Cloud is riddled with so

many privacy issues, many users are still apprehensive about sharing their most critical

data with other users. Such threats also affect the trust of the data owner.

Chapter 1. Introduction 8

We now list some of the key requirements of secure data sharing in the Cloud, which we

derived by reflecting and reviewing the literature in Chapter 2.

• Firstly, the data owner should be able to specify a group of users that are allowed

to view his or her data.

• Any member within the group should be able to gain access to the data at any

time, and anywhere, without the data owner’s intervention.

• The data owner should have some degree of control over their own data, no matter

where the data is stored.

• No-one other than the data owner and the members of the group should be able

to gain access to the data, including the Cloud Service Provider.

• The data owner should be able to add new users to the group.

• The data owner should also be able to revoke the access rights of any member of

the group to his or her shared data.

• No member of the group should be allowed to revoke rights or join new users to

the group.

1.2 Key Research Problems

Our research aim is to achieve an environment where the data owner is able to store

and share data in the Cloud while maintaining both privacy and security. A few of the

major privacy and security issues related to data sharing in the Cloud include:

• Key Management: One of the main issues related to data sharing in the Cloud

is key management. One trivial solution to achieving secure data sharing in the

Chapter 1. Introduction 9

Cloud is for the data owner to encrypt his data before storing it on the Cloud,

and hence the data remains secure against the Cloud provider and other malicious

users. When the data owner wants to share his data to a group, he sends the

key used for data encryption to each member of the group. Any member of the

group can then obtain the encrypted data from the Cloud and decrypt the data

using the key, thereby not requiring the intervention of the data owner. However,

the problem with this technique is that it is computationally inefficient and places

too great a burden on the data owner, when considering factors such as user

revocation. When the data owner revokes access rights to a member of the group,

that member should not be able to gain access to the data. Since the member

still has the data access key, the data owner has to re-encrypt the data with

a new key, rendering the revoked member’s key useless. When the data is re-

encrypted, he must distribute the new key to the remaining users in the group,

which is computationally inefficient and places too great a burden on the data

owner, when considering large group sizes. Therefore, this solution is impractical

for deployment in the real world, with regards to highly critical data such as

business-, government- and/or medical-related data. Thus, there needs to be a

solution whereby encryption keys are managed on/off the Cloud, which does not

place a significant burden on the data owner/consumer.

Note that the data consumer still has access to the data already decrypted before

he was revoked access. Although he can still view the old data, he can no longer

view any new data shared within the group or data that had yet to be accessed

before he was revoked.

• Security Attacks when Sharing Data: There are many different types of

security attacks when sharing data in the Cloud. We describe a few of the most

Chapter 1. Introduction 10

common types of attacks, below:

– Insider Attacks: This is the most prevalent type of attack in relation to data

sharing in the Cloud [17]. Cloud providers have full and direct access to

the data owner’s data and are thus able to steal critical data without the

data owner’s permission. Insider attacks are common and the stolen data are

generally sold to third parties in order to gain profit [19].

– Sniffing Attacks: A malicious user intercepts the public communication net-

work and attempts to retrieve sensitive information such as a username, pass-

word, and critical data. Such attacks are likely to be successful when there

are no forms of encryption, when data is sent over public communication

channels. Thus, it is crucial to ensure that data is always encrypted before

sending it over the network. Man-in-the-middle (or Man-in-the-Cloud) based

attacks can steal data stored in Cloud services such as Google Drive, Dropbox

and OneDrive, to name a few, by stealing the user’s synchronisation token

[20].

– Collusion Attacks: These types of attacks occur when two or more parties

agree to reveal some secret information, illegally. For instance, a Cloud

provider and a dishonest data-sharing consumer can combine their secret

keys to reveal some critical information about the data owner’s data. This

can affect the entire privacy and security of all of the data stored in the Cloud,

thus severely affecting the trust of the data owner with regards to using the

Cloud for data sharing and collaboration purposes. Collusion attacks are

mainly prevalent in eCommerce services [21].

Chapter 1. Introduction 11

Consequently, security protocol(s) need to be in place to protect against these

types of attacks.

• Dishonest Data Consumers: Since the data owner has chosen to entrust his

specified data consumers with his data, the data owner assumes that the data

consumer will use the data as expected and will not inadvertently or accidentally

leak the data to outsiders. For instance, a dishonest data consumer might find

the data owner’s data interesting enough to decide to share it with his friends. He

might copy the data to a USB device and send it to friends, or send the data via

email attachments. This can be easily done without the knowledge of the data

owner, which affects the trust of the data owner when their own consumers are

the culprits of the data leakage. Thus, there needs to be some form of mechanism

that provides the data owner with greater access control over his data. The data

owner should be able to specify complex policies that data consumers must adhere

to when using the data.

1.3 Key Contributions

To address the above specific issues, we make the following contributions in this thesis.

1.3.1 Key Partitioning Algorithm

As discussed, the main problem with encryption-key management related to data sharing

in the Cloud is that it is computationally inefficient and places too heavy a burden on

the data owner to manage an authorised group of users. This problem is especially true

when considering factors such as user revocation, or managing large groups of users in

excess of thousands to hundreds of thousands.

Chapter 1. Introduction 12

A few studies have attempted to address this problem, with the most popular techniques

being Attribute-Based Encryption (ABE) [22] and Proxy Re-encryption [23]. Tu and

Niu et al. [24] have used a technique called CP-ABE (discussed in detail in the next

chapter), which bundles unique attributes in a secret key and sends the key to authorised

users. In terms of user revocation, the data is re-encrypted in the Cloud, which reduces

the burden on the data owner. Tran et al. [25] have proposed a proxy re-encryption

scheme whereby a key is divided into two parts, with one partition kept by the consumer

and the other by the Cloud proxy. This allows for a more efficient way to handle user

revocation, as the data owner does not need to re-encrypt the data and re-distribute the

keys.

The main problems with current solutions, however, are that they either do not handle

the sharing of data with large numbers of Cloud users, or they lack a more efficient

solution. For instance, the solution provided by Tran et al. [25] relies on the proxy to

carry out encryption/decryption operations and might therefore be too much for the

proxy to handle. Also, the solution does not handle the scenario where a revoked user

and the proxy are colluding, which will ultimately reveal the full plaintext key and thus

the data, as well. The solution of Tu and Niu et al. [24] is inelegant, since there is still

a heavy computational overhead as the data needs to be re-encrypted when a user is

revoked. The solution also lacks transparency in terms of sharing data with a variety

of users around the world, and is more focused on sharing data with users who have

defined attributes that are more suited to enterprises.

In our approach, we have extended the work of Tran et al. [25] to allow for more efficient

key sharing amongst a large number of users. We propose a key partitioning crypto-

graphic algorithm that allows the data owner to share data with many users and revoke

them on-the-fly, without the need to undertake the re-encryption or re-distribution of

Chapter 1. Introduction 13

keys. Our solution is also secure against collusion-based attacks, and places no burden

on the data owner or the Cloud to manage keys. To demonstrate our algorithm, we

developed prototypes in a number of healthcare scenarios. We evaluated the proto-

types in terms of performance, usability and scalability. This helped to demonstrate the

feasibility of implementing a similar system in the real world.

1.3.2 Secure Data Sharing Protocol

One of the biggest issues preventing the widescale adoption of the Cloud for the sharing

and collaboration of data, is privacy and security [14],[15]. Attacks can occur in transit,

on Cloud storage and on backup media. In fact, the worst culprits are malicious Cloud

providers themselves, as they have full, direct access to the data [17]. In order to

keep data secure, it is thus crucial that data must be kept encrypted at all times, even

when stored on the Cloud. However, encryption alone is not enough, as hackers and

Cloud providers continue to find new ways to access data. This can occur through

collusion-based attacks where the Cloud provider colludes with an authorised consumer

to reveal some vital information about the data. As mentioned earlier, other forms of

attack include sniffing attacks, accidental or intentional leaking of data by authorised

consumers, or even over-the-shoulder attacks.

There is currently on-going research on how to protect the confidentiality and security of

data stored in the Cloud. Jayalatchumy et al. [26] have proposed implementing security

as a Cloud service using a discretion algorithm, and have implemented an intrusion

detection system for the Cloud. Cavoukian [27] has argued the need for flexible and

user-centric identity management so that in the future, a user would not have to re-

enter credentials for a website and could rely on an identity service to manage website

access. There has also been research on using access control as a form of security. Access

Chapter 1. Introduction 14

control provides restrictions on who can view the data and who cannot. Access Control

Lists (ACLs) were originally used [28] for data protection. XACML [29] is a generic,

open-source access control policy language built on XML allowing the data owner to

specify complex policies governing how their data should be used. The ABC4Trust EU

Project proposed the use of Privacy Attribute-Based Credentials (Privacy ABCs) [30]

as a way to enhance the privacy of individual authentication without ever requiring

them to reveal their full personal details and thus allowing their identity to be kept

anonymous. The AU2EU project aims to implement an integrated eAuthentication and

eAuthorisation framework for trusted collaborations and delivery of services by utilising

identity/attribute providers and policy enforcement mechanisms to name a few [31].

However, effective protocols need to be in place to simultaneously prevent privacy and

security breaches and reduce the burden on data owners to manage their groups of

authorised consumers. For instance, although ACLs provide a degree of control over

who can access the data, this is not effective, as it is too coarse-grained and unscalable,

which is one of the primary features of the Cloud.

In this thesis, we develop secure data-sharing protocols that allow the data owner to

efficiently and securely share and manage their data with many users. Through our pro-

tocols, we aim to improve the trust of the data owner in using the Cloud to share and

collaborate data with other users. Our protocols prevent insider attacks, collusion-based

attacks, sniffing/man-in-the- middle attacks, and a number of other common security

attacks. We demonstrate our protocols through our software-based self-protecting data

object called “SafeShare.” We also carry out performance tests on on SafeShare. We

later improve upon this work and propose a hardware-based self-protecting data object,

using a physical device, the Trusted Extension Device (TED). We discuss the perfor-

mance of this approach and ways to improve performance overall.

Chapter 1. Introduction 15

1.3.3 Self-Controlling Data Object

One of the growing problems related to data sharing in the Cloud is the data owner

access-control problem. Once the data leaves the trusted premises of the data owner’s

machine, he no longer has any control over it. The data owner has no knowledge of

where the data is stored, who has access to the data, or how many copies of the data

are being kept. On top of the privacy and security issues discussed above, an authorised

data consumer might inadvertently leak the data owner’s data, either accidentally or in-

tentionally. This can happen when an authorised data consumer uses the fully decrypted

plaintext and sends it to their peers via email attachments and/or USB transfer.

Currently, the data owner has no knowledge of who is leaking the data, which makes

auditing and accountability difficult. The data owner also has no control over prevent-

ing the data owner from leaking the data or carrying out an illegal operation on the

data. There have not been many research projects that have focused on dishonest data

consumers who might leak data either accidentally or intentionally. Squicciarini et al.

[32] have proposed the idea of a Self-Controlling Object (SCO), which bundles data and

access control policy in a JAR file. The JAR file includes an executable that logs every

operation of the data consumer and periodically flushes the log file to the Cloud, in

order for the data owner to access and subsequently hold the offending data consumers

accountable. The main issue with this solution is that management of the SCOs is te-

dious and still does not prevent a dishonest consumer from leaking data; it only reports

the leak to the Cloud. Chen et al. [33] have proposed DataSafe, which similarly bundles

the data and policy in a file, with data access occurring on DataSafe machines. The

issue with this solution, however, is that it requires specific hardware and thus would

Chapter 1. Introduction 16

not work with the Cloud. This is due to the Cloud feature that data can be accessed

from anywhere, at any time.

We introduce the idea of self-protecting data objects. Self-protecting data objects are

a fairly new contribution to research, and aim to provide the data owner with greater

access control over their data. With self-protecting data objects, the data owner now has

some level of control over their data, even if they store their data on the Cloud. This can

help to increase the data owner’s level of trust when sharing data. We demonstrate this

idea through our proposed policy-based self-protecting data object called “SafeProtect

Object.” We develop the object as well as a plugin to Microsoft Word which can be

used to access the object to demonstrate the feasibility of our idea. This work was well

recognised and achieved the Best Poster Award in CCGrid 2015.

1.4 Thesis Organisation

In this thesis, we focus on enabling private and secure data sharing in the Cloud, while

providing the data owner greater access control over their data. By enabling greater

access control, the data owner has greater confidence and trust in storing his data in

the Cloud, without worrying about sensitive data leakage by Cloud insiders and/or

authorised data consumers. Throughout this thesis, we tailor solutions that specifically

address the problems of key management in terms of user revocation and the need for

greater data-owner access control.

• In Chapter 2, we review the existing literature on the methods for achieving pri-

vate, secure and efficient data sharing in the Cloud.

Chapter 1. Introduction 17

• In Chapter 3, we provide a formal description of the problem statement and de-

scribe our trust model.

• In Chapter 4, we describe and detail our solution to the problem of key manage-

ment, in terms of user revocation in the Cloud. This solution will enable data

owners to share data with very large groups of data consumers, whilst providing

the data owner with the low-burden ability to revoke data consumers. Our solution

uses a key partitioning technique, which splits the encryption key and distributes

partitions between consumers and the Cloud. We also demonstrate our solution

in the context of healthcare.

• In Chapter 5, we present solutions that prevent security attacks carried out by

malicious insiders and outsiders, related to data sharing in the Cloud. Our solu-

tions focus on preventing collusion attacks between attacker, revoked user and/or

CSP, insider attacks, sniffing attacks, and man-in-the-middle attacks, to name a

few.

• In Chapter 6, we present our solution to the data owner access control problem.

In our solution, we do not primarily focus on the Cloud but instead, focus on

ensuring that the data is used by data consumers in the way that the data owner

expects. We present a solution ensuring that data access by data consumers abides

by policies set out by the data owner. For example, if a data owner states in the

policy that his data should not be copied, a mechanism will prevent the data from

being copied by the data consumers via USB transfer or email attachments, etc.

• In Chapter 7, we lay out the directions for future work and conclude the thesis.

Chapter 2

Literature Review

In this chapter, we present a review of the research literature related to secure data

sharing in the Cloud. We first present a summary of reviews on the privacy and security

of data in the Cloud. We then detail the privacy issues in the Cloud, provide some

examples, and list a few requirements for secure data sharing in the Cloud. We then

describe, compare and contrast work done on key management in the Cloud and data

owner access control. We conclude the review by providing future directions for private

and secure data sharing in the Cloud.

2.1 Reviews on Privacy and Security in the Cloud

There have been a number of reviews on security and privacy in the Cloud. Xiao et

al. [34] have identified the five concerns of Cloud computing – confidentiality, integrity,

availability, accountability and privacy – and have thoroughly reviewed the threats to

each of the concerns, aswell as defence strategies. Chen and Zhao [35] outline the

requirements for achieving privacy and security in the Cloud and also briefly outline

18

Chapter 2. Literature Review 19

the requirements for secure data sharing in the Cloud. Zhao [36] provides a survey

on privacy and security in the Cloud, focusing on how privacy laws should also take

Cloud computing into consideration, and what work can be done to prevent privacy and

security breaches of one’s personal data in the Cloud. Wang et al. [37] have explored the

factors that affect the management of information security in Cloud computing. They

explain that the necessary security need for enterprises is to understand the dynamics

of information security in the Cloud. Saravanakumar et al. [38] surveys related works

on Cloud interoperability, security, privacy and trust. Hosseinzadeh et al. [39] surveyed

works that proposed techniques to enhance privacy and security via obfuscation and

diversification techniques. Raja et al. [40] analyses works and emphasises the need

for privacy preserving identity management in a public Cloud environment. Kumari

et al. [41] reviews works on security issues and concerns in the Cloud as well as some

countermeasures. Oza et al. [42] have carried out a survey on a number of users to

determine the user experience of Cloud computing, and have found that the main issue

for all users is trust and how to make a choice between different Cloud Service Providers.

Wang [43] carried out a study on the privacy and security compliance of Software as a

Service (SaaS) among enterprises.

Table 2.1 shows a summary of the reviews of privacy and security in the Cloud. The

table categorises the related work in two aspects; Cloud security and Data sharing. The

table depicts whether the related work addresses the threats, provides defense strategies

and/or provides a number of requirements in order to achieve Cloud security or data

sharing privacy. The table also depicts whether the related work addresses how much

of an impact the Cloud and/or data sharing has had on society in general.

Chapter 2. Literature Review 20

Cloud

Security

Data

Sharing

Threats Defense

Strategies

Require-

ments

Impact on

society

Xiao Z. et al. [34] Y N Y Y N Y

Chen and Zhao

[35]

Y Y Y N Y Y

Zhao [36] Y N Y Y Y Y

Wang et al. [37] Y N Y Y Y Y

Saravanakumar

et al. [38]

Y N Y N N N

Hosseinzadeh et

al. [39]

Y N N Y N N

Raja et al. [40] N N Y Y N Y

Jen-Sheng Wang

et al. [37]

Y N N Y Y Y

Yu-Hui Wang [43] Y N N Y Y N

Oza et al. [42] Y N Y N Y Y

Y = Yes N = No

Table 2.1: Summary of reviews

2.2 Privacy and Security Issues in the Cloud

Privacy has many definitions in the literature. Some examples of the different definitions

of privacy are: “being left alone,” “the control we have over information about ourselves”

and “the claim of individuals, groups, or institutions to determine for themselves when,

how, and to what extent information about them is communicated to others” [44], to

Chapter 2. Literature Review 21

name a few. The Organization for Economic Cooperation and Development (OECD)

[35] defines privacy as “any information relating to an identified or identifiable individual

(data subject).” The American Institute of Certified Public Accountants (AICPA) and

the Canadian Institute of Chartered Accountants (CICA) in the Generally Accepted

Privacy Principles (GAPP) standard [35], define privacy as, “The rights and obligations

of individuals and organizations with respect to the collection, use, retention, and dis-

closure of personal information.” From these definitions, it is clear that a person has

some level of control over what they want to disclose about themselves and what they

want to keep secret about the rest of their information. Privacy should not be assumed

to have the same meaning as confidentiality. Confidentiality involves allowing only au-

thorised users to gain access to that information, and no one else. Confidentiality can

be regarded as a subset relation of privacy.

Security, on the other hand, is defined by NIST [45] as “A condition that results from

the establishment and maintenance of protective measures that enable an enterprise

to perform its mission or critical functions despite risks posed by threats to its use of

information systems. Protective measures may involve a combination of deterrence,

avoidance, prevention, detection, recovery, and correction that should form part of the

enterprise’s risk management approach.”

Chapter 2. Literature Review 22

Attack Space

Attack Methods

Attacker

Figure 2.1: Attack Model

Figure 2.1 highlights a basic attack model. An attacker will use attack methods to carry

out a privacy and security attack on an attack space. We now describe each of these

components in detail, as well as provide guidelines and discuss the current approaches

used to mitigate and/or prevent these attacks.

2.2.1 Attackers

There are many different types of attackers, with different reasons to attack users [46],

[47]. The following are examples of the motives of attackers.

• To steal valuable data - Hackers love to steal data, as there is sensitive data stored

in the Cloud worth millions of dollars. With access to valuable data, they can then

generate revenue; for example, WikiLeaks [48].

Chapter 2. Literature Review 23

• To cause controversy - Some attackers purely love the thrill and excitement of

causing chaos on the Internet, and the Cloud is one of the best mediums to tar-

get, mainly because of the popularity of the Internet and it being easier to steal

data over the Internet in comparison to a personal computer system. The attack

on Apple iCloud is one example, which revealed a number of private pictures of

celebrities that were posted all over the Web [49].

• To obtain revenge - Former workers recently stripped of their position at an organ-

isation might express their dissatisfaction by hacking the organisation’s network.

When an organisation makes use of the Cloud, this becomes all too easy for the

former employee, and there have been many cases of this happening. For instance,

the case of a former employee who managed to access the Cloud provider’s server

and delete an entire season of a children’s TV show [17].

• To help - In contrast, a hacker might try to help an organisation by identifying

the security flaws in their system. A hacker might be confident enough to bypass

the existing security protocol and implant his or her own mechanisms in order to

expose the protocol. For example, in 1988, a first-year graduate student created

the devastating Morris worm to demonstrate the inadequacies of the computer

network’s security measures at the time [50].

• To prove intellect and gain prestige - Attackers may also want to show off their

skills and gain prestige among their peers through hacking a large organisation

with solid security mechanisms. Some hackers make a career out of hacking or-

ganisations. For example, the attack on the New York Times website exposed

many sensitive records. The attack was partly motivated by the need to prove

the hacker’s intelligence, as the attacker included his own name in the expertise

category [51].

Chapter 2. Literature Review 24

• Are just curious - Some hackers are curious to learn something about a company

and/or an organisation. These types of hackers do not usually have a malicious

intention, as they may not be aware of breaking security rules; however, this does

not mean that these hackers are less dangerous. For example, the Morris worm in

1988 was also partly motivated by curiosity [50].

2.2.2 Attack Methods

There are a number of types of privacy and security attacks that are possible in the

Cloud. The following is a summary of the common types of attacks that could occur in

the Cloud.

• Insider Attacks - As discussed in Chapter 1, a malicious insider has full and direct

access to the data. They can do anything they wish with the data, including selling

them for profit [19].

• Sniffing Attacks - Attackers intercept the public communication channels and re-

trieve sensitive information, such as passwords.

• Collusion Attacks - When two or more parties have secret information and agree

to reveal this illegally.

• XML Signature Wrapping Attacks - Using different kinds of XML signature wrap-

ping attacks, one can completely take over the administrative rights of the Cloud

user and create, delete and modify images, as well as create new instances in the

victim’s Cloud [52].

• Cross-site scripting attacks - attackers can inject a piece of code into web applica-

tions to bypass access control mechanisms. Researchers found this possible with

Chapter 2. Literature Review 25

Amazon Web Services [52], in November 2011. They were able to gain free access

to all customer data, authentication data, tokens, and plaintext passwords.

• Flooding Attack Problem - Provided that a malicious user can send requests to

the Cloud, he or she can then easily overload the server by creating bogus data

requests to the Cloud [53]. The attempt is to increase the workload of the Cloud

servers by needlessly consuming lots of resources.

• Insecure Interface - A vulnerability in the interface which users use to interact

with the Cloud may divulge sensitive information [6].

• Denial-of-Service Attacks - Malicious code is injected into the browser to open

many windows and as a result, deny legitimate users access to services.

• Law Enforcement Requests - When law enforcement demands access to the data

of a Cloud Service Provider, the Cloud Service Provider is unlikely to deny such a

request. Hence, there is an inherent threat to user privacy and data confidentiality.

• Data Stealing Problem - A term used to describe the stealing of a user account

and password by any means [53], such as through brute-force attacks or over-

the-shoulder techniques. The privacy and confidentiality of a user’s data will be

severely breached. A common mechanism to prevent such attacks is to include an

extra value during the authentication process. This value can be distributed to the

correct user via SMS, thus mitigating the likelihood of data confidentiality issues.

• Over-The-Shoulder Attacks: In these types of attacks, a user attempts to steal

critical information via direct observation, such as looking over one’s shoulder or

taking a snapshot, or even taking video footage. It is the responsibility of the data

consumer to keep the data secure and ensure that no secret information is leaked.

Chapter 2. Literature Review 26

These types of attacks will not be covered within the thesis, as this is outside the

scope of our work.

2.2.3 Attack Space

Whilst an attacker may have the motivation and methods to undertake an attack, they

usually then seek to target specific contexts such as healthcare, social networks, etc.,

depending on how sensitive the data is or how easy it is to obtain the data. We look at

a few contexts from which an attacker may seek to retrieve sensitive data, below.

Healthcare: In the context of healthcare, patients reveal their health-related infor-

mation to healthcare professionals in order to diagnose and treat illnesses [54]. In the

United States, the Health Insurance Portability and Accountability Act (HIPAA) [55]

provides federal protection for an individual’s personal health information and provides

individuals with rights to their information. The HIPAA Privacy Rule provides protec-

tion for a patient’s personal health information and guidelines on how external entities

such as doctors and nurses can gain access to the patient’s data, with the patient’s con-

sent. While the HIPAA guidelines are also followed by other countries around the world,

it is not followed in Australia. The Commonwealth Privacy Act 1988 aims to protect

all personal information including health data in Australia [56]. In NSW, all health

information is covered by the Health Records and Information Privacy Act (HRIPA)

[56]. As [54] argues, since the patient decides to share their data with one or more

healthcare professionals, their data is no longer private, but is confidential. In 2014,

Community Health Systems, which was one of the largest hospital operators in the US,

notified 4.5 million patients that their personal information was stolen by cybercriminals

[57]. Hackers were able to access patient names, addresses, dates of birth, and telephone

Chapter 2. Literature Review 27

numbers. Similarly, another attack on a diagnostic radiology service provider exposed

the billing information and medical data of over 300,000 patients [58].

Social Networking: Social networking has changed the lives of today’s generation.

There are many social networking sites with millions of users communicating with each

other. Some examples are Facebook, Twitter, Flickr, YouTube, and the list goes on.

Internet privacy has been determined as the “right to be left alone” [59]. The technology

that is built to support social networking does not effectively support privacy and may

even sell personal information about the individual to third parties, and it is mainly up to

the individual to disclose information while maintaining privacy. The individual needs to

make sure that they do not unknowingly disclose personal information about themselves.

Simply disclosing their age, suburb and nationality is enough for malicious users to

identify the person. Facebook has undergone scrutiny in the past for not strengthening

its privacy measures on user profiles, as private photos could still be viewed by non-

private viewers through a friend-of-a-friend, by simply having a friend comment on the

image [60]. Facebook was also the target of phishing attacks in early 2012, which involved

attempting to steal user accounts and learn financial information [61]. Once accounts

were stolen, the user’s profile would be locked out and the profile picture would change.

In fact, Facebook has been the target of a number of phishing attacks, such as Ramnit

[62], which affected up to 45,000 users. Google revealed in June 2011 that hackers from

China stole passwords and attempted to break into email accounts to steal information

[63]. More than 100 people were affected, including senior government officials. People

began to discuss whether this, and the Sony incident, was the start of the downfall of

Cloud computing [64]. Hotmail and Yahoo Mail users were also targeted in phishing

attacks [65],[66]. The attacks involved a user either clicking a malicious link in the

email or viewing the email itself, which would then run a malicious code and attempt to

Chapter 2. Literature Review 28

compromise the user’s account. In April 2011, Sony was involved in a massive security

blunder that potentially gave away 100 million credit card numbers. Hackers claimed to

have stolen millions of credit card numbers from Sony’s PlayStation Network [67].

Government: Nearly all governments collect information about their citizens and res-

idents, such as education, finance, gender, loans, earnings, medical costs, criminal of-

fences, and so on [68]. Governments also release data to the public, for their citizens

to view. This might not guarantee the privacy of citizens, as some users might be able

to infer information about a particular user through government data. In Australia,

the Commonwealth Privacy Act of 1988 aims to protect the privacy of any personal

information [56]. This includes the collection, use, storage, disclosure and access to any

personal information. The Act permits the handling of health information for health

and research purposes. In the United States, the Privacy Act of 1974 aims to protect

an individual’s privacy [69]. According to the Act, individuals have the right to view

the information that the government has about them, to modify or remove incorrect

information, and to also sue the government for violations of the Act, including, but

not limited to, unauthorised access to personal information. Governments also need

to keep data private from other governments [70], as the results can be devastating if

information is leaked, as with WikiLeaks [48].

Education: Schools usually collect personal health information on all students. This

includes the name, telephone number, address, contact details, financial details, al-

lergies/disabilities and family history, to name a few. It is usually strongly implied that

schools keep this information confidential and private [71]. Privacy and security breaches

may also affect student grades and even open up avenues for stealing and plagiarism.

For example, Google Docs (used by many students for assignments and homework) con-

tained a flaw that inadvertently shared user documents with unauthorised users [18].

Chapter 2. Literature Review 29

Other users could access and edit documents without the permission of the Google Docs

owner.

Corporations: Major businesses and organisations also require the privacy and con-

fidentiality of their data. The leakage of sensitive information can result in the loss

of revenue for a company, even to the extent of ruining the business. In 2007, Sales-

force.com leaked customer contact lists after an employee revealed the list to a phisher,

and in turn allowed scammers to target phishing attacks against Salesforce.com cus-

tomers [19]. A Distributed Denial-of-Service (DDoS) attack on Amazon Web Services

in 2009 forced many companies to shut down temporarily, such as Bitbucket [72].

Attacks contribute heavily to user suspicion, which affects their trust in storing sensitive

data in the Cloud. In order to gain users’ trust in using the Cloud to store critical data,

mechanisms need to be implemented that guarantee data is kept both confidential and

secure from unauthorised users.

2.2.4 Existing Solutions to Privacy and Security Issues

We now discuss the guidelines for a private and secure Cloud, as well as the current

technologies in place to prevent privacy and security attacks on the Cloud.

2.2.4.1 Guidelines

According to [73], the above issues could have the following impacts on the Cloud:

Governance - Organisations usually have standards, practices, protocols, policies and

procedures that employees must abide by, which can cover application development,

testing, implementation, monitoring, and so on. When an organisation makes use of

Chapter 2. Literature Review 30

Cloud services, there is always the possibility that employees bypass these rules, as

there is a lack of organisational rules regarding the Cloud.

Compliance - This refers to an organisation’s responsibility to operate in agreement

with established laws and regulations. There are a number of privacy and security laws

within different countries and states, and when using the Cloud, an organisation has to

consider whether they are likely to breach any privacy or security laws, as data stored in

the Cloud is usually stored in multiple locations around the world, and at times without

the knowledge of the user.

Trust - It is a well-known fact that when a user or organisation chooses to outsource

their data to the Cloud, they relinquish full control of their data and provide a high level

of trust to the Cloud provider. As discussed in the introduction and the next section,

most privacy and security attacks on data arise from insider attacks. The Cloud provider

usually has direct access to data and is thus more likely to steal data for illegal purposes.

In terms of trust, there is also the issue of data ownership, such as who owns the data,

and contracts specifying whether the Cloud has some or no access to parts of its data.

Architecture - The architecture of the Cloud needs to be designed in a way that prevents

privacy and security attacks. For instance, IaaS Cloud providers can provide Virtual

Machine Images to consumers. An organisation that makes use of these images could

store highly critical data. An attacker may examine the images to see whether they

leak information. An attacker may also supply a corrupted virtual machine image to

users and thus steal confidential data. It is important that the architecture of the Cloud

is developed such that it ensures privacy and security, as attackers are always on the

lookout for security holes within Cloud architecture.

Chapter 2. Literature Review 31

Identity and Access Management - As data sensitivity and privacy are becoming an ever-

increasing issue for organisations, the identity and authorisation framework present in

the organisation may not extend to the Cloud, and malicious users may be able to gain

unwarranted and unauthorised access to the data.

Software Isolation - With multi-tenant Cloud computing architectures, computations

for different consumers are carried out in isolation, even if the software remains in a

single software stack. Applications running in the Cloud are susceptible to attack and

compromise; therefore, isolation is needed to prevent such attacks.

Data Protection - Data stored in a public cloud usually reside with other data from other

organisations. When an organisation places their sensitive data in a public cloud, they

must account for the possible privacy and security attacks by ensuring proper access

control mechanisms, such as encryption. Since data is stored “in the open,” there is a

world of opportunity for malicious users to steal data. Similar concerns exist when data

is in transit.

Availability - As defined in the NIST Security and Privacy Guidelines [73], availability

is the extent to which an organisation’s full set of computational resources is accessible

and usable. Attacks such as Denial-of-Service attacks, server downtime and natural

disasters, affect availability and stored data and, more importantly, cause downtime,

which greatly affects an organisation. Incident Response - An incident response is an

organised method of dealing with the consequences of a security attack. The Cloud

contains many layers such as applications, the operating system, network, database and

so on, and a log is generated of any event as part of its intrusion detection system. Such

a complexity of layers means that it will take many hours to identify an attack in the

Cloud.

Chapter 2. Literature Review 32

2.2.4.2 Technologies

In this section, we discuss what is currently being done to protect and/or mitigate

privacy and security attacks on the Cloud.

Currently, there is on-going research into how to protect the confidentiality and security

of data stored in the Cloud. Jayalatchumy et al. [74] propose the implementation of

security as a service in the Cloud and the implementation of an intrusion detection

system for the Cloud. They develop a discretion algorithm which processes data to

make it anonymous and sends this to various service providers in the Cloud for further

processing. Although the data is anonymous, it still presents a considerable risk to

store data in plaintext in the Cloud. Cavoukian [26] argues the need for flexible and

user-centric identity management so that in the future, a user will not have to re-enter

their credentials for a website and can rely on an identity service to manage website

access. This of course has its problems, including that there is potentially a single point

of failure in the identity service unless it is carefully designed.

The THEWS architecture proposed by Ruotsalainen et al. [75] has developed a privacy

management architecture to help the data owner create and manage the network and

maintain the privacy of ubiquitous health information. Routsalanien et al. point out

that there is an asymmetric relationship between health information systems and their

users because users rarely have the power “to force a system to put personal rules into

effect.” The architecture makes uses of policies and one of the main challenges with

this work is how to translate narrative rules defined by the user into machine-readable

policies.

In order to protect a user’s data confidentiality, some form of access control needs to be

Chapter 2. Literature Review 33

implemented in the Cloud. Access control should allow a user to choose who can view

his data and who cannot. As mentioned in Chapter 1, Access Control Lists (ACLs) [28]

were originally used, however, this is ineffective as it is too coarse-grained and unscalable,

which is one of the primary features of the Cloud.

An alternative and effective access control technique is encryption. Encrypting data

ensures that data is protected from unauthorised users. There are two types of encryp-

tion: symmetric and asymmetric. In symmetric encryption, a key is used to encrypt the

data to make it virtually unreadable. The same key is also used to convert the unread-

able ciphertext into its original plaintext. This key must be kept confidential with the

data owner. In asymmetric encryption, public and private keys are used to encrypt and

decrypt data. A user encrypts the data using another person’s public key. The other

person then uses his private key to decrypt the data. The public key can be broadcast

to the world but the private key must remain confidential with the user.

(a) Symmetric Encryption

(b) Asymmetric Encryption

Figure 2.2: Symmetric and Asymmetric Encryption

Encryption of data held in the cloud is crucial for preserving the security of the data.

Much of the literature suggests the need for encrypting data in the Cloud in some form

Chapter 2. Literature Review 34

or another. RuWei et al. [18] state that encryption must occur in transit, at rest, and

on backup media. Gentry [76] proposes the use of homomorphic encryption to keep data

secure and confidential. With homomorphic encryption, it is possible to perform oper-

ations such as querying and searching encrypted data without ever having to decrypt

the data, thus exposing privacy. Yao et al. [77] propose a system called “TrustStore,”

which encrypts and partitions data on the client side and sends each partition to differ-

ent Cloud storage providers. This greatly enhances the confidentiality of data, as the

probability of compromising two or more storage providers is low. However, it does not

handle the case of data sharing and collaboration, which is the focus of our thesis. Silva

et al. [78] present a data encryption solution for mobile health apps and have conducted

a performance evaluation comparing both symmetric and asymmetric encryption algo-

rithms. Even when data is encrypted, it may still be possible for a malicious Cloud

provider to deduce information from the encrypted data. Zhang et al. [79] propose a

novel solution that adds noise obfuscation based on a time-series pattern, to client data

stored in the Cloud. This can help to protect the privacy of the owner’s data, since

it prevents malicious service providers from deducing information from the encrypted

data.

Paul et al. [80] proposes a “Good Enough” method for privacy-preserving Cloud data

storage which aims to balance cost efficiency and security. The method utilises hashed

data splitting techniques to anonymize and separate uniquely identifiable data and also

preserves privacy by taking advantage of multiple Cloud providers. Rahaman et al. [81]

proposes the Preserving cloud computing Privacy (PccP) model which aims to preserve

the privacy of user information in the Cloud.

Table 2.2 presents works related to privacy and security protection in the Cloud. We

categorise and distinguish between papers that focus on privacy, security or both.

Chapter 2. Literature Review 35

Method Privacy protection Security protection

Jayalatchumy et al. [74] N Y

Cavoukian [26] N Y

Ruotsalainen et al. [75] Y N

RuWei et al. [18] Y Y

Gentry [76] Y Y

Yao et al. [77] Y Y

Silva et al. [78] Y N

Zhang et al. [79] Y N

Paul et a. [80] Y N

Rahaman et al. [81] Y N

Y = Yes N = No

Table 2.2: Related works on privacy and security protection in the Cloud

When considering data sharing and collaboration, simple encryption techniques do not

suffice, especially when considering key management. To enable secure and confiden-

tial data sharing and collaboration in the Cloud, there first needs to be proper key

management in the Cloud. This will be explained in detail, in the next section.

There are research (and implementation) opportunities covering areas such as optimal

key management and distribution amongst a set of identified users. How is revocation

implemented and if a key or other credential is revoked, can the user rejoin the group

while preserving their rights in the system? We will provide a solution to this in Chapter

4.

Chapter 2. Literature Review 36

2.3 Private and Secure Data Sharing in the Cloud

In this section, we discuss the traditional approach to sharing data via the Cloud and

why the traditional approach is not effective. We also discuss the key management

problem and review a number of works that address this issue. We then review recent

works that aim to provide private and secure data sharing in the Cloud, and discuss the

latest techniques used to achieve this.

2.3.1 Traditional Approach

A trivial solution to data sharing and collaboration in the Cloud involves a data owner

distributing encryption keys to every user that he authorises. Each user that has autho-

rised access can then obtain the encrypted data from the Cloud and decrypt the data

using the supplied key. This ensures that no unauthorised user gains access to data even

if the user manages to download the ciphertext from the Cloud, as the user does not

possess the decryption key.

This solution, however, is both inefficient and ineffective. Once the data owner decides

to revoke a user’s access to their data, one trivial solution would be for the data owner to

decrypt the data and then re-encrypt the data, this time with a new key, and distribute

this new key to the remaining users in the group. This can become extremely costly

and places an immense burden on the data owner, when considering group sizes between

thousands and millions of users. Furthermore, as members of the group continually join

and leave, continually re-encrypting data and sending re-encryption keys to a group of

this size, becomes impractical for the data owner and infeasible to implement in the real

world. Currently, there is on-going research on this problem.

Chapter 2. Literature Review 37

2.3.1.1 The Need for Key Management in the Cloud

Key management covers the creation/deletion of keys, activation/deactivation of keys,

transportation of keys, storage of keys, and so on [82]. It does not cover encryption

and decryption. Most Cloud Service Providers provide basic key encryption schemes for

protecting data, or they might leave it to the user to encrypt their own data.

Either way, there is a need to encrypt data involved in the Cloud. This raises a few

questions, namely:

• How do we handle the keys that are used for encryption?

• Where should the keys be stored and who has access to those keys?

• How do we recover data if keys are lost?

The solution we propose in Chapter 4 will address these questions. Both encryption and

key management are very important to help secure applications and data stored in the

Cloud [83]. In recent times especially, there has been a strong need for Cloud providers

to adopt a robust key management scheme for their services. However, there are still

key management issues affecting Cloud computing, as described in [84]. We discuss the

three requirements of effective key management, below.

• Secure key stores: The key stores themselves must be protected from malicious

users. If a malicious user gains access to the keys, they will then be able to

access any encrypted data that the key corresponds to. Therefore, the key stores

themselves must be protected in storage, in transit, and on backup media.

• Access to key stores: Access to the key stores should be limited to the users that

have the rights to access the data. The separation of roles should be used to help

Chapter 2. Literature Review 38

control access. The entity that uses a given key should not be the entity that

stores the key.

• Key backup and recoverability: Keys need secure backup and recovery solutions.

The loss of keys, although effective for destroying access to data, can be highly

devastating for a business, and Cloud providers need to ensure that keys are not

lost, through backup and recovery mechanisms.

Tim Mather [85] states that key management in enterprises today is broken, and that

key management in the Cloud is a failed model that is neither effective nor scalable.

Fortunately, there are a number of standards for key management in the Cloud, which

are briefly described, below.

• OASIS Key Management Interoperability Protocol (KMIP) - Used to define a sin-

gle, comprehensive protocol for communication between encryption systems and

enterprise key management systems [86]. KMIP is becoming a widely accepted

standard within industries, who are looking to implement it within their frame-

works.

• NIST SP 800-57 - Provides general guidelines on key management, the recom-

mended types of encryption schemes and protection requirements, as well as infor-

mation on key recovery [87].

• IEEE 1619.3 Key Management - covers storage encryption and key management,

mainly for IaaS storage [84]. The standard has been dissolved since December

2010.

Chapter 2. Literature Review 39

• ISO/IEC 11770-5:2011 - Specifies key establishment mechanisms for multiple en-

tities to provide procedures for handling the cryptographic keys used in symmetric

and asymmetric encryption algorithms [88].

• Other standards include ISO 11568-2:2012 [89] and IETF KeyProv.

Bruce Schneier [83] states that “Key management is the hardest part of cryptography

and often the Achilles’ heel of an otherwise secure system.” [83] argues that since

technology is so broad, as it spans various operating systems, storage, encryption and

key management, virtualisation, VM mobility and Cloud, key management solutions

in the Cloud need to be broader. Luther [65], on the other hand, states that key

management is more difficult than cryptography; where cryptography boils down to

mathematics, key management involves technology, people, and processes. He states

that strong encryption is nearly impossible to beat compared to key management, which

is not as robust.

2.3.1.2 Review of works on Key Management

Zhao et al. [90] proposed a progressive elliptic curve encryption scheme (PECE),

whereby a piece of data is encrypted a number of times using multiple keys, and later

decrypted using one key. Data sharing involves one user, say, Alice, encrypting her

data by using her private key and storing the encrypted data in the Cloud. Another

user, say, Bob, sends a request for data access permission by sending his public key to

Alice. Alice sends a credential to the storage provider for the re-encryption of data,

and sends a credential to Bob to decrypt the data. This is an effective technique, as it

keeps data confidential because data is encrypted throughout all of the stages, thereby

never allowing a malicious user to view the plaintext data. This technique also does not

Chapter 2. Literature Review 40

allow the permission bearer (in our case, Bob) to share the file owned by the permission

holder (Alice) with other users. The main problem with this technique, however, is that

it requires the data owner to be online at all times, making it inefficient for everyday

users. This technique also assumes that the private key of the Cloud provider is shared

with the data owner. Realistically, no system administrator would want to share their

keys with users, thus making it impractical to deploy this technique.

Lei et al. [91] have illustrated the need for proper key management in the Cloud environ-

ment. A Cloud Key Management Infrastructure (CKMI) is proposed, which contains a

Cloud Key Management Client (CKMC) and Cloud Key Management Server (CKMS).

The protocol includes: objects that contain keys and certificates, etc.; the operations

upon them, such as creation, deletion, retrieval and the updating of keys and certifi-

cates; and attributes related to the object in question, such as the object identifier. The

method is effective for proper key management; however, if the server is broken, all of

the user’s data is lost and there is no proper backup and recovery mechanism, which is

a key requirement of key management, as described above.

Huangi et al. [18] have built on the Leakage Resilient Authenticated Key Exchange

(LR-AKE) first proposed by Fathi et al. [92], and they have proposed the LR-AKE

Cluster mode protocol for effective key management. The LR-AKE involves the user

remembering a password whilst additionally storing a high-entropy secret on the client

machine, to allow communication between different servers. In the LR-AKE Cluster

mode, the client generates authentication secrets for each server and partial data keys.

Each pair authenticates and communicates with each other to combine partial keys, in

order to reveal full data keys when the user requests this. The main weakness with this

protocol is that if any one of the client servers fail, the data is lost, as the keys used

Chapter 2. Literature Review 41

to access the data will be unavailable. The LR-AKE Cluster+ mode builds on the LR-

AKE Cluster mode, where, aside from the user’s personal password, the client chooses

a random password (256 bits long), and this random password and the authentication

secrets are stored on another device (e.g., a USB drive), for added security and higher

availability. Secrets are required from both communication parties and hence the data

remains information – theoretically secure and confidential. One of the drawbacks to

this approach is that it requires the maintenance of a number of servers and the client,

which adds unwanted complexity when trying to attract large number of users to the

Cloud.

Sanka et al. [93] have proposed capability lists for effective key management and data

access, where the data owner does not have to be online at all times. The model

involves using a capability list, where the data owner creates a list containing an entry

for each user and the permissions for file access, and stores this list in the CSP. When a

user requests access to a file, he makes this request directly to the CSP; therefore, the

data owner does not have to be online at all times, and only needs to be online when

registering new users or revoking users from the list. The model is confidential and

secure against the Cloud and unauthorised users, since they never know the contents of

the encrypted data because the key is a shared symmetric key between the data owner

and the user. The main issue with the model, however, is that it assumes that the CSP

will not alter the capability list. The CSP has access to the unencrypted capability list

and can maliciously alter files or prevent users from accessing them.

Bennani et al. [94] propose a model that replicates the database in the cloud n times,

where n represents the number of roles. When a role is revoked access rights, the

corresponding database is removed. In the worst case, changing the access rights of a

role leads to the creation from scratch of a new view, and re-keying the corresponding

Chapter 2. Literature Review 42

database. One of the main problems with this model is that it is unfeasible to implement,

since it introduces high redundancy and is thus inefficient.

Boldyreva et al. [95] have suggested Identity-Based Encryption (IBE), where a user’s ID

is used to generate keys in order to access data. Sahai and Seyalioglu [96] have introduced

worry-free encryption, where a user can send files to others without worrying about

whether they have the right to access data. The solution uses functional encryption

with public keys. With all of these solutions, although the Cloud is assumed to be

untrusted, the authorised user is always assumed to conform to operations allowed by

the data owner. However, once the data is decrypted, the data owner loses control of

their data and the decryptor can do whatever he wishes with it, without being caught.

In these solutions, the data consumer is assumed to be fully trusted. Wang et al. [97]

presents a key management scheme based on hypergraphs. The solution, however, uses

rekeying which can be inefficient in terms of user revocation. Song et al. [98] proposes

a hidden mapping hyper-combined public key management scheme. Buchade et al. [99]

identifies, compares and applies state-of-the-art key management methods to various

Cloud environments.

2.3.1.3 Discussion

Table 2.3 shows a summary of the existing literature based on key management in the

Cloud. The works that were reviewed had a strong focus on preventing the need for

the data owner to be online at all times. Many of the works that were reviewed also

had a strong focus on preventing the Cloud from viewing any of the plaintext at all

times. However, in terms of achieving proper key management in the Cloud, some form

of redundancy had to be introduced in some of the works. Some of the works proposed

Chapter 2. Literature Review 43

Method Data/Key

Redundancy

Data Owner

online at all

times

Confidentiality

preserved

from CSP

Single point of

failure

Zhao et al. [90] Y Y Y Y

Lei et al. [91] N N Y Y

Huang et al. [18] Y N Y N

Sanka et al. [93] N N N N

Bennani et al. [94] Y N Y N

Boldyreva et al.

[95]

N N Y N

Sahai et al. [96] N N Y N

Wang et al. [97] Y N Y N

Song et al. [98] N N Y N

Y = Yes N = No

Table 2.3: Summary of related key management literature

solutions which had a single point of failure. In other words, if one component of their

system failed, the entire system also failed.

Proper key management can lead to more secure and confidential sharing of data in the

Cloud. A poor key management system can lead to the complete unreliability of the

Cloud, and can also diminish the trust of its consumers. Thus, it is imperative that

more research is undertaken on achieving more robust key management for the Cloud,

not only to attract more consumers and build trust but also to provide a foundation for

secure and private data sharing in the Cloud.

Chapter 2. Literature Review 44

2.3.2 Recent Approaches

In this section, we provide a review of the current literature on enabling secure and

confidential data sharing in the Cloud.

2.3.2.1 Attribute-Based Encryption

Attribute-Based Encryption (ABE) is an effective and promising technique that is used

to provide fine-grained access control to data in the Cloud. Initially, access to data in the

Cloud was provided through Access Control Lists (ACLs); however, this was unscalable

and only provided coarse-grained access to data [28]. Attribute-Based Encryption, first

proposed by Goyal et al. [22], provides a more scalable and fine-grained access control

to data, in comparison to ACLs.

Attribute-Based Encryption is an access control mechanism, where a user or a piece of

data has attributes that are associated with it. An access control policy is defined and

if the attributes satisfy the access control policy, the user should be able to access the

piece of data.

There are two kinds of ABE [28], which are described as follows.

Key-Policy ABE (KP-ABE): The access control policy is stored with the user’s

private key and the encrypted data additionally stores a number of attributes associated

with the data. A user can only decrypt the data if the attributes of the data satisfy the

access control policy in the user’s key. The access control policy is usually defined as an

access tree, with interior nodes representing threshold gates and leaf nodes representing

attributes.

Chapter 2. Literature Review 45

Figure 2.3: Key-Policy Attribute-Based Encryption

Ciphertext-Policy ABE (CP-ABE): Essentially the converse of KP-ABE. The ac-

cess control policy is stored with the data and the attributes are stored in the user’s

key.

Chapter 2. Literature Review 46

Figure 2.4: Ciphertext-Policy Attribute-Based Encryption

ABE is also used for data sharing and collaboration. Tu et al. [24] have made use of

CP-ABE in the context of enterprise applications, and have also developed a revocation

mechanism that simultaneously allows high adaptability, fine-grained access control,

and revocation. The department assigns users a set of attributes within their secret

key, and distributes the secret key to the respective users. Any user that satisfies the

access control policy defined by the data collaborator, can access the data. When a

user’s access rights are revoked, the data is re- ncrypted in the Cloud, rendering the

revoked user’s key useless. The CP-ABE model is proven to be semantically secure

against chosen ciphertext attacks. However, the scheme is inelegant in the case of user

revocation, since the updating of ciphertexts following user revocation causes a heavy

computation overhead, even if the burden is transferred to the Cloud.

Li et al. [100] leverage ABE in the context of sharing personal health records (PHR)

in the Cloud. Their framework is comprised of a public domain consisting of users

Chapter 2. Literature Review 47

who access professional records, such as doctors, nurses and medical researchers, and a

personal domain consisting of users who are personally associated with the data owner,

such as family and close friends. Role attributes that represent their professional role are

assigned to the public domain users, and they retrieve their secret keys from an attribute

authority. This is effective, as the data owner need not be online at all times. In terms

of access control, data owners specify role-based fine-grained access control policies for

their PHR files. Using role-based access policies greatly reduces the key management

overhead for owners and users, as the owner does not have to manage keys for each user.

2.3.2.2 Proxy Re-encryption

Proxy Re-encryption is another technique that is fast becoming adopted for enabling

secure and confidential data sharing and collaboration in the Cloud.

Proxy Re-encryption [23] allows a semi-trusted proxy with a re-encryption key, to trans-

late a ciphertext under the data owner’s public key into another ciphertext, which can

be decrypted by another user’s secret key. At no stage will the proxy be able to access

the plaintext. Researchers have utilised Proxy Re-encryption in relation to the Cloud,

particularly for secure and confidential data sharing and collaboration in the Cloud.

We demonstrate a basic Proxy Re-encryption scheme with the diagram below. A user,

Alice, encrypts her data m, using her public key. When she wants to share the data with

another user, Bob, she sends the encrypted data to a proxy. The proxy then converts the

data encrypted under Alice’s public key into data that is encrypted under Bob’s public

key, and sends this to Bob. Bob can now use his private key to decrypt the ciphertext

and reveal the contents.

Chapter 2. Literature Review 48

Figure 2.5: A Basic Proxy Re-encryption Scheme

A number of researchers have proposed Proxy Re-encryption for enabling secure and

confidential data sharing and collaboration in the Cloud.

Tran et al. [25] use the idea of a Proxy Re-encryption scheme where the data owner’s

private key is divided into two parts. One half is stored on the data owner’s machine

while the other is stored in the Cloud proxy. The data owner encrypts the data with

half of his private key, which is then encrypted again by the proxy using the other half

of the key. Another user, who has been granted access rights, will then have the same

key divided with different parts. One half will be kept on the granted user’s machine,

and the other half stored on the Cloud proxy. The user who has access rights can then

retrieve the data, as the proxy will decrypt the ciphertext with half of the user’s private

key in the proxy, and then decrypt this again on the user’s side to retrieve the full

plaintext. When the data owner wishes to revoke a user’s data access, he simply informs

the Cloud proxy to remove the user’s key piece. The main strength with this scheme

is that it does not require re-encryption if a user’s rights are revoked and hence saves

on computation costs, especially when considering the large number of users in groups.

As with the PECE scheme described above [90], this scheme does not allow outsiders to

view the original plaintext at any point, as the data remains in an unreadable format

in the Cloud. Only users with granted access rights can view the original plaintext.

However, the main problem with this scheme is that of collusion attacks: if a revoked

user and the proxy collude, that user then has access to the other group users’ private

Chapter 2. Literature Review 49

keys. Furthermore, the proxy might suffer from too many encryption and decryption

operations. The model also assumes that the data owner has already given permission

to a number of users to access the data.

2.3.2.3 Hybrid ABE and PRE

ABE and Proxy Re-encryption have also been used in combination with each other to

provide extra security and privacy for data sharing and collaboration in the Cloud. A

number of works in the literature are taking advantage of combining the power of the

two schemes, to provide more robustness and guarantee further trust on the part of the

data owner, with regards to the secure sharing of data in the Cloud.

The work of Yu et al. [101] was one of the first to combine ABE, Proxy Re-encryption

and lazy encryption schemes for Cloud privacy and security. The scheme works through

the data owner encrypting his data using a symmetric key, and then encrypting the

symmetric key using a set of attributes according to the KP-ABE scheme. A new user

joins the system when the data owner assigns an access structure and its corresponding

secret key, and distributes this to the new user. To revoke a user, the data owner

determines the minimum number of attributes, which will never satisfy the revoked

user’s access structure, and updates these as necessary. All of the remaining users’

secret keys will also be updated. Due to the heavy burden on the data owner, which

could require him to be online at all times in order to provide key updates, proxy re-

encryption is introduced to allow the Cloud to carry out these tasks. Thus, most of the

computational overhead is delegated to the Cloud. The data owner’s data is kept secure

and confidential at all times, as the Cloud is only exposed to the ciphertext and not to

the original data contents.

Chapter 2. Literature Review 50

Yanjiang et al. [102] have also proposed a combination of the ABE and Proxy Re-

encryption schemes, to enable secure data sharing in the Cloud. The model involves

a data owner, Alice, encrypting data d with a random key k. Alice then determines

another random value k1 and using access control policy pol, encrypts k1 using ABE.

Alice then computes k2 using operations on k and k1, i.e., k2 = kk1, and encrypts

with her public key using Proxy Re-encryption. The two keys (ABE and proxy) and the

encrypted data are then stored in the Cloud. Using an authorisation list, if an authorised

user exists, he can then obtain the proxy key, which is then re-encrypted with the user’s

key. Using this, he decrypts the ABE key, then calculates k, i.e., k1 k2, and finally

obtains the decrypted file. This technique ensures that data is kept confidential and

is protected against any unauthorised users in the Cloud. In the scenario that a user’s

access rights are revoked, the data owner simply informs the Cloud to remove that user’s

entry in the authorisation list, which is computationally efficient. This scheme, however,

does not deal with the scenario in which a revoked user rejoins the group with different

access privileges. The revoked user still has the decryption keys corresponding to ABE

and can, in theory, regain unauthorised access to data.

Liu et al. [103] have proposed a clock-based proxy re-encryption scheme (C-PRE) and

combined this with CP-ABE to achieve fine-grained access control and scalable user

revocation. In C-PRE, the data owner and the Cloud share a secret key and this key

is used to calculate the PRE keys, based on the Cloud’s internal clock. The Cloud

will re-encrypt the ciphertext with the PRE keys. Each user is associated with a set

of attributes and an eligible time, which determines how long the user can access the

data. The data itself is associated with an access control structure by CP-ABE and

also has an access time. When a user requests file access, the Cloud determines the

current time using its internal clock and then uses the shared key to calculate PRE keys

Chapter 2. Literature Review 51

in time format, for all of the attributes in the access structure. The PRE keys are then

used to re-encrypt the ciphertext. Only users whose attributes satisfy the access control

structure and whose eligible time satisfies the access time, can decrypt the data. The

main benefit of this technique is that the re-encryption of all of the data is delegated

to the Cloud instead of the data owner and is thus efficient, from the data owner’s

perspective. The user revocation problem is also solved, since the data can only be

accessed if the user’s attribute satisfies the access control structure, and their eligible

time satisfies the access time. One problem with this technique, however, is that data is

re-encrypted each time a user makes an access request. Even though the re-encryption is

delegated to the Cloud, it is still not a very efficient solution, especially when considering

very large data sizes.

2.3.2.4 Self Management and Control Methods

Recent works have also focused on data that can manage and control keys and/or data

access, by itself. Chen et al. [33] have proposed bundling data with an access policy,

and sending this bundle to authorised users and untrusted applications. The proposed

architecture, DataSafe, enables the conversion of policy into hardware tags with parts of

data associated with them, such as parts of documents, electronic health records, etc.,

which helps to provide better access control. However, that data can only be accessed

on DataSafe machines with special hardware, limiting the ability of users to gain access

anywhere, at any time. Our system can be used on any hardware and on any operating

system, requiring only the Java Runtime Environment.

Sundareswaran et al. [104] also bundle the data with an access policy. Additionally, a

log file is also bundled with the data. Any operation that the user carries out will be

appended to the log file, and this log file will be periodically sent to the Cloud. A data

Chapter 2. Literature Review 52

owner can then access the log files to check whether data is being used appropriately.

This prevents man-in-the-middle attacks, as well as attacks related to disassembling the

bundled JAR file to read contents, as logs will make notifications of this. To prevent

the tampering of log files, a hash function is used to verify integrity. The problem with

this is that it does not deny the user the control to carry out illegal operations, such as

redistributing copies without permission. Our solution incorporates both log files and

data control against illegal operations.

Squicciarini et al. [32] use the idea of self-controlling objects (SCOs) to control how data

is used. Data policies, user-created policies and jurisdiction-based policies are encoded in

the SCOs, along with the data. The relevant permissions are also created with the SCO.

The solution uses CP-ABE [105] for policies; therefore, breaking and reverse-engineering

an SCO will still not retrieve plaintext data unless the user is authorised. However, the

user can still redistribute to other unauthorised users. The work presented in this paper

is based on SCOs; however, we go beyond the current solution and extend SCOs to

provide better data access control.

Kayem [106] provides a solution that prevents authorised users from illegal data ex-

change. The solution uses an invisible digital watermark, which is a hash of the en-

crypted data and key. However, it does not provide the data owner full control over

how data is to be viewed, or how many copies should be made. Burnap et al. [107]

propose a solution where parts of the data remain encrypted throughout its lifetime and

can only be decrypted if the user has access rights. Kirkpatrick et al. [108] describe

a solution that enables data access only to known, trusted devices. A unique device is

characterised by Physically Unclonable Functions (PUFs). However, many users never

stick to one machine when working, and are likely to use a number of different machines.

Chapter 2. Literature Review 53

One of the distinct features of the Cloud is the ability to access data anywhere, at any

time, hence the need to provide more flexibility than this solution.

Zic et al. [109] and Nepal et al. [110] have proposed a technology called the Trust

Extension Device (TED), a USB-sized Single Board Computer (SBC), running Linux.

The SBC has the Trusted Platform Module (TPM) chip incorporated into it through

the use of an additional daughter board. The TED plugs into any untrusted machine

via a USB interface and enables secure transactions with an institution. One of the

benefits of this solution is that cryptographic keys are encapsulated within the device

and are never exposed. All cryptographic operations are done inside the TED via API

calls. Since it is a hardware-based TPM, this makes it extremely difficult to retrieve the

keys, compared to software implementations that can be bypassed.

2.3.2.5 Discussion

Table 2.4 shows a summary of the existing literature based on secure and confidential

data sharing in the Cloud. Many of the works reviewed place a strong focus on preventing

collusion attacks, as well as researching ways for the data owner to be online only when

required. In terms of user revocation, some of the reviewed literature demonstrates fast

methods of user revocation; for instance, where revocation involves simply removing a

key. Other works require the data to be re-encrypted and the keys to be re-distributed

in a secure method, and this mainly occurs with works that use ABE techniques.

Data sharing and collaboration in the Cloud remain a strong focus of research and in

particular, many works are focusing on solving the user revocation problem, as well as

ways to manage the sharing and collaboration of large data sizes.

Chapter 2. Literature Review 54

Method ABE PRE SMC Likelihood

of collusion

attacks

User re-

vocation

Tu et al. [24] Y N N N S

Li et al. [100] Y N N N F

Tran et al. [25] N Y N Y F

Yu et al. [101] Y Y N N S

Yanjiang et al. [102] Y Y N N F

Liu et al. [103] Y Y N N F

Chen et al. [33] N N Y N F

Sundareswaran et al. [104] N N Y Y F

Squicciarini et al. [32] N N Y Y F

Kayem [106] N N Y N F

Burnap et al. [107] N N Y N S

Kirkpatrick et al. [108] N N Y N F

Zic et al. [109] N N Y N F

Y = Yes N = No F = Fast S = Slow

Table 2.4: Summary of related literature

2.4 Summary

In this chapter, we presented a literature review of the work on enabling secure and

confidential data sharing and collaboration using Cloud computing technology. We

examined definitions related to Cloud computing and privacy. We then looked at privacy

and security issues affecting the Cloud, followed by what is being done to address these

Chapter 2. Literature Review 55

issues.

We then discussed why data sharing in the Cloud is important and the traditional

approach to data sharing in the Cloud. We discussed key management in the Cloud

and how proper key management leads to more secure and confidential data, which can

aid the secure and private sharing of data in the Cloud. We reviewed current, state-of-

the-art literature related to key management in the Cloud. We explained the different

techniques, namely ABE and PRE, currently used to enable secure data sharing in the

Cloud. We also reviewed current, state-of-the-art literature in relation to secure and

confidential data sharing in the Cloud and gave a brief overview of the future of data

sharing in the Cloud, where the data owner could have more control over the usage of

their data.

In the next chapter, we present a formal description of the problem and list the system

assumptions and the trust model upon which we will build our solutions in Chapters 4,

5 and 6.

Chapter 3

The Data Sharing Problem and

Preliminaries

In this chapter, we define the problem space in terms of sensitive data sharing in the

Cloud, and the preliminary concepts needed for our contribution.

3.1 Example of Cloud Data Sharing

To demonstrate the problems associated with data sharing in the Cloud, we showcase

a very simple system for private and secure data sharing in the Cloud. We take a very

simple scenario: a data owner stores data contents (for example, a document) in Cloud

storage (for example, Google Drive) and shares it with data consumers (e.g., workplace

colleagues).

Figure 3.1 below illustrates the basic architecture for how data sharing occurs in the

Cloud.

56

Chapter 3. The Data Sharing Problem and Preliminaries 57

CSP

DO DC

Untrusted

Secure Data Sharing
Middleware

Key
Management

Access Control
Management

Secure Data
Sharing Protocol

Figure 3.1: Basic Architecture for Data Sharing in the Cloud

Throughout our thesis, we develop solutions within the Key Management (Chapter 4),

Secure Data Sharing (Chapter 5) and Access Control (Chapter 6) components.

3.1.1 Key Components

• CSP: An Untrusted Cloud Storage Provider that is used to store data contents

on remote servers.

• Data-Sharing Middleware: The systems that are in place to ensure that the

data is kept private and secure. The middleware includes three components: Key

Management, Secure Data Sharing and Access Control.

• Key Management: Responsible for the management of encryption keys.

Chapter 3. The Data Sharing Problem and Preliminaries 58

• Secure Data Sharing: Ensures that the data is kept secure at all times, using

either software- or hardware-based mechanisms.

• Access Control: Ensures that the data is used as per the rules set by the data

owner.

• DO: The Data Owner responsible for generating and sharing data contents. The

DO stores encrypted data contents in the CSP and the encryption keys required

to access the data in the Key Management platform. The DO can also decide who

can access the data contents.

• DC: The authorised Data Consumer who wishes to access the DO’s data. The

DC downloads the data contents from the CSP and the corresponding encryption

keys from Key Management, and decrypts them locally on their machine.

3.2 Key Management

Key management consists of five different operations:

• Key Generation: How keys are created and for whom. For example, keys may

need to be generated for consumers, trusted key providers, and for various Cloud

Service Providers.

• Key Distribution: How keys are distributed to the required entities. It is crucial

that keys are distributed via secure and private channels, to prevent data leakage.

• Key Storage: The location where the keys are stored. Are the keys stored in the

Cloud provider’s storage, with a trusted key provider, or on the data owner’s local

machine? It is important that keys do not get lost, stolen or tampered with. It is

Chapter 3. The Data Sharing Problem and Preliminaries 59

common practice to keep keys protected and duplicated across various platforms,

to prevent data loss.

• Key Revocation: The process of removing a consumer’s key or rendering the

consumer’s key useless, when the data owner wishes to revoke consumer access to

their data.

• Key Update: How keys are refreshed and updated, to prevent leakage of the key.

Updating the key could introduce data re-encryption, which is costly and places a

burden on the data owner.

3.2.1 Broadcast Group Key Sharing Example

We present the algorithm of a simple Broadcast Group Key Management (BGKM) [111].

Setup(l): It initialises the BGKM scheme using a security parameter l. It also initialises

the set of used secrets S, the secret space SS, and the key space KS.

SecGen(): It picks a random bit string s ∈ S uniformly at random from SS, adds s to

S and outputs s.

KeyGen(S): It picks a group key k uniformly at random from KS and outputs the

public information tuple PI computed from the secrets in S and the group key k.

KeyDer(s, PI): It takes the user’s secret s and the public information PI to output

the group key. The derived group key is equal to k if, and only if, s ∈ S.Update(S):

Whenever the set S changes, a new group key k’ is generated. Depending on the con-

struction, it either executes the KeyGen algorithm again, or incrementally updates the

output of the last KeyGen algorithm.

Chapter 3. The Data Sharing Problem and Preliminaries 60

3.3 Secure Data Sharing Protocol

Secure Data Storage

Ek(d)

DO CSP KSP

k

DC

d = generateData()
k = keyGen()
Ek(d)

The DO first generates data and encryption keys. To securely store data in the Cloud,

the DO must first encrypt the data on their own machine. The encrypted data is sent to

the CSP for storage, and the encryption keys are sent to a trusted key service provider.

Note that the untrusted CSP has no knowledge of the encryption keys and thus the

stored data contents remain illegible.

Consumer Data Access

DO CSP KSP DC

k

getData()

Ek(d)

getKey()

Dk(Ek(d))
= d

Chapter 3. The Data Sharing Problem and Preliminaries 61

Assuming that the DC is authorised to view the DO’s data, the DC can then download

the encrypted data from the Cloud. The DC can also securely retrieve the key from

the trusted key provider, via private communication channels (e.g., over the phone, in

person, etc.). The DC can then use this key to decrypt the data contents and view the

full plaintext.

3.4 Data Owner Access Control

One of the main drawbacks with data sharing in the Cloud is that the data owner loses

full control of his data when it leaves the confines of his personal machine. Current

approaches [112] to regain some degree of access control include, but are not limited to:

• Access Control Matrix: Uses a two-dimensional matrix to represent which

subject can access which data, and the operations that are allowed upon them.

D1 D2 D3

Bob R W RWD

Alice RW R

Dave W

From the table above, R denotes Read, W denotes Write, and D denotes Delete.

• Access Control Lists(ACL): In an ACL, data objects maintain a list of subjects

and the operations they can perform on the data contents. ACLs are widely used

as a form of access control.

Chapter 3. The Data Sharing Problem and Preliminaries 62

Data D3

ACL

Bob
RWD

Alice
R

Dave
W

Figure 3.2: Access Control List

Figure 3.2 illustrates a simple ACL for data D3. Bob can read, write and delete,

Alice can only read, and Dave can only write.

• Access Control Capability Lists(ACCL): The reverse of ACL, the subject

maintains a list of data objects and the operations that they can perform on each

of them.

Bob

ACCL

Data D1
R

Data D2
W

Data D3
RWD

Figure 3.3: Access Control Capability List

Figure 3.3 is an example of an ACCL for the subject, Bob, and the operations that

he can perform on each of the data contents D1, D2 and D3, respectively.

• Role-Based Access Control(RBAC): Similar to ACLs, roles are instead used

to associate users with permissions. For example, a user with a “manager” role

would have different access rights compared to a user with an “employee” role.

Chapter 3. The Data Sharing Problem and Preliminaries 63

• Attribute-Based Encryption(ABE): As described in Chapter 2, ABE provides

more fine-grained access control compared to the above. Attributes are stored

in the data or private key of the user. An access control policy enforces data

access, and uses attributes to determine whether data access should be permitted

or denied.

Access Control Matrices, ACLs, and ACCLs are simple to implement and can be used

to control how the data is to be used by subjects. However, if the number of subjects

is very large, in excess of thousands, it can be cumbersome to manage them. Especially

if permissions need to be changed often. RBAC makes this process easier since many

subjects can be grouped in roles based on similar attributes such as department. Thus,

permissions can be changed for a single role which will in turn control access to a group of

subjects. However, some complexities may arise if a subject requires more permissions

than what was assigned in their role(s). ABE is also similar to RBAC since it uses

attributes, however, it is not as easy to change attributes once the attributes have been

assigned to a user through the private key. Since ABE utilises encryption, it is most

suitable for data that is sent through the Cloud.

3.5 Secure Data Sharing Challenges

3.5.1 Key Management Issues

As mentioned in Chapter 1, the trivial solution to key sharing places a burden on the

data owner, as the data owner is responsible for the re-encryption and redistribution of

encryption keys to every member of the group, every time a data consumer is revoked.

In Chapter 2, we discussed current solutions that have aimed to mitigate these issues;

Chapter 3. The Data Sharing Problem and Preliminaries 64

however, many solutions still place some burden on the data owner, or the encryption

key is somehow revealed to the CSP with the assumption that it is trusted to keep the

key secret. The solutions presented also tend to have performance issues, especially due

to re-encryption.

• Poor management of encryption keys.

• Little to no focus on private sharing with a large number of users, in excess of

thousands to tens of thousands.

• Key information tends to be stored on CSPs that are assumed to be trusted, which

is a risky assumption.

In Chapter 4, we present an efficient method of managing keys for data sharing that

places little burden on the data owner.

3.5.2 Issues for Secure Data Sharing Protocols

There are a number of different security threats in the Cloud that prevent its widescale

adoption for data-sharing purposes. As discussed in Chapter 2, insider attacks continue

to represent the biggest threat, as insiders have direct and unrestricted access to the data.

Whilst the trivial solution (discussed in Chapter 1) helps to prevent insider attacks, it

does not guard against collusion attacks, whereby a consumer might intentionally or

unknowingly give away the data owner’s sensitive information to the Cloud provider.

Also, one of the main requirements of data sharing in the Cloud is that the data must

remain encrypted at all times. Any leakage of sensitive data can be devastating. Hackers

will always try to exploit any vulnerability that they can find. Thus, one of the biggest

Chapter 3. The Data Sharing Problem and Preliminaries 65

challenges is ensuring that data is always protected, no matter what, and that it should

only be accessed by those who have the necessary permissions.

The main issues include:

• Insider Attacks, as insiders have direct access to data owners’ data.

• Collusion Attacks between data consumers and Cloud providers.

• Other common security attacks, such as man-in-the-middle attacks, sniffing at-

tacks, etc.

In Chapter 5, we develop secure protocols and systems to allow for the more secure

sharing of data in the Cloud.

3.5.3 Access Control Challenges

While access control matrices, ACLs, ACCLs, RBAC and ABE provide solid control

over who can access the data and the types of operations that can be performed, they

still only provide the data owner with limited access control. Especially with the rapid

growth of data sharing in recent times, data owners have a stronger demand for greater

access control over their data, when sharing via the Cloud. For instance, malicious

insiders have full access to the data owner’s data. Also, authorised data consumers who

have read/write capability can then make another copy of the data and send it to their

friends, via email attachments or USB transfer, with little to no knowledge of the data

owner. Once the data contents reside on the consumer’s personal machine, they can do

anything they want with it. In current research, very little work has been done to fulfil

the data owner’s need to have stronger control over their own data, when sharing it in

the Cloud.

Chapter 3. The Data Sharing Problem and Preliminaries 66

Thus, the main issues are:

• Not fine-grained enough.

• Very little research on preventing unauthorised data sharing by authorised data

consumers via email attachments, USB transfer, etc.

• The data consumer can do anything with the data once in possession of it, and it

is difficult to hold them accountable.

In Chapter 6, we propose a solution that attempts to address these challenges.

3.6 Problem Statement

The problem statement that will be addressed within the thesis is as follows:

To prevent the leakage of the data owner’s protected data to unauthorised entities, after

access is given to one or more authorised data consumers (or recipients). The data

owner should be able to provide access to a large amount of recipients while also being

able to efficiently and effectively revoke recipients from data access, at any time. The

protected data should also be accompanied by a policy that states who, what, where, when

and how the data is to be accessed. The policy should be enforced during the lifetime of

the protected data.

In other words, a data owner should be able to share his or her data with millions of

users whilst ensuring that it is protected from unauthorised access and usage. The data

should remain encrypted from any unauthorised user or Cloud insider. The data owner

should also be able to revoke a user’s access on-the-fly, without having to re-encrypt and

re-distribute keys. Thus, key management needs to be efficient.

Chapter 3. The Data Sharing Problem and Preliminaries 67

In addition, the data owner should be able to specify a policy that enforces how the

data is to be used by the authorised data consumer. The data owner can use the policy

to enforce a wide variety of complex conditions. For example, a policy could state that

“the data can only be accessed by students for five days” or “the data can only be read,

but cannot be copied, modified or printed.” This gives the data owner greater access

control over their data.

We now provide a formal description of the above problem statement.

We consider a data owner do ∈ O where O represents the set of all possible users. The do

creates data d ∈ D where D represents all possible data. The data d can be distributed

and accessed by data consumers dc ∈ C where C is a subset of O chosen by the do. We

now provide the following restrictions:

1. The data d cannot be accessed by any entity outside of C.

2. The data d cannot be accessed by dc, without the permission of data owner do.

3. The data owner do can give permission to one or more data consumers dc ∈ C to

access the data d.

4. The data owner do can revoke the access of data consumer dc to the data d.

5. If a policy p ∈ P is associated with the data d and the data owner do gives

permission to the data consumer dc, d can be accessed by dc as long as p is

obeyed.

Chapter 3. The Data Sharing Problem and Preliminaries 68

3.7 Assumptions and Threat Model

We now describe the system assumptions and the threat model, which will be used

throughout Chapters 4, 5 and 6.

3.7.1 System Assumptions

Throughout this thesis, we make the following assumptions:

• We assume data owners and data consumers to have some form of computing device

and an Internet connection in order to create, share and access data objects.

• We do not focus on shoulder-surfing types of attacks, such as stealing data via

peaking over-the-shoulder, taking a snapshot or video footage, etc. Such types of

attacks are outside the scope of this thesis.

• We assume that the data consumer is legitimate and does not hand over their

credentials/authentication mechanism to an unauthorised data consumer or entity.

• We assume the Cloud Service Provider (CSP) to be honest-but-curious, in the

sense that the CSP will carry out the steps of the protocol as expected, but is

always curious and will look for ways to find out any information about the data

consumer.

• We assume that our developed mobile apps in Chapter 4 will keep any sensitive

information inserted by the user secure and private, and will not inadvertently

send information to the CSP or any other adversary, without the prior knowledge

of the mobile user.

Chapter 3. The Data Sharing Problem and Preliminaries 69

• In Chapter 4, we assume the data consumer to be trusted. In Chapters 5 and

6, we assume the data consumer to be semi-trusted. In other words, the data

consumer will access and use the data as expected, but may either intentionally

or accidentally leak data to other entities. For example, a data consumer might

send the data owner’s data to a friend via email attachments or USB, or might be

forced to hand over the data via law enforcement.

3.7.2 Trust/Threat Model

We now describe the trust model for our thesis. The main goal of an adversary is to

leak the data owner’s sensitive data. An authorised data consumer also poses a threat

and may leak the data owner’s sensitive data; therefore, the authorised data consumer

is an adversary. Adversaries may take advantage of public communication channels to

retrieve sensitive data. In this thesis, we do not consider the following threats:

• Vulnerabilities through the data consumer’s operating system, which may leak

sensitive data.

• Denial-of-Service attacks.

• Loss of data availability in the Cloud attacks.

• Malicious software, such as viruses.

• Hardware-based attacks.

• Memory-based attacks.

Chapter 3. The Data Sharing Problem and Preliminaries 70

3.8 Preliminaries

We will be using the following, preliminary technology terminology in the rest of this

thesis.

3.8.1 Symmetric Encryption vs Asymmetric Encryption

We use a symmetric encryption cryptography algorithm in our work, to protect the data

owner’s data from being accessed by untrusted Cloud servers. Note that in our work, we

do not specify which symmetric algorithm is used. In theory, any symmetric encryption

algorithm can be used, based on the level of sensitivity of the health data. Throughout

this thesis, the encryption algorithms that we make use of include ElGamal encryption

and CP-ABE (described in sections 3.7.2 and 3.7.3, respectively).

While asymmetric encryption may be more secure compared to symmetric encryption,

due to the greater degree of difficulty in guessing the key, symmetric encryption is far

better suited to data sharing in the Cloud. This is due to symmetric encryption using

the one key to encrypt and decrypt data, whereas asymmetric encryption uses two

keys. When sharing data with very large groups, sometimes in excess of thousands, key

management is more efficient when there is only key to protect. In our work, we make

use of both symmetric and asymmetric encryption. The symmetric key is used to protect

the data and the ElGamal-based asymmetric key is used to protect the symmetric key,

which also has the added benefit of bundling the user’s identity with the data.

One of the drawbacks of using symmetric encryption for data sharing is that the data

owner’s identity is not bundled with the data. This makes it difficult for the data owner

to claim ownership of the data. Since our solution also uses asymmetric encryption

Chapter 3. The Data Sharing Problem and Preliminaries 71

via the ElGamal algorithm, the data owner’s identity is also bundled along with the

symmetric key.

3.8.2 ElGamal Encryption

We take advantage of ElGamal encryption in Chapters 4 and 5, since the algorithm is

both simple and efficient and can provide simple consumer revocation with a low cost

and overhead. ElGamal encryption, invented by Taher Elgamal [68], is a public-key

cryptography system. One of the drawbacks of ElGamal encryption is that it is very

computationally inefficient and time-consuming to decrypt fairly large data. Thus, the

algorithm is best suited to the encryption and decryption of small data. In this thesis,

we mainly use ElGamal encryption to add a further layer of protection, by encrypt-

ing/decrypting another encryption key instead of the data itself.

There are three main steps to the ElGamal encryption algorithm:

• Initialisation: Given a prime p, a primitive root c of p, compute b = cxmod p,

where x is a randomly selected secret key. The public key is thus {p, b, c} and

private key is x.

• Encryption: Generate random value r and encrypt data m as follows:

E(m) = m · br mod p

= m · crx mod p
(3.1)

Also note: g = crmod p

Chapter 3. The Data Sharing Problem and Preliminaries 72

• Decryption: This decrypts m with secret key x as follows:

Dx(E(m)) = g-x · E(m) mod p

= (cr)-x ·m · crx mod p

= c-rx ·m · crx mod p

= m mod p

(3.2)

3.8.3 CP-ABE

We make use of the CP-ABE algorithm in Chapter 5 to protect the data contents bundled

inside the SafeShare object. As discussed in the literature review in Chapter 2, ABE is a

promising technique for private and secure data sharing in the Cloud. Ciphertext-Policy

Attribute Based Encryption (CP-ABE) [105] involves encrypting data with an access

control policy. A user can decrypt data if, and only if, the attributes included in his

private key satisfy the access control policy. The scheme consists of the following four

algorithms:

• Setup: Using a security parameter L as an input, the Setup algorithm outputs the

public parameters PK and a master key MK. PK will be used for the encryption

of data and MK for the generation of user attribute private keys.

• KeyGen: Takes as input the set of User Attributes UA, the Master Key MK, and

outputs user attribute private key UK.

• Encryption: Takes as input the data D, an access control policy ACP, and public

parameters PK, and outputs the ciphertext E.

Chapter 3. The Data Sharing Problem and Preliminaries 73

• Decryption: Takes as input the ciphertext E, user attribute private key UK. If

the set of attributes in the key UA satisfies ACP embedded in E, it returns D

3.8.4 XML

Extensible Markup Language (XML) [113] is an open-source markup language that

is used to define rules for encoding documents that can be both human-readable and

machine readable. XML documents are generic, flexible and structured. It is mostly used

to share data around the world. Unlike HTML, XML does not specify fixed semantics

or tag sets. The semantics can be defined by users in a way that would be convenient

for sharing data. While we don’t directly make use of XML in this thesis, we leverage

XML via SOAP (described in 3.8.5) and also XACML (described in Chapter 6).

3.8.5 SOA

Service Oriented Architecture (SOA) is an architectural style whose main aim is to

loosely couple services [114]. A service is defined as an atomic operation encapsulating

a particular business process [115]. The services can then be published and discovered

through a service registry (e.g, UDDI) by registering a WSDL (Web Service Definition

Language) file within that platform [115]. The WSDL is an XML-based file which

contains a description of the web service interface. SOA aims to make resources available

to participants in a network as independent services that are accessed in a standardised

way [116].

A web service is designed to support interoperable machine-to-machine software inter-

action over a network [117]. Web services are used to implement SOAs. One of the

core web service strategies is the Simple Object Access Protocol (SOAP). SOAP is the

Chapter 3. The Data Sharing Problem and Preliminaries 74

protocol specification for message exchange among web services and is based on XML

[118]. XML messages are sent to the called web services via different transport protocols

such as HTTP, FTP, etc. A SOAP message tends to be rather large due to the exten-

sibility nature of XML. In our work, we make use of SOAP to demonstrate the secure

and private sending of data via web services.

3.8.6 SCO

We leverage the idea of Self-Controlling Objects (SCOs) in Chapter 5, which was intro-

duced by Squicciarini et al. [32]. SCOs provide an effective way to protect data from

being illegally redistributed. Data contents and access policies are encapsulated and

bundled in these objects. The objects can then control who can access data and under

what conditions it can be accessed. To manage updates, such as data modification, SCO

Networks (SCONs) are used. They communicate with all of the identical copies around

the world to ensure that data is kept up-to-date for collaborating users. We leverage the

concept of SCOs in our work, to provide stronger yet flexible security protection that

allows data owners to share data with many users and prevents the leakage of data by

dishonest users.

Chapter 3. The Data Sharing Problem and Preliminaries 75

3.8.7 TED

Figure 3.4: TED

In Chapter 5, we extend our work on our software-based SafeShare object by using a

hardware device to provide stronger security and privacy of data contents. Zic et al.

[109] and Nepal et al. [110] have proposed the use of a small, self-contained USB-sized

computer that incorporated a hardware-based TPM. This device was called the Trust

Extension Device, or TED. This enables secure transactions to occur with an institution

using an untrusted machine. TED was not originally designed for Cloud-based applica-

tions. We leverage the use of TED in our work to demonstrate secure data sharing and

access in the Cloud environment, since it can help to prevent dishonest, authorised con-

sumers from illegally redistributing sensitive data to other consumers who do not have

the relevant permissions. Also, since TED is a hardware-based security mechanism, it

will provide a much stronger protection compared to software implementations, which

Chapter 3. The Data Sharing Problem and Preliminaries 76

can be easily bypassed. There are three components to the TED enterprise architecture

[109]:

• The TED Issuer and Manager that is responsible for generating digital keys, issuing

and revoking the TED, and possibly being responsible for the device’s manufacture.

• A Privacy Certifying Authority that is responsible for verifying that the TED is

valid and authentic.

• An Application Server, deployed within the enterprise, to perform the basic trans-

actions required from the customer.

Figure 3.5: TED’s Credentials managed by TED issuer and manager

3.8.7.1 TED issuer and manager

Thus, for a single TED, the TED manager will generate the following data:

• The TED Credential containing data that identifies the person/client to whom

the TED is issued by the enterprise. The details of the client are signed by the

enterprise (TED manager).

Chapter 3. The Data Sharing Problem and Preliminaries 77

• The Endorsement Credential includes the public part of the endorsement key that

is unique to each TED. The TPM manufacturer signs the endorsement key. This

is done by the TED manager in our enterprise architecture.

• The Platform Credential includes the TED’s operating environment consisting of

VM software and VM OS. In our architecture, the TED manager signs the details

of the platform. It is possible to have an independent third party supplying the

platform description.

• The Validation Credential includes service component descriptions consisting of

their digests, which are loaded into the TED. One could have an independent

validation manager. In our simple enterprise architecture, this is also achieved by

the TED manager.

Since the TED contains its own Linux-based OS and software, it can also run in-built

applications developed during the manufacturing of the TED device. In our work, we use

the TED to deploy our own application, which will carry out cryptographic operations

of symmetric keys, as explained in our protocol in the next section. The cryptographic

operations will be carried out without the knowledge of the host OS. We now discuss

the implementation details of TED.

3.8.7.2 Privacy Certifying Authority

The TCG uses a trusted third party, the privacy certification authority (Privacy CA), to

verify and authenticate the TPM. The same concept is used in the TED. Each TED is

issued with the credentials, including an RSA key pair called the Endorsement Key (EK).

The Privacy CA is assumed to know the credential details, along with the public parts

of the Endorsement Keys of all TEDs. That is, the TED manager supplies the credential

Chapter 3. The Data Sharing Problem and Preliminaries 78

details to the Privacy CA.Whenever a TED needs to communicate with the enterprise,

it generates a second RSA key pair, called an Attestation Identity Key (AIK), and sends

an identity key certification request to the Privacy CA, which contains: (a) an identity

public key; (b) proof of possession of identity for the private key; and (c) the endorsement

certificate containing the TED’s endorsement public key. The privacy CA checks whether

a TED issuer has signed the endorsement certificate. If the check is successful, the

privacy CA returns an identity certificate that is encrypted with the TED’s endorsement

public key. The TED can then provide this certificate to the application server to verify

and authenticate itself, with respect to the AIK. If the TED is reported as stolen or lost,

the Privacy CA can compute the corresponding public key and tag it as a rogue TED.

3.9 Summary

We first defined the problem statement of this thesis and then derived the formal de-

scription of the problem. We then detailed our system assumptions and also our trust

and threat model, which will be used to build upon in the remaining chapters of our

thesis. In the next chapter, we present our solution to the key management problem.

This allows the data owner to share data with many data consumer’s while being able

to efficiently revoke consumers on-the-fly.

Chapter 4

An Efficient Solution to the Key

Management Problem

4.1 Introduction

In this chapter, we describe and detail our solution to the key-management problem.

We develop a solution that will enable private and secure data sharing and collaboration

in the Cloud, which will allow for efficient data consumer revocation. In other words, we

develop a key-partitioning solution where the data owner can revoke a data consumer

without having to re-encrypt the data and re-distribute the new encryption key to the

remaining users. Thus, the burden on the data owner is significantly reduced. We

demonstrate our ideas in the health domain, using three different application scenarios.

79

Chapter 4. An Efficient Solution to the Key Management Problem 80

4.2 Our Approach

The main idea is that the data is encrypted using any AES symmetric encryption al-

gorithm. The encrypted data is then stored to the Cloud. The symmetric key used to

encrypt the data is then encrypted using the ElGamal public key. Thus, the only way

to decrypt the symmetric key is by using the ElGamal private key.

Plaintext Ciphertext Symmetric Key

ElGamal
Public Key

Symmetric Key Encrypted
Symmetric Key

Encrypt

Encrypt

Figure 4.1: Encrypted data and key

Figure 4.1 illustrates data and key encryption. The data is first encrypted with a sym-

metric key and that symmetric key is then encrypted using the ElGamal public key of

the data owner. That is,

Chapter 4. An Efficient Solution to the Key Management Problem 81

Ek(d) = C

Gpub(k) = K

(4.1)

where k is the symmetric key, E is the symmetric encryption operation, C is the cipher-

text, G is the ElGamal encryption operation, pub is the ElGamal public key of the data

owner and K is the encrypted symmetric key.

Since the ElGamal algorithm represents its public and private keys as large numbers, this

makes key partitioning possible and hence, partial decryption is also possible.Therefore,

if we were to partition the ElGamal private key C into two parts A and B such that A + B

= C, the symmetric key could be partially decrypted using A and the partially decrypted

key can then be fully decrypted using B. Our combined symmetric and asymmetric

encryption scheme is highlighted in the diagram below:

Chapter 4. An Efficient Solution to the Key Management Problem 82

ElGamal
Private Key

Symmetric Key Encrypted
Symmetric Key

Partitioned
ElGamal

Private Key

Symmetric Key Encrypted
Symmetric Key Remaining

ElGamal
Private Key

Decrypt

Decrypt
Decrypt

Figure 4.2: Key Partitioning

Figure 4.2 illustrates the key-partitioning technique when decrypting the data. The

first example shows a standard ElGamal decryption without key partitioning. The

second example shows the same result with key partitioning. We provide a more formal

description, below:

Hpriv(K) = k (4.2)

priv = priv1 + priv2

Hpriv1(K) = Z

Hpriv2(Z) = k

(4.3)

Chapter 4. An Efficient Solution to the Key Management Problem 83

where priv is the ElGamal private key of the data owner, priv1 and priv2 are partitions

of priv, H is the ElGamal decryption operation, and Z is the partially decrypted key.

The above key partitioning is equivalent to Hpriv2(Hpriv1(K)) = k. We have separated

it out to show that the partially decrypted key Z can still be fully decrypted later, with

the remaining key partition priv2.

Thus, in our data-sharing example, if the Cloud Service Provider (CSP) obtains key

partition A and the data consumer obtains key partition B, secure data sharing can

occur as follows. The CSP first decrypts the encrypted symmetric key using A, revealing

a partially decrypted symmetric key. At this point, the CSP does not know the full

plaintext of the symmetric key; he still sees illegible ciphertext. It is also not possible

for the CSP to know the value of B without knowing the value of C. The CSP would

have to make a guess for B in order to decrypt the symmetric key and since B is

likely to be represented using a large number, the guessing is not as easy but is still

possible. In our work, we also prevent the CSP from knowing the value of A. We send

the partially decrypted symmetric key to the Cloud for storage, instead of just the

encrypted symmetric key.

The CSP can then send the partially decrypted symmetric key to the data consumer

and the consumer can decrypt the symmetric key using B. Note also that the consumer

does not know or cannot incur the value of A when he receives the partially decrypted

symmetric key, and only sees a jumble of ciphertext. Thus, a data owner can easily

revoke a data consumer simply by requesting the CSP to delete A. This ensures greater

efficiency in consumer revocation, as the owner does not have to re-encrypt the data and

re-distribute keys.

Chapter 4. An Efficient Solution to the Key Management Problem 84

4.3 Remote diagnosis of patients with cardiac arrhythmias

We now showcase our key-partitioning algorithm in a scenario where a patient wishes

to securely and privately send cardiac-related health data to doctors.

4.3.1 Introduction

Advancements in mobile technology have allowed mobile devices, such as smartphones

and tablets, to be used in a variety of different applications. With the added capability

of Bluetooth [119] and the Internet, and the fact that mobile phones are now a way of

life amongst people of all ages due to their ubiquitous nature, it is now becoming more

feasible than ever to use mobile technology for medical applications. A user can simply

connect a health monitor to a mobile phone via Bluetooth, to develop his or her own

personal health monitor and management system.

There is currently a strong need to advance the field of health informatics [120]. As

the world population ages due to increased life expectancy, this places pressure on the

government to fund spending associated with the ageing population, especially in terms

of health spending [121]. Consequently, the demand for cutting the cost of healthcare

has increased, and there is now a growing need for the remote care of patients at home,

particularly for the elderly and the physically disabled. By leveraging the capability of

mobile technology as well as Cloud computing, one can then develop a health monitoring

system where the patient can be assessed by doctors in a remote location, from the

comfort of their own home. There are an abundant number of mobile apps available

today, for mobile telecare [122],[123],[124].

Chapter 4. An Efficient Solution to the Key Management Problem 85

In recent times, there has also been a growing need for the sharing of health data between

healthcare teams that include doctors, nurses and family members. Some benefits of

sharing health information include safer and better health outcomes for the patient, as

the health professional obtains a more complete medical history. This is mainly due to

not having to repeat the medical history every time a health professional is consulted,

and also no more unnecessary tests. Sharing health information is also key to lowering

healthcare costs [125]. However, the main issue with sharing health information is the

privacy and security risks associated with it. Currently, there are not many mobile apps

that handle this situation, and we will attempt to address this problem in our work.

Building on advances in Cloud computing, we seek to go beyond the mobile health

applications, to enable the secure sharing of telecare data in the Cloud. The Cloud, as

an enabler for mobile telecare, can help to provide the effective treatment and care of

patients due to its benefits such as on-demand access anywhere and at any time, low

costs, and high elasticity. However, the Cloud is susceptible to privacy and security

attacks, many of which occur from within the Cloud providers themselves [17], as they

have direct access to stored data.

As discussed in Chapter 2, there is considerable work on protecting data from privacy and

security attacks. NIST has developed guidelines to help consumers protect their data in

the Cloud [73]. Encrypting data before storing to the Cloud is an effective way to prevent

unauthorised users from accessing sensitive data. However, plain encryption techniques

are not enough, especially when considering the scenario of sharing data among a large

group of users; for example, the trivial solution to data sharing as discussed in Chapter

1.

We present our security protocol that will allow private and secure sharing of data in

Chapter 4. An Efficient Solution to the Key Management Problem 86

the Cloud, within the context of mobile health applications. Moreover, we attempt to

address the problems of achieving efficient user revocation, especially when considering

large data sizes. First, we define a secure data sharing model and protocol. Second,

we demonstrate the feasibility of the protocol through our developed prototype, which

combines smartphone, Bluetooth and Cloud computing technologies. Our protocol is

generic and is not limited to only mobile health applications, since we leverage and

build on this protocol in Chapter 5. Our protocol will also be efficient, and handles the

problem of user revocation and large data sizes. We demonstrate the efficiency through

performance tests and we also run a few experiments on our prototype and evaluate it

for feasibility of use in the real world. To the best of our knowledge, no other work has

focused on the private and secure sharing of health data via the Cloud. Many other

works in mobile eHealth focus on securing communication over the Internet, and do not

consider data sharing [126], [127].

4.3.2 Related Work

Recently, there have been works that have focused on the integration of mobile and

Cloud technologies for health monitoring. Fortino et al. [128] introduced the BodyCloud

architecture, which enables the management and monitoring of body sensor data via the

Cloud. It provides the functionality to receive and manage sensor data in a seamless

way from a body sensor network (BSN). BodyCloud also comprises a scalable framework

that allows for the support of the multiple data streams required for running concurrent

applications.

Bellifemine et al. [129] and Fortino et al. [130] have presented the SPINE framework.

This open-source framework allows developers to rapidly prototype and manage BSN

applications. There are two main components of the SPINE framework: the coordinator

Chapter 4. An Efficient Solution to the Key Management Problem 87

side, which is implemented on a PC or smartphone, and the BSN node side. On the

coordinator side, SPINE provides application developers with an intuitive interface to the

BSN, while on the node side, SPINE provides developers with abstractions of hardware

resources such as sensors, and an architecture to customise and extend the framework

to support new physical platforms and services.

The scheme of Pandey et al. [131] integrates mobile and Cloud technologies with elec-

trocardiogram (ECG) sensors, to enable the remote monitoring of patients with heart-

related problems such as cardiac arrhythmias. The patient connects the sensors to their

body and then runs an app on a mobile device. The app connects to the sensors via

Bluetooth. The app will then periodically upload data to the Cloud. The user can

then download graphs from the Cloud, which represent the user’s health status. The

scheme also implements middleware in the Cloud. There are web services for users to

analyse their ECG and draw graphs, etc. The system is effective, as it allows the user

to adopt the “Pay-As-You-Go” methodology every time they require services to analyse

their health data. The limitation with the scheme, however, is that it can only monitor

ECG data and does not take into account monitoring other kinds of health problems,

such as pulse and temperature. Also, the current scheme does not handle security is-

sues, in particular, data sharing aspects. Our scheme builds on this scheme, to facilitate

a secure health-monitoring application that enables the user to share health data in a

secure manner with other doctors and nurses, and which will be able to efficiently revoke

users, without placing too great a burden on the user. Our system is also generic, in

that it is not limited to ECG monitoring and can also monitor other health data, such

as pulse and temperature.

AliveCor is a remote app-based ECG monitoring system [132]. The system is similar to

our system in that it allows a patient to monitor their ECG on their iPhone and also

Chapter 4. An Efficient Solution to the Key Management Problem 88

share their ECG data to whomever the patient wants. It provides a bundle of useful

features, such as recording, displaying, transferring and storing high quality ECG data.

However, the system was not developed with security in mind; therefore, it is possible

that an intruder will be able to steal health data with a certain amount of effort.

CardioComm Solutions have also demonstrated their remote patient ECG monitoring

service, HeartCheck Smart Monitoring [133]. The system allows for rapid access and

for physicians to better review the ECG data in order to assess how the patient should

be treated. However, it does not specifically focus on privacy and security aspects, such

as the confidentiality of data as it is being transmitted to the Cloud or as it is stored

within the Cloud.

Gradl et al. [134] have also developed an Android-based application that allows for

the real-time monitoring of ECG data, similar to our prototype, as well as automated

arrhythmia detection. However, the application also does not focus on privacy and

security aspects.

Xia et al. [135] address the usefulness of ECG data collected from patients themselves

using mobile devices, and the issues that this presents. They do not focus on the security

aspects associated with sending data to the Cloud.

Solutions are now tailored towards monitoring health using mobile devices; yet, not

many solutions focus on the security aspect of this. Our solutions leverage the mobile

health idea and additionally incorporate privacy and security mechanisms, to guarantee

patient confidentiality; a crucial requirement in today’s health industry.

Chapter 4. An Efficient Solution to the Key Management Problem 89

4.3.3 The Health Monitoring System

4.3.3.1 Scenario

Consider the scenario of an elderly patient who suffers from occasional heart problems.

The patient requires care on a regular basis. Due to age and distant geographical

location, however, the patient struggles to make regular trips to the clinic to visit the

doctor. Currently, the only option is to have a doctor or nurse visit the patient to

monitor their heart and check for cardiac arrhythmias. This is very costly in terms of

both time and budget for both the doctor and the elderly sufferer. On some days, the

doctor’s trip becomes unnecessary if the patient is coping well and on other days, the

doctor will be required more often but may not always be there. The elderly sufferer

would benefit from a system that not only allows for in-home monitoring but also for

monitoring by a doctor, without having to leave their room or without the doctor having

to leave the clinic.

4.3.3.2 System Requirements

Considering the scenario, we derive a number of requirements for the health-monitoring

system. Firstly, the system should allow a patient to monitor their health anywhere, at

any time. The system should also not depend on the patient or doctor’s geographical

location. The system should be scalable to handle many patients and healthcare teams

such as doctors and nurses, as well as different health devices and data formats. More

importantly, the system should be generic, in the sense that it should be able to monitor

different health scenarios. Finally, the system should be user-friendly and simple enough

for the elderly.

Chapter 4. An Efficient Solution to the Key Management Problem 90

4.3.3.3 System Functionality

The functionality of the system is described as follows. The patient connects the sen-

sors to their body and starts the sensor monitor. The patient then runs an app on a

mobile device. The mobile app establishes a connection with the sensor via Bluetooth.

Once a connection is made, the sensor streams real-time health data to the app. The

patient then inputs his or her email and password into the app, chooses a time interval,

and presses the “Upload” button. The app will send these credentials, details and the

health data to the web service deployed in the CSP. The web service will then check the

credentials in the database held by the CSP. If the user exists, the web service will store

the health data corresponding to the user in the CSP. The app will periodically send

the credentials and health data to the web service, and this will be repeated until the

user stops the app.

When a doctor wants to view the patient’s health data, they simply run an application on

their computer. The application makes calls to the web service to retrieve the authorised

patient’s health data. The doctor can then view, interpret and analyse the patient’s

health and recommend any further actions to take. The geographical location of the

doctor is not important; as long as they have a computer, an Internet connection and

the simple application, they will be able to view the data nearly anywhere, and at any

time.

Chapter 4. An Efficient Solution to the Key Management Problem 91

4.3.3.4 Data Schema

User

User ID String
Password String
First Name String
Last Name String
Email String
DOB Int (in form DDMMYYYY)
Address String
Phone String
Role String

Service

Service ID String
Name String
Patient ID String
Doctor ID String
Device ID String
Upload frequency Int (in form DDMMYYYY)
Data frequency String
Start Time String
End Time String

Data

Service ID String
Time Sample Long
Data String

Device

Device ID String
Device Type String
MAC Address String

1..*

1..*

1

1

1

1..* 1

Figure 4.3: Health Monitoring Database Schema

Fig. 4.3 illustrates our schema for the health-monitoring system. Note that the data

model is a generic, medical data service for the proof of concept, and is not focused on

one particular medical service, such as a heart intensive care service.

The “User” table contains all of our system users, including patients and doctors. The

email and password is used for authentication and the role determines whether the

user is a doctor or a patient. The “Device” table contains information about a health-

monitoring device connected to this system, such as the name and type of the device

and its unique MAC address. The “Service” table creates a new service record every

time a user runs the app on the mobile device. It contains information such as the

doctor that is authorised to view the data associated with the service, the device used,

the patient being monitored, and the start and end times of the service. The “Data”

Chapter 4. An Efficient Solution to the Key Management Problem 92

table contains health data records that are generated every time steps 8 and 9 are called

from the system functionality. A data record can only be one part of a service.

4.3.3.5 Privacy Issues using a CSP in Remote Healthcare

Since the Cloud is at the forefront of many privacy and security attacks, and many

privacy attacks come from within the CSP itself, as insiders usually have direct access

to data and may steal data to sell to third parties in order to gain profit, the entire

database in the CSP needs to be encrypted. This means that the data needs to be

encrypted before sending the data “over-the-wire.” This will prevent any malicious

outsider, as well as the CSP itself, from gaining any useful data without the decryption

key.

Since our focus is on data sharing with doctors and nurses, simple encryption techniques

are not enough. As discussed, if we have many doctors and nurses authorised to view

the patient’s data, and the patient decides to revoke a specific doctor’s access rights to

their data, the patient has to re-encrypt their data using another key and send the new

key to all the other doctors and nurses. This is computationally inefficient and places

a burden on the patient to re-encrypt and distribute new keys, each time they revoke

a doctor or nurse’s access rights. It also places a burden on the remaining members

of the group, as they constantly have to update their key set in order to keep up-to-

date with all of their patient’s data. The main reason why the patient would need

to re-encrypt the data with a new key is that the revoked doctor still holds the key

and can still theoretically access the data, even if he is not allowed to. It cannot be

assumed that the doctor or nurse will never view the patient’s data or that they will

always keep the key a secret. For example, in the health domain, there are standards

such as HRIPA which is followed in NSW, Australia [56] or HIPAA (Health Insurance

Chapter 4. An Efficient Solution to the Key Management Problem 93

Portability and Accountability Act) which is followed in the US [55]. These standards

aim to protect and enforce the confidentiality of a patient’s health-related data and keep

the data confidential from anyone unless authorised by the patient. In other words, any

entity should not access a patient’s health information without the patient’s consent.

As a result, hospitals and health organisations are reluctant to adopt Cloud technology

as a privacy breach can be devastating, especially in terms of cost [136]. In our work, we

provide a solution which leverages the Cloud to help ensure health data is kept private

and secure.

4.3.4 Data Model and Protocol

Figure 4.4: Health Monitoring Data Sharing Model

We now introduce our secure model and protocol that will enable data sharing amongst

a group of users specified by the data owner. Our technique is not limited in any way

to medical applications and can be applied to other Cloud applications. Our protocol

Chapter 4. An Efficient Solution to the Key Management Problem 94

builds on the work of Tran et al. [25], as described in Chapter 2, and handles the

collusion problem.

4.3.4.1 Data Model

Figure 4.4 enhances the eHealth monitoring system illustrated in Figure 4.3, by adding

a security layer that enables efficient and secure data sharing. The original web service

now represents the Cloud Data Service (CDS), and we add another web service called

the Data Sharing Service (DSS) that handles the data-sharing aspects of the system.

We assume that the DSS is fully trusted. However, this makes it particularly vulnerable

to attackers; therefore, the DSS itself needs to be protected. In order to achieve this,

the DSS can be modelled as a trusted private Cloud provider that is protected using

traditional mechanisms such as Internet firewalls. There are also a number of proxy

services to store key pieces for members of the group, and a Key Service (KS) to store

the encrypted keys of the health data and the keys of the data consumers (DC).

To briefly summarise how the model works, we assume that each user in the group,

including the data owner (DO), has a key that can decrypt the appropriate keys in the

Data Key Database (DKDB). However, their keys are partitioned into n+1 parts, where

n parts are stored in each proxy and the user keeps the extra part. In this way, none

of the users know the full key required to decrypt the keys in the Data Key database.

When the user requires data access, they call the DSS. The DSS then decrypts the key

in the DKDB using all of the key pieces in the proxy database that correspond to the

calling user. The key is then used to decrypt the data in the Cloud. When the data

owner requests that a user’s access is revoked, their key pieces in the proxies are simply

removed and the original data need not be re-encrypted, nor does there need to be any

re-distribution of keys to remaining users. None of the other data consumers will be

Chapter 4. An Efficient Solution to the Key Management Problem 95

affected by the revocation, since their corresponding key pieces still remain intact in the

proxies and also with themselves. We will explain this in detail, in the next section.

4.3.4.2 Protocol

We now discuss our data-sharing protocol in detail. The protocol has four steps: initial-

isation, consumer authorisation, authorised data access, and consumer revocation. It is

also important to note that we assume the DSS to be fully trusted, in that it will always

honestly follow the protocol. As mentioned in Chapter 3, we also assume the CSDB to

be honest-but-curious, in the sense that that it will carry out the steps of the protocol

as expected, but is always curious to find out any sensitive information. We make use of

ElGamal encryption in our work and build upon the work of Tran et al. [137] to provide

a more secure platform for data sharing. The following table contains brief definitions

of the abbreviations used in our protocol.

Chapter 4. An Efficient Solution to the Key Management Problem 96

DO Data Owner The owner of the data; decides who has access

permission to the data

DC Data Consumer Any user who has permission to access data

given by the DO

DSS Data Sharing Service The trusted service that carries out most of the

data-sharing functionality in the protocol (see

model)

CDS Cloud Data Service The service that allows calls to be made to the

Cloud storage (see model)

KS Key Service The service that allows calls to be made to the

Cloud key service, to obtain and store encryp-

tion keys (see model)

CSDB Cloud Storage Database The database containing encrypted data (see

model)

DKDB Data Key Database The database that stores encryption keys which

are themselves encrypted (see model)

UKDB User Key Database The database that stores all users, including DC

and DO private keys (see model)

Chapter 4. An Efficient Solution to the Key Management Problem 97

Initialisation

1 DO → DSS {key request}

2 DSS Generate key x

b = cxmod p

3 DSS Generate x1 + x2 + x3 + ...+ xn + xn+1 = x

Generate uDO

4 for (all proxy i)

DSS → proxy i {uDO, xi}

5 DSS → DO {uDO, xn+1, {p, b, c}}

6 DO Generate symmetric key k

Ek(m)

Generate r, γ = crmod p

E{p,b,c}(k) = (cr, crx.k mod p)

7 DO → DSS {uDO, Ek(m), E{p,b,c}(k) }

8 DSS Generate dm

9 DSS → CDS → CSDB {uDO, dm, Ek(m)}

10 DSS → KS → DKDB {uDO, dm, E{p,b,c}(k)}

The DO first sends a request to the DSS to upload data to the Cloud (1). The DSS

then generates a random private key x and its corresponding public key {p, b, c}, using

ElGamal encryption (2). The DSS then partitions x into n + 1 pieces (3) and stores

each piece in each of the n proxy servers (4). The DSS also generates a new user

identification for the data owner (3). The DSS then sends the user identification, the

remaining partitioned key piece, and the public key, to the DO (5). The DO then

generates a random symmetric key k and encrypts his data with it (6). The symmetric

key is then encrypted itself by the DO, using the public key {p, b, c} generated by the DSS

Chapter 4. An Efficient Solution to the Key Management Problem 98

(6). The DO then sends his user identification, the encrypted data and the encrypted

key, to the DSS (7). The DSS generates a data identification for the data (8). The DSS

then sends the data identification and the encrypted data to the CDS (9) for storage.

The DSS finally sends the data identification and the encrypted key to the KS (10).

Consumer Authorisation

1 DC → DO {access request, dm}

2 DO → DSS addUser(uDO, dm, xn+1)

3 DSS ↔ CDS Verify uDO, dm exists. If not, exit here.

4 for (all proxy i)

DSS → proxy i {uDO, key piece request}

proxy i → DSS xi

5 DSS Compute x1 + x2 + x3 + ...+ xn + xn+1 = x

Generate xu1 + xu2 + xu3 + ...+ xun + xu(n+1) = x

Generate uDC

Generate {pDC, bDC, cDC}, xDC

6 DSS → KS → UKDB {uDC, uDO, dm, {pDC, bDC, cDC}}

7 for (all proxy i)

DSS → proxy i {uDC, uDO, dm, xui}

8 DSS → DO → DC {uDC, xu(n+1), xDC}

When a DC wishes to access the DO’s data m, he sends an access request to the DO

along with the data identification of the data he wishes to gain access to (1). Assuming

the DO approves, he sends a request to the DSS and sends the request along with his user

identification, the data identification, and key piece (2). The DSS then verifies whether

the data identification and data owner identification exist, with a call to the CDS (3).

Chapter 4. An Efficient Solution to the Key Management Problem 99

If the CDS returns false, then the DSS notifies the DO that the data does not exist and

exits the protocol (3). If the CDS returns true, the DSS then retrieves the DO’s key

pieces from the proxy (4) and computes the secret key x by adding all the key pieces

together (5). The DSS will then generate new key pieces for the new DC that, when

combined, are equivalent to the secret key x (5). The DSS will also generate a random

user identification as well as a public/private key pair, using ElGamal encryption for

the DC (5). The DSS will then send the DC’s user identification, the public key and

identifiers such as the DO user identification and data identification, to the KS (6). The

KS will then store this in the UKDB (6). The newly generated key pieces corresponding

to the DC are then stored in each of the proxy servers (7), and the remaining piece is

sent to the DO along with the private key of the DC (8). The DO finally sends this to

the DC in a secure manner (8).

Authorised Data Access

Chapter 4. An Efficient Solution to the Key Management Problem 100

1 DC → DSS {uDC, uDO, dm, xu(n+1)}

2 DSS → KS → DKDB getKey(uDO, dm)

3 DKDB → KS → DSS E{p,b,c}(k) = (cr, crx.k mod p)

4 DSS → proxy 1 getKeyPiece(uDC)

5 proxy 1 → DSS xiu

6 DSS Dxiu(E{p,b,c}(k)) = (cr, (cr))−xiu .crx.k mod p)

= (cr, (cr))x−xiu .k mod p)

7 Repeat 4-6 for proxies 2...n Remaining cipher: (cr, (cr)x−x1u−x2u−...−xnu .k mod p)

8 DSS Dxu(n+1)((c
r, (cr)x−x1u−x2u−...−xnu .k mod p))

→ (cr, (cr)−xu(n+1) .(cr)x−x1u−x2u−...−xnu .k mod p)

→ (cr, (cr)x−x1u−x2u−...−xnu−xu(n+1) .k mod p)

→ (cr, k mod p) since x = x1 + x2 + x3 + ...+ xn + xn+1

9 DSS → CDS → CSDB getData(uDO, dm)

10 CSDB → CDS → DSS Ek(m)

11 DSS Dk(Ek(m)) = m

Generate k1

Ek1(m)

12 DSS → KS → UKDB getUserKey(uDC)

13 UKDB → KS → DSS {pDC, bDC, cDC}

14 DSS Generate rDC, γDC = cDC
rDCmod pDC

E{pDC,bDC,cDC}(k1) = (cDC
rDC , cDC

rDCxDC .k1 mod p)

16 DSS → DC {E{pDC,bDC,cDC}(k1), Ek1(m)}

17 DC DxDC(E{pDC,bDC,cDC}(k1))

= (cDC
rDC , (cDC

rDC)−xDCcDC
rDCxDC .k1 mod p)

= (cDC
rDC , k1 mod p)

Dk1(Ek1(m)) = m

Chapter 4. An Efficient Solution to the Key Management Problem 101

When a DC wishes to access data, he sends his key piece to the DSS along with identifiers

to the data (1). The DSS obtains the encrypted key from the DKDB via a call to the

KS (2, 3). The DSS then calls each proxy server to obtain the corresponding key piece

of the DC (4, 5), and decrypts the encrypted key using each key piece (6, 7). The DSS

then uses the DC’s key piece from step (1) and decrypts the remaining encrypted key

to reveal the full key (8). The DSS then obtains the encrypted data from the CSDB

via calls to the CDS (9, 10). The encrypted data is then decrypted with the full key,

to reveal the full plaintext (11). The DSS then generates another arbitrary symmetric

key and encrypts the data with this key (11). The DSS obtains the corresponding DC’s

public key from the UKDB (12, 13) and encrypts the symmetric key using the public

key (14). The encrypted data and the encrypted key are sent to the DC (16). The DC

can then decrypt the key using his earlier distributed private key (17). Once the key is

decrypted, the DC can then decrypt the data itself, to reveal the full plaintext (17).

Consumer Revocation

1 DO → DSS removeUser(uDO, uDC, dm)

2 for (all proxy i)

DSS → proxy i removeKeyPiece(uDO, uDC, dm)

proxy i Remove xuDCi

When the DO decides to revoke a user’s access rights to data, he simply calls the DSS

to request the revocation of the user’s rights to the specified data (1). The DSS will

then remove the corresponding key pieces of the user in each of the proxy databases (2).

Note that the data does not need to be re-encrypted and none of the other users will

be affected, since only the key pieces corresponding to the user are removed. All other

key pieces corresponding to other users remain in the proxy database. Since the data

Chapter 4. An Efficient Solution to the Key Management Problem 102

does not need to be re-encrypted, nor does there need to be any key re-distribution, the

model is efficient and has a runtime of O(n), where n is the number of proxies.

4.3.4.3 Security Analysis

From the description of our data sharing model and protocol, we now provide the model

and protocol from a security perspective.

1. Collusion between user and proxy – If a non-revoked user colludes with all of the

proxies, in theory, he can retrieve the secret key x by combining his xu with his

key pieces in the proxies. This will enable him to decrypt E{p,b,c}(k) to reveal the

key k and then decrypt the data itself to reveal m. If only one proxy was used, as

with the work of Tran et al. [25], the likelihood of a user compromising a proxy

would be high. However, the main distinguishing characteristic of our security

model is that it supports multiple proxies, and the actual number of proxies used

in a system depends on its security requirements. Therefore, the chance of a user

colluding is much lower if more proxies are used, because each proxy database can

be modelled as different CSPs in different locations around the world.

2. Privacy of data against the Cloud – There is no stage in our data model where

the Cloud stores the plaintext of the data m or the key k. This ensures the data

remains private from both the CSP and unauthorised users. Thus, it also ensures

that health standards are abided by [55]. The Cloud would need the secret key x

to be able to retrieve key k and then later retrieve m. Even if the Cloud is able

to retrieve all of the key pieces of all of the users from every proxy, it still cannot

reveal the secret key x without colluding with a user. However, this is also very

difficult, as there is a low chance that the Cloud will be able to compromise all

Chapter 4. An Efficient Solution to the Key Management Problem 103

proxies. In principle, the more proxy databases there are, the more secure the

system will be against privacy attacks. However, too many proxies can reduce the

reliability of the whole system. Thus, there is a trade-off between data privacy

and the reliability of the data service, which is beyond the scope of this work.

3. Consumer Revocation – When a DC is revoked access rights to the data, his

corresponding key pieces are simply removed from all of the proxies, which is

efficient when compared to having to re-encrypt data and re-distributing keys to

the remaining users. The revocation scheme has an efficiency of O(n) where n is

the number of proxy databases. At no point does the DC know the data key k or

the full secret key x. Also, even if a revoked user colludes with all of the proxies,

he will not be able to retrieve all of the keys, since his pieces have been removed.

Even if he steals another user’s key pieces he still cannot recover x; consequently,

the system is secure against revoked users colluding with the proxies.

4. Large Data Sizes – The work of Tran et al. [25] does not handle large data sizes

effectively, as the ElGamal cryptography algorithm discussed can only provide

cryptography operations with data up to a certain size. Since our focus is within

the context of health applications, and data within the health domain tends to

be very large, the protocol discussed in [25] is unsuitable. Our protocol extends

this and handles large data sizes effectively. The DO generates the symmetric key

k that will be able to handle the encryption of the large data. This key can be

any type of symmetric key, such as RSA, AES, etc. Large data sizes are handled

effectively and efficiently, since ElGamal cryptography is used to encrypt/decrypt

the symmetric key itself, as the symmetric key is unlikely to be too large.

Chapter 4. An Efficient Solution to the Key Management Problem 104

4.3.5 Implementation and Evaluation

In this section, we will describe our implementation of the system, followed by a security

evaluation of our system. Finally, we carry out a number of performance tests and

provide an evaluation of the developed system’s performance.

4.3.5.1 Implementation

We implemented this system using Java. The Java Android SDK was used to develop

the mobile app and was deployed on an ASUS Eee Pad Transformer Prime TF201 Tablet

[138]. The tablet is capable of reading Bluetooth data from a variety of sources. The

app, called “HeartBeatSense”, was developed in such a way that it can be deployed

and run on any Android device, regardless of the type and/or size of the mobile device.

This provides more convenience for everyday users and provides a greater reach for more

users to gain benefits from using our system. Figure 5 illustrates our app carrying out

the monitoring of a patient’s ECG.

The web services were created using Java and Axis2. We deployed our web services

using Apache Tomcat 7. We used MySQL 5.5 to represent the Cloud storage database

backend. For the client side application, which is used by either the patient or doctor,

we created a simple Java application that simply makes calls to obtain and receive data,

as well as authenticate the users. %Figure 6 displays a snapshot of our system in action.

For the sensors, we used the AliveECG Heart Activity Monitor [139] with Ambu sensors

[140]. The sensors connect to the Heart Activity Monitor to measure the person’s ECG

activity. ECG stands for electrocardiogram and can be used to measure the electrical

Chapter 4. An Efficient Solution to the Key Management Problem 105

activity of the heart. The Heart Activity Monitor can then send the ECG data to an

SD card or other devices, via Bluetooth technology.

Figure 4.5: HearbeatSense app

4.3.5.2 System Security

We now evaluate the security of our mobile-based prototype.

1. Privacy violation – In our prototype, the email and password are both stored

with an additional random salt and consequently hashed. The hash values are

then stored in the Cloud database. They are not stored in full plaintext form and

hence administrators themselves would not know the full credentials of the user.

These credentials are required for using the system. Also, all data is encrypted

before sending to the Cloud for storage and it remains encrypted at all times. This

prevents unauthorised users from being able to retrieve any sensitive information

whether the data is in transit and/or on the Cloud.

Chapter 4. An Efficient Solution to the Key Management Problem 106

2. Mobile stealing – Even if an attacker steals a mobile phone in the hopes of finding

any valuable, confidential data, they will not find anything of value, since nothing

will be stored on the mobile phone. Once data is received from the health device,

it is sent straight to the Cloud. Thus, an attacker will not be able to find any trace

of health data on the mobile device, even when stolen.

3. Sniffing attacks – It is possible for an attacker to retrieve data as it is being sent

from the mobile client to Cloud storage. However, our system first encrypts data

using a symmetric key, and the symmetric key itself is then encapsulated via the

user’s public key. The attacker would have to know the user’s secret key (unknown

even to the user) to decrypt the symmetric key and consequently the data, making

our system attractive to use in such scenarios.

4.3.5.3 Performance Tests

We carried out a number of performance tests on our system, primarily the uploading

and downloading of ECG data. The purpose of the performance test was to test whether

such a system will be feasible for use by everyday people. Each of the performance tests

were carried out on 10 seconds of ECG data, or 3,000 samples of ECG data points. For

the tests, we used an ASUS Eee Pad Transformer Prime TF201 to run the app, and a

dual-core ASUS laptop with 2GB memory, 350GB storage and Windows Vista operating

system.

For the uploading tests, we measured how long it would take for a patient to upload

their ECG data to the Cloud. We measured the time it took from the moment the

patient presses the upload button on their app, to the storage of data in the database.

We carried out 10 test cases and for each test case, we measured the time it took for the

Chapter 4. An Efficient Solution to the Key Management Problem 107

patient request to reach the Cloud service and then from the service to Cloud storage.

We also carried out the test cases using the secure data-sharing protocol and then again,

without the secure data-sharing protocol. Our results are shown in Figure 4.6.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

Test Case

Ti
m

e(
S

ec
on

ds
)

App to Service
Service to Cloud Store

(a) Uploading times with security protocol

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

Test Case

Ti
m

e(
S

ec
on

ds
)

App to Service
Service to Cloud Store

(b) Uploading times without security protocol

Figure 4.6: Uploading times

We found that in both cases, with and without using the security protocol, it took

significantly longer for the app to send the data to the Cloud service, compared to the

service storing the data to Cloud storage. This is expected, since the mobile device first

carries out operations on the data and then needs to transmit and connect via WiFi

Chapter 4. An Efficient Solution to the Key Management Problem 108

with the Cloud service. With the security protocol in place, the delay is even longer,

which is due to the keys being generated and data being encrypted before it is sent to

the Cloud.

For the downloading tests, we measured how long it would take a patient to retrieve

their data. We also carried out 10 test cases and for each test case, we measured the

time it took for the patient request to reach the Cloud service, and then the time it

took to retrieve the data and return it to the patient. Similar to our uploading tests, we

carried out the test cases using the secure data-sharing protocol, and then again without

the secure data-sharing protocol. Figure 4.7 illustrates our test case results.

Chapter 4. An Efficient Solution to the Key Management Problem 109

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Test Case

Ti
m

e(
S

ec
on

ds
)

Client to Service
Service to Client

(a) Downloading times with security protocol

1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

Test Case

Ti
m

e(
S

ec
on

ds
)

Client to Service
Service to Client

(b) Downloading times without security protocol

Figure 4.7: Downloading times

From our results, we found that this time, it was much quicker for the patient request to

reach the Cloud service. Although the time taken to retrieve data from Cloud storage

and return it to the user was slightly longer, it still returned the results in less than one

second.

The total uploading and downloading times are highlighted in Figure 4.8. We measure

the overhead introduced with the security protocol in place, compared to a system with

no security mechanism whatsoever.

Chapter 4. An Efficient Solution to the Key Management Problem 110

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

Test Case

Ti
m

e(
S

ec
on

ds
)

With security
Without security

(a) Uploading overhead

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Test Case

Ti
m

e(
S

ec
on

ds
)

With security
Without security

(b) Downloading overhead

Figure 4.8: Uploading and Downloading Overhead

From our results, the security protocol introduced significantly more overhead compared

to without the security protocol. We also found that uploading times in general took a lot

longer, compared to download times when the security protocol was in place. Without

the security protocol, the difference was negligible. The average time taken to upload

data to the Cloud was 17.27 seconds, with a standard deviation of 7.40 seconds, with

the security protocol in place. Without the security protocol in place, the average time

was 8.89 seconds, with a standard deviation of 8.92 seconds. With the security protocol

Chapter 4. An Efficient Solution to the Key Management Problem 111

in place, retrieval times took approximately 1-2 seconds. With the security protocol in

place, the average download time was 1.00 second, with a standard deviation of 0.21

seconds; without the security protocol, the average was 0.05 seconds, with a standard

deviation of 0.01 seconds.

4.3.5.4 Evaluation

From the performance tests, uploading took much more time, on average, than down-

loading times. The main reason uploading times took longer was due to the fact that

a mobile device was used to send large packets of data. The patient retrieves data on

a desktop PC and since a PC has much more powerful processing capabilities than a

mobile device, processing times were much quicker. During our testing, the downloading

client and the web service were running on one machine, which also explains our quicker

running times when downloading. Also, the data is packaged in an XML document and

is sent to the web service via SOAP, which could have contributed to the slow uploading

times. Although uploading times could be improved, it is not crucial to the feasibility

of the system, since a patient does not usually care how long the data takes to store in

the database. However, patients, and especially doctors, might be concerned regarding

the time it takes to download data from the database, as they may not want to wait

for long periods of time to retrieve ECG data for analysis. From the performance tests,

the downloading times were very small and thus efficient, making our system feasible

for deployment in the real world.

Also, when comparing the overhead of our security protocol, only the uploading times

had a significant overhead. Downloading times were similar and almost negligible. The

uploading times took longer due to the symmetric key generation and the encryption

of the data, as well as the encryption of the key itself with the ElGamal public key.

Chapter 4. An Efficient Solution to the Key Management Problem 112

However, patients will not usually care about uploading times, as they will mainly be

in a resting position while their ECG is being monitored. When downloading data,

it is more important that data arrives quickly so that doctors can provide more rapid

treatment options. Hence, this makes our solution feasible for use in the real world.

To further improve our performance tests, we could run test cases for different sizes of

ECG data, e.g., 30-second intervals, one-minute intervals, five-minute intervals, and so

on. Since we are still prototyping the system and not yet using a Cloud database, we

rely on MySQL as our database, which does not handle very large data string sizes.

4.4 Secure eHealth Self Management in the Cloud

We now apply our key-partitioning technique in the environment of eHealth self-management.

We further improve on the previous section by involving doctors and potential users of

our system, in the context of mental health. The following work is based on the paper

published in JMIR [141].

4.4.1 Introduction

A new type of socio-technical challenges has arisen with the advent of eHealth and Big

Data technologies. For example, ubiquitous and wearable health systems collect data

through sensors and mobile apps, and store it in the servers of multiple commercial

service providers. Furthermore, a growing number of people share this sensitive medical

information through social networks such as Facebook and Twitter. This is significantly

different to the traditional health service, where service providers kept tight control over

patient data.

Chapter 4. An Efficient Solution to the Key Management Problem 113

It has been argued that these new technologies can lead to positive health outcomes, as

they are evidence of people self-managing their illness [142]. Some of the ways in which

self-management can have a positive impact include supporting the patient’s motivation

to look after their health, greater levels of engagement and understanding about the

condition.

Furthermore, these new technologies may help improve population health by helping

researchers learn about the drivers of different pathologies, or how people’s behaviour is

affected by social influence and public health promotion campaigns [143]. The informa-

tion posted to social networks can prove invaluable to assisting doctors and counsellors

to better understand patient behaviours and symptoms, and can help to provide support

and/or consultation. Social networks are now being leveraged to provide people with a

better lifestyle and health, without the need to continually visit the doctor’s clinic.

However, privacy [144], trust and security issues associated with health data make pa-

tients hesitant to post sensitive health information and share it with health providers

[78]. Since data is not ephemeral, it will be stored in servers and shared, and all stake-

holders need to worry about its lifecycle; not just who can access and manage it at a

particular point in time, but also who will be able to do so in the future. There is a

strong need to provide patients with a guarantee that their sensitive health information

will only be visible to the doctors and/or counsellors, or others they wish to share it

with at a particular point in time.

Microsoft HealthVault [145][146] provides a next step to allowing patients to store and

manage their health and fitness information, as well as share the data securely with

their friends and family. The encryption is done within HealthVault and does not rely

on the patient to generate and distribute keys. The patient can decide who specifically

Chapter 4. An Efficient Solution to the Key Management Problem 114

can view his health information. In comparison, our system gives the patient greater

control over their health information and they can choose to store their health data

on any Cloud service provider that they wish. The patient can distribute encryption

keys themselves to people they wish to share the data with, and do not need to rely on

commercial services, which may be untrustworthy.

4.4.1.1 Mental Health Scenario

For the evaluation discussed in this study, we created a fictitious, but quite common

scenario: collecting data and providing support.

The best way of designing and then evaluating a security feature is through a minimum

viable application in a realistic scenario. The security feature would be applicable in

other scenarios, but the reification into concrete terms with users, and evaluate the

design on scalability and non-functional requirements. Our application emulates one

where data is collected to provide support to people at risk of mental health issues in

the workplace.

We chose this scenario because it was relevant to our research and because of its signif-

icance. There is evidence of increased work stress, sleep disorders and depression in the

workplace [147]. As a result, there is a need for the means through which an organisa-

tion can provide support and feedback in a convenient and secure manner. In order to

detect people at risk, information is needed. This information may come from the people

themselves or their friends, reporting problems at home or at work that are affecting

their lives and their mental state. It could also come from managers, OH&S reports, or

other sources such as other eHealth systems. Regrettably, in many cases, people fail to

seek help when they need it due to a number of reasons, including the lack of time or

Chapter 4. An Efficient Solution to the Key Management Problem 115

access to resources, stigma, and trust. For example, regularly visiting a clinic can be

costly for patients and doctors. For patients, this also involves the time and effort spent

visiting the clinic, particularly for rural and disabled patients. For doctors, eHealth may

allow them to prioritise differently and tend to patients who cannot travel. Others have

highlighted the possibility of using eHealth services to reduce healthcare costs [148].

We also speculated that certain aspects, characteristic of mental health issues, would

make the importance of trust and privacy more relevant to users. Trust and stigma

also make it harder for people to seek help or share information about their mental

health. In workplace wellbeing programs, for example, employees might be less likely to

share information if they feel that it could be used by their employers. Trust is in great

measure a consequence of the software design of systems and apps used to collect and

manage the data.

Figure 4.9 highlights the methodology we used to carry out our work. Our method was

based on the waterfall model. We first define the requirements of our work. That is, to

develop a system that allows patients to share their personal health information securely

and privately, while ensuring the system is usable. We use a fictitious scenario to assist

in defining the requirements of the system. We then review state-of-the-art literature to

explore the existing works/technologies that attempt to address this. We then build on

these works and develop new technology. Finally, we test our developed system through

performance and scalability tests and evaluate the system in terms of usability.

Chapter 4. An Efficient Solution to the Key Management Problem 116

Requirement Analysis

Literature Review

Development

Testing & Evaluation

Figure 4.9: Development Method

In this project, we evaluate the security model through a prototypical smartphone app.

Using a mobile phone app, patients can report and receive help, wherever they are. In the

field of mental health, for example, studies have also shown that the use of smartphone

apps can support significant reductions in depression, stress and substance use [149].

Our contribution is a new way of protecting data, without revealing the full encryption

key to both the user and the Cloud provider. We propose a system that is designed to

be highly scalable, providing the ability to share data with many users, such as doctors

and nurses, while allowing the simple revocation of a user without the need to re-encrypt

the data every time a user revocation occurs. We focus on creating a secure and usable

system that will enable patients to share mental health information with doctors and

mental health specialists, from the comfort of their own home.

4.4.2 Data Model

Figure 4.10 demonstrates our system data model.

Chapter 4. An Efficient Solution to the Key Management Problem 117

Patient

Doctor

Social Network

Figure 4.10: Data Model

The model we used to test our application assumes a patient who monitors and tracks

their health and activity data through a smartphone app. The app may then connect

to, and store the data in, a social network such as Facebook, Fitbit or other Cloud-

based service provider using an Application Programming Interface (API). An authorised

doctor can log into and retrieve the patient’s data, and use it for analysis and diagnosis.

We use a social network to demonstrate our ideas. The patient and doctor are then

assumed to have logged in to their social network account using their credentials.

For the sake of our evaluation, we have simplified the application so that it provides

the most common features found in commercial products. Our prototype app allows

the patient to enter a text value (e.g., the description of an activity), a number value

(e.g., the amount of time spent) and an image. The app also includes a button used to

encrypt the text, number and image and send the data to a Cloud server which is used

to represent the social network. In our work, we developed a local Cloud server that

does encryption/decryption operations.

One of the main limitations of our work is that current social networks cannot auto-

matically carry out encryption/decryption. However, we mainly wanted to demonstrate

Chapter 4. An Efficient Solution to the Key Management Problem 118

the potential capability of our system should a social network provide this feature in

the future. Another limitation of our work is that, once the doctor has fully decrypted

the patient’s health data, there is no way to revoke access. This is currently beyond the

scope of our paper. The doctor however, would not be able to view any further health

information posted by the patient.

One of the main goals of our system is to make it simple to use for both patients

and doctors. Our system is not designed to replace existing health record systems but

provide a convenient way for patients and doctors to communicate with each other

remotely whilst ensuring privacy and security of health data. In terms of privacy, we

offer a solution that enables the patient to define who can access their personal health

data. We do not focus on the other aspects of privacy such as determining when the data

was accessed, how the data was accessed, and to what extent the data is communicated.

In terms of security, we provide solutions to availability through the use of the Cloud

and confidentiality in terms of allowing only authorised doctors to access the data. We

do not focus on integrity or accountability in this work.

4.4.3 Protocol

To describe the protocol, we assume that the patient’s public and private key pair has

already been generated and stored in the app.

Data Storage

The patient first runs the prototype app and inputs a text string and a number value,

and uploads an image onto their smartphone. When the patient presses the “Send”

button, the app will then generate an arbitrary symmetric key and encrypt the text,

number and image. The symmetric key will then be encrypted using the public key. The

Chapter 4. An Efficient Solution to the Key Management Problem 119

encrypted data contents and encrypted symmetric key will then be sent to the social

network, for storage.

INPUT: message, rating, image

Patient App CSP

k
Ek(message,rating,image)
Epub(patient)(k)
priv(patient) = x1 + x2
Dx1(Epub(patient)(k))

Ek(message,rating,image), Dx1(Epub(patient)(k))

Figure 4.11: Data Storage Protocol

Data Sharing

When the patient decides to share the data with a doctor, they press the “Share” button

on the app and enter the doctor’s social network username. The app will then partition

the patient’s private key into two random parts. The first partition will be sent to the

social network and the other will be sent to the doctor. By doing this, the untrusted

social network has no knowledge of the full private key, since the other partition is stored

on the doctor’s local machine.

Chapter 4. An Efficient Solution to the Key Management Problem 120

Patient App CSP

INPUT: username

x2 = x3 + x4

credentials, username, x3

Doctor

 username

x4

verifyCredentials(credentials)
getUserId(username)
store(user_id, patient_id,
doctor_id, x3)

Figure 4.12: Data Sharing Protocol

Data Access

When the doctor wishes to access the patient’s data, they simply call the social network

to retrieve the data. The social network partially decrypts the symmetric key using the

partial key supplied by the patient, and sends the encrypted data contents and partially

decrypted symmetric key to the doctor. The doctor uses the partial key supplied by

the patient to fully decrypt the symmetric key and finally decrypt the data contents.

The standard method of accessing data involves the data consumer downloading the

encrypted data from the Cloud and decrypting the data on his own machine, using the

encryption key supplied by the data owner. In our protocol, the data consumer does

not have access to the other half of the key, which prevents the data consumer from ever

knowing the full encryption key.

Chapter 4. An Efficient Solution to the Key Management Problem 121

Ek(message,rating,image), Dx3(Dx1(Epub(patient)(k)))

App CSP Doctor

 getData(patient_id)

Ek(message,rating,image)
Dx3(Dx1(Epub(patient)(k)))

 message, rating, image

 patient_id

Dx4(Dx3(Dx1(Epub(patient)(k)))) = k
Dk(Ek(message,rating,image))
= message, rating, image

Figure 4.13: Data Access Protocol

Access Revocation

When the patient decides to revoke a specific user’s access to his eHealth data, the

patient sends a request to the social network platform to remove the doctor’s partial key

entry from storage. If the doctor attempts to download the data from the social network,

he will only see the encrypted text (“ciphertext”). The doctor will not be able to fully

decrypt/read the data without the partial key. In the trivial solution described earlier,

the data owner would have to re-encrypt the data and re-distribute the new encryption

key to all of the remaining consumers in the group, thus placing a burden upon the data

owner. In our solution, since the data consumer has no knowledge of the other half of

the key partition stored in the Cloud, the data owner would simply have to delete that

key partition. Thus, he need not worry about re-encryption and the re-distribution of

keys.

Chapter 4. An Efficient Solution to the Key Management Problem 122

removeUser(credentials, doctor_id)

removeUser(credentials, doctor_id)

Patient App CSP

Delete(patient_id, doctor_id, x4)

Figure 4.14: Access Revocation Protocol

4.4.4 Security Analysis

Formal Analysis

To verify the security of our protocol, we have used an automatic cryptographic verifier

tool called ProVerif [150], which has been used extensively in research work [151]. The

tool tests the protocol against all types of adversary attacks, such as man-in-the-middle

attacks. Our protocol was found to be secure against such attacks. We tested the

storage of eHealth data by the patient and the retrieval of data by an authorised doctor.

Specifically, we tested the Data Storage and Data Access phases of our protocol. We

also note that the protocol phases we test here are similar to the protocol phases in

Section 4.3.4.2. The differences mainly being the scenario and technology used.

We first modelled the behaviour of the symmetric and asymmetric encryption, ElGamal

encryption/decryption, and digital signatures. Below is an example of how we modelled

the ElGamal encryption and decryption, as well as key partitioning.

fun elgenc(bitstring, epkey): bitstring.

reduc forall m: bitstring, esk: eskey, elpk: epkey;

elgdec(elgenc(m,epk(esk)), esk, elpk) = m.

reduc forall e: eskey, e1: eskey; add(e1, sub(e, e1)) = e.

Chapter 4. An Efficient Solution to the Key Management Problem 123

We then modelled the DO by following the logic of the protocols defined in this chapter.

In other words, we modelled the DO generating a new symmetric key k and encrypting

the data s with that key. We then modelled the DO encrypting the symmetric key

with the ElGamal public key epkey. The DO then partially decrypts the symmetric key

using the key partition els1. The DO sends a bundle that includes the encrypted data

a and partially decrypted symmetric key e to the Cloud, via a public communication

channel c. The DO partitions the already partitioned key els2 into two parts and sends

this along with the ElGamal public key elpA and client identification x to the Cloud for

storage, and sends the remaining key partition elsCc directly to the DC, via the private

channel w. The code below shows how this was modelled in ProVerif.

let dataOwner(pkA:pkey, skA:skey, pkB:spkey, elsA:eskey, elpA:epkey) =

new k:key;

let k1 = tobitstring(k) in

let a = senc(s, k) in

let b = elgenc(k1, elpA) in

new els1:eskey;

let els2 = sub(elsA, els1) in

let e = elgdec(b, els1, elpA) in

new data_id: bitstring;

let d = bundle(a, e, data_id, els1) in

out(c, d);

in(w, x:bitstring);

new elsCs:eskey;

let elsCc = sub(els2, elsCs) in

let o = consumerBundle(x, elsCs, elpA) in

out(c, o);

out(w, elsCc).

Chapter 4. An Efficient Solution to the Key Management Problem 124

The Cloud provider model simply retrieves the encrypted data bundle and consumer key

bundle from the DO, via the public communication channel c. When requested by the

DC, it would further partially decrypt the encrypted symmetric key h using the DC key

partition that was sent in the clientBundle. Another bundle containing the encrypted

data and the new, partially decrypted symmetric key will be sent to the DC via the

public communication channel v.

let Server(pkB:spkey, skB:sskey, pkA:pkey) =

in(c, f:bitstring);

let g = getData(f) in

let h = getKey(f) in

let i = getDataId(f) in

let prk = getPartialKey(f) in

out(v, i);

in(c, clientBundle: bitstring);

let cid = getConsumerData(clientBundle) in

let csk = add(prk, getConsumerKeyPartition(clientBundle)) in

let cpk = getConsumerPubKey(clientBundle) in

let k = elgdec(h, csk, cpk) in

let l = bundle(g, k, cid, csk) in

out(v, l).

Finally, the DC model retrieves the key partition cek from the DO via the private

communication channel w. The DC then retrieves the encrypted data bundle after

making a request, and uses the key partition cek to fully decrypt the partially decrypted

symmetric key and then fully decrypt the encrypted data to reveal s. The code, below,

highlights this exact process.

let Client(client_id:bitstring, elpA: epkey) =

Chapter 4. An Efficient Solution to the Key Management Problem 125

in(v, data_id:bitstring);

out(w, client_id);

in(w, cek: eskey);

in(v, serverBundle:bitstring);

let n = getData(serverBundle) in

let enc_key = getKey(serverBundle) in

let partk = add(cek, getPartialKey(serverBundle)) in

let r = elgdec(enc_key, partk, elpA) in

let t = tokey(r) in

let (=s, k:key) = sdec(n, t) in

0.

Each of the processes of the DO, Cloud provider and DC were run simultaneously, to

simulate realism.

((!dataOwner(pkA,skA,pkB, elsA, elpA)) | (!Server(pkB,skB,pkA)) |

(!Client(client_id, elpA)))

The figure below illustrates the security mechanisms used in our system. The mobile

app requires username and password credentials in order to be able to use our system.

All health data that is sent to the social network is encrypted and is sent securely via

HTTPS/SSL. The social network also has privacy controls which the patients can adjust

to suit their needs.

Chapter 4. An Efficient Solution to the Key Management Problem 126

Social Network Mobile Device

HTTPS/SSL

- Username
- Password

- Encrypted Application Data - Privacy controls

Figure 4.15: Secure Communication Paths

Informal Analysis

We now provide a brief security risk analysis of our work.

• Insider Attacks - Our protocol prevents insider attacks since the data is never

fully decrypted in the untrusted Cloud at any circumstance. The data remains

encrypted at all times on the untrusted Cloud Servers as well as on untrusted

public communication channels.

• User Revocation - Revocation of a doctor from data access can be achieved effi-

ciently without having to re-encrypt the data each time. The doctor’s key partition

is simply removed from the Cloud storage. This way, if the revoked doctor now

attempts to access the health data, he will not be able to retrieve the full plaintext

without the remaining key partition.

• Update Secrecy - Since health data is constantly changing, the patient may wish

to update their health data. This is made possible in our protocol, as long as

the updated version is encrypted with the same symmetric key that was used to

Chapter 4. An Efficient Solution to the Key Management Problem 127

encrypt the original health data, the patient may update their health data any

number of times as they wish. Hence making our solution feasible to be deployed

in a real-world scenario.

• Mobile Stealing - In the event someone steals the patient’s smartphone, they will

not be able to access the personal health information as they would need to know

the patients credentials such as email id and password in order to access the smart-

phone app. Hence, a patient does not need to be tied down to only one smartphone

device and can keep changing their device as often as they would like without any

loss of personal health information.

4.4.5 Usability Analysis

In total, we recruited 5 medical professionals and 15 students to carry out the usability

testing of our eHealth application. According to Nielsen [152], the minimum number of

participants required in a usability study is 5. We chose to recruit medical professionals,

due to their experience with patients and health issues. They were also the most likely

potential users of our system. The medical professionals included two doctors, two

medical officers and one medical intern. We chose also chose young people (ie. students)

since they were the most likely to use smartphones and would be likely potential end

users of the system. We recruited students aged over 18. 17 were over 25 (85%) and 3

were within 18 - 25 years of age (15%). We obtained ethics approval to carry out the

study. All students reported having a fair amount of experience using mobile apps.

To carry out the usability tests, we provided participants with a 4” LG smartphone with

Android OS and a 10” ASUS Eee Pad tablet, which contained our secure eHealth app.

Chapter 4. An Efficient Solution to the Key Management Problem 128

We also launched our web service, which would interact with the smartphone to store

and retrieve eHealth data and enable the sharing with, and revocation of, other users.

All 20 participants were given the same demo. Each participant was first introduced to

the main idea of our secure eHealth system. We then asked the participants to carry

out simple tasks such as:

• Report current mood,

• Share information with another user,

• Show that the other user can view the user’s mood submission,

• View mood submissions, etc.

Each participant was told that their mood submission was encrypted, and they were

shown the backend of their stored mood submission. Participants then carried out our

trust and usability questionnaire.

We asked the participants to think aloud while taking notes. Finally, participants an-

swered a short questionnaire, with questions related to trust and security [153] [26],

and usability (the USE questionnaire [154]). The questionnaire asked the participant to

assess our system based on trust and security, ease of use, and satisfaction, based on a

7-point Likert scale.

We investigated the relationship between how trustworthy and secure our system is and

how useful our system is to everyday users.

We have illustrated the user interface of our MindFeedback prototype app in Figure 4.16.

The figure displays the screenshots of the login view for both patient and doctor (a),

Chapter 4. An Efficient Solution to the Key Management Problem 129

Question Demographic Questions
1 What is your age range?
2 Are you male or female?
3 What is your ethnicity?
4 What is the highest level of school you have completed or how the highest level of

degree you have received?
7 Point Lickert Scale Questions
Trust and Security

5 When I’m connected to the Internet, I am concerned about exposing my health
information to the public.

6 I am not too concerned about what others see when I post my health-related
information on the Internet.

7 This system has made me more aware of what I may be exposing to others on the
network.

8 I feel safer when using the system.
9 Personal information which I input is managed carefully and will not be leaked to

the outside.
Ease Of Use

10 It is easy to use.
11 It is user-friendly.
12 It requires the fewest steps possible to accomplish what I want to do with it.
13 Both occasional and regular users would like it.
14 I can use it successfully every time.
15 The app is tedious.
16 I require written instructions to use it.
17 It is difficult to recover from mistakes.

Satisfaction
18 I am satisfied with it.
19 It works the way I want it to work.
20 The app could be better.
21 The app wasn’t as satisfactory compared to other health apps.

Feedback
18 Would you like to provide any other feedback on our system?

the patient view when entering the mood information (b) and the doctor view when

receiving the patient data and optionally providing feedback (c).

Evaluation by Potential Users

We conducted a quantitative-based usability evaluation. Figures 4.17 to 4.19 illustrates

the responses from potential users for trust/security, ease of use and satisfaction respec-

tively. The X-axis represents the weighted average of responses from potential users.

Values above 5 indicate that participants agreed and values below 5 indicate they dis-

agreed.

From our trust and security results, 10 out of 15 participants (67%) had at least some

Chapter 4. An Efficient Solution to the Key Management Problem 130

(a) a (b) b

(c) c

Figure 4.16: Screenshots of Mindfeedback app with login view (a), patient view (b)
and doctor view (c).

Chapter 4. An Efficient Solution to the Key Management Problem 131

concern over what others see when they post health-related information on the Internet.

12 out of 15 participants (80%) felt that their data would be kept private and secure

when using our system, and were also made more aware of the type of information that

they may be exposing over the Internet. In regards to whether their personal information

will be managed carefully and not leaked to the outside, nearly half of the participants

agreed. Participants did mention that some form of training or a video demonstration

would have communicated the security of the system a lot more effectively.

Figure 4.17: Security Responses from potential users

From our ease-of-use responses, we found that 11 out of 15 participants (73%) found our

system easy to use and learn, user-friendly, and were able to use it successfully, every

time. However, 4 out of 15 participants (27%) did find the app a little “tedious” to

work with initially, and required some of instructions to understand the system a little

better. Overall, the satisfaction of the app was mostly positive. 13 out of 15 participants

(87%) were satisfied with our app and found that it worked in the way they wanted it to.

However, most agreed that the app could have been improved. For instance, participants

Chapter 4. An Efficient Solution to the Key Management Problem 132

provided feedback that the app could have had a better looking and a more intuitive

interface.

Figure 4.18: Ease-Of-Use Responses from potential users

Chapter 4. An Efficient Solution to the Key Management Problem 133

Figure 4.19: Satisfaction Responses from potential users

Evaluation by Medical Professionals

We also performed an identical usability evaluation with the five medical professionals.

Figures 4.20 to 4.22 illustrate the responses from medical professionals for trust/security,

ease of use and satisfaction respectively. Similarly, the X-axis in these figures represent

the weighted average of responses from medical professionals. Values above 5 indicate

that participants agreed and values below 5 indicate they disagreed.

From our trust and security results, 2 out of 5 participants (40%) were strongly con-

cerned about exposing health information over the Internet while the rest were partially

concerned. After using our app, 4 out of 5 participants (80%) felt that the personal

information they entered into the app would not be leaked to the outside. Results were

mainly positive about feeling safer when using the system and being more aware of what

they might be exposing to others on the network. In terms of feedback, participants

reported that users would not understand the key process and that it might need to

Chapter 4. An Efficient Solution to the Key Management Problem 134

be accompanied with images, for better understanding. We needed to better showcase

the trivial solution of data sharing, as described in the introduction, and how our sys-

tem solves the issues of the solution. Another participant reported that the two-part

encryption was ideal.

Figure 4.20: Security Responses from medical users

In terms of ease of use, 3 out of 5 participants (60%) agreed that the app required the

fewest steps possible, in order for them to accomplish what they wanted to with the app.

Results were also mostly positive, in terms of the app being user-friendly, easy to use,

and the ability to use it successfully, every time. However, a few participants agreed

that some form of written instructions was needed to make this app usable. Overall,

medical professionals found our system satisfactory. 4 out of 5 participants (80

Chapter 4. An Efficient Solution to the Key Management Problem 135

Figure 4.21: Ease-Of-Use Responses from medical users

Figure 4.22: Satisfaction Responses from medical users

Chapter 4. An Efficient Solution to the Key Management Problem 136

Similar to the potential users, 2 out of 5 medical professionals (40%) also felt that the

app could have been better. For instance, most of the feedback involved improving the

user interface. Doctors reported that a notification system for the app would have been

very handy. The notification system could pop-up or beep and alert a patient when

a doctor has provided feedback. For more serious medical problems, the notification

system could forward the patient’s request to an emergency unit or mental health crisis

team, in the event that the doctor cannot respond out of hours. Most doctors provided

positive feedback about the security of the app. One participant noted that the two-part

encryption might be frustrating for older patients, and that such a system perfectly suits

teenage patients.

4.4.6 Performance Tests

As measure of performance we tested the overhead introduced in our system, regarding

the storage and retrieval of eHealth information, with simple AES encryption/decryption

of similar text data. In regards to the eHealth information, we entered dummy data to

the MindFeedback app. Figure 4.16 contains the screenshots of the dummy data we

used. We carried out 20 test cases and measured the time taken for each test case. To

carry out the tests, we used the ASUS Eee Pad Transformer Prime TF201 Tablet [138]

with Android OS, to run our MindFeedback app. We used a HP Notebook running

Windows 8 with Intel Core i5 and 4GB RAM, to run the AES encryption/decryption

operations and to also interface with our app, in order to retrieve performance time

information from MindFeedback.

In our performance tests, we measured the overhead introduced by our system compared

to a simple AES encryption and decryption operation. We first measured the overhead

Chapter 4. An Efficient Solution to the Key Management Problem 137

introduced by uploading the patient’s health data to the Cloud server. Figure 4.23

illustrates the results of our upload performance tests.

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

Test Case

Ti
m

e(
S

ec
on

ds
)

MindFeedback
AES encryption

Figure 4.23: Upload Overhead

The diagram clearly highlights the overhead of our system compared to a simple AES

encryption solution. The mean time for the simple AES symmetric encryption was 0.18

seconds, with a standard deviation of 0.006 seconds. However, the mean time for the

MindFeedback tests was 0.485 seconds, with a standard deviation of 0.09 seconds. The

overhead is accounted for the additional encryption of the symmetric key, followed by

the partial decryption of the symmetric key through the ElGamal encryption algorithm.

There was also some network latency overhead.

We also measured the overhead introduced by our protocol for the download or retrieval

of the patient’s health data. Figure 4.24 highlights the results of our performance tests.

Chapter 4. An Efficient Solution to the Key Management Problem 138

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Test Case

Ti
m

e(
S

ec
on

ds
)

MindFeedback
AES decryption

Figure 4.24: Download Overhead

As seen in the diagram, the system only had a slight overhead compared to a simple AES

decryption operation. The mean time of the AES decryption tests was 0.001 seconds,

with a standard deviation of 0.0003 seconds. The mean time of the MindFeedback

download tests was 0.961 seconds, with a standard deviation of 0.332 seconds. Note

that the patient’s encrypted key used to protect health data is first partially decrypted

in the Cloud server and then fully decrypted on the patient’s smartphone. This is then

followed by an AES symmetric decryption using the key on their smartphone, thus

accounting for the overhead.

4.4.7 Scalability Analysis

In the scalability tests, we measured the maximum load distribution that our locally-

deployed SOAP web service could handle. We used a scalability tool that made calls to

the login and getData methods of our Cloud service. The maximum number of threads

we were able to run concurrently without the system becoming a bottleneck, was 200.

Chapter 4. An Efficient Solution to the Key Management Problem 139

We carried out the tests on a HP Notebook running Windows 8 with Intel Core i5 and

4GB RAM.

Below is our scalability distribution over the 200 threads, for both calls to login and

calls to retrieve the data from the Cloud service.

Figure 4.25: Distribution of login performance

Figure 4.26: Distribution of data access from Cloud performance

The diagrams highlight the near-ideal bell curve distribution. Our system could with-

stand up to 200 concurrent calls to our web service, which makes it more feasible for use

in a real-world scenario.

Chapter 4. An Efficient Solution to the Key Management Problem 140

4.5 Summary

In this chapter, we presented a solution to the key-management problem. We first

described our key-partitioning technique and then applied our solution to a number of

real-world scenarios. Our technique is simple and practical enough to be deployed in

a real-world scenario. We showed that our solution does not require the data owner

to re-encrypt and re-distribute keys, every time a data consumer is revoked. Through

our scenarios, we also showed that doctors and potential users found our system to be

private and secure, an important factor when sharing health-related data. Our approach

not only reduces the burden on data owners, but also prevents malicious insiders from

stealing critical data from the data owner.

Chapter 5

Secure Protection of Outsourced

Data

5.1 Introduction

In this section, we provide solutions to prevent security attacks related to data sharing

in the Cloud. The following section is based on the work published in [155].

5.2 SafeShare

There is now a growing demand from data owners to have better access control over their

data. This includes being able to control how and where their data should be accessed,

viewed, modified and distributed. Once the data is outside the perimeter of the data

owner’s local machine, the data owner will no longer be able to have any control over

their data. When a data owner sends a file to a recipient, he cannot guarantee that the

recipient will use the data in the way that is expected by the data owner. For instance, a

141

Chapter 5. Secure Protection of Outsourced Data 142

dishonest recipient can easily redistribute the data to other, unauthorised users via email

attachments and USB drives. Furthermore, in Cloud storage, data is usually replicated

a number of times and stored in multiple locations around the world, to account for

greater availability, which at the same time makes data destruction nearly impossible to

guarantee.

In terms of access control, many works focus on using a promising technique called

Attribute-Based Encryption (ABE), where users with certain attributes can access the

data if those attributes satisfy the access control policy set out by the data owner

[102][24][101][100]. However, once the data is decrypted at the user’s site, that user can

then redistribute the decrypted data to other users, relatively easily. This limitation

hinders the convenience of data sharing and collaboration in distributed environments.

In our solution, we attempt to make the access control and monitoring as transparent

as possible to the user.

5.2.1 The SafeShare System

We now introduce our SafeShare architecture and in particular, discuss our secure data

sharing model and protocol.

Chapter 5. Secure Protection of Outsourced Data 143

Figure 5.1: SafeShare Data Sharing Model

5.2.1.1 Model

Our secure data sharing model is highlighted in Figure 5.1. Table 1 summarises the role

of each entity in our data sharing model. We assume that the DSS is honest-but-curious,

in the sense that the system will follow the protocols strictly, but is always curious to

find out any information about stored data. Note that in our data model, we assume the

CDS, DSS, and Proxy Services to be semi-trusted, making our solution attractive for use

in a real-world scenario. We also assume the DC to be a semi-honest user, since it will not

be possible to completely prevent the DC from redistributing data to other unauthorised

users, as the DC can find other avenues, such as taking screenshots, photographs, etc.

However, we attempt to make it difficult for the curious DC to redistribute data based

on commands from the software stack, such as copy/paste. Hence, the DO can feel

comfortable to some degree that in most cases, their data will not be misused by curious

DCs. We also note that our work makes use of obfuscation techniques to help prevent the

curious DC from sharing the DO’s data without the DO’s knowledge. Code obfuscation

Chapter 5. Secure Protection of Outsourced Data 144

DO Data Owner The owner of the data and decides who has access
permission to the data

DC Data Consumer Any user who has permission to access data given by
the DO

SSA SafeShare Application An application the DO runs to generate a SafeShare
object and store to Cloud (see model)

DSS Data Sharing Service The service that carries out most of the data sharing
functionality in the protocol (see model)

CDS Cloud Data Service The service that allows calls to be made to Cloud stor-
age (see model)

CS Cloud Storage Database The database containing encrypted data (see model)
α Symmetric Encryption Symmetric encryption algorithm
δ Symmetric Decryption symmetric decryption algorithm
β CP-ABE Encryption CP-ABE encryption algorithm
θ CP-ABE Decryption CP-ABE decryption algorithm
γ El-Gamal Encryption El-Gamal encryption algorithm
τ El-Gamal Decryption El-Gamal decryption algorithm

Table 5.1: Abbreviations

is a weak protection mechanism and hence the assumption of a curious DC; however,

we attempt to address this in future work.

As the basis of our work, we make use of SCOs as used in the work of Squicciarini et

al. [32], and we call this object SafeShare. We build upon SCOs and add a mechanism

within the object that will prevent users from carrying out operations denied by the

DO. Figure 5.2 illustrates our SafeShare object. Each SafeShare object encapsulates

encrypted data contents using both symmetric key encryption and CP-ABE. We also

make use of ElGamal encryption to enable efficient user revocation, which cannot be

achieved by CP-ABE alone. Each SafeShare object also contains an access control

policy governing which users can access data, what users can do with the data, and any

jurisdiction policies associated with the data. A hash is also kept of the original data for

integrity purposes. Finally, a log file is kept, which logs user operations on the data for

auditing and accountability purposes. Each SafeShare object also contains operations

such as access to data and/or makes copies of the data, if permitted by the data owner.

Chapter 5. Secure Protection of Outsourced Data 145

Figure 5.2: SafeShare object

5.2.1.2 Overview

We now provide a brief overview of our system. First, the DO stores his data in the

Cloud by running the SSA and inputting his data and access permissions. The SSA

carries out the encryption of the data and access control policies, and encapsulates them

into a SafeShare object along with secret keys, hash value, log, etc. The SafeShare object

is then sent to the DSS and consequently the CDS, for storage.

When a DC requests access to the data and the DO approves, the DO calls the SSA to

authorise the DC. The SSA calculates new, private key pieces for the DC, which add up

to the private key used to decrypt the data. Each proxy server stores a part of the DC’s

key partition, and the remaining key partition is sent to the DC through a medium of

the DO’s choosing, such as USB, email, telephone, etc.

Once the SafeShare object is decrypted, the DC calls the Open() method to access

data, and provides his CP-ABE private key, as well as his supplied key partition. The

SafeShare object verifies with the ACP which operations are allowed on the data, and

Chapter 5. Secure Protection of Outsourced Data 146

decrypts the data and keys, if the attributes in the CP-ABE key satisfy the policy set

out in the encrypted data.

Once the conditions have been met, the background process will then begin, which

monitors for any unauthorised operation (see next section).

When a DO wishes to completely revoke a particular user’s access to his data, he simply

calls the DSS to remove the DC’s corresponding key partitions in the proxy servers.

5.2.1.3 Background monitoring

The background monitoring process aims to prevent a curious DC from carrying out

unauthorised operations on the DO’s data. Unless specified by the DO in the ACP, the

background process does not allow the DC to modify, copy and/or paste the file to a

USB or another folder, for sharing.

The background process first creates a temporary folder and stores the decrypted file

in the folder. The folder is made available to the DC. When the DC attempts to make

a copy of the decrypted file through usual commands, such as Ctrl-C on Windows,

the background process checks with the ACP whether the operation is allowed, and if

not, immediately deletes the file in the temporary folder, leaving the clipboard empty.

Similarly, when the DC is not allowed to make modifications to his file, the background

process continually checks whether the file is modified. If the file is modified, the new

file is immediately deleted and the user would need to run the SafeShare object again, to

retrieve the original file. A log file is also kept if the DO requires additional control and

is periodically flushed to the Cloud, to prevent large data sizes on the DC’s machine.

The log file contains information such as the DC id, IP address and the data operation,

such as READ or WRITE. The DO can then retrieve the log file from the Cloud,

Chapter 5. Secure Protection of Outsourced Data 147

for auditing and/or accountability purposes. The log file can be sent daily, weekly or

monthly depending on what the DO requires.

While the background monitoring helps to reinforce stronger access control of the data,

it is not very difficult to circumvent the process. For example, the DC could read the file

using a number of methods at the system level, command level and even in backup. Our

background monitoring process only controls unauthorised operations only from the UI

and clipboard and thus is more suitable for the everyday user. We acknowledge that

this is a limitation of our work and we will build upon this limitation in Section 5.3.

5.2.1.4 Protocol

We now discuss our SafeShare protocol in detail. The protocol has five stages: data

storage, data retrieval, consumer authorisation, authorised data access, and consumer

revocation.

Data Storage

Chapter 5. Secure Protection of Outsourced Data 148

1© DO → SSA INPUT: FILE, P , PK

2© Generate {p,b,c}, x

3© Hash(FILE)

4© Generate log and key k

5© αk(FILE) = m

6© βp(m) = M

7© γ{p,b,c}(P) = ACP

8© γ{p,b,c}(Hash(FILE)) = H

9© γ{p,b,c}(log) = L

10© γ{p,b,c}(k) = K

11© Create SafeShare object SS

12© SSA → SS ACP,H,L,K,M, xn+2

13© Obfuscate SS file

14© DO → DSS credentials, SS

15© DSS → CDS verifyCredentials(credentials)

16© CDS → DSS uDO

17© DSS Generate dFILE

18© DSS → CDS → CS uDO, dFILE, SS

At the data storage stage, the DO first inputs his file, policies and public parameters

from ABE to SSA on his PC 1©. The application will generate public and private key

pairs from the initialisation stage of the ElGamal encryption algorithm 2©. A hash of

the file will then be calculated 3©. An empty log file will also be generated, as well

as a symmetric key 4©. The file will first be encrypted by symmetric key k 5© and

then, using the access control policy, by the CP-ABE public key 6©. The access control

Chapter 5. Secure Protection of Outsourced Data 149

policy, data hash, log file and symmetric key will also be individually encrypted by the

ElGamal public key 7© - 10©. The application will then generate and store the encrypted

file along with the encrypted access control policy, data hash, log file and symmetric

key, in an object file that we call SafeShare 11© - 12©. Also, one partitioned key piece

will also be stored in a variable in the source code of the SafeShare object (12), and

will then be obfuscated 13©, so that it will be extremely difficult to reverse engineer the

code to find out the key piece value. This can only be found out through the running of

the executable. The DO then sends the SafeShare object, along with its credentials, to

the DSS 14©.The DO keeps the secret key x on his machine. The DSS verifies the user

credentials 15© - 16©, and then generates a data identification 17©. The SafeShare object is

then sent to Cloud storage 18©. Note that we assume that the DO exists in the database

with a user identification. If the DO does not exist in the database, intuitively, the data

will not be stored.

Consumer Authorisation

Chapter 5. Secure Protection of Outsourced Data 150

1© DO Calculate x− xn+2

2© Generate xu1 + ...+ xu(n) + xu(n+1) = x− xn+2

3© DO → DSS auth(credentials,email, dFILE, {xu1, ...xu(n)})

4© DSS → CDS verifyCredentials(credentials)

5© CDS → DSS uDO

6© DSS → CDS verifyUserExists(email)

7© CDS → DSS uDC

8© for (all proxy i)

DSS → proxy i {uDC, uDO, dFILE, xu(i)}

9© DO Generate attribute set and corresponding private key

pkDC

10© DO → DC pkDC, xu(n+1), {p, b, c}

The DO first calculates the secret key value x minus the key partition value stored in

the SafeShare object 1©. The DO partitions this value into n+ 1 random pieces, where

n represents the number of proxy servers 2©. The DO sends his credentials, the DC’s

identifier (i.e., email), the data identification and n key partitions, to the DSS 3©. The

DSS, after verifying whether the DO and DC exist 4© - 7©, then stores the DC’s key

partitions to each of the proxy servers 8©. Finally, the DO generates a private key using

the CP-ABE KeyGen algorithm, to generate a key for the DC that provides access to

the data 9©. The CP-ABE key, along with the remaining key partition and public key,

is sent to the DC, and he now gains access rights 10©.

Data Retrieval

Chapter 5. Secure Protection of Outsourced Data 151

1© DC → DSS credentials, dFILE

2© DSS → CDS verifyCredentials(credentials)

3© CDS → DSS uDO

4© DSS → CDS uDO, dFILE

5© CDS → DSS SS

6© for (all proxy i)

DSS → proxy i uDC, dFILE

proxy i → DSS xu(i)

7© DSS → SS update(xu(i))

8© SS τxu1(ACP)

= τxu1(γ{p,b,c}(P))

= (cr, (cr)−xu1 .crx.P mod p)

= (cr, (cr)x−xu1 .P mod p)

Similarly for H, L and K

9© Repeat step 7© for RP = Remaining ACP cipher:

all n key pieces (cr, (cr)x−x1u−...−xun .P mod p)

RH = Remaining cipher of H:

(cr, (cr)x−x1u−...−xun

.Hash(FILE) mod p)

RL = Remaining cipher of L:

(cr, (cr)x−x1u−...−xnu .log mod p)

RK = Remaining cipher of key:

(cr, (cr)x−x1u−...−xnu .k mod p)

10© DSS → DC SS

Chapter 5. Secure Protection of Outsourced Data 152

At this stage, the DC (or DO) downloads the SafeShare object from the Cloud, ready to

be accessed. The DC sends his credentials and data identification to the DSS 1©. The

DSS verifies whether the user is legitimate 2© - 3© and if so, calls the CDS to retrieve

the SafeShare object 4© - 5©. The DSS will also retrieve the DC’s key partitions from

the proxy servers 6©. The DSS then calls the update() method of the SafeShare object

and also sends the key partition value 7© - 8©. The object then uses the key partition

to decrypt the access policy, data hash, log file and symmetric key. The object then

updates itself with these new values 9©. The SafeShare object, containing the partially

decrypted contents, are then sent to the DC 10©.

Authorised Data Access

Chapter 5. Secure Protection of Outsourced Data 153

1© DC → SS Open(xn+1, pkDC)

2© SS τxu(n+2)
(τxu(n+1)

(RP))

= (cr, (cr)x−x1u−...−xu(n+2) .P mod p)

= (cr, (cr)x−x.P mod p)

= (cr, P mod p)

3© Similarly, repeat step 2 for RH, RL and RK:

P, Hash(FILE), log, k

4© θpkDC
(βP (m)) = m = αk(FILE)

δk(m) = δk(αk(FILE)) = FILE

5© Create monitoring folder F

6© SS → F FILE

7© monitorInBackground()

8© IF (operation violates ACP)

Delete FILE immediately

9© IF (ACP contains doLog=true)

log each operation to log file.

Periodically upload log to DSS and clear log in SS

At this stage, the DC accesses the data encapsulated within the SafeShare object. The

DC simply runs the Open function of the object, passing on his stored key piece and CP-

ABE private key 1©. The SafeShare object then decrypts each of the metadata contents

using the DC’s key piece and then later, the key piece stored within the source code, to

reveal the full metadata as well as the fully decrypted symmetric key 2© - 3©. Note that

this key value is stored in the executable binary as it is running, hence it is extremely

difficult for the DC to ever find out this key value. The SafeShare object will use the

Chapter 5. Secure Protection of Outsourced Data 154

fully decrypted symmetric key to decrypt the file. If the attributes of the private key

satisfy the ACP, then the file will be decrypted to reveal the data encrypted by k. The

data is then decrypted fully by k 4©. The SafeShare object, after checking whether the

user is authorised to access the data, will generate a temporary folder and store the file

in that folder 5© - 6©. The SafeShare object will then monitor the file and temporary

folder in the background, simulating a watchdog 7©. If an operation violates the ACP,

such as no copying or no modification, the file will be deleted immediately 8©. If the

DO explicitly states in the ACP that logging should be enabled, the watchdog will log

any operations to the log file and update the object with the latest log. The SafeShare

object will periodically flush the log file to the DSS, to ensure that the file sizes do not

exceed a maximum range 9©.

Consumer Revocation

1© DO → DSS deleteUser(credentials, uDC, dFILE)

2© DSS → CDS verifyCredentials(credentials)

3© CDS → DSS uDO

4© for (all proxy i)

DSS → proxy i removeKeyPiece(uDO, uDC, dFILE)

proxy i → DSS Remove xui

When the DO decides to revoke a user’s access rights to data, he simply calls the DSS

to request that the user’s rights to the data are revoked 1©. The DSS will then verify

the credentials of the user 2© - 3© and then, provided that the user exists, remove the

corresponding key pieces of the user in each of the proxy databases 4©. Note that the

data does not need to be re-encrypted, and none of the other users will be affected, since

only the key pieces corresponding to the consumer are removed. All other key pieces

Chapter 5. Secure Protection of Outsourced Data 155

corresponding to other consumers still remain in the proxy database. Since the data

does not need to be re-encrypted, nor does there need to be any key re-distribution, the

model is efficient and has a runtime of O(n), where n is the number of proxy servers.

5.2.2 Security Analysis

We now analyse our model and protocol from a privacy and security perspective.

1. Data confidentiality – Data remains encrypted at all times, whether it is in transit,

within the Cloud provider, or on the DC’s machine. The only time the data is

decrypted is when the Open() method is called, since the class file contains the

remaining key partition. Since the SafeShare object is obfuscated, the value of the

key partition will be hard to reverse engineer. Without the key partition value,

even if the attacking user has all of the other partitions, he still does not possess

knowledge of the full ElGamal private key and cannot decrypt the data. Since key

partitions are stored in different proxy servers (possibly modelled and implemented

on different CSPs), unauthorised data access becomes extremely difficult. This is

due to the fact that compromising all CSPs is almost impossible [156].

2. Unauthorised redistribution – The symmetric key is also encrypted with the El-

Gamal private key, and also requires the key partition value in the obfuscated

source code to retrieve the full CP-ABE key needed to decrypt data. When the

object method is run, and the user has fulfilled all other requirements needed for

the object, the object will decrypt the data itself and then monitor operations on

the decrypted data in a background process, as a watchdog. If the ACP denies

redistribution, the watchdog code will prevent the DC from copying the decrypted

data to another folder; for instance, sending an email attachment. This can also

Chapter 5. Secure Protection of Outsourced Data 156

help prevent attacks related to covert channels. The watchdog is non-intrusive

upon user behaviour and only monitors actions on the relevant data owner’s files,

to check for any unuathorised operation. It does not interfere, nor log the user

actions on other files and applications.

3. User revocation – User revocation involves simply removing a DC’s key partitions

from the proxy. By doing so, the DC can never recover the full ElGamal private

key. The key partition stored on the DC’s machine will be rendered useless without

the other key partitions. The DC also never knows the full value of the private

ElGamal key, unless it is leaked by the DO. Without the full key, it is nearly

impossible to decrypt the CP-ABE key needed to decrypt the data. The attacker

would have to guess the final key partition in order to fully decrypt the CP-ABE

key. Similarly, without the full key, it is also extremely difficult to decrypt the

metadata information such as the ACP, hash value and log file.

4. Auditing/Accountability – If the DO has highly confidential data, for extra security,

he can explicitly state that all operations on the data are logged. All operations

on the data will be noted by the watchdog and appended to the log file. The log

file will be periodically sent to the DSS web service, which the DO can access at

any time, from anywhere, to keep track of the usage of his data and to satisfy his

auditing/accountability requirements.

5. Data Integrity – While the watchdog is running in the background, the updated

hash value can also be periodically sent to the DSS. The DSS will update the

previous hash value to the current one in the database. The DO can later check

whether his data has been tampered with, and can also hold accountable whoever

tampered with the data.

Chapter 5. Secure Protection of Outsourced Data 157

5.2.3 Implementation and Evaluation

We now provide the implementation details of our system, followed by experimental

results and an evaluation.

5.2.3.1 Implementation

We developed our prototype of the system using the Java programming language. The

DSS, CDS and Proxy servers were developed using Java, Apache Tomcat and Apache

Axis2. We also used MySQL for data storage. The CP-ABE scheme, developed by

Wang [157], implements the work of Bethencourt et al. [105]. The code was developed

using the Java Pairing-Based Cryptography Library (jPBC library) [158]. To implement

the SafeShare object, we made use of executable JAR files. The SSA was implemented

using Java. ProGuard [159] was used to obfuscate and shrink the JAR file.

5.2.3.2 Experimental Results

We carried out a number of performance tests on our system. In particular, we measured

the overhead introduced in our SafeShare object, in comparison to sharing data using

only the CP-ABE scheme. We measured the performance of generating and opening

SafeShare objects. The purpose of these tests was to determine whether our system

would be feasible for use in a real-world scenario. To carry out the tests, we used a dual-

core ASUS laptop with 2GB memory, 350GB storage and Windows Vista Operating

System, as well as a Dell XP 8500 PC with Intel Core i7 and 8GB memory, running

Windows 8.

Chapter 5. Secure Protection of Outsourced Data 158

For each of the tests, we used a number of files with sizes ranging from 1KB to 100MB, to

reflect different application requirements. The files used in the tests ranged from simple

text files, to documents, and also different image formats. For larger files, we used video

files with different formats and 3D graphics files. For each file, the performance tests

were run a number of times. The average time was then calculated, and displayed in

the figures below. Using the same set of files, we also measured performance for the CP-

ABE scheme of Bethencourt et al. [105]. This allowed us to measure the performance

overhead of our SafeShare object.

Figure 5.3: Data encryption overhead

Figure 5.3 highlights the results of our first tests. From the figure, it is clear that

SafeShare objects took much longer, compared to a simple CP-ABE encryption scheme.

This is due to the SafeShare object having to encrypt the access control policy, hash and

log file, as well as the data itself, and then package all these contents into a JAR file.

Most of the time was spent in the generation and packaging of contents to a JAR file.

As file sizes increased, the data generation times increased considerably for SafeShare

objects, with the largest file size taking 50 seconds, while the CP-ABE scheme only

Chapter 5. Secure Protection of Outsourced Data 159

demonstrated a small increase in time. The slight dip in the overhead of files around the

10MB mark, is accounted for by testing carried out in different times; it is nevertheless

still similar to all of the file sizes below 10MB.

Figure 5.4: Data access overhead

The overhead introduced when a user carried out data access was also measured, using

the same set of files. Figure 5.4 illustrates the results of our tests where again, we mea-

sured our SafeShare scheme with the CP-ABE scheme. This is the result of running the

Open operation of the SafeShare object. We found that for files up to 10MB in size,

the overhead in access times was nearly negligible. However, once the file sizes became

larger, the access times increased exponentially, leaving a large overhead compared to

the CP-ABE scheme. For files with sizes of 60MB, the user would have to wait approxi-

mately five minutes each time, to access data. The access times for the CP-ABE scheme

remained minimal, no matter how large the file was.

Chapter 5. Secure Protection of Outsourced Data 160

5.2.3.3 Evaluation

From the performance tests, we found that our SafeShare object was comparably slower

to encrypt and decrypt. Regarding the encryption, this is mainly to do with the genera-

tion of JAR files. Data access times increase exponentially for larger data sizes; however,

as processing power increases and the generation of JAR files optimises, access times

will improve in the near future. Also, in the near future, it may be possible to split the

process and run them in parallel threads to significantly improve performance times. In

our current solution, users may be willing to wait a little longer for highly confidential

data to generate and access data. For instance, a business user might be willing to

wait for a little more than a minute to access 15MB of highly confidential paperwork.

This makes our solution highly attractive to users who are more concerned with privacy

rather than performance times.

5.3 Hardware data encapsulation using TED

We now improve on the software-based SafeShare and leverage a hardware device called

the TED, for the stronger privacy and security of data. Hardware-based mechanisms

are generally more difficult to attack compared to software-based mechanisms, as this

would require some form of physical effort. The work in this section is based on [160].

5.3.1 Introduction

The Bring Your Own Device (BYOD) [161] concept is a growing trend that allows

enterprise employees to bring their own devices, such as laptops, smartphones, and

tablets, to their workplace, and use the devices to access sensitive data within the

Chapter 5. Secure Protection of Outsourced Data 161

organisation. Key management and key stealing issues associated with the Cloud can

be addressed using BYOD, since the employee device contains one key that is unique to

the device and uses that key for secure sharing. However, when applying BYOD to data

sharing in the Cloud, a number of issues are introduced [161][162]. If the employee’s

device contains malware, it could inject the malware into enterprise servers. Also, it is

possible that the employee’s device could leave traces of very sensitive enterprise data,

later on.

The main vulnerabilities of introducing BYOD to data sharing in the Cloud include:

• Key management - Storing keys and certificates inside the device is complex and

unsafe. Since there is no control over the consumer’s device, it is not guaranteed

that the keys stored inside the device will never be revealed to outsiders.

• Data protection - Once the consumer obtains the data, there is no guarantee that

the consumer will then redistribute the data to other unauthorised consumers,

such as friends or family.

In our work, we focus primarily on the former, and leave the latter as an aspect of

future work. We make use of a small, self-contained USB-sized computer which incorpo-

rates TPM, called the Trust Extension Device (TED) [163], in order to address the key

management limitations of BYOD. The attractive part of our solution is that the con-

sumer’s untrusted computer can simply be viewed as IO, while the secure data-sharing

operations are carried out inside the TED. From the consumer’s perspective, the TED

is viewed as a black box. Although BYOD is currently a more cost-effective approach

compared to TED, we foresee that in the future, most smartphones, tablets and note-

books will have similar capabilities to the TED. Our system is heterogeneous, in that it

can be used under any operating system, platform, etc.

Chapter 5. Secure Protection of Outsourced Data 162

DO The owner of the data; decides who has access permission to the data
DC Any consumer who has permission to access data provided by the DO
DSS The untrusted data sharing Cloud service used to store and retrieve data (see

model)
TTI The Trusted TED Issuer service that manufactures TED devices and dis-

tributes them to DCs, offline
PCA The trusted service that verifies whether a DC is who they say they are
TED Physically-based TPM model used to attest and retrieve encrypted data from

the DSS

Table 5.2: Entities

5.3.2 Security Model and Protocol

We now introduce our system architecture and in particular, discuss our secure data

sharing model and protocol. Our model and protocol is not limited to a specific appli-

cation, but can be applied to a variety of different application scenarios. Our system

is heterogeneous and is not limited in terms of operating system, platform, etc. Our

system is also transparent, in the sense that the data consumer can use it as an “out-of-

the-box” tool, without having to run any configuration. Note that all operations carried

out by the TED are completely transparent to the host OS. The host OS will never be

able to retrieve any information from the TED.

Chapter 5. Secure Protection of Outsourced Data 163

5.3.2.1 Model

Figure 5.5: Data Model

Our secure data sharing model is highlighted in Figure 5.5. The Data Sharing Service

(DSS) is an untrusted Cloud Service Provider used to store the Data Owner’s (DO)

data. The Trusted Ted Issuer (TTI) manufactures TED devices with the embedded

cryptographic keys that are needed to decrypt data for Data Consumers (DC), provided

that DCs have bought/registered the DO’s data. A Private Certificate Authority (PCA)

is called by the TED device, whenever the DC requires data access. The PCA verifies

that the DC really is who they say they are, as well as registered to access the data. If

successful, the PCA grants data access. A number of DCs will use the TED to securely

connect with the TTI and PCA, to be authenticated and verified, and if successful,

retrieve the data. Zic and Hardjono [164] propose a similar model where they leverage

the use of TED to measure the integrity of client devices when they access Cloud-based

applications and services. Whereas, in our work, we leverage TED to ensure that the

Chapter 5. Secure Protection of Outsourced Data 164

authorised DC is able to access the data without ever knowing the key used to decrypt

the data.

We assume that the DSS is honest-but-curious, in the sense that the system will follow

the protocols strictly but is always curious to find out any information about stored

data. Note that in our data model, we assume the PCA and TTI to be trusted. We

also assume the TED to be trusted. We assume the DC to be a semi-honest consumer,

since it will not be possible to completely prevent the DC from redistributing data

to other unauthorised consumers, as the DC can find other avenues, such as taking

screenshots, photographs, etc. However, we attempt to make it difficult for the curious

DC to redistribute data. Hence, the DO can feel comfortable to some degree that in

most cases, their data will not be misused by curious DCs.

5.3.2.2 Protocol

We now discuss our secure data sharing protocol in detail. The protocol has four stages:

Data Storage and Set Up, Data Consumer Registration, Data Access, and Consumer

Revocation.

Data Storage and Setup

1© DO x = x1 + x2

2© Ek(data)

3© E(p,b,c)(k)

4© Dx1(E(p,b,c)(k))

5© DO → DSS {Ek(data), Dx1(E(p,b,c)(k))}

6© DO → TTI x2

Chapter 5. Secure Protection of Outsourced Data 165

Data Storage and Set Up: First, the DO generates an ElGamal public and private

keypair and then partitions the private key into two parts 1©. The DO then generates

a random symmetric key and encrypts data with it 2©. The symmetric key is then

encrypted with the public ElGamal key 3©, and is then partially decrypted by the first

half of the key partition 4©. The encrypted data and encrypted key are then sent to the

DSS for storage 5©. The DO also sends the second key partition to the TTI, to enable

data sharing 6©. It is assumed that the DO sends the key partition value through a

secure medium, as decided upon by the enterprise, such as email, over the telephone, by

mail, or in person, to name a few.

Data Consumer Registration

1© DC → TTI register(credentials, did)

2© TTI x2 = xa + xb

3© TTI → PCA {credentials, did, xa}

4© TTI → TED {credentials, EC, xb, ...}

Data Consumer Registration: The DC registers with the TTI using his creden-

tials, in order to gain data access 1©. We do not detail the registration process, since

it is outside the scope of this work. We assume that registration can simply involve,

for example, the DC purchasing the data item through a website. The website is also

assumed to have knowledge of the DC, via credential information. The TTI partitions

the DO’s supplied key piece, again, into two parts 2©. One of the two parts is generated

randomly; therefore, both pieces will always be different for each consumer. The TTI

then sends the DC credentials and one of the newly generated key partitions, to the

PCA for storage 3©. The TTI will then manufacture, offline, a TED device embedding

Chapter 5. Secure Protection of Outsourced Data 166

Data Access
1© DC → TED Open()
2© TED pubAIK , prvAIK

3© TED → DSS {credentials, pubAIK , sign(EC, prvTTI)}
4© DSS → PCA {credentials, pubAIK , sign(EC, prvTTI)}
5© PCA verify(sign(EC, prvTTI), pubTTI) =

EC = {pubEK , did, TPMmodel, ...}
6© verifyCredentials(credentials)
7© sign(pubAIK , prvPCA)
8© PCA → DSS {did, xa, sign(pubAIK , prvPCA)}
9© DSS Dxa(Dx1(E(p,b,c)(k)))

Dx1+xa(E(p,b,c)(k))
10© DSS → TED aenc({Dx1+xa(E(p,b,c)(k)), Ek(data),

sign(pubAIK , prvPCA)}, pubAIK)
11© TED adec(aenc({Dx1+xa(E(p,b,c)(k)), Ek(data),

sign(pubAIK , prvPCA)}, pubAIK), prvAIK)
12© TED verify(sign(pubAIK , prvPCA), pubPCA)
13© TED Dxb(Dx1+xa(E(p,b,c)(k)))

= Dx1+xa+xb(E(p,b,c)(k))
= Dx(E(p,b,c)(k))
= k

14© TED Dk(Ek(data))
= data

15© TED → DC data

the credentials, endorsement credentials containing the endorsement keys, data identi-

fication, TPM model, manufacturer, etc., as well as the second key partition generated

by the TTI 4©. The TED device will then be shipped to the DC’s physical address.

Data Access: The data consumer runs the secure application in the TED device, to

access data 1©. The TED device carries out the attestation protocol (see section 3.2).

First, the attestation key pair is generated 2©. TED then sends its credentials, public

attestation key, and signed endorsement credentials to the PCA via DSS 3©, 4©. The

PCA verifies the signature to retrieve the endorsement credentials, and hence knows

which TED device made the call 5©. The PCA also verifies the consumer’s credentials

to ensure that the correct consumer is using the TED device 6©. The PCA then signs

the public attestation key to reveal the attestation identity certificate 7©. The PCA

retrieves the data identification and key partition from the consumer’s database entry,

and sends this along with the signature, to the DSS 8©. The DSS uses the key partition

to decrypt the partially decrypted key, to result in a further partially decrypted key 9©.

Chapter 5. Secure Protection of Outsourced Data 167

The DSS encrypts the encrypted data, partially decrypted key and attestation identity

certificate with the public attestation identity key, and sends this to the TED device 10©.

The TED application decrypts this using the private attestation identity key stored in

the TED device 11©. The application verifies the signature of the attestation certificate

12© and if verified, it uses the key partition stored in the TED storage to decrypt the

partially decrypted key, in order to reveal the fully decrypted symmetric key 13©. The

symmetric key is then used to decrypt the data 14©. Finally, the data is sent to the DC

through the secure application 15©.

Consumer Revocation

1© DO → TTI revokeConsumer(credentials, did)

2© TTI → PCA remove(credentials, did)

3© PCA delete(credentials, did)

Consumer Revocation:

When the DO wants to revoke a particular DC, the DO simply calls the revoke operation,

sending a consumer credential such as the DC id or username to the TTI 1©. The TTI

passes the credentials to the PCA, ordering the removal of the consumer 2©. The PCA

locates the consumer credentials in the database and deletes the entire row, including

the key partition, hence rendering the data completely useless to the DC 3©.

5.3.2.3 Security Evaluation

• User Revocation - In our protocol, user revocation can be achieved efficiently

without the need to re-encrypt the data each time. The DC’s key partition, as

well as credential information associated with the data, is simply removed from

the trusted PCA’s database. This way, if the revoked DC attempts to access the

Chapter 5. Secure Protection of Outsourced Data 168

data, their corresponding TED will fail to be attested and, furthermore, will never

be able to be decrypted without the key partition.

• Collusion between DC and DSS - In the event that a dishonest DC and the un-

trusted DSS collude, the DC will only be able to retrieve the encrypted data and

the partially decrypted symmetric key. Without the remaining key partition, it

is extremely difficult for the DC to decrypt the data, as the data decryption key

will still remain illegible. Since the remaining key partition is encapsulated within

the TED device, the DC would have to carry out hardware-based attacks in order

to retrieve the remaining key partition. Hardware-based security mechanisms are

much more difficult to attack; therefore, our protocol handles collusion attacks

between DC and DSS.

• Man-in-the-Middle Attacks - Our protocol handles man-in-the-middle attacks,

since every time a DC requests access to data, the TED application always at-

tests with the DSS and PCA, using the attestation identity key. The encrypted

data and keys are returned to the TED device with a signature from the PCA

attesting that the TED device is legal and valid.

• Update Secrecy - When the DO wishes to replace his current stored data with a

newer, updated version, he simply encrypts the data with the same symmetric key

and sends it to the DSS to be replaced. Note that nothing else in the protocol needs

to be changed, thus making our solution practical for deployment in a real-world

scenario.

• Losing TED - In the event that a DC’s TED device is physically lost or stolen, the

DC immediately notifies the TTI (using his credentials) that the device has been

Chapter 5. Secure Protection of Outsourced Data 169

stolen. The TTI verifies the credentials, and notifies the PCA to remove the entry

containing the DC’s credentials and key partition.

• Insider Attacks - Our protocol is also secure against insider attacks, since there

is never a stage in our protocol where the data is decrypted in the Cloud. The

data remains encrypted at all times on the untrusted Cloud servers, as well as on

untrusted public communication channels.

• Unauthorised Data Redistribution - In our protocol, we also attempt to prevent

the unauthorised redistribution of data by friends, family, etc. It is impossible to

completely prevent a dishonest DC from redistributing the data, since the TED

eventually returns the full plaintext data. The DC can still redistribute the data

using the plaintext. However, it is now more difficult to let an arbitrary number of

unauthorised users from accessing and using the data. Also, the DC can physically

hand over their TED to another user, which is outside the scope of this work. We

will attempt to address this in future work.

5.3.3 Implementation and Evaluation

We now provide the implementation details of our system, followed by experimental

results and an evaluation.

5.3.3.1 Implementation

We implemented our TED application using the C language. To run the TED applica-

tion, we connected the TED device to a PC, and then created a simple Java application

that is used to invoke and return commands to and from the TED device.

Chapter 5. Secure Protection of Outsourced Data 170

5.3.3.2 Evaluation

We measured the overhead introduced by the encryption and decryption of data using

TED. The purpose of these tests was to determine whether TED would be feasible for

use in a real-world scenario, with regards to secure data sharing. The host machine we

used was an Intel Core i5 HP Pavilion Notebook with 4GB memory, 1TB storage, and

64-bit Windows 8 operating system.

To carry out the performance test, we first measured the time taken to encrypt a simple

text file using AES encryption. We then measured the time taken to encrypt the text

file using our simple Java application named “SecureShare,” which follows the protocol.

We carried out the test cases a number of times and calculated the average times. Using

the encrypted text file, we then measured the time taken to decrypt the file using AES

decryption, and the time taken to decrypt the file using TED.

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Test Case

Ti
m

e(
S

ec
on

ds
)

SecureShare encryption
AES encryption

Figure 5.6: Encryption overhead

Figure 5.6 highlights the results of our first tests. From the tests, the overhead introduced

Chapter 5. Secure Protection of Outsourced Data 171

by our Java application, “SecureShare,” is slightly higher than simple AES encryption.

The average time taken to encrypt the text file using a simple AES encryption algorithm

was approximately 0.19 seconds. The average time to encrypt the same text file using

SafeShare was approximately 0.24 seconds. However, since the encryption process is

under half a second, everyday users will find it feasible to use our SafeShare application

to protect their files.

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

Test Case

Ti
m

e(
S

ec
on

ds
)

TED decryption
PC decryption

Figure 5.7: Decryption overhead

Figure 5.7 illustrates the overhead introduced by decrypting data using the TED device.

From the figure, it is clear that the overhead of decrypting data using the TED is

significantly higher than decryption using a simple AES algorithm. The average time to

decrypt the text file using AES decryption was approximately 0.27 seconds, while the

average time to decrypt the same text file using the TED, was 551.41 seconds.

Chapter 5. Secure Protection of Outsourced Data 172

5.3.3.3 Performance and Size Limitations

The poor performance of the decryption is mainly due to the limited resource and capa-

bility of the existing TED that was prototyped a few years ago, instead of our approach

itself. For example, the data size that the TED currently supports is approximately

2-3KB. Simply adding larger CPU and memory to the TED devices will see drastic

improvements in performance and size limitations. We foresee that in the near future,

devices such as the TED will have greater capabilities, which will in turn drastically

improve performance times. Furthermore, we envisage such capabilities to be incorpo-

rated into smartphones and notebooks, which will further enhance the usability of our

system.

5.4 Summary

In this chapter, we first designed and implemented SafeShare, a software object that

encapsulates both data and policy and allows private and secure sharing without leaking

the data to the Cloud. SafeShare also incorporates a background monitoring mechanism

that aims to prevent dishonest consumers from leaking data to other, unauthorised users.

We then improved on SafeShare, and leveraged hardware data encapsulation via the

TED. This was shown to provide stronger privacy and security compared to SafeShare,

due to data being decrypted within the hardware device and not the host OS.

Chapter 6

SelfProtect Object

Our previous solutions have focused on providing private and secure data sharing, by

addressing key management and security attacks. However, we assumed that the data

consumer is honest and will not leak the data to unauthorised outsiders. Once the data

is given away to the Cloud and/or data consumers, the data owner effectively loses full

control over their own data. The data consumer can copy, modify and distribute the

data to friends and family, without the knowledge of the data owner. Thus, there is now

a strong demand for data owners to regain some degree of control over their own shared

data, no matter where the data is stored and accessed. In this chapter, we present

technologies that we have developed to allow the data owner to regain some level of

control over their data. This chapter is based on the work published in [165].

6.1 Introduction

The amount of content being generated and shared is increasing at a rapid pace [1][12][166].

The types of content include photos, movies, music, eBooks, business documents, health

173

Chapter 6. SelfProtect Object 174

data, etc. While content sharing provides many benefits, content owners lose almost full

control of their content once it is given away to consumers. Currently, Digital Rights

Management (DRM) is used to give the content owner some form of control [167]. The

unauthorised use of contents can be:

• Unauthorised and unlimited access - Consumers are able to access the content as

many times as they wish and can access the content from anywhere, at any time.

• Unauthorised copy - Consumers can make a copy of the content without the per-

mission of the content owner.

• Unauthorised modification - Consumers can modify the content in any way that

they wish, without the permission of the content owner.

• Unauthorised distribution - Consumers can illegally distribute the content to friends,

family or peers, via USB transfer or email attachments.

Thus, there is a strong demand for content owners to have some degree of control over

their content at any time, and from any location.

Some solutions exist in the literature and industry. However, these solutions and tech-

nologies have various limitations, including:

• Vendor specific - Solutions that require specific hardware and/or OS just to access

the data. The content cannot be accessed anywhere else and is thus limited.

For example DataSafe [33] requires specific hardware, and Microsoft’s password

protection only works on Microsoft products [168].

• Non-structured - These solutions focus on protecting one resource only and not an

entire folder (or folders) of resources. For example, Tchao and Serugendo [169]

Chapter 6. SelfProtect Object 175

have proposed SmartContent, which aims to protect one resource. Munier [170]

has proposed the idea of self-protecting documents. This protects content within

the document and does not apply to other content types, such as movie files.

• Non-flexible - Access control implemented in these solutions does not use standard

policy language. For example, Squicciarini et al.[32] have proposed a SCO that

uses JAR files, which results in weaker security, even when obfuscated.

6.1.1 Scenario

We envisage a scenario where patients can share health documents with doctors from

different hospitals, in a new way. Our work in previous chapters has focused on en-

suring that the data is only accessible by those who have permission to do so (via key

management), and protecting the data from security attackers (via secure data-sharing

protocols). However, patients have little control over enforcing exactly how the data

is to be used by authorised doctors. A doctor may inadvertently or intentionally dis-

tribute the patient’s private health information to other unauthorised entities, without

the knowledge of the patient. The patient might also wish to have their medical infor-

mation only available within the confines of the hospital.

Thus, patients need a way to specify relatively complex rules; for example, ensuring

that the documents can only be accessed by doctors in specific hospitals and also during

working hours. In addition to allowing the patient to specify these policies, mechanisms

need to be put in place to ensure that these policies are enforced at all times. The

patient’s ability to create his own policies for how his medical data should be used, as

well as his ability to enforce them, will go a long way to improving patients’ trust in

using the Cloud for sensitive data-sharing purposes.

Chapter 6. SelfProtect Object 176

6.2 Overview

In our work, we introduce SelfProtect Object (SPO), a software object that bundles

content and policy files. The DO first runs a tool to specify the exact rules for how the

data is to be used. For example, specifying the IP addresses to indicate the location

from which the data can be accessed and/or the times that the data can be accessed.

The tool will then convert these rules into an XACML-based policy file. The DO then

runs the SPO generator tool and inputs the data content(s) that is to be protected, as

well as the XACML policy file. The SPO generator creates an SPO file bundling both

the data content(s) and policy file. The SPO file can now be distributed everywhere.

The SPO file encapsulates both the content and policy file, and data access can only

occur through an API call. An application, such as Microsoft Word, will contain a

plugin. The plugin will make the API call to the SPO to request data access. When

a call is made to access the data, the SPO will first verify whether the policy has been

followed. It will retrieve attributes needed for decision making, such as the current time

or IP address. If the policy conditions are adhered to, the SPO will release the data

contents to the calling application. If the policy is not adhered to, then the SPO will

deny access to the calling application.

For example, consider a policy inside the SPO, stating that a Microsoft Word document

can only be accessed during business hours. An authorised DC then opens Microsoft

Word and makes a call to request access, via the plugin to access the data during business

hours. The SPO will first obtain the current time from the DC’s machine and evaluate

it with the policy. The SPO will then release the document to Microsoft Word, and the

DC now has access. If the DC again attempts to access the data outside of business

Chapter 6. SelfProtect Object 177

hours, the policy evaluation will result in a “Deny” and the SPO will not release the

document to Microsoft Word. Instead, a popup will be displayed, informing the DC

that access to the document has been denied.

6.3 Design

We now provide the SafeProtect architecture, the key components of SafeProtect, and

API design.

6.3.1 Architecture

Figure 6.1 illustrates the architecture for our SelfProtect object and its application.

Chapter 6. SelfProtect Object 178

SPO

Documents
Images

Music files
etc.

Policy Resources

Operating System

SPO

A
P

I

Verification Service

PEP

Resource

Request

Meta
Data

Context
Handler

Environment Attributes

GetTime

GetDate

GetIP GetPlayTimes

PDP

Policy

Application

Request

Decision

Attributes query

Application Application

Resource
List

Attributes

Resource
Content

Response

Fi
le

St
re

am
 g

et
R

es
o

u
rc

e(
su

b
je

ct
,a

ct
io

n
,r

es
o

u
rc

e)

st
ri

n
g[

]
ge

tR
es

o
u

rc
eL

is
t(

)

provides identity
requests to do what action
on what resource

File Content
OR

Deny

User

Get
Attributes

Figure 6.1: SPO Architecture

6.3.2 Key Components

Each of the components in the SPO architecture are described as follows:

• Policy: Specifies a set of rules and conditions that must be abided by, in order

for the SPO to release the resource to the calling applications. The policy can be

written in XACML policy language [29].

Chapter 6. SelfProtect Object 179

• Resource: Data contents that the user wishes to protect. These can include

documents, images, music files, movie files, etc.

• SPO Generator: Takes the policy and resources as inputs and generates an SPO

object as output.

• User: The subject who wishes to access resources contained in the SPO. It can

be a username/password as well as a security token.

• Application: Used to access the resource. Can be any applications, such as Word

to edit documents, or Media player to play movies and music files.

• Verification Service: A web service used to store persistent data, supporting

the policy evaluation and enforcement in the SPO.

• SPO: The SelfProtect Object containing the policy and resources with access

control mechanisms:

– PEP - The Policy Enforcement Point. This obtains the request from the

application and forwards it to the PDP, to obtain a decision. Once a decision

is retrieved, it then acts upon that decision.

– Environment attributes - These contain information such as play times, IP

address, time and date.

– Context Handler - Converts the request into XACML format and forwards it

to the PDP. It also makes queries for environment attributes, to help PDP

make a decision.

– PDP - The Policy Decision Point. This evaluates the request by the appli-

cation with the policy, and makes a decision on whether to permit access or

deny access.

Chapter 6. SelfProtect Object 180

– API - The abstract interface used by the application. It contains two methods

(described in the next section) that are used by the calling application to

access the resource.

We assume the user’s operating system to be trusted, as well as the verification service.

6.3.3 API design

We now briefly describe the methods in our API.

• getResourceList - Outputs a structured list of all of the available resources

contained within the SPO.

• getResource(subject, action, resource) - Takes as input a request with pa-

rameters subject, action and resource. If the policy is adhered to, the data contents

will be output as a file stream.

6.4 Implementation

In this section, we detail the implementation of SPO by first discussing the technologies

we used to build SPO, and then describing the protocol for content access within the

SPO.

6.4.1 Selected Technologies

• XACML: We incorporate XACML policy language in our work. XACML [29]

is a generic, open-source access control policy language built on XML. We chose

XACML for our policy, since it can specify the complex conditions upon which the

Chapter 6. SelfProtect Object 181

data contents can be accessed. The policy language allows the content owner to

develop a policy; for example, one that allows the data content to be accessed in a

specific country, or within a specific time range within a day. We build a tool that

allows the content owner to freely specify a wide range of conditions over their

data.

• .NET: To prove our SPO concept, we built a SPO prototype on the .NET plat-

form. All of our source code was compiled on C#. The SPO object itself is

represented as a file with a .dll extension. We chose to build our system with

.NET instead of Java, since Java would introduce privacy issues. If we were to

have compiled the system with Java, the SPO object would have been represented

as a JAR file. Contents in a JAR file are relatively easy to extract, even when

obfuscated. For example, Squicciarini et al.[32] proposed Self-Controlling Objects

that also use JAR files, which results in weaker security, even when obfuscated. In

our previous work, we proposed SafeShare, which also used JAR files [155]. On the

other hand, the contents in a DLL file are more private and secure, since it rep-

resents the contents as a binary. The data contents in the SPO can be encrypted

persistently and decrypted on-the-fly, to provide another layer of protection at the

cost of performance.

Chapter 6. SelfProtect Object 182

6.4.2 Protocol

Deny

Decision

pol = getPolicy()

Gateway Context PEP PDP Policy

req = getResource(id,act,resource)

Verification

nReq = convertNative(req)

getPlayTimes()

getIP()

getResourceContent(resource)

evaluateContext(req)

Resource

evaluateRequest(pol, nreq)

Response

getTime()

getDate()

OS

FileStream

IF NECESSARY

Figure 6.2: Resource access workflow within SPO

Figure 6.2 details the messaging sequence within the SPO, when the application makes

a request to obtain a resource. The API sends the request to the PEP and similarly,

to the context handler. The context handler evaluates the context and the request, and

obtains environment attributes from the web server, if required. The context handler

then uses the request parameters and environment attributes, and finally converts this

to a native XACML request format. The native request is sent to the PDP. The PDP

evaluates the request against the policy document and returns a decision of permit or

deny. The decision is returned back to the context handler. The context handler then

obtains the resource and returns it back to the PEP. The calling application obtains the

file stream of the resource from the PEP if permitted.

Chapter 6. SelfProtect Object 183

6.5 Demonstration

We provide a demonstration of our system.

6.5.1 Policy Generation

We now provide a basic example of our system. Consider a policy as illustrated by our

custom policy generator, in Figure 3. The content owner specifies that subjects Donna

and John are allowed to access the document testWord.docx between 9am - 11am and

1pm - 5pm. Also, the document can only be accessed within the specified date range.

Additionally, the content owner specifies that the document can only be accessed from

machines with IP addresses 127.0.0.1 or 130.155.202.27, as well as only being able to

access the resource a maximum of five times. When the content owner presses the

“Generate XACML” button, an XACML policy file will be generated. Below is a simple

example of our XACML policy file showing subjects, actions and resources, as well as a

play-time condition.

<Subjects>

<Subject>

<AttributeValue DataType="...#string">

Bob

</AttributeValue>

</Subject>

</Subjects>

<Resource>

<AttributeValue DataType="...#string">

testWord.docx

</AttributeValue>

Chapter 6. SelfProtect Object 184

</Resource>

<Action>

<AttributeValue DataType="...#string">

read

</AttributeValue>

</ActionMatch>

</Action>

<Condition FunctionId="...">

<EnvAttrDesignator AttributeId="play-times" DataType="...#integer" />

<AttributeValue DataType="...#integer">5</AttributeValue>

Chapter 6. SelfProtect Object 185

6.5.2 SPO Generation

Figure 6.3: The Policy Generator

The content owner then generates an SPO with the SPO generator, and supplies the

policy and the resource testWord.docx (shown in Figure 6.3. A new SPO will be gener-

ated, containing the policy and the document. The content owner is now free to store

the SPO in the Cloud, or anywhere they wish.

Chapter 6. SelfProtect Object 186

6.5.3 SPO Consumer Access

Figure 6.4: Microsoft Word SPO plugin

Subject John then uses Microsoft Word, which contains our custom plugin (as shown

in Figure 6.4), to select the SPO and access the document. The plugin then sends a

request to the SPO by calling the method getResource in the API. The SPO evaluates

the request and either returns testWord.docx or Deny. If John’s request fulfils the policy

requirements, the SPO will permit access and return the document to Microsoft Word.

We also have a video demonstration on YouTube: https://www.youtube.com/watch?v=

zB34wYtD4tE.

6.6 Summary

We designed and implemented SPO, which would allow data and policy to be encapsu-

lated within a software object, similarly to SafeShare. The main difference with Safe-

Share was that SPO was represented as a DLL file, which provided far more security

than SafeShare’s JAR file. Also, SPO allowed a wide range of complex policies to be de-

fined, due to being driven by XACML technology. SelfProtect was shown to be flexible,

open, generic and structured.

https://www.youtube.com/watch?v=zB34wYtD4tE
https://www.youtube.com/watch?v=zB34wYtD4tE

Chapter 7

Conclusion

7.1 Conclusion

In this chapter, we outline our contributions and present future work.

7.1.1 Key Management

As discussed in Chapter 2, key management involves anything to do with a key, besides

encryption and decryption, and covers the creation/deletion of keys, activation/deacti-

vation of keys, transportation of keys, storage of keys, and so on. Most Cloud Service

Provider’s provide basic key encryption schemes for protecting data, or they might leave

it to the user to encrypt their own data.

There is a strong need to encrypt data involved in the Cloud, in order to prevent ma-

licious insider or outsider attackers from stealing the data. How do we handle the keys

that are used for the encryption? Where should the keys be stored, and who has access to

187

Chapter 7. Conclusion 188

those keys? How do we recover data if keys are lost? Both encryption and key manage-

ment are very important to help keep data private and secure in the Cloud. Particularly

in recent times, there has been a strong need for Cloud providers to adopt a robust key-

management scheme for their services. However, there are still key-management issues

affecting Cloud computing, as discussed in detail in Chapter 2.

The trivial solution to data sharing in the Cloud places a huge burden on the data

owner, especially in terms of user revocation. If a data consumer has their access to the

data owner’s data revoked, the data owner would be forced to re-encrypt the data and

re-distribute the keys to all of the remaining users in the group. This would be even

more problematic if the group size was large, in excess of thousands. Thus, better key

management is crucial to ensuring efficient data sharing in the Cloud that places little

to no burden on the data owner.

We presented a key-partitioning technique that would allow efficient key management.

To briefly describe the key-partitioning technique, the encrypted data key is partitioned

into two (or possibly more) parts. The Cloud provider keeps one partition and the

data consumer keeps the other. When a data consumer requests data access, the Cloud

provider partially decrypts the data with the key, and sends this to the data consumer.

The data consumer then fully decrypts, using the remaining key partition. This ensures

that neither the Cloud provider nor the data consumer knows the fully decrypted key.

We presented our idea through an application scenario involving the remote diagnosis

of patients with cardiac arrhythmias, as well as a scenario involving the monitoring of

mental health patients and providing them with feedback. In both scenarios, the per-

formance overhead for storing and retrieving health information through our developed

prototypes was negligible and thus feasible to use in a real world scenario. We also

Chapter 7. Conclusion 189

carried out usability tests and scalability tests for the scenario involving the monitor-

ing of mental health patients. The usability tests demonstrated the security, ease of use

and satisfaction of our prototype app amongst potential users and medical professionals.

The scalability tests showed that our system could handle a large number of concurrent

requests.

7.1.2 Secure Data Sharing Protocol

As described in the literature review, malicious insiders remain the biggest threat when

sharing data in the Cloud. This is due to insiders having direct access to the data

contents. A CSP may try to steal the data to sell to third parties, in order to gain

profit. Security hackers, or malicious outsiders, also remain a problem. They may

carry out various security-related attacks, such as collusion attacks, man-in-the-middle

attacks, sniffing attacks, etc. They try to expose vulnerabilities in the system in order

to retrieve critical data. Thus, when sharing data in the Cloud, it is crucial that data is

kept secure and private from both malicious insiders and outsiders, and that only those

intended to access the data are able to do so.

We presented SafeShare, which leverages the concept of self-protecting objects by en-

capsulating the data and a policy file in a software object, and allows private and secure

data sharing to occur. The data would only be revealed if the policy is adhered to.

Once the data is revealed, a monitoring mechanism built into SafeShare monitors every

operation of the revealed data, and either attempts to prevent an action from occurring

or immediately notifies the data owner (via the Cloud) that an unauthorised operation

has occurred. There were limitations with this work in terms of background monitoring

and slow performance times. We then improved the SafeShare solution, and presented a

hardware-based solution leveraging the use of the Trusted Extension Device (TED). A

Chapter 7. Conclusion 190

data encryption key would be encapsulated inside the physical TED. The TED can be

plugged into a computer via a USB. The TED will then attest that the device is legal

and valid, with a trusted certifying authority. If proven to be valid, it downloads the en-

crypted data from the Cloud and decrypts inside the physical TED, and is displayed on

the connected machine. In comparison to SafeShare, the performance was significantly

improved in terms of encryption time but remained similar in terms of decryption time.

However, this was mainly due to the limited capability and resources of the TED pro-

totype at the time. Simply adding larger CPU and memory to TED would see drastic

improvements in performance and size limitations.

7.1.3 Self-Controlled Data

Data owners lose full control over their own data once they are shared with other data

consumers. Data consumers are free to do anything they want with the data owner’s

data. For instance, a dishonest authorised data consumer can easily take the data

owner’s data and send it (via email attachments and/or USB transfer) to their peers or

colleagues, who do not have access permission. Furthermore, data owners may want to

create more complex control over their own data, such as only allowing access to the

data for a maximum of five times. Thus, there is a strong need for data owners to regain

a degree of control over their own data contents.

Some current tools that data owners have at their disposal include access control ma-

trices, ACLs, ACCLs and RBAC, to name a few. These can be used to provide control

over who can access the data and what generic operations they are allowed to carry

out on the data. They still lack complex control mechanisms. More recent research

projects have introduced the concept of self-protecting objects, which encapsulate data

and policies. Data is released from the object if, and only if, the policy is adhered to.

Chapter 7. Conclusion 191

We created a software solution called SelfProtect Object (SPO), which similarly bundles

data and policy files in software objects. SPO allows for the creation of a large variety

of different, complex conditions since it uses XACML to represent the policy. The SPO

can be loaded into an application (e.g., Microsoft Word) via a plugin, and the SPO will

only release the data if the policy is adhered to.

We developed the SPO as well as the plugin to Microsoft Word which was used to

communicate with the SPO and retrieve data if the policy was abided by. This was used

to demonstrate the feasibility of our idea and we also carried out a demonstration at

CCGrid 2015. This work was well recognised and achieved the Best Poster Award in

CCGrid 2015.

7.2 Future Work

Throughout this thesis, we have provided various approaches to increase the trust of data

owners in sharing data privately and securely with data consumers. We now highlight

some future directions that potential researchers might be interested in exploring.

• Our key-partitioning technique allows data owners to securely share with, or re-

voke, consumers as they wish. Even though the consumer has no knowledge of

the full ElGamal private key, they still obtain the symmetric key that was used to

encrypt the data. The ElGamal key was used to encrypt the generic symmetric

key and not the data, due to the inefficiency of encrypting relatively larger data

sizes. Thus, if the symmetric key was exposed, the consumer could always decrypt

the data, regardless of whether or not the data owner revokes the data consumer’s

access to the data. Further research could find ways to protect the symmetric key

Chapter 7. Conclusion 192

from being exposed at the consumer end. Key management is also another po-

tentially interesting area for further research. With the growing amount of shared

data, both the Cloud provider and the data consumer could have an abundant

number of keys, which might be difficult to manage. Further research could look

for ways to better manage those keys and handle cases where keys are lost, stolen,

etc.

• We used SafeShare as a way to securely share data in the Cloud and carry out

monitoring of the data, no matter where it is accessed. We then further extended

SafeShare and leveraged the hardware-based TED for stronger security. However,

both SafeShare and TED had their own shortcomings. For instance, SafeShare is

built using JAR files, which are not secure, and the background monitoring is too

coarse-grained from only carrying out monitoring at the directory level. Future

research could propose an alternative means of building SafeShare and carrying

out more thorough monitoring, perhaps at the OS level. Since the TED has its

own OS and storage component, this could perhaps involve having applications

run in the TED, which will access the decrypted data, and using SafeShare to

carry out monitoring inside the TED.

• Although our research work on self-controlling data objects helps to give data

owners some confidence in terms of access control over their data, our work does

not fully guarantee that the policy will be adhered to. Future research could look

to further extend the SPO and allow more functionality. For example, the data

owner could charge a small amount to access their data contents. This could

benefit the creator of the content, as they are rewarded for the effort they put into

creating their content. Also, SPO was built using the .NET platform. A potential

researcher could compare the .NET platform with other platforms with regards

Chapter 7. Conclusion 193

to representing the SPO, and find out which platform would further improve the

security of the data contents inside SPO. Another future work could also explore

data provenance or “permission of permissions”. There is a need to protect the

privacy and security of data that is derived from source data and passed on for

future manipulation by other users.

To conclude, in this thesis, we researched and developed methods and technologies that

would allow the data owner to confidently carry out the secure and private, sharing and

collaboration of sensitive data, with data consumers.

Bibliography

[1] M. Healey. Why IT needs to push data sharing efforts. Information Week,

2010. URL http://www.informationweek.com/services/integration/why-it-

needs-to-push-data-sharing-effort/225700544. Accessed: 15-10-2012.

[2] A. Mohamed. A history of cloud computing. ComputerWeekly, 2009. URL http://

www.computerweekly.com/feature/A-history-of-cloud-computing. Accessed:

18-05-2015.

[3] P. Mell and T. Grance. The nist definition of cloud computing. NIST Special Publi-

cation 800-145. National Institute of Standards and Technology, U.S. Department

of Commerce. URL http://csrc.nist.gov/publications/nistpubs/800-145/

SP800-145.pdf. Accessed: 15-10-2012.

[4] E. J. Giniat. Cloud computing: Innovating the business of health care. Healthcare

Financial Management, 2011.

[5] ISO/IEC 17788:2014. Information technology – cloud computing – overview

and vocabulary. ISO Catalogue. URL http://www.iso.org/iso/home/store/

catalogue tc/catalogue detail.htm?csnumber=60544. Accessed: 09-05-2016.

[6] S. M. Shariati, Abouzarjomehri, and M. H. Ahmadzadegan. Challenges and secu-

rity issues in cloud computing from two perspectives: Data security and privacy

194

http://www.informationweek.com/services/integration/why-it-needs-to-push-data-sharing-effort/225700544
http://www.informationweek.com/services/integration/why-it-needs-to-push-data-sharing-effort/225700544
http://www.computerweekly.com/feature/A-history-of-cloud-computing
http://www.computerweekly.com/feature/A-history-of-cloud-computing
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=60544
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=60544

Bibliography 195

protection. 2015 2nd International Conference on Knowledge-Based Engineering

and Innovation (KBEI), pages 1078–1082, 2015. doi: 10.1109/KBEI.2015.7436196.

[7] NIH Website. Nih data sharing policy and implementation guidance. Na-

tional Institute of Health (NIH). URL http://grants.nih.gov/grants/policy/

data sharing/data sharing guidance.htm. Accessed: 08-05-2016.

[8] R. Soni. How to get users to share social data with you. Kissmetrics Blog. URL

https://blog.kissmetrics.com/get-users-to-share/. Accessed: 08-05-2016.

[9] C. Brooks. 8 benefits of online data storage. Business News

Daily. URL http://www.businessnewsdaily.com/6294-benefits-of-online-

data-storage.html. Accessed: 01-05-2016.

[10] A. Gellin. Facebook’s benefits make it worthwhile. Buffalo News, 2012.

[11] H. A. Piwowar, R. S. Day, and D. B. Fridsma. Sharing detailed research

data is associated with increased citation rate. PLoS ONE, 2(3):1–5, 03

2007. doi: 10.1371/journal.pone.0000308. URL http://dx.plos.org/10.1371/

journal.pone.0000308.

[12] D. A. Riley. Using google wave and docs for group collaboration. Library Hi Tech

News, 2010.

[13] R. Wu. Secure sharing of electronic medical records in cloud computing. Arizona

State University, ProQuest Dissertations and Theses, 2012.

[14] D. Bender. Privacy and security issues in cloud computing. Computer & Internet

Lawyer, pages 1–15, 2012.

http://grants.nih.gov/grants/policy/data_sharing/data_sharing_guidance.htm
http://grants.nih.gov/grants/policy/data_sharing/data_sharing_guidance.htm
https://blog.kissmetrics.com/get-users-to-share/
http://www.businessnewsdaily.com/6294-benefits-of-online-data-storage.html
http://www.businessnewsdaily.com/6294-benefits-of-online-data-storage.html
http://dx.plos.org/10.1371/journal.pone.0000308
http://dx.plos.org/10.1371/journal.pone.0000308

Bibliography 196

[15] S. SeongHan, K. Kobara, and H. Imai. A secure public cloud storage sys-

tem. 2011 International Conference on Internet Technology and Secured Transac-

tions(ICITST), pages 103–109, 2011.

[16] M. Zhou, R. Zhang, W. Xie, W. Qian, and A. Zhou. Security and privacy in

cloud computing: A survey. 2010 Sixth International Conference on Semantics

Knowledge and Grid (SKG), pages 105–112, 2010.

[17] F. Rocha, S. Abreu, and M. Correia. The final frontier: Confidentiality and privacy

in the cloud. Computer, 44(9):44–50, 2011.

[18] R. Huang, X. Gui, S. Yu, and W. Zhuang. Research on privacy-preserving cloud

storage framework supporting ciphertext retrieval. 2011 International Conference

on Network Computing and Information Security, pages 93–97, 2011.

[19] P. Andy. Salesforce.com scrambles to halt phishing attacks. InternetNews.com,

2007.

[20] F. Y. Rashid. Man-in-the-cloud attacks want your dropbox, google drive files.

PCMag, 2015. URL http://au.pcmag.com/google-drive/36167/news/man-in-

the-cloud-attacks-want-your-dropbox-google. Accessed: 26-09-2015.

[21] TripWire Guest Authors. Collusion attacks on ecommerce services. Trip-

Wire, 2014. URL http://www.tripwire.com/state-of-security/security-

data-protection/collusion-attacks-ecommerce-services/. Accessed: 26-

09-2015.

[22] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for

fine-grained access control of encrypted data. 13th ACM Conference on Computer

and Communications Security (CCS ’06), pages 89–98, 2006.

http://au.pcmag.com/google-drive/36167/news/man-in-the-cloud-attacks-want-your-dropbox-google
http://au.pcmag.com/google-drive/36167/news/man-in-the-cloud-attacks-want-your-dropbox-google
http://www.tripwire.com/state-of-security/security-data-protection/collusion-attacks-ecommerce-services/
http://www.tripwire.com/state-of-security/security-data-protection/collusion-attacks-ecommerce-services/

Bibliography 197

[23] X. A. Wang and W. Zhong. A new identity based proxy re-encryption scheme.

2010 International Conference on Biomedical Engineering and Computer Science

(ICBECS), pages 1–4, 2010.

[24] S. Tu, S. Niu, H. Li, Y. Xiao-ming, and M. Li. Fine-grained access control and

revocation for sharing data on clouds. 2012 IEEE 26th International on Paral-

lel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW),

pages 2146–2155, 2012.

[25] D. H. Tran, H. L. Nguyen, W. Zha, and W. K. Ng. Towards security in sharing data

on cloud-based social networks. 2011 8th International Conference on Information,

Communications and Signal Processing (ICICS), pages 1–5, 2011.

[26] A. Cavoukian. Privacy in the clouds. Identity in the Information Society, 1(1):

89–108, 2008.

[27] F. Sabahi. Cloud computing security threats and responses. 2011 IEEE 3rd

International Conference on Communication Software and Networks (ICCSN),

pages 245–249, 2011.

[28] J. Li, G. Zhao, X. Chen, D. Xie, C. Rong, W. Li, L. Tang, and Y. Tang. Fine-

grained data access control systems with user accountability in cloud computing.

2010 IEEE Second International Conference on Cloud Computing Technology and

Science(CloudCom), pages 89–96, 2010.

[29] Oasis Open. A brief introduction to xacml. Oasis Website, 2003.

URL https://www.oasis-open.org/committee/download.php/2713/

Brief Introduction to XACML.html. Accessed: 03-02-2015.

https://www.oasis-open.org/committee/download.php/2713/ Brief_Introduction_to_XACML.html
https://www.oasis-open.org/committee/download.php/2713/ Brief_Introduction_to_XACML.html

Bibliography 198

[30] Abc4trust attribute-based credentials for trust. ABC4Trust Website, . URL

https://abc4trust.eu/. Accessed: 19-05-2016.

[31] Au2eu. AU2EU Website, . URL http://www.au2eu.eu/. Accessed: 19-05-2016.

[32] A. Squicciarini, G. Petracca, and E. Bertino. Adaptive data protection in dis-

tributed systems. 3rd ACM Conference on Data and Application Security and

Privacy (CODASPY), pages 365–376, 2013.

[33] Y. Chen, P. A. Jamkhedkar, and R. B. Lee. A software-hardware architecture for

self-protecting data. 19th ACM Conference on Computer and Communications

Security, pages 14–27, 2012.

[34] Z. Xiao and Y. Xiao. Security and privacy in cloud computing. Communications

Surveys and Tutorials, IEEE 2012 Issue 99, pages 1–17, 2012.

[35] D. Chen and H. Zhao. Data security and privacy protection issues in cloud com-

puting. 2012 International Conference on Computer Science and Electronics En-

gineering, pages 647–651, 2012.

[36] M. Zhou. Security and privacy in the cloud: A survey. 2010 Sixth International

Conference on Semantics Knowledge and Grid (SKG), pages 204–220, 2010.

[37] J. Wang, C. Liu, and G.T.R. Lin. How to manage information security in cloud

computing. 2011 IEEE International Conference on Systems, Man, and Cyber-

netics (SMC), pages 1405–1410, 2011.

[38] C. Saravanakumar and C. Arun. Survey on interoperability, security, trust,

privacy standardization of cloud computing. Contemporary Computing and In-

formatics (IC3I), 2014 International Conference, pages 977–982, 2014. doi:

10.1109/IC3I.2014.7019735.

https://abc4trust.eu/
http://www.au2eu.eu/

Bibliography 199

[39] S. Hosseinzadeh, S. Hyrynsalmi, M. Conti, and V. Leppänen. Security and privacy

in cloud computing via obfuscation and diversification: A survey. 2015 IEEE 7th

International Conference on Cloud Computing Technology and Science (Cloud-

Com), pages 529–535, 2015. doi: 10.1109/CloudCom.2015.29.

[40] A. S. Raja and S. Abd Razak. Analysis of security and privacy in public cloud

environment. Cloud Computing (ICCC), 2015 International Conference, pages

1–6, 2015. doi: 10.1109/CLOUDCOMP.2015.7149630.

[41] M. Kumari and R. Nath. Security concerns and countermeasures in cloud com-

puting paradigm. 2015 Fifth International Conference on Advanced Comput-

ing Communication Technologies, pages 534–540, 2015. ISSN 2327-0632. doi:

10.1109/ACCT.2015.80.

[42] N. Oza, K. Karppinen, and R. Savola. User experience and security in the cloud

– an empirical study in the finnish cloud consortium. 2010 IEEE Second Inter-

national Conference on Cloud Computing Technology and Science (CloudCom),

pages 621–628, 2010.

[43] Y. Wang. The role of saas privacy and security compliance for continued saas

use. 2011 7th International Conference on Networked Computing and Advanced

Information Management (NCM), pages 303–306, 2011.

[44] R. B. Parker. A definition of privacy. Rutgers Law Review, pages 275–296, 1974.

[45] NIST. Glossary of key information security terms. NIST Website, . URL http:

//nvlpubs.nist.gov/nistpubs/ir/2013/NIST.IR.7298r2.pdf. Accessed: 18-05-

2015.

http://nvlpubs.nist.gov/nistpubs/ir/2013/NIST.IR.7298r2.pdf
http://nvlpubs.nist.gov/nistpubs/ir/2013/NIST.IR.7298r2.pdf

Bibliography 200

[46] Microsoft TechNet. Motivations of a criminal hacker. URL http://

technet.microsoft.com/en-us/library/cc505924.aspx. Accessed: 15-10-2012.

[47] Crucial Paradigm Web Solutions. Hacking attacks - how and why. URL

http://www.crucialp.com/resources/tutorials/website-web-page-site-

optimization/hacking-attacks-how-and-why.php. Accessed: 15-10-2012.

[48] Wikileaks. URL http://wikileaks.org. Accessed: 15-10-2012.

[49] P. Crosman. Are cloud services safe? icloud breach revives debate. Ameri-

can Banker, 2014. URL http://www.americanbanker.com/issues/179 170/are-

cloud-services-safe-icloud-breach-revives-debate-1069736-1.html. Ac-

cessed: 26-09-2015.

[50] H. Orman. The morris worm: a fifteen-year perspective. IEEE Security Privacy,

1(5):35–43, 2003. ISSN 1540-7993. doi: 10.1109/MSECP.2003.1236233.

[51] J. Kahn. The homeless hacker v. the new york times. Wired, 2004. URL http://

archive.wired.com/wired/archive/12.04/hacker.html. Accessed: 26-09-2015.

[52] Ruhr. Cloud computing: Gaps in the ‘cloud’. NewsRx Health & Science, pages

1–15, 2011.

[53] K. Zunnurhain and S. V. Vrbsky. Security attacks and solutions in clouds. Cloud-

Com2010 Poster, 2010.

[54] A. P. Schwab, L. Frank, and N. Gligorov. Saying privacy, meaning confidentiality.

The American Journal of Bioethics, pages 44–45, 2011.

[55] U.S. Department of Health and Human Services. Hipaa privacy. U.S. Department

of Health and Human Services Website, 2012. URL http://www.hhs.gov/ocr/

privacy/hipaa/understanding/index.html. Accessed: 20-10-2014.

http://technet.microsoft.com/en-us/library/cc505924.aspx
http://technet.microsoft.com/en-us/library/cc505924.aspx
http://www.crucialp.com/resources/tutorials/website-web-page-site-optimization/hacking-attacks-how-and-why.php
http://www.crucialp.com/resources/tutorials/website-web-page-site-optimization/hacking-attacks-how-and-why.php
http://wikileaks.org
http://www.americanbanker.com/issues/179_170/are-cloud-services-safe-icloud-breach-revives-debate-1069736-1.html
http://www.americanbanker.com/issues/179_170/are-cloud-services-safe-icloud-breach-revives-debate-1069736-1.html
http://archive.wired.com/wired/archive/12.04/hacker.html
http://archive.wired.com/wired/archive/12.04/hacker.html
http://www.hhs.gov/ocr/privacy/hipaa/understanding/index.html
http://www.hhs.gov/ocr/privacy/hipaa/understanding/index.html

Bibliography 201

[56] Protecting personal health information in research. med.data.edu.au Web-

site. URL http://med.data.edu.au/personal-health-data-and-research/.

Accessed: 16-05-2016.

[57] E. McCann. Hackers exploit heartbleed to swipe data of 4.5 million. Healthcare IT

News, 2014. URL http://www.healthcareitnews.com/news/hackers-exploit-

heartbleed-swipe-data-45-million. Accessed: 26-09-2015.

[58] HIPAA Journal. Touchstone medical imaging suffers 307k patient data

breach. HIPAA Journal Website, 2014. URL http://www.hipaajournal.com/

touchstone-medical-imaging-suffers-307k-patient-data-breach/. Ac-

cessed: 26-09-2015.

[59] School Libraries in Canada. Internet privacy? The Ethics of Information use - A

Teachers’ Guide, pages 20–22, 2001.

[60] C. Donlon-Cotton. Privacy and social networking. Law & Order, pages 16–17,

2010.

[61] M. Hachman. New facebook phishing attack steals accounts, financial information.

PC Mag, 2012. URL http://www.pcmag.com/article2/0,2817,2398922,00.asp.

Accessed: 16-10-2012.

[62] C. Albanesius. Ramnit computer worm compromises 45k facebook logins. PC Mag,

2012. URL http://www.pcmag.com/article2/0,2817,2398432,00.asp. Accessed:

16-10-2012.

[63] L. Whitney. Feds investigate alleged attacks on gmail accounts. CNet

news, 2011. URL http://news.cnet.com/8301-1009 3-20068229-83/feds-

investigate-alleged-attacks-on-gmail-accounts. Accessed: 16-10-2012.

http://med.data.edu.au/personal-health-data-and-research/
http://www.healthcareitnews.com/news/hackers-exploit-heartbleed-swipe-data-45-million
http://www.healthcareitnews.com/news/hackers-exploit-heartbleed-swipe-data-45-million
http://www.hipaajournal.com/touchstone-medical-imaging-suffers-307k-patient-data-breach/
http://www.hipaajournal.com/touchstone-medical-imaging-suffers-307k-patient-data-breach/
http://www.pcmag.com/article2/0,2817,2398922,00.asp
http://www.pcmag.com/article2/0,2817,2398432,00.asp
http://news.cnet.com/8301-1009_3-20068229-83/feds-investigate-alleged-attacks-on-gmail-accounts
http://news.cnet.com/8301-1009_3-20068229-83/feds-investigate-alleged-attacks-on-gmail-accounts

Bibliography 202

[64] C. Jim and L. Chyen Yee. Hacker attacks threaten to dampen cloud computing’s

prospects. Reuters article, 2011. URL http://www.reuters.com/article/2011/

06/03/us-cloudcomputing-idUSTRE7521WQ20110603. Accessed: 16-10-2012.

[65] K. Dominguez. Trend micro researchers identify vulnerability in hotmail.

Trend Micro, 2012. URL http://blog.trendmicro.com/trendlabs-security-

intelligence/trend-micro-researchers-identify-vulnerability-in-

hotmail/. Accessed: 16-10-2012.

[66] S. Choney. Hotmail, yahoo mail users also targets in attacks. NBC News,

2011. URL http://www.nbcnews.com/technology/technolog/hotmail-yahoo-

mail-users-also-targets-attacks-123078. Accessed: 16-10-2012.

[67] A. Charles. Playstation network: hackers claim to have 2.2m credit cards. The

Guardian Technology Blog, 2011. URL http://www.guardian.co.uk/technology/

blog/2011/apr/29/playstation-network-hackers-credit-cards. Accessed:

16-10-2012.

[68] M. R. Priscilla. Privacy, government information, and technology. Public Ad-

ministration Review, pages 629–634, 1986. URL http://www.jstor.org/stable/

976229. Accessed: 15-10-2012.

[69] R. Longley. Federal privacy act. About.com, 2012. URL http://

usgovinfo.about.com/library/weekly/aa121299a.htm. Accessed: 15-10-2012.

[70] J. Mcbeth. Governments need privacy too. The Straits Times, 2011.

[71] R. Verma. Confidentiality and privacy issues. The Law Handbook. Education

Law, 2012. URL http://www.lawhandbook.org.au/handbook/ch06s03s08.php.

Accessed: 16-10-2012.

http://www.reuters.com/article/2011/06/03/us-cloudcomputing-idUSTRE7521WQ20110603
http://www.reuters.com/article/2011/06/03/us-cloudcomputing-idUSTRE7521WQ20110603
http://blog.trendmicro.com/trendlabs-security-intelligence/trend-micro-researchers-identify-vulnerability-in-hotmail/
http://blog.trendmicro.com/trendlabs-security-intelligence/trend-micro-researchers-identify-vulnerability-in-hotmail/
http://blog.trendmicro.com/trendlabs-security-intelligence/trend-micro-researchers-identify-vulnerability-in-hotmail/
http://www.nbcnews.com/technology/technolog/hotmail-yahoo-mail-users-also-targets-attacks-123078
http://www.nbcnews.com/technology/technolog/hotmail-yahoo-mail-users-also-targets-attacks-123078
http://www.guardian.co.uk/technology/blog/2011/apr/29/playstation-network-hackers-credit-cards
http://www.guardian.co.uk/technology/blog/2011/apr/29/playstation-network-hackers-credit-cards
http://www.jstor.org/stable/976229
http://www.jstor.org/stable/976229
http://usgovinfo.about.com/library/weekly/aa121299a.htm
http://usgovinfo.about.com/library/weekly/aa121299a.htm
http://www.lawhandbook.org.au/handbook/ch06s03s08.php

Bibliography 203

[72] G. Hulme. Amazon web services ddos attack and the cloud. Information-

Week, 2009. URL http://www.informationweek.com/security/amazon-web-

services-ddos-attack-and-the/229204417. Accessed: 16-10-2012.

[73] NIST. Nist privacy and security guidelines. NIST Website, . URL http:

//csrc.nist.gov/publications/nistpubs/800-144/SP800-144.pdf. Accessed:

15-10-2012.

[74] P. Ramkumar D. Jayalatchumy and D. Kadhirvelu. Preserving privacy through

data control in a cloud computing architecture using discretion algorithm. 2010

Third International Conference on Emerging Trends in Engineering and Technol-

ogy (ICETET), pages 456–461, 2010.

[75] P. S. Ruotsalainen, B. Blobel, A. Seppälä, and P. Nykänen. Trust information-

based privacy architecture for ubiquitous health. JMIR Mhealth Uhealth, 1(2):e23,

2013.

[76] C. Gentry. A fully homomorphic encryption scheme. Dissertation, 2009.

[77] J. Yao, S. Chen, S. Nepal, D. Levy, and J. Zic. Truststore: Making amazon

s3 trustworthy with services composition. 2010 IEEE/ACM 10th International

Conference on Cluster, Cloud and Grid Computing (CCGrid), pages 600–605,

2010.

[78] B. M. Silva, J. J. Rodrigues, F. Canelo, I. C. Lopes, and L. Zhou. A data encryption

solution for mobile health apps in cooperation environments. J Med Internet Res,

15(4):e66, 2013.

[79] G. Zhang, X. Liu, and Y. Yang. Time-series pattern based effective noise genera-

tion for privacy protection on cloud. IEEE Transactions on Computers, 2014.

http://www.informationweek.com/security/amazon-web-services-ddos-attack-and-the/229204417
http://www.informationweek.com/security/amazon-web-services-ddos-attack-and-the/229204417
http://csrc.nist.gov/publications/nistpubs/800-144/SP800-144.pdf
http://csrc.nist.gov/publications/nistpubs/800-144/SP800-144.pdf

Bibliography 204

[80] M. Paul, C. Collberg, and D. Bambauer. A possible solution for privacy pre-

serving cloud data storage. Cloud Engineering (IC2E), 2015 IEEE International

Conference, pages 397–403, 2015. doi: 10.1109/IC2E.2015.103.

[81] S. M. Rahaman and M. Farhatullah. Pccp: A model for preserving cloud comput-

ing privacy. Data Science Engineering (ICDSE), 2012 International Conference

on, pages 166–170, 2012. doi: 10.1109/ICDSE.2012.6281900.

[82] M. Luther. Federated key management for secure cloud computing. Voltage Secu-

rity Conference Presentation, 2010. URL http://storageconference.org/2010/

Presentations/KMS/17.Martin.pdf. Accessed: 25-11-2012.

[83] S. Pate and T. Tambay. Securing the cloud - using encryption and key management

to solve today’s cloud security challenges. Storage Networking Industry Association

2011, 2011. URL http://www.snia.org/sites/default/education/tutorials/

2011/spring/security/PateTambay Securing the Cloud Key Mgt.pdf. Ac-

cessed: 25-11-2012.

[84] Cloud Security Alliance Wiki. Encryption and key management.

URL https://wiki.cloudsecurityalliance.org/guidance/index.php/

Encryption and Key Management. Accessed: 25-11-2012.

[85] T. Mather. Key management in the cloud. O’Reilly Community, 2010. URL http:

//broadcast.oreilly.com/2010/01/key-management-in-the-cloud.html. Ac-

cessed: 25-11-2012.

[86] Oasis. Oasis key management interoperability protocol. Oasis Open We-

biste. URL https://www.oasis-open.org/committees/tc home.php?wg abbrev=

kmip#overview. Accessed: 25-11-2012.

http://storageconference.org/2010/Presentations/KMS/17.Martin.pdf
http://storageconference.org/2010/Presentations/KMS/17.Martin.pdf
http://www.snia.org/sites/default/education/tutorials/2011/spring/security/PateTambay_Securing_the_Cloud_Key_Mgt.pdf
http://www.snia.org/sites/default/education/tutorials/2011/spring/security/PateTambay_Securing_the_Cloud_Key_Mgt.pdf
https://wiki.cloudsecurityalliance.org/guidance/index.php/Encryption_and_Key_Management
https://wiki.cloudsecurityalliance.org/guidance/index.php/Encryption_and_Key_Management
http://broadcast.oreilly.com/2010/01/key-management-in-the-cloud.html
http://broadcast.oreilly.com/2010/01/key-management-in-the-cloud.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=kmip#overview
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=kmip#overview

Bibliography 205

[87] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid. Recommendation for

key management - part 1: General (revised) computer security. NIST Special

Publication 800-57, 2007. URL http://csrc.nist.gov/publications/nistpubs/

800-57/sp800-57-Part1-revised2 Mar08-2007.pdf. Accessed: 25-11-2012.

[88] ISO. Iso/iec 11770-5:2011 information technology - security techniques

- key management - part 5: Group key management. ISO Stan-

dards catalogue, . URL http://www.iso.org/iso/home/store/catalogue tc/

catalogue detail.htm?csnumber=54527. Accessed: 25-11-2012.

[89] ISO. Iso 11568-2:2012 financial services - key management (retail) - part

2: Symmetric ciphers, their key management and life cycle. ISO Stan-

dards catalogue, . URL http://www.iso.org/iso/home/store/catalogue tc/

catalogue detail.htm?csnumber=53568. Accessed: 25-11-2012.

[90] G. Zhao, C. Rong, J. Li, F. Zhang, and Y. Tang. Trusted data sharing over

untrusted cloud storage providers. 2010 IEEE Second International Conference

on Cloud Computing Technology and Science(CloudCom), pages 97–103, 2010.

[91] S. Lei, D. Zishan, and G. Jindi. Research on key management infrastructure in

cloud computing environment. 2010 9th International Conference on Grid and

Cooperative Computing (GCC), pages 404–407, 2010.

[92] H. Fathi, S. Shin, K. Kobara, S. Chakraborty, H. Imai, and R. Prasad. Lr-ake-

based aaa for network mobility (nemo) over wireless links. IEEE J. Select. Areas

Commun, 24(9):1725–1737, 2006.

[93] S. Sanka, C. Hota, and M. Rajarajan. Secure data access in cloud computing. 2010

IEEE 4th International Conference on Internet Multimedia Services Architecture

and Application(IMSAA), pages 1–6, 2010.

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=54527
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=54527
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=53568
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=53568

Bibliography 206

[94] N. Bennani, E. Damiani, and S. Cimato. Toward cloud-based key management for

outsourced databases. 2010 IEEE 34th Annual Conference on Computer Software

and Applications Conference Workshops (COMPSACW), pages 232–236, 2010.

[95] A. Boldyreva, V. Goyal, and V. Kumar. Identity-based encryption with efficient

revocation. 15th ACM Conference on Computer and communications security

(CCS ’08), pages 417–472, 2008.

[96] A. Sahai and H. Seyalioglu. Worry-free encryption: functional encryption with

public keys. 17th ACM Conference on Computer and communications secu-

rity(CCS ’10), pages 463–472, 2010.

[97] Yan Wang, Zhi Li, and Yuxia Sun. Cloud computing key management mechanism

for cloud storage. Third International Conference on Cyberspace Technology (CCT

2015), pages 1–4, 2015. doi: 10.1049/cp.2015.0855.

[98] N. Song and Y. Chen. Novel hyper-combined public key based cloud storage key

management scheme. China Communications, 11(14):185–194, 2014. ISSN 1673-

5447. doi: 10.1109/CC.2014.7085619.

[99] A. R. Buchade and R. Ingle. Key management for cloud data storage: Methods

and comparisons. 2014 Fourth International Conference on Advanced Computing

Communication Technologies, pages 263–270, 2014. ISSN 2327-0632. doi: 10.1109/

ACCT.2014.78.

[100] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou. Scalable and secure sharing of per-

sonal health records in cloud computing using attribute-based encryption. IEEE

Transactions on Parallel and Distributed Systems, pages 131–143, 2013.

Bibliography 207

[101] S. Yu, C. Wang, K. Ren, and W. Lou. Achieving secure, scalable, and fine-grained

data access control in cloud computing. 2010 Proceedings IEEE on INFOCOM,

pages 1–9, 2010.

[102] Y. Yang and Y. Zhang. A generic scheme for secure data sharing in cloud. 2011

40th International Conference on Parallel Processing Workshops (ICPPW), pages

145–153, 2011.

[103] Q. Liu, G. Wang, and J. Wu. Clock-based proxy re-encryption scheme in unreli-

able clouds. 2012 41st International Conference on Parallel Processing Workshops

(ICPPW), pages 304–305, 2012.

[104] S. Sundareswaran, A. C. Squicciarini, and D. Lin. Ensuring distributed account-

ability for data sharing in the cloud. IEEE Transactions on Dependable and Secure

Computing, 9(4):556–568, 2012.

[105] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based en-

cryption. Security and Privacy, IEEE Symposium, pages 321–334, 2007.

[106] A.V.D.M. Kayem. On monitoring information flow of outsourced data. Informa-

tion Security for South Africa (ISSA), pages 1–8, 2010.

[107] P. Burnap and J. Hilton. Self protecting data for de-perimeterised information

sharing. Digital Society. ICDS ’09, pages 65–70, 2009.

[108] M. S. Kirkpatrick and S. Kerr. Enforcing physically restricted access control for

remote data. ACM Conference on Data and application security and privacy (CO-

DASPY ’11), pages 203–212, 2011.

[109] J. Zic and S. Nepal. Implementing a portable trusted environment. Future of Trust

in Computing Conference, pages 17–29, 2008.

Bibliography 208

[110] S. Nepal, J. Zic, H. Hwang, and D. Moreland. Trust extension device: Providing

mobility and portability of trust in cooperative information systems. On the Move

to Meaningful Internet Systems, Lecture notes in computer science 4803, pages

253–271, 2007.

[111] E. Bertino M. Nabeel. Attribute based group key management. Transactions On

Data Privacy 7, pages 309–336, 2014.

[112] B. Qing-hai and Z. Ying. Study on the access control model. 1:830–834, July 2011.

doi: 10.1109/CSQRWC.2011.6037079.

[113] W3C Information and Knowledge Domain. Extensible markup language(xml).

W3C Website. URL https://www.w3.org/XML/. Accessed: 28-04-2016.

[114] B. Li. Research and application of soa standards in the integration on web services.

Education Technology and Computer Science (ETCS), 2010 Second International

Workshop on, 2:492–495, 2010. doi: 10.1109/ETCS.2010.199.

[115] N. Shahgholi, M. A. Seyyedi, M. Mohsenzadeh, and S. H. Qorani. A new security

framework against web services’ xml attacks in soa. Next Generation Web Services

Practices (NWeSP), 2011 7th International Conference on, pages 314–319, 2011.

doi: 10.1109/NWeSP.2011.6088197.

[116] C. Xin. Service-oriented architecture in it. Information Processing, 2009. APCIP

2009. Asia-Pacific Conference on, 2:493–496, 2009. doi: 10.1109/APCIP.2009.257.

[117] N. A. Nordbotten. Xml and web services security standards. IEEE Commu-

nications Surveys Tutorials, 11(3):4–21, 2009. ISSN 1553-877X. doi: 10.1109/

SURV.2009.090302.

https://www.w3.org/XML/

Bibliography 209

[118] J. M. Tekli, E. Damiani, R. Chbeir, and G. Gianini. Soap processing performance

and enhancement. IEEE Transactions on Services Computing, 5(3):387–403, 2012.

ISSN 1939-1374. doi: 10.1109/TSC.2011.11.

[119] Bluetooth Technology Web Site. URL http://www.bluetooth.com/Pages/

Bluetooth-Home.aspx. Accessed: 12-01-2013.

[120] National Academy of Engineering. URL http://

www.engineeringchallenges.org/cms/8996/8938.aspx. Accessed: 12-01-2013.

[121] W. Swan. Australia to 2050: future challenges. Intergeneration Re-

port, 2010. URL http://archive.treasury.gov.au/igr/igr2010/report/pdf/

IGR 2010.pdf. Accessed: 12-01-2013.

[122] O2. O2 health takes telecare mobile. M2 Presswire, 2012.

[123] Doro. Bosch selects doro to enrich telecare offering with mobile solutions. M2

Presswire, 2012.

[124] Network Weekly News. Numera; numera acquires bluelibris and expands offerings

into telecare. page 625, 2012.

[125] EMC Corporation. Data sharing is the key to lower healthcare costs. HealthTech

Wire Interview, 2012. URL http://www.healthtechwire.com/emc-corporation/

data-sharing-is-the-key-to-lower-healthcare-costs-3132/. Accessed:

14-01-2013.

[126] M. Aramudhan and K. Mohan. New secure communication protocols for mobile e-

health system. International Journal of Computer Applications 8(4), pages 10–15,

2010.

http://www.bluetooth.com/Pages/Bluetooth-Home.aspx
http://www.bluetooth.com/Pages/Bluetooth-Home.aspx
http://www.engineeringchallenges.org/cms/8996/8938.aspx
http://www.engineeringchallenges.org/cms/8996/8938.aspx
http://archive.treasury.gov.au/igr/igr2010/report/pdf/IGR_2010.pdf
http://archive.treasury.gov.au/igr/igr2010/report/pdf/IGR_2010.pdf
http://www.healthtechwire.com/emc-corporation/data-sharing-is-the-key-to-lower-healthcare-costs-3132/
http://www.healthtechwire.com/emc-corporation/data-sharing-is-the-key-to-lower-healthcare-costs-3132/

Bibliography 210

[127] R. Marti, J. Delgado, and X. Perramon. Security specification and implementation

for mobile e-health services. 2004 IEEE International Conference on e-Technology,

e-Commerce and e-Service (EEE ’04), pages 241–248, 2004.

[128] G. Fortino, M. Pathan, and G. Di Fatta. Bodycloud: Integration of cloud com-

puting and body sensor networks. pages 851–856, Dec 2012.

[129] F. Bellifemine, G. Fortino, R. Giannantonio, R. Gravina, A. Guerrieri, and

M. Sgroi. Spine: a domain-specific framework for rapid prototyping of wbsn appli-

cations. Software: Practice and Experience, 41(3):237–265, 2011. ISSN 1097-024X.

doi: 10.1002/spe.998. URL http://dx.doi.org/10.1002/spe.998.

[130] G. Fortino, R. Giannantonio, R. Gravina, P. Kuryloski, and R. Jafari. Enabling

effective programming and flexible management of efficient body sensor network

applications. IEEE Transactions on Human-Machine Systems, 43(1):115–133, Jan

2013.

[131] S. Pandey, W. Voorsluys, S. Niu, A. Khandoker, and R. Buyya. An autonomic

cloud environment for hosting ecg data analysis services. Future Generation Com-

puter Systems, 28:147–154, 2012.

[132] BusinessWire. Alivecor(tm) mobile ecg device for heart rhythm mon-

itoring now available by prescription. Business Wire, 2013. URL

http://www.businesswire.com/news/home/20131218005703/en/AliveCor-

Expands-eHealth-Service-Android-Users#.VgI 9t-qpBc. Accessed: 22-12-

2012.

[133] BusinessWire. Cardiocomm solutions, inc. reveals a new remote mobile

ecg monitoring solution at medica 2011. Business Wire, 2011. URL

http://www.businesswire.com/news/home/20111121006670/en/CardioComm-

http://dx.doi.org/10.1002/spe.998
http://www.businesswire.com/news/home/20131218005703/en/AliveCor-Expands-eHealth-Service-Android-Users#.VgI_9t-qpBc
http://www.businesswire.com/news/home/20131218005703/en/AliveCor-Expands-eHealth-Service-Android-Users#.VgI_9t-qpBc
http://www.businesswire.com/news/home/20111121006670/en/CardioComm-Solutions-Reveals-Remote-Mobile-ECG-Monitoring#.VgJAed-qpBc
http://www.businesswire.com/news/home/20111121006670/en/CardioComm-Solutions-Reveals-Remote-Mobile-ECG-Monitoring#.VgJAed-qpBc

Bibliography 211

Solutions-Reveals-Remote-Mobile-ECG-Monitoring#.VgJAed-qpBc. Ac-

cessed: 22-12-2012.

[134] S. Gradl, P. Kugler, C. Lohmuller, and B. Eskofier. Real-time ecg monitoring and

arrhythmia detection using android-based mobile devices. pages 2452–2455, Aug

2012.

[135] H. Xia, I. Asif, and X. Zhao. Cloud-ecg for real time ecg monitoring and analysis.

Computer Methods and Programs in Biomedicine, 110:253–259, 2013.

[136] J. Saarinen. Uk health trust fined for privacy breach. Itnews Technology News,

2012. URL http://www.itnews.com.au/News/311079,uk-health-trust-fined-

for-privacy-breach.aspx. Accessed: 14-01-2013.

[137] S. Geoghegan. The latest on data sharing & secure cloud computing. Law &

Order, pages 24–26, 2012.

[138] Asus eee pad transformer prime tf201. . URL http://www.asus.com/Eee/Eee Pad/

Eee Pad Transformer Prime TF201/. Accessed: 22-12-2012.

[139] Alive technologies. . URL http://www.alivetec.com/index.htm. Accessed: 22-

12-2012.

[140] Ambu blue sensor ecg electrodes. . URL http://www.ambu.com/corp/products/

clinical studies/ambu blue sensor ecg\ electrodes.aspx. Accessed: 22-12-

2012.

[141] D. Thilakanathan, R. A. Calvo, S. Chen, S. Nepal, and N. Glozier. Facilitating

secure sharing of personal health data in the cloud. Journal of Medical Internet

Research Medical Informatics (JMIR Medical Informatics), 2016.

http://www.businesswire.com/news/home/20111121006670/en/CardioComm-Solutions-Reveals-Remote-Mobile-ECG-Monitoring#.VgJAed-qpBc
http://www.businesswire.com/news/home/20111121006670/en/CardioComm-Solutions-Reveals-Remote-Mobile-ECG-Monitoring#.VgJAed-qpBc
http://www.itnews.com.au/News/311079,uk-health-trust-fined-for-privacy-breach.aspx
http://www.itnews.com.au/News/311079,uk-health-trust-fined-for-privacy-breach.aspx
http://www.asus.com/Eee/Eee_Pad/Eee_Pad_Transformer_Prime_TF201/
http://www.asus.com/Eee/Eee_Pad/Eee_Pad_Transformer_Prime_TF201/
http://www.alivetec.com/index.htm
http://www.ambu.com/corp/products/clinical_studies/ambu_blue_sensor_ecg_electrodes.aspx
http://www.ambu.com/corp/products/clinical_studies/ambu_blue_sensor_ecg_electrodes.aspx

Bibliography 212

[142] M. E. Hilliard, A. Hahn, A. K. Ridge, M. N. Eakin, and K. A. Riekert. User

preferences and design recommendations for an mhealth app to promote cystic

fibrosis self-management. JMIR Mhealth Uhealth, 2(4):e44, 2014. URL http:

//mhealth.jmir.org/2014/4/e44/. Accessed: 06-10-2014.

[143] F. J. Grajales III, S. Sheps, K. Ho, H. Nova-Lauscher, and G. Eysenbach. Social

media: A review and tutorial of applications in medicine and health care. J Med

Internet Res, 16(2):e13, 2014.

[144] A. Westin. Privacy and freedom. New York: Atheneum, 1967.

[145] Microsoft healthvault. . URL https://www.healthvault.com/au/en. Accessed:

06-10-2014.

[146] Healthvault faqs. . URL http://msdn.microsoft.com/en-au/healthvault/

cc196394.aspx. Accessed: 06-10-2014.

[147] K. Sparks, B. Faragher, and C. L. Cooper. Wellbeing and occupational health in

the 21st century workplace. Journal of occupational and organizational psychology

74.4, pages 489–509, 2011.

[148] P. Karvelas. Australia’s mental health system must become more efficient. The

Australian, 2014. URL http://www.theaustralian.com.au/national-affairs/

policy/australias-mental-health-system-must-become-more-efficient/

story-fn59nokw-1226850819260#. Accessed: 06-10-2014.

[149] T. Donker, K. Petrie, J. Proudfoot, J. Clarke, M. R. Birch, and H. Christensen.

Smartphones for smarter delivery of mental health programs: A systematic review.

J Med Internet Res, 15(11):e247, 2013.

http://mhealth.jmir.org/2014/4/e44/
http://mhealth.jmir.org/2014/4/e44/
https://www.healthvault.com/au/en
http://msdn.microsoft.com/en-au/healthvault/cc196394.aspx
http://msdn.microsoft.com/en-au/healthvault/cc196394.aspx
http://www.theaustralian.com.au/national-affairs/policy/australias-mental-health-system-must-become-more-efficient/story-fn59nokw-1226850819260#
http://www.theaustralian.com.au/national-affairs/policy/australias-mental-health-system-must-become-more-efficient/story-fn59nokw-1226850819260#
http://www.theaustralian.com.au/national-affairs/policy/australias-mental-health-system-must-become-more-efficient/story-fn59nokw-1226850819260#

Bibliography 213

[150] ProVerif. Proverif: Cryptographic protocol verifier in the formal model. URL

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/. Accessed:

06-10-2014.

[151] B. Blanchet. Automatic verification of correspondences for security protocols.

Journal of Computer Security, 17(4):363–434, 2013.

[152] J. Nielsen. Usability 101: Introduction to usability. Nielsen Norman Group,

2012. URL http://www.nngroup.com/articles/usability-101-introduction-

to-usability/. Accessed: 06-10-2014.

[153] N. Regola and N. V. Chawla. Storing and using health data in a virtual private

cloud. J Med Internet Res, 15(3):e63, 2013.

[154] A. M. Lund. Measuring usability with the use questionnaire. URL http:

//www.stcsig.org/usability/newsletter/0110 measuring with use.html. Ac-

cessed: 06-10-2014.

[155] D. Thilakanathan, S. Chen, S. Nepal, and R. A. Calvo. Secure and controlled

sharing of data in distributed computing. 2nd IEEE International Conference on

Big Data Science and Engineering, pages 825–832, 2013.

[156] D. Sullivan. Reducing risks with multiple cloud service providers. Search-

CloudComputing. URL http://searchcloudcomputing.techtarget.com/tip/

Reducing-risks-with-multiple-cloud-service-providers. Accessed: 06-05-

2016.

[157] J. Wang. Cp-abe java implementation using jpbc. URL http://wakemecn.com/

cpabe/. Accessed: 02-08-2013.

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://www.nngroup.com/articles/usability-101-introduction-to-usability/
http://www.nngroup.com/articles/usability-101-introduction-to-usability/
http://www.stcsig.org/usability/newsletter/0110_measuring_with_use.html
http://www.stcsig.org/usability/newsletter/0110_measuring_with_use.html
http://searchcloudcomputing.techtarget.com/tip/Reducing-risks-with-multiple-cloud-service-providers
http://searchcloudcomputing.techtarget.com/tip/Reducing-risks-with-multiple-cloud-service-providers
http://wakemecn.com/cpabe/
http://wakemecn.com/cpabe/

Bibliography 214

[158] The Java Pairing Based Cryptography Library (jPBC) website. URL http://

gas.dia.unisa.it/projects/jpbc/. Accessed: 02-08-2013.

[159] ProGuard. Proguard jar shrinker and obfuscator. URL http://

proguard.sourceforge.net/. Accessed: 02-08-2013.

[160] D. Thilakanathan, S. Chen, S. Nepal, and R. A. Calvo. Secure and controlled

sharing of data in distributed computing. 2nd IEEE International Conference on

Big Data Science and Engineering (BDSE 2013), pages 825–832, 2013.

[161] K. W. Miller, J. Voas, and G.F. Hurlburt. Byod: Security and privacy consid-

erations. IT Professional, 14(5):53–55, 2012. URL http://dx.doi.org/10.1109/

MITP.2012.93.

[162] G. Thomson. Byod: enabling the chaos. Network Security, pages 5–8, 2012. URL

http://dx.doi.org/10.1016/S1353-4858(12)70013-2.

[163] S. Nepal, J. Zic, D. Liu, and J. Jang. A mobile and portable trusted computing

platform. EURASIP J. Wireless Comm. and Networking, page 75, 2011.

[164] J. Zic and T. Hardjono. Towards a cloud-based integrity measurement service.

Journal of Cloud Computing: Advances, Systems and Applications, 2(1):1–9, 2013.

ISSN 2192-113X. doi: 10.1186/2192-113X-2-4. URL http://dx.doi.org/10.1186/

2192-113X-2-4.

[165] S. Chen, D. Thilakanathan, D. Xu, S. Nepal, and R. A. Calvo. Self protecting

data sharing using generic policies. 15th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGrid 2015), pages 1197–1200, 2015.

[166] M. Wall. Big data: Are you ready for blast-off? BBC News Business, 2014. URL

http://www.bbc.com/news/business-26383058. Accessed: 03-02-2015.

http://gas.dia.unisa.it/projects/jpbc/
http://gas.dia.unisa.it/projects/jpbc/
http://proguard.sourceforge.net/
http://proguard.sourceforge.net/
http://dx.doi.org/10.1109/MITP.2012.93
http://dx.doi.org/10.1109/MITP.2012.93
http://dx.doi.org/10.1016/S1353-4858(12)70013-2
http://dx.doi.org/10.1186/2192-113X-2-4
http://dx.doi.org/10.1186/2192-113X-2-4
http://www.bbc.com/news/business-26383058

Bibliography 215

[167] TechGuru. All about digital rights management (drm). TechGuru Website,

2009. URL http://www.techquark.com/2009/02/all-about-digital-rights-

management-drm.html. Accessed: 12-05-2016.

[168] Microsoft Office. Password protect documents, workbooks, and presentations.

Office website. URL https://support.office.com/en-au/article/Password-

protect-documents-workbooks-and-presentations-ef163677-3195-40ba-

885a-d50fa2bb6b68. Accessed: 03-02-2015.

[169] A. Tchao and G. D. M. Serugendo. Smartcontent: A self-protecting and context-

aware active content. 2012 IEEE Sixth International Conference on Self-Adaptive

and Self-Organizing Systems Workshops (SASOW), pages 151–156, 2012.

[170] M. Munier, V. Lalanne, and M. Ricarde. Self-protecting documents for cloud

storage security. 2012 IEEE 11th International Conference on Trust, Security and

Privacy in Computing and Communications (TrustCom), pages 1231–1238, 2012.

http://www.techquark.com/2009/02/all-about-digital-rights-management-drm.html
http://www.techquark.com/2009/02/all-about-digital-rights-management-drm.html
https://support.office.com/en-au/article/Password-protect-documents-workbooks-and-presentations-ef163677-3195 -40ba-885a-d50fa2bb6b68
https://support.office.com/en-au/article/Password-protect-documents-workbooks-and-presentations-ef163677-3195 -40ba-885a-d50fa2bb6b68
https://support.office.com/en-au/article/Password-protect-documents-workbooks-and-presentations-ef163677-3195 -40ba-885a-d50fa2bb6b68

	Abstract
	Publications
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Key Research Problems
	1.3 Key Contributions
	1.3.1 Key Partitioning Algorithm
	1.3.2 Secure Data Sharing Protocol
	1.3.3 Self-Controlling Data Object

	1.4 Thesis Organisation

	2 Literature Review
	2.1 Reviews on Privacy and Security in the Cloud
	2.2 Privacy and Security Issues in the Cloud
	2.2.1 Attackers
	2.2.2 Attack Methods
	2.2.3 Attack Space
	2.2.4 Existing Solutions to Privacy and Security Issues
	2.2.4.1 Guidelines
	2.2.4.2 Technologies

	2.3 Private and Secure Data Sharing in the Cloud
	2.3.1 Traditional Approach
	2.3.1.1 The Need for Key Management in the Cloud
	2.3.1.2 Review of works on Key Management
	2.3.1.3 Discussion

	2.3.2 Recent Approaches
	2.3.2.1 Attribute-Based Encryption
	2.3.2.2 Proxy Re-encryption
	2.3.2.3 Hybrid ABE and PRE
	2.3.2.4 Self Management and Control Methods
	2.3.2.5 Discussion

	2.4 Summary

	3 The Data Sharing Problem and Preliminaries
	3.1 Example of Cloud Data Sharing
	3.1.1 Key Components

	3.2 Key Management
	3.2.1 Broadcast Group Key Sharing Example

	3.3 Secure Data Sharing Protocol
	3.4 Data Owner Access Control
	3.5 Secure Data Sharing Challenges
	3.5.1 Key Management Issues
	3.5.2 Issues for Secure Data Sharing Protocols
	3.5.3 Access Control Challenges

	3.6 Problem Statement
	3.7 Assumptions and Threat Model
	3.7.1 System Assumptions
	3.7.2 Trust/Threat Model

	3.8 Preliminaries
	3.8.1 Symmetric Encryption vs Asymmetric Encryption
	3.8.2 ElGamal Encryption
	3.8.3 CP-ABE
	3.8.4 XML
	3.8.5 SOA
	3.8.6 SCO
	3.8.7 TED
	3.8.7.1 TED issuer and manager
	3.8.7.2 Privacy Certifying Authority

	3.9 Summary

	4 An Efficient Solution to the Key Management Problem
	4.1 Introduction
	4.2 Our Approach
	4.3 Remote diagnosis of patients with cardiac arrhythmias
	4.3.1 Introduction
	4.3.2 Related Work
	4.3.3 The Health Monitoring System
	4.3.3.1 Scenario
	4.3.3.2 System Requirements
	4.3.3.3 System Functionality
	4.3.3.4 Data Schema
	4.3.3.5 Privacy Issues using a CSP in Remote Healthcare

	4.3.4 Data Model and Protocol
	4.3.4.1 Data Model
	4.3.4.2 Protocol
	4.3.4.3 Security Analysis

	4.3.5 Implementation and Evaluation
	4.3.5.1 Implementation
	4.3.5.2 System Security
	4.3.5.3 Performance Tests
	4.3.5.4 Evaluation

	4.4 Secure eHealth Self Management in the Cloud
	4.4.1 Introduction
	4.4.1.1 Mental Health Scenario

	4.4.2 Data Model
	4.4.3 Protocol
	4.4.4 Security Analysis
	4.4.5 Usability Analysis
	4.4.6 Performance Tests
	4.4.7 Scalability Analysis

	4.5 Summary

	5 Secure Protection of Outsourced Data
	5.1 Introduction
	5.2 SafeShare
	5.2.1 The SafeShare System
	5.2.1.1 Model
	5.2.1.2 Overview
	5.2.1.3 Background monitoring
	5.2.1.4 Protocol

	5.2.2 Security Analysis
	5.2.3 Implementation and Evaluation
	5.2.3.1 Implementation
	5.2.3.2 Experimental Results
	5.2.3.3 Evaluation

	5.3 Hardware data encapsulation using TED
	5.3.1 Introduction
	5.3.2 Security Model and Protocol
	5.3.2.1 Model
	5.3.2.2 Protocol
	5.3.2.3 Security Evaluation

	5.3.3 Implementation and Evaluation
	5.3.3.1 Implementation
	5.3.3.2 Evaluation
	5.3.3.3 Performance and Size Limitations

	5.4 Summary

	6 SelfProtect Object
	6.1 Introduction
	6.1.1 Scenario

	6.2 Overview
	6.3 Design
	6.3.1 Architecture
	6.3.2 Key Components
	6.3.3 API design

	6.4 Implementation
	6.4.1 Selected Technologies
	6.4.2 Protocol

	6.5 Demonstration
	6.5.1 Policy Generation
	6.5.2 SPO Generation
	6.5.3 SPO Consumer Access

	6.6 Summary

	7 Conclusion
	7.1 Conclusion
	7.1.1 Key Management
	7.1.2 Secure Data Sharing Protocol
	7.1.3 Self-Controlled Data

	7.2 Future Work

	Bibliography

