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Abstract 

Producing patterned polymeric surfaces by a simple and controlled process has 

important implications for an increasing number of technological and bio-medical 

applications. The dewetting of thin polymer films is a robust and efficient route 

towards the fabrication of surfaces with topographical and chemical patterns from 

the nano- to the macro-scale. In this Thesis, a solvent vapour annealing technique is 

presented which provides control over the dynamics of the dewetting process, as well 

as the dewetted morphology. 

Firstly, polystyrene (PS) films, which are only slightly metastable on a silicon 

substrate with a native oxide layer (SiO/Si), were annealed in the saturated vapour of 

a toluene-ethanol mixture, resulting in the fast dewetting of the PS film from the 

substrate. The dewetting rate was shown to depend on the ratio of the two solvents: 

the poor solvent ethanol acted to increase the dewetting driving force, while the good 

solvent, toluene, acted to plasticise the PS. The morphology of the rims surrounding 

the holes and the PS droplets were also affected by the concentration of ethanol in 

the solvent mixture. 

Utilising the principle of good-poor solvent mixture annealing to promote the 

dewetting of polymer films, a bilayer of poly (4-vinylpyridine) (P4VP) / PS films 

was dewetted to produce a topographically and chemically patterned polymeric 

surface coating. Ethanol, a good solvent for P4VP, and acetone and water, poor 

solvents for P4VP, were combined in binary mixtures and the individual effect of 

each solvent on dewetting rate, rim and droplet morphology was investigated.   

Finally, an application for the surface coatings patterned by dewetting of 

bilayers of polymer films was investigated, for atmospheric water harvesting. Using 

the solvent vapour annealing technique, nano- to macro-scale P4VP droplets on PS 

coated copper substrates were prepared and their water harvesting capability was 

analysed in a custom-built condensation chamber. The effect of pattern size and 

density was compared with the condensation performance of an unpatterned 

hydrophobic coating, under different relative humidity and sub-cooling temperature 

conditions. 
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1.1 Preamble 

The fundamental understanding of the chemical interactions of molecular and 

macromolecular species at a solid interface is important for tailor making surfaces 

with desirable functionality. Chemically and physically patterning a surface to alter 

the interactions between the surface and the surrounding fluid environment on the 

nano and micro-scales has been achieved by a large variety of methods that include 

combinations of lithography and stamping,1-2 polymer dewetting,3-5 and multiscale 

texturing.6-8 Such patterned surfaces have been proposed for numerous applications9 

in the areas of micro-fluidics,10-13 microbiology and biomedicines4, 14-22 as well as 

water harvesting.3, 13, 21 A simple and cost effective fabricating technique is required 

for applications that require simultaneous control over the surface chemistry and 

physical topography over large surface areas. 

Polymer coatings provide a simple route towards modifying the surface 

properties of a material while leaving the bulk properties of the material unchanged 

and have found use in a diverse array of fields, including microelectronics,23-24 

optics25-26 and biomedicines.27-28 It is possible to modify a surface at the nano, micro 

and the macro scales to produce unique physical characteristics and chemical 

functionality by utilising the dewetting phenomenon of polymer melts, which is the 

spontaneous withdrawal of the liquid polymer film from an underlying surface. This 

behaviour has been studied for decades with research on the contributions of slip 

behaviour at the liquid-solid interface,12, 29-36 elastic macromolecular forces in the 

cast films,36-46 and the presence of interfacial stabilising and destabilising forces,47-52 

to the dewetting of the polymer films.  Controlled dewetting of polymer coatings can 

provide a route to cost effective, continuous and large-scale production of 

functionalised materials. 

The process of dewetting a liquid polymer film is complex and dependent on 

many interrelated variables. For example, increasing the molecular weight of 

polymer chains in a film increases the number of entanglements,53 raising both the 

viscosity of the bulk film and the friction force of the flowing film along the 

substrate.29-30, 35 The wettability of the substrate by the polymer affects whether 

dewetting will occur rapidly and can be modified by changes in the surrounding fluid 

composition,48-49, 54-57 the substrate chemistry47, 58 or the choice of polymer. Finally, 
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the casting method and ageing history of the polymer films determine whether the 

polymer chains within the film are in equilibrium conformations,39 as non-

equilibrium chain conformations manifests as internal stresses which affect the 

dewetting rate and hole nucleation density. In order to control the dewetting process 

and produce replicable chemically and topographically patterned polymer coatings, it 

is important to understand and be able to predict the dewetting behaviour of a 

polymer film. 

One of the applications of micro patterned surfaces is the harvesting of water 

from humid ambient environments.2-3, 59-61 This particular application has been of 

interest since the observation of the unique behavioural and structural adaptation of 

the Namib Desert Physosterna cribripes beetle (Figure  1.1).62-63 The bumps on the 

wing casing of the beetle were observed to be hydrophilic, in contrast to the 

remainder of the casing which was hydrophobic. This adaptation allows the beetle to 

nucleate and capture water droplets on a foggy morning on the bumps and drink the 

water droplets that roll down the hydrophobic troughs and channels towards its 

mouth. The water collection efficiency of surfaces patterned in this manner has been 

shown to be high compared to alternative materials.3, 64  

 

 

 

Figure  1.1: Illustration of a Namib Desert beetle harvesting water from fog. Adapted from 
Asknature.org.65 

Utilising the controlled dewetting of polymer coatings, it is possible to create 

structured materials with hydrophilic/hydrophobic contrast to have a high affinity for 

water harvesting. The successful implementation of these patterned surfaces opens 

up a diverse range of applications from surface coatings that increase the efficiency 
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condensation heat transfer to specialised materials for the passive and selective 

retrieval of condensable solvent vapours.  

 

 

1.2 Wetting and Dewetting of Surfaces 

The behaviour of a liquid drop on a solid substrate, as described by the surface 

energy of the substrate and the surface tension of the liquid in the presence of air or a 

vacuum has been extensively studied.66-73 The liquid may spread, or wet, a substrate 

when the interactive forces between the substrate and the liquid are strong. The 

liquid will retract or dewet from the surface, as in the beading of water droplets on a 

dirty window or on a Teflon pan, when the forces are weak. Similarly, the wetting 

properties determine the energy barrier to adsorption of vapour molecules and the 

onset of heterogeneous condensation. 

1.2.1 Thermodynamics at the substrate-liquid interface 

The surface tension of a liquid arises due to the influence of the surrounding 

molecules on the energetic state of the liquid molecules at the interface. This results 

in a difference between the energy states of the molecules within the bulk from those 

at the surface, so liquids tend to minimise the number of molecules at the interface to 

decrease surface energy. Therefore, the surface free energy may be defined as the 

work required in bringing molecules from within the bulk to the interface in order to 

create a new surface having a unit area. The same definition can be used for the free 

surface energy of solids; however, unlike liquids, the surface tension of a solid may 

not be in equilibrium with the surface free energy. This is due to the low mobility of 

the molecules restricting molecular rearrangement and thus the surface tension of a 

solid is defined as the work spent in stretching the solid surface in a two dimensional 

plane.74 de Gennes defines high free surface energy solids as those that are composed 

of strong chemical bonds, such as ionic, metallic or covalent, whereas low surface 

energy solids are based on relatively weak van der Waals chemical bonds, as is the 

case with polymers.75 

It is possible to determine the shape a liquid will attain on a solid substrate by 

an energy balance at the solid-liquid-vapour contact line. This relationship is 
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described by Young’s equation (Equation 1.1), whereby a balance between the solid-

vapour, γSV, the solid-liquid, γSL, and the liquid-vapour, γLV, surface energies leads to 

an equilibrium contact angle, θe, of the liquid droplet on the substrate (Figure  1.2): 

 

	 cos    ( 1.1) 

 

From Young’s relationship a spreading coefficient can be deduced (Equation 

1.2); where a droplet will completely wet a surface if the coefficient is zero, 

otherwise only partial wetting is possible (Figure  1.2). 

 

	 cos 1     ( 1.2) 

 

For the specific case of a water droplet on a substrate, when the droplet contact 

angle θe is less than 90°, the surface is considered hydrophilic, or “water loving”,  

and when greater than this value, hydrophobic, which translates to “water fearing”.  

 

 

 

Figure  1.2:  Illustration of the wetting regimes of a liquid on a substrate. In complete wetting, the 
liquid has a contact angle θe = 0 and spreads on the substrate. For a partially wetting substrate, the 
liquid obtains a finite equilibrium contact angle.  

Young’s equation assumes ideally smooth and uniform surfaces, where the 

equilibrium at the three phase contact line is readily achieved. In reality, surfaces are 

rough and present defects that delay or prevent the three phase contact line from 

reaching equilibrium. On a tilted surface this causes droplets that are large enough to 

be affected by gravity to obtain a contact angle at the front that is greater than the 

equilibrium angle and a contact angle at the rear that is smaller than equilibrium. 

This behaviour is due to the energy requirements to wet the substrate in front of the 

droplet and dewet from the substrate at the rear in order for the droplet to slide.  
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Figure  1.3: Illustration of a droplet on an inclined plane at a critical volume to begin sliding due to the 
effect of gravity.  

The difference between these two contact angles is termed the contact angle 

hysteresis and can be considered as a measure of the reluctance of a droplet to slide 

down a surface (Figure  1.3). Furmidge deduced a relationship between the 

advancing, θa, and receding, θr, contact angles, and the surface tension of a droplet 

with the tilt angle α of the substrate and the critical mass and width of the droplet at 

the onset of sliding:71 

 

cos cos    ( 1.3) 

 

1.2.2 Heterogeneous condensation 

The heterogeneous condensation behaviour of vapour molecules is widely 

observed both in nature and in a variety of technologies. Dew formation, observed 

naturally on a cool morning, is an interesting case study of this behaviour and of 

direct relevance to the subject of this Thesis. Beysens, in 1995, produced a study on 

the formation on dew on a substrate.67 He highlighted the effect of the wetting 

properties of the surface on the nucleation of the liquid phase and the effect of 

dimensional constraints on the growth of a liquid droplet.   

For a liquid droplet to nucleate from the vapour phase, the temperature at the 

substrate surface must be lower than that of the surrounding environment. There is a 

gain in volume energy, ΔE, associated with the phase change as well as an energy 

barrier associated with the formation of a liquid-vapour interface, the interfacial 

tension γ. The total energy of a liquid droplet is the sum of the volume energy and 

the interfacial energy. When this energy equation is minimised, a critical droplet 

radius, Rc, emerges as the minimum radius of a stable liquid droplet to nucleate on a 

substrate with droplet energy:67 
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	     ( 1.4) 

 

Heterogeneous nucleation of a liquid phase on a solid is a function of the 

wettability of the surface to water, which is characterised by the contact angle of a 

water droplet on this surface. The surface wettability affects the magnitude of the 

energy barrier to the nucleation of stable liquid droplets and modifies the relationship 

between the droplet nucleation rate, dn/dt , and the droplet energy, F(Rc) by:76 

 

~exp	 2    ( 1.5) 

 

Once established, a nucleated liquid droplet grows by the diffusion of water 

molecules across a concentration gradient in the boundary layer surrounding the 

substrate. The release of the heat of condensation from the droplet to the substrate 

limits the growth rate and size of the water droplet, and multiple theories for the 

mechanism of droplet growth have been proposed.77-79  

Droplet growth has been observed to occur in three stages, characterised by the 

surface coverage, s, which is a ratio of the wetted surface area to the total substrate 

area and the size of a growing droplet may be modelled as a function of time by the 

power law relationship, 〈 〉~ . When s < 0.3, very few coalescence events 

between adjacent droplets are observed to occur, and the growth exponent μs = 1/3. 

For, 0.3 < s < 0.55, rapid droplet growth is observed due to coalescence between 

neighbouring droplets. During this regime the growth law exponent is related to the 

dimensionality of the droplet and of the substrate, Dd and Ds respectively, by 

Equation 1.6. For the usual situation where a substrate is a two dimensional surface 

and the droplet three dimensional, μa = 1. Where μs= 1/Dd for ideal thermal 

conditions.  

 

	      ( 1.6) 

 

 Finally for, s > 0.55, a stabilisation of the value of the surface coverage occurs 

due to competition between coalescence, (i) increasing droplet size as well as (ii) 

increasing the area of free substrate. The scaling law becomes useful when analysing 
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the condensation behaviour on fibres or on chemically heterogeneous surfaces where 

water droplets may preferentially nucleate and grow in only one dimension.   

  

 

1.3 Dewetting Polymer Films 

Polymer melts which are able to flow have been observed to spontaneously 

rearrange their geometry to minimise the total energy of the vapour-polymer-

substrate system. This interesting behaviour has been extensively studied36, 47, 52, 80 

and many applications have been proposed for materials created by this simple and 

inexpensive process.81 Some elements of the dewetting process, including the 

interfacial stability of films, 47, 48, 49, 50, 51 interfacial slip behaviour12, 29, 30, 31, 32, 33, 34, 35, 

36 and more recently, the role of elastic forces36-46 have been a significant focus of 

research. However, interesting questions remain unanswered and there remains 

speculation as to the nature of the relationship between these mechanisms, their 

origins and their relative impact on the dewetting process. The techniques to achieve 

polymer film dewetting have developed from heating polymer films into a melt state 

and observing them dewet from solid substrates with different interfacial 

compositions,34, 52 to changing the fluid environment surrounding a cast film,55, 57 as 

well as dewetting multilayer systems3, 82-83 and other approaches to stimulate film 

dewetting.84-85  

One of the main causes of dewetting is the unfavorable interactions of the 

liquid film at the solid interface. For example, one proposed form of the interfacial 

potential ψ(h) (Equation 1.7) includes the effects of short-range forces (first term) 

and long-range van der Waals forces (two following terms) for polystyrene films of 

thickness h on top of silicon substrates coated with silicon oxide of thickness d, with 

Hamaker constants ASi (negative) and ASiO (positive). In the case of a thick oxide 

layer (thickness d of 200 nm), this expression correctly predicts a van der Waals 

attraction that promotes film dewetting.47 

 

																									  ( 1.7) 
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The macroscopic behavior of a thin liquid film can be predicted by the 

effective interfacial potential. From this relation a film can be described as stable, 

metastable or unstable as a function of initial film thickness (Figure  1.4). The 

effective interface potential of unstable and metastable films obtains a global 

minimum at h = heq, where films thicker than heq spontaneously dewet from the 

substrate in order to reach the equilibrium film thickness, typically in the Angstrom 

range.47 For metastable films a potential energy barrier must be overcome, for 

dewetting to occur. 

 

 

 

Figure  1.4: Illustration of the effective interface potential ψ, as a function of film thickness h, for (1) 
stable, (2) unstable and (3) metastable films. The equilibrium film thickness, heq on the substrate is 
found at the global minimum of the interfacial potential. Modified from Seemann et al.47 

 When polar interactions are important, i.e. when either the film or the fluid 

environment in which it is immersed are polar, polar attractions also contribute to 

increasing the driving force for film dewetting. The polar contribution often takes the 

form 	 ,	where Sp is the polar component of spreading coefficient, and l is 

a correlation length.48-49, 54 

1.3.1 Evolution of dewetting 

Liquid polymer films may either spinodally or heterogeneously dewet from a 

substrate as shown in Figure  1.5. Spinodal dewetting was first predicted by Vrij in 

1966 and occurs in unstable films, where the film instability drives the formation of 

capillary waves with an amplitude that grows exponentially with time, et/τ, with τ as 
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the characteristic growth time.86 The film breaks down into spatially correlated micro 

and nano structures with a characteristic wavelength λs. The growth time τ varies as a 

fifth power of the film thickness and therefore spinodal dewetting can only be 

observed for ultrathin films, typically below 10 nm. The growth time of the 

instabilities is too long for thicker films and heterogeneous nucleation becomes the 

dominant mechanism.80, 87 

 

 

 

Figure  1.5: Mechanisms leading to the onset of dewetting in polymer films: (a) spinodal dewetting in 
a 4 nm thick polystyrene film on silicon imaged by atomic force microscopy (AFM) and (b) 
heterogeneous nucleation in a 33 nm thick polystyrene film on silicon imaged by optical microscopy. 
Adapted from work by Ghezzi88. 

Heterogeneous nucleation is characteristic of most unstable and metastable 

films, with defects of the substrate (e.g. dust or scratches)58 and high residual film 

stresses from the polymer casting process leading to film rupture and film 

dewetting.38-39, 42  

 

 

 

Figure  1.6: Optical micrographs illustrating the three main stages of dewetting a poly (4vinylpyridine) 
film on polystyrene substrate. (a) Hole nucleation followed by (b) hole growth and coalescence 
culminating in the formation of (c) isolated droplets on the substrate. 
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The heterogeneous nucleation mechanism of holes can be divided into the three 

stages shown in Figure  1.6: (a) film rupture, (b) hole growth and (c) the formation of 

isolated droplets.89 The rupture of an initially homogeneous film leading to hole 

nucleation at sites of localised heterogeneity represents the onset of dewetting 

(Figure  1.6(a)). 

 

 

 

Figure  1.7: Two types of rim surround dewetting hole in polystyrene film. (a) Optical microscopy 
image showing the morphology of a stable rim around a dewetted hole and  (c) an artificially rendered 
AFM micrograph of a stable, shallow, cylindrical rim with no undulations and fingering. Height scale 
= 400 nm. (b) Optical microscopy image showing the morphology of a hole with unstable rim 
morphology and an (d) AFM artificially rendered micrograph illustrating the undulations in the rim. 
Height scale = 1.5 µm. (a-b) Scale bars = 200 µm and (c-d) scale bars = 20 µm.  

Following film rupture, nucleated holes grow in size radially, minimising the 

area of contact between the dewetting liquid and the substrate (Figure  1.6(b)). Hole 

growth occurs by the displacement of liquid material from substrate into a rim 

surrounding the hole (Figure  1.7(a,c)). During the early stages of dewetting, energy 

is dissipated due to slip of the dewetting liquid along the substrate interface, 

characterised by the radial growth proportional to t2/3. As the rim width grows, the 

dewetting rate is retarded over time and viscous dissipation within the liquid film 

dominates the hole growth. Here slip ceases to be important and the hole grows 

linearly with time. In the cases where interfacial slip is strong, undulations of the rim 

shape lead to fingering and radial droplet shedding within the hole (Figure  1.7(b,d)). 

In these cases, the hole grows linearly with time at a rapid velocity, which is the 

subject of discussion in Chapter 4.56 Slip behaviour at the liquid-substrate interface is 

discussed further in Section  1.3.3 below. The hole growth rate is inversely 
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proportional to the viscosity of the liquid film in both regimes, therefore the 

dewetting rate is found to increase with increasing annealing temperature above Tg 

and decreasing polymer molecular weight.30, 34, 53, 90  

Hole coalescence is the final stage of film dewetting, whereby the rims of 

adjacent holes overlap to form liquid cylinders on the substrate. These cylinders 

eventually decay over time, due to Rayleigh-Plateau instability, into single isolated 

droplets that obtain a spherical-cap shape with an equilibrium Young’s contact angle 

(Figure  1.6(c)). Where films have dewetted with radial droplet shedding, more 

numerous and finer droplets are deposited on the substrate (Figure  1.7(b)). 

1.3.2 Annealing methods 

For a non-wetting polymer film to dewet from a substrate, it must be in a melt 

or liquid state where the polymer chains are able to flow relative to each other and 

the substrate. This may be achieved by heating the polymer film above its glass 

transition temperature, Tg or by suppressing the Tg of the film below the ambient 

temperature in the presence of a good solvent, which preferentially binds to the 

polymer chains. Thermally annealing a polymer film on a hot plate or in an oven is a 

simple procedure; however dewetting will depend on the nature of the interactions 

between the polymer film and the substrate; where different hole, rim and droplet 

morphologies can be achieved by the choice of polymer, initial film thickness and 

substrate material.47, 52, 80, 89, 91  

Solvent annealing of polymer films, discussed in Chapters 4 and 5, has been 

more recently explored and provides a more complex pathway to the dewetting of 

polymer films, but also greater flexibility in preparing desired surface architectures 

through modifying the choice of solvent(s) in the liquid or vapour phases. Solvent 

annealing can therefore be used to dewet films that are otherwise stable on the 

substrate.54-57, 92-93 For example, changing pH during solvent annealing has been 

shown to produce reversible dewetting behaviour of a polyvinylpyridine film on a 

silicon oxide surface. 94 

Alternative annealing techniques include the initiation of dewetting by laser 

light of both metal 95-96 and polymer films.97 Electrical fields have also been used to 

create ordered dewetted polymer structures84 as well as combinations of electrical 

and thermal stimulation.85 On non-wetting substrates it may be possible to observe 
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dewetting of volatile liquids which evaporate until a critical film thickness is 

reached, at which point the film will spontaneously dewet from the substrate.98 It has 

also been shown that casting a dilute polymer solution from a volatile solvent onto a 

non-wetting substrate will also lead to dewetting patterns of the polymer at the 

evaporating solvent front.99 

1.3.3 Slip behaviour at the solid-polymer interface 

Slip of a flowing liquid on a solid substrate can be described by the velocity 

profile along the height of the liquid film. In a no-slip regime, there is significant 

adsorption of the liquid to the substrate and no flow is experienced at the interface 

(Figure  1.8(a)). In a partial slip regime, adsorption at the solid-liquid interface is 

overcome and partial flow may occur, where the velocity of the interface is a fraction 

of the velocity at the free surface (Figure  1.8(b)). Complete slip, otherwise known as 

plug flow, occurs in highly viscous or solid systems where the velocity at the 

interface is the same as at the free surface without relative motion in the material 

within the film layer (Figure  1.8(c)). Apparent slip is expected for low viscosity 

liquid films with strong adsorption and no flow at the solid interface 

(Figure  1.8(d)).12, 29, 100  

 

 

 

Figure  1.8: Illustration of velocity profiles in the vicinity of the solid/liquid interface. (a) No slip, (b) 
partial slip, (c) full slip “plug flow” (d) apparent slip. 

For a flowing polymer melt, de Gennes expected long-chained polymers on an 

ideal, non-adsorbing substrate to exhibit an exceptional amount of slippage with the 

slip length b, defined as the distance at which the velocity of the flowing liquid 

extrapolates to zero, increasing as a function of the chain length, N of the polymer:30, 

101 
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      ( 1.8) 

 

where a is the size of the monomer and Ne the entanglement length. This was 

based on the assumption that the polymer-solid friction coefficient should be 

identical to that of a simple liquid of monomers which is in contact with the solid 

substrate. Therefore a no-slip boundary condition would exist with a slip length 

comparable to the size of the monomers.35 In practice, slip lengths that are lower than 

expected have been found at small flow velocities. 29 This has been explained by the 

adsorbed polymer chains on the substrate extending outwards and entangling with 

the bulk polymer leading to strong friction. As these adsorbed chains are not rigid 

they may deform and disentangle leading to a coil to stretch transition, where the 

friction coefficient is seen to decrease rapidly at larger shear strains. 30, 32, 35  

According to accepted models, in the initial dewetting period when the rim 

width is still growing and the dewetting velocity is dominated by interfacial slip, hole 

growth is described by the power law D  t2/3.29-30 In this regime the velocity is 

determined by:34  

 

     ( 1.9) 

 

with γ and η the surface tension and viscosity of the liquid respectively, θ the 

contact angle of the liquid on the substrate, and w the width of the rim. The velocity 

has been experimentally observed to decrease proportionally to the increasing rim 

width and a cross over to a no-slip, constant velocity regime occurs at a critical rim 

width.34 

1.3.4 Role of elastic forces within the film 

In the past 10 years there has been increased understanding of the chain 

equilibration process as an important driving force, in addition to interfacial 

interactions, for dewetting of thin films. 37-38, 40, 52, 102-105  The techniques used to cast 

polymers in solution onto a substrate, such as spin and dip coating, induce strongly 

out-of-equilibrium conformations of the chains and low entanglement density due to 

the fast evaporation of the solvent.41-42 This leads to residual elastic stresses that 
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relax upon annealing, drastically affecting the dewetting rate,37-38, 40 entanglement 

density,42 viscosity and thermal expansion.39, 43, 106-107 

Annealing the PS films above Tg drives the polymer chains away from their 

out-of-equilibrium ‘frozen’ conformation obtained through casting, towards more 

energetically favoured quasi-equilibrium conformations.40 This elastic rearrangement 

has been described particularly in ultra-thin films where elastic forces due to extreme 

confinement are strong.108 Ageing a cast film below Tg for a period of time has been 

shown to increase the stability of polymer films to dewetting during annealing. Reiter 

et al. found that the probability of film rupture, defined as the maximum number of 

circular holes per unit area, exponentially decayed as a function of increasing ageing 

time for a given film thickness. This trend was attributed to the reorientation of the 

polymer chains into conformations closer to their equilibrium.38  

Damman et al. observed distinct transition times related to changes in 

dewetting velocity and rim shape and compared these values with the reptation time 

of the known chain lengths. They concluded that there is evidence for the relaxation 

of residual stresses within the rim region as the transition in the rim shape occurs at 

times well below the reptation time, for large molecular weight films.  The transition 

in the velocity profile was observed to occur at times comparable to the reptation 

time of the polymer, taken by the author as validity of the hypothesis that chain re-

entanglement occurs due to chain inter-diffusion.37   

Yang et al. calculated, from the variation in surface contour at the edge of a 

dewetting hole, the molecular recoiling force due to residual stresses in polymer thin 

films as a function of molecular weight and film thickness. They concluded that the 

magnitude of this force was at least equal to, if not greater than, the dispersive forces 

present in flowing thin polymer films.40 

1.3.5 Applications of dewetting induced micro-patterned polymer surfaces 

The dewetting of thin polymer films from a solid substrate has been studied 

extensively over the past three decades,29, 52, 80, 89, 109-111 and the surface patterns 

produced have interesting applications.81, 112 Gentili et al. reviewed the application of 

the dewetting process for different functional materials and technologies.81 The 

works reviewed explored a variety of processes that take advantage of the dewetting 

phenomenon. These included the use of dewetting as a vehicle for the distribution of 
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nanoparticles and the confinement and spatial control over dewetting films. They 

concluded that dewetting as a basis for fabrication processes is advantageous due to 

its applicability to any class of materials, mild conditions and additivity and allows 

the organization of materials across multiple length scales.81 

Xue and Han include a short discussion on applications in their review of the 

strategies available for the formation of ordered patterns by utilizing polymer thin 

film dewetting.112 They review the use of dewetted films as moulds for the transfer of 

patterns that are unable to be made by other methods as well as the possible 

combinations of dewetted patterns and functional materials to produce functional 

structures and devices. The size of patterns produced by dewetting are usually in the 

order of microns, which is an appropriate length scale for application in bio-sensing, 

cellular biology and as scaffolds for cell support. 4-5, 16, 112-113 

The application of thin film polymer dewetting to produce biomimetic 

patterned surface coatings for atmospheric water capture has also been shown to be 

promising by Thickett, Neto and Harris in 2011.3 

1.3.6 Dewetting polymer bilayers 

Multilayer polymer systems are particularly susceptible to the effects of layer 

inversion as well as the sequential co-dewetting of multiple layers, which are further 

discussed in Chapter 5. Both of these phenomena are related to the mobility of the 

underlying polymer and may be suppressed by preserving the substrate in a solid 

state. 

A bilayer system composed of poly4vinylpyridine (P4VP) on polystyrene (PS) 

on a silicon wafer has previously been shown to readily dewet when thermally 

annealed above the Tg of P4VP, resulting in the formation of hydrophilic P4VP 

droplets on top of a hydrophobic PS background.3 Due to the Tg of both polymers, 

100 °C for PS and 137 °C for P4VP, being similar and below the annealing 

temperature, thermal annealing of this system was found to lead to layer inversion 

due to the relative viscosities of the two layers and the surface energy minimisation 

driving force for intermixing and inversion (Figure  1.9(a)). Certain solvent annealing 

conditions for the same bilayer system can also lead to sequential dewetting in both 

layers resulting in steps of different topography and chemistry (Figure  1.9(b)). 
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Figure  1.9: (a) Atomic force microscopy (AFM) image of layer inversion in a P4VP/PS bilayer after 
thermal annealing at 180°C. The top micrograph shows P4VP droplets on the PS background; the 
bottom micrograph shows the pronounced PS rims remaining when the P4VP droplets are selectively 
dissolved. Inset: schematic of P4VP dewetted droplets (in blue) becoming partly coated in PS (in red). 
(b) Optical micrograph of a co-dewetted P4VP/PS bilayer annealed in toluene – ethanol (31: 69) 
vapour mixture. Scale bar = 100 µm. Inset: schematic of co-dewetting of P4VP (blue) and PS (red). 

The density of nucleated holes and isolated droplets as well as the contact 

angle of the droplets on the solid substrate can all be tuned by adjusting the annealing 

conditions.  The stability of the rim surrounding the hole can dramatically alter the 

isolated polymer droplet density on the substrate and the size of the isolated droplets. 

Film thickness is the primary method by which these parameters may be tuned. 

Increasing film thickness leads to decreasing hole density and larger isolated 

droplets.3, 52 Furthermore, increasing film thickness can also lead to a transition from 

a system with holes that are surrounded by unstable rims, towards a more stable rim 

structure.56 It is also possible to alter the receding contact angle of the hole rims 

during hole growth as well as the equilibrium contact angle of the isolated droplets 

on the substrate, by altering substrate material114 or the solvent annealing 

conditions.94 

 

 

1.4 Atmospheric Water Harvesting: An Application of 

Micro-Patterned Surfaces  

The World Economic Forum, in its latest annual risk report, has listed water 

crises as the leading global potential risk in terms of impact and eighth in terms of 

likelihood.115 In a recent study on monthly global water scarcity, Mekonnen and 
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Hoekstra concluded that two thirds of the global population (4 billion people) live 

under severe water scarcity for at least one month of the year.116 Furthermore, half a 

billion people face year-round severe water scarcity.  The authors propose that 

regulatory oversight and improvements in agricultural efficiency will be necessary to 

meet the future demand for freshwater. Increasing and diversifying the supply of 

freshwater by technological innovation will assist in averting the predicted water 

crises. Harvesting fresh water from atmospheric humidity and fog is a method that 

has been previously proposed117 and could be utilised as a source of freshwater for 

regions around the world without ready access to surface and groundwater resources. 

There are many prototype systems currently distributed worldwide and are 

used to study the viability and optimise the efficiency of different water collection 

processes.117-122 The concept of passive water collection, where no external source of 

energy is required to condense water vapour from the ambient environment, has been 

investigated for many years. A pioneering study was undertaken by Friedrich Zibold, 

in the early 20th century, to recreate what was believed to be ancient Greek stone dew 

condensers above an extensive pipe system.123-124 It was believed that these porous 

stone structures relied on night time irradiation to obtain a lower temperature than the 

temperature of the surrounding humid environment during the early morning hours. 

Zibold’s work increased interest in the field, leading to other studies on the use 

“aerial wells” for water collection (Figure  1.10). Later excavations of the mounds 

showed that they were ancient burial sites, which were unrelated to the underlying 

water channels and pipe systems. Furthermore, the water collection results from 

experiments with aerial well systems were poorer than expected.124  Numerical 

simulations by Nikolayev et al. and condensation studies by Beysens have suggested 

that “grass like” condensers, thin sheets which are thermally isolated from the ground 

and of a wetting material, achieve better water collection efficiencies than the 

Zibold-type condensers.124-126 Other scientific explorations on the subject matter of 

atmospheric water are provided in an interesting and extensive historical review by 

Moller.127  
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Figure  1.10: Knapen water condenser (1932) in Trans-en-Provence (France)128 

Prototype projects on the use of reflective hydrophilic polyethylene sheets for 

the purpose of water collection, in accordance with the principles outlined in 

Nikolayev’s work, were conducted in the semi-arid Kutch region of India.126 In this 

study, a large trapezoidal shaped trough inset into the earth was lined with the 

reflective sheets which were insulated from the ground by polystyrene foam. 

Numerical simulations were initially used to design the most efficient geometry of 

the condenser system, taking into consideration the historical data on the speed and 

direction of prevailing winds as well as ambient temperatures. The large system was 

found to collect 6545 L for 2007, corresponding to 251.4 L per night. These 

reflective hydrophilic sheets are produced by the International Organisation for Dew 

Utilisation (OPUR) who promote and support the endeavours of research groups and 

institutions in pursuing the goal of the viable collection of atmospheric water.  

Maestre-Valero et al. compared the use of a black polyethylene material129 to 

the reflective hydrophilic material used in the previous study.126 They observed that 

although the hydrophilicity of the reflective material resulted in more dew events, 

overall the water collection was found to be greater with the black foil and concluded 

that the improved performance was due to the higher emissivity of the material over 

a greater range of the IR spectrum.129     

Alternatively to the condensation dew from humid air, commercial ventures 

use water harvesting from fog by collecting the airborne water droplets in areas of 

recurring fog events using structures erected incident to the prevailing wind direction 

(Figure  1.11).118, 120  Research in this field is exploring the type of mesh material and 

the dimensions and geometry of the mesh to optimise water collection. In the field of 
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fog collection, Fogquest is an organisation that supports projects to supply arid 

under-developed regions with water and who host an annual conference into fog, fog 

collection and dew. The occurrence of fog collection in nature has also been studied 

as a source of bio-inspiration towards the development of efficient collection 

surfaces and materials.62, 130-133 Other studies into alternative water collection 

methods include the experimental application of humidification/dehumidification 

cycling of desiccant solutions119, 122 and a theoretical study of a solar cyclone 

concept.134 

 

 

 

Figure  1.11: Mesh structure used for fog water collection in Bellavista, Peru.135 

The application of chemically and topographically micro-patterned surfaces to 

the collection of atmospheric water has been the subject of study since the initial 

observation and experimental simulation by Parker and Lawrence of the fog 

harvesting adaptations of the Namib Desert Physosterna cribripes beetle.62-63 In this 

pioneering study, a surface of glass beads embedded within wax was used to mimic 

the concept of atmospheric water condensation on hydrophilic nodes, and the 

collection of droplets that reach a critical volume and roll off along a hydrophobic 

background. The results indicated that a surface, patterned in this manner was the 

most effective for water harvesting. Since 2001 the concept has been developed by 

utilising different materials, including the introduction of surface roughening to 

promote superhydrophobicity,33 alternative surface geometries and various material 

fabrication processes.64, 136-137 2, 60-61, 138 
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1.4.1 The design of a surface for water collection 

The collection of water can be dissected into three continuous phases 

beginning with the heterogeneous nucleation of water on the surface, followed by the 

growth and coalescence of the water droplets, until a large droplet of critical mass is 

able to finally slide, or roll, off the surface. The theory of droplet behaviour during 

each of these stages has been discussed in Section  1.2. The experimental works 

related to the behaviour of condensing water vapour on micro-patterned surfaces and 

collection of the condensate will be discussed here (Figure  1.12).  

Condensation of water on a chemically heterogeneous surface with a 

wettability gradient will preferentially occur on the more hydrophilic regions, 

illustrated in Figure  1.12(a) by the nucleation of water droplets on a hydrophilic 

polymer network on top of a hydrophobic polymer film.3, 67, 139-142 In order to 

maximise the contrast in wettability on the micro-patterned surface, a 

superhydrophobic background, achieved by roughening the hydrophobic regions on 

the nano length scale, has been used (Figure  1.12(c)). On these regions the water 

droplet obtains an almost spherical shape with a contact angle approaching 180°.64, 

136, 139, 143-147 Typically superhydrophobic surfaces have very low contact angle 

hysteresis, 10°,  resulting in droplet roll-off at very small critical volumes 

as predicted by Equation 1.3. However, two problems exist when using 

superhydrophobic surfaces as the background material to a micro-patterned water 

collection surface.  

Firstly, superhydrophobicity is achieved by the support of a water droplet on an 

air cushion provided by trapped air within the textured surface.33, 68 The condensation 

of water onto such a surface leads to random nucleation above and within the texture. 

Growth and coalescence of these droplets can lead to the displacement of the air 

cushion and subsequent pinning of the droplets in, what is referred to as, the Wenzel 

state, which reduces the contact angle of the droplets and increases the contact angle 

hysteresis.145, 148-149 The second issue, lies with the energy barrier to droplet roll off at 

the contact line between hydrophilic and hydrophobic regions. Where this wettability 

contrast is high, a strong hysteretic force against droplet roll-off has been simulated 

and observed.138, 150-151 It becomes an optimisation question to balance the wettability 

contrast against the increase in hysteresis at the hydrophilic/hydrophobic contact line 

and the roll off volume of the water droplet in order to maximise the water collection 
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rate.142 Finally, as shown by Miljkovic et al., the air cushion within the nano-texture 

on a superhydrophobic surface has a high resistance to heat transfer, leading to water 

droplet growth rates that are significantly lower than for droplets under the same 

conditions condensing and growing on a non-textured hydrophobic surface.145  

Alternative micro-patterned structures that have been proposed for water 

condensation and collection include one dimensional fibres such as artificial spider 

silk (Figure  1.12(b)) and cacti needle mimics152-153 as well as materials that respond 

to external stimuli, such as temperature to alter their chemical composition and 

physical structural.154 Other surfaces have been designed to trap hydrophobic liquids 

as the background medium to facilitate the removal of nucleated water droplets.155-157 

 

 

 

Figure  1.12: Micro-patterned structures for atmospheric water collection. (a) P4VP/PS dewetted 
bilayer developed in this Thesis displaying preferential water nucleation on the P4VP network. Scale 
bar = 20 µm (b) Spider silk mimic with chemical and geometrical contrast between the knots and the 
fibre.152 Scale bar = 100 µm (c) Etched hydrophilic micro pillars and super hydrophobic ‘nanograss’ 
background resulting in an extreme wettability contrast.137 Scale bar = 10 µm 

1.4.2 Characterisation of water collection surfaces 

The most common experimental method to determine the water collection 

efficiency of purpose-designed materials is to mount modified or coated two 

dimensional substrates on a cooling module within a humid environment at a desired 

angle from the vertical. A collection tray situated below the sample collects the water 
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droplets that roll off the surface and after a period of time the mass of the collected 

water is noted. Typically the results are reported as the volume of water normalised 

against the projected surface area of the surface and the time frame of the experiment 

and in some cases a camera is used to image the formation and roll-off of droplets 

from the substrate. 60-61, 64, 158 An alternative setup, used by Wang and co-workers, 

utilised a tube with a modified outer surface and cooled by an internal coolant flow, 

where the tube was placed within a sealed humid environment. With this system the 

authors could image the water droplet geometry as well as calculate the heat transfer 

coefficient of their material.157, 159 

Qualitative experiments into the observed growth behaviour of water droplets 

on a modified or coated surface are conducted by microscopic techniques, as 

demonstrated in Figure  1.12, which are summarised in Section 2.6.3, 59-60, 137 High 

resolution studies into the nucleation of water droplets are often conducted within an 

environmental scanning electron microscope (ESEM), where a humid environment 

can be produced by altering the pressure within a sealed chamber with liquid water 

present.137, 159-161  

 

 

1.5 Thesis Outline 

This Thesis describes the design, fabrication and testing of polymer coatings, 

featuring chemical and topographical nano, micro and macro scale patterning, for the 

purpose of atmospheric water collection. Surface micro-patterning was achieved by 

exploiting the dewetting phenomenon of single and bilayer polymer films. The 

common materials and methodologies to all experimental work presented in this 

Thesis are summarised in Chapter 2, including the preparation and surface 

characterisation methods. 

The design of the apparatus for water collection performance characterisation 

of the surface coatings is presented in Chapter 3. This Chapter includes the process 

and instrumentation diagram for the setup as well as the start-up and testing protocols 

and the instructions for safe operation. Opportunities for further refinements to the 

apparatus, experimental restrictions and the difficulties experienced during the 

design and development are also discussed here.  
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The roles of good and poor solvents in a vapour mixture in initiating and 

driving dewetting of polystyrene films on a silicon wafer are discussed in Chapter 4. 

The combination of toluene and ethanol is believed to increase the elastic stresses 

within the polymer film leading to rapid dewetting and an unstable rim structure with 

extensive droplet shedding. The morphology of dewetting polystyrene holes and 

dewetting rate are shown to rely on the relative concentration of each solvent. 

Furthermore, polystyrene films up to 500 nm in thickness are shown to dewet in the 

saturated vapour environment of this solvent mixture as are films that have been 

thermally aged for extensive periods of time. 

Chapter 5 outlines the use of three solvents; ethanol, acetone and water in 

binary and ternary mixtures, to vapour anneal P4VP/PS bilayers leading to the P4VP 

film dewetting from the underlying PS film. The dewetting rates and hole growth 

profiles, as well as the morphologies of the rims surrounding the holes, and the 

geometries of P4VP droplets at the conclusion of dewetting, were systematically 

analysed for each solvent vapour environment.  The role of each solvent in initiating 

and facilitating the dewetting of P4VP is discussed in terms of its quality as a solvent 

for both PS and P4VP. As bilayer polymer systems are susceptible to layer inversion 

or co- dewetting of both layers during annealing, the solvents were also chosen to 

suppress these phenomena.  

The water condensation behaviour and water collection efficiency of patterned 

polymer coatings which are prepared by the dewetting of bilayer films using the 

acetone-water vapour mixture solvent annealing technique developed in Chapter 5, 

are presented in Chapter 6. Patterns at nano, micro and macroscopic length scales 

were prepared by dewetting P4VP films up to 900 nm in thickness from a PS 

substrate using this method. The water condensation behaviour of these surface 

coatings was observed and analysed using optical microscopy and the wettability 

characterised by contact angle goniometry. The water collection efficiency of the 

coatings was compared against a hydrophobic polystyrene coating in the purpose-

built apparatus presented in Chapter 3.  

Finally, the findings are summarised and the overall conclusions are presented 

in Chapter 7. 
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Materials and Methods 
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2.1 Preparation of Polymer Coatings 

Prior to coating, silicon substrates with a 1.8 nm native oxide layer (MMRC 

Pty Ltd, Malvern VIC, Australia) were thoroughly cleaned, to eliminate monolayer 

levels of adventitious contamination, by sequential sonication in ethanol and acetone, 

blow drying with pure nitrogen followed by exposure to a high pressure CO2 “snow 

jet” (Applied Surface Technologies, NJ, USA) to remove particulate contaminants. 

The substrates were then annealed at 150°C to remove any condensed water and 

treated under air plasma for 1 min (Harrick Plasma, Ithaca NY, USA, model PDC-

002) immediately prior to coating. Preparation of samples for the solvent annealing 

work presented in Chapters 4 and 5 was carried out in a class-100 laminar flow 

cabinet unless otherwise stated. 

Polymer films were prepared by spin coating (Laurell Technologies, PA, USA, 

model WS400B-6NPP-LITE) from dilute solutions (Table  2.1) for the work 

presented in Chapters 4 and 5. Typically 25 – 50 µL of polymer solution (0.5 – 50 

mg mL-1) was deposited onto the clean silicon substrate and spun at 2500 – 6000 rpm 

to achieve the desired film thickness. Spin coating produces film of uniform 

thickness h, based on the following relationship:1 

 

	 ∝ 	 /      ( 2.1) 

 

where C0 is the concentration of the polymer solution, M is the molecular 

weight of the polymer and ω is the rotation speed. 

Table  2.1: Technical details of the polymers and the notations used in this Thesis. 

Polymer (solvent) Denotation Mw, kg mol-1 (Mw/Mn) Supplier 

Polystyrene 

(Toluene) 

PS96k 96 (1.04) Polymer Standards Service 

PS192k 192 (N/a) Sigma Aldrich 

PS350k 350 (2.06) Sigma Aldrich 

Poly(4vinylpyridine) 

(Ethanol) 

P4VP22k 22 (1.15) Polymer Source Inc.  

P4VP60k 60 (N/a) Sigma Aldrich 

  

For the work presented in Chapter 6, copper substrates were prepared by 

polishing with metal polish (Autosol, TX, USA) and wiping with petroleum spirit, 
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followed by sonicating in ethanol and blowing dry with pure nitrogen. Plasma 

treatment and treatment in a solution bath of basic pH was not used as it led to 

extensive surface oxidation, as evidenced by surface discolouration.   

Polymer films were cast onto the copper substrates by dip-coating (KSV, 

NIMA, Stockholm, Sweden). Dip coating was chosen to accommodate the coating of 

three-dimensional substrates, such as copper tubing, with polymer films. For dip 

coating, polymer solutions in Table  2.1 were prepared in concentrations between 

0.5% – 7.5% wt. The substrates were coated with polymer films, of varying 

thickness, by immersing into the solution bath at a speed of 100 mm min-1, allowed 

to rest for 1 min, and extracted at a constant speed between 15 and 200 mm min-1. 

The film thickness was measured by spectroscopic ellipsometry and the dip coating 

process was identified to be in the viscous drag regime (Figure  2.1(b)). 

 In order to prepare a uniform polymer coating, several parameters which are 

summarised in Figure  2.1(a) must be considered. A discussion of the practical steps 

undertaken to prepare polymer coatings by dip coating is provided in Section 3.2.2. 

Figure  2.1(c) illustrates the force balance between the substrate and polymer solution 

that ultimately determines film thickness during substrate extraction. Theoretically 

the film thickness h0, when a substrate is extracted from a dilute solution at a speed 

u, can be determined by the relationship:2 

 

/      ( 2.2) 

 

where E is the evaporation rate, L is the substrate width, ki is the solution 

composition constant, and D the solution physical-chemical characteristics as 

described by Faustini et al.3 

In Chapters 5 and 6 bilayer films were prepared by casting the P4VP from 

solution onto the prepared PS layer using either spin coating or dip coating 

depending on the application. Film thicknesses for all the prepared samples are noted 

in the relevant chapter sections.  
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Figure  2.1: (a) Schematic illustration of the dip coating process and a list of parameters that affect the 
thickness of the prepared films. (b) Plot showing film thickness as a function of withdrawal speed 
overlayed with the effects of temperature and concentration. The different coating regimes as 
withdrawal speed is increased are described in further detail in the upper panels. (c) Schematic 
representation of the force balance that dictates film thickness on a withdrawing substrate. 
Reproduced from the review by Grosso2 

 

2.2 Spectroscopic Ellipsometry 

Optical spectroscopic ellipsometry was used to analyse the thickness of 

uniform polymer films by measuring the degree of elliptical polarisation of an 

incident light beam as it is reflected from the coated substrate being investigated.4 

The light beam emitted by our setup, from a polychromatic light source in the VIS-

IR region, is linearly polarized, with perpendicular (s - polarization) and parallel (p - 

polarization) orthogonal polarisation components to the plane of incidence, before 

interacting with the sample. The change in polarization of the reflected light beam is 

determined by a second polarizer in combination with a detector (Figure  2.2). 
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Figure  2.2: Schematic representation of spectroscopic ellipsometry. A linearly polarised light beam 
interacts with a sample with dielectric function 〈 〉 	 〈 〉 〈 〉. The light beam becomes 
elliptically polarised following reflection from the surface and the detector records the change in 
phase angle (Δ) and amplitude ratio (Ψ). 

The polarisation change is quantified by the amplitude ratio ψ, and the phase 

angle Δ. These parameters are related to the complex Fresnel reflectance coefficients 

for p and s-polarized light, rp and rs, respectively, by the complex ellipsometric 

parameter, ρ:5 

 

	 Ψ     ( 2.3) 

 

The complex ellipsometric parameter ρ, can be related to the complex 

dielectric function ε, of the material: 

 

〈 〉 	 〈 〉 〈 〉 sin 1 tan   ( 2.4) 

 

where ε1 and ε2 are the real and imaginary parts of the dielectric function 

respectively, and ϕ denotes the angle of incidence. The components of the dielectric 

coefficient are related by the refractive index n, and extinction coefficient k of the 

material: 

 

	     ( 2.5) 

 

	2     ( 2.6) 
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The experimental ψ and Δ values make it possible to obtain the thickness of the 

polymer coatings and optical constants of the material by performing a model 

analysis. Apart from the simplest of cases, information on the refractive index and 

thickness of all individual layers of a sample must be established in the correct order. 

Using iterative least squares minimisation, unknown optical constants and/or 

thickness parameters are varied and theoretical ψ and Δ values are calculated using 

the Fresnel equations to fit the experimental data. 

In this body of work a J. A. Woollam Co. Inc. M-2000V spectroscopic 

ellipsometer was used to determine the thickness of the polymer coatings prepared 

by spin coating and dip coating on silicon and copper substrates. Measurements were 

performed using an angle of incidence of 75° in a wavelength range of 370 – 1000 

nm. A model describing a multi-layer system was fitted to the experimental Ψ and Δ 

values in order to calculate the thickness and refractive index of the polymer films 

(Figure  2.3). For the polymer bilayer system, the model used to fit the ellipsometric 

data was:  

 

substrate	/	oxide/	polymer	1/	polymer	2 

 

The Cauchy equation was used to model the refractive index of the polymer 

films: 

 

⋯,   ( 2.7) 

 

where n is the refractive index; λ is the wavelength of the incident light; An, Bn, 

Cn are the refractive index coefficients. The contributions of the fourth term and 

above are considered negligible for most applications.  
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Figure  2.3: Experimental Ψ (◊) and Δ (□) data for a PS / P4VP bilayer on silicon with a native oxide 
layer acquired for wavelengths in the 370 – 1000 nm range at an angle of incidence of 75°. 
Experimental data were fitted with the multilayer model (solid lines) shown in the inset.  

To minimise fitting errors, the complexity of the modelling was reduced by 

measuring the thickness and refractive index of each layer independently and setting 

the values to be constants when modelling subsequent layers (Table  2.2). The data 

was processed and fitted using the WVASE32 software provided with the 

instrument. 

Table  2.2: Fitted thickness, Cauchy coefficients and mean squared error (MSE) of the model fit 
obtained from the modelling of the optical data for a typical P4VP/ PS bilayer film.  

MSE = 13.11   MSE = 15.55  

PS thickness 92.258 ± 0.0324  P4VP thickness 18.28 ± 0.12 

An 1.5672 ± 0.0005  An 1.5064 ± 0.0034 

Bn 0.00782 ± 0.00011  Bn 0.0125 ± 0.0005 

 

 

2.3 Atomic Force Microscopy (AFM) 

Atomic force microscopy (AFM) was introduced by Binning et al.6 to analyse, 

at an atomic scale, the surface of non-conducting materials, to overcome the 
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limitation of scanning tunnelling microscopy (STM) on such surfaces. AFM utilises 

a sharp tipped (< 20 nm ) stylus attached on the end of a cantilever to trace the 

topographic features of a surface at the nano scale.  

AFM may be operated in contact mode, where the stylus is in continuous 

contact with the substrate, or in tapping mode, where the cantilever is driven by a 

piezoelectric element near its resonant frequency allowing only intermittent contact 

with the surface. The attractive and repulsive interactions between the stylus and the 

surface cause the cantilever to bend in contact mode, or experience a dampening of 

the amplitude of oscillation in tapping mode. The position of the tip in terms of 

bending deflection and oscillation as well as torsion is monitored optically by means 

of a laser beam focussed on the cantilever and reflected towards a four quadrant 

photodetector. A second piezoelectric element drives the sample in the xy plane in a 

raster pattern under the stylus, while the vertical motion (z distance) is controlled by 

a feedback mechanism (Figure  2.4).  

In contact mode, the sample is raised or lowered based on the deviation of the 

cantilever deflection from a setpoint value. In tapping mode, the vertical position of 

the sample is adjusted to maintain the amplitude of oscillation near a set value. In 

both modes, the variation in the vertical position of the sample during scanning is 

plotted as a function of the horizontal position of the stylus to create topography 

images, where colour contrast is used to illustrate variations in height. 
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Figure  2.4: Schematic representation of the components and operation of an AFM. The sharp tip on 
the end of the spring cantilever probes the surface while oscillating at a set frequency near the 
resonance frequency of the cantilever. The piezoelectric scanner moves the sample in the XY plane 
and adjusts the Z distance in accordance to the feedback loop, guided by the laser signal reflected 
from the upper side of the cantilever. The feedback loop works to keep the tip-surface distance (or 
force) constant.  

Contact mode imaging can result in pressures at the tip of up to a few GPa, 

which is on the order of the yield stress of glassy polymers, resulting in plastic 

deformation of the surface. The risks of damage and distortion to the sample surface, 

makes contact mode imaging unfavourable for polymeric and biological samples.7 In 

tapping mode, the cantilever tip oscillates at the film surface rather than continuously 

contacting the surface, resulting in less abrasion for soft polymer surfaces. The trace 

of the surface is provided by digital analysis of a light signal reflected off the upper 

side of the cantilever into a photodetector, which provides feedback for the system to 

adjust the cantilever distance from the substrate. In addition to imaging the 

topography of a surface, the phase shift of the cantilever in tapping modes is 

dependent on the hardness of the material, which can provide information on the 

mechanical properties and composition of the surface.8    

In this Thesis, AFM was used to measure the surface roughness of the copper 

substrate and subsequent polymer coatings prior to annealing (Chapter 6) as well as 

to image the patterned surfaces (Chapters 4 and 5). Feature distributions, sizes and 
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contact angles on the substrate were determined from the images and trace raw data. 

Measurements were performed with two instruments; a Bruker (Billerica MA, USA) 

Multimode VIII and an ASYLUM Research (Santa Barbara CA, USA) MFP 3D. The 

probes used had a nominal resonance frequency of 300 kHz and a force constant of 

40 Nm-1 (Budget Sensors, Bulgaria; model Tap300Al-G). A representative 

micrograph of a polymer surface obtained by tapping mode AFM and the range of 

features that can be extrapolated from the data are presented in Figure  2.5.  

 

 

 

Figure  2.5: AFM micrograph of a P4VP/PS blend cast on a silicon substrate from chloroform showing 
feature heights. Insets: a three-dimensional surface rendering and a plot of the surface cross section 
(red line). Scale bar = 20 µm and height colour scale = 200 nm 

 

2.4 Contact Angle Goniometry 

Measurement of the contact angle of a liquid droplet on a surface provides a 

quantitative analysis of the wettability of a solid by the liquid of interest. The contact 

angle is defined as the internal angle, measured within the liquid drop, formed by a 

liquid at the three phase contact line where the liquid, solid and gas phases intersect.9  
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A static contact angle is measured when the three phase contact line is stationary; 

whereas a dynamic contact angle can be measured when the three phase contact line 

is advancing (droplet expansion) or receding (droplet contraction). The difference 

between the advancing and receding contact angles is the contact angle hysteresis, 

and is a measure of the surface roughness and heterogeneity of the surface.10 

Goniometry is the science associated with the measurement of contact angles. 

A typical goniometer is composed of a light source, sample stage, lens and a camera. 

(Figure  2.6) In this work, a KSV (Helsinki, Finland) CAM200 was used to obtain 

information on the wetting behaviour of water on patterned polymer substrates, 

measuring static, advancing and receding contact angles.  

 

 

 

Figure  2.6: Schematic representation of a KSV CAM 200 contact angle goniometer. 

In a typical experiment, a 5 µL water droplet was deposited on the surface with 

an automated syringe to measure the static contact angle. Advancing and receding 

contact angles were measured in two ways (Figure  2.7).  In the volume addition-

subtraction method: the contact angles were measured by increasing or decreasing, 

by 10 µL the volume of a 5 µL droplet at 0.5 µL s-1 and continuously capturing 

images of the expanding / shrinking droplet (50 frames, 1 fps). In the sliding-droplet 
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method, the substrate is tilted at 45° and the droplet volume is incrementally 

increased until roll-off occurs. The advancing contact angle is observed at the 

downhill side of the droplet and the receding contact angle at the uphill side 

immediately prior to roll off (Figure 1.3).  

 

 

 

Figure  2.7: Profiles of water droplets on a polystyrene substrate fitted with the Young-Laplace 
equation to measure static, advancing and receding contact angles. Advancing and receding contact 
angles were measured using the volume addition / subtraction method. 

The contact angle was determined by computer analysis (Attension Theta 

software) of the droplet profile as it intersects the baseline. by fitting the shape of the 

droplet with the Young-Laplace equation, which relates the pressure difference 

across an interface to the shape of the surface:  

 

Δ 	     ( 2.8) 

 

where Δp is the pressure difference across the fluid interface, γ is the surface 

tension at the liquid/gas interface, R1 and R2 are the principal radii of curvature. It is 

important for reproducibility that the tangent is determined as the gradient of the 

Young-Laplace equation at the point where the droplet intersects the baseline. 

 

 

2.5 X-ray Reflectometry (XRR)  

Reflectometry is a technique that uses the specular reflection of radiation to 

quantitatively provide information on the electron density profile, in a non-

destructive manner, of materials with buried interfaces.11 X-ray reflectometry, 

applied to polymer thin films, can allow for the determination of total film thickness, 
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interfacial roughness, mean densities and more. The length scales that can be 

measured with reflectometry range from 1 nm to approximately 300 nm, depending 

on the reflectometer.12  In this Thesis, x-ray reflectometry was used to analyse the 

swelling behaviour of polystyrene films in the presence of solvent vapours (Chapter 

4). 

X-ray reflectivity (XRR) experiments for this Thesis were conducted by Dr 

Andrew Nelson at the Australian Nuclear Science and Technology Organisation 

(ANSTO) facilities located at Lucas Heights in Sydney NSW, (Panalytical X'Pert 

Pro, operating at 8.048 keV). A collimated beam was directed onto the sample at a 

given angle, θ. The specularly reflected intensity was measured as a function of Q, 

the momentum transfer vector: 

 

4      ( 2.9) 

 

The reflectivity of a sample is the ratio of the reflected intensity to the direct 

beam intensity.  In the Born approximation, where Q is much greater than Qc, the 

critical edge for the system, the reflectivity is related to the scattering length density 

profile, ρ(z), by: 

 

∝   ( 2.10) 

 

Since x-rays interact with the electron shell surrounding the nucleus the 

scattering length density is given by: 

 

     ( 2.11) 

 

with re = 2.813 x 10-6 nm (the classical electron radius) and ρe, the electron 

density. 
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Figure  2.8: Representative x-ray reflectivity profile from a PS film on a silicon substrate. 
Experimental data (empty circles) and fits (lines) are shown. The profile shows Kiessing fringes due 
to the constructive and destructive interactions of waves scattered at the interfaces. The inset 
schematic indicates the scattering length densities (SLD) used in the model system. 

In XRR, Q is varied by altering the incidence angle of the x-ray beam.  

Figure  2.8 shows a plot of an XRR profile for a polystyrene film on a silicon wafer, a 

typical system explored in this Thesis. The XRR data are fitted with a model with 

thickness and electron density as the variables. The profile shows Kiessing fringes, 

from the constructive and destructive interaction of waves scattered by the different 

layers, where the distance between the fringes is inversely proportional to the film 

thickness.  

 

 

2.6 Solvent Vapour Annealing of Polymer Coatings 

For the polymer dewetting experiments on flat substrates described in Chapters 

4 - 6, a custom designed Teflon cell (Figure  2.9(a)) was manufactured to allow in situ 

observations of the progress of film dewetting by optical microscopy (Nikon, 

Melville NY, USA, model Eclipse LV150 with DS-F1 CCD) to be made. To induce 

dewetting, the polymer films, which were coated onto the flat substrates, were sealed 

within the cell, surrounded by a solvent bath and allowed to anneal in the saturated 

vapour environment. In addition to the Teflon cell, a custom brass cell 

(Figure  2.9(b)) was used to solvent vapour anneal and dewet polymer films coated 

onto copper tubes for the water collection experiments described in Chapter 6. 
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Figure  2.9: (a) Schematic diagram of the Teflon cell used to observe, in situ, the dewetting of polymer 
films by solvent vapors. The Teflon cell has a port open to the atmosphere to allow solvent injection 
and pressure equilibration (not shown). A microscope cover lens is situated above the sample for 
observation using optical microscopy. (b) Photograph of the custom made brass cell for solvent 
vapour annealing polymer-coated tubes.  

 

2.7 Water Vapour Condensation Studies 

Studying the condensation behaviour of water on polymer coatings requires 

control over sample temperature, relative humidity and ambient temperatures. A 

condensation chamber was designed to provide an appropriate degree of accuracy 

and allow the condensation behaviour of water vapour on the sample surface to be 

followed over time by optical microscopy (Figure  2.10). A thermoelectrically cooled 

Peltier plate (TE Technologies, MI, USA, CP-031 with TC48-20 controller) was set 

to have a surface temperature, measured by a T-type thermocouple and thermometer 

(Cole-Parmer IL, USA, model DigiSense 91100-40), which was offset 1 - 5 °C 

below the ambient temperature, and this temperature difference was  maintained 

within ±0.5 °C over the course of the experiment. The sample was placed on the cold 

plate within an enclosure where the humidity was controlled by manually adjusting 

the flow rates of a dry air stream and a wet air stream independently (Figure  2.10, 

yellow lines). The humidity and ambient temperature were measured by a Lutron 

(Instrument Choice, SA, Australia) model HT 305 sensor. The wet air stream was 
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provided by bubbling air through deionised water (Ω = 18 MOhm cm, Millipore, 

model Direct 5Q).   

 

Figure  2.10: Schematic representation of a purpose-built chamber for condensation studies under the 
optical microscope. The flow of compressed air, provided for general lab use, was controlled by two 
needle valves to maintain the relative humidity at the desired value. An aerator ball was used to ensure 
the air stream could be sufficiently saturated with water. The Peltier plate was manually controlled to 
maintain the desired ambient - substrate temperature difference as there was no digital feedback 
between the temperature sensor and the controller. 

The time-lapse images of the condensation behaviour on each surface were 

individually analysed using the microscope software (NIS Elements, Nikon, Melville 

NY, USA) to determine the area coverage of water accumulated on each surface. The 

volume of water V was calculated using a derived equation for the volume of a 

spherical cap, illustrated in Figure  2.11, relating V to the contact angle, θ, of the 

droplet on the surface, and the radius, R, of the droplet, which was calculated from 

the projected droplet surface area measured by image analysis:  

 

	 2 3 sin sin    ( 2.12) 

 

With 90 	  and 	 cos 90⁄  substituted into Equation 2.12, the 

droplet volume was calculated by: 

 

	 2 3 cos cos   ( 2.13) 
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where the contact angle of the water droplets on the substrate were assumed to 

be the same as those obtained at the macro scale from contact angle goniometry 

measurements. 

 

 

 

 

Figure  2.11: Schematic illustration of the spherical cap method for calculating droplet volume from 
information on the diameter and contact angle of a liquid droplet. 

Water condensation studies provide insight into the condensation behaviour of 

water on materials with different surfaces properties. The amount of water that these 

surfaces will effectively collect requires a more sophisticated testing system. The 

construction and characterisation of a purpose-built apparatus for quantitative water 

collection measurements is described in Chapter 3. 
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3.1 Introduction 

To date, experimental determination of the water collection efficiency of 

purpose-designed materials, where the surface chemistry and topography has been 

modified directly or by the application of surface coatings, is conducted in many labs 

by mounting the substrate onto a cooling module at the desired angle of inclination 

within a humid environment. A collection tray situated below the sample collects the 

water droplets that roll off the surface and after a period of time the mass of the 

collected water is noted (Figure  3.1). Typically the results are reported as the volume 

of water normalised against the projected surface area of the surface and the time 

frame of the experiment.  In some cases a camera has been used to image the 

formation and roll-off of droplets from the substrate. 1-4 In other studies, the growth 

behaviour of water droplets on a modified or coated surface was observed and 

qualitatively analysed by microscopic techniques, similar to the method described in 

Section 2.7.4-7 High resolution studies into the nucleation of water droplets are often 

conducted within an environmental scanning electron microscope (ESEM), where a 

humid environment is produced by altering the pressure within a sealed chamber 

with liquid water present.6, 8 9-10 Normally a combination of one or more these 

techniques have been used to characterise the performance of a water collection 

surface under condensation conditions. 

 

 

 

Figure  3.1: Representative schematic from the literature, of an experimental apparatus for quantifying 
the water collection properties of surface coatings.  
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As well as the quantifying water collection, the heat transfer properties of 

surfaces and coatings have also been explored, both theoretically11-14 and 

experimentally.10, 15-16 As an example, Cheng et al. designed a vapour chamber for 

heat transfer measurements which were used to deduce the heat transfer coefficient 

of their surfaces.15 Their system was composed of an insulated sealed chamber, 

where the pressure could be controlled by a vacuum pump and saturation of the 

chamber atmosphere with water vapour was achieved by the evaporation of water 

from a temperature controlled reservoir within the chamber. The modified silicon 

sample was attached horizontally to a chiller plate mounted on the roof of the 

chamber with thermocouples embedded within the plate at precise intervals to 

deduce the heat flux through the material. The heat transfer coefficient was evaluated 

from the heat flux measurement along with the measurements from thermocouples in 

the vapour space, used to measure the vapour temperature, and thermocouples 

embedded in the underside of the silicon sample to measure the sample 

temperature.15 

It has been shown that the experimental setup for water collection described 

above (Figure  3.1) is inadequate for accurate quantification of the performance of 

modified or coated surfaces. Firstly, as observed by Lee and co-workers, the water 

droplets that condense and roll off the surface have a tendency to pin to the bottom 

edge of the underlying substrate and form a “puddle”.1 This puddle leads to an 

increase in the thermal resistance of the surface and adversely affects its 

condensation performance. The deterioration of performance is exaggerated on 

hydrophilic surfaces due to the filmwise condensation mechanism of water droplets 

on these surfaces. The pinning behaviour and puddle growth, due to pinning effects 

at the edge of the substrate, is extrinsic to the manufactured surface properties of the 

material; therefore these pinning points must be removed.    

Secondly, this experimental methodology tests the water collection of each 

coating sequentially. Sequential testing of each sample increases the experimental 

errors associated with the variables that influence water condensation. Ambient 

temperature, humidity and pressure, air flow rate and the substrate temperature all 

affect the rate at which water will condense on a sample. A setup where the samples 

could be tested simultaneously under the same conditions would reduce the random 

errors associated with each measurement and allow a direct comparison of the water 

collection efficiency of each surface to be made.  
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Finally, the small size of the testing samples, typically 10 x 10 mm2, can lead 

to large systematic errors in condensation efficiency due to edge effects, surface 

defects, asymmetric substrate dimensions and coating quality. For example, a 10 x 

10 mm2 square silicon wafer with a polymer coating cast by spin coating will have a 

proportion of the surface suffering from coating defects due to edge effects, and 

these defects are expected to affect the collection performance. 

In an effort to mitigate some of the problems mentioned above, a custom 

designed condensation system was constructed. Details of the design, setup, 

optimisation and operation of the system are described in the subsequent sections. In 

principle, the system design is similar to the apparatus used by Miljkovic et al. to 

measure the heat flux of a copper surface that was repetitively oxidised to produce a 

nanostructured surface with  superhydrophobic properties.10 In that work a tube, with 

the outer surface oxidised, was installed within a humidified chamber and cooled by 

flowing cold water through it. The log mean water to vapour temperature difference 

(ΔTLMTD) was calculated by measuring the temperature of the cooling water at the 

tube inlet and outlet, as well as the vapour temperature (Equation 3.3). The heat flux 

could be determined from the increase in temperature, the flow rate and the specific 

heat capacity of the cooling fluid (Equation 3.1). The overall heat transfer coefficient 

of the surface could therefore be calculated from the ratio of the ΔTLMTD and the heat 

flux (Equation 3.2). This design mitigates the first and third problems outlined 

above; however, as the set up only tests one sample at a time, strict control over the 

condensation parameters within the system was required to maintain identical 

environments between testing each surface.  

 

 

3.2 Apparatus Design  

For the purpose of this Thesis, a specialised condensation system was designed 

with the aim of minimising the sources of the experimental errors described in 

Section 3.1. The design was based on a traditional shell and tube heat exchange 

system,17-20 composed of four tubes within a rectangular acrylic condensation 

chamber (Figure  3.2). The outer surface of the tubes was coated with polymer films, 

by dip coating, and treated by a solvent vapour annealing technique, developed in 
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this Thesis and presented in Chapters 4 and 5, to induce film dewetting, leading to 

the formation of polymer patterns on the tube surface. The prepared coatings were 

then exposed to a controlled humid environment within the condensation chamber, 

and the tubes subcooled below the ambient temperature allowing the condensation 

performance of the coatings could be compared simultaneously.  

 

 

 

Figure  3.2: (a) Process and instrument diagram of the condenser system. The cooling system is drawn 
with solid black lines. Humidified and dry air streams are designated solid blue lines. Ambient 
temperature and coolant temperature are measured by sensors at several locations and the signal 
relayed to a data logger throughout the duration of the experiment (black, dashed lines). (b) 
Photograph of the complete condenser system with the main components labelled. Inset: Photograph 
of the inner layout of the condensation chamber, showing the tubes, humidity sensor and plastic 
containers for water collection. 
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3.2.1 Ambient environment control 

Figure  3.2(b) is a photograph showing the complete condensation system. 

Centrally located is the condensation chamber within which the ambient temperature 

and relative humidity could be controlled.  

Laboratory compressed air was humidified by bubbling through a 20 L 

reservoir filled with filtered water and a rectangular air stone (AquaOne, Australia) 

was used to distribute air bubbles, maximising the vapour-liquid interfacial area and 

increasing the water vapour content in the air stream. A thermostatically controlled 

heater (AquaOne, Australia, model 25 W) maintained the water temperature within 

the reservoir at approximately 29.1 ± 1.0 °C. A dry air stream intersected the main 

humidified air-line to provide accurate control over the relative humidity within the 

condensation chamber (Figure  3.2(a), blue solid line), which was measured by a 

humidity sensor within the chamber. The dry air temperature was equilibrated with 

temperature of the humid air stream by running through a length of tube coiled 

within the temperature controlled water reservoir.   

To control the humidity, rotameters and needle valves on both the humid 

(FI02, V02 in Figure  3.2(a)) and dry (FI03, V03) air streams, prior to mixing, were 

used to indicate and control the relative flow of each stream. The flowmeters were 

not used to provide quantitative information regarding the flow rate of the streams as 

the relative flow rates of each line to achieve the desired humidity was strongly 

dependant on laboratory conditions. The ambient temperature within the 

condensation chamber was measured by T-type thermocouples (RS-Australia, model 

158-907) located at the same vertical location as the condensing tubes; the 

temperature difference between the coated tubes and the ambient environment, ΔT, 

was assessed against this value.  

The condensation chamber was isolated from convective and radiative heat 

transfer from the external laboratory environment by insulating with a fibre cladding 

and reflective aluminium foil with air flow allowed to exit the chamber through a 2 

mm separation between the chamber and the base.  

3.2.2 Tube preparation and polymer coating 

Four copper tubes, 10 mm in diameter and 200 mm in length with a 150 mm 

length section machined to a depth of 0.5 mm to expose a smooth, clean surface in 
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the middle of the tube, were mounted within the condensation chamber as shown in 

in the inset photograph in Figure  3.2(b).  The tubes were polished with metal polish 

then wiped clean with petroleum spirit and sonicated in ethanol prior to dipcoating a 

polymer film onto the outer surface (Figure  3.3). The parameters to achieve the 

desired polymer film thickness, as determined by spectroscopic ellipsometry, were 

first established by polymer films cast on two-dimensional copper substrates 

prepared by the same polishing and cleaning procedure due to the difficulties 

associated with measuring the thickness of films cast on three-dimensional curved 

substrates directly by spectroscopic ellipsometry. The colour of the polymer films, 

arising due to thin film interference, was the primary method by which the film 

thickness was deduced to be the same on both substrates.   

 

 

 

Figure  3.3: Setup for dip coating polymer films onto copper tubes. The tubes were capped to ensure 
only the outer surface was coated. They were also wrapped in Teflon tape from the bottom to the start 
of the machined section as it was unnecessary to coat this section. A container was used to control air 
flow around the tube and maintain a clean, inert environment. 

Due to the unstable conditions within the fume hood in which the dip coating 

process was carried out, a plastic container was placed over the polymer vessel to 

minimise interference by the airflow during tube withdrawal and solvent 
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evaporation. Nitrogen gas flowed into the container during the dip coating process to 

ensure an inert, stable and clean environment and facilitate evaporation of the 

solvent.  The copper tubes were plugged at the ends to ensure only the outer surface 

was coated. Any polymer material that was cast outside the machined length desired 

section was wiped off with an appropriate solvent, toluene for PS and ethanol for 

P4VP. The quality and uniformity of the coatings on the copper tubes, which was 

assessed based on colouration, was acceptable for the purposes of the water 

collection experiments described in Chapter 6. Minor variations in the film thickness 

did not significantly affect the size and distribution of the surface patterns produced 

by dewetting, which were observed by optical microscopy and compared against the 

patterns prepared on copper sheets under the same conditions with a known initial 

polymer film thickness. 

The optimal dip coating parameters to produce homogenous polymer coatings 

on two dimensional copper and silicon substrates were determined by Mr Kieran 

Geraghty, a summer scholar under my supervision. These parameters were used to 

produce the films discussed in Chapter 6 and are shown below in Table  3.1. A single 

solution of 2 %wt. polystyrene with Mw = 350 000 g mol-1 in toluene (PS350k) was 

used, while solutions of increasing concentration of poly(4vinylpyridine) with Mw = 

60 000 g mol-1 (P4VP60k) in ethanol were used for bilayer preparation. 

Table  3.1: Film thickness of polymer coatings applied onto two-dimensional copper sheets. 

Polymer solution (substrate) Extraction speed (mm min-1) Film thickness (nm) 

PS350k 2 %wt. in toluene (copper) 120 110 ± 2 

P4VP60k 0.5 %wt. in ethanol (PS) 25 5 ± 1 

P4VP60k 3 %wt. in ethanol (PS) 50 87 ± 5 

P4VP60k 7.5 %wt. in ethanol (PS) 200 826 ± 6 

 

3.2.3 Cooling system 

A cooling system (Figure  3.2(a), black solid lines) was designed to control the 

temperature of the coated copper tubes within the condensation chamber. Ethanol 

was used as the cooling fluid due to its low specific heat capacity, and was chilled 

and circulated around the system by a combined pump-heater (Julabo, Germany, 

model F12-MP). Two plenum chambers on the inlet and outlet sides of the 
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condensation chamber were designed to equalise the fluid pressure and evenly 

distribute the flow between the four tubes which were connected between them. T-

type thermocouples were inserted into the tubes at tee junctions on the inlet and 

outlet sides of each tube (Figure  3.2(b)).  

The cooling circuit was designed to operate in two modes. In open mode the 

maximum flow rate of the pump could be achieved (10 L min-1) by opening a bypass 

valve (Figure  3.4, V01). In this mode, the temperature drop of the ethanol within the 

tubes at the outlet of the condensation chamber could be reduced to within 0.2 °C, on 

average, of the inlet temperature across all tubes due to the high cooling fluid flow 

rate. In closed mode, the coolant flow rate could be measured and moderated. In the 

controlled mode, the coolant flow is diverted through a rotameter (ABB Ltd. Zurich, 

Switzerland, model A6141 Purgemaster) with a needle valve to control and monitor 

flow rates (Figure  3.4, FI01) up to 25 L h-1.  

 

 

 

Figure  3.4: Cooling fluid inlet stream showing the flow indicator / controller and the bypass valve for 
'open' flow mode. 

In this configuration, the apparatus could be used to measure the heat flux of 

each surface coating during water condensation and collection. A low cooling fluid 
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flow rate is required for heat transfer experiments in order to maximise the 

temperature difference across each tube due to heat gain by the cooling fluid as 

calculated by Equation 3.1, providing a more accurate measurement of condensation 

heat transfer. 

 

	 Δ      ( 3.1) 

where Q is the heat flux, ṁ is the mass flow rate of the cooling flow, cp the 

specific heat capacity of the cooling fluid and ΔT the temperature gradient across 

each tube. With knowledge of the heat flux (Equation 3.1) and the ΔTLMTD (Equation 

3.3) of each tube, the heat transfer coefficient h, of each coating could be calculated 

by: 

 

	      ( 3.2) 

 

Δ     ( 3.3) 

 

where ΔTA is the temperature difference between the air and cooling fluid inlets 

and ΔTB, the temperature difference between air and cooling fluid outlets 

respectively. 

3.2.4 Data logging 

A 10 channel data logger (Graphtec, Japan, model midi Logger GL220) was 

used to record the inlet and outlet temperature of the cooling fluid across each tube 

as well as the ambient air temperature using T-type thermocouples (measurement 

error ± 0.5 °C), and the relative humidity of the environment within the chamber 

(probe model B-530, measurement error ± 3%RH) during each experimental run. The 

ratio of humid air to dry air was manually adjusted in response to the relative 

humidity measurement within the chamber. Due to changing lab conditions, it was 

also necessary to monitor and adjust the coolant temperature throughout the 

experiment to maintain the desired temperature differential between the tubes and the 

humidified air stream, which is discussed in Section  3.3.2. 
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The amount of water collected, during steady state operation, was the main 

measurement of interest. This variable was measured by weighing the water 

collected over the course of a single experiment as it rolled off the tubes and into the 

plastic containers located below each tube. These containers were weighed dry, 

before each run and then a second time following droplet shedding from all tubes, 

which was considered to be the starting point of steady state condensation. The mass 

of water collected was then weighed multiple times over the course of the 

experiment, typically lasting 6 h. The amount of water collected by each coating was 

calculated and converted into a collection efficiency value for each coating with units 

of mL m-2 h-1. 

 

 

3.3 Design Optimisation 

3.3.1 Coolant flow problems and plenum chamber redesign 

Initial trial runs of the cooling system resulted in anomalous temperature 

measurements as shown in Figure  3.5(d). While the spread in the temperature 

gradients between the inlets and outlets and the inlet cooling fluid temperatures 

between the four tubes was 0.3 °C, on average, there was a clear bias in the inlet 

temperatures, as Tube 4 was consistently warmer than the remaining tubes. 

Secondly, the temperature gradient within the tubes was also consistently higher in 

Tube 2 and the lowest in Tube 3.   Following the addition of thermal insulation to the 

original brass chambers (Figure  3.5(a), OD 30, ID 16) and a thorough investigation 

of other causative factors, the problem was attributed to flow irregularities of the 

cooling fluid within the inlet and outlet plenum chambers.  

It was hypothesised that due to the small bore size of the brass plenum 

chambers, unequal flow distribution resulted in uneven cooling fluid flow between 

the four tubes. Furthermore, the configuration of the inlet and outlet ports to the 

plenum chambers was also expected to affect irregularities in the fluid flow and 

lastly, the high thermal conductivity of the brass was attributed to the presence of 

thermal gradients along the length of the chambers. A schematic representation of 

the predicted fluid flow behaviour in the brass plenum chamber is presented in 

Figure  3.5(c). 
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To rectify this issue, larger bore plenum chambers were designed and 

manufactured from acetal plastic (Figure  3.5(b), OD 150, ID 130). To ensure even 

pressurisation of both chambers, the inlet port to the inlet plenum chamber was 

shifted to the bottom of the chamber and the outlet chamber outlet was moved to the 

top. A 66 fold increase in the internal volume of the chambers, coupled with the 

rearrangement of the inlet and outlet ports, was found to improve the flow of the 

coolant between the four tubes and resulted in a reduction in the deviation of the 

temperature gradient between the four tubes. Furthermore, the thicker wall and 

thermally insulating property of acetal minimised the heat gain of the cooling fluid 

due to the external laboratory conditions.  

  

 

 

Figure  3.5: (a) Photographs of brass (OD 30, ID 60) and (b) acetal (OD 160 ID 130) plenum 
chambers. For the purpose of scale, the tube fittings on both chambers are the same size. (c) 
Schematic drawings of the predicted turbulent, uneven flow (depicted by arrow width) in the smaller 
bore brass chamber compared with laminar, even flow in the larger acetal chamber. (d) Plot of the 
inlet temperatures (Tinlet) and the temperature difference (dTi/o) between the inlet and outlet for tube 1 
(red), tube 2 (green), tube 3 (blue) and tube 4 (orange) in the condensation chamber. 

3.3.2 Mixing humid and dry air 

Control over the ambient humidity within the condensation chamber was 

important for the purpose of reporting the water harvesting performance of the 



Omar Al-Khayat Design and Development of a Water Collection Apparatus 

66 

surface coatings. To provide sufficient control over the humidity levels, two air 

streams where used, one flowing through a water reservoir to humidify and the 

second, a dry air stream. Both streams were independently controlled by needle 

valves V02 and V03 respectively. Rotameter FI02, with a maximum flow rate of 160 

L min-1, was used to monitor the flow rate of the humid air stream and provide 

feedback for coarse adjustment of the relative humidity within the condensation 

chamber. Meanwhile the rotameter on the dry air stream, FI03, with a maximum 

flow rate of 30 L min-1, was used to provide feedback for fine control over the 

relative humidity. With this design, humidity levels in the chamber could be 

maintained within 2 %RH of the average value, which is within the error of the 

measurement of the humidity sensor (± 3 %RH).  

 

 

 

Figure  3.6: Effect of laboratory temperature (black, solid) on the front (black, dashed) and rear (black, 
dotted) internal temperatures of the condensation chamber, the humid air stream (black, dash dot) and 
the relative humidity within the chamber (red, solid). Experiment was initiated at 16:00 with a 
sampling rate of 2 measurements per minute. A sampling rate of 2 measurements per hour is 
presented in the plot. 

To show the effects of a change in lab conditions on the insulated chamber, the 

stability of the humidity levels and temperatures within the condensation chamber 

were studied over an 18 h period after initially setting the humidity levels at 94%RH 

(Figure  3.6). During this experiment, the lab temperature decreased by 3.5 °C, which 

led to a 2 °C decrease in the internal temperature of the condensation chamber. The 

ambient temperature was monitored at the front and the rear of the condensation 

chamber with T-type thermocouples and the temperature at the two locations was 

found to be within ± 0.1 °C. The level of variability demonstrated in this experiment 

was deemed acceptable for the purpose of the water collection experiments described 
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in Chapter 6 because a simultaneous and direct comparison across 4 samples within 

the condensation chamber was possible over long periods. 

3.3.3 Thermocouple connections for the cooling system 

It was important to the design of the system to be able to monitor both the inlet 

temperature of the cooling fluid within the tubes and the temperature gradient 

between the inlets and outlets of the tubes. The size and location of the fittings was 

dependant on spatial restrictions imposed by the small diameter of the tubes and the 

dimensions of the condensation chamber. Therefore a tee junction fitting was used 

and a special Teflon holder machined to position the weld bead of the thermocouples 

precisely in the centre of the sample tubes to provide an accurate measurement of the 

coolant temperature (Figure  3.7). Permanent adhesive (Henkel Pty Ltd, 3137 Vic, 

Australia, model Loctite gasket maker 596) was used to bond the thermocouple wires 

within the Teflon holder. The thermocouples emerged vertically downwards from the 

condenser tubes to ensure that air bubbles were not trapped around the Teflon holder, 

which would affect the reliability of the temperature measurements.  

 

 

 

Figure  3.7: Photograph of the components of the thermocouple housing and the Teflon thermocouple 
holder. 
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3.4 Apparatus Commissioning 

3.4.1 Coolant filling 

The cooling circuit required approximately 4 L of ethanol to sufficiently fill the 

whole system. Drain valves V04 and V05 were closed and the four sample tubes 

within the condensation chamber were fitted between the plenum chambers with 

sufficient tightness that the cooling fluid did not leak. It was important not to over 

tighten the tube fittings on the condenser tubes as the Swagelok fittings needed to be 

removed to interchange the tubes. Filling was done via the reservoir in the chiller 

with the pump running to circulate the cooling fluid around the system. Care was 

taken to maintain a sufficient level of fluid in the chiller reservoir, otherwise a low 

level alarm sounded and the pump turned off. The bypass valve, V01, was open to 

allow the system to fill at the maximum flow rate of the pump. In order to ensure the 

inlet plenum chamber was filled with coolant, without a headspace of air, the bleed 

screw located on top of the inlet chamber, was loosened to allow air to escape. This 

screw was tightened once the cooling fluid emerged from the top of the chamber.  

3.4.2 Interchanging condenser tubes 

The four sample tubes were designed to be removable to facilitate the need to 

test different coatings as well as to refresh the coatings between experimental runs. 

The tubes were designed to be connected into the tube fitting on the thermocouple 

tee junctions sufficiently tightly to achieve a liquid seal but not enough to swage the 

tubes, in order to enable the removal of the fittings to dip coat the tubes. The tubes 

were centrally located within the holes in the condensation chamber by purpose 

made, tapered Teflon sealing grommets. The grommets were asymmetric lengthwise, 

extending within the chamber to cover the redundant section of tube (Figure  3.8). 

The externally tapered shape of the grommet resulted in a tight seal with the 

condensation chamber and squeezed the grommet around the tube.  
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Figure  3.8: Grommets for aligning and sealing the sample tubes within their location in the 
condensation chamber. 

In order to remove and replace the tubes, the cooling system was first drained 

as described below in Section  3.4.4. All sensors that were attached to the 

condensation chamber were removed and the tubes were unscrewed from the tee 

fittings on the inlet and outlet chambers. The outlet plenum chamber was 

subsequently removed allowing sufficient clearance to withdraw the tubes. The tubes 

were then removed from the thermocouple junctions on the inlet side to the chamber. 

Pulling outwards loosened the tapered grommets and the entire chamber could be 

inclined to provide internal access. The grommets could be removed and the tubes 

were uninstalled sequentially by drawing towards the outlet side carefully. The most 

practical method was to hold the outside of the tube on the outlet side and the 

redundant section of the tube within the chamber to withdraw the tube without 

making contact with the acrylic chamber. Installation of the tubes proceeded in the 

reverse manner and care was required to ensure the coatings were not damaged 

against the chamber walls. Prior to an experimental run it was important for the tubes 

and chamber to be horizontally level, to ensure fluid flow was even across the tubes. 

3.4.3 Apparatus characterisation 

To quantify and compare the water collection efficiency of different surface 

coatings on the condenser tubes it was necessary to characterise the natural 

variability in water collection rate between the four tubes that arose due to 

irregularities in the cooling fluid flow in the tubes and the flow of humid air within 

the condensation chamber as well as external laboratory temperature gradients across 

the four tubes at the inlets and outlets to the condensation chamber.  
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Table  3.2: Systematic error characterisation for water collection apparatus based on the deviation of 
the amount of water collected by the four, polystyrene coated, tubes as a function of ambient humidity 
and the temperature difference, ΔT, between the cooling fluid and the ambient. The error in the 
relative humidity measurements ± 3 %RH and in the temperature measurements ± 0.5 °C. 

Relative humidity 

(%RH) 

ΔT 

(°C) 

Measurement error  

(mL h-1) 

95 10.1 ± 0.08 

96 6.1 ± 0.06

95 5.1 ± 0.05 

95 2.7 ± 0.01 

 

 

The variability in the rate of water collection was measured between the four 

tubes coated with a 110 nm thick polystyrene coating. The humidity within the 

chamber was maintained at 95 ± 3 %RH and the temperature difference between the 

cooling fluid inlet temperature and the ambient temperature ΔT, was varied between 

2.7 – 10.1 °C with multiple water collection measurements taken during steady state 

condensation at each value of ΔT. The magnitude of the systematic error for each RH 

and ΔT combination was calculated and tabulated with units of mL h-1 (Table  3.2).   

3.4.4 Draining the system 

Complete or partial draining of the system was required for interchanging the 

sample tubes within the condensation chamber, cleaning the cooling circuit, 

interchanging the cooling fluid or any other modification to the cooling circuit that 

would result in the cooling fluid leaking from the system.  

There were two drain valves; V04 (Figure  3.9(a)) and V05 (Figure  3.9(b)) built 

into the cooling circuit for the purpose of draining the system. The correct procedure 

for draining involved unscrewing the bleed screw on the inlet plenum chamber, 

followed be clamping the inlet tube from the chiller, and opening the bypass valve 

V01. One or both of the drain valves could then be opened and drained into an 

appropriate container and the coolant could be recycled into the system.  
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Figure  3.9: Locations of (a) the inlet chamber drain valve V04 and (b) the outlet chamber drain valve 
V05. 

3.4.5 Cooling fluid safety  

The safety of the operator has been of foremost consideration during the design 

and manufacture of this condensation system. The procedures outlined above, if 

followed correctly, ensured that the system was prepared and operated in a safe and 

reliable manner.  

As the cooling fluid is ethanol, a flammable and volatile solvent, care was 

taken when filling and draining the cooling circuit to avoid spills, and any spills were 

dealt with appropriately. A tray is located below the condensation chamber as a 

precaution against any spills from the plenum chambers and tube fittings. The outlet 

valves V05 and V04 were tightly closed during normal operation to avoid an 

undetectable slow leak. While filling the circuit with cooling fluid, a small leak from 

the bleed valve was expected but was wiped with absorbent material immediately 

and care was taken to ensure the bleed screw was not completely removed from the 

chamber. Any time that the cooling system contained ethanol, the chiller need to 

continue to run. This chiller model maintained the reservoir temperature at -20 °C, 

which reduced the ethanol vapour pressure around the system to 133 Pa. The entire 

system was kept below the boiling point of ethanol, 78 °C, at all times to prevent two 

phase flow and pressure build up within the tubes and chambers.  
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3.5 Continuing Issues and Future Work 

Water condensation is a very sensitive process and the error associated with 

external environmental conditions could result in large uncertainties when 

considering the water collection efficiency of different surface coatings. Great care 

has been taken to ensure uniform humidity and temperature conditions within the 

condensation chamber to minimise the uncertainty associated with the water 

collection measurement. However extrinsic conditions had a significant effect on the 

environment within the condensation chamber and these are discussed below. Some 

remedies are suggested to enhance the reliability and accuracy of future 

measurements. 

Figure  3.6 illustrates the effect of laboratory conditions on the internal 

conditions of the condensation chamber during an 18 h cycle. Due to the observed 

lag in time between the decrease in temperature in the lab and the subsequent 

temperature decrease in condensation chamber temperature, the insulation of the 

chamber was considered satisfactory and therefore any future remedy of this effect 

will require accurate control over the laboratory environment or the provision of 

another location to set up the apparatus with temperature control. 

As mentioned in Section  3.3.1, individual flow meters were not installed on the 

four sample tubes due to the high cost and heat transfer experiments were not 

conducted in the work presented in this Thesis. For the purpose of flow control and 

measurement, a single rotameter (FI01) was placed at the inlet to the condensation 

chamber and the measurement was used to infer the flow rate through each sample 

tube. The assumptions associated with this method were that the pressure within the 

plenum chambers was stable and the cooling fluid flow evenly distributed across all 

four tubes. The assumption of even flow was validated by the low variation in the 

measured temperature gradients of the cooling fluid between the four condensation 

tubes, following the redesign of the plenum chambers. 

The issues discussed above highlight the difficulty of providing a quantitative 

comparison of the performance of water collection surfaces in this field. The custom 

apparatus described in this chapter addresses many of the problems identified with 

previous works; however it has also raised new issues, including the need for high-

resolution sensors for temperature and humidity measurements due to the sensitivity 
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of water collection to environmental and surface conditions. For the purpose of 

atmospheric water collection, this apparatus provides control over conditions that 

replicate real world scenarios. In comparison to works that rely on the change of 

pressure within a sealed chamber to alter humidity, the current design incorporates 

the effects of the presence of non-condensable gases and realistic water vapour 

concentrations. As a result, the materials tested in this set up can be directly scaled 

up for application in atmospheric water harvesting.  

Regarding the practical aspects of the design, the current method of installing 

and removing the tubes requires manual dexterity and mental concentration to avoid 

damaging the surface coatings by abrasion against the condensation chamber walls. 

To remove this risk, any future design should incorporate an installation mechanism 

internally contained within the condensation chamber to enable the condensation 

tubes to ‘snap’ in and out of the cooling circuit.    
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4.1 Introduction 

The dewetting of thin polymer films from a solid substrate has been studied 

extensively over the past three decades,1-7 and has interesting applications in surface 

patterning.8-9 The Neto group at the School of Chemistry has demonstrated 

applications of polymer dewetted patterns in protein and cell patterning10-12 and in 

atmospheric water capture.13 

In most unstable and metastable polymer liquid films (thickness < 100 nm) 

dewetting occurs by nucleation of holes at random locations, whereby the substrate is 

exposed and the polymer removed accumulates in a rim around each hole.14 With 

time the holes grow in diameter, the rims of neighboring holes coalesce into liquid 

cylinders, and finally into isolated droplets of the polymer on the substrate. Dewetted 

holes have often circular shape and regular rims, but, in cases where interfacial slip is 

strong, undulations of the rim shape lead to fingering and droplet shedding.7, 15-21 

One of the main causes of dewetting is the unfavorable interfacial interactions of the 

liquid film at the solid surface. For example, one proposed form of the interfacial 

potential Φ(h), Equation 1.7, includes the effects of short-range forces (first term) 

and long-range van der Waals forces (two following terms) for polystyrene films of 

thickness h on top of silicon substrates coated with silicon oxide of thickness d, with 

Hamaker constants ASi (negative) and ASiO (positive).14 In the case of a thick oxide 

layer (thickness d of 200 nm), this expression correctly predicts a van der Waals 

attraction which promotes film dewetting. 

 When polar interactions are important, i.e. when either the film or the fluid 

environment in which it is immersed are polar, polar attractions also contribute to 

increasing the driving force for film dewetting.22-23 The polar contribution often takes 

the form 	 ,	 where Sp is the polar component of spreading coefficient, 

and l is a correlation length. 

In the past 10 years there has been increased understanding of another 

important driving force for dewetting, the chain equilibration process in thin films.24-

31 Spin-coating induces strongly out-of-equilibrium conformations of the chains and 

low entanglement density due to the fast evaporation of the solvent. This leads to 

residual elastic stresses that relax upon annealing, and drastically affect dewetting 

rate,27-29 entanglement density and viscosity,32 and thermal expansion.25, 33-35 
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Although annealing of polymer films by exposure to solvent vapours of different 

quality has been explored before,33-40 there has not been a systematic study of how 

solvent quality affects dewetting, and in particular the elastic forces within the 

polymer film.  

In this Chapter, the effect of gradually changing the quality of the solvent used 

for annealing polystyrene (PS) films of thickness 75 - 500 nm on top of silicon 

wafers with a native (1.8 nm thick) oxide layer was observed. A system that does not 

dewet when thermally annealed, as the van der Waals driving force in Equation 1.7 is 

weak. The films dewetted very slowly in a good solvent (toluene) vapour, where the 

PS chains assume a loose, open coil conformation.41, 42   However, the PS films 

dewetted readily in a mixture of the vapour of a good solvent (toluene) and a non-

solvent (ethanol), and the results highlight the role of elastic recoiling forces. In pure 

ethanol the PS chains are completely insoluble and hardly even swell, assuming a 

compact globule conformation through volume interactions in dilute solutions,43 but 

in mixtures of toluene and ethanol the chain behavior is more complicated and 

somewhat paradoxical.44-45 The preferential adsorption of the toluene in the vapour 

mixture leads to a strong collapse of the chains, so that, compared to the pure good 

solvent case, an overall shrinking of the polymer chains is observed. Although this 

behavior has been predicted by Monte-Carlo calculations in pioneering work by 

Magda et al.,45 and observed in scattering experiments in dilute regimes,42-43, 46 or on 

brushes,47 this is the first demonstration of how thoroughly the addition of the non-

solvent affects dewetting morphology, dewetting rate, and dewetting mechanism.  

 

 

4.2 Methods and Materials 

Polystyrene films of thickness 75 – 100 nm (PS96k, Mw = 96 kg mol-1, Mw/Mn 

= 1.01) were spin-coated (20 - 30 mg mL-1 in toluene) onto prime grade silicon 

wafers coated with a native oxide layer (1.8 ± 0.2 nm thick), which were cleaned 

according to the procedure described in Section 2.1. To induce dewetting, the PS 

films were placed in a saturated vapour environment of mixtures of toluene and 

ethanol, varying the weight ratio of the solvents in the liquid phase, in a custom-
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designed Teflon cell (Figure 2.9(a)), which allowed for in situ observation of 

dewetting by optical microscopy. 

Thicker films (thickness 100 - 500 nm) were prepared by dip coating the 

wafers in a PS192k solution (Mw = 192 kg mol-1, 26 – 61 mg mL-1 in toluene, 

lowered at 100 mm min-1). Spectroscopic ellipsometry and x-ray reflectometry were 

used to establish film thickness, with measurements over three points on each 

sample. Atomic force microscopy (AFM) was used to characterize hole morphology 

and to measure the contact angle of the isolated PS droplets on the substrate at the 

end of dewetting.  

The dewetting rate of the PS films was calculated using the central difference 

first derivative of the equivalent radius of the area of a growing hole in the polymer 

film as measured by NIS-Elements software from timelapse images typically taken at 

30 s intervals. 

The quality of the solvents for PS was estimated using Hansen Solubility 

Parameters (Table  4.1). These were used to predict, qualitatively, the relative 

solubility of each polymer/solvent combination. The cohesive energy density of the 

polystyrene and solvent molecules (square of the solubility parameter δ) was 

expressed in terms of the dispersive (D), polar (P) and hydrogen (H) bonding 

contributions to the total solubility parameter. The similarity in the cohesive energy 

density of two molecules 1 and 2 (Ra) was calculated in the three-dimensional space 

defined by the contributing solubility parameters by:48  

 

4  ( 4.1) 

 

 Where an experimentally determined sphere of radius Ro = 8 MPa1/2 for PS 

enclosed all of the ‘good’ solvents, and the relative energy difference (RED) was 

calculated from the ratio of the interaction distance Ra and the radius Ro.
48 As 

illustrated in Table  4.1, toluene is a good solvent for polystyrene (RED < 1), whereas 

ethanol is a non-solvent (RED >1).48  
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Table  4.1: Dispersive (D), polar (P) and hydrogen bonding (H) contributions to the total Hansen 
solubility parameters for polystyrene, toluene and ethanol. Relative energy density (RED) reflects the 
quality of the solvents for solvating polystyrene. RED < 1 represents a good solvent, RED > 1 is a 
non-solvent.48  

Material Hansen Solubility 
Parameters (MPa1/2) 

REDPS 

δD δP δH  

Polystyrene (PS) 18 5 5 0 

Toluene 18 1.4 2 0.6 

Ethanol 15.8 8.8 19.4 1.9 

 

 

Toluene and ethanol are entirely miscible and were mixed in the liquid phase 

inside the custom-designed Teflon chamber, depicted in Figure 2.9(a), in different 

weight proportions (99:1, 95:5, 90:10, 85:15, 60:40, and 40:60 (w/w) 

toluene/ethanol). The mole fraction of each component in the vapour phase is 

known,49 and tabulated in Appendix A. For clarity, the weight composition of the 

liquid mixture will be referred to in this Chapter. 

 

 

4.3 Results  

Thermal annealing of the prepared PS96k films at 180 °C (above the Tg = 100 

°C for bulk PS)50 for long periods of time (> 65 h) increased the surface roughness, 

but did not initiate film dewetting from the substrate, due to the small van der Waals 

driving force (Figure  4.1).14  

 

 

 

Figure  4.1: Representative optical micrograph of PS96K film of thickness 95 nm on a silicon wafer 
with 1.8 nm oxide layer after thermal annealing at 150 °C for 5 days.  
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Upon exposure to the solvent vapour environment, the PS96k films 

immediately changed color due to swelling. X-ray reflectometry data showed that a 

78 ± 0.5 nm PS96k film swelled to 109 nm in the saturated toluene vapour (a 

thickness increase of 31 nm, 40% of the initial thickness) (Figure  4.2). Using the 

empirical rule that 1% of toluene lowers the Tg by 5 °C,51 the increase in chain 

mobility was dramatic, leading to a Tg below room temperature. In contrast, upon 

exposure to vapours of a 30:70 (w/w) toluene/ethanol mixture, the swelling of the PS 

film was only 20 nm, 65% of the value obtained in pure toluene. The swelling of the 

same film in pure ethanol vapour was just 3 nm. This information will be used later 

to explain the observed dewetting behavior. 

 

 

 

Figure  4.2 (a) X-ray reflectivity profiles from solvent swollen PS96k films. Experimental data (empty 
circles) and fits (lines) are shown. From top to bottom the lines correspond to: as prepared (dry) PS 
film (orange), film annealed on 100% ethanol (blue), film annealed in 100% toluene (green), and 
annealed in 30:70 toluene/ethanol (black). (b) Corresponding scattering length density (SLD) profiles. 

4.3.1 Overview on the effect of annealing in good/non-solvent vapour mixture 

Annealing the PS96k films in pure toluene resulted in a very slow dewetting 

process, as expected due to the small van der Waals driving force14 (Figure  4.4(a-d)): 
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few holes nucleated and grew slowly, reaching the size of 100 µm after two hours of 

toluene vapour annealing. Complete dewetting into isolated droplets occurred only 

after 3 days of annealing. The nucleated holes had irregular shape, and jagged hole 

rims, that led to irregular, wide fingers, which did not develop into droplets. In 

comparison, thermal dewetting of the same PS films on an underlying 

polymethylmethacrylate (PMMA) film led to regular, circular holes as illustrated in 

Figure  4.3(a-d). It should be noted that the striated appearance of the film is 

attributed to the non-uniform casting of the underlying PMMA film from acetone 

solution. These striations are also evident when poly4vinylpyridine (P4VP) films are 

cast from ethanol in subsequent Chapters. In all cases, the striations appeared to not 

affect the formation and growth of holes in the film layer during dewetting. 

 

 

 

Figure  4.3: Representative optical micrographs of in situ annealing of PS 96k thin films (75 ± 0.8 nm) 
(a-d) on a film (150 nm thick) of PMMA at 180 °C. Scale bar = 50 µm. 

The addition of the saturated vapours of ethanol to the annealing environment 

resulted in much faster dewetting of the PS96k films. In 85:15 toluene/ethanol 

mixture, the PS96k film dewetted completely within 10 minutes (Figure  4.4(e-h)). 

Upon addition of more than 1% wt. ethanol, the hole rims became unstable in all 

cases, leading to numerous and regular fingers, which pinched off and shed 

numerous droplets inside the growing hole (Figure  4.4(e-h)). In contrast, in the case 

of pure toluene annealing, isolated polymer droplets were only formed upon 

coalescence of adjacent holes, and the droplets were found not inside the holes, but 

on lines of coalescence of neighboring holes. 
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Figure  4.4: Representative optical micrographs of in situ annealing of PS 96k thin films (75 ± 0.8 nm), 
at room temperature (23 ± 1 °C), (a-d) dewetting in the saturated vapour of toluene; and (e-h) in a 
mixture of 85:15 (w/w) toluene and ethanol vapour. Time stamps indicate time since start of vapour 
annealing. Scale bars = 100 µm. 

4.3.2 Rim morphology 

The morphology of rims around dewetted holes was strikingly dependent on 

annealing solvent, as shown in Figure  4.5, which compares two hole rims of similar 

width ≈ 40 m, formed in pure toluene (part a) and in 80:20 (w/w) toluene/ethanol 

mixture (b). The rim obtained in pure toluene was low and wide, with a low contact 

angle of 2° - 4° on top of the silicon wafer (Figure  4.5(c); also discussed later in 

Table 4.2); the hole at this stage was still round and regular in shape, with minimal 

fingering, and the rim width w increased slowly (Figure  4.6), and linearly with 

increasing hole radius, w0.33 r (Figure  4.5(d), blue diamonds).  

Upon the addition of 5% wt. (or greater) ethanol, the rim grew much faster 

(Figure  4.6), reaching a much higher aspect ratio (six times greater height for a rim 

of similar width, approximately 1200 nm versus 200 nm in pure toluene, Figure  4.5 b 

and c) and higher contact angle (9° - 14°). From a width of less than 8 µm the rim 

developed periodic undulations along the circumference, with some portions 

becoming thicker and elongated (cross-section i, Figure  4.5(c)), and some portions 

becoming thinner and narrower (cross-section ii, Figure  4.5(c)). The thick elongated 

portions formed fingers, which repeatedly formed a neck and broke up into droplets. 

The rim width (averaged over the whole circumference) followed a linear growth 

with hole radius, w  0.04 r (Figure  4.5, green triangles). The labels I, II, and III on 

the data for the 95:5 and 99:1 wt. mixtures correspond to the optical micrographs in 

Figure 4.8(c), which identify the first captured dewetted hole (I), the stage when the 
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rim is well established (II), and the stage when undulations (for the 99:1 case) or 

fingering (for the 95:5 case) were well established (III).  

 

 

 

Figure  4.5: AFM micrographs of the rim surrounding a hole in PS96k films (154.8 ± 0.7 nm thick) 
annealed in saturated (a) toluene vapour, height scale = 400 nm; (b) 80:20 (w/w) toluene/ethanol 
mixture, height scale = 1400 nm, scale bars = 20 µm. (c) AFM cross-sections of hole rims, showing 
the receding contact angle (error ± 2°) of the rims on the substrate (dashed line for toluene, solid line 
for toluene/ethanol); sections i – iii were taken along the lines indicated in part (b). (d) Hole rim width 
versus hole radius for PS96k films (75 ± 0.8 nm) annealed in saturated toluene (blue diamonds), 99:1 
(red squares), 95:5 (green triangles), 90:10 (blue circles) and 60:40 (purple crosses)  (w/w) 
toluene/ethanol mixtures. Roman numerals refer to the micrograph sequences for 99:1 and 95:5 in 
Figure 4.8(c). The standard deviation in the data points is smaller than the size of the symbols. 



Omar Al-Khayat Dewetting Polystyrene Films with Toluene-Ethanol Vapour 
 

85 

The observation of large undulations of the rim width are indicative of a 

dewetting mechanism dominated by interfacial slip of the melt at the solid 

substrate.19 Upon addition of ethanol in the annealing atmosphere, ethanol molecules 

likely adsorbed to the silicon oxide substrate, increasing the interfacial slip of the PS 

on top of the ethanol layer. This effect was clear at 5% wt. ethanol, but already 

observable at a reduced level at 1% wt. ethanol: the undulations in the rim width 

became more frequent than those observed in pure toluene (see micrographs in 

Figure 4.8(c)). For both 90:10 and 60:40 (w/w). toluene/ethanol proportions, the rim 

width was similar and reached an averaged constant value at early stages. Figure  4.6 

shows the same rim width data as in Figure  4.5(d) plotted against time, and 

highlights how much faster the maturation of the rim occurred in the presence of 

ethanol. 

 

 

 

Figure  4.6: Growth of rim width over time for holes dewetting in PS96k (78 nm thick) films annealed 
in the saturated vapour of pure toluene (blue diamonds), 99:1 (w/w) toluene-ethanol mixture (red 
squares), 95:5 (w/w) toluene-ethanol mixture (green triangles), 60:40 (w/w) toluene-ethanol mixture 
(blue circles) and 40:60 (w/w) toluene-ethanol mixture (purple crosses). The data (symbols) are 
shown, with two fits (broken lines). 
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4.3.3 Droplet morphology  

The PS droplets found on the silicon substrate at the end of dewetting in pure 

toluene vapours were irregular in shape, appearing pinned to the substrate 

(Figure  4.7(a)), while they were nicely round and regular upon addition of 15% wt. 

ethanol (Figure  4.7(b)). 

 

 

 

Figure  4.7: Optical micrographs of isolated PS96k droplets after completely dewetting 97 ± 1 nm thin 
polystyrene films at room temperature (23 ± 1 °C) in (a) saturated toluene vapours. Scale bar = 100 
µm; (b) 85: 15 (w/w) toluene/ethanol mixture. Scale bar = 20 µm. (c) Ex situ AFM cross sections of 
PS96k droplets dewetted under toluene annealing (broken line), and 85:15 (w/w) toluene/ethanol 
mixture annealing (solid line), with indicated contact angle.  

The contact angle of PS droplets on the silicon substrate was higher (25° ± 2°) 

when the films were annealed in the presence of 15% wt. ethanol, compared to the 

pure toluene vapours (4° ± 2°, Figure  4.7(c), and Table 4.2). Adding 15% wt. ethanol 

into the annealing vapour decreased the spreading parameter of PS on the substrate 

by one order of magnitude compared to annealing thermally and in pure toluene 

(Table 4.2). This effect can be explained with the polar interactions between ethanol 



Omar Al-Khayat Dewetting Polystyrene Films with Toluene-Ethanol Vapour 
 

87 

and silicon oxide, which reduced the spreading of PS, and increased its dewetting 

rate. 

Table  4.2: Contact angle, diameter, deviation from the mean diameter, and distribution density of the 
isolated PS96k droplets after annealing 97 nm thick films in solvent vapours. The spreading parameter 
is calculated from S = γPS (cosθ – 1), where   is the surface tension of PS (41 mN/m at 20 °C)52  and  
is the contact angle of PS droplets on silicon oxide/ silicon substrates. 

Annealing procedure Contact 
angle (°) 

Droplet 
diameter 

(µm) 

Deviation 
from mean 

diameter (µm) 

Droplet 
density 
(mm-2) 

Spreading 
parameter 
(mN/m) 

Thermal above Tg 7.5 ± 5 a - - - -0.35 

Toluene vapour 4 ± 1 21 ± 2 25 50 -0.10 

85:15 (w/w) toluene-ethanol 
vapours 

25 ± 2 13 ± 1 3 746 -3.8 

a Literature value obtained by dewetting thermally a PS film on a 200 nm thick silicon oxide layer on 
silicon.53 

4.3.4 Dewetting rate 

It is obvious from Figure 4.8 that film dewetting became much faster upon 

addition of ethanol vapour to toluene vapour. The dewetting rate reached a maximum 

at 15% wt. ethanol, and decreased again at values higher than 15% wt., until no 

dewetting was observed in pure ethanol vapour (inset of Figure 4.8(a)). Figure 4.8 (a 

and b) illustrate the growth of the diameter of the dewetted holes, D, versus time, t, 

and the dewetting velocity versus hole radius, respectively, until hole coalescence or 

until the holes grew outside the frame. In all annealing conditions, in the early stage 

D  t 2/3 ± 0.1, characteristic of a regime where interfacial slip of the polymer at the 

solid surface is the dominating mechanism.16, 54 In a later stage, D  t1 ± 0.1, 

characteristic of a regime where dissipation takes place mainly by viscous flow 

within the rim.  

. 

 



Omar Al-Khayat Dewetting Polystyrene Films with Toluene-Ethanol Vapour 
 

88 

 

Figure  4.8: (a) Hole growth rate during dewetting of a 74.2 ± 0.8 nm thick PS96k film on a silicon 
substrate. The data is fitted by a power law D t at short times, and by D t at later times. Inset: 
dewetting rate as a function of toluene content in the annealing solvent mixture. (b) Evolution of the 
dewetting velocity of the PS film when annealed in 99:1 (w/w) toluene/ethanol (red squares) and 95:5 
(w/w) toluene/ethanol vapour (green triangles). (c) Optical micrographs of dewetted holes at three 
successive stages indicated in the text. Scale bars = 20 µm.   
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The transition between these two regimes is clearly visible in Figure 4.8(a) for 

the pure toluene case (blue diamonds with dashed line and solid line fits) and the 

99:1 (w/w) toluene/ethanol case (red squares with solid line fits), while it cannot be 

appreciated for the 95:5 and 40:60 (w/w) cases, as it occurs at shorter times and 

smaller hole radius. This transition between slip and viscous dissipation is well 

known for polymer thin films dewetting.16-17, 54 It is expected that in the case of 

interfacial slip the frictional forces are proportional to the size of the moving rim, so 

that when a critical rim size is reached, interfacial slip becomes a minor contributor 

to dewetting, and the dewetting rate becomes dominated by the viscous dissipation 

within the rim.17 From the characteristic time of this transition, an estimate of the slip 

length and reptation times can be derived, as shown in Table  4.3 below 

The change in rim width over time (Figure 4.6) can be matched up with the 

change in dewetting velocity (Figure 4.8(b)), and the appearance of rim undulations 

(Figure 4.8(c)). For the 99:1 (w/w) toluene/ethanol case, the dewetting rate decreased 

steadily in the initial stages (stages I - II), while the rim width was still growing, and 

undulations in the transverse direction were starting to grow (Figure 4.8(c)). Once 

the rim width growth slowed down and the undulations in rim width reached a steady 

state (stage III), the dewetting rate also reached a constant value (v ≈ 0.02 μm/s at a 

hole radius of 160 µm, stage III), corresponding to the transition from a slip regime 

to dynamics dominated by viscous dissipation.16  

In the 95:5 (w/w) toluene/ethanol case, the dewetting velocity initially grew 

with time while the hole was opening up (up to stage I) and fingering was 

developing (stages II), and then reached an average constant value in correspondence 

to the stage where fingering and droplet shedding also reached an established steady 

state (stage III).  

4.3.5 Dewetting thick polymer films 

To further demonstrate the strong drive for dewetting with toluene/ethanol 

mixtures, increasingly thicker films of a higher molecular weight polymer, PS192k, 

were annealed in the vapour mixture of 85:15 (w/w) toluene/ethanol. Strikingly, 

films of thickness from 100 nm to over 500 nm, very thick compared to expected 

range of action of interfacial forces (< 100 nm), could be easily dewetted this way. 

Similar fingering behavior was observed as with thinner films (Figure  4.9(a-d)). As 
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expected, droplet diameter increased with increasing film thickness, and droplets as 

large as 250 m were produced (Figure  4.9(e)), with the density distribution of 

droplets decreasing accordingly. Dewetting rate decreased with increasing film 

thickness (Figure  4.9(f)), as expected, but still maintaining high values compared to 

the negligible dewetting that would occur in pure toluene. 

 

 

 

Figure  4.9: (a) – (d) Optical micrographs illustrating the dewetting of thick PS192k films (335 nm 
thick) in a mixture of 85:15 (w/w) toluene/ethanol, at room temperature (23 ± 1 °C), for the indicated 
times. Scale bars = 200 µm. (e) Average PS192k droplet diameter (red diamonds) and droplet 
distribution (blue squares) as a function of film thickness (lines are to guide the eye); (f) hole growth 
rate as a function of film thickness.  Rate data was not collected for the 520 nm thick films as 
dewetting proceeded over a period of five days. 

4.3.6 Reducing residual stress 

Thermally annealing polymer films for extended periods of time at 

temperatures below Tg is known to reduce the elastic stress within the film, and lead 

to a decrease in hole nucleation density.28, 33 Here, a PS96k film (75 nm thick) was 

thermally pre-annealed at 105 °C for 72 h (just above the bulk Tg of PS) prior to 

annealing in a saturated environment of 80:20 (w/w) toluene/ethanol mixture 

(Figure  4.10(a-c)). The dewetting morphology and rate were compared with the 

dewetting of an untreated film of the same thickness and molecular weight 

(Figure  4.10(d-f)). The holes in the thermally pre-treated film grew with a constant 

velocity that was approximately two orders of magnitude lower than that for 

untreated films (Figure  4.10(g-h)). These findings confirm earlier results that residual 

elastic stresses stored in the films provide an additional driving force for dewetting, 

and that when films are pre-equilibrated above Tg, these stresses may relax and the 
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hole growth slows down. In these pre-equilibrated films the dewetting rates are still 

much larger than in pure toluene, so we can conclude that the additional elastic stress 

specifically due to the exposure to a good/non-solvent mixture contributes 

substantially to the dewetting forces. 

 

 

 

Figure  4.10: Thin PS96k film (76 ± 2 nm thick) annealed in the saturated vapour of 80:20 (w/w) 
toluene – ethanol mixture. (a-c) Film was solvent annealed as cast. (d-f) Film was thermally aged at 
105°C for 72 h to reduce internal stress prior to annealing. Scale bars = 200 µm. Hole diameter as a 
function of annealing time of the (g) as cast, and (h) thermally pre-annealed films. 

 

4.4 Discussion 

By collating all of the presented results, the effect of adding a small amount of 

ethanol to a toluene annealing environment for PS films can be rationalised. The 

investigated PS films did not dewet when annealed thermally and dewetted very 

slowly when exposed to pure toluene, but dewetted readily when even a small 

amount (2% wt.) of ethanol was added. The main conclusion is that annealing 

polystyrene films in good/non-solvent mixtures led to much stronger elastic recoiling 

forces than those usually observed when thermally annealing spin-cast films. This 

conclusion is substantiated in a few points below. 
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4.4.1 Rim morphology and dewetted droplet shape  

The low contact angle of dewetted droplets and the shallow and wide rims 

obtained in pure toluene (Figure  4.5(a)) are a consequence of the conformation of the 

PS chains, which take on a loose, open coil conformation, retained and locked-in 

even after the toluene vapour evaporates. The higher contact angle and the narrower 

and taller rims obtained when a small quantity of ethanol (1% wt.) was added to the 

system are a consequence of the PS chains retracting into a compact globule 

conformation, as a result of the preferential adsorption of toluene in the vapour 

mixture. This peculiar situation could be thought of as an ‘onion-like’ structure: a 

core in which toluene molecules swell the PS chains, bridging together different 

chain segments, surrounded by an outer shell of ethanol, which ultimately drives the 

chain compaction (Figure  4.12). The macro- and microscale observations are a 

consequence of the change in conformation of the polymer chains in the different 

solvents. It is believed that this is the first time that the collapse of the chains due to 

preferential adsorption of a good solvent in solvent mixture, as predicted by 

simulations,45, 55 has been observed in a thin polymer film.  

4.4.2 Effect of adding ethanol on dewetting rate  

Upon addition of up to 15% wt. ethanol to toluene, the steady-state dewetting 

rate increased by more than two orders of magnitude (Figure 4.8(b)) compared to the 

pure toluene case. The bell- shaped curve of the average dewetting rate versus 

solvent mixture composition, with a maximum rate at 15% wt. concentration of 

ethanol (inset of Figure 4.8(a)), can be explained with the competition between the 

effects of the two solvents. The solvation of PS in toluene is required for dewetting 

to occur; as it plasticises the chains and allows PS to flow (no dewetting was 

observed in pure ethanol vapour). The addition of ethanol drove the dewetting faster 

in two ways: on the one hand, by establishing polar interactions with the hydroxide 

groups on the silicon oxide substrate, which favor the spreading of ethanol and 

reduce the spreading parameter of PS. On the other hand, by reducing the PS 

viscosity as a consequence of the collapsed and less entangled conformation of the 

PS chains, as will be discussed later. Increasing the amount of ethanol vapour above 

15% wt. reduced the average dewetting velocity, due to reduced mobility of the 

chains because of the lower toluene content when dewetting started. Indeed, the 
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uptake of the toluene in PS films has been seen to be considerably slowed down in an 

under-saturated atmosphere.56 X-ray reflectometry data reinforce this explanation, as 

at 30:70 (w/w) toluene/ethanol the swelling of the PS film was only 60% of the value 

obtained when annealing in pure toluene (Figure  4.2(b)). 

4.4.3 Molecular recoiling forces   

Thermally pre-annealing the films close to Tg, and then exposing them to a 

mixed toluene/ethanol atmosphere, reduced the dewetting rate significantly. Very 

thick PS films - as thick as 520 nm - could be dewetted by annealing in 

toluene/ethanol vapour mixtures. The latter two observations point to strong elastic 

forces driving dewetting, in addition to the polar interactions at the interface.  

Annealing the PS films above Tg drives the chains away from their out-of-

equilibrium ‘frozen’ conformation obtained through casting, towards more 

energetically favoured quasi-equilibrium conformations.27 This elastic rearrangement 

has been described in the past, particularly in ultra-thin films where elastic forces due 

to extreme confinement are strong.57 Since the films prepared here had a thickness 

between 4Rg and 60Rg, confinement effects were not very strong, and it was instead 

the addition of the non-solvent ethanol that drove dewetting dramatically. These 

observations are closely related to previous work by the Reiter and other groups on 

dewetting driven by relaxation of residual elastic stresses within the film.28-29, 33-34, 42, 

58-59  However, in this study, introducing ethanol in the annealing environment 

substantially increased the recoiling forces in the rim region, and made the 

phenomenon more obvious.  

4.4.4 Transition from slip to no-slip regimes  

 In all the vapour annealing situations investigated the hole growth followed 

the typical behavior expected for thin PS films dewetting upon thermal annealing 

(power law D ~ t2/3 for slip dominated behavior, followed by a constant dewetting 

rate D ~ t for a viscous dominated behavior) at a characteristic time, τ.16 However, 

when more than 1% wt. ethanol was added to the environment, the transition 

between the two regimes occurred at earlier times (Figure 4.8(b)).  
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According to accepted models,16 in the initial dewetting period when the rim 

width is still growing, the dewetting velocity is dominated by interfacial slip, and is 

described by the power law D  t2/3. In this regime the velocity is determined by:17 

  

     ( 4.2) 

 

with γ and η the surface tension and viscosity of the liquid respectively, θ the 

contact angle of the liquid on the substrate, b the slip length (the distance at which 

the velocity of the liquid extrapolates to zero) and w the width of the rim. It is 

straightforward to see from Equation 4.2 that as the rim width w grows, there is a 

proportional reduction in dewetting velocity, and this regime is clearly visible for the 

99:1 (w/w) mixture (Figure  4.8(b)).  

 

 

 

Figure  4.11: Dewetting velocity as a function of the inverse of rim width for PS96k films annealed at 
23 ± 1 °C in the saturated vapours of (a) toluene, (b) 99:1 (w/w) toluene – ethanol mixture and (c) 
95:5 (w/w) toluene-ethanol mixture. 

Figure  4.11(a) clearly shows that Vslip decreases with increasing rim width 

during toluene vapour annealing. Adding only 1% wt. ethanol to the vapour 

environment results in the initial Vslip decreasing not as strongly with increasing rim 

width (Figure  4.11(b)). Further addition of ethanol to the vapour mixture, results in 

Vslip becoming independent of the rim width, suggesting possibly a change both in 

the interfacial properties of the substrate and the molecular properties of the 
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polystyrene. When w = bL/θ, where L is a constant of order 10,60 the dynamics 

become viscosity-dominated,  and slip is no longer the main dissipation mechanism. 

Slip length values, b, shown in Table  4.3 were estimated from the value of rim 

width at which this transition from R  t2/3 (slip) to R  t (no-slip) occurred for the 

cases of annealing in pure toluene and in 95:5 (w/w) toluene/ethanol (in these two 

cases the viscosity could be approximated to be unchanged). The value of slip length, 

b = 700 nm, obtained for the 95:5 wt. toluene/ethanol case, is close to that obtained 

for PS dewetting on hydrophobised silicon OTS monolayers.61 The increase in slip 

length on addition of ethanol is corroborated by the observation that the dewetted 

patterns in this case developed extensive fingering and droplet shedding, which is a 

signature of slip-dominated regimes.21 Finally, it is expected that slip should become 

more dominant in situations, such as the mixed toluene/ethanol atmosphere, where 

the liquid wets the substrate less, and where the polymer coils are more compact and 

solid-like.62-63 By adding ethanol to the annealing mixture, the interfacial slip 

mechanism in the early stage of dewetting has been enhanced in a manner that is 

more immediate and tunable than the modification of surface energy via self-

assembled monolayers.64-65 

Table  4.3: Slip length and characteristic transition time from elastic to viscous dewetting regimes for 
PS96k films (75 nm thick) annealed in toluene and toluene/ethanol vapours. The derivation of the slip 
length is explained in the text. 

Annealing environment Slip length, b (nm) Characteristic time, τ (s) 

Pure toluene 350 20 000 
99:1 (w/w) toluene - ethanol - 3000 

95:5 (w/w) toluene - ethanol 700 270 

60:40 (w/w) toluene - ethanol - 1000 

40:60 (w/w) toluene – ethanol - 2000 

 

4.4.5 Film viscosity  

 From the experiments described, a reptation time could be extracted (the time 

required for the polymer chain to completely emerge from its ‘tube’41-42), which is 

proportional to the viscosity of the polymer solution and its concentration. The time, 

τ, at which the hole growth rate in a dewetting film transitions from the slip-

dominated to the viscous-dominated regime is proportional to the reptation time of 
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the chains within the melt.29 Table  4.3 shows the characteristic times at which this 

transition occurred for PS films annealed in the different solvent mixtures.  

 

 

 

Figure  4.12: Schematic summary of these experiments: optical micrographs of a hole formed in a 
PS96k film (75 nm) dewetting in toluene vapour (above) after the indicated time of annealing, and in 
toluene/ethanol vapour mixture (below), scale bars = 200 µm; on the right corresponding chain 
conformations: swollen PS chain in toluene (red colour), and collapsed chain in the solvent mixture 
(toluene red, ethanol yellow outside).   

For relatively constant toluene content, (100% toluene, 99:1 (w/w) 

toluene/ethanol and 95:5 (w/w) toluene/ethanol) there is a two orders of magnitude 

decrease in characteristic transition time upon addition of ethanol.  It is reasonable to 

consider that these transition times are proportional to the reptation time of the PS 

chains in the films, which can be attributed to two concurrent effects: an increase in 

interfacial slip due to adsorption of ethanol molecules to the substrate, and a 

reduction of polymer viscosity due to the collapse of the polymer chains and 

subsequent decrease in entanglement. It is not possible to distinguish and isolate 

these two effects, but it is likely they both play a role. The collapse of the 

polystyrene chain due to the preferential adsorption of toluene in the mixed vapour 

environment, was simulated by Magda in infinitely dilute solutions,45 and is nicely 

replicated here, and partially explains the increased dewetting rate upon addition of 

ethanol. Figure  4.12 is a schematic summary of the observations discussed in this 
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chapter, whereby the presence of ethanol in the solvent mixture results in 

dramatically increased dewetting rates and extensive fingering in the dewetted holes, 

due to the ‘onion-like’ structure of the toluene preferentially adsorbed to the PS 

chains within an ethanol shell. 

 

 

4.5 Conclusions  

The experiments discussed in this Chapter demonstrate that the addition of 

ethanol vapour to a toluene vapour atmosphere affects drastically and on many levels 

the dewetting process of PS films. The consequences of adding up to 15% wt. 

ethanol to the toluene vapour atmosphere are: a reduced spreading parameter of the 

PS on the silicon oxide substrate, a reduced viscosity of the PS, an increased 

dewetting rate, a slip-dominated hole growth with extensive fingering, and the ability 

to dewet films as thick as 520 nm. The observed phenomena are attributed to the 

transition of the polymer chains to a globular conformation in a toluene/ethanol 

mixture, due to the strong preferential adsorption of the toluene. This behavior, 

predicted by Shultz and Flory,44 and explored by numerical simulations by Magda et 

al.45 for infinitely dilute polymer solutions, is much more pronounced in polymer 

melts. The addition of ethanol drives the dewetting faster, not only because the 

spreading parameter becomes more negative, but because the strong elastic recoiling 

forces on the chains drive hole growth and interfacial slip is increased. From an 

application perspective, annealing metastable films in mixed solvent vapours is a 

convenient and tunable way to produce very large dewetted droplets, and to tune the 

dewetting dynamics more strongly towards a slip regime, without the need for 

surface modification. 
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Dewetting Poly(4vinylpyridine) 
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5.1 Introduction 

In the past ten years there has been increased understanding of the role of the 

chain equilibration processes in thin films as a driving force for dewetting.1-8 Spin-

coating induces strongly out-of-equilibrium conformations of the chains and low 

entanglement density due to the fast evaporation of the solvent. This leads to residual 

elastic stresses that relax upon annealing, and drastically affect dewetting rate,4-6 

entanglement density and viscosity,9 and thermal expansion.2, 10-12 Solvent annealing 

polymer films has been explored before as an approach alternative to thermal 

annealing above the glass transition temperature.10-17 In the previous Chapter, 

polystyrene films annealed in solvent vapour mixtures were investigated, and it was 

demonstrated that adding only 2% of a poor solvent for polystyrene, ethanol, to the 

vapour of a good solvent, toluene, led to extensive viscous fingering, high dewetting 

velocity, and high contact angles of the dewetted droplets and rims. These effects 

were attributed to a combined effect of highly enhanced interfacial slip and strong 

elastic forces within the polymer film. 

In this Chapter, the effects of tuning the chemical composition of the vapour 

environment used for annealing on the dewetting dynamics, mechanism, and 

morphology of a polymer bilayer are investigated. The studied bilayer is made of a 

poly(4-vinylpyridine) (P4VP) film on top of a polystyrene (PS) film. As the 

spreading parameter S for P4VP on PS is negative (-12.8 mN m-1), if the bilayer is 

thermally annealed above the glass transition temperature Tg of the P4VP (145 °C),18-

20 the top P4VP liquid film dewets from the bottom PS liquid film (both polymers are 

above Tg) and at the same time layer inversion occurs, because of P4VP’s higher 

surface tension.18, 20 21-24 Layer inversion becomes obvious when the dewetted P4VP 

film is selectively dissolved, and the morphology of the bilayer before and after 

solvent treatment is revealed (Figure 1.9(a)). Co-dewetting of both top and bottom 

films may also occur if both films in the bilayer are in a liquid state and metastable 

on their respective substrates. For example, annealing P4VP/PS bilayers in a toluene-

ethanol mixture leads to sequential dewetting of both layers, as shown in Figure 

1.9(b). In this Chapter, appropriately choosing the vapour composition is 

demonstrated to prevent layer inversion.  
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5.2 Materials and Methods 

Polystyrene films 98 ± 4 nm thick (PS, Mw = 350 kg mol-1, Mw/Mn = 2.06, 

Sigma Aldrich) were spin-coated (25 mg mL-1 in toluene at 6000 rpm) on prime 

grade silicon wafers coated with a native oxide layer (1.8 ± 0.2 nm thick). Poly (4-

vinylpyridine) films 107 ± 4 nm thick (P4VP, Mw = 60 kg mol-1, Sigma Aldrich) 

were spin coated (3% wt. in ethanol at 6000 rpm) on top of the PS films. Solvent 

vapour annealing of films was carried out in a custom-designed Teflon cell (Figure 

2.9(a)), which allowed for in situ observation of film dewetting by optical 

microscopy. The employed solvent mixtures were composed of ethanol (99.7%, 

Merck), acetone (99.8%, Merck) and water (Millipore, resistance = 18.1 MΩ cm), 

which are entirely miscible and were mixed in the liquid phase in different weight 

proportions and reach equilibrium with the vapour phase in the experimental cell. 

For the binary mixtures, the solvent ratios are presented as mole fractions in the 

vapour phase, using empirical data and literature references (Appendix A). Vapour-

liquid equilibrium data for the ternary acetone-ethanol-water mixtures is also 

tabulated in Appendix A, however the mixture ratios are reported in mass fractions in 

the liquid phase due to a lack of accurate empirical information in the literature for 

the mixture ratios used in this study.  In situ observation of thermally annealed films 

was conducted by placing the coated substrates on a temperature-controlled hot plate 

(ATV Technology, Munich, GmBH, model TR-124) under the optical microscope. 

Image analysis of holes in the P4VP layer prior to coalescence and while they 

remained within the frame was used to determine hole growth rates during annealing. 

Spectroscopic ellipsometry was used to establish film thickness, with 

measurements over three points on each sample. Atomic force microscopy was used 

to characterize the cross section of the rims surrounding holes in the P4VP layer and 

to measure the contact angle of the isolated P4VP droplets on the underlying PS film 

at the end of dewetting.  
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5.3 Results 

5.3.1 Dewetting and solvent quality  

In this Chapter, an investigation of the dewetting of P4VP thin films on top of 

PS films upon exposure to mixtures of solvent vapours is presented. Heating the 

bilayers above Tg has been used before to induce dewetting,19 but extended thermal 

annealing led also to layer inversion (Figure 1(a)).18 This is due to the lower surface 

tension of PS with respect to that of P4VP (Table  5.1), which drives the PS to 

migrate to the air interface, and to the affinity of P4VP for the polar silicon oxide, 

which drives the P4VP towards the substrate. 

In this study three different solvent vapours and their binary or ternary 

mixtures were employed to anneal the bilayers. Upon exposure to the solvent vapour 

environment, the P4VP films immediately changed color due to swelling. Solvent 

quality for P4VP and PS films was estimated using the polymer-solvent interaction 

parameter, χp-s calculated from the Hildebrand solubility parameters (Table  5.1). 

Table  5.1: Solubility and surface energy data for the polymers and solvents used in this study. 
Equation 2 in Appendix B may be used to calculate Hildebrand solubility parameters from Hansen 
parameters.26   

Material Surface 

energy at 

20 °C 27 

Solubility Parameters, MPa1/2 Interaction parameters 

between polymer and 

solvent (S) b 

γ, mN.m-1 δD δH δP δ ΧPS-S ΧP4VP-S 

Polystyrene (PS) 41 18.0 5.0 5.0 19.0 0.00 1.23 

Poly(4-vinylpyridine) 

(P4VP)  
72a - - - 24.528 1.33 0.00 

Ethanol 22 15.8 8.8 19.4 26.6 2.35 0.18 

Acetone 25 15.5 10.4 7.0 20.1 0.05 0.79 

Water 73 15.5 16.0 42.4 47.9 34.01 22.3 

aThe empirical data used to calculate P4VP surface energy is tabulated in Appendix B.29    bPolymer-
polymer and polymer-solvent interaction parameters, χ, are calculated from the Hildebrand parameters 
using Equation 3 in Appendix B. 

A liquid is a good solvent for a polymer when the Flory-Huggins interaction 

parameter χ < 0.5, and it swells the polymer film (but does not completely dissolve 
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it) for values slightly above this.25 Based on data in Table  5.1, ethanol is a good 

solvent for P4VP (and a non-solvent for PS), acetone is a poor solvent for P4VP (and 

a good solvent for PS), and water is a non-solvent for P4VP (and for PS).  

5.3.2 Dewetted hole morphology  

To understand the role of each solvent (ethanol, acetone and water) in the 

dewetting of P4VP from the underlying PS film, the bilayer system was annealed in 

the presence of the saturated vapours of each solvent and their binary mixtures (and 

one ternary mixture). By varying systemically the weight fraction of each solvent in 

the liquid phase, the average dewetting rate of holes in the P4VP film versus vapour 

composition was established.  

 

 

 

Figure  5.1: Series of time lapse optical micrographs of a dewetting P4VP (107 ± 4 nm)/PS (98 ± 4 
nm) bilayer annealed at 23 ± 1°C in vapour mixtures of: (a) acetone – water (90:10), (b) ethanol – 
water (51:49) and (c) ethanol – acetone (15:85), (d) ethanol – acetone – water (30:30:40 w/w (liq.)). 
Scale bars = 50 μm.  
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Figure  5.1 shows a series of time-lapse micrographs of holes nucleating and 

growing in the P4VP film while annealing in different vapour mixtures. In the 

nomenclature of the mixtures employed here, e.g. ethanol-water, the first vapour is 

the better solvent for P4VP, and the second (and third) vapours are increasingly 

poorer solvents.  

Among the binary mixtures tested, the acetone-water vapour mixture induced 

very fast dewetting, indeed the fastest dewetting rate, as indicated in Figure  5.1 by 

the time required to reach hole coalescence and break-up of the liquid rims into 

droplets. In the acetone-water case (Figure  5.1 (a)) hole rims occasionally developed 

transversal oscillations in thickness and height, leading to the formation of viscous 

fingers and detachment of internal droplets (Figure  5.1 (a(iv)), due to Rayleigh 

instability. In the ethanol-water mixture (Figure  5.1 (b)) dewetting was much slower, 

and then again slower in the ethanol-acetone mixture (Figure  5.1 (c)), with complete 

dewetting occurring only after several hours. In the latter two cases the rims were 

regular and stable; the rim width was observed to be the widest in the ethanol-

acetone vapour mixture (Figure  5.1 (c)). In the ternary ethanol-acetone-water case, 

dewetting was slower than in the acetone-water case, but faster than in the other two 

binary mixtures. 

5.3.3 Rates of dewetting in different vapour solvent compositions 

Quantitative data on the growth of holes versus composition of the annealing 

vapour environment is presented in Figure  5.2. Annealing the bilayer in the saturated 

vapours of pure acetone and pure ethanol resulted in very low average dewetting 

rates, around 0.05 µm min-1. P4VP films did not dewet upon annealing in pure water 

vapours within the time frame of the experiment (over 1 hour). In all cases, the 

solvent mixtures induced faster dewetting than each of the pure solvents (insets in 

Figure  5.2). The fact that the average growth rate of the holes reached a maximum in 

mixture of solvent vapours highlights that the two (or three) solvents have different 

roles in affecting dewetting, as discussed below.  

The diameter of the dewetted holes in P4VP films annealed in different vapour 

environments versus time was fitted by power law models, D  tx, where the 

exponent x depended on solvent vapour environment. The trend observed is that the 
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exponent of the power law was highest in mixtures that contained the largest 

amounts of poor solvents for P4VP, acetone and water.  

 

 

 

Figure  5.2: Dewetting rate of holes in P4VP films (107 ± 4 nm) on top of PS films (98 ± 4 nm), upon 
annealing in a vapor mixture of (a) ethanol-acetone, (b) ethanol-water, (c) acetone-water; in (d) 
ethanol – acetone – water, where increasing water content (% wt.) was added to 50:50 (w/w) ethanol-
acetone mixture. Insets: Average hole growth rate (µm min-1) as a function of molar fraction in the 
vapor of (a) acetone, (b-c) ethanol and (d) mass fraction of water added to a 50:50 (w/w) (liq.) 
ethanol-acetone mixture. Annealing was carried out at 23 ± 1°C. 

For pure acetone, the hole growth was linear with time over the duration of the 

experiment, with x ≈ 1 (Figure  5.2(a), black dashes), whereas in pure ethanol vapours 

the exponent was lower, x ≈ 0.3 (Figure  5.2(a), grey plus signs). The ethanol-acetone 

vapour mixtures induced a larger exponent of growth the larger the acetone vapour 
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mole fraction, with a maximum x ≈ 0.6 for acetone fraction 77% mol. and above. The 

fastest average hole growth rate was 1.2 μm min-1 at a 15:85 ethanol-acetone vapour 

phase mole ratio (Figure  5.2(a) purple circles, and inset). The fact that the average 

dewetting rate reached a maximum at a majority acetone composition suggests that 

acetone, the poorer solvent of the two, drives the dewetting; a small amount of good 

solvent ethanol in the annealing environment is sufficient to solubilise the P4VP and 

allows the flow to occur.  

A similar effect was observed in ethanol – water vapour mixtures, where 

increasing the poor solvent (water) vapour content led to an increase in the hole 

growth rate, to a maximum of 1.6 μm min-1 for a 51:49 vapour phase mole ratio 

(Figure  5.2(b, purple circles). In all the ethanol-water mixtures, the hole growth 

profile displayed a clear transition between two regimes: the first faster regime with 

an exponent of x ≈ 0.9, followed by a second slower regime with x ≈ 0.3-0.4. The 

onset of this transition is due to the increasingly dominating viscous (frictional) 

forces at the P4VP/PS interface as the rim grows, slowing down P4VP flow.30-31 The 

hole diameter at which this transition occurred increased with increasing water 

content: 35 µm for 18% mol. water, and 160 µm for 49% mol. These observations 

for water and acetone, that a large content of poor solvent increased the power law 

exponent and delayed the transition to lower exponents, are evidence that an 

increasing water and acetone content increased the driving force for dewetting, and 

overcame interfacial viscous (frictional) forces in the rim. 

Annealing in the acetone – water vapour mixtures resulted in a much higher 

(two orders of magnitude higher) dewetting rate than in the other two binary vapour 

mixtures: 190 μm min-1 for the 90:10 acetone – water mole ratio (Figure  5.2(c), 

purple squares).  This result is remarkable, given that both acetone and water are 

poor solvents for P4VP. In all the acetone-water mixtures the hole growth profiles 

followed a purely linear growth D  tx, with a high exponent x ≈ 1.2.  

To further explore the significant effect of water on the dewetting rate of the 

film, increasing amounts of water were added to a mixture of ethanol and acetone 

(1:1 w/w) (Figure  5.1(d)). Figure  5.2(d) shows that increasing water vapour content 

up to 40% wt. increased the average hole growth rate by 2 orders of magnitude up to 

59 μm min-1 (Figure  5.2(d, black triangles)); mostly, in presence of water the hole 

growth profile followed a single linear growth rate with x ≈ 1.  
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Figure  5.3: Diameter of dewetted holes in P4VP films (107 ± 4 nm) on top of PS films (98 ± 4 nm) 
versus time, during solvent vapour annealing in 90:10 (mol./mol.) acetone – water vapour (blue 
circle), 30:30:40 (w/w)(liq.) ethanol – acetone – water (black squares), 51:49 (mol./mol.) ethanol – 
water (red diamond), 15:85 (mol./mol.) ethanol – acetone (green triangle), pure ethanol (orange cross) 
and pure acetone (purple plus sign). Thermal annealing at 180 °C is represented by filled black 
squares.  

Figure  5.3 concisely summarises the hole growth profiles of dewetting P4VP 

films from an underlying PS film during thermal annealing, solvent vapour annealing 

in pure ethanol and acetone, and in the binary mixtures at the ratios that induced the 

maximum dewetting rates. Thermal annealing at 180 °C, above the Tg of P4VP (145 

°C), resulted in an initial hole growth profile of D  t0.67, typical of a film 

experiencing interfacial slip,31 followed by a second regime (for hole diameter > 20 

µm) with D t, typical of viscous-dominated flow.  

The dependence of the dewetting dynamics on vapour composition is neatly 

highlighted in Figure  5.3. The clear trends here are that:  

-mixtures of solvents induced faster dewetting than pure solvents thermal 

annealing; 

-replacing the poor solvent acetone or the non-solvent water with the better 

solvent ethanol in the annealing environment reduced the rate of dewetting; 

-when acetone was present, mostly the dewetting dynamics followed a single 

linear trend, with larger exponent the larger the acetone content; 
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-in the ethanol-water case, increasing the non-solvent water content delayed the 

transition to a low x exponent to a larger hole diameter. 

5.3.4 Rim and droplet geometry 

Cross sectional profiles of rims surrounding dewetted holes which were 

approximately 100 µm in diameter, and of completely dewetted P4VP droplets on 

the PS substrate were imaged by AFM after annealing in each solvent mixture and 

thermally annealing at 180 °C (Figure  5.4). As shown in Table  5.2, the thermally 

annealed P4VP films had the highest contact angle of both rims and droplets, 

followed by acetone-water, close to ethanol-water mixtures, and the lowest ethanol-

acetone. The contact angle of thermally annealed droplets was more difficult to 

measure due to the effect of partial layer inversion altering the profile at the P4VP-

PS contact line and reducing the contact angle, as can be seen from Figure  5.4(b, 

green profile). In this case the contact angle was deduced by extrapolating the largest 

gradient measured on the P4VP droplet to the substrate. 

Table  5.2: Contact angle of dewetted P4VP droplets and dewetted hole rims of P4VP on top of PS 
film, upon exposure to different annealing environments, as measured by tapping mode AFM. The 
error bar on the measurements is ± 1°. The composition ratios refer to the % mol. in the vapour phase. 

Annealing environment Droplet 
contact 

angle (°) 

Rim 
contact 

angle (°) 

Thermal at 180 °C 42 30 

Acetone - water (90:10) 26 13 

Ethanol - water (51:49) 24 13 

Ethanol - acetone (15:85) 6 3 

 

 

The large variation in contact angle of rims and droplets with varying vapour 

composition is remarkable, as these large variations would usually be induced 

through substantial modification of the underlying substrate, for example with self-

assembled monolayers. The addition of water to the vapour annealing environment 

led to a 20 degrees increase in the droplet contact angle.  
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Figure  5.4: (a) AFM cross section of the rim surrounding holes approximately 100 µm in diameter in a 
dewetting P4VP (107 ± 4 nm) film from a PS (98 ± 4 nm) substrate when annealed in a solvent 
vapour mixture at 23° ± 1°C composed of acetone–water (90:10) (blue solid line), ethanol-water 
(51:49) (red dotted line), ethanol-acetone(15:85) (black dashed line) and upon thermal annealing at 
180°C (green dashed-dotted line). (b) AFM cross section profiles of droplet for P4VP fully dewetted 
from the underlying PS. The line styles and colour denote the annealing conditions as they are 
indicated in (a). 

The contact angle of the droplets was made to reversibly change by 

sequentially changing the saturated vapour environment from a mixture of ethanol-

acetone-water to only ethanol-acetone, as illustrated in Figure  5.5. For simplicity, in 

this figure mixture ratios are reported by mass in the liquid phase. P4VP droplets 

formed in the vapours of an ethanol – acetone – water (25:25:50) mixture had a 

contact angle of approximately 26° (Figure  5.5(a)); exposing these droplets to an 

ethanol – acetone (30:70) mixture led to the droplets spreading on the substrate, 

obtaining a contact angle close to 4° (same area shown in Figure  5.5(b)). The P4VP 

droplets returned to the original large contact angle upon reintroduction into an 

ethanol -acetone-water (25:25:50) saturated vapour environment. 
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Figure  5.5: Representative optical micrographs illustrating reversible wetting behavior of P4VP 
droplets on a PS film, acquired after sequentially annealing a P4VP (43 ± 1 nm) / PS  (96 ±1 nm) 
bilayer in (a) 25:25:50 (w/w) ethanol-acetone - water, (b) 50:50 (w/w)  ethanol - acetone and (c) 
25:25:50  (w/w) ethanol - acetone – water. Scale bar = 50 µm. Insets: representative AFM cross 
sectional profiles of droplets at each step of annealing. 

5.3.5 Thermal annealing and layer inversion  

To explore the occurrence of layer inversion in the bilayers, dewetted films 

were imaged before and after selectively dissolving the P4VP in liquid ethanol (good 

solvent for P4VP, non-solvent for PS). Figure  5.6 illustrates thermally annealed and 

solvent annealed P4VP/PS bilayers, which have reached the final stage of dewetting 

(isolated droplets). The features in parts (b) and (d) remaining after selective 

dissolution consist of the bottom PS film. In the thermally annealed case, extensive 

and strong deformation of the PS film was evident after ethanol washing, with 

indents in the PS films which directly matched the position of the dissolved P4VP 

droplets and rims, as clear evidence that the dewetting front and droplets in the P4VP 

layer penetrated into the PS layer underneath. The initially distinct interface between 

the two polymer films became mixed during thermal annealing, with PS flowing 

from the hole up inside the P4VP rims and droplets (Figure  5.6 (a-b)). On the other 

hand, annealing the bilayer in the acetone-water mixture for a prolonged period (17 

h) caused little evidence of flow in the PS layer, with only minor, nanoscale rim 

formation on the PS film (Figure  5.6(c) and (d)), as both solvents are poor solvents 

for PS. 
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Figure  5.6: Optical micrograph of P4VP (43 ± 1 nm)/PS (96 ± 1 nm) bilayer (a) thermally annealed at 
180 °C for 17 h (scale bar = 50 μm). (b) Same area as in (a), after selective dissolution of the P4VP. 
Inset: AFM cross sections of the rim surrounding a hole in the P4VP layer and a P4VP droplet, dashed 
lines are the PS film exposed by dissolving the P4VP. (c) Bilayer annealed in acetone-water (90:10) 
mixture for 17 h at 23 ± 1°C (scale bar = 50 µm). (d) AFM micrograph of the same area as in (c) after 
selective dissolution of the P4VP with ethanol (scale bar = 10 µm). 

 

5.4 Discussion  

The presented dewetting studies demonstrate that a solvent mixture can be 

tailored to control the dewetting of polymer bilayers. The main conclusion is that the 

role of each of the three solvent vapours employed in the binary and ternary mixtures 

may be identified: 

- ethanol is the good solvent for P4VP, and acts as the plasticizer, enabling the 

film to flow by lowering the Tg of the film below room temperature, and if the film is 

metastable, enables the dewetting to occur. In the absence of ethanol, acetone can 

take on this role, but to a lesser extent. 

- water is a non-solvent for P4VP, and provides a strong driving force for 

dewetting, by inducing a collapse of the polymer chains into globule conformation.  
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Acetone can take on this role, but to a lesser extent, and the driving force is stronger 

the poorer the quality of the solvent for the polymer film. 

- acetone is a poor solvent for P4VP and also acts as a lubricant as it 

preferentially adsorbs to the PS substrate, inducing a lubricated flow (interfacial slip) 

of the P4VP on the PS.  

These conclusions are supported by the discussion points below. 

5.4.1 Molecular recoiling and dewetting rates 

In a thermally equilibrated polymer melt, the chains adopt a nearly ideal 

conformation where the radius of gyration Rg scales with N, the degree of 

polymerization as Rg = aN0.5 with a as the monomer size.32 Spin-casting induces out 

of equilibrium conformation of the chains, due to the fast solvent evaporation, 

leading to elastic stresses within the film.9-10 These stresses are released when the 

film is heated above the Tg and the chains are permitted to re-arrange. When the 

magnitude of this force overcomes polymer-substrate attractive interactions and 

viscous shear forces within the melt, the film is seen to dewet.1, 6, 33-34 5-6, 10-11, 33, 35-36 

By exposing the P4VP films to mixtures of good and poor solvents, an 

additional and stronger elastic force was induced, driving the film dewetting. In the 

experiments presented, polymer collapse predicted in mixtures of good and poor 

solvents by Monte-Carlo calculations by Magda et al.,37 but rarely observed in 

experiments, and then mainly in dilute solution regimes,36, 38-40 was induced. The 

collapse of the chains is attributed to the formation of the “onion-like” structure 

described in Chapter 4, where the good solvent preferentially solvates and plasticizes 

the chains, and the poor solvent forms an outer layer, which overall drives the 

collapse towards a globular conformation. This was demonstrated in the previous 

Chapter where this chain collapse induced by good-poor solvent mixtures resulted in 

elastic stresses that led to the fast dewetting of polystyrene films from a silicon 

substrate, a system that does not dewet during thermal annealing.  

In this Chapter, the presence of water vapour, a non-solvent for P4VP, and 

acetone vapour, also a non-solvent, substantially increased the dewetting rate by 

inducing molecular recoiling and reducing the P4VP viscosity as a consequence of 

the collapsed and less entangled conformation of the P4VP chains. Both acetone and 

water acted as drivers for dewetting, as long as sufficient amounts of plasticizer 

(good solvent ethanol, or to a lesser extent acetone) were present, making the film 
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sufficiently mobile. The maximum dewetting rates were achieved usually with high 

content (49 -85 mol%) of dewetting drivers. In the acetone-water mixture, acetone 

acted as a poor plasticizer, as a driver with water, and as a lubricant, as discussed 

below. 

The increase in the driving force for dewetting due to water and acetone was 

demonstrated not only through both a dramatic increase in dewetting rate, but also 

through an increase in the exponent x, approaching unity, of the hole growth profile 

D  tx (Figure  5.2), and a delay of the transition to slower dewetting. In the case of 

acetone, an additional specific increase in the dewetting rate was established, which 

is explained as inducing lubricated flow (or interfacial slip), as detailed below.  

5.4.2 Interfacial slip  

The dewetting dynamics of polymer melts from solid or highly viscous 

substrates is well understood.30, 41-42 Upon thermal annealing, the P4VP/PS bilayer 

respected the expected trends (initial growth as D  t 2/3, regime dominated by 

interfacial slip, followed D  t characteristic of viscous flow).30, 41 The transition 

between these two regimes is clearly visible in Figure  5.3 (square symbols). The 

intermixing of the two liquid films and layer inversion did not alter the dewetting 

dynamics significantly, as previously observed.18  

However, in the presence of solvent vapour in the annealing environment, and 

especially in the presence of acetone, the dewetting dynamics changed significantly. 

It is believed that the flow in the presence of acetone resembles the flow observed in 

rheological studies of polymer solutions, where the dispersed phase (polymer) is 

depleted from the solid boundary due to steric, hydrodynamic and chemical forces.43 

The enrichment in solvent near the wall means that the flow of the fluid is facilitated 

by the lubrication effect. Three important indicators that a lubricated interfacial flow 

is occurring due to acetone enrichment at the P4VP/PS interface are identified. The 

observable effects of this resemble the effect due to interfacial slip in polymer melts 

flowing over solid surfaces, and so the same terminology is used. The first indicator 

of slip in the presence of acetone is that the dewetting rate in the acetone-water 

mixture is 2 orders of magnitude higher than in the ethanol-water mixture, despite 

ethanol being a better solvent for P4VP. The second indicator is that, in all cases 

where acetone is present, either the dewetting dynamics follows a single straight line 
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with high exponent x (= 0.9 - 1.2) in the power law fit of the diameter vs time curve; 

or the transition between a high exponent in the power law fit (x = 0.9) and a low 

exponent (x = 0.3) occurs at larger hole diameters than in the absence of acetone. 

The third indicator is that in the acetone-water case viscous fingering in the hole rims 

occurs. Acetone adsorption at the PS interface can be expected, as acetone is a good 

solvent for PS, and so adsorption at the PS interface is favored. These indicators 

suggest that acetone adsorbs at the P4VP/PS interface, and lubricates the flow, which 

effectively allows the P4VP to slip more readily on the PS. The higher the acetone 

content, the larger the slip. 

In the only mixture where acetone is missing, the ethanol-water vapour 

environment, the transition from a slip-dominated dewetting regime to a viscous 

regime is also visible (Figure 4(b)). As discussed earlier, increasing the concentration 

of water increased the hole diameter at which the transition between slip-dominated 

flow to viscous flow occurred. Water does not have a strong affinity for PS, but its 

effect on the collapse of the P4VP chains, as described above, is sufficient to 

decreases the entanglement and adhesion of P4VP with the bottom PS chains, and 

this facilitates the flow dramatically.  

5.4.3 Annealing in a ternary mixture of ethanol-acetone-water 

Further evidence of the effect of water vapour in the environment surrounding 

a solvated P4VP chain is provided in Figure  5.2(d), where the addition of water to a 

50:50 (w/w) ethanol –acetone liquid mixture resulted in: an increase in the average 

dewetting rate, a transition from a two-regime growth profile to a single regime with 

constant dewetting rate, as well as narrowing of the rims surrounding the holes in the 

P4VP film and higher aspect ratio droplets (Figure  5.5). In this case, the separate 

roles of the three solvents are observable: ethanol swells P4VP, acting as the 

plasticizer; water and acetone both act as drivers for dewetting, water being a 

stronger driver; and acetone preferentially adsorbs to the PS interface, facilitating 

slip. Annealing in this three-solvent mixture serves to illustrate the importance of 

controlling the ambient humidity conditions during film preparation and solvent 

annealing as the addition of even small amounts of water leads to a distinct variation 

in film dewetting.    
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5.4.4 Spreading parameter and surface energy 

The droplet contact angle presented in Figure  5.4(b) and Table  5.2, and the 

reversibility of P4VP droplet wetting on the PS substrate illustrated in Figure  5.5 are 

indicative of the dependency of spreading parameter for P4VP on PS on the 

surrounding solvent environment. Specifically, the spreading parameter decreased 

dramatically when water was added to the annealing environment (contact angle 

increase from 6 to 24 degrees), and the effect could be reversed by removing water. 

Again, this effect is interpreted as a result of the reorganization of the polymer chains 

within the plasticized film into a more collapsed globule conformation, due to the 

presence of the strong non-solvent water replacing the better solvents ethanol and 

acetone.  

 

5.4.5 Suppression of layer inversion and multilayer dewetting  

Figure  5.6 shows that the use of a solvent vapour annealing environment, 

where the solvents do not sufficiently plasticize the PS film, prevents layer inversion 

and multilayer co-dewetting. During thermal annealing a substantial intermixing of 

the two films, approximately half of the height of P4VP droplets (approx. 1 µm) was 

observed (Figure  5.6(b)). This deformation was reduced to around 50 nm after 

annealing in a saturated acetone – water environment for the same extended period 

of time (17 h). As P4VP films of this thickness completely dewetted within 10 

minutes of vapour annealing, the effect of layer inversion is negligible.  

While dewetting of multiple polymer layers at the same time may be desirable 

for some applications where access to three different surface chemistries is 

beneficial, it is possible to suppress this phenomenon as demonstrated here. The use 

of toluene-ethanol mixtures to induce dewetting of PS films from silicon substrates 

was the subject of the previous Chapter. The same solvent mixture could be used to 

induce dewetting of a P4VP film from a PS coated silicon substrate. By removing 

toluene, and using only poor and non-solvents for PS in the annealing mixture, the 

ability of PS to dewet from the silicon substrate was suppressed (Figure  5.6(c)). 
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5.4.6 Alternative materials, architectures and applications  

Solvent mixture annealing of polymer films provides a route towards the 

production of patterns and architectures in a simple and scalable manner. Chemical 

heterogeneity on a surface may be obtained by simply altering the solvents used for 

dewetting. For example, annealing in a saturated environment of a FC-72 – ethanol 

mixture, where these immiscible solvents were not mixed in the liquid phase, may 

dewet a highly hydrophobic PTFE coating. As shown in Figure  5.7, the dewetting of 

PTFE leads to the formation of holes in the PTFE film and ultimately the self-

assembly of PTFE droplets on the substrate. The hydrophobic nature of PTFE is 

demonstrated by the preferential adsorption of water on the PS substrate instead of 

the PTFE bumps (Figure  5.7(b)).  

 

 

 

Figure  5.7: (a) PTFE droplets on PS film after annealing a PTFE (120 nm) /PS (100 nm) bilayer on 
SiO/Si in FC-72 – ethanol mixed vapour environment. (b) Water vapour displaying preferential 
adsorption on a PS surface with PTFE bumps. (c) P4VP coated holes in a PTFE film, initiated by FC-
72 – ethanol mixture annealing, coated on a PS film on SiO/Si with preferential adsorption of water 
vapour (d) Dewetting P4VP within PTFE holes in a similar sample to (c) by annealing in the saturated 
vapours of a 90:10 (mol./mol.)(vap.) acetone-water mixture. Scale bars = 50 µm. 



Omar Al-Khayat Dewetting Poly(4-vinylpyridine) / Polystyrene Bilayer Films 
  

121 

The production of polymeric wells, from the nano to the micro scale, by 

controlling the end point of PTFE film dewetting, provides an interesting system for 

study. By taking advantage of the non-wetting nature of the PTFE film, it is possible 

to alter the chemistry within the holes by casting other polymers from solution.  A 

high wettability contrast is shown in Figure  5.7(c), where P4VP was spin coated 

from an ethanol solution onto the dewetted PTFE film with holes exposing the PS 

substrate.  

The wettability contrast between the three polymers in this system, P4VP 

within the dewetted holes on PTFE on a PS substrate, can be further utilised to create 

even more complex structures. By annealing this system in the saturated vapours of a 

90:10 acetone-water mixture, the P4VP film dewets from the PTFE rims surrounding 

its enclosure and from the PS substrate resulting in a P4VP droplets resting within 

the well structures (Figure  5.7(d)). Surfaces with such complex combinations of 

chemistry and topography, including the multilayer-dewetting system described 

earlier provide opportunities for the development of many technologies.  

 

 

5.5 Conclusions  

In this Chapter, the effect of the composition of solvent vapour environments 

on the dewetting of polymer films bilayers is demonstrated. The effect of solvent 

vapour annealing with binary and ternary mixtures of ethanol, acetone and water on 

the dewetting rate and morphologies of P4VP film cast on PS films was investigated.  

Tuning of the composition of the vapour mixtures provided control over the average 

dewetting rate and dewetting dynamics of the P4VP film. By vapour mole fraction, 

acetone – water (90:10), ethanol – water (51:49) and ethanol-acetone (15:85) were 

found to be the binary compositions that led to the highest dewetting rates. The role 

of each solvent in the mixture was identified clearly: ethanol (the good solvent for 

P4VP) acts to solubilise the polymer chains, and acetone and water (poor and non-

solvent for P4VP) act to collapse them, inducing the molecular recoiling which 

drives dewetting. Furthermore, acetone in the annealing mixture induced significant 

interfacial slip due to the affinity of acetone for the underlying PS film.  
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Building on these experiments and the work presented in the Chapter 4, 

evidence was provided for molecular recoiling as the primary mechanism driving 

film dewetting. Films that were annealed in the solvent mixtures containing water, 

displayed a contact angle of both the rims and droplets that was approximately 4 

times greater than the films annealed without water present. This is attributed to the 

transition of the polymer chains from an extended to a globular conformation in an 

acetone-water and ethanol-water mixtures, due to the strong preferential adsorption 

of the higher quality solvent. This behavior, predicted by Shultz and Flory,44 and 

explored by numerical simulations by Magda et al.37 for dilute polymer solutions, is 

obvious in polymer melts. The correct choice of solvent in the annealing 

environment for polymer bilayers mitigates the ability of the substrate polymer to 

flow thereby reducing layer inversion as well as inhibiting dewetting of the bottom 

film from the solid substrate. 

Annealing polymer films in the vapour of solvent mixtures controls dewetting, 

including rates and aspect ratio of dewetted droplets, without the need for substrate 

modification.   
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Patterned Polymer Coatings for 

Water Harvesting  
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6.1 Introduction 

The World Economic Forum, in its latest annual risk report, has listed water 

crises as the leading global potential risk in terms of impact and eighth in terms of 

likelihood.1 In a recent study on monthly global water scarcity, Mekonnen and 

Hoekstra concluded that two thirds of the global population (4 billion people) live 

under severe water scarcity for at least one month of the year. Furthermore, half a 

billion people face year-round severe water scarcity. 2  Harvesting fresh water from 

atmospheric humidity and fog is a method that has been previously proposed3 and 

could be utilised as a source of freshwater for regions around the world without 

ready access to surface and groundwater resources. 

The fog harvesting adaptation of the Namib Desert Physosterna cribripes 

beetle, previously misidentified as the stenocara gracipiles,4-5 is a chemically and 

topographically micro-patterned surface structure on its elytra which facilitates the 

collection of drinking water from the fog-laden winds in its otherwise arid 

surroundings.4, 6 Initial experimental simulation of a biomimetically patterned 

surface was conducted by Parker and Lawrence by embedding hydrophilic glass 

beads within a hydrophobic wax.6 Since 2001 the concept of a chemically and 

topographically patterned surface for water collection has been repeatedly studied; 

with the use of different materials, including the introduction of surface roughening 

to promote superhydrophobicity,7 alternative pattern geometries and different 

material fabrication processes.8-14  Most recently, compound surfaces utilising the 

wettability adaptations of multiple plant and animal species have been produced and 

shown to be extremely effective at condensing and collecting water from a humid 

environment.15 In this Chapter, chemically and topographically patterned surfaces, 

prepared by polymer film dewetting, are used for atmospheric water harvesting. 

Previous collaborative work between the Neto group and the Laboratory for 

Sustainable Technology on this front was published in 2011.16 

The solvent vapour annealing techniques developed in the previous Chapters, 

which initiate the dewetting process and maximize the dewetting rate of polymer 

films, were used to produce patterned surface coatings with physical and chemical 

topography on multiple length scales. The water harvesting performance of these 
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coatings prepared on copper substrates was compared against flat, hydrophobic 

polystyrene using the apparatus described in Chapter 3. 

 

 

6.2 Materials and Methods 

Polystyrene films (PS, Mw = 350 kg mol-1) that were approximately 110 nm in 

thickness were prepared by dip coating from solution (2% wt. in toluene, extracted at 

120 mm min-1) onto flat copper sheets and the outer surface of copper tubes, 10 mm 

in diameter. Poly (4-vinylpyridine) films (P4VP, Mw = 60 kg mol-1) of varying 

thicknesses, 5 - 900 nm, were subsequently cast onto this substrate from solution (0.5 

– 7.5% wt. in ethanol). To induce dewetting, the bilayer films were placed in a 

saturated vapor environment of a mixture of acetone and water in a 9:1 vapour mole 

ratio. In situ observation of the dewetting of P4VP60k on the PS350k coated copper 

sheets was conducted by optical microscopy with the custom-designed Teflon cell 

shown in Figure 2.9(a).  

Prior to film preparation, the copper samples were thoroughly cleaned with 

metal polish and wiped with petroleum spirit. This was followed by sonication in 

ethanol and blow-drying with pure nitrogen. Spectroscopic ellipsometry was used to 

establish film thickness; with measurements over three points on each sample. 

Atomic force microscopy was used to analyse the distribution and contact angle of 

the isolated P4VP bumps on the substrate at the end of dewetting.  

The condensation studies, carried out by Mr Jun Hong, a summer intern under 

my supervision, were conducted by cooling the coated copper sheets on a 

temperature controlled Peltier plate (TE technology Inc. CP-031 with controller TC 

48-20) in a controlled humidity environment under the optical microscope. The 

growth and coalescence of water droplets on the surfaces was captured in a series of 

time lapse micrographs and the droplet diameters were analysed using the 

manufacturer’s software. Contact angle goniometry was used to characterise the 

wettability and the roll-off angle of the patterned surface coatings on the copper 

substrate. 

Water collection was conducted in a custom-built humidity chamber containing 

four copper tubes (inset of Figure 3.2(b)). The outer surface of these copper tubes 
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was coated with the patterned polymers, prepared by solvent vapour induced 

dewetting, as well as plain polystyrene as a reference. The coatings were uniformly 

cooled by flowing ethanol from a temperature-controlled reservoir through the tubes, 

facilitating the condensation of water on the coated surface. Water droplets that 

rolled off the tubes were collected in plastic trays situated directly below. The mass 

of collected water was measured at multiple intervals throughout the experimental 

period following the onset of steady state condensation. The steady state water 

collection efficiency (units of mL m-2 h-1) of each coating was directly compared and 

presented herein. 

 

 

6.3 Results and Discussion 

6.3.1 Polymer film dewetting 

Chemically and topographically patterned surfaces were prepared from copper 

substrates coated with polymer bilayer films. The top layer of the film was poly (4-

vinylpyridine) (P4VP), a hydrophilic polymer, which was cast on a hydrophobic 

polystyrene (PS) film. Annealing the polymer coated copper substrates in a saturated 

vapour environment of a liquid mixture of acetone and water (90:10 mol./mol.) 

induced dewetting which was characterized by the nucleation of holes in the P4VP 

film, followed by the growth and coalescence of these holes and ultimately the 

breakdown of the P4VP hexagonal network leading to isolated bumps on the PS 

substrate. Varying the thickness of the spin-cast P4VP film by 2 orders of magnitude 

led to a variation in the size and distribution of the produced dewetted bumps. 

Figure  6.1 illustrates the dewetting process of P4VP films of different initial 

thicknesses to produce isolated P4VP droplets of different diameter and distribution; 

(a) micro patterns (b) macro patterns and (c) nano patterns. The distribution, 

diameter and contact angle of the isolated P4VP bumps is summarized in Table  6.1. 

As the initial P4VP film thickness was increased, the diameter of the P4VP bumps 

increased and the nucleation density of holes in the P4VP film were found to 

decrease, leading to greater spacing between the final isolated bumps, with the 

macro-pattern consisting, on average, of 5 bumps mm-2 (Table  6.1). The P4VP 

bumps on the nano patterned surface were too small to be distinguished by optical 
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microscopy. Therefore atomic force microscopy was used to visualise the pattern 

structure (Figure  6.1(c)) and Figure  6.2.  

 

 

 

Figure  6.1: Time lapse series of optical micrographs of a P4VP film dewetting from a PS coated (110 
nm) copper substrate while annealing in an acetone-water (90:10 mol./mol. (vap)) mixture to produce 
a (a) micro patterned surface coating (scale bar = 50 µm). Inset: AFM micrograph (100 x 100 µm2) of 
P4VP bumps on PS background. Colour scale = 2.5 µm (b) Macro patterned surface coating (scale bar 
= 200 µm) and (c) AFM micrograph of the nano patterned surface coating (scale bar = 5 µm) with a 
cross sectional profile showing the height of the P4VP bumps on the PS substrate. 

The contact angle of the droplets was measured using AFM at the contact line 

with the PS substrate. As shown in Chapter 5, an average droplet contact angle of 

25° for bilayer P4VP/PS films annealed in the saturated vapours of an acetone-water 

(90:10 mol./mol.) mixture was expected. The contact angle of P4VP bumps on the 

macro and micro patterned surfaces were similar to this value; however the contact 

angle of bumps on the nano-pattern were significantly lower than expected. This 
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behaviour is attributed to the onset of intermixing and partial layer inversion of the 

P4VP/PS bilayer film,17-19 the effect of which is negligible in the patterns with larger 

sized bumps. 

Table  6.1: Average distribution, diameter and contact angle of P4VP bumps on a PS coated copper 
substrate after annealing in a 70:30 (w/w) acetone-water mixture. 

Pattern P4VP film 
thickness 

(nm) 

Distribution 
(mm-2) 

Average 
diameter 

(µm) 

Average 
height a  

(nm) 

Contact 
angle 

(°) 

P4VP 
surface 

area 
coverage 

(%) 
Nano 7.3 ± 0.2 136 000 ± 11 000 0.9 ± 0.1 44 ± 10 10 ± 1 8.7 ± 1.5 

Micro 86.2 ± 0.2 793 ± 102 11.9 ± 0.1 1300 ± 100 24 ± 1 8.8 ± 1.1 

Macro 821.4 ± 8.6 5 ± 1 82 ± 9 9000 ± 2000 26 ± 3 2.6 ± 0.7 

a The P4VP bumps were assumed to be spherical caps and therefore the average P4VP bump height, 
hbump, was calculated from the contact angle of the P4VP bumps on PS, θP4VP/PS and the average radius 
of the bumps, rbump by the relationship: h = rbump tan(θP4VP/PS). 

As shown in Figure  6.2 and highlighted by the cross sectional profile of a 

single P4VP bump in the inset to this Figure, the nano scale bumps present an edge 

all around the base at a height of approximately 20 nm, which, from previous work 

by Thickett, Harris and Neto, is believed to be the intermixing and creeping of PS 

onto the P4VP bump due to the higher surface energy of P4VP with respect to PS.18 

The effect of this creeping behaviour of the PS film is to reduce the contact angle of 

the droplets at the contact line with the substrate.  
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Figure  6.2: AFM micrograph of a nano-pattern of P4VP bumps on PS. This image illustrates layer 
inversion of the PS film onto the P4VP bumps. Inset: cross sectional profile of the indicated bump. 
The red circles mark the presence of the PS edge on the P4VP bump.  

6.3.2 Surface wettability 

The wettability of the surface coatings was characterised using contact angle 

goniometry and the results are presented in Table  6.2. The contact angle of a 5 μL 

sessile water droplet on the patterned surface increased as a function of pattern size. 

The contact angle of the three patterns was similar, increasing from 81° for the nano 

pattern to 85° for the micro pattern and 88° for the macro pattern. This wettability 

behaviour can be explained by reference to the Cassie-Baxter relationship for 

heterogeneous surfaces20 

 

cos θ cos θ cos θ     ( 6.1) 

 

where the contact angle of each region of fraction fi of the total surface area 

within the droplet footprint or, as more recently suggested, localised to the contact 

liquid-substrate contact line,21 is averaged to provide the expected contact angle of a 

water droplet on this  surface. The projected surface area coverage, neglecting bump 

surface area, of hydrophilic P4VP in the nano and micro patterned surfaces is 

approximately 9% and for the macro patterned surface the area coverage is reduced 

to 2.6%. Using Equation 6.1 to calculate the contact angle of water on these surfaces 
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yields 88° for the nano and micro patterns and 91° on the macro pattern. These 

values overestimate the hydrophobicity of the surface from experimental 

measurements. As the water droplets are much larger in size than single P4VP 

droplets, the contact line is expected to lie along multiple hydrophilic domains, 

which would decrease the contact angle of the droplets accounting for the 

discrepancy between the measured and calculated values. Furthermore, the 

calculation doesn’t account for the increase in hydrophilic surface area related to the 

curvature of the P4VP bumps. 

Table  6.2: Wettability of the patterned coatings and the hydrophobic polystyrene reference coating on 
a copper substrate 

Pattern Sessile contact 
angle (°)a 

 

Advancing contact angle 
(hysteresis (°))b 

 

Vcrit for droplet sliding at 45° 
(μL) (hysteresis (°)) 

Nano  81 ± 1 90 ± 1 (28) 15.0 (25) 

Micro  85 ± 2 91 ± 1 (26) 15.0 (25) 

Macro  88 ± 3 95 ± 2 (36) 12.5 (27) 

Flat PS 92 ± 1 102 ± 3 (18) 7.5 (19) 

Flat P4VP 45 ± 1 71 ± 3 (61) - 

aSessile drop contact contact angle of water on the surfaces was measured using a 5 µL water droplet. 
aAdvancing and receding contact angles obtained by volume addition-subtraction method by 
sequentially adding and removing 10 µL to a 5 µL at 0.5 µL s-1. 

The contact angle hysteresis, the resistance to droplet sliding due to surface 

interactions,22 was measured using the two methods discussed in Section 2.4: a 

volume addition- subtraction method on a horizontal surface was used to provide 

information on the advancing and receding contact angles, and secondly, by the 

shape of a water droplet with the minimum critical volume to slide down a surface 

inclined at 45° (Table  6.2). The results for the two types of measurement align well 

except for results from the macro-pattern. Due to the contact angle hysteresis of 36° 

on the macro pattern, this surface was expected to have the highest critical volume, 

Vcrit, for droplet sliding on the inclined surface. In fact, the critical volume for droplet 

sliding, Vcrit =12.5μL on the macro pattern was lower than Vcrit  = 15.0 μL on the 

other patterns but greater than 7.5 μL on the flat polystyrene surface. This high value 

for the contact angle hysteresis of water droplets on the macro patterned surface was 

attributed to the large size and sparse distribution of the P4VP bumps on the PS 
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background. A receding droplet experiences significant distortion of the contact line 

due to the chemical contrast between the hydrophilic bumps and the hydrophobic 

background. The significant distance between each bump resulted in very obvious 

‘stick-slip’ motion, which was largely absent on the patterned surfaces with 

numerous hydrophilic bumps. During droplet sliding, the mass and momentum of the 

droplet is able to overcome the adhesive forces of the sparsely distributed 

hydrophilic bumps on the macro patterned surface. On the other hand, the large 

density of bumps on the nano and micro patterned surfaces results in numerous 

pinning points and a larger droplet mass is required to initiate sliding. 

6.3.3 Condensation on surface coatings 

Water vapour condensation experiments were conducted in a custom designed 

humidifying chamber on the patterned and plain PS and P4VP coated copper sheet 

with in situ optical microscopy. Figure  6.3 summarises the results by showing a 

series of optical micrographs of water condensation on the patterned and plain 

surface coatings over time. Figure  6.3(a) illustrates the condensation of water vapour 

on polystyrene coated copper, the reference system, highlighting the characteristic 

formation of water droplets with a uniformly circular geometry and a semi-spherical 

appearance that minimises surface area. In comparison, water droplets nucleating and 

growing on a hydrophilic P4VP surface are irregular in shape as they readily spread 

on the higher energy surface, eventually forming thermally insulating films of water 

on the surface (Figure  6.3(b)). On both of these surfaces, the water droplets grow in 

size and coalesce with adjacent droplets over the course of the experiment. The 

centre of mass of the large droplets that result from coalescence events is located 

approximately at the centre of mass of the original ‘parent’ droplets, highlighted in 

red (Figure  6.3(a)), prior to coalescence. According to Beysens, the condensation 

rate plateaus beyond a surface area coverage of 55% due to competition between 

droplet growth decreasing the free surface area and droplet coalescence increasing 

the free surface area available for the nucleation of new families of droplets.23  

  In Figure  6.3(d) and (e), the P4VP bumps are labelled in the first micrograph 

of the series to distinguish them from the water droplets and a selection of bumps is 

highlighted in blue throughout the series. The relative position of the bumps remains 

constant throughout the series. Figure  6.3(c) and (d), show the condensation 
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behaviour of water on the nano and micro patterns respectively, illustrating the 

hydrophilic nature of these surfaces (higher nucleation density of water droplets) and 

the size of the growing water droplets relative to the dimensions of the hydrophilic 

P4VP bumps. Water condensation on these two patterned surfaces preferentially 

occurs on the hydrophilic bumps, with coalescence occurring when adjacent droplets 

are large enough to span the hydrophobic region between them. This leads to water 

droplets becoming ‘pinned’ to the bumps, resulting in the contact line becoming 

deformed as indicated in Figure  6.3(c) and (d). 

 

 

 

Figure  6.3: OM time lapse of water condensation at Tamb = 20.3 ± 0.5°C, 85.3 ± 3.6%RH and surface 
subcooling ΔT = 3.0 ± 0.5°C on (a) polystyrene (b) poly(4vinylpyridine), (c) nano patterned (d) micro 
patterned and (e) macro patterned surface coatings on flat copper substrates. Scale bars = 50 µm. A 
selection of P4VP bumps, where visible, is highlighted in blue. Droplets encircled in red lines 
coalesce together over the period of the experiment; with the red arrows indicating the direction of 
motion of the centre of mass of these droplets during coalescence. 
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The behaviour of water droplets condensing on the macro-patterned surface 

(Figure  6.3(e)) displays the characteristics of condensation on the hydrophilic P4VP 

coating as well as the polystyrene coating due to the relatively small, 3%, 

hydrophilic surface area coverage of the P4VP bumps. At 2 min, small, uniformly 

circular water droplets nucleate on the hydrophobic PS, and irregularly shaped 

droplets can be clearly seen to condense on the hydrophilic P4VP bumps. The P4VP 

bumps are large enough to support the nucleation of multiple water droplets which 

are visible in the micrographs until 8 min into the experiment. In contrast to droplet 

coalescence on the plain PS and P4VP surfaces, water droplets that coalesce on the 

patterned surfaces have a preferred direction of motion towards the water droplets on 

the hydrophilic P4VP bumps, indicated by red arrows on the micrograph series. This 

directional coalescence behaviour enhances the condensation rate by providing free 

surface area for further droplet nucleation,24-26 in contrast to the flat polystyrene 

surface where the nucleation of new droplet ‘families’ slows down over time. 

Furthermore, the preferential nature of the coalescence is expected to enhance the 

rate at which water droplets approach Vcrit to slide off the P4VP bumps. 

The water condensation behaviour on each patterned surface was qualitatively 

analysed at 85.3 ± 3.6 %RH, for subcooling temperature ΔT, the difference in 

temperature between the ambient and the surface, between 3 – 10 °C. The values of 

ΔT were chosen to illustrate the effect of surface wettability on the condensation rate. 

It was hypothesised that the influence of surface wettability on condensation rate 

would diminish as ΔT was increased at a constant ambient humidity level.  As shown 

in Figure 2.10, a sensor placed 10 mm vertically above the coated copper sample 

measured the ambient temperature and relative humidity and the surface temperature 

was measured by a thermocouple located on the upper surface of the thermoelectric 

Peltier plate. The results for the condensation behaviour of water vapour on the 

patterned and plain surface coatings subcooled by 2 – 5 °C are presented in 

Figure  6.4. The results are reported in percentage area coverage (Figure  6.4(a)), and 

the calculated volume (Figure  6.4(b)), of water condensed on each surface. The 

condensation behaviour of water vapour on the macro patterned surface was not 

analysed as the large size of the bumps prevented accurate analysis of the water 

droplets forming on the bump surface due to the depth of field provided by the 

microscope lens at the required magnification for image analysis. 
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Figure  6.4: (a) Percentage surface area coverage of condensed water over time and (b) volume of 
water condensed over time, normalised against the coated surface area, on the PS (blue), Nano 
patterned (orange), micro patterned (red) and P4VP (green) coated copper sheets at Tamb = 18.4 ± 
2.0°C and 85.3 ± 3.6%RH for surface subcooled by: ΔT = 5.0 ± 0.5°C, ΔT = 3.0 ± 0.5°C (dot-dash 
lines), ΔT = 2.0 ± 0.5 °C (dotted lines). The fluctuations in the amount of water condensed on the 
surfaces at ΔT = 5 °C is attributed to the coalescence of large (by area) droplets that enter and exit the 
image frame. Smooth curves have been superimposed onto the plots to guide the eye along the trends. 

From the surface area coverage plot, Figure  6.4(a), it is clear that the rate of 

water condensation onto the surface is related to the surface wettability. At all 

subcooling temperatures the flat P4VP films (shown in green) have a higher 

proportion of the surface covered in water than the flat PS film coatings (blue). This 

can be attributed to the high nucleation rate and spreading of water droplets during 

growth and coalescence on the hydrophilic surface. The condensation rates on the 

nano and micro patterned surfaces, orange and red lines in Figure  6.4(a) respectively, 

were in between those of the flat P4VP and PS for experiments when the surfaces 

were subcooled by 2 °C and 3 °C, with the nano pattern exhibiting a faster 

condensation rate, as expected due to the higher wettability of this surface, 

demonstrated by the contact angle data in Table  6.2. At ΔT = 5 °C, the condensation 

rate, based on the surface area coverage with water, becomes indistinguishable 

between the P4VP coating and the two patterned surfaces, and in fact, the initial 

condensation rate, up to 50 s into the experiment, for all surface coatings is very 

similar. This indicates that as ΔT is increased, the effect on surface wettability in 

promoting condensation is reduced and all surfaces nucleate water droplets at similar 

rates, irrespective of surface wettability. 
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The volume of water condensed on each surface, plotted in Figure  6.4(b), was 

calculated using Equation 2.13, from the wettability information obtained by contact 

angle goniometry (Table  6.2) and an estimation of droplet radii from the surface area 

of the condensed water droplets by image analysis. As expected, the rate of increase 

in water volume on all of the surfaces increased as the level of subcooling was 

increased from 2 °C to 5 °C. However, due to the low contact angle of water on the 

P4VP coated copper, the volume of water condensed on the surface is lower at all 

subcooling temperatures than on the patterned and  PS surface coatings. At ΔT = 2 

°C, there is a clear difference between the rate of increase in water volume on the PS 

coating (blue, dotted line), which had the highest rate, the micro pattern (red, dotted 

line) and the nano pattern (yellow, dotted line), with the slowest rate of water volume 

collection. This trend is attributed to two effects:  

- The high contact angle of water on the PS surfaces results in a higher volume 

for a given surface area coverage by a water droplet 

-The high nucleation rate of droplets on the patterned surfaces, due to the 

spacing of the hydrophilic bumps, resulted in many droplets that are smaller in size 

at equivalent times to the low number of droplets that nucleate and grow on the PS 

surface.  

As the subcooling is increased, the difference in the rate of water condensation 

on the patterned surfaces and PS, in terms of volume, diminishes.  At ΔT = 3 °C 

(dash- dotted lines), the two patterned surfaces have very similar condensation rates, 

which are lower than the rate of condensation on PS, and at ΔT = 5 °C, the rate of 

increase in the volume of condensed water vapour on the two patterned surfaces and 

PS is similar and considered within the experimental error introduced due to rapid 

condensation and the movement of water droplets into and out of the frames being 

analysed due to coalescence.  

Water condensation measurements provide insight into the preliminary stages 

of water harvesting, namely droplet nucleation and early growth and coalescence. 

However, within the time frames of these experiments, water droplets do not 

approach the critical volumes necessary to slide off the surfaces (Table  6.2). 

Furthermore, the method by which the droplet volume is calculated results in an 

underestimation of the volume of water droplets that are partially present within the 

image frame, as the visible droplet area is converted into an equivalent radius from 

which the volume is calculated. This underestimation of droplet volume is greater for 
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droplets with a lower contact angle. Due to these sources of error, the trends in 

condensation rate have been qualitatively analysed and it is possible to conclude that 

at low subcooling, surface wettability affects the rate of condensation, with a 

patterned surface with hydrophilic domains or a uniformly hydrophilic surface 

condensing more water in terms of surface area coverage. However, when the 

condensation rate is considered in terms of water volume, then the condensation rate 

on the hydrophobic polystyrene coating is consistently higher at all subcooling 

temperatures. Finally, water vapour preferentially condenses on the hydrophilic 

bumps on the patterned surfaces and it was observed that either the spacing, or the 

size of the bumps, influences the nucleation density of water on these surfaces, with 

the micro patterned surface which has larger bumps and a lower distribution density, 

condensing more water by volume than the nano patterned surface coating. 

6.3.4 Water harvesting efficiency of patterned coatings 

By combining the condensation rate measurements from Figure  6.4 and the 

observations of the nucleation and growth behaviour of water droplets on the macro 

patterned surface (Figure  6.3(e)), it was predicted that the sparse distribution (5 mm-

2) of the large hydrophilic bumps, coupled with the movement of water droplets 

towards the bumps during coalescence, would result in a high water collection 

efficiency at low subcooling temperatures on this surface. This hypothesis was tested 

by simultaneously comparing the steady state water collection rate over a period of 6 

h of the three patterned coatings and the plain PS coating in the custom built water 

collection apparatus described in Chapter 3, at ΔT = 3 - 10 °C and 95 %RH. The 

results of these experiments are illustrated in Figure  6.5. 

At ΔT = 3 °C (Figure  6.5, blue bars), the patterned surfaces were observed to 

be more efficient at water collection than the flat hydrophobic PS coated surface, 

with the macro pattern harvesting the most water (14.5 ± 1.1 mL m-2 h-1). The nano 

and micro patterns performed similarly, collecting 11.3 ± 1.1 mL m-2 h-1 and 12.6 ± 

1.1 mL m-2 h-1 respectively and the PS coating produced a water collection rate of 

9.2 ± 1.1 mL m-2 h-1. When the subcooling was increased to ΔT = 5 °C (red bars), the 

PS coating was observed to be the most efficient at water harvesting, collecting 38.1 

± 2.7 mL m-2 h-1 compared with a collection rate of 32.5 ± 2.7 mL m-2 h-1 by the 

macro pattern coating. Finally, the four surface coatings were subcooled by 10 °C 
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(green bars), whereby the water collection rate of all of the surface coatings 

approximately increased by an order of two over the collection rate at ΔT = 5 °C. 

However at these condensation conditions, the difference in water harvesting 

between the four coatings over the course of the experiment was within the error 

margin of the experimental apparatus (± 8.5 °C).  

 

 

 

Figure  6.5: Water collection efficiency of the PS, nano patterned, micro patterned and macro patterned 
surface coatings on copper tubes at 95 ± 3.6%RH, Tamb = 22.1 ± 1.0 °C and ΔT = 3 °C (blue), ΔT = 5 
°C (red) and ΔT = 10 °C (green) for a collection time of approximately 6 h.  

6.3.5 Deterioration of the coating 

The micro and macro patterned surface coatings on copper tubes were 

inspected by optical microscopy before and after long periods of water collection (20 

h). The macro patterns were observed to physically disintegrate and artefacts, 

attributed to swelling, emerged on the P4VP bumps (Figure  6.6(b)).  The wettability 

contrast between the P4VP bumps and the PS background, described in Section 

6.3.3, is shown Figure  6.6(a) and (d). At the conclusion of the water collection 

experiments lasting approximately 20 h, water droplets condensing on the PS 

background were observed to have lost the typical uniformly circular geometry; 

instead they spread on the surface with irregular contact lines, typical of water 

condensing on a hydrophilic surface. This change in the surface wettability is 

illustrated in Figure  6.6(c) and (f) and is attributed to the swelling of the P4VP 
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bumps by the condensing water droplets, which induced thin residues of the 

hydrophilic polymer to leach onto the PS background during coalescence and while 

sliding off the surface.   

 

 

 

Figure  6.6: Optical micrographs of the patterned coatings on the copper tubes showing physical and 
chemical deterioration of (a-c) macro and (d-f) micro patterned surfaces following condensation 
activity. Scale bars = 50 µm 

 

6.4 Other Surface Coatings for Water Harvesting 

Other surfaces and surface preparation methods were briefly pursued for the 

purposes of understanding the fundamental principles behind the effects of 

wettability contrast and topography on water harvesting efficiency, but were not 

further developed. These interesting materials and techniques are worthwhile of 

future investigation and are presented in the optical micrographs in Figure  6.7(a-c), 

with the first column illustrating the surface structure and the second column 

demonstrating the behaviour of condensing water droplets on the surface. A coating 

composed of a phase separated blend of P4VP/PS spin cast from a common solvent 

(chloroform) onto a silicon substrate demonstrates the separation of the effects of 

surface topography from the wettability contrast provided by the two polymers, as 

the isolated P4VP domains are only slightly depressed, approximately 70 nm by the 

AFM cross section in Figure  6.7(a), below the level of the surrounding PS matrix. 
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The nucleation of water droplets clearly occurs on the flat hydrophilic P4VP patches, 

as shown in the second column of part (a). 

 

 

 

Figure  6.7: Optical micrographs of (a) P4VP/PS blend cast on a silicon substrate demonstrating phase 
separation of the two polymers and preferential condensation of water within the P4VP domains. (b) 
Topographically patterned polystyrene coating on copper and water condensation on the surface 
demonstrating pinning behaviour. (c) Topographically patterned P4VP on copper (d) Schematic 
drawings of the combinations of topography, chemistry and geometry of patterned surface coatings to 
optimise water harvesting.  Scale bars = 50 µm. 

The bumpy P4VP and PS surfaces, Figure  6.7(c) and (d) were prepared in 

order to demonstrate the water collection performance of topographically patterned 
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surfaces without chemical heterogeneity. The bumpy P4VP surface was prepared in 

two steps: i) dewetting PS films on the copper substrate using the annealing 

procedure presented in Chapter 4, to produce isolated PS bumps; ii) dip coating this 

dewetted layer with a film of P4VP. The water droplets condensing on this surface 

have an irregular contact line; from direct inspection of the condensation process 

(data not shown), it could be seen that the water droplets nucleated first on the 

bumps. The water droplets are flatter in shape than on the PS surface, and spread to a 

low contact angle, typical of water droplets on a hydrophilic surface (Figure  6.7(b)). 

The bumpy PS surface was prepared by the same method as the bumpy P4VP, 

however a further dip coating step was integrated to coat the P4VP layer with a PS 

film. Unfortunately, following this final step, the bumps were observed to become 

concave (inset AFM cross section to Figure  6.7(b)), which was attributed to the final 

dip coating procedure ‘washing out’ the initial PS bumps, further research in this 

direction was therefore suspended. 

The schematic illustrations in Figure  6.7(d) demonstrate the concept behind the 

surfaces presented in this Section as well as suggestions for future parametric studies 

of surfaces designed for atmospheric water harvesting. The combination of chemical 

contrast (surface energy γ), topography (diameter D and contact angle θ) and pattern 

geometry (separation between features λ) can be optimised to maximise the water 

harvesting capability of a polymeric coating. Furthermore, the surface wettability 

may be tuned and tailored for the condensation of other solvents for the potential 

application of volatile solvent recycling.  

 

 

6.5 Conclusions 

Patterned surface coatings on nano, micro and macro scales were prepared by 

solvent vapour annealing, in an acetone-water mixture, P4VP/PS bilayer films that 

were coated on copper substrates, which led to the P4VP film dewetting and forming 

P4VP bumps on the PS substrate. Different pattern sizes were obtained by varying 

the P4VP film thickness, with average bump diameters varying between 0.9 – 82 µm, 

and an average bump density on the PS background of 5 – 136 000 mm-2. 
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The surface wettability was characterised by contact angle goniometry and a 

direct correlation was found between the proportion of hydrophobic surface area on 

the patterned surfaces and the contact angle of a sessile water droplet, in line with the 

Cassie Baxter theory for heterogeneous surfaces. The contact angle hysteresis 

increased as the hydrophilic area fraction increased, due to the adsorption of the 

water droplets to the hydrophilic domains. The macro patterned surface coating was 

found to have the lowest critical volume for detachment (12.5 µL) of the three 

patterns tested, measured for water droplets sliding down a 45° incline; this was 

attributed to the low surface coverage of hydrophilic bumps resulting in fewer 

pinning points for water droplets. 

The water condensation and collection rates for the patterned surfaces was 

analysed and compared against the performance of a flat hydrophobic PS coating. 

Condensation rate analysis by optical microscopy in a humidified environment 

revealed the importance of surface wettability as the subcooling, ΔT, was decreased. 

The patterned surfaces, with hydrophilic domains, displayed faster condensation 

rates, measured in terms of surface area coverage, than the flat hydrophobic PS 

surfaces. As the temperature differential was increased, the benefit of surface 

hydrophilicity was less important as the condensation rates became increasingly 

similar on all of the surfaces, as expected.23 A similar trend was observed when the 

volume of water condensing on the surfaces was calculated. In this case, the 

patterned surfaces and the PS surface condensed water at similar rates at ΔT = 5 °C. 

When ΔT was decreased, the PS surface displayed the fastest condensation 

rate, by volume, followed by the micro patterned surface. The enhanced 

condensation rate of the micro patterned surface, compared with the nano patterned 

surface was attributed to the size and distribution of the P4VP bumps. The high 

nucleation density of water droplets on the nano patterned surface was observed to 

negatively impact the droplet growth rate over time. The flat P4VP film had the 

slowest condensation rate by volume, due to the low contact angle of water, making 

the condensation almost film wise, where film wise condensation insulates the 

substrate from the atmosphere and reduces the surface area available for new 

condensation. Although, practical limitations of the experimental set up prevented 

analysis of the condensation rates on the macro pattern, observations of water 

condensing on the surface revealed droplet coalescence with a preferred direction 
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towards the hydrophilic bumps, increasing the available surrounding surface area for 

new water droplets to nucleate and leading to enhanced droplet growth on the bumps.   

The water collection performance of the three patterned surface coatings and a 

plain PS surface coating was simultaneously compared in a condensation chamber 

where ambient humidity and surface subcooling were controlled. At low surface 

subcooling, ΔT = 3 °C, and 95 %RH, the macro patterned surface resulted in a water 

collection rate of 14.5 mL m-2 h-1, the highest of the four surfaces tested, with the PS 

coating collecting the least amount of water over the duration of the experiment. 

However, at ΔT = 5 °C, the PS coating outperformed all the patterned coatings, 

collecting 38.1 mL m-2 h-1 and at ΔT = 10 °C the water collection rate of all of the 

surfaces increased significantly, however it was not possible to identify a significant 

difference in the water collection performance between the four surface coatings.    

The results of this study are in agreeance with the experiments in the field of 

condensation heat exchange which find that dropwise condensation, experienced on 

a hydrophobic substrate, leads to higher condensation and heat transfer rates due to 

the smaller value of Vcrit. for droplet sliding off the surface, than experienced during 

film wise condensation on hydrophilic substrates.27 As expected, the experiments 

presented in this Chapter demonstrate that, although water condensation  is slower at 

low values of ΔT and relative humidity on all surfaces, the effect is particularly 

strong on purely hydrophobic surfaces due to the lower droplet nucleation rate, 

which is also described theoretically by Equation 1.5.23, 28 Under these conditions, a 

chemically and topographically patterned surface coating with hydrophilic bumps at 

least 80 µm in diameter, 9 µm in height and with bump separation on the millimetre 

scale is shown to have the highest water collection efficiency. It is suggested that 

patterned surfaces, manufactured by polymer film dewetting, could be tailored to 

selectively adsorb and collect a variety of solvents from the vapour phase at 

atmospheric temperature and pressure and with low energy demands for surface 

cooling.  

Finally, the robustness of the patterned surface coatings was analysed after 

extended periods of water collection. The macro and micro patterned surfaces 

coatings appeared to mechanically degrade and the chemical contrast between the 

hydrophobic background and hydrophilic bumps decreased. This degradation was 

attributed to the swelling of the P4VP bumps by water on the surface leading to 

disintegration of the bumps and leaching of the P4VP onto the hydrophobic regions. 
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The combination of P4VP and PS has been used to prove the concept of water 

collection on patterned surfaces, however the degradation of the P4VP bumps 

suggests that an alternative hydrophilic material be used or a treatment method, such 

as cross linking, be developed to stabilise the bumps on the hydrophobic background. 

There remain extensive opportunities to optimise the wettability contrast, pattern 

geometry and understand the fundamental role of surface topography and chemistry 

on the water condensation and collection process, however the concept of water 

collection by chemically and topographically patterned surface, prepared by a 

simple, low cost and reliable solvent annealing method, has been proven successful. 
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7.1 Conclusions and Outlook 

This Thesis describes a novel strategy to prepare patterned surface coatings, 

with controlled surface architecture and chemistry, by dewetting polymer films from 

a solid or ‘soft’ polymer substrate. The solvent annealing method presented provides 

a simple, inexpensive and scalable route towards the production of patterned coatings 

on both flat and three-dimensional substrates. The ability to control the rate of 

dewetting and the surface architecture provides a significant step towards the 

adoption of polymer film dewetting as a mainstream material fabrication process, 

which is demonstrated by the use of patterned surface coatings on copper tubes, 

prepared by dip coating and subsequent solvent vapour annealing, for atmospheric 

water harvesting. 

Chapter 3 describes the design and development, construction and 

characterisation of a purpose-built apparatus for water harvesting measurements. The 

design is composed of a central condensation chamber which is controlled for 

temperature and humidity. Within the chamber, four parallel polymer coated copper 

tubes are internally cooled below the ambient environment (subcooled) by a flow of 

ethanol from a temperature-controlled circulating refrigerator. The apparatus is 

designed to allow direct observation and the simultaneous comparison of the water 

collection performance of four surface coatings within the same ambient 

environment. The apparatus may also be used for measurement and calculation of the 

heat transfer coefficient of these coatings, but heat transfer experiments were beyond 

the scope of this Thesis. This Chapter also contains information on the setup and 

issues related to the safe operation of the apparatus. Coating and dewetting of the 

polymer films on the copper tubes to produce patterned surface coatings and the 

discussion on the experimental work utilising this apparatus is the subject of Chapter 

6. 

Chapter 4 describes a novel solvent vapour annealing technique where PS 

films, coated on a SiO/Si substrate, were exposed to a saturated vapour environment 

of a mixture of toluene and ethanol, a good and a poor solvent for PS, respectively. 

Systematically increasing the concentration of ethanol in the mixture revealed a 

drastic increase in the rate of hole growth in the PS film as well as a change in 

morphology of the holes. Optical microscopy was used to follow the in situ growth 
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of the holes in the PS film, from which the hole growth rate, rim width, droplet 

diameter and droplet distribution were extrapolated. Furthermore, the receding 

contact angle of the rims surrounding the holes in the PS film and the equilibrium 

contact angle of the PS droplets at the conclusion of dewetting were measured from 

cross sectional profiles obtained by atomic force microscopy.  The main conclusion 

of this work was that annealing PS films in a vapour mixture of a good and poor 

solvent resulted in much stronger elastic recoiling forces, a driving force for film 

dewetting, than when the films were thermally annealed or annealed in pure toluene, 

a good solvent for PS. 

Morphologically, the rims surrounding the holes became unstable on the 

addition of more than 1% wt. ethanol to the annealing environment, leading to 

undulations in the transverse direction which resulted in extensive fingering and 

radial droplet shedding within the holes. The onset of droplet shedding coincided 

with a transition from an increasing dewetting rate regime to a second regime 

characterized by linear hole growth at the maximum dewetting rate. Due to this 

trend, the droplet shedding mechanism has been considered to lead to the ‘auto-

optimisation’ of film dewetting. It is suggested that future morphological studies may 

utilise high-resolution measurement techniques, such as confocal microscopy on 

dewetting films doped with fluorescent molecular probes, to study the flow behavior 

of the polymer in the rim region surrounding the growing holes as well as the bulk 

film.    

Adding up to 15% wt. ethanol to the toluene saturated vapor environment 

increased the rate of PS film dewetting by up to two orders of magnitude compared 

to annealing in a pure toluene environment. Furthermore, the contact angle of 

isolated PS droplets and the receding contact angle of the rims on the silicon 

substrate increased approximately by a factor of 6 over the films annealed in pure 

toluene.  These observations were attributed to the reorganization of the polymer 

chains within the PS film, which was plasticized due to the presence of toluene, and 

to enhanced slip at the PS-substrate interface due to polar interactions between 

ethanol and the hydroxide groups on the silicon oxide substrate.  

Due to the mixed solvent vapour environment surrounding the PS film, an 

‘onion-like’ structure of solvent layering exists around the polymer chains: an inner 

core of the preferentially adsorbed toluene molecules, which swell the PS chains, 

surrounded by an outer shell of ethanol which drives chain compaction towards a 
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globule conformation. This conformational change of the polymer chains, 

theoretically predicted by Shultz and Flory and demonstrated by Monte-Carlo 

simulations in work by Magda et al. for infinitely dilute polymer solutions has been 

demonstrated in polymer melts in this Thesis, whereby it enhances the elastic driving 

forces for film dewetting. Rapid film dewetting occurs when this enhanced driving 

force is coupled with lower film viscosity, due to the compact conformation of the 

polymer chains, and slip at the interface, as a result of the polar interactions between 

the ethanol and the silicon oxide substrate. The specific effects, on film dewetting, of 

slip at the interface and lower film viscosity due to chain compaction and 

disentanglement, could not be separated by the experiments conducted in this Thesis. 

However, it may be possible to separately identify these effects through rheology or 

crazing experiments1 in the presence of solvent vapours. The enhanced driving forces 

for film dewetting by exposing a polymer film to a solvent vapour mixture 

environment was further demonstrated in this Chapter in two ways: firstly by 

dewetting PS films up to 520 nm in thickness by annealing in toluene-ethanol 

saturated vapour environments (Figure  7.1(a)), and secondly by completely 

dewetting PS films which had been aged at the Tg of PS (105 °C) for 72 h prior to 

exposing to the saturated solvent vapour mixture.  

 

 

 

Figure  7.1: Photographs of dewetting P4VP/PS bilayers, showing hexagonal networks of isolated 
P4VP bumps on PS coated substrates. (a) Silicon wafer (10 x 10 mm2), (b) copper sheet (40 x 40 
mm2) and (c) a copper tube, 10 mm in diameter. 

The findings presented here are fundamentally significant, as the ability to 

control the rate of a dewetting experiment, as well the aspect ratio of the droplets and 

the behavior of the rims surrounding dewetted holes simply by tuning the 

composition of a solvent mixture composition opens up avenues for the observation 
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and understanding of the underlying molecular scale interactions that result in this 

phenomenon.  Practically, this annealing technique provides the researcher the 

freedom to dewet polymer systems that are stable on the substrate when thermally 

annealing, simply by the choice of an appropriate solvent mixture. 

The solvent vapour annealing technique developed for dewetting PS from an 

underlying silicon substrate was extended to dewet P4VP/PS bilayer films to produce 

chemically and topographically patterned polymeric surface coatings. The use of 

binary and ternary solvent vapour mixtures of ethanol, acetone and water as vapour 

annealing environments for the bilayer films, leading to P4VP dewetting from the 

underlying PS film, was discussed in Chapter 5.   In this Chapter, the role of each 

solvent leading to P4VP film dewetting was deduced: ethanol, a good solvent for 

P4VP, swelled and plasticized the film, acetone and water, poor solvents for P4VP, 

enhanced the elastic stresses in the polymer chains due to the collapse of the polymer 

chains. The enhanced dewetting rate observed during annealing in mixtures 

containing acetone could also, in part, be attributed to interfacial slip due to the 

affinity of acetone to the PS substrate. 

Thermally annealing P4VP/PS bilayer films in order to induce selective 

dewetting of the P4VP layer has previously been shown to lead to layer inversion. 

Another phenomenon, termed ‘co-dewetting’, whereby both layers in a bilayer film 

dewetted from their respective substrates was described in Chapter 5. For the 

practical purposes of this Thesis, both of these phenomena were undesirable as they 

affected the wettability contrast provided by the patterned surfaces produced by 

dewetting a hydrophilic P4VP film from an underlying hydrophobic PS film. The 

onset of these phenomena was attributed to the swelling and plasticization of the PS 

layer during thermal annealing or while solvent annealing in the presence of a good 

solvent for PS. It was demonstrated in this Chapter, that the choice of solvents not 

only enhanced the dewetting rate of the P4VP film but also mitigated the onset of 

layer inversion and co-dewetting by maintaining the PS film as a solid substrate. 

Finally, to demonstrate the flexibility of the developed solvent vapour 

annealing technique and the ability to produce unique and complex surface 

architectures by polymer film dewetting, a PTFE/PS bilayer film was dewetted by 

annealing in an appropriate choice of solvents. The behavior of water condensing on 

the surface patterned with PTFE bumps on PS illustrated the wettability contrast 

between these two hydrophobic polymers. Furthermore, the non-wetting nature of 
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PTFE was utilized to spin coat P4VP from ethanol on a partially dewetted PTFE/PS 

bilayer (holes within the PTFE film revealing the underlying PS film). The outcome 

was a surface with extreme wettability contrast between the PTFE matrix and the 

P4VP cast within the holes. Finally, the P4VP film was solvent vapour annealed in 

an acetone-water mixture and dewetted, firstly from the PTFE matrix surrounding 

the hole and then from the underlying PS film to produce P4VP droplets within the 

PS ‘wells’ in the PTFE matrix.  

Chapter 6 describes the practical application of the novel solvent vapour 

annealing technique described in the previous two Chapters to dewetting P4VP/PS 

bilayer films on two and three dimensional copper substrates (Figure  7.1(b) and (c)). 

By dewetting P4VP films ranging in thickness from a few nanometers up to 

hundreds of microns, P4VP bumps with a range of diameters over 2 orders of 

magnitude were prepared on the underlying PS film as cast on the copper substrates. 

The contrast in surface wettability presented by the hydrophilic bumps on the 

hydrophobic background was qualitatively demonstrated by observing the 

condensation of water vapour on the subcooled coated substrates within a controlled 

humidity environment. The observations from this study revealed the strong 

dependency of water condensation rate on the surface wettability at low levels of 

subcooling below ambient temperatures, with the condensation rate, in terms of 

wetted surface area, becoming independent of surface wettability at high levels of 

substrate subcooling, i.e. water droplets nucleated and grew at similar rates on both 

the hydrophobic polystyrene coatings and coatings with a surface area containing 

hydrophilic P4VP domains as well as completely hydrophilic P4VP coatings.  

Water collection studies were carried out using the purpose built apparatus 

described in Chapter 3. The water harvesting performances of nano, micro and macro 

scale patterned coatings was directly compared against a flat PS coating at 95 %RH 

and subcooling temperatures varying between 3 – 10 °C. At low subcooling (3 °C), 

the macro patterned surface collected the most water (87 mL m-2) over a period of 6 

h, with the hydrophobic PS coating collecting the least. As the subcooling was 

increased to 5 °C and then 10 °C; the water collection of all of the surfaces increased, 

however the PS coating collected the most water in both instances as predicted from 

the condensation observations. These results illustrated that the concept of 

biomimetic water harvesting, inspired by the adaptations of the Namib Desert beetle, 

is particularly useful for the passive, condensation and collection of water vapour.  
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A parametric study of the relative importance of surface wettability and 

topography as well as the effects of bump spacing, size and aspect ratio are proposed 

as further work in this field. The preparation techniques for polymeric surfaces that 

could be used for these studies were presented but due to time constraints the 

experiments were not conducted. While the benefits of utilizing patterned surfaces 

for water collection have been demonstrated, and polymer film dewetting has been 

shown to be an efficient and cost effective route towards manufacturing these 

surfaces, there exist some drawbacks to this technology. Firstly, polymer films are 

delicate and may be susceptible to delaminating from the underlying substrate when 

exposed to solvents, ultra-violet radiation and mechanical abrasion. The deterioration 

of the P4VP bumps on the patterned surfaces following extended periods of water 

collection was discussed in Chapter 6. Polymeric coatings may be made more robust 

by using alternative preparation techniques such as chemical vapour deposition2 

where the polymer may graft directly onto the substrate or form insoluble crosslinked 

networks.  Alternative polymer systems, which are more durable to UV and solvent 

exposure, can be identified and finally, the mechanical strength of the coatings may 

be increased by utilizing nanoparticle – polymer composite films. Improving the 

mechanical durability of the surfaces would also allow for the removal of biofilms 

and other contaminants that are expected to form on the surfaces during water 

collection.   

In this Thesis, a novel, simple, scalable and inexpensive method to produce 

patterned polymeric surface coatings by polymer film dewetting,  with patterns 

produced on the nano to the macro scales, has been presented. A mechanism is 

proposed, which describes the dependence of dynamics and hole and rim 

morphology of a dewetting polymer film annealed in a saturated solvent vapour 

mixture, on the solubility of the polymer in each solvent.  The ability to simply tune 

the vapour environment surrounding a polymer system to induce and control 

dewetting from solid and ‘soft’ substrates allows the researcher to produce patterned 

surfaces displaying a range of complex physical and chemical architectures, from a 

variety of polymers. This simple, cost effective and scalable technique provides a 

step towards the use of polymer film dewetting to produce patterned surface coatings 

for technological and industrial application. By comparison; commonly used etching 

techniques which provide superior control over the location and geometry of 

chemical heterogeneities on a surface, are limited to lab-scale research due to the 
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prohibitive costs of scaling up the technology. Similarly, printing techniques which 

offer a viable alternative pathway towards the large scale production of patterned 

polymer materials are currently limited to producing two-dimensional architectures 

at the micro scale. It is suggested that in the future, a hybrid process combining 

printing with the solvent vapour annealing technique presented in this Thesis may be 

the solution to producing patterned polymeric materials with control over the pattern 

distribution and geometry. 
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Solvent mixture vapour fractions 

Assuming that the solvent mixtures were an ideal solution, the partial pressure 

(xipi) of each solvent component in the vapour phase could be deduced from Raoult’s 

Law: 

	  

 

where Ptotal  is the total pressure of the solvents, xi is the mole fraction of each 

component in the liquid mixture and pi is the saturation pressure of each component 

at the experimental temperature. Table 1 provides the calculated partial pressure and 

vapour phase mole fractions for the mixtures used in the experiments discussed in 

Chapter 4, using both Raoult’s law and experimental data from the literature.1 The 

weight composition of the toluene-ethanol solvent mixtures in the liquid phase is 

referred to in Chapter 4. 

Table 1: Calculation of vapour phase mole fraction derived from the mass fraction of each component 
in the liquid phase using Raoult's Law and saturated vapour pressure of toluene and ethanol at 25°C, 
and literature data for 35°C.1 

Toluene weight 
fraction in the liquid 

Toluene mole fraction (ethanol 
balance)  

Liquid Vapour - 
from 

Raoult’s 
law 

Vapour mole 
fraction 

from ref. [1] 

0.3 0.18 0.09 0.23 

0.4 0.25 0.14 0.27 

0.6 0.43 0.27 0.33 

0.8 0.67 0.49 0.37 

0.85 0.74 0.58 0.39 

0.9 0.82 0.69 0.40 

0.95 0.9 0.82 0.46 

0.99 0.98 0.96 0.74 

1 1 1 1 

 
 

The plot of mole fraction of each solvent in the vapour phase in binary solvent 

mixtures of ethanol, acetone and water is provided in Figure 2 and is used in Chapter 

5 when discussing these mixtures. Furthermore, tabulated data for the mole fraction 
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of each solvent in the ternary mixture composed of these three solvents is provided in 

Table 2.  

 
 

 
Figure 1: Mole fractions of the liquid and vapour phases for binary mixtures at 25 °C2-4 of (a) ethanol 
- water (b) ethanol – acetone, and (c) acetone - water. 

 

Table 2: Conversion between composition in the liquid phase to vapor phase for a ternary mixture of 
ethanol - acetone - water at 25°C calculated by the UNIFAC method.4-5  

Liquid phase 
(water mass 

fraction)a 

Liquid phase (mole fraction) Vapour phase (mole fraction) 

Acetone Ethanol Water Acetone Ethanol Water 

0.0 0.44 0.56 0 0.77 0.23 0 

0.1 0.34 0.42 0.24 0.74 0.18 0.08 

0.2 0.26 0.33 0.42 0.68 0.19 0.13 

0.3 0.20 0.25 0.55 0.68 0.16 0.16 

0.4 0.15 0.19 0.66 0.66 0.16 0.18 

0.5 0.11 0.14 0.74 0.62 0.16 0.22 

0.6 0.08 0.11 0.81 0.68 0.12 0.2 

0.7 0.06 0.07 0.87 0.54 0.19 0.27 

0.8 0.04 0.04 0.92 0.63 0.1 0.27 

0.9 0.02 0.02 0.96 0 0 1 
a Mass fraction of water added to a 1:1 (w/w) liquid mixture of ethanol and acetone. A 1:1 

(w/w) ethanol-acetone mixture without water corresponds to the first row of data in the table. 
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Hansen and Hildebrand solubility parameters  

Hansen identified the individual contributions of the dispersion δD, polar δP and 

hydrogen-bond δH energy towards the cohesive energy density described by the 

Hildebrand solubility parameter, δ:1 

 

	     (1) 

    

As an example, in the case of ethanol the Hansen solubility parameters are δD = 

15.8 MPa1/2, δP = 8.8 MPa1/2 and δH = 19.4 MPa1/2, the Hildebrand solubility 

parameter can be calculated from 

 

	 26.5	MPa /   (2) 

 

The Flory-Huggins interaction parameter can be calculated from the 

Hildebrand solubility parameters of the polymer and the solvent, and provides a 

qualitative estimation of polymer solubility.  	

 

	  (3) 

 

Where Vseg is the volume of the polymer segment, R is the gas constant and T, 

the temperature.  The more similar the value of the cohesive energy difference of the 

polymer and the solvent, the higher the quality of the solvent for the polymer. 

Where Hansen solubility data is available, it is recommended to use the relative 

energy difference  
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Empirical data for PS and P4VP surface tension  

A model was developed by Sauer and Dee to convert pressure – volume – 

temperature (PVT) data for polymers into the cohesive energy density (CED) from 

which it is possible to calculate the surface tension.  

Table 1: Cohesive energy density (CED) data and surface tension information used for spreading 
parameter, interaction parameter and surface tension calculations obtained from experimental work by 
Sauer and Dee. 2 

Polymer CED (temp) 

(MPa (°C)) 

Polynomial Fits of Surface Tension Data 

A0 

(mN m-1)a 

Slope 

(mN m-1 °C-1) 

Temp range (°C) 

PS 230 (200) 41.5 -0.065 130 - 220 

P4VP 600 (250) 74.1 -0.128 250-260 

aγ = A0 + slope x T, where temperature is in °C. 
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