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ABSTRACT

Objective: To characterize nonpsychiatric prescription patterns of antidepressants according to drug labels and
evidence assessments (on-label, evidence-based, and off-label) using structured outpatient electronic health re-
cord (EHR) data.

Methods: A retrospective analysis was conducted using deidentified EHR data from an outpatient practice at a
New York City-based academic medical center. Structured “medication-diagnosis” pairs for antidepressants
from 35 325 patients between January 2010 and December 2015 were compared to the latest drug product
labels and evidence assessments.

Results: Of 140 929 antidepressant prescriptions prescribed by primary care providers (PCPs) and nonpsychia-
try specialists, 69% were characterized as “on-label/evidence-based uses.” Depression diagnoses were associ-
ated with 67 233 (48%) prescriptions in this study, while pain diagnoses were slightly less common (35%). Man-
ual chart review of “off-label use” prescriptions revealed that on-label/evidence-based diagnoses of depression
(39%), anxiety (25%), insomnia (13%), mood disorders (7%), and neuropathic pain (5%) were frequently cited as
prescription indication despite lacking ICD-9/10 documentation.

Conclusions: The results indicate that antidepressants may be prescribed for off-label uses, by PCPs and non-
psychiatry specialists, less frequently than believed. This study also points to the fact that there are a number of
off-label uses that are efficacious and widely accepted by expert clinical opinion but have not been included in
drug compendia. Despite the fact that diagnosis codes in the outpatient setting are notoriously inaccurate, our
approach demonstrates that the correct codes are often documented in a patient’s recent diagnosis history. Ex-
amining both structured and unstructured data will help to further validate findings. Routinely collected clinical
data in EHRs can serve as an important resource for future studies in investigating prescribing behaviors in out-
patient clinics.
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INTRODUCTION

In the United States (US), treatment for depression is increasingly oc-
curring outside of traditional contexts and predominantly in the pri-
mary care setting.'™ The collaborative and integrative care
movement embraces the expansion of treatment across broader
medical populations but also emphasizes a team-based approach, in-
volving psychiatrists as consultants—thereby improving care and
widening of the arc of nonpsychiatrists who prescribe antidepres-
sants.>* Despite its promise, collaborative care has yet to become
standard practice—thus understanding the patterns of medication
prescribing by primary care providers (PCPs) and nonpsychiatric
specialists is important because it remains unclear as to how antide-
pressants are being prescribed in this setting.

The prescribing patterns of nonpsychiatrists are of particular im-
portance because the prevalence of antidepressant medication use is
rising in the US.>~” This increase is partly driven by a greater number
of medications on the market,® improved public acceptance of psy-
chiatric drugs,” and a broadening of the clinical indications. Accord-
ing to the Centers for Disease Control and Prevention, use of
antidepressants has increased nearly 5-fold in the US since the
1980s, and roughly 12% of the adult population are now taking
these medications.'®!" Antidepressants are primarily designed to
treat depression and anxiety, but they are commonly prescribed for

neuropathies,!>!*

related problems such as chronic pain,'
insomnia,'>! and eating disorders.!” Prescriptions for indications
other than those approved by the US Food and Drug Administration
(FDA) are considered to be “off-label,” and have been estimated to
occur at nearly 30% or higher for antidepressant medications.'®°
However, the drug label is not always a comprehensive indicator of
a medication’s use. In fact, drug labels and evidence assessments are
frequently determined by pharmaceutical marketing strategies,
incentives for research and development, and the cost of randomized
controlled trials (RCTs).

Despite an increase in antidepressant prescriptions, there is lim-
ited knowledge on trends in prescribing by PCPs and nonpsychiatric
specialists.®>® For instance, the risk/benefit ratios of most off-label
uses are variable, thus there is added benefit to understanding
“real-world” prescription patterns with respect to drug labels and
evidence assessments. Electronic health records (EHRs) routinely
collect data on prescription patterns across all care settings including
outpatient and inpatient practices, and emergency departments, and
may provide further insight into clinical use of medications. Addi-
tionally, EHRs provide a platform for longitudinal data collection
covering a wide range of phenotypic expressions via both structured
data and unstructured clinical text. Therefore, the primary goal of
our study is to characterize nonpsychiatric outpatient prescriptions
of antidepressants using structured diagnosis data from EHRs.

METHODS
Study design

This retrospective study was conducted using outpatient EHR data
(Epic Systems®) at a large New York City-based academic medical
center. The EHR data repository was queried to retrieve demo-
graphics, encounter, diagnosis, and associated medication data for
outpatients who had received antidepressants.>! As of July 2016,
there were 123 702 unique patients who had been prescribed a total
of 401 734 unique prescriptions of antidepressant medications.

This study, however, included only those antidepressant
prescriptions actively written for individuals aged >18 between

January 1, 2010 and December 31, 2015—to capture more than §
full years of data during a period in which the EHR Computerized
Provider Order Entry (CPOE) use was predominant. We queried
prescriptions issued at the institution’s outpatient practices (stored
as a structured data element in the EHR data repository) and not
those documented as historical medications because of potential re-
call biases and inaccurate association of indications for each pre-
scription. Antidepressant medications were identified using
national drug codes (NDC) located in the Healthcare Effectiveness
Data and Information Set (HEDIS) 2016 final NDC lists.** The
HEDIS lists are provided by the National Committee for Quality
Assurance (NCQA) and represent unique codes for distinct combi-
nations of drug ingredients, strength, and route. Structured diagno-
ses were coded according to the International Classification of
Diseases, Ninth and Tenth Revisions, Clinical Modification (ICD-
9-CM/ICD-10-CM). Both ICD-9 and ICD-10 codes are available
for all diagnoses in the EHR system due to extensive code mapping
completed at the institution during the code transition period sur-
rounding October 2015. However, given that the transition oc-
curred at the end of the study period, our syntax searched for
relevant ICD-9 codes prior to ICD-10. We excluded all prescrip-
tions that had been issued by physicians, certified nurse practi-
tioners and other healthcare providers with prescribing privileges
from the Department of Psychiatry, choosing instead to focus only
on PCP and nonpsychiatric specialty prescribing. Lastly, to account
for recent medical history, each prescription was matched to all
structured diagnoses made for the corresponding patient during
the previous 5 years (including data between 2005 and 2015). Af-
ter applying our inclusion/exclusion criteria, we were left with
35 325 unique patients and 140 929 prescriptions between 2010
and 2015 (Figure 1).

Prescription classification

For the purposes of this study, prescriptions were then classified as
“on-label” if an associated diagnosis matched those provided in the
FDA list of approved indications, or “evidence-based” for diagnoses
in which evidence favors efficacy as of August 2016. We applied
methods previously reported,**? in which product label informa-
tion, class of recommendation, and the strength of scientific evi-
dence or clinical effectiveness assessments were distinguished by the
DrugDex system (Truven Health Analytics Micromedex Solutions,
Greenwood Village, CO, USA).>* DrugDex is considered to be an
authoritative compendium, which is used by the Centers for Medi-
care and Medicaid Services (CMS) to determine coverage for off-
label uses of medications, and has also been used for research in
multiple prior studies.”>**=3% Within the compendium, benefit clas-
ses range from I (strong, benefit >> risk) to III (No benefit or benefit
< risk), and level of evidence ranges from Category A to C-EO.
Only those medication—indication pairs in which the class of recom-
mendation is listed as I, Ila (moderate, benefit > risk), or IIb (weak,
benefit > risk), and evidence Category A (high quality evidence
from >1 RCT) or B (moderate evidence from > 1 RCT or well-
designed nonrandomized study, observational study, etc.) were con-
sidered as medically accepted and rigorous enough for this study.
The list of antidepressant classes found in the dataset and their on-
label/evidence-based uses are included in Table 1. The full list of
each individual antidepressant medication and their on-label/
evidence-based uses can be found in Supplementary Table S1.
Finally, all prescriptions associated with diagnoses that were not
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Assessed

Eligibility of = 1 antidepressant Rx
documented in EHR, aged =12 years
[(n=123,702) 401,734 Rx]

Excluded > Patients aged <18 years at Rx encounter
[(n=1,558) 4,849 Rx]
Patients =18 years old with > 1 Rx
[(n = 122,144) 396,885 Rx]
Excluded Rx issued outside 01/2010 - 12/2015
B > [(n=37,852) 154,629 Rx]

b 4

Patients with = 1 Rx issued at medical
center O/P clinic between 01/2010-12/2015
[(n=84,292) 242,256 Rx]

h. 4

Non-psychiatric Rx issued at outpatient
clinic between 01/2010-12/2015
[(n=35.450) 141,607 Rx]

Excluded

Excluded Rx recorded as historical medications
—— [(n = 47.436) 92,380 Rx]
¥
Patients with = 1 Rx issued at outpatient
clinic between 01/2010-12/2015,
controlled for historical meds
[(n=36,856) 149,876 Rx]
Excluded Rx issued by the Department of Psychiatry
= d [(n=1,406) 8,269 Rx]

Rx with no structured diagnosis in 5 years
prior to prescription

Selected Y

Non-psychiatric Rx issued at outpatient
clinic between 01/2010-12/2015, matched
to S-year structured diagnosis history
[(n =35,325) 140,929 Rx]

Figure 1. Prescription eligibility CONSORT diagram.

matched to drug labels or evidence assessments, were considered to
be off-label use.

In order to determine the effect that medical history played on the
classification of prescriptions, we then examined trends in on-label/evi-
dence-based versus off-label use over periods of up to 5 years prior to
each prescription date (Figure 2A and B). The S-year time frame was
selected because it represents a period of recent medical history in
which an individual likely still suffers from the chronic ailments that
are traditionally associated with antidepressant medications. In addi-
tion, past medical history is not always recaptured via diagnosis codes

[(n=125) 678 Rx]

in subsequent clinical encounters. Five years is also close to the upper
limit of mean data available in the outpatient EHRs. Medication—
diagnosis pairs and on-label/evidence-based classifications using the 5-
year time frame are characterized in Table 2.

For prescriptions classified as off-label use, only those diagnoses
that were made during the most recent clinical encounter were in-
cluded in the analysis. This was done based on the findings that no
diagnoses during the selected medical history window could be
matched to product labels or evidence assessments, yet a structured
diagnosis was required for the analysis.
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Table 1. DrugDex list of antidepressant classes by on-label and

evidence-based uses

Therapeutic On-label use

class

Evidence-based use

SSRI Abnormal vasomotor
function—menopause
Bulimia
Depression

Generalized anxiety dis-
order

Obsessive—compulsive
disorder

Panic disorders

Post-traumatic stress
disorder

Premenstrual disorders

Social phobia

SNRIs Chronic pain (musculo-
skeletal)

Depression

Diabetic neuropathy—
pain

Fibromyalgia

Generalized anxiety dis-
order

Panic disorders

Social phobia

Alcoholism

Binge-eating syndrome
Bipolar disorder, de-
pressed phase; adjunct
Body dysmorphic disor-
der
Cancer—depression

Cancer pain
Cerebrovascular acci-
dent—depression
Coronary arteriosclero-
sis—depression
Depression
Depression—diabetes
mellitus
Depression—myocardial
infarction; post
Drug-induced depressive
state
Dysthymia
Eating disorder
Fibromyalgia
Generalized anxiety dis-
order
Hot sweats
Mixed anxiety and de-
pressive disorder
Night eating syndrome
Obsessive—compulsive
disorder
Panic disorder
Postmenopausal flushing
Post-traumatic stress dis-
order
Premature ejaculation
Premenstrual dysphoric
disorder
Raynaud’s phenomenon
Severe depression with
psychotic features; ad-
junct
Social phobia
Vasovagal syncope
Attention-deficit/
hyperactivity disorder
Binging—eating disorder
Bipolar disorder, de-
pressed phase
Cerebrovascular acci-
dent—depression
Depression—perimeno-
pausal disorder
Diabetic neuropathy
Dysthymia
Hot sweats, breast can-
cer-related
Menopausal flushing
Migraine

(continued)

Table 1. continued

Therapeutic On-label use Evidence-based use
class
Obsessive—compulsive
disorder
Pain, chemotherapy-in-
duced—peripheral
nerve disease
Post-traumatic stress dis-
order
Premenstrual dysphoric
disorder
Recurrent major depres-
sive episodes; prophy-
laxis
Tension-type headache;
prophylaxis
Urinary incontinence
Tricyclic Alcoholism ADHD
Anxiety Binging
Depression Cataplexy
Endogenous depression  Delusional disorder
Insomnia Depression
Nocturnal enuresis (pe-  Diabetic neuropathy
diatric only)
Obsessive—compulsive Disorder of ejaculation
disorder (sex dysfunction)
Pruritus Fibromyalgia
Psychotic depressive Headache
disorders
Severe major depression  Irritable bowel syndrome
with psychotic fea-
tures
Neurogenic bladder
Nocturnal enuresis
Obsessive—compulsive
disorder; intravenous
therapy
Pain
Pain, chronic
Panic disorder
Postherpetic neuralgia
Smoking cessation assis-
tance
Subjective tinnitus
Urinary incontinence
Urticaria
Tetracyclic Bipolar disorder Anxiety
Depression Cancer, symptomatology
Dysthymia Dysthymia
Mixed anxiety and de-  Obsessive—compulsive
pressive disorder disorder
Pain
Panic disorder
SSRI adverse reaction—
sexual dysfunction
Phenylpiperazine Depression Insomnia
Misc. Depression Bipolar disorder
Depression, associated ~ Sexual dysfunction due to
with seasonal affec- substance, SSRI
tive disorder; prophy-
laxis
Smoking cessation
Others Bipolar disorder Agoraphobia
(continued)
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Table 1. continued

Therapeutic On-label use Evidence-based use

class

Bulimia nervosa
Social phobia

Depression

Depression, atypical,
nonendogenous, or
neurotic

Mixed anxiety and de-
pressive disorder

Schizophrenia

Notes: Selective Serotonin Reuptake Inhibitor (SSRI) includes citalopram,
escitalopram, fluoxetine, fluvoxamine, paroxetine, and sertraline. Serotonin-
Norepinephrine Reuptake Inhibitor (SNRI) includes desvenlafaxine, duloxe-
tine, levomilnacipran, and venlafaxine. Tricyclic antidepressants include ami-
triptyline, amoxapine, clomipramine, desipramine, doxepin, imipramine,
nortriptyline, and protriptyline. Tetracyclic antidepressants include maproti-
line and mirtazapine. Phenylpiperazine includes trazodone and nefazodone.
Miscellaneous antidepressants include bupropion, vilazodone, and vortioxe-
tine. Others include monoamine oxidase inhibitors (MAQIs): phenelzine and
tranylcypromine; and psychotherapeutic combinations: fluoxetine-olanza-

pine, amitriptyline-chlordiazepine and amitriptyline-perphenazine.

A i

30

Percent (%a)

T — e e e -——a——
—

0 30 60 (1] 120 150 180 2o 240 270 300 330 365

Days Prior to Prescription Date

B o«

k1]

Percent (%)

0 168 T30 1095 1460 1825

Days Prior to Prescription Date

=®=0n-label Rx =®=Evidence-basedRx  =@=Off-label Rx

Figure 2. (A and B) Prescription classification adjusted by no. of days of medi-
cal history examined, 1 year (A) and 5 year (B).

We examined the distribution of prescriptions within the context
of the medical specialty of the prescriber. For the clinical specialties
in which the greatest number of off-label use prescriptions were is-
sued, we tabulated major characteristics of the prescriptions. Such
characteristics included prominent diagnosis classes, number of pre-
scriptions on which the classes occur, the most common diagnoses
within each class, and most frequently prescribed antidepressant

drug classes (Table 3). Diagnosis classes and specific diagnoses were
chosen based on their frequency within the specialty, severity, and
potential relationship with depression.

Assessment and validation of indication identification
In order to assess the accuracy of our methodology, we then per-
formed a sensitivity analysis via chart review on 1% of the patients
that had received a prescription for an off-label use (7patients =
259).%3 During this review, we randomly sampled patients and their
prescriptions, then compared the encounter diagnoses that were
listed in our dataset to the diagnoses that were specifically linked to
each prescription within the EHR system. If a patient received two
different antidepressant prescriptions in the same encounter, both
were recorded (#prescriptions =270). In addition, we reviewed clinical
notes to determine the physician-documented reason for ordering
the antidepressant. A sample of the results are displayed in Table 4.
As an added validation step, a chart review was performed on 1%
of the patients (#puiens = 190) that had received an on-label/
evidence-based use prescription, comparing the earliest approved
structured diagnosis to the physician-documented indication within
the clinical text.

All data management and analyses were performed using SAS
software version 9.4 (SAS Institute). This study was reviewed and
approved by the Institutional Review Board (No. 1510016639).

RESULTS

Study cohort characteristics

On average, we had 4.1 (=5.8) unique antidepressant prescriptions
and 3.0 (£2.7) years of diagnosis data per patient. The mean age of
the study population was 56.7 (£16.4) years. There were also twice
as many females (67%) in the population as males.

Examination of treatment indications and prescriptions
patterns

Frequencies of prescriptions stratified by treatment indication and
on-label/evidence-based use classification are provided in Table 2.
Using our matching method, the most commonly appearing diagno-
ses across all prescriptions were depressive disorders (48%), pain
(35%), anxiety disorders (23%), symptoms (eg chronic fatigue and
malaise) (17%), digestive system disorders (15%), insomnia (13%),
weight problems (12%), and headache or migraine (11%). All pre-
scriptions which included a diagnosis of depression in the previous 5
years were written for on-label/evidence-based uses, while prescrip-
tions with histories of insomnia or anxiety disorders were supported
by on-label/evidence-based uses 93% and 87% of the time, respec-
tively.

Prescriptions classified as off-label uses were most frequently as-
sociated with diagnoses of Parkinson’s disease (32%), headache/mi-
graine (25%), bipolar disorder (20%), fibromyalgia (17%), weight
problems, and pain (16%).

Characterization of off-label use prescription patterns
by medical specialty

Prescriptions classified as off-label use were stratified by medical
specialty and further analyzed in an attempt to further investigate
the clinical reason for the prescription order. Table 3 also shows
that specialty prescribing often includes diagnoses of chronic and/or
debilitating conditions that have been associated with depression.
Anxiety and pain seem to also be commonly diagnosed. Internal
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Table 2. Treatment indication diagnoses and prescribing patterns for antidepressant medications, 2010-2015

Number of
prescriptions (%)®

n=140 929 (100)

Prescription diagnoses®

For on-label use (%)°

Where evidence For off-label use (%)

favors efficacy (%)
n=18613(13.2)

n="78468 (55.7) n=43 848 (31.1)

Depressive disorders 67233 (47.7)
Pain 48 680 (34.5)
Anxiety disorders 32890 (23.3)
Symptoms 23240 (16.5)
Digestive system disorders 21596 (15.3)
Insomnia 18 377 (13.0)
Weight problems 16 612 (11.8)
Headache/migraine 15109 (10.7)
Urinary system disorders 14 604 (10.4)
Dermatological conditions 11471 (8.1)
Sleep disorders 10456 (7.4)
Nicotine dependence 8593 (6.1)
Fibromyalgia 7702 (5.5)
Sexual dysfunction 5174 (3.7)
Drug abuse 4807 (3.4)
Bipolar 4027 (2.9)
Alcohol abuse 3554 (2.5)
Nausea and vomiting 3266 (2.3)
Panic disorder 2733 (1.9)
Abnormal vasomotor function—menopause 2580 (1.8)
Pruritus 2550 (1.8)
Eating disorders 1782 (1.3)
Parkinson’s disease 1732 (1.2)
Attention-deficit/hyperactivity disorder 1395 (1.0)
Post-traumatic stress disorder 1189 (0.8)
Premenstrual dysphoric disorder 1186 (0.8)
Obsessive—compulsive disorder 950 (0.7)
Schizophrenia 849 (0.6)
Social phobia 187 (0.1)
Other 117 845 (83.6)

65475 (97.4) 1758 (2.6) 0(0)
33 591 (69.0) 7233 (14.9) 7856 (16.1)
23490 (71.4) 5049 (15.4) 4351 (13.2)
16 968 (73.0) 3506 (15.1) 2766 (11.9)
16 051 (74.3) 2855 (13.2) 2690 (12.5)
12 610 (68.6) 4609 (25.1) 1158 (6.3)
12 342 (74.3) 1565 (9.4) 2705 (16.3)
8043 (53.2) 3354 (22.2) 3712 (24.6)
11248 (77.0) 1876 (12.8) 1480 (10.1)
8404 (73.3) 1932 (16.8) 1135 (9.9)
7797 (74.6) 1301 (12.4) 1358 (13.0)
7504 (87.3) 791 (9.2) 298 (3.5)
4655 (60.4) 1716 (22.3) 1331 (17.3)
3658 (70.7) 822 (15.9) 694 (13.4)
4313 (89.7) 347 (7.2) 147 (3.1)
2275 (56.5) 947 (23.5) 805 (20.0)
2957 (83.2) 456 (12.8) 141 (4.0)
2538 (77.7) 399 (12.2) 329 (10.1)
2118 (77.5) 572(20.9) 3(1.6)
1243 (48.2) 1017 (39.4) 320 (12.4)
2230 (87.5) 202 (7.9) 118 (4.6)
1491 (83.7) 118 (6.6) 173 (9.7)
1033 (59.6) 139 (8.0) 560 (32.3)
898 (64.4) 317 (22.7) 180 (12.9)
992 (83.4) 147 (12.4) 0(4.2)
940 (79.3) 210 (17.7) 6(3.0)
805 (84.7) 131 (13.8) 4(1.5)
620 (73.0) 9 (11.7) 130 (15.3)
178 (95.2) 2(1.1) 7(3.7)
69772 (59.2) 14 930 (12.7) 33143 (28.1)

Note: All variables are represented as counts (percentage).

“Five-year diagnosis history was accounted for, and 68% of all antidepressant prescriptions had multiple treatment indications and thus were assigned to more

than one category. Therefore, the sum of prescriptions across the individual treatment indication categories exceeds the total number of prescriptions (first row).

PPercentages calculated using the total number of antidepressant prescriptions for any indication (N = 140 929) as the denominator.

“Number of prescriptions that were considered on-label for the specified treatment indication, according to the US Food and Drug Administration (FDA).

9This column reflects the number of antidepressant prescriptions that were written in which the evidence favors efficacy for treatment of the associated diagno-

sis, as noted by the DrugDex System.

medicine specialists predominantly prescribed selective-serotonin re-
uptake inhibitors (SSRI’s) and diagnosed pain [(back pain, chest
pain, osteo-/rheumatoid arthritis, hip pain, and sciatica, etc.) 16%],
anxiety (14%), and fatigue and malaise symptoms on 8% of the pre-
scriptions. Neurologists frequently diagnosed chronic headache/mi-
graine (34%), multiple sclerosis and Alzheimer’s disease (18%),
back, neck, and miscellaneous neuropathies [(diabetic peripheral
neuropathy, etc.) 15%] and Parkinson’s disease (6%), while pre-
scribing largely SSRIs and tricyclic antidepressants (TCAs). Infec-
tious disease specialists often diagnosed HIV and AIDS (63%) and
bipolar disorder (14%) in patients with off-label use prescriptions.
In terms of antidepressants, SSRIs and phenylpiperazine (eg trazo-
done, nefazodone) were the most commonly prescribed antidepres-
sant classes. Pain specialists largely prescribed TCAs for neuropathic
back and neck pain and myofascial pain 97% of the time. OB/GYN
specialists most often diagnosed patients with urinary disorders
(20%), such as urinary frequency, dysuria, urge incontinence, and
urinary tract infections, while they prescribed TCAs and SSRIs.
Gastroenterology and hepatology specialists often prescribed SSRIs
or phenylpiperazine in the setting of cirrhosis, chronic hepatitis C,

hepatic encephalopathy, irritable bowel syndrome (IBS), and diar-
rhea. Diagnoses related to weight, such as abnormal weight gain
and obesity, were matched with the majority of prescriptions being
issued by endocrinologists (66%), while miscellaneous antidepres-
sants (eg bupropion) were issued in greatest proportion.

Sensitivity analysis

A sample of findings from the chart review of off-label use prescrip-
tions is displayed in Table 4. Approximately 69% of the 270 pre-
scriptions reviewed did not have a structured ICD-9/10 diagnosis
specifically associated with the medication in EHR. Of those that
did, the EHR-documented prescription diagnosis was often one or
all of the encounter diagnoses. Upon examining the free-text clinical
notes, however, it was found that 39% (z=105) of the random
sample of prescriptions included a physician-documented history of
depression as the primary reason for antidepressant therapy. For
prescriptions characterized as on-label, we found that our methodol-
ogy using purely structured diagnosis data was 83% accurate in
identifying the physician-documented indication in free-text clinical
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Table 4. continued

Excerpt from clinical text

Encounter diagnosis Prescription diagnosis Indication for prescription

Prescription

Specialty

in clinical text

for celexa, aware not to initiate antide-

Depression/anxiety associ-

pressant treatment until we discuss first”

ated with PEG-Intron
medication (Hep C)
Smoking cessation and ex-

“Discussed the use of bupropion for smok-

Abnormal weight gain, essential hy- Abnormal weight gain

Bupropion HCI ER 100 mg

Endocrinology

ing and eating. Add bupropion 100 mg

cessive eating, and mood

pertension, sleep disorder, protein-

SR in the morning/wellbutrin is helping

mood”

uria, impaired fasting glucose, and

mixed hyperlipidemia
Benign prostatic hyperplasia, DM w/

“bmi 37.5, discussed wt loss surgery and

Weight loss, excessive

Diabetes mellitus w/renal

Clomipramine HCI 25 mg

drugs, on anafranil (Clomipramine)”

complications weight gain

renal complications, HTN, lipids
abnormal, microalbuminuria,

Gastroesophageal reflux disease,

vitamin D deficiency, and Gout

Abbreviations: Rx: prescription; HTN: hypertension; T2DM: type 2 diabetes mellitus; HIV: human immunodeficiency virus; PPD: postpartum depression; OCD: obsessive—compulsive disorder; HSV: herpes simplex vi-

rus; Pt: patient.

notes. However, if we adjust for the patients with a reference to ac-
tive depression in their notes—or multiple on-label indications dur-
ing the same encounter—then our accuracy increased to 93%. On
average, the earliest diagnosis that could be considered on-label
was made 636 days (1.74 years) prior to the prescription date.

DISCUSSION

As the use of antidepressants rises in the US, partly due to a large
number of PCPs and nonpsychiatric specialists ordering these medi-

2%t has become increasingly important to understand the

cations
prescribing patterns of nonpsychiatric specialties. The data mining
method employed in this study provided a unique probe to assess
“real-world” clinical data across a large number of prescriptions in
an outpatient setting. Further, it allowed us to examine the nuances
of provider documentation when interacting with the EHR’s CPOE
system, comparing structured diagnosis data to unstructured clini-
cal notes.

By applying our method of matching antidepressant prescriptions
to prior diagnosis history, we were able to characterize antidepressant
prescriptions in the context of drug labels and evidence assessments
within the EHRs and CPOE at the institution. Our results suggest
that approximately 69% of the antidepressants issued through the
institution’s outpatient CPOE between 2010 and 2015 can be classi-
fied as an “on-label/evidence-based use.” Further, our methodology
allowed us to estimate the disease burden under which patients had
received antidepressants. Relying solely on coded (and structured) di-
agnosis data to infer prescription indications can be challenging, and
even inaccurate, as diagnosis codes are not always carried over to sub-
sequent clinical encounters. Even though it may appear as though pre-
scriptions are issued for off-label uses, there is often additional,
pertinent information that is captured throughout the EHR in un-
structured clinical notes.>* Therefore, using only structured diagnosis
data to characterize prescription patterns could have led to false con-
clusions, and thus attempts to mine unstructured data throughout the
EHR should be considered for future studies. Additionally, non-
psychiatric clinicians have been shown to misdiagnose depression
based on uncertainty about the diagnosis and potential implications
based on the presence of the diagnosis code in EHRs.>*® In accor-
dance with this finding, recent studies have shown that clinical deci-
sion support mechanisms can be implemented directly into EHR
systems, which improve recognition and screening for conditions such
as postpartum depression and bipolar disorder.>**® We attempted to
adjust for such complications by incorporating increasing medical his-
tory time frames—thereby accounting for physician changes and their
associated practice patterns, as well as collaborative and integrative
care. This analysis demonstrated that applying a S-year time frame
allowed us to capture the correct indication with a relatively high de-
gree of accuracy, although as discussed above, an on-label diagnosis
was identified, on average, 1.74 years prior to the prescription.

For prescriptions characterized as off-label use, structured diag-
nosis data alone were not enough to determine prescriptions indi-
cations. A sensitivity analysis revealed that a large proportion of
the patients had a physician-documented history of depression or
clinical note citing depression as the indication in unstructured clin-
ical notes (39%), despite no formal ICD-9/10 code registered. This
finding may be partially explained by the fact that over half of the
off-label prescriptions lacked a formal association with a diagnosis.
Together, these results highlight a significant gap in recording
diagnoses of depression in the EHR using structured data and ap-
pear to give credence to claims that nonpsychiatric specialists may
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be hesitant to formally diagnose depression.>*=>% We see this trend
within neurology and internal medicine specialty notes, as nearly
half of all prescriptions examined showed either active or history of
depression that was not documented in the form of a structured data
entry using ICD-9/10 diagnosis codes. This study however was not
limited to depression, as anxiety (25%), insomnia (13%), mood dis-
order (7%), and neuropathic pain (5%) were all cited as a reason
for antidepressant therapy in progress notes but lacked ICD-9/10
codes in diagnosis history. These findings also suggest that second-
ary use of EHR data could be improved by requiring physicians to
document a diagnosis code when issuing prescriptions through the
CPOE, particularly in the absence of advanced natural language
processing (NLP) techniques.

The chart review further revealed that the number of prescrip-
tions without sufficient evidence to support their efficacy may be
even lower. We found that 92% of the off-label use prescriptions ex-
amined within pain medicine/management specialty notes were, in
fact, nortriptyline or duloxetine for the treatment of neuropathic
pain. Despite exclusion from the drug reference compendium, there
have been a number of well-discussed and rigorous studies that sup-
port the use of TCAs and serotonin-norepinephrine reuptake inhibi-
tors (SNRIs) when treating neuropathic pain.*'* These drugs may
have a weaker evidence base, but they display some potential to alle-
viate suffering and pose less severe risks than alternatives. The
American College of Physicians, for example, recently published
new guidelines for the treatment of low back pain—often character-
ized by neuropathies—which emphasize nondrug therapies, but sug-
gest that an antidepressant such as duloxetine (SNRI) may be
appropriate if pain persists.*”*® These results imply that prescribing
for off-label uses—or prescribing without sufficient evidence of effi-
cacy, may occur less frequently than believed.?*°

Significance and relation to current literature

To date, only a few studies have estimated disease burden and exam-
ined diagnosis-based prescribing patterns within the context of drug
labels and evidence assessments. To our knowledge, this is the first
study to have examined these patterns specifically for antidepres-
sants prescribed to adults by nonpsychiatrists, through leveraging
outpatient EHR data from a large U.S. academic medical center. In
addition, we tried to control for potential overestimates of “off-label
uses” experienced by a previous study that used a short medical his-
tory window.'? Using a S-year time frame revealed that the first on-
label diagnosis was made, on average, nearly 2 years prior to the
prescription in this population.

Our work followed a 2016 study from Wong et al.,”°

which exam-
ined treatment indications in primary care practices for antidepressant
prescriptions in Quebec, Canada, and used approved product labels
dictated by the FDA and Health Canada as references.”’ Wong et al.*
subsequently published a detailed study in 2017 in which they report
29% of approximately 106 000 prescriptions to be “off-label,” with
40% of those prescriptions having strong evidence of efficacy for an-
other drug in the same class, but not the one prescribed. Their study
describes methods that are similar to those that we have used; however,
their data was collected via the Medical Office of the XXIst Century
(MOXXI), which is an EHR-based drug management and e-prescribe
system focused solely on PCPs in Canada, and required the documenta-
tion of specific indications when ordering medications.

There are three major differences between this study by Wong
et al. and our study. First, prescriptions were classified differently
according to evidence assessments. Second, our study examined the

prescribing trends across medical specialties, reaching beyond pri-
mary care. Third, we did not seek to determine within-class efficacy.

For our purposes, if the compendium registered a sufficient level
of evidence towards efficacy (benefit category I or Ila/b; evidence
category A or B), then we considered the medication as an “on-la-
bel/evidence-based use,” instead of “off-label.” While “on-label”
and “evidence-based” are distinct categories, they were conceptually
merged for most of the analyses because this clinical assumption rep-
resents a reasonable standard of care. Given this difference in pre-
scription classification, we found a similar ratio of off-label
prescriptions (31%) as compared with Wong et al. (29%) amongst a
significantly larger sample size. Our analysis also extends beyond
primary care. We also examined patterns by the clinical department
of the prescriber—which had not been previously characterized. In
contrast to the strategies used by Wong et al. to assess within-class
efficacy, we attempted to estimate the conditions in which patients
were receiving these antidepressants (Table 3) and reviewed clinical
text to determine prescription indications (Table 4). This yielded a
significant number of prescriptions that should be reclassified as
“on-label/evidence-based use,” thus giving strength to current medi-
cal practice, and also demonstrated how nonpsychiatric specialists
may interact with the EHR/CPOE systems.

Study limitations
Our study has several limitations. Principally, our analysis is re-
stricted by the structured data that is documented within the outpa-
tient EHR. The EHR/CPOE allows prescribing clinicians the
opportunity to associate specific encounter diagnoses, all diagnoses,
or bypass associations entirely when ordering medications. Thus,
documenting an associated indication is not a necessary step for or-
dering prescriptions. The only method of retrospectively assessing a
physician’s order would be to examine all EHR-documented pre-
scriptions individually or work with hospital information technol-
ogy services to tailor data retrieval. Since the study relied on
examining medication—diagnosis pairs, some prescriptions were lost
due to lack of a documented diagnosis. In addition, the subjective
nature of clinical diagnostics influences prescribing patterns, thus
studying the ICD-9/10 diagnosis data alone does not provide suffi-
cient insight into the rationale behind practice patterns. While a sen-
sitivity analysis was conducted on 1% random samples of patients
receiving on-label and off-label use prescriptions, review of all
35 325 charts would have required automated NLP—which is out
of scope for this article. For on-label use prescriptions, these were es-
timated based on prior medical history and subsequent verification,
whereas off-label use prescriptions required a manual chart review
and extrapolation of results. Therefore, we do not have a compre-
hensive view of diagnosis and antidepressant prescribing trends, and
definitive conclusions about the overall percentage of prescriptions
written for off-label uses cannot be drawn from the existing data.
Our results are also based on the DrugDex System reports as of
August 2016. Any updates to drug evidence, or the addition of
newer drugs to the market during the study period, almost certainly
will have had an influence on prescription patterns. However,
attempting to analyze these temporal factors in the study would
have complicated interpretation of results, therefore we applied the
latest product labels and strength of evidence to each of the antide-
pressants represented. Using this approach, Figure 3 demonstrates
that the number of prescriptions classified as “evidence-based use”
nearly plateaus after 1 year of medical history inclusion, while the
number of on-label and off-label use prescriptions continue to increase
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and decrease, respectively. Due to the relative stability of drug labels,
we believe that our methodology does not significantly weaken inter-
pretability, yet it remains a limitation nonetheless. Further, we did not
compare DrugDex reports to other drug reference compendia, such as
the American Hospital Formulary Service-Drug Information (AHFS-
DI) or the United States Pharmacopeia-National Formulary (USP-NF).

We are also limited by the differing definitions of labeled uses be-
tween researchers and clinicians. Our study strictly followed the
labels and evidence assessments as dictated by the DrugDex
compendium; however, this approach is likely to be narrower than a
clinician’s definition. As such, bipolar disorder and schizophrenia
were treated as any other condition, for which they were categorized
as “on-label/evidence-based uses” if they matched their associated
drug labels and evidence assessments. Similarly, combination-
therapy (antidepressant + another drug class) was assessed based on
the indications listed within the compendium, and not strictly for
the antidepressant properties.

Lastly, we are limited to the available data within the EHR system
of a single institution. As such, we could not determine the true extent
of a patient’s medical history, since we were limited to their testimoni-
als and encounters with the outpatient services, and are unable to cap-
ture data from outside of the provider network. Further, the EHR/
CPOE use patterns found here are likely to differ between institutions,
and therefore our results may not translate to other health systems.

CONCLUSIONS

The results indicate that antidepressants may be prescribed for off-
label uses, by PCPs and nonpsychiatry specialists, less frequently
than believed. This study also points to the fact that there are a num-
ber of off-label uses that are efficacious and widely accepted by ex-
pert clinical opinion, but have not been included in drug compendia.
Despite the fact that diagnosis codes in the outpatient setting are no-
toriously inaccurate, our approach demonstrates that the correct
codes are often documented at some point in a patient’s recent diag-
nosis history. Because such a wide range of medical specialties are
using antidepressants, there is benefit in studying routinely collected
data in EHRs. That is, to better understand the prescribing patterns
of providers outside of controlled research settings, in which study
participants tend to be homogeneous.

However, depending on the EHR system, structured diagnosis/
billing data alone may be insufficient to track indications and carry
out prescription classification. Instead, a more robust methodology
for future EHR-based studies should include an analysis of unstruc-
tured clinical text using NLP, in addition to structured diagnosis
data. Examining these data elements in conjunction will help to tri-
angulate and validate findings, thereby producing more accurate
and meaningful results. While our results confirm several patterns
reported by previous studies, the data are not comprehensive and
larger studies across several health systems will be required to draw
significant conclusions. Finally, the results also highlight some of the
challenges of secondary use of EHR data.
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