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Abstract: 

Shankar, Vijay. Ph.D. Biomedical Sciences PhD Program, Wright State University, 2016. 

Extension of multivariate analyses to the field of microbial ecology. 

 
 Ground-breaking advancements in molecular and analytical techniques in the past decade 

have enabled researchers to accumulate data at an extraordinary rate. Especially in the field of 

microbial ecology, the introduction of technologies such as high-throughput sequencing, 

quantitative microarrays, nuclear magnetic resonance and mass spectrometry has led to the 

interrogation of diverse and previously unexplored microbial communities at unparalleled depth. 

Analysis and interpretation of patterns within datasets acquired with such high-throughput 

methods require powerful statistical approaches. A class of such techniques called multivariate 

statistical analyses is an excellent choice for analysis of complex microbiota-related datasets. 

This field of statistics is constantly evolving as new techniques and procedures are being 

developed and applied to explore and interpret the underlying patterns both statistically and 

visually. As a result, the decision-making process involved in the choice of the technique that 

best suits the scientific question and the dataset is no longer trivial. Additionally, the current 

trends in the use of multivariate statistics in microbial ecology indicate a strong preference 

toward exploratory analyses, resulting in limitations to possible biological interpretations. In 

order to facilitate a more extensive integration of multivariate statistics in microbial ecology, I 

apply a diverse set of analytical methods to human-associated microbial and metabolite datasets 

that allows us to draw biologically relevant inferences. Specifically, I use indirect gradient 

analyses to show that the largest gradients of variability correspond to the separation of samples 

based on sample groups. I use direct gradient analyses to explain a significant portion of the 

overall variability present within the response variables using independently measured 

environmental variables. I use classifier techniques to build highly accurate discriminant models 
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based on the differences in the response variables across sample groups and identify the variables 

that contribute the most to sample group separation. Using correlation-based bipartite analyses, I 

identify statistically significant associations between two different sets of response variable that 

were measured for the same set of samples. Finally, I integrate the analytical insights from the 

above approaches into a generalized protocol for the analysis of multivariate datasets in the field 

of microbial ecology.  
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I. Introduction: 

Analysis of microbial communities and environments: 

 Microbes are ubiquitous in nature and inhabit very diverse environments which include 

the human intestinal tract and skin, soil, roots, leaf and bark surface of plants, ocean waters, deep 

sea vents, and air (1-5). Microbes thrive in these environments not as individual species but as 

complex communities that comprise hundreds and maybe even thousands of unique members. 

These communities are an integral part of the systemic processes such as energy and elemental 

cycling, and biomass production. It is the complex metabolic interactions between the microbial 

community members which allows for energy and nutrients to flow through the ecosystem (6-8). 

The complexity associated with such communities and the fastidious nature of these microbes 

which leads to difficulty in culturing of individual members have made it a challenge for 

researchers who have attempted to study these communities and the interactions that exist within 

them. However, recent advancements in molecular techniques and technologies have simplified 

some of these challenges involved in profiling these communities by removing the need to 

culture the individual community members.  

 Many of these techniques interrogate community composition and function through direct 

analysis of the genetic material. In addition to removing the need to culture the microbes, these 

molecular techniques also tend to be high-throughput, allowing researchers to simultaneously 

analyze many samples and variables. Examples of such techniques include high-throughput 

massively parallel sequencing, phylogenetic microarrays and quantitative real-time PCR. In 

order to better understand the metabolic interactions between community members, it is also 

important to interrogate the microbial environment for metabolites and biomarkers, in addition to 

profiling community structure and function. Examples of high-throughput techniques that have 
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enabled metabolomic approaches in the field of microbial ecology include nuclear magnetic 

resonance spectrometry (NMR) and gas and liquid chromatography mass spectrometry (GC- and 

LC-MS). Recent studies that have taken advantage of the availability of these techniques 

continually improve our understanding of the structure, function and the dynamics of microbial 

communities, and the complex interactions that exist within and among the biomes. Examples of 

such works include the identification of definitive links between human gut microbiota and 

obesity (9), characterization of the impact of soil microbiomes on plant functions (10) and 

assessment of microbial diversity within methane seeps in deep-ocean floors (11).  

 High-dimensionality datasets, the typical output of high-throughput techniques, are 

generally represented as matrices of numerical values where each value corresponds to the 

measurement of a variable from a given site or sample (12). The entries within the matrix may be 

absolute values or relative abundances with respect to the sum of variables for each given object. 

The underlying distribution of values in the dataset may depend on the type of data, the method 

of measurement and several other factors.  

 

Multivariate statistical analysis: 

 In a simple system with very few variables, the changes in the variables can be easily 

extracted and summarized with straightforward approaches such as visual inspection and 

descriptive statistics. However, in more complex systems consisting of hundreds or thousands of 

variables, the change in the overall dataset spans across many variables and in complicated ways 

with respect to various environmental gradients. For example, microbiota that live in river 

streams are influenced by the amount of phosphorus and nitrogen that are released from the 

surrounding lands into the streams as a result of rainfall. These compound responses or patterns 
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are much more difficult to identify in high-dimensional datasets using conventional means. 

Fortunately, an entire class of statistical approaches exist to tackle such problems. These 

methods, known as multivariate statistical analyses, attempt to deconvolve such compound 

responses by organizing the variability within high-dimensionality datasets into manageable and 

interpretable terms or “factors” (13). While the mathematical framework used to achieve this 

depends on the applied technique, the end result is the reduction in complexity. Aside from the 

reduction in complexity, there are other advantages to multivariate analyses such as enhanced 

statistical power due to the aggregation of responses, the ability to assign rank of importance to 

factors or gradients as well as the ability to partition noise out of the overall variability (14). 

 Different approaches to classify techniques within multivariate analysis have been 

considered (15). One approach, for example, is based on the objective of the investigation, which 

results in techniques being placed roughly into these overall categories: (i) data dimensionality 

reducing, (ii) sorting and grouping, (iii) building relationships between variables, (iv) machine 

learning (predictive) and (v) hypothesis-driving (15). Some of these categories and the specific 

techniques within these categories will be discussed below. 

 

Dimensionality reduction and exploration: 

 Many of the dimensionality reducing techniques belong to a class of ordination methods 

called indirect gradient analyses or unconstrained ordination analyses. Ordination by these 

techniques is based solely on the matrix of response variables. They are well-suited for the 

exploration of structures and visualization of the most dominant gradients of variability within 

the dataset. These techniques reduce the dimensionality of the dataset for ease of interpretation 

by generating synthetic variables that represent dominant gradients from combinations of the 
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original response variables. The meaning behind these synthetic variables is inferred after 

performing the analysis to draw possible biological implications (16). Indirect gradient analyses 

are often used as exploratory techniques to confirm the presence of large patterns (gradients). 

Typical examples of unconstrained ordination techniques include Principal components analysis 

(PCA), Principal coordinates analysis (PCoA), and Correspondence analysis (CA). Detailed 

descriptions, usage, limitations and the underlying assumptions of these techniques can be found 

in several reports and online resources (17, 18). Unconstrained ordination techniques have 

successfully been used in several reports for exploratory analysis in the field of microbial 

ecology (19-22). 

 

Principal components analysis: 

 Principal components analysis is one of the most popular and oldest dimensionality 

reduction multivariate tools available (23). Its popularity is attributed to the ease of performing 

the analysis and the simplicity in its interpretation. Briefly, PCA builds latent (compound) axes 

within the dataset that summarize linearly independent portions of dataset variability through 

matrix transformation procedures (24). Additionally, PCA ranks these axes (also known as 

principal components or eigen axes) based on the proportion of the overall variability captured 

within the dataset. Therefore, the first axis captures the largest variability, the second axis 

captures the second largest variability that is independent (orthogonal) to the first. This process is 

repeated until all of the dataset variability is organized into linearly independent components. 

This feature is the key behind the dimensionality reduction properties of PCA. Since each sample 

now has coordinates from each principal component, displaying samples as points in the first two 

or three axes would reveal inherent large patterns within the dataset and their effects on sample 
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(dis)similarity. PCA constructs eigen components using Euclidean distance. Therefore, the 

relationship between samples in PCA ordination space is based on this metric. PCA has been 

widely used in the field of microbial ecology for dataset variability exploration (17). There have 

been concerns regarding the use of PCA with ecological datasets because this technique assumes 

a linear response model (variables change in a linear fashion with respect to unknown external 

gradients or effects), which is rare in nature (25). However, recent considerations have shown 

that if the length of these gradients are short, linear techniques such as PCA can appropriately 

define gradients from ecological datasets (25, 26). 

 

Principal coordinates analysis: 

 Principal coordinates analysis (PCoA), is similar in properties to PCA in that it too 

attempts to order dataset variability into independent components. The difference however, lies 

in PCoA’s ability to use externally defined distance relationships. Therefore, PCoA can be 

considered a more general version of PCA, and conversely, PCA can be thought of as a special 

case of PCoA, where the distance used to define relationships is Euclidean (16). This is an 

interesting feature of PCoA, because it allows researchers to incorporate relevant information 

into the ordination of variable responses. There is tremendous versatility in which distance can 

be used, albeit, the interpretation of the ordination will be dependent on the distance used. Even 

distance matrices generated using qualitative, semi-qualitative or mixed variables can be 

analyzed using PCoA (17). A very popular application of PCoA in microbial ecology revolves 

around the use of a beta-diversity based phylogenetic distance called UniFrac (27), which defines 

the relationships between taxa within and across communities based on their evolutionary 
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lineage (using sequence-based comparisons). Several reports have successfully used this distance 

with PCoA to identify gradients within microbial community datasets (20, 28, 29).  

 

Correspondence analysis: 

 Correspondence analysis is an indirect gradient technique that calculates relationships 

(correspondence) between samples and variables within a frequency table (cross-table or 

contingency table) and represents them in low-dimensional space. A graphical representation of 

these relationships will depict which samples are similar to one another, which variables are 

similar to one another based on the counts (frequency) and which variables have a higher 

probability of occurring in which samples (17). CA holds several advantages as an exploratory 

tool for microbial ecology. One of these advantages is that it is well suited to represent unimodal 

response variable models (variable responses change in a unimodal fashion with respect to 

external gradients, which is often the case in microbial ecology where microbial groups display 

high abundance only when specific conditions are met) within the dataset (30). Another 

advantage of CA is its relative insensitivity to double-zero cases (absence of a variable in the two 

compared samples) due to the properties of the χ
2
 metric used to calculate relationships between 

samples and variables of the cross-table (30). Because axes of CA are not completely unrelated 

to one another (CA axes are only uncorrelated), occasionally, gradients that are a part of the first 

CA axis also appear in the second axis, usually as non-linear functions of the first. This 

phenomenon, called the “arch” effect, can be corrected using a post-analysis process called 

‘detrending’ to restore the linearity of the first axis in CA. However, care should be taken with 

the interpretation of CA plots after ‘detrending’ as multi-axes distances will no longer accurately 

reflect but only approximate the inter-sample-variable relationships mentioned above. 
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Hypothesis-driven: 

 With the existence of hidden dataset structures confirmed with exploratory indirect 

gradient analyses, researchers can attempt to build hypotheses regarding the meaning behind the 

gradients. Testing of hypothesis-driven queries in multivariate data is typically performed using 

constrained ordination techniques (also referred to as direct gradient analyses). Constrained 

ordination can be thought of as a modification of unconstrained techniques, where the solution to 

the ordination is constrained in relation to an independently measured secondary variable or a set 

of variables. The secondary variable can be, for example, environmental variables that have been 

measured separately for the same set of samples as in the original dataset (pH, temperature, etc 

of samples or sites). As a comparison of unconstrained and constrained ordination techniques, 

PCA searches through a dataset to identify the largest gradients of variability, whereas 

Redundancy analysis, a constrained ordination technique, searches through a dataset to only find 

variability that is related to the changes in the constraining variables. Typical examples of 

constrained ordination techniques include Redundancy analysis (RDA), Canonical 

correspondence analysis (CCpdA), and Principal response curves (PRC) analysis. These 

techniques have been thoroughly described in scientific reports and online resources (17, 18). 

The use of hypothesis-driven multivariate analyses in the field of microbial ecology is not as 

widespread and popular as exploratory multivariate analyses (17). Still, a few studies have 

efficiently used constrained ordination analyses to answer hypothesis-driven queries in this field 

(31, 32).  

 

Redundancy analysis: 
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 Redundancy analysis (RDA) is thought of as the constrained extension of PCA where the 

ordination axes, which are linear combinations of response variables, are also linear 

combinations of the environmental or explanatory variables (16). Because PCA and RDA are 

built on the same framework, the distance metric used to define relationships is Euclidean. 

Because of this, RDA is best suited for use with datasets where the response variables change in 

a linear fashion with respect to the environmental gradients (17). The quality of how well the 

included explanatory variables explain the patterns in the response variables can be determined 

by the proportion of overall inertia (variation) due to the explanatory variables. The constraining 

procedure can not only be applied to a matrix of response variables, but also to a matrix of 

(dis)similarities. A useful application of the latter approach lies in RDA’s ability to constrain a 

matrix of sample relationships that were generated using a non-Euclidean-based distance metric. 

This extension to RDA is referred to as distance-based (RDA) and has recently been applied to 

microbiota datasets in combination with the UniFrac beta-diversity metric (33, 34). The 

graphical representation of RDA is typically a bi- or a tri-plot, where arrows represent the 

explanatory variables (lengths are proportional to the explained variability), and dots represent 

sample and/or response variables (18). Care should be taken with the interpretation of RDA and 

should be based on the type of end-point scaling. Sample-based scaling focuses on preserving 

exact distances between samples in ordination space (samples with similar response and 

explanatory variables appear close to each other) and only the angles between response variables 

and explanatory variable arrows represent linear correlations. Variable-based scaling sacrifices 

inter-sample distance relationship to preserve relationships between all variables (angles between 

any two variables, response and/or explanatory, represents their linear correlation) (18). Another 

useful application of RDA is the ability to run multiple partial analyses (where different 
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environmental or explanatory variables are set as conditional variables or co-variables) to 

partition the overall variability explained by each explanatory variable. This type of analysis, 

referred to as variation partitioning (or partial RDA), lets researchers determine the relative 

importance of each explanatory variable based on its contribution to explaining the overall 

variability within the response set (18). 

 

Principal response curves: 

 Principal response curves is a special case of partial RDA, where variability within the 

dataset is partitioned to only consider the changes in community due to time. The motivation for 

the development of PRC arose from the difficulty in interpreting time-dependent effects on 

sample and variable ordination in typical ordination plots. These effects are often masked by 

variability due to other environmental factors. Additionally, due to the nature of these ordination 

plots, time-dependent effects do not conform to a unidirectional gradient leading to a jagged 

arrangement of samples (35). In order to limit the interpretation to only relevant terms, the 

canonical coefficients derived by comparing community change to its respective control at each 

time point is plotted as a function of time. This process results in a response curve for each 

temporal data series. Very few studies in the field of microbial ecology have used PRC for the 

analysis of time-series data (36, 37). An interesting variant that was born out of one such 

application is the modified PRC where a single reference is used for every time-point 

comparison (36). This type of analysis depicts change in community over time, with respect to 

the reference. 

 

Canonical correspondence analysis: 
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 Canonical correspondence analysis (CCpdA) is the constrained analog of CA, just as 

RDA is that of PCA. Axes of CCpdA are maximally related to linear combinations of the 

constraining explanatory variables (30). Because the framework of CCpdA is based on that of 

CA, the technique is well suited for unimodal response models. Likewise, all of the advantages 

of CA, and its use of χ
2
 metric for calculation of relationships translate over to CCpdA. The 

output and the interpretation of the output of CCpdA is very similar to that of RDA. One of the 

key differences between RDA and CCpdA, is that CCpdA is capable of utilizing categorical or 

nominal variables (for example, group designation) as constraining variables. Like with RDA, 

variation partitioning is possible with CCpdA (this is referred to as partial CCpdA) (18). The 

same iterative procedure used with partial RDA is also used with CCpdA. This approach is 

especially powerful in the context of microbiota communities because of the prevalence of 

unimodal response relationships (30). Use of CCpdA in microbial ecology is still somewhat rare. 

However, with the recent improvement in understanding and exposure, the technique has started 

to become popular (32). 

 

Classification, prediction and variable selection: 

 Extending from the hypothesis-driven approaches to multivariate analyses, if the goal is 

to find consistent patterns within the dataset that pertain to separation of pre-defined clusters of 

samples, then techniques that are designed to accomplish it are called discriminant analyses. 

Discriminant analyses have become more sophisticated in recent years due to the advent of 

powerful computers. Access to ample processing power have enabled the use of complex 

machine learning algorithms that can search large datasets to find strong and consistent patterns 

through combinations of measured variables that separate groups of samples. This process, 



11 
 

typically referred to as 'model training', is a critical part of discriminant analyses (38, 39). Once a 

model is sufficiently trained, it can now be used to predict new samples. Such a feature has 

tremendous application in the clinical context, where rapid identification of sample identity using 

pre-trained pathological models can help with appropriate treatment strategies (40). Additionally, 

since patterns that separate sample groups are built using combinations of the measured 

variables, it is possible to identify the variables that contribute the most to the modeled 

separation, which can help with the biological interpretation of the group separation. There are 

several approaches to the discriminant problem for multivariate data. Some techniques use 

ordination based approaches, like Orthogonal projection to latent structures (OPLS-DA), while 

others use decision trees, like Random forest (RF) or separation of hyperplanes in 

multidimensional space as in Support vector machines (SVM). Discriminant models are usually 

assessed using cross-validation approaches where the dataset is split into 'training set' and 'test 

set'. The model created using the 'training set' is then tested using the 'test set' to determine 

overfitting and model accuracy. Several popular cross-validation approaches have been 

developed and tested (41-43).  

 

Random forest: 

 Random forest discriminant analysis is an ensemble classifier based on decision trees. It 

is referred to as an 'ensemble' classifier because it creates thousands of decision trees and the 

results of the decision trees are merged to generate an overall output. To briefly describe the 

procedure, decision trees are built using the variable values in a series of quantitative conditional 

statements (greater than or less than) to generate a sample group output. At each decision node, 

only random subsest of variables are available as choices. This process is done to ensure that 
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trees are truly independent and a few strong predictor variables do not dominate the decisions of 

all the decision trees. This 'random' selection of variable set is the difference between other 

decision tree-based classifiers and RF. Finally, a voting procedure is used to collect the decisions 

of all the trees and the mode of the group decision is selected as the algorithm output. The 

random selection of variables for decision nodes, and the voting procedure greatly reduce the 

'over-fitting' problem often encountered with typical classifier algorithms. Studies that have 

tested RF's performance have reported very high classification accuracies even for datasets of 

modest sizes (44, 45). RF has gained tremendous popularity in microbial ecology recently due to 

its reported high performance with these datasets (46-48). 

     

Orthogonal projection to latent structures: 

 Orthogonal projection to latent structures - discriminant analysis (OPLS-DA) tackles the 

discrimination problem by building synthetic axes (latent axes) which are linear combinations of 

the measured variables that correspond, or relate specifically, to the separation of sample groups. 

This is done by performing least squares regression (fitting) between the latent axes and the 

group designation axis, which results in the projection of these axes into a new ordination space 

(49). Orthogonal correction of this procedure partitions variability pertaining to group separation 

from unrelated variability within the dataset (50). Variability related to group separation and 

unrelated variability can be plotted on T and Torthogonal axes respectively, on ordination plots for 

visualization of model classification. The model predictive power and regression fit are used to 

assess the quality of models. Models are usually tested for over-fitting using cross validation 

approaches. Coefficients of variables from the latent axes can be used to determine the 

discriminatory strength of each variable. Use of OPLS-DA in the field of microbial ecology is 
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somewhat rare (51). OPLS-DA is more often used in metabolomics studies (52), but a recent 

surge in its usage has been reported in microbial ecology thanks to integrative studies that profile 

and link different aspects of the microbial environment (40, 53). 

 

Support vector machines: 

 Support vector machines (SVM) discriminant analysis tackles the problem of 

classification using kernel methods. Kernels are transformations of data to higher dimensional 

spaces that enable the fitting of a simple discriminant boundary (linear plane, for example) to 

previous complex group separation (54). As such, a model built by SVM represents the optimal 

hyperplane which maximizes the margin that separates sample groups in multidimensional space 

(54). SVM is versatile in that it allows for linear and non-linear kernel functions. Also, because 

SVM does not require the calculation of feature vectors (linear combinations of variables) for 

discrimination, and only requires the application of the kernel function for dataset 

transformation, SVM calculations tend to scale very well with large and complex datasets (also 

referred to as kernel trick) (54). Several studies that explored the predictive performance of SVM 

have reported that it showed high accuracy even for datasets containing low numbers of samples 

(44, 55). The use of SVM in the field of microbial ecology is very rare. To date, there has been 

only one study that has used SVM for discriminant analysis of microbial datasets (56). 

 

Relationships among sets of variables: 

 Access to different types of measured variables for the same set of samples allows for an 

integrative approach to analysis. Usually, biologically relevant interests in integrative analysis 

stem from questions regarding what type of relationships exist between sets of variables. A 
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straightforward approach to analyzing these datasets is to compare the pattern of changes in 

variables between different sets, across the samples. For example, one might be interested to 

look at the changes in abundances of complex polysaccharide-degrading microbiota and levels of 

short-chain fatty acids in the human gastrointestinal environment, to determine the metabolic 

interactions between these terms. Pair-wise correlation-based analyses are one of the simplest 

ways to uncover putative associations between different sets of variables. These analyses 

produce a quantitative measure (correlation coefficient) of the relationship between two 

numerical arrays (57). Values of the correlation coefficients usually range between -1 and 1. A 

positive value implies that the values change together, a negative value indicates that the values 

change in a reciprocal manner and zero indicates a lack of a monotonic relationship. Popular 

correlation analyses include Pearson product-moment, Kendall-Tau and Spearman rank 

correlation coefficients. Of these, Kendall-Tau and Spearman rank correlation metrics are 

considered non-parametric (they do not assume any specific distribution for the data) are highly 

suited to situations where prior information regarding the input data is unavailable. Correlation 

analyses have been extensively used in the microbial ecology for both integrative approaches as 

well as to look at relationships among variables within a single set (58, 59). 

  

Spearman rank correlations: 

 Spearman rank correlation coefficient is a non-parametric measure of how well two 

variables change together. Specifically, it measures the strength of the monotonic (as one 

variable increases, the other variable also increases or as one variable increases, the other 

decreases) relationship between two arrays of continuous, discrete or ordinal variables (60). The 

flexibility in the types of variables is due to the methodology used to calculate the correlation 
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coefficient. Spearman coefficient is based on the comparisons of the relative ranks of the 

variable values within the respective arrays. This feature gives rise to two very important 

advantages to the use of Spearman rank correlations; (i) the non-parametric nature of the 

coefficient, (ii) relative insensitivity to outliers compared to other correlation coefficients (61). 

The statistical significance of the correlation coefficient for each pair-wise comparison can be 

calculated by comparing the measured coefficient to a null distribution (resulting in values 

around zero) generated by randomizing ranks in one or both arrays.  

 

Extending multivariate analysis to studies in microbial ecology: 

 The trend in the use of multivariate statistical analyses in studies from the field of 

microbial ecology indicates a severe bias in what types of techniques are used and for what 

purposes. Most often, multivariate analyses are used for exploratory purposes with microbiota-

related datasets. Researchers limit their use to indirect gradient techniques such as PCA or PCoA 

and hypothesis-driven techniques such as RDA and CCpdA are generally avoided (17). The 

reasons for such limited use of hypothesis-driven techniques are usually due to unfamiliarity 

with using and interpreting techniques, fear of misuse and lack of user-friendly implementations. 

Furthermore, there are a large number of available multivariate techniques and newer one are 

constantly being developed. And each technique has its own set of special conditions and 

assumptions that need to be satisfied it order for proper analytical implementation. As a result, 

the difficulty involved in determining the choice of the technique that would be appropriate for a 

given biological query might give rise to the observed preference for older and simpler-to-

interpret exploratory techniques (12, 17). In order to facilitate a more thorough integration of 

multivariate statistical analyses to studies in the field of microbial ecology, a surge in the 
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knowledge and understanding of the use and interpretation of these techniques is 

necessary. Therefore, we have applied different types of multivariate tools to several 

microbiota-related datasets to demonstrate their suitability for extracting biological 

inferences and to develop a generalized protocol for the analysis of such datasets.  
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II. Materials and methods: 

Fecal water extraction:  

Similar to previous reports (62-64), fecal metabolites were analyzed in fecal water 

extracts prepared from each sample. A total of 250mg of homogenized stool was suspended in 

1.25ml of sterile cold phosphate buffer (4.3mM Na2HPO4•7H2O, 1.5mM KH2PO4, 2.7mM KCl). 

The mixture was homogenized for 5 minutes and then centrifuged at 16,000g for 5 minutes. The 

supernatant was collected and filtered through a GDX syringe filter (10.0µm - 0.2µm pore size). 

The filtrate was centrifuged again at 16,000 g for 15 minutes, and the supernatant was retained 

and stored at -70C for subsequent analyses. 

 

Genomic DNA isolation:  

Genomic DNA isolation from human feces was performed as previously described (65). 

Briefly, 150mg of material was processed using the ZR Fecal DNA kit (Zymo Research 

Corporation) processed according to manufacturer’s instructions. The genomic DNA from the 

procedure was eluted into 90µl of DNAse/RNAse free molecular grade H2O. The quality and 

quantity of the eluted DNA was analyzed using electrophoresis on a 1% agarose gel and the 

260/280 ratio of OD obtained through Nanodrop 1000. Eluted high quality DNA was stored at -

70C. 

 

Proton NMR of fecal water extracts:  

A 550µl aliquot of the prepared fecal extract sample was transferred to a 5 mm NMR 

tube together with 150µl of 9mM trimethylsilylpropionic-2,2,3,3-d4 acid (TSP) in D2O. Proton 

(1H) NMR spectra was acquired at 25C using a Varian INOVA operating at 600MHz (14.1 
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Tesla). TSP served as a chemical shift reference and quantification standard, and D2O provided a 

field-frequency lock for NMR acquisition. Water suppression was achieved using the first 

increment of a NOESY pulse sequence. Spectral data was pre-processed using Varian software 

that employs exponential multiplication (0.3Hz line-broadening), Fourier transformation, and 

phase correction. Spectra were then baseline corrected (flattened) in MATLAB (The Mathworks, 

Inc.). Further spectral processing included removal of the residual water signal, chemical shift 

referencing, and sum normalization. For multivariate data analyses, spectra were binned to 

reduce the dimensionality and mitigate peak misalignment, and signal intensities were auto-

scaled. A dynamic programming-based adaptive binning technique was employed (66) using a 

minimum and maximum distance between peaks in a single bin of 0.001 and 0.04ppm, 

respectively.  

 Quantification of specific metabolite resonances was accomplished using an interactive 

spectral deconvolution algorithm in MATLAB adapted from our previously described methods 

(66). The deconvolution tool fits a defined spectral region using a combination of tunable 

baseline shapes (spline, v-shaped, linear, or constant) and a Gauss-Lorentz peak-fitting function. 

All metabolite peak intensities were corrected for equivalent number of protons and normalized 

relative to the TSP signal intensity. We used a combination of three sources to assign peaks to 

specific metabolites – (i) database of proton NMR peaks assigned to specific small compounds 

(such as Human Metabolome Database), (ii) literature that defines specific peaks to belong to 

specific compounds, and (ii) the above tentative assignments were confirmed by addition of the 

suspect compound (spiking) to a test extract sample, carrying out proton NMR spectrum 

acquisition, and identifying corresponding peaks. 
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Taxonomic analysis: 

Microbiota Array: 

 Amplification of genomic DNA for each sample was performed using the 

phylogenetically conserved primers Bact-27Fv4 and Univ-1492Rv1 which target the full-length 

prokaryotic 16S rRNA gene as previously described (65, 67). The following conditions for PCR 

were used with 250ng of starting DNA template: 25 cycles of PCR amplification, 50µl reaction 

volume, and previously described cycle conditions (65, 67). PCR was performed in replicates of 

4 reactions and pooled together prior to purification. Purified PCR products were fragmented and 

processed using the Affymetrix protocol as described by the manufacturer and hybridized to the 

custom designed Microbiota Array developed in the Paliy lab (65, 67). Post-hybridization, the 

chips were washed and scanned as described previously (65, 67). The analysis of microarray data 

was performed as previously described (65, 67). Briefly, to quantitate phylotype presence based 

on detection calls, the raw data were processed in GCOS using the standard MAS5 detection 

algorithm. To quantitate phylotype abundance data, hybridization signal estimates were first 

normalized using the MAS5-VSN-MAS5-MedianPolish pipeline using CARMAweb online 

portal (67). The acquired normalized phylotype abundance data were adjusted for 16S copy 

number variations and probe cross-hybridization using custom MS Excel templates. 

High-throughput next generation sequencing:  

The 16S rRNA gene V4 variable region PCR primers 515/806 with barcode on the 

forward primer were used with the extracted genomic DNA from each sample in a 30 cycle PCR 

using the HotStarTaq Plus Master Mix Kit (Qiagen, USA) under the following conditions: 94C 

for 3 minutes, followed by 28 cycles of 94C for 30 seconds, 53C for 40 seconds and 72C for 1 

minute, after which a final elongation step at 72C for 5 minutes was performed. After 
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amplification, PCR products were checked in 2% agarose gels to determine the success of 

amplification and the relative intensity of bands. Multiple samples were pooled together (e.g., 

100 samples) in equal proportions based on their molecular weight and DNA concentrations. 

Pooled samples were purified using calibrated Ampure XP beads. Then the pooled and purified 

PCR product were used to prepare the DNA library by following Illumina TruSeq DNA library 

preparation protocol. Sequencing was performed at MR DNA (www.mrdnalab.com, Shallowater, 

TX, USA) on a MiSeq following the manufacturer’s guidelines and the 2x250bp sequencing 

chemistry. Sequence data was processed using a slightly modified QIIME analysis pipeline (68). 

Barcode and adapter sequences were removed. Reads shorter than 100bp were removed. 

Sequences were denoised and chimeras were removed. Sequences reads were clustered at the 

default 97% identity. OTUs were annotated using the GreenGenes database (69).  

 

Statistical procedures:  

Principal components analysis (PCA) was performed in MATLAB using custom 

developed scripts. Principal coordinates analysis (PCoA) using UniFrac distance (27) was 

performed using the beta_diversity.py script in QIIME. Correspondence analysis (CA) and 

detrended correspondence analyses (DCA) were performed in the PAST statistical software (70). 

Canonical correspondence analysis (CCpdA), distance-based Redundancy analysis (dbRDA), 

Principal response curves (PRC) and variation partitioning as well as variable margination were 

performed in R using the VEGAN package (71). Random forest (RF) was performed using the 

RANDOMFOREST package in R. Significant variables in RF were selected based on mean decrease 

in model accuracy. Orthogonal projection to latent structures – discriminant analysis (OPLS-DA) 

was performed using the ROPLS package in R. Significant variables were selected based on the 

http://www.mrdnalab.com/
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absolute value of weights. Support vector machines (SVM) discriminant analysis was performed 

using the CARET package in R. Significant variables for SVM were selected using the varImp 

command in the caret package. The CARET package was used for cross-validation and other 

statistical testing for all three discriminant analyses techniques. Class classification probabilities 

obtained from the cross-validation tests using the CARET package were used with the built-in 

perfcurve.m MATLAB function to build Receiver operating characteristics curves (ROC) for 

model comparisons. Venn diagram for the variation partitioning was performed using the EULER 

utility (72). The calculation of the Davies-Bouldin index, the visualization of 3x standard error of 

mean cloud around the centroid and the Monte Carlo Permutation Procedure for statistical 

significance testing were performed using custom written MATLAB code. To calculate 

Spearman rank correlations between the microbiota and metabolite datasets, the built-in corr.m 

MATLAB function was used. Additionally, multiple hypothesis testing correction was 

performed using Benjamini and Hochberg's False Discovery Rate method (FDR) in custom MS 

Excel templates. Visualization of bipartite networks were performed using the NAVIGATOR 

software (73).  
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III. Datasets and scientific questions  

Distal gut microbiota and metabolite profiles from IBS and healthy children: 

Study design: Fecal samples collected from 22 healthy adolescent volunteers (designated as 

kHLT, age range: 11-18 years, average: 12.6 years, gender distribution: 10 males and 12 

females) and 22 volunteers who were recently diagnosed with IBS-D (designated as kIBS, age 

range: 8-18, average: 13.2 years, gender distribution: 10 males and 12 females) were subjected to 

taxonomic analysis using Microbiota Array and metabolomics analysis using H
1
 NMR as 

described in the Materials and methods section. Healthy volunteers were confirmed to not have 

any GI disease or disorder symptoms. All of the enrolled volunteers were confirmed to not have 

been on any prebiotic supplementation or antibiotic treatment for at least 6 months prior to fecal 

sample collection. Volunteers with indication of organic abnormalities such as persistent 

vomiting, dysphagia, hematemesis, rectal bleeding, fever, weight loss, fatigue and arthritis were 

excluded from the study. All volunteers diagnosed with IBS-D fulfilled the Rome II criteria for 

the syndrome (74). Specific inclusion and exclusion can be found in Rigsbee et al 2012. Fecal 

sample processing and taxonomic data acquisition were performed by Laura Rigsbee. Metabolite 

quantitation was performed by Daniel Homer. 

Scientific questions: 

Taxonomic: 

1.) Are there differences in the genus abundance profiles in the distal gut microbiota from 

healthy and IBS children? 

2.) Can a classification model be built based on these differences? 

3.) Can these differences be identified and ranked?  
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Metabolomic: 

1.) Are there differences in the quantitated distal gut metabolite abundance profiles from 

healthy and IBS children? 

2.) Can an accurate classification model be built based on these differences? 

3.) What are the top discriminatory metabolites that contribute to the separation between 

sample groups? 

Associations between taxonomic groups and metabolites: 

1.) Can we identify statistically significant associations between microbes and metabolite for 

the healthy group and IBS group? 

2.) Are there differences in the microbe-metabolite associations between IBS and healthy 

groups? 

 

Distal gut microbiota profiles from patients with Clostridium difficile infection before and 

after fecal microbiota transplantation therapy: 

Study design: Three studied patients suffered from recurrent C.difficile infection (CDI) which 

was first treated using standard antibiotic therapies described previously (75). The fecal 

microbiota transplantation (FMT) procedure was performed by using concentrated fecal 

microbiota from healthy donor meeting specific criteria that have been previously described (75, 

76). Although the same donor was used for the treatment of all three volunteers, the sample 

collection from the healthy donor was performed on different dates. Until 2 days prior to FMT, 

patients were treated with 125mg of Vancomycin, administered orally for four times per day. 

The day before the FMT procedure, patients received purgative to wash out residual antibiotics 
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from the intestinal environment. Fresh fecal gavage from the healthy donor were administered to 

the CDI patients through colonoscopy as previous described (75). Fecal samples for microbiota 

analysis were collected from the healthy donor on collection dates and from CDI patients before- 

and after-FMT on specific dates listed in Shankar et al 2014. Taxonomic data was acquired from 

fecal samples using Microbiota Array as described in the Materials and methods section. Fecal 

sample processing and taxonomic data acquisition were performed by Vijay Shankar and 

Amanda Kilburn.  

Scientific questions: 

1.) Are there significant changes in the distal gut microbiota profiles in CDI patients as a 

result of FMT? 

2.) Is the distal gut microbiota community profile in CDI patients after FMT similar to that 

of the healthy donor? 

3.) How does the distal gut microbiota community change in CDI patients with respect to 

time (from before-FMT to days after-FMT)? 

4.) What are the key microbial drivers of the CDI disease state and healthy state? 

 

Distal gut microbiota and metabolite profiles from healthy US and Egyptian children: 

Study design: Fresh fecal samples were collected in sterile containers from healthy pre- and 

adolescent male volunteers from Giza, Egypt (designated as egkHLT; n=28, average age=13.9 

years; average body mass index BMI=18.9 kg/m2) and from Dayton, OH, United States 

(designated as uskHLT; n=14, average age=12.9 years; average BMI=21.2 kg/m2). Fresh fecal 

samples were homogenized immediately after collection and frozen as described previously (65) 
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Healthy volunteers did not have any gastrointestinal symptoms and had not consumed antibiotics 

or probiotics for at least three months prior to sample collection. For each volunteer, age and 

BMI values were collected and used in data interpretation. Taxonomic analysis using high-

throughput next generation sequencing and metabolomics analysis using H
1
 NMR were acquired 

from fecal samples as described in Materials and methods section. Fecal samples were processed 

by Mostafa Gouda, Jessica Moncivaiz and Vijay Shankar. Taxonomic data was acquired by 

Vijay Shankar. Metabolite quantitation was performed by Jessica Moncivaiz. 

Scientific questions: 

Taxonomic: 

1.) Are there significant differences in the genus abundance profiles from distal gut 

microbiota between healthy US and Egyptian children? 

2.) Can a discriminant model be built based on these differences? 

3.) What are the top discriminatory genera that separate distal gut microbiota profiles from 

these two populations?  

Associations between taxonomic groups and metabolites: 

1.) Are there statistically significant associations between the distal gut genera and 

metabolites that are common to the Egyptian and US cohorts? 

 

Distal gut microbiota profiles of human populations from industrialized and non-

industrialized countries: 
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Study design: High-throughput next generation-based 16S rRNA sequence data from the 

previous study (US-vs-Egypt study) was combined with publically available comparable data 

from the US-vs-Malawi-vs-Venezuela subject comparison study (46), the Tanzania-vs-Italy 

subject comparison study (28), and the US-vs-Peru subject comparison study (77) for taxonomic 

analysis. Care was taken to only include sequence data from samples from these studies that 

were age-matched to those of the US-vs-Egypt study. Taxonomic data from the combined dataset 

was acquired by Vijay Shankar as described in the Materials and methods section. 

Scientific questions: 

1.) Can a discriminant model be built to define the differences in the distal gut genus 

abundance profiles between sample from industrialized and non-industrialized countries? 

2.) Which genera contribute the most to these differences? 
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IV. Specific aims  

 

 Current trends in the use of multivariate tools in microbial ecology have been 

predominantly exploratory in nature, limiting the types of observations that can be made (17). 

Therefore, I developed four aims to demonstrate that a multitude of biologically relevant insights 

can be drawn from an extensive application of different types of multivariate techniques. 

Additionally, a fifth aim was used to integrate these approaches into a protocol for the 

generalized use of multivariate statistical analyses. These aims are: 

1. Use indirect gradient analyses to determine if the largest gradients of variability 

correspond to differences across sample groups. 

2. Apply direct gradient analyses to explain variability within multivariate datasets using 

known independent variables. 

3. Construct discriminant models, compare performances of classifier techniques, and 

determine variables that are relevant to separation of samples between groups. 

4. Identify and evaluate associations among response variables across datasets using 

correlation based network analyses. 

5. Construct a protocol using previous aims for the exploratory and hypothesis-driven 

analysis of microbiota-related multivariate datasets. 

 

Specific aim 1: Use indirect gradient analyses to determine if the largest gradients of 

variability correspond to differences across sample groups. 

 

Rationale 
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 Often, the initial question after the generation of high-throughput data from complex 

microbial communities is if there are large patterns within the response variables (genus, species, 

etc.,). Additionally, if the datasets are from different sample groups, one might be interested to 

test if such patterns or gradients relate to separation of samples between sample groups. In order 

to use these patterns for such biological interpretations, they need to be identified and extracted 

from the data. While, patterns involving a few variables are easily extracted from datasets 

through simple visualizations and descriptive statistics, large and complex patterns, which 

comprise many taxa, for example, are difficult to identify and visualize through conventional 

means (12). Such exploratory analyses of high-dimensionality data are best accomplished 

through the use of indirect gradient analyses which result in hypothetical variables (also referred 

to as latent variables) that are constructed by fitting values of response variables (taxa, 

metabolite, etc.,) to a specific statistical model that defines how these variables change across a 

gradient (78). In this aim, we use indirect gradient analyses on datasets obtained from human 

distal gut microbiota communities and environments to test if these hypothetical variables 

correspond to sample group gradients in the respective datasets. 

 

Analysis methods: 

 Multiple indirect gradient analysis techniques were used on the datasets described in the 

Datasets and scientific questions section. The specific tools used for each dataset differ based 

on the match between the assumptions of the techniques and the overall structures of the 

respective datasets. The ordination output, which were sample coordinates from the first two 

latent variables (eigen axes, principal components, canonical axes, etc.,) were visualized as two 

dimensional ordination graphs. In order to define the distinction of sample clusters, the sample 
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values from the latent variables were used to calculate the Davies-Bouldin index (79). The 

Davies-Bouldin index (DB) is defined as a function of the ratio of within-cluster distance (spread 

of a cluster) to between-cluster centroid (separation of clusters): 

   
 

 
             

 

   

 

Where k is the number of clusters and Di,j is the within-to-between cluster ratio of clusters i and j 

and defined as: 

     
   
    

  

    
 

where id  and jd are average distances between each sample point and its respective group 

centroid, and di,j is the Euclidean distance between the group centroids (79). Smaller DB index 

values imply better clustering and cluster separation. In the two-dimensional ordination plots, 

three standards errors of the mean (3SE) were calculated for each group around the group 

centroid using custom Matlab code (80). Statistical significance of the DB index was calculated 

by the Monte Carlo Permutation Procedure (81), which involves comparison of DB index 

obtained from the analysis to a null distribution generated using random swapping of sample IDs 

between groups and calculating DB index for each iteration. 10,000 permutations were 

performed to generate the reported DB index p-values. 

 

Sub aim 1a: Determine if the ordination of genus abundances from fecal microbiota 

communities can distribute samples from healthy and IBS patients into distinct clusters in 

ordination space.  

 Principal components analysis (PCA) and abundance-weighted phylogenetic principal 

coordinated analysis (PCoA) were performed on the genus abundances obtained using the 
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phylogenetic Microbiota Array from fecal microbiota of healthy and IBS children. PCA uses 

Euclidean distances to define relationships between samples, while PCoA uses UniFrac 

distances, which is a phylogenetic beta diversity metric that takes into account the lineage 

information of the community membership when calculating similarities between samples (27).  

Results: 

 Both PCA (Figure 1A) and PCoA (Figure 1B) separated samples into distinct clusters 

based on their health state (healthy - kHLT or IBS - kIBS). For both PCA and PCoA the 

separation between sample clouds occurred mostly in the second ordination axis (Figure 1). In 

PCA, the first principal component captured 34.20% of the overall variability and the second 

principal component captured 12.91% of the overall variability within the dataset. Likewise, in 

PCoA, the first and the second ordination axes captured 14.82% and 8.13% of the overall 

variability within the dataset. The DB index values for group separation and their corresponding 

p-values for PCA and PCoA were 3.296 with a p<0.001 and 4.067 with a p=0.003 respectively.  

Figure 1. Ordination of genus abundance profiles from distal gut microbiota of healthy 

and IBS children using Principal components analysis (A) and UniFrac distance based 

Principal coordinates analysis (B). 
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Discussion: 

 In both plots, sample groups separated on the second ordination dimension. This 

observation might be due to the contribution of large inter-individual variations in taxonomic 

abundances to the overall variability. Since both PCA and PCoA order eigen axes based on the 

variability captured (i.e., the axis that captures the most variability in the dataset is ranked as the 

first ordination axis and so on), in these plots, the first ordination axis likely corresponds to these 

inter-personal differences. This phenomenon, where inter-individual differences in gut 

microbiota composition contributes more to overall variability than other consistent changes due 

to co-factors such as host health state, diet, etc., has previously been reported in several studies 

(82-84). Little difference was found in the quality of sample group separation between PCA and 

PCoA (DB index and p-values for each); however, less of the overall variability was captured by 

the first two dimensions of PCoA when compared to PCA. This observation implies that the use 

of the phylogenetic distance (UniFrac), in this particular analysis, changes how the overall 

variability is distributed among the eigen axes and that it does not significantly enhance the 

latent variable that corresponds to sample group gradient (IBS vs healthy).  

 

Sub aim 1b: Determine if the ordination of quantitative fecal metabolite levels from healthy 

and IBS patients can distribute samples into distinct clusters in ordination space. 

 Principal components analysis (PCA) and Correspondence analysis (CA) were performed 

on quantitated abundances of individual fecal metabolites from healthy and IBS children. PCA 

was performed with Mahalanobis scaling of input data to reduce the effects of inter-individual 

variability on the ordination results. We chose to utilize CA on this dataset because we suspected 
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that fecal metabolite levels changed unimodally in response to known and unknown 

environmental gradients (explanatory variables) such as disease state, fecal pH, % water content, 

host age and BMI (see Introduction for description of CA).  

Results: 

Both PCA (Figure 2A) and CA (Figure 2B) partially separated samples in their respective 

ordination spaces based on the hosts’ health state (IBS or healthy). For both PCA and CA, the 

separation between sample groups occurred on both axes (Figure 2). The proportion of the 

overall variability captured by the first two principal components in PCA are 41.11% and 

14.52% respectively. Likewise, in CA, the percent variability (also referred to as inertia) 

captured by the first two canonical axes are 30.30% and 25.31% respectively. The DB index 

values for group separation and their corresponding p-values from PCA and CA were 5.639 with 

a p = 0.043 and 5.193 with a p = 0.006, respectively. 

 

Figure 2. Ordination of metabolite abundance profiles from distal gut environment of 

healthy and IBS children using Principal components analysis (A) and Correspondence 

analysis (B). 
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Discussion: 

 While both PCA and CA only partially separated samples between healthy and IBS 

groups, the separation was nevertheless statistically significant, based on p-values of the DB 

indices generated through the Monte Carlo Permutation Procedure (p values < 0.05). The loss of 

a clear separation and tight group clustering can be explained by the following two reasons. 

Firstly, only a small number of metabolites were chosen for deconvolution and quantitation from 

the full NMR spectra of the samples. The reduction in the number of variables can result in the 

representation of only a small fraction of the overall variability within the full NMR spectra. 

Secondly, the selection of metabolites for quantitation was based on generalized biological 

responses associated with IBS and previously published reports and may not accurately reflect 

specific differences in this particular study. While this selection strategy could be effective for 

most pathological conditions, it may not be suitable for IBS because of the large degree of 

heterogeneity in symptoms and biomarker responses observed with this syndrome (85, 86). 

 

Sub aim 1c: Determine if the ordination of genus abundance profiles from fecal microbiota 

communities can distribute samples from healthy US and Egyptian children into distinct 

clusters in ordination space. 

 Abundance-weighted principal coordinated analysis (PCoA) with UniFrac phylogenetic 

distance and Detrended correspondence analysis (DCA) were performed on chord transformed 

genus abundances from distal gut microbiota of healthy US and Egyptian children. Chord 

transformation of the input data was performed to correct for the large number of zeroes present 

within the genus abundance dataset which can lead to false patterns after ordination (87). DCA, 

which is a variant of CA, was used instead of CA because of the presence of rare genera within 
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the dataset (hence the presence of many zeros). Rare variables can lead to shortening of the 

distances between sample positions at the ends of the ordination axes when using ordination 

techniques that assume a unimodal variable response (CA, CcpdA, DCA, etc) (25). The 

detrending procedure, part of DCA, was used to correct for this phenomenon and to preserve the 

ordination of samples in the first dimension (12).  

 

Results: 

A clear separation between the sample groups was observed in both PCoA (Figure 3A) 

and DCA (Figure 3B). The separation between sample groups in PCoA occurred mostly in the 

first dimension, which captured 40.38% of the overall variability within the dataset. The second 

dimension captured 13.52% of the overall variability. In DCA, the separation between sample 

groups was entirely in the first dimension, which captured 23.81% of the total inertia. The 

second dimension in DCA contributed to 18.69% of the total inertia. It is important to note that 

Figure 3. Ordination of chord transformed genus abundance profiles from distal gut 

microbiota of healthy US and Egyptian children using abundance-weighted UniFrac 

distance-based Principal coordinates analysis (A) and Detrended correspondence 

analysis (B). 
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the reported percent variation captured for this analysis is from CA because the detrending 

procedure in DCA alters the total inertia, and in addition, only produces a small number output 

axes (30). The DB index and their corresponding p-values for PCoA and DCA are 1.286 with a 

p-value <0.001 and 1.217 with a p-value<0.001 respectively. 

 

Discussion: 

One of the striking features of these ordination analyses is the clear separation between 

the Egyptian and US sample groups in ordination space. This observation implies that there are 

large variations within the genus abundance profiles that correspond to the “country” gradient 

(i.e., the Egyptian gut microbiota, at the genus level, is very different from the US gut 

microbiota). In agreement with our findings, several previous reports have shown that gut 

microbiota from geographically distinct populations differ greatly (28, 46, 77). Also important to 

note is the difference in the spread of samples within each group in both analyses. The Egyptian 

sample group had a much greater spread compared to the tightly packed US sample group. The 

second dimensions in both PCoA and CDA predominantly capture the variability within the 

egkHLT sample group. One possible reason for this phenomenon might be that there is a greater 

degree of inter-individual variation in the gut microbiota composition of the Egyptian group 

compared to the US group. It is also possible that the unequal number of samples within the 

groups (egkHLT, n = 28, uskHLT, n = 14) contributes somewhat to the sample placements we 

see in these ordination plots. 
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Sub aim 1d: Determine if the differences in the microbial phylotype abundances from fecal 

samples collected from patients with Clostridium difficile infection before and after fecal 

transplantation therapy lead to separate clusters in ordination space. 

 Phylotype abundance data obtained using the Microbiota Array from distal gut 

microbiota of patients with Clostridium difficile infection (CDI) before and after fecal microbiota 

transplantation (FMT) were analyzed using Principal components analysis (PCA) and 

abundance-weighted UniFrac-based Principal coordinated analysis (PCoA). Multiple after-FMT 

samples indicate fecal samples collected at various time points after the therapy (please refer to 

Datasets and scientific questions section for description of the study). 

 

Results: 

 Both PCA (Figure 4A) and PCoA (Figure 4B) showed clear separation of before-FMT 

samples from after-FMT samples for all three CDI patients. The donor samples clustered with 

the after-FMT CDI samples in both PCA and PCoA. The separation between before-FMT and 

after-FMT samples was entirely in the first dimension in both ordination analyses, while the 

second dimension captured the variability within the after-FMT samples. In PCA, the first 

dimension captured 38.11% of the overall variability, and the second dimension captured 

13.02% of the overall variability. Likewise, in PCoA, PC1 captured 65.14% of the overall 

variability and PC2 captured 10.58% of the overall variability. The DB index for separation of 

before-FMT sample cluster from the donors and after-FMT sample cluster in PCA and PCoA 

ordination spaces were 0.849 with a p<0.001 and 0.467 with a p<0.001, respectively. The 

overlay of the collection time points against the after-FMT samples in both ordination plots 
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indicated that the spread of samples on the second dimension mostly follow a chronological 

pattern. 

 

Discussion: 

 The clear separation between before-FMT and after-FMT samples in both ordination 

analyses imply that the gut microbiota composition between these two groups are starkly 

different. Also, the fact that donor samples clustered with after-FMT samples indicates that the 

gut microbiota composition of CDI patients after the therapy closely resemble that of their 

respective donors. In both ordination analyses, the separation between before-FMT and after-

FMT samples occurred in the first dimension, which signifies that this shift in the microbiota 

composition due to fecal transplantation therapy contributed to the greatest variability within the 

dataset. It is interesting to note that the before-FMT samples from CDI patients showed 

considerable variability as indicated by their positions across the first dimension. This implies 

Figure 4. Principal components analysis (A) and abundance-weighted UniFrac-based 

Principal coordinates analysis (B) of phylotype abundance data from distal gut 

microbiota of patients with Clostridium difficile infection before FMT, after FMT and 

their respective donors. 
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that even among the pathology of CDI, inter-individual differences in the gut microbiota 

composition exist. The unusual, nearly vertical arrangement of after-FMT samples along the 

second dimension is likely due to the variability in microbiota composition that corresponds to 

the “time” gradient, as indicated by the collection time points overlayed in the ordination plots.  

 

Specific aim 2: Apply direct gradient analyses to explain variability within multivariate 

datasets using known independent variables. 

 

Rationale: 

 Application of indirect gradient analyses distributes samples onto “hypothetical” axes or 

gradients. The meaning of these synthetic axes and what they correspond to are only implied 

within these techniques. While they are useful for detecting and extracting these patterns, if the 

goal of the analyses is to explain the reasons behind the ordering of samples along such 

gradients, it is important to “constrain” our results from the indirect gradient analyses to 

independently measured explanatory variables of specific interests. Such a class of techniques, 

often referred to as constrained ordination analyses or direct gradient analyses, are well suited for 

this purpose because they are designed to maximize the relationships between the explanatory 

variables (BMI, age, treatment, etc.,) and the dependent response variables (taxa, metabolite, 

etc.,) (12). The ability to test associative hypotheses between these sets of variables greatly 

enhances the interpretation of ordination results and extraction of biological inferences. In this 

aim, we use direct gradient analyses to identify and quantify the magnitude of independent 

gradients that explain the ordination of taxonomic and metabolite response variables from 

various human distal gut microbiota-related datasets. 
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Sub aim 2a: Determine the effects of fecal pH, fecal percent water content, host age and 

health state on the variance of fecal metabolite profiles acquired from IBS and healthy 

patients. 

 

Analysis method: 

 Canonical correspondence analysis (CcpdA) was used to build relationships between 

fecal pH, fecal percent water content, host gender and age, and the ordination of fecal metabolite 

profiles from healthy and IBS children. CcpdA was used because it is well suited to deal with 

categorical explanatory variables (health state). The quality of the direct gradient model was 

tested using the pseudo F-statistic, which is the ratio of rank-adjusted constrained and 

unconstrained total inertia of the model: 

   
        

           
 

where n is the number of samples, m represents the degrees of freedom within the model (also 

represents the number of canonical eigenvalues), SS(Ŷ) represents the explained variation and 

RSS is the total variation minus the constrained or explained variation (residual sum of squares) 

(39). Pseudo F-statistic therefore measures how well the constraining variables cumulatively 

explain the overall variation (inertia) of the response variable ordination. Statistical significance 

of the analysis is generated through the comparison of the pseudo F-statistic calculated for the 

original model to a null distribution of the metric calculated from random permutation of fecal 

metabolite profiles.  

 

Results: 
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 The biplot visualization of CCpdA (Figure 5) depicted the ordination of samples based on 

the constraining variables (fecal pH, % water content, age and health state). The continuous 

variables (fecal pH, % water content and age) are depicted as arrows, while the categorical 

variable (health state) is depicted as group centroid. Among the explanatory variables, fecal pH 

arrow was the longest and aligned mostly with the first canonical axis. The variable with the 

second longest arrow was the % water content which influenced both the first and the second 

dimensions. The health state categorical variable mostly separated along the second canonical 

axis. Cumulatively, constraining variables explained 29.2% of the total inertia within the dataset. 

The first and the second canonical axes captured 17.0% and 9.4% of the total inertia, 

respectively. The cumulative pseudo F-statistic for the model was 4.019 with a p<0.001. 

Statistical significance of individual explanatory variables was calculated using iterative 

 

Figure 5. Canonical correspondence analysis on fecal metabolite abundances from 

healthy and IBS children, constrained by host age, health state, fecal pH and % water 

content.  
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margination of each explanatory variable (71). This permutation test output the following pseudo 

F-statistic and corresponding p-values for each explanatory variable; Age - 1.239 with a p=0.386, 

Health state - 3.952 with a p=0.008, Fecal pH - 7.874 with a p<0.001 and Fecal % water content 

- 3.010 with p=0.024.  

 

Discussion: 

 Among the explanatory variables, fecal pH explained the largest degree of variability, 

evidenced by the relative length of its arrow compared to the other variables, the value of its 

pseudo F-statistic and the associated highly significant p-value. It is interesting to note that the 

axis of variability accounted for by the fecal pH (arrow) was nearly orthogonal to the separation 

of healthy and IBS sample groups in the canonical ordination space. This implies that fecal pH 

did not have a large impact on the separation of samples between these groups. This is somewhat 

of a surprising finding, because changes in luminal pH have been reported in IBS when 

compared to healthy controls due mostly to altered short-chain fatty acid (SCFA) production 

(88). It is possible that the differences in methods used for pH measurement in the studies might 

lead to conflicting results (i.e., fecal pH might not be an accurate representation of luminal pH in 

the different regions of the large intestine). The explanatory variable that aligns the best with 

group separation is age (second canonical axis). However, it is important to point out that the 

inertia captured by age is not only small but also not statistically significant. Therefore, the arrow 

lengths (which represents the rate at which this variable changes along that direction) alone 

cannot be used to gauge the importance of an explanatory variable to the fitted constrained 

ordination. All the known explanatory variables combined only explain 29.2% of the overall 
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inertia with the dataset. This indicates that a significant portion of the variability has yet to be 

explained and is due to some unknown environmental gradients. 

 

Sub aim 2b: Determine the variability explained by age, BMI and country in the ordination 

of fecal microbiota genus abundances profiles from healthy US and Egyptian children. 

 

Analysis method:  

 Distance-based Redundancy analysis (dbRDA) was performed on genus abundances 

from the distal gut microbiota of healthy US and Egyptian children with age, BMI and the 

country of origin as the constraining variables. dbRDA was performed with UniFrac distances in 

order to take advantage of the phylogenetic relationships of the taxa during sample ordination. 

Although CCpdA is more suitable for ecological gradients (microbial communities respond 

unimodally to environmental or independent gradients), dbRDA can still provide comparable 

performance when the gradients of the measured explanatory variables are short (12). The 

pseudo F-statistic, and statistical significance testing through comparison to null distribution 

generated using random permutations described in the previous section was utilized in this sub 

aim as well, to assess the quality of the constrained ordination. Additionally, variation 

partitioning of the dbRDA output was used to determine the relative contribution of each 

explanatory variable to the overall variation explained. 

 

Results: 

 The outputs of dbRDA and subsequent variation partitioning were depicted as sample-

explanatory variable biplot (Figure 6A) and Venn diagram (Figure 6B) respectively. In the 
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dbRDA biplot, a clear separation was seen between the sample groups (Egyptian vs US) which 

coincided with the direction of the “country” arrow and the first canonical axis. The arrow 

corresponding to the country of origin was the longest among the explanatory variables, followed 

by age and BMI. The color gradient and size of the sample dots depicted the numerical values of 

the age and BMI respectively for each sample. The variability captured by the first and the 

second constrained canonical axes were 29.1% and 2.0%, respectively, and all three explanatory 

variables cumulatively explained 32.1% of the overall variability within the dataset. In 

agreement with the arrow lengths in dbRDA biplot, variation partitioning indicated that the 

country of origin for the samples was the dominant explanatory variable and accounted for 

29.3% of the overall variability, while age and BMI contributed considerably less (7.3% and 

4.5% respectively). The pseudo F-statistic for the overall model containing all three explanatory 

variables was 6.403 with a p<0.001. 

 

Discussion: 

Figure 6. Distance-based Redundancy analysis (A) and subsequent variation 

partitioning (B) performed on genus abundances from distal gut microbiota of healthy 

US and Egyptian children, constrained by country, age and BMI.  
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 Among the three variables included within the constraining model, country of the sample 

(Egyptian or US) was the strongest gradient as indicated by the length of the arrow in the 

dbRDA biplot and the Venn diagram of the variation partitioning. This indicates that the 

majority of the variations in the genus abundance profiles can be explained by the sample group 

gradient. Given the large contribution of the variable to the overall inertia, it is likely that there 

are very distinct and large changes in genus abundance profiles when comparing samples 

between groups. In contrast, both age and BMI only mildly contribute to the observed overall 

variability. This is evidenced by the lack of a strong congruency between the variable arrows and 

the superimposed sample dot information (age and BMI). There is not a clear, distinct pattern 

(change across) in either the color gradient or the dot size that aligns with the direction of age or 

BMI arrows.  

 

Sub aim 2c: Elucidate time-dependent changes in the genus abundance profiles of fecal 

samples collected from patients with Clostridium difficile infection before fecal microbiota 

transplantation therapy (FMT) and subsequent collections after FMT. 

 

Analysis method: 

 Principal response curves analysis (PRC) was performed on the genus abundances 

profiles of fecal samples collected from CDI patients before-FMT and after-FMT, and their 

respective donors to illustrate the changes in their gut microbiota composition with respect to 

time. Since PRC is built upon the framework of Redundancy analysis (RDA), Euclidean distance 

was used as the metric to define (dis)similarities between samples. The F-type test statistic and 

Monte Carlo permutation procedure were used to test RDA under the reduced model framework 
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(See description of PRC in Introduction for details). In order to calculate statistical significance 

of the PRC model, the data from all three patients and their respective donors were combined 

into a single dataset. This procedure could only be done for the before-FMT time point, Day 3 

and Day 7, because these were the only time points that were shared among all three patients. 

This step was necessary because permutation-based testing of PRC requires replicates of both 

conditions (after-FMT and donor microbiota composition). Statistical significance was calculated 

by comparing the F-type statistic on the overall model and comparing it to its null distribution 

(generated through calculation of the statistic for the PRC model after random permutation of 

samples within each time point) (35). In this case, the F-type statistic and the permutation 

procedure tests the quality of PRC model in explaining the effect of FMT on the change of gut 

microbiota of CDI patients over time. In order to determine patient-specific gut microbiota 

changes and to depict long term effects, PRC was also run separately for each patient such that 

their after-FMT samples (post-FMT time points) were compared to both their respective before-

FMT sample and their specific healthy donor sample, resulting in two reference points for each 

patient curve. Key drivers of CDI and healthy donor state were derived from PRC based on the 

model weights of the genera. Genera with highly negative scores represented drivers of the 

pathogenic state and conversely, those with large positive scores depicted members driving 

toward the healthy donor state. 

 

Results: 

 PRC analysis run separately for each patient  shows a sharp change in community 

composition moving away from before-FMT profile toward a state that resembles that of each 

patient’s respective donor profile (Figure 7). The change is evident at the earliest time point of 
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collection (Day3) after FMT procedure. Also, this effect was seen consistently with all three 

patients (Figure 7). There was some variability within the donor profiles (green dotted line) 

where one of the healthy donors had large enough microbiota differences in comparison to CDI 

condition (black dotted line) to separate from the other two health donor profiles (blue and red 

dotted line). While there were some fluctuations over time, all three patient curves stably 

followed their respective donor profiles for time points as far as Day 128. Table 1 shows top 10 

genera for each patient based on their negative and positive model weights (species coefficients). 

While a significant number of both positive and negative drivers were shared among all three 

patients, there were key patient specific differences (Table 1). The negative drivers comprised 

mostly of facultative anaerobic genera and conversely, the positive drivers were obligate 

anaerobes. For the statistical significance testing of model quality, F-type statistic for the overall 

model (Before-FMT, Day 3 and Day 7) and the associated p-value generated through Monte 

Carlo permutation were 27.66 with a p<0.001. The same analysis was performed with 

margination of each time point from the overall model to determine time point specific F-type 

Figure 7. Principal response curve analysis performed on distal gut microbiota profiles 

from CDI patients before- and after-FMT, and their respective healthy donors. 
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statistic and associated p-value. This analysis produced the following values; Before-FMT - 1.22 

with a p=0.354, Day 3 - 17.75 with a p=0.069 and Day 7 - 17.61 with a p=0.057. 

 

Discussion: 

 One of the most striking finding in the analysis was how quickly the healthy donor 

microbiota established itself with the CDI patients after FMT. Even by day 3, CDI patients' distal 

gut microbial communities greatly resembled those of the donors'. This rapid shift and 

Table 1. List of top 10 genera based on PRC weights that either drive toward CDI or healthy state 

Top genera driving toward a pathogenic state 

    Patient 1 Species 

scores 

  Patient 2 Species 

scores 

  Patient 3 Species 

scores Genus 

 

Genus 

 

Genus 

Streptococcus -3.139 

 
Raoultella -3.169 

 
Lactobacillus -2.796 

Escherichia/Shigella -3.090 

 
Enterobacter -3.120 

 

Enterococcus -2.752 

Bifidobacterium -3.041 

 

Streptococcus -3.070 

 
Enterobacter -2.709 

Haemophilus -2.992 

 
Lactobacillus -3.021 

 
Escherichia/Shigella -2.665 

Lactobacillus -2.942 

 

Klebsiella -2.971 

 
Raoultella -2.621 

Raoultella -2.893 

 
Veillonella -2.922 

 
Veillonella -2.578 

Enterobacter -2.844 

 
Escherichia/Shigella -2.872 

 

Zymophilus -2.534 

Veillonella -2.795 

 

Lactococcus -2.823 

 

Klebsiella -2.490 

Prevotella -2.746 

 

Zymophilus -2.773 

 

Cupriavidus -2.447 

Ruminococcus -2.697 

 

Rothia -2.724 

 

Herbaspirillum -2.403 

  

      

  

Top genera driving toward a healthy state 

   

  

Patient 1 Species 

scores  

Patient 2 Species 

scores  

Patient 3 Species 

scores Genus 

 

Genus 

 

Genus 

Blautia 3.188 

 
Blautia 3.219 

 
Blautia 2.840 

Faecalibacterium 3.139 

 
Coprococcus 3.169 

 
Coprococcus 2.796 

Dorea 3.090 

 
Faecalibacterium 3.120 

 
Faecalibacterium 2.753 

Roseburia 3.041 

 
Roseburia 3.070 

 
Dorea 2.709 

Holdemania 2.992 

 

Holdemania 3.021 

 

Bifidobacterium 2.665 

Subdoligranulum 2.943 

 
Dorea 2.971 

 
Roseburia 2.622 

Bacteroides 2.893 

 
Papillibacter 2.922 

 

Anaerostipes 2.578 

Papillibacter 2.844 

 

Anaerotruncus 2.872 

 

Subdoligranulum 2.534 

Adlercreutzia 2.795 

 

Bacteroides 2.823 

 
Papillibacter 2.490 

Coprococcus 2.746   Akkermansia 2.773   Adlercreutzia 2.447 

Genera that are shared among all three patients are bolded 
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stabilization is clearly depicted in the PRC plot. Another interesting finding is the fact that this 

're-colonization' of gut microbiota in the guts of CDI patients is not a transient event and that it is 

stable even as far as 128 days after FMT. The derivation of variable weights from the PRC 

model indicate that genera that are responsible for the shift toward a pathogenic CDI state are 

mostly facultative anaerobes. This finding is indeed consistent with several reports that have 

shown that the presence of facultative anaerobes in the distal gut is an indication of various 

disease pathology (89-91). Furthermore, many of these genera are members of the family 

Enterobacteriacea, to which belong many pathogenic microbes (Enterobacter, Escherichia, 

Shigella and Raoultella) (92, 93). Conversely, genera that drive toward a healthy donor state are 

obligate anaerobes. Genera such as Blautia, Faecalibacterium, Dorea and Coprococcus are 

considered common beneficial members of a healthy gut environment (94). Some of these genera 

ferment plant polysaccharide to produce short-chain fatty acids (SCFA) which have been shown 

to have many positive effects of host colonocytes (95). Additionally, Faecalibacterium is 

generally thought to have many positive healthy benefits which include regulation of the 

mucosal immune responses and intestinal cell differentiation (96). As expected and in agreement 

with the sharp shift in gut microbiota over as little as 3 days, the statistical testing of the overall 

model (Before-FMT, Day 3 and Day 7) indeed resulted in a highly significant p value (p<0.001). 

The statistical testing analysis run on individual terms (time points) however did not result in 

highly significant p-values. This is likely because of the small number of samples per time point. 

Since the testing procedure relies on generating a null distribution for F-type statistic by 

randomizing the sample identities, with small number of sample, the randomization likely ran 

out of combinations. Nevertheless, the inertia captured by the individual terms are a good 

indication of the shift in the microbial composition. The low value at the Before-FMT time is 
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based only on inter-personal variability, hence small (F=1.22). In comparison, the values for Day 

3 and Day 7 are very large, indicating that the model has captured a large proportion of the 

variability which is likely due to the FMT therapy (F=17.75 and 17.61, respectively). 

 

Specific aim 3: Construct discriminant models, compare performances of classifier 

techniques, and determine variables that are relevant to separation of samples between groups.  

 

Rationale 

 When analyzing multivariate data originating from distinct sample groups, one 

biologically relevant question to ask is if there are differences in the variables among samples 

which can be used to build a consistent pattern that explains the separation of samples between 

groups. Identification of these differences can help explain the potential biological reasons 

behind the group separation. For example, identification of microbial groups and/or luminal 

metabolites that differ between healthy controls and patients with colorectal cancer can help us 

determine the etiology and the subsequent pathology of the condition (97). Alternatively, even if 

multiple sample groups do not exist in the dataset, but exploratory analyses indicate the presence 

of distinct clusters in ordination, it might be of interest to determine which variables are 

responsible for the observed clustering. A class of methods, often referred to as discriminant 

analyses, which aim to maximize differences between groups specified a priori, are best suited to 

answer such queries. Additionally, because these techniques maximize differences between 

groups by building sets of patterns using the response variables, these patterns (more popularly 

referred to as discriminant models) can be used to classify or predict the grouping of new, 

unknown samples based on their response variables. This feature is highly relevant in a clinical 
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setting where rapid and accurate identification of sample type can lead to efficient treatment 

strategies. In this aim, we use discriminant analyses to build and test predictive models, compare 

the different techniques based on their discrimination performance and identify the 

discriminatory variables that explain the differences between sample groups in datasets related to 

human distal gut microbial ecology.  

 

Analysis method: 

 Three different classifier techniques were used to analyze all three datasets. These 

techniques are Random forest (RF), Orthogonal projection to latent structures discriminant 

analysis (OPLS-DA) and Support vector machines (SVM). These three techniques build 

discriminant models using different strategies (refer to Introduction for descriptions of the 

techniques). Discriminant models were tested for over-fitting and statistical significance using k-

fold cross-validation, with k varying based on the dataset. For OPLS-DA, Q
2 

(predictive power 

of the model), R
2
X (variation in response variables not pertaining to class) and R

2
Y (variation in 

response variables pertaining to class) metrics were used to assess the performance of the 

models. Statistical significance for OPLS-DA was generated using the comparison of Q
2
 to the 

permuted Q
2
 threshold (sample identity swapping and recalculation of Q

2
). For the statistical 

significance of RF models, Davies-Bouldin index comparison to null distribution calculated on 

the multi-dimensional scaling (MDS) of the random forest proximity matrix was used. In order 

to identify discriminatory variables using each classifier technique, the following strategies were 

used: For RF, the mean decrease in model accuracy with random permutation of variable values 

(importance score) was used, for OPLS-DA, the absolute values of weights (coefficients of 

variables in the discriminant function) was used, and for SVM, the decrease in area under the 
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Receiver operating characteristics (ROC) curve with random permutation of variable values was 

used. Classifier performances were assessed by comparing cumulative accuracies of class 

assignment (model accuracy) and through construction of ROC curves from class assignment 

probabilities for all three techniques.  

 

Sub aim 3a: Build discriminant models to represent differences in fecal microbiota genus 

abundance profiles between healthy and IBS patients and identify genera that contribute 

the most to this discrimination. 

 Prior to application of the discriminant techniques, the data were preprocessed to remove 

unwanted artifacts and to satisfy the assumptions of the techniques used. The genus abundance 

data obtained from Microbiota Array were mean-centered (subtract corresponding means of 

variables from variable values throughout the dataset which results in each variable mean 

centered on zero) and scaled (divide each variable array by its standard deviation resulting an 

even spread for all variables). To test for the over-fitting of each model, a 22-fold cross-

validation (CV) procedure was used with each technique to calculate classification accuracy. 22-

fold CV was used because this dataset contained 22 samples per group. A 22-fold CV ensures 

that the folds (fraction) are uniformly divided (2 samples per fold) while still maintaining a large 

number of CV tests (each fold acts as a test set) for a stable classification (42, 43).  

 

Results: 

 All three techniques produced highly discriminant models (Table 2). RF produced a 

statistically significant model indicated by the Davies-Bouldin index and its associated p-value 

derived from the multidimensional scaling of the proximity matrix (DB index – 3.042 with a 
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p<0.001). The OPLS-DA model was also highly statistically significant with a cumulative Q
2
 = 

0.427 and a p-value<0.001. DB index and the associated p-value for the T-vs-Torthogonal plot was 

also statistically significant (DB index – 1.858 with a p<0.001). As expected the visualization of 

both RF (Figure 8A) and OPLS-DA (Figure 8B) showed distinct clustering of samples based on 

their sample groups; however OPLS-DA showed much clearer separation of sample groups 

compared to RF’s MDS plot (also indicated by a smaller DB index value compared to that of 

RF). Other quality parameters for the OPLS-DA model include R
2
X = 0.15 and R

2
Y = 0.88 with 

an associated p=0.002. The comparison of accuracy for the three models after 22-fold cross-

validation indicated that RF performed the best, followed by OPLS-DA and SVM performed the 

worst (Table 2). Similarly, comparison of the area under the ROC curves for the three models 

confirmed the trend seen with the model accuracy (Figure 9). Comparison of the top 10 

discriminatory genera from the three models showed that there is a high degree of congruency 

between the models. The genera Parasporobacterium, Papillibacter, Gemella, Oxalobacter, 

Figure 8. Discriminant analysis using Random forest (A) and Orthogonal projection to 

latent structures (B) performed on genus abundance data from the distal gut of healthy 

and IBS children.  
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Solobacterium and Actinomyces (bolded in Table 2) were consistently found as top 

discriminatory genera with all three models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Comparison of discriminant analyses using kIBS-kHLT genus 

abundance dataset (shared genera are bolded) 

  RF OPLS-DA SVM 

Accuracy 86.4% 75.0% 65.9% 

AUC 0.898 0.754 0.732 
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accuracy |Weights| 

Mean decrease in 

AUC 

Parasporobacterium Papillibacter Parasporobacterium 

Oxalobacter Parasporobacterium Papillibacter 

Bryantella Gemella Bryantella 

Papillibacter Oxalobacter Gemella 

Eubacterium Solobacterium Oxalobacter 

Gemella Dorea Solobacterium 

Enterobacter Actinomyces Ruminococcus 

Raoultella Roseburia Mogibacterium 

Solobacterium Mitsuokella Actinomyces 

Actinomyces Coprobacillus Roseburia 

 

Figure 9. Comparison of kIBS vs kHLT genus abundance 

model performance using ROC analysis of the class 

assignment probabilities obtained from each model. 
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Discussion: 

 The fact that all three techniques produce good quality discriminant models implies that 

there are consistent and substantial differences in the distal gut genus abundances profiles when 

comparing healthy children with those suffering from IBS. This is confirmed by the observation 

that all three techniques labelled nearly the same list of genera (listed above and in Table 2) as 

highly discriminatory. The differences in the list of top discriminatory genera are likely because 

of different biases (or the lack of) introduced by the assumptions and approaches of these 

techniques (44, 45). Although, all three techniques performed well in their ability to discriminate 

between the sample groups, RF was shown to perform the best, based on model accuracy and 

AUC from ROC analysis after cross-validation. This high performance of RF is likely 

attributable to its decision tree-based approach. Because a very large number of decision trees 

are used for the voting procedure, the technique is highly stable with regard to outlier trees, 

model variances and biases. Additionally, this characteristic high performance of RF has recently 

been reported in a study by Knights and colleagues, where the authors compared the 

performance of several classifiers, including RF and SVM, using datasets from human-

associated microbiota and showed that RF performed the best, followed by SVM (44). 

Interestingly, despite such a high classification performance, the proximity matrix based 

visualization of RF output shows only a partial separation compared to the clear separation seen 

with OPLS-DA’s T vs Torthogonal plot (Figure 8). This phenomenon might have resulted from the 

differences in how the visualizations are generated. With OPLS-DA, the discriminant axis is 

directly plotted as the T axis (linear combinations of weighted variable scores that explain group 

separation). Whereas, with RF, the multidimensional scaling of the proximity matrix, an indirect 

approach, is utilized for visualization. Because MDS rotates and transforms the proximity matrix 
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to derive and rank axes based on the amount of captured variability, the first two axes (used here 

for visualization), may not directly be related to the differences between groups.  

With regard to the genera that were identified as highly discriminatory between healthy 

and IBS state, very little information is currently available on the functional capabilities of these 

members and the potential role that they might play in IBS pathology. A more comprehensive 

approach, combining newer, more sophisticated techniques such as metagenomics and 

metatranscriptomics might be able to elucidate the link between these microbiota members and 

IBS. Also, while it is tempting to use these observations in the context of clinical diagnosis as 

markers for IBS, it should be noted that these findings might not fit a more general model of IBS 

simply due to the modest sample size used in this study. Nevertheless, these finding provide an 

excellent foundation for future studies that could explore the relationship between these genera 

and IBS.  

 

Sub aim 3b: Model the differences in fecal metabolite profiles of healthy and IBS children 

and identify the metabolites that contribute the most to model separation. 

 Similar to sub aim 3a, metabolite abundance data obtained from H
1
 NMR spectra were 

mean centered by subtracting the means from variable values and normalized by dividing by the 

variable standard deviation. Because the same set of samples from sub aim 3a were used for 

NMR-based fecal metabolomic analysis, the models were tested for over-fitting with a 22-fold 

cross-validation for the same reasons stated in sub aim 3a (uniform division of the dataset with a 

large number of CV tests). 

 

Results: 
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All three techniques produced a fairly accurate model (Table 3). Although RF had a moderately 

good model accuracy of 77.3%, the MDS plot of the RF proximity matrix shows only a partial 

separation of the clusters. Nevertheless, this separation was statistically significant based on a 

DB index and associated p-value (5.19 with a p=0.010, Figure 10A). The OPLS-DA model was 

also statistically significant with a cumulative Q
2
 value of 0.16 and a p=0.010. Contrary to RF 

proximity MDS, the OPLS-DA’s T-vs-Torthogonal plot showed distinct clustering of samples based 

on their respective groups. As expected, the DB index calculated on the T-vs-Torthogonal plot was 

better and more statistically significant compared to RF MDS plot (4.16 with a p=0.006, Figure 

10B). The OPLS-DA model captured substantial variability within the dataset that pertained to 

the separation of sample groups, as indicated by the cumulative R
2
Y parameter and its associated 

p-value (0.38 with a p=0.02). However, R
2
X (variability captured not pertaining to sample group 

separation) was also quite large for this OPLS-DA model (0.53). Comparison of model  

 

Figure 10. Discriminant analysis using Random forest (A) and Orthogonal projection to 

latent structures (B) performed on metabolite abundance data from the distal gut of 

healthy and IBS children.  
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Table 3. Comparison of discriminant analyses 

using kIBS-kHLT met abundance dataset (shared 

metabolites are bolded) 

  RF OPLS-DA SVM 

Accuracy 77.3% 79.5% 70.5% 

AUC 0.734 0.823 0.698 
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Formate Pyruvate Formate 

Pyruvate Glucose Lysine 

Lactate Lysine Glucose 

Leucine Tyrosine Leucine 

Glucose Methylamine Lactate 

accuracies from cross-validation indicate that OPLS-DA model performed the best, followed by 

RF and SVM (Table 3). This trend was consistent when comparing the models’ respective AUCs 

 

Figure 11. Comparison of kIBS vs kHLT metabolite 

abundance model performance using ROC analysis of the 

class assignment probabilities obtained from each model. 
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from their ROC plots (Figure 11 and Table 3). Comparison of the top discriminatory metabolites 

indicated that there was a fair degree of congruency among the three models. Specifically, all 

three models indicated that formate, tyrosine and glucose were key discriminators of the sample 

groups (bolded in Table 3). 

 

Discussion: 

  Similar to sub aim 3a, discriminant models constructed on metabolite abundances 

obtained from fecal samples collected from healthy controls and IBS children were statistically 

significant. This observation indicates that, similar to the distal gut microbiota, the metabolite 

profiles in the distal gut environment also are different between these two cohorts. There is also a 

fair degree of consistency between the models, which is indicated by the similarities in 

comparison of the top discriminatory metabolites (formate, tyrosine and glucose are shared 

among all three techniques and pyruvate, leucine and lysine are shared among two of the three 

models). While all three techniques produced statistically significant models, OPLS-DA 

performed the best among these three techniques. This is somewhat surprising because when 

using the same cohort with distal gut microbiota data in sub aim 3a, RF outperformed the other 

two techniques. This observation indicates that the structure of the metabolite data better suites 

the assumptions and requirements of OPLS-DA. Indeed, the number of variables between the 

distal gut microbiota and metabolite datasets was quite different (more than 50 genera compared 

to 19 metabolites), and this difference might play a role in the performance of the classifiers on 

these datasets. In agreement with RF’s moderate performance, the MDS plot of the proximity 

matrix only showed a modest separation. It is possible that the variability pertaining to the 
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sample group separation might not be among the largest gradients within the dataset and 

therefore are not being depicted in the first few axes of MDS.  

 Metabolites identified by the models as key discriminators of healthy-IBS metabolite 

profiles are indeed consistent with the pathological features of IBS. Elevated levels of tyrosine 

and several other amino acids (see supplementary material for (58)) in the IBS cohort are in 

agreement with several reports that claim that there is increased proteolysis in this syndrome 

(98). The elevated levels of glucose in the IBS cohort might be an indication of incomplete 

metabolic pathways as a result of reduced metabolite cross-feeding among distal gut community 

members. This phenomenon has in fact, been reported as a characteristic of IBS in previous 

studies (59, 74, 98). Finally, elevated levels of formate in the distal gut environment of diarrhea-

predominant IBS (IBS-D) children might imply that the microbiota functional pathway for the 

utilization of formate to produce hydrogen as an end product is missing. This is relevant to the 

current context because hydrogen gas has been shown to increase the gut transit time and has 

been linked to the incidence of constipation-predominant IBS (IBS-C) (99). Therefore, the 

surplus of formate in IBS-D is indeed consistent with the diarrhea-based pathology in our cohort. 

 

Sub aim 3c: Use discriminant models to identify genera that contribute the most to 

differences in the fecal microbial profiles between healthy US and Egyptian children. 

 The genus abundance data from the distal gut microbiota of healthy US and Egyptian 

children acquired through the use of high-throughput next-generation sequencing was chord-

transformed before being used for discriminant analysis. As stated in sub aim 1c, chord-

transformation of abundance data is especially suited for dealing with datasets that contain a 

large number of zeroes (this is especially the case when many rare taxa are present in the dataset) 
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(87). Additionally, the dataset was mean centered and normalized (scaling variable spread) 

before being analyzed with RF, OPLS-DA and SVM. Because the dataset contains 14 US 

samples and 28 Egyptian samples, we used a 14-fold cross-validation approach. As previously 

stated, this ensures that the total number of samples are divided evenly among the folds (3 

samples per group). 14 folds, instead of 21 folds were used because the sample groups have 

unequal number of samples. With 14 folds, each fold can now contain 3 samples and will have a 

higher probability of representing the distribution of the full dataset (2:1 ratio).  

 

Results: 

 All three techniques produced models with very high accuracy (Table 4). In agreement 

with the high accuracy of RF, the MDS plot of the proximity matrix shows very clear separation 

of sample groups (Figure 12A) and a highly statistically significant DB index (0.88 with a  

 

Figure 12. Discriminant analysis using Random forest (A) and Orthogonal projection to 

latent structures (B) performed on the chord-transformed genus abundance data from 

the distal gut of healthy US and Egyptian children.  
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 Table 4. Comparison of discriminant analyses using egkHLT-

uskHLT genus abundance dataset (shared genera are bolded) 

  RF OPLS-DA SVM 

Accuracy 100.0% 97.6% 95.2% 

AUC 1.000 0.999 0.996 
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Mean decrease 

in accuracy |Weights| 

Mean decrease 

in AUC 

Bacteroides Bacteroides Bacteroides 

Blautia Blautia Catenibacterium 

Catenibacterium Ruminococcus Blautia 

Coprococcus Anaerostipes Coprococcus 

Prevotella Adlercreutzia Prevotella 

Ruminococcus Coprococcus Eubacterium 

Eubacterium Faecalibacterium Ruminococcus 

Anaerostipes Prevotella Mitsuokella 

Adlercreutzia Catenibacterium Anaerostipes 

Mitsuokella Oscillospira Faecalibacterium 

 

Figure 13. Comparison of egkHLTvs uskHLT genus 

abundance model performance using ROC analysis of the 

class assignment probabilities obtained from each model. 
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p<0.0001). Consistent with RF, OPLS-DA model was also highly discriminatory between the 

sample groups, indicated by a statistically significant cumulative Q
2
 (0.82 with a p<0.001) and a  

large and statistically significant cumulative R
2
Y (0.98 with a p<0.001). The cumulative R

2
X 

(0.13) was relatively small compared to R
2
Y, indicating that most of the variability captured by 

the OPLS-DA model corresponds to separation between sample groups. As expected, the 

visualization of OPLS-DA’s T-vs-Torthogonal plot resulted in a clear separation between the sample 

groups and generated a highly statistically significant DB index (0.83 with a p<0.0001, Figure 

12B). Comparison of model performances using accuracy and AUC from ROC analysis 

indicated that although all three models showed very high discriminatory performance, RF 

performed the best, followed OPLS-DA and SVM (Figure 13 and Table 4). All three models 

consistently identified Prevotella, Bacteroides, Blautia, Catenibacterium, Coprococcus, 

Ruminococcus and Anaerostipes as the top discriminatory genera. 

 

Discussion: 

 The RF model showed 100% accuracy for the model classification after the k-fold cross-

validation. Similarly, OPLS-DA and SVM were closely behind RF in their classification 

performance. These results are somewhat surprising, given the modest sample sizes and unequal 

groups sizes. This consistent, very high performance of the discriminant models is likely due to 

large fundamental differences within the overall distal gut genus abundance profiles between the 

two population groups (Egyptian and US children). This observation is further supported by the 

high level of consistency in which genera are identified by the three techniques as highly 

discriminatory. Similar to the observation in sub aim 3a and in contrast to that of sub aim 3b, 

RF outperformed OPLS-DA and SVM with this dataset, albeit only by a small margin. This 
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further supports the possibility that RF performs better with datasets that contain a large number 

of variables compared to OPLS-DA (this dataset contained 129 genera). Contrary to the lack of a 

clear separation between sample groups in the MDS plots of the RF proximity matrix from sub 

aim 3a and sub aim 3b, the MDS plot from RF on this dataset shows a very clear separation. 

This implies that the gradients that correspond to the differences between Egyptian and US 

children’s gut microbiota are among the largest contributors to the overall variability. Indeed, 

this is clearly evident even in the indirect gradient analysis performed on the same dataset in sub 

aim 1c. Such large difference in the microbiota composition have, in fact, been reported by 

several studies that have interrogated the distal gut microbial communities in geographically 

distinct human populations (28, 46, 77).  

 With regard to the genera that were found to be highly discriminatory between these two 

sample groups, higher abundance of Bacteroides in the US population and the reciprocally 

higher abundance of Prevotella in the Egyptian population (Bacteroides: 11.0% vs 2.7%, 

respectively; Prevotella: 7.3% vs 18.0%, respectively) are thought to be due to the substantial 

differences in the dietary composition of these two host populations. Many members of the 

genus Bacteroides are highly adapted to be able to degrade dietary proteins, a common, highly 

abundant component of the Western diet (100, 101). Likewise, the genus Prevotella comprises 

several known indigestible polysaccharide degrading members and these members have likely 

adapted to take advantage of higher relative composition of plant-based fibrous foods in the 

Egyptian/Mediterranean diet compared to that of the Western diet (102). Similarly, higher 

abundances of Ruminococcus, Coporoccus and Blautia in the US population are also likely due 

to diet differences. It is possible that these starch-degrading genera are being selected for by the 

higher composition of starch in the Western diet (103). The reason for the higher abundance of 
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Catenibacterium in the Egyptian population is yet to be fully understood; however, some studies 

have reported higher abundances of this genera in the distal gut environments of other non-

western human populations and in co-occurrence with Prevotella (104, 105). 

 

Sub aim 3d: Build discriminant models using a cumulative dataset from multiple studies 

that have interrogated distal gut microbiota from industrialized and non-industrialized 

countries, and identify the main drivers of the separation between these two groups. 

 The available datasets from studies that have assessed the distal gut microbiota profiles 

from human populations of geographically distinct countries were combined and analyzed 

together with our dataset from sub aim 3c. Because the cumulative dataset contained a very 

diverse set of variables and many rare genera, it resulted in a large number of zeros within the 

dataset. We transformed the genus abundances from this dataset using the chord transformation 

to correct for the number of zeros. Additionally, we also mean centered and scaled the dataset to 

improve the performance of some of the discriminant techniques. For cross-validation testing of 

the model, we used 37-fold CV, because there were 370 samples within this dataset. This 

ensured an even splitting of the full dataset.  

 

Results: 

 Owing to the large number of variables (genera), all three discriminant analyses produced 

highly accurate models. RF produced a statistically significant model indicated by a DB index of 

0.719 with a p<0.001 for the MDS plot of the RF proximity matrix (Figure 14A). Visualization 

of the MDS plot indicates that the first dimension separates samples based on the discriminant 

axis (industrialized vs non-industrialized). The second MDS axis mostly separates the egkHLT-
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uskHLT dataset (sub aim 3c) from the rest of the cumulative dataset. The OPLS-DA model, in 

agreement with RF, was also highly discriminatory between distal gut genus abundance datasets 

from industrialized and non-industrialized countries, indicated by a statistically significant 

cumulative Q
2
 of 0.787 with a p<0.001, a large and statistically significant R2Y (0.928 with 

p<0.001) and a relatively small R2X (0.092). Likewise, a clear separation was seen between the 

sample groups in the visualization of OPLS-DA using T-vs-Torthogonal plot (Figure 14B). This 

separation was statistically significant based on a DB index of 1.381 with a p<0.001. 

Comparison of model performance using the CV model accuracies indicate that while all three 

models were very highly accurate, RF had the best performance, albeit only by a very small 

margin. Both OPLS-DA and SVM have nearly identical accuracies (97.6%). Similarly, 

comparison using AUC from ROC analysis indicated that RF outperformed the other two 

techniques (Figure 15 and Table 5). Based on AUC, SVM was slightly better in terms of  

 

Figure 14. Discriminant analysis using Random forest (A) and Orthogonal projection to 

latent structures (B) performed on the chord-transformed genus abundance data of 

fecal samples from industrialized and non-industrialized countries.  
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Table 5. Comparison of discriminant analyses using cumulative 

human distal gut genus abundance dataset from industrialized 

and non-industrialized countries (shared genera are bolded) 

  RF OPLS-DA SVM 

Accuracy 99.1% 97.6% 97.6% 

AUC 0.999 0.995 0.996 
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Mean decrease 

in accuracy |Weights| 

Mean decrease 

in AUC 

Prevotella Prevotella Bacteroidales 

Bacteroides Bacteroides Prevotella 

Bacteroidales Alistipes Succinivibrio 

Catenibacterium Ruminococcus Catenibacterium 

Alistipes Holdemania S24.7 

Succinivibrio X02d06 Alistipes 

S24.7 CF231 Bacteroides 

YS2 Succinivibrio YS2 

Bulleidia Bulleidia Holdemania 

Holdemania Catenibacterium Bulleidia 

 

Figure 15. Comparison of cumulative dataset genus 

abundance model performance using ROC analysis of the 

class assignment probabilities obtained from each model. 
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discriminatory performance compared to OPLS-DA (AUC: 0.996 vs 0.995). All three models 

identified nearly the same set of genera as top discriminatory variables from the dataset, 

however, there was some variability in the ranks of the genera among the techniques (Table 5). 

The genera that were consistently found by all three techniques as highly discriminatory between 

these sample groups are Prevotella, Bacteroides, Catenibacterium, Alistipes, Succinivibrio, 

Bulleidia and Holdemania. 

 

Discussion: 

 The very high accuracy achieved by all three models after CV testing implies that there 

are large differences in the profiles of distal gut microbiota in these sample groups. The high 

accuracy is also likely due to the large number of variables, because with a larger pool of 

variables there would be a higher probability to find combination (or patterns/decisions) of 

variables that can explain the discrimination between the sample groups (106, 107). Comparison 

of model performances using both accuracy and AUC after CV indicated the RF had the best 

performance. This observation, in combination with the results of the other sub aims, further 

validates the idea that RF has a very high discriminatory performance when the number of 

variables is large within the dataset. Although, with this particular dataset, both OPLS-DA and 

SVM were only slightly behind RF in terms of discriminatory performance. This implies that 

there are other parameters or features (other than number of variables) of the dataset that affect 

the performance of these techniques. An interesting observation to note with RF is the 

visualization of the MDS plot from the RF proximity matrix. While the first dimension did 

correspond to the separation between the sample groups, the second dimension separated our 

dataset from the rest of the cumulative dataset. This likely indicates a technical problem with the 
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processing of the sequence data, given the fact that all of the studies (including ours) interrogated 

the distal gut microbiota communities using the V4 variable region of the 16S rRNA gene. Also 

interesting to note is the fact that despite this separation of our dataset from the rest in the MDS 

plot, the DB index for this analysis was better than that of the OPLS-DA's T-vs-Torthogonal plot, 

which showed slightly better clustering (0.719 vs 1.381). This difference is likely because of the 

differences in the distance between the centroids in these two plots (DB index is a function of 

this distance). It is important to indicate that the quality of the clustering between these two plots 

should not be directly compared since the method used to visualize these two plots are very 

different, as indicated in the discussion from sub aim 3a. 

 With regard to the biological significance of the top discriminatory genera, Prevotella 

(higher in non-industrialized group) and Bacteroides (higher in industrialized group) being 

identified as the top two genera by RF and OPLS-DA is not surprising when considering their 

functional role in the processing of dietary components. As mentioned previously in the 

discussion of sub aim 3c, these two genera comprise members that are capable of degrading very 

different dietary substrates. The differences in the diets consumed by the populations that are 

part of this cumulative dataset is thought to the likeliest reason for the differences in abundances 

that we see with these genera. Additionally, a recent publication that attempted to cluster distal 

gut microbiota communities from throughout the world based on compositional similarities have 

reported the existence of three major clusters. These clusters, also now popularly referred to as 

'enterotypes', are characterized based on key drivers of the entire cluster (microbial members that 

are consistently found at high abundance within the cluster of samples). The study indicated that 

the three major enterotypes were driven by the abundances of Prevotella, Bacteroides and 

Ruminococcus respectively (108). The observations from our analysis, in combination with this 



69 
 

study, indicate that this cumulative dataset likely comprises two different enterotypes, each 

driven either by Prevotella or Bacteroides. As indicated in the discussion of sub aim 3d, the 

higher abundance of Catenibacterium is linked to the presence of Prevotella in the non-

industrialized group. This observation might be due to a yet-to-be characterized cross-feeding 

relationship between the members of these two genera. Finally, it is interesting to note the higher 

abundance of Succinivibrio in the non-industrialized group, since this genus comprises several 

pathogenic members that have been associated with gastrointestinal diseases (28, 109). This 

observation is indeed in agreement with a higher incidence of pathogen-related gastrointestinal 

diseases in developing, non-industrialized countries (110). 

 

Specific aim 4: Identify and evaluate associations among response variables across datasets 

using correlation based network analyses. 

 

Rationale: 

 When two or more sets of response variables can be independently measured from the 

same set of samples, it presents a unique opportunity to find associations or links between these 

sets of variables. For example, measurement of microbial abundances and metabolite profiles for 

the same set of samples allows for an integrative analysis approach and lets us extract the 

microbe-metabolite relationships in the context of host health or disease. While direct gradient 

analysis can be used to analyze these types of dataset, due to the large number of constraining 

variables, the output can become difficult to interpret (16). A viable strategy for analysis of such 

datasets is to construct correlation networks within and between the variable sets. Although 

correlation does not directly imply causation, this type of analysis can be used as a hypothesis 
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generation tool to test possible associations using additional future experiments. In this aim, we 

use correlation analyses to construct bipartite networks with two sets of variables (metabolite and 

genus abundances) measured for the same set of samples, to identify and evaluate biologically 

relevant interactions between these variables. 

 

Analysis method: 

 In order to build associations between the genus abundances and quantified metabolite 

levels measured from the human distal gut environment Spearman rank correlation analysis was 

used. Spearman rank correlation was used instead of Pearson because this method is rank-based 

and non-parametric, and therefore does not assume that the dataset has a specific distribution. 

The associated p-value for each correlation was corrected for multiple-hypothesis testing using 

the Benjamini-Hochberg's false discovery rate (FDR) correction (111). FDR defines that the 

correlation is significant if: 

    
     

 
 

 where pi is the associated p-value for the correlation, ki is the rank of the p-value, α is the %FDR 

threshold and m is the number of tested comparisons. The associations that were found to be 

statistically significant after FDR correction were visualized as bipartite networks where the 

nodes represented the variables and edges connecting the nodes represented the correlations 

between the variables. The size of the nodes was used to represent the relative abundance of the 

variables. The color and the thickness and the transparency of the edges were used to represent 

the direction and the magnitude of the correlation between the connected nodes.  
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Sub aim 4a: Determine the differences in putative fecal microbiota-metabolite associations 

between healthy and IBS children.  

 

 The genus abundance data acquired from the distal gut microbiota of children with IBS 

and healthy controls using the Microbiota Array and the metabolite levels for the same cohort 

acquired using H
1
 NMR were analyzed using Spearman rank correlations. Only the top 46 most 

abundant genera (based on an abundance cutoff of 0.1%) were used for this analysis. This 

filtering step ensured that spurious correlations between metabolites and very low abundance 

genera could be avoided, since these tend to often be erroneous associations due to the high 

variability in the values of low abundance variables (112). For this dataset, correlation analyses 

were run separately for the IBS and healthy cohorts, so that differences in the correlation 

networks could be identified. In addition to the correlation analysis, the correlation matrix for 

each set were bi-clustered by metabolites and genera, in order to identify local clusters of 

associations that are similar. For multiple hypothesis testing using FDR, the α threshold was set 

to 10% (we expect 10% of the statistically significant associations detected by correlation 

analysis to be false). This threshold has been shown to be appropriate for datasets of this size and 

nature (113). Associations that were identified as statistically significant were used to construct 

the bipartite network. 

 

Results: 

  Heat map visualization of the correlations between metabolite and genera abundances 

performed separately for healthy controls and IBS cohorts revealed many strong associations in 

the healthy set (Figure 16A), while only weak associations were identified in the IBS set (Figure 



72 
 

16B). Bi-clustering of the correlation matrices resulted in the formation of organized local 

clusters in the healthy set, but not in the IBS set. For example, clear clustering of all amino acids 

and clustering of carbohydrate metabolism intermediates (SCFAs, fumarate, succinate and 

pyruvate) were evident in the healthy set. With FDR threshold set at 10%, 21 statistically 

significant microbe-metabolite associations were found in the healthy set (Figure 16C). No 

statistically significant correlations were found in the IBS set after FDR correction. The strong, 

statistically significant associations found in the healthy set included a positive correlation 

between Ruminococcus and glucose, a negative correlation between Coprococcus and glucose, 

and positive correlations between Acidaminobacter and acetate, Coprococcus and valerate and, 

Figure 16. Spearman rank based correlations between the distal gut metabolite and 

genus abundance profiles displayed as bi-clustered heatmaps for healthy controls (A), 

and IBS children (B). Statistically significant associations from the healthy set are also 

displayed as a bipartite network (C). 
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Prevotella and fumarate (Figure 16C). No significant correlations were found between the 

measured metabolites and the cellulolytic and other polysaccharide-degrading genera such as 

Bacteroides and Bifidobacterium. 

 

 Discussion: 

 The significant loss in both the strength and the number of associations in the IBS set, 

compared to those of the healthy set is an interesting observation. It has been reported previously 

that the pathology of IBS is accompanied by a significant loss in microbe-microbe associations 

(59). The observations from this analysis, in combination with the previous reports imply that 

there is a loss in the microbe-microbe cross-feeding interactions in the distal gut environment of 

IBS. Additionally, the loss in the associations and a lack of a clear organization of clusters with 

bi-clustering in the IBS dataset are thought to be indicators of dysbiosis (an imbalance in the 

intestinal homeostasis of the microbial communities), which is a common symptom in most 

subtypes of IBS (114, 115).  

 Of the microbe-metabolite associations in the healthy set that were found to be 

statistically significant, many were novel findings, while some have previously been reported in 

literature. For example, the positive association between Ruminococcus and glucose can be 

explained by the fact that members of this genus are polysaccharide-degraders that release extra-

cellular enzymes to cleave off glucose from complex polysaccharides (116). Likewise, the 

negative association between glucose and Coprococcus can be justified by the reports that have 

shown that members of this genus utilized glucose under anaerobic conditions (117). Similarly, 

positive associations between Acidaminobacter and acetate, Coprococcus and valerate and, 
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Prevotella and fumarate are likely because members of these genera produce these metabolite 

end-products as a result of anaerobic fermentation in the intestine (118). 

 

Sub aim 4b: Uncover statistically significant relationships between fecal microbiota and 

metabolites that are common to both healthy US and Egyptian children. 

 In order to determine associations between distal gut metabolites and microbes that are 

shared between the healthy US and Egyptian children, Spearman rank correlation analysis was 

performed on fecal metabolite abundances acquired through H1 NMR and genus abundances 

acquired through high-throughput next generation sequencing. The correlation analysis was 

performed on the combined dataset containing both Egyptian and US samples because there are 

unequal number of samples within each group (28 and 14). In such situations, running 

correlation analysis separately for each group will result in incomparable p-values for 

correlations between groups. For the correlation analysis, only the top 40 most abundant genera 

were used, for reasons stated in the sub aim 4a. Multiple hypothesis testing using FDR was 

tested at α thresholds of 10%, 5% and 2.5%, but only the results from 2.5% were used for in-

depth analysis and biological interpretation. Such a stringent criterion was used because a very 

large number of statistically significant associations were uncovered at higher percents, making 

the interpretation of the associations very complex.  

 

Results: 

 Spearman rank based correlation analysis performed on the combined microbiota-

metabolite datasets from both sample groups (Egyptian and US children) resulted in many 

statistically significant correlations at 10% and 5% FDR thresholds (144 and 70 significant 
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correlations respectively). At 2.5% FDR, 23 associations were found to be statistically 

significant (Figure 17). These associations include positive correlations between bile acid and 

Streptococcus, taurine and Strepotococcus, Dorea and ethanol, and negative correlations 

between Prevotella and aspartate (aspartic acid), and Lactobacillus and pyruvate. All of the 

statistically significant correlations were between metabolic intermediates and various genera. 

No significant correlations were detected for simple sugars such as glucose, galactose and 

sucrose or nucleotide metabolism related metabolites such as uracil, hypoxanthine and cytosine. 

Many strong correlations were associated with several amino acids such as aspartate, leucine, 

and tyrosine. Among the genera, the strongest correlations belonged to Prevotella, Lactobacillus, 

Blautia and Oscillospira (Figure 17). 

 

Discussion: 

 It is interesting to note that despite the observations from sub aim 1c, sub aim 2b and 

sub aim 3c which imply that there are large differences in the distal gut environment, 

 Figure 17. Statistically significant associations based on the Spearman rank based 

correlations between the distal gut metabolite and genus abundance profiles from 

healthy US and Egyptian children 
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specifically in the microbiota composition, between US and Egyptian children, the Spearman 

rank correlation analysis uncovered many statistically significant correlations that are shared or 

common between the two populations. The reason for the large number of strong correlations is 

likely because of the number of samples used for this analysis. For each metabolite-microbe 

comparison, a total of 42 samples are used (14 US and 28 Egyptian samples), which is 

significantly larger than what was used in sub aim 4a (22 samples in each analysis set). The 

increase in the number of samples likely resulted in the enhancement of the p-values (higher 

confidence resulting in smaller p-values) assigned to the correlations by the Spearman rank 

analysis.  

 While many of the uncovered putative associations are novel and have yet to be 

experimentally proven to be biologically true, some of them have been reported previously in 

several publications. For example, the relationship between bile acids, Streptococcus and taurine 

has been explored in the context of intestinal metabolite bio-transformation. Members of the 

genus Streptococcus that reside in the gut have been shown to be able to metabolize primary bile 

acids such as glycocholate and taurocholate to release secondary bile acids, and taurine and 

choline (119). Similarly, members of Dorea have been reported to ferment glucose to produce 

ethanol, so a positive association between Dorea and ethanol from the correlation analysis could 

a result of this interaction (120). A negative correlation between a genus and a metabolite can 

imply that the metabolite is being consumed by the members of the genus. A negative correlation 

between Prevotella and aspartic acid could be justified by experimental evidences from reports 

that claimed that anaerobic growth of members from this genus were enhanced with the addition 

of aspartic acid to the growth medium (118). Similarly, a negative correlation between 

Lactobacillus and pyruvate can be supported by experimental evidence from literature that have 
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shown that many gut residing members of Lactobacillus (L.acidophilus, L. bulgaricus, L. casei, 

L. delbrueckii , L. lactis and L. plantarum) consumed pyruvate as part of their fermentation 

pathway (121).  

 

Specific aim 5: Construct a protocol using previous aims for the exploratory and hypothesis-

driven analysis of microbiota-related multivariate datasets. 

 

Rationale: 

 With the advent of high-throughput molecular techniques such as microarrays and next 

generation sequencing, it is now possible to interrogate many samples and many variables 

simultaneously in the field of microbial ecology. While the rate and the amount of data generated 

has increased exponentially, the analysis of such multivariate data has yet to match them (17, 

122). New, sophisticated techniques and analyses methods for multivariate data have been 

developed, but their application in the field of microbial ecology is severely limited. Many 

studies still rely on the most generic and oldest of ordination techniques such as PCA for analysis 

of microbial multivariate datasets (17). And often, such practices lead to the misuse of these 

techniques, primarily due to the unfamiliarity with the statistical frameworks of the techniques 

(assumptions, distance used, etc.,) (17, 18). In order to facilitate the appropriate use of 

multivariate analysis techniques in the field of microbial ecology and to increase the ease of the 

use of these techniques by biologists, we attempt to build a generalized protocol or a set of 

guidelines for the analysis of microbiota-related high-dimensional dataset in this aim. The 

general procedure is depicted in Figure 18.  
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Figure 18. Workflow for the analysis of multivariate datasets in the field of microbial 

ecology 
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Protocol: 

 

I) Select a technique based on the scientific question or the goal for the analysis. 

 

Exploratory analysis: 

 It is often recommended to start the analysis procedure of a new multivariate dataset with 

exploratory techniques, because observations from these initial analyses can lead to testable 

hypotheses (both statistically and experimentally). If the goal of the analysis is to condense the 

complexity within the dataset, and visualize large patterns in low-dimensional space, it is 

generally a viable strategy to use indirect gradient analysis. Popular techniques within this 

category include PCA, PCoA and (D)CA (Figure 18). PCA is preferred if testing for linearity has 

shown that the variables change in a linear fashion with respect to some external gradient 

(usually environmental) or if the length of the gradient is small (for example, pH in the 

gastrointestinal tract) (123). Alternatively, if the expected response model (change of variable 

values with respect to external gradient or effect) is unimodal, CA is preferred. The detrending 

procedure can be used if artifacts such as the arch effect are visible in the visualization of CA 

(30). PCA uses Euclidean distance to define the relationships between samples based on their 

variable values. Similarly, CA (and DCA) uses the chi-square distance for the purpose of 

ordination. If an alternative way to define this distance is preferred, PCoA is the technique of 

choice. For example, when the distance between samples can be defined by taxa abundances as 

well as the phylogenetic relationship between the taxa, it might be appropriate to incorporate this 

information in the ordination of taxa abundances. A popular distance for this approach is the 

UniFrac beta diversity metric (27). 
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Hypothesis-driven analysis:  

 Once the presence of large gradients has been identified using exploratory approaches, it 

might of interest to characterize and quantify them. If the goal of the analysis is to associate or 

explain gradients of variability within the response dataset with independently measured 

environmental variables, it is recommended to use direct gradient analysis. Popular techniques in 

this category include (db)RDA, PRC and CCpdA (Figure 18). RDA is the preferred technique 

when a linear response model is expected with respect to the selected explanatory variables or if 

the measurement of the explanatory variables is over a small scale (16, 18, 123). RDA is a 

constrained version of PCA (constrained by the explanatory variables) and therefore uses 

Euclidean distance. However, if a specialized distance such as UniFrac is available to define 

inter-sample (dis)similarity, it is recommended to take advantage of this information when 

performing RDA (this is referred to as dbRDA or distance-based RDA). When one of the 

environmental variable is time, and the research goal is to characterize effect of time on changes 

in the response variable, PRC is the preferred technique (35). Finally, CCpdA is the preferred 

technique if a unimodal response model is expected as a result of changes in the measured 

explanatory variables or if the model contains categorical explanatory variables (group 

designation, for example). 

 If the goal of the analysis is to determine if the largest variability gradients correspond to 

differences between sample groups and to identify these differences that contribute the most to 

group separation, discriminant analyses can be used. Currently popular discriminant analyses in 

the field of microbial ecology include RF, OPLS-DA and SVM (Figure 18). While all three 

techniques accomplish the same end goal, there might be differences in their performance based 
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on the features of the input dataset. For example, based on the findings from Specific aim 3, RF 

had consistently good performance in almost all of the datasets. However, OPLS-DA 

outperformed RF when used on a dataset with low number of variables (19 metabolites). 

Although it needs further testing with more datasets, OPLS-DA might be more suited for 

datasets with low number of variables, whereas RF is the preferred choice in the rest of the 

situations. Since SVM performed consistently worse than the other two techniques, it is not the 

preferred choice in the context of the tested datasets. Although, the relatively poor performance 

of SVM might be because of the use of a linear kernel function. If the groups within the datasets 

are harder to separate using a linear function, more complex functions need to be formulated. It 

is important however to note that increasing the complexity of the kernel function can result in 

over-fitting and a loss of generality.  

 Finally, if the goal of the analysis is to determine the pairwise associations or 

relationships between two different sets of response variables measured from the same set of 

samples, correlation-based bipartite analysis is an ideal choice. One of the more popular non-

parametric methods for assigning correlation coefficients between variables is Spearman rank 

correlation (57). Because this type of analysis involves multiple simultaneous comparisons, the 

statistically significance testing needs to incorporate multiple testing correction. A good example 

of such a procedure is the Benjamini-Hochberg’s False discovery rate correction (111, 113). 

Statistically significant correlations can be visualized as bipartite networks to identify 

associations that can be experimentally tested. 

 

II) Pre-process the dataset if necessary, based on the assumptions and the requirements of 

the chosen technique. 
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Various multivariate analysis algorithms are built based on some underlying assumptions 

or requirements with regard to the characteristics of the input datasets. These assumptions or 

requirements usually refer to two different aspects of datasets; i) the type of the data, and ii) the 

underlying structure and relationship within variables. When the data types, structures and 

relationships do not conform to the defined assumptions and requirements of the selected 

multivariate statistical technique, the performance and reliability of the results of the technique 

become questionable. In such cases, it is best to transform and standardize the dataset so that its 

characteristics better fits the chosen statistical analytical technique. For example, if RDA is 

chosen as the technique, but it is expected that the response variables change unimodally, it is 

recommended that the dataset be transformed to linearity before performing analysis (26) or it is 

better to use CCpdA instead.  

Many ordination analyses can result in false patterns as a result of the sparseness of the 

datasets (many zeros due to rare variables). To correct for such situations, chord transformation 

or Hellinger transformation of the dataset are recommended (87). If dataset containing relative 

abundances (compositional) is to be used for ordination analyses, centered log-ratio 

transformation of the dataset is recommended prior to analysis to reduce the effects of the 

constant sum constraint (proportion of a constant total). This feature of compositional datasets 

leads to variable inter-dependence and can cause false patterns in ordination (124, 125). Centered 

log-ratio transformation of datasets with many zeros is not recommended, since this 

transformation procedure involves adding a very small value below the detection limit to the 

entire dataset to facilitate the log-transformation procedure (because zeros cannot be log-

transformed). If inter-individual variability is a very large contributor to the overall variability 
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within the dataset, Mahalanobis scaling of the dataset prior to ordination analysis is 

recommended (126, 127). 

 

III) Define a metric based on the chosen multivariate technique to represent the alternative 

hypothesis of the scientific question. 

 

Because the interpretation of the raw results of many ordination techniques can be 

difficult, it is generally recommended to define a descriptive statistic that has a straightforward 

and intuitive meaning which can be used to represents the quality of the results of the 

multivariate technique. For example, when evaluating the quality of the sample group clustering 

in two or higher dimensional plots of ordination results, the use of the DB index and the 

Calinski-Harabasz (CH) index are highly recommended (128). These indices are built based on 

the features of clusters such as the size of the cluster and the distance between clusters, so the 

interpretation of the values is simple and easy. Additionally, these indices are versatile in that 

they can be applied to any ordination output that contains sample or variable coordinates. For 

direct gradient analyses, since the common question asked is, how well the explanatory variables 

explain the variability within the response set, F-type statistics or the pseudo-F statistics are the 

recommended choice, because these statistical indices compare variation captured by the 

explanatory variables to the overall inertia (total variability). For discriminant analyses, two 

popular metrics are available. Since one of the most important questions with these analyses is 

robustness of the discriminant model (alternatively, how badly does the model over-fit the data), 

model accuracy and area under the ROC curves after model cross-validation can be used. 
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Technique specific parameters such as Q
2
 or R

2
Y for OPLS-DA are also recommended metrics 

for assessment of model quality. 

 

IV) Generate a null distribution of the chosen metric. 

 

 In order to determine if the results of the multivariate analysis techniques are statistically 

significant, the observed value for the metric needs to be compared to a null distribution which 

represents values generated due to random chance. In order for such a comparison, a null 

distribution based on the metric needs to be generated. A viable strategy for the generation of a 

null distribution is defined by the Monte Carlo Permutation Procedure which involves the 

random swapping of samples within the dataset to create a ‘random’ configuration (81). The 

metric is calculated and recorded for this random configuration of samples. The process is then 

repeated thousands of times to generate to generate the null distribution of metric values which 

can be compared to the observed value. This strategy has been used for DB index in the indirect 

gradient analyses and discriminant analyses, the pseudo-F statistic and the F-type test statistic in 

the direct gradient analyses and the model parameters of the OPLS-DA model in the discriminant 

analyses. One of the advantages of this method is its versatility and its independence of any 

parameterization of the data (does not rely on specific assumptions of the data structure) (129). 

This strategy does however suffer from one critical reliance. The number of samples within the 

dataset must be large enough to generate enough combinations for a reference distribution, the 

lack of which can results in false or incorrect distribution. The effect of a low number of samples 

used in the permutation procedure can be seen in sub aim 2c where calculation of statistically 

significance for the model at individual time points generated only modest p-values. 
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V) Apply the technique, interpret the results and test for statistical significance of the 

analysis. 

 

 Many ordination analyses produce 2 or 3 dimensional plots of the output which can be 

used to interpret the results and quality of the analyses. Most indirect gradient analyses produce 

the sample coordinates plot in which the distance between the samples represent the relationships 

between samples (sample close to one another have similar variable distribution). Some indirect 

gradient analyses such as CA and DCA also produce variable coordinate plots which can be 

overlaid with sample points to represent the relationship between samples and variables 

(variables appear close to sample points that they are present in). If the DB index was used to 

define specific clusters in the ordination, if the observed value for the index is less than the 

predefined alpha threshold for the null distribution, then the clustering output of the indirect 

ordination analysis is considered statistically significant. 

Direct gradient analyses produce constrained versions of the ordination plots which are 

depicted as tri- or bi-plots with continuous environmental or explanatory variables represented as 

arrows and categorical variables represented as centroid points. In bi-plots of explanatory 

variables with sample plots, the sample points represent the weighted value of the explanatory 

variable in that sample and changes along the direction of arrow. Likewise, in a bi-plot of 

response variables with explanatory variables, the response variable point along the arrow 

represents weighted mean (or another metric depending on the technique) of the response 

variable value along the explanatory gradient arrow. A tri-plot contains all three elements in a 

single plot (sample points, response variables and explanatory variables) (30). Variation 
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partitioning or variable margination can be used to determine the relative contribution of each 

explanatory variable to the overall variability for ranking purposes (18). If the observed metric 

value (pseudo-F statistic or F-type test statistic) is larger than the predefined alpha threshold for 

the null distribution, then the observed value is considered statistically significant.  

Discriminant analyses applied for classification purposes usually produce model accuracy 

and class classification probabilities after cross-validation as output. The class classification 

probabilities can be used to build ROC curves. Some techniques inherently produce ordination 

plots (like OPLS-DA), while other do not (like SVM). Additionally, strategies described in the 

Analysis methods of Specific aim 3 can be used to identify variables that contribute the most to 

sample group separation. DB index can be used with ordination output to define separation of 

sample groups and statistical significance of separation by comparison to null distribution. 

Similarly, technique specific parameters such as Q
2
 or R

2
Y for OPLS-DA can be compared to 

their null distribution to test for model statistical significance. 

Correlation-based bipartite analyses produce a matrix of correlation coefficient between 

the two sets of variables and the associated p-values for each comparison pair. The associated p-

values is compared to the significant threshold (q-value) of that comparison generated by FDR at 

a specific alpha value (10%, 5% or 2.5%, etc.,). If the observed p-value is less than the q-value, 

the correlations coefficient for the comparison pair is considered statistically significant (111, 

113).  
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V. Dissertation summary 

Specific aim conclusions: 

Specific aim 1: In the tested datasets, indirect gradient analyses successfully showed that the 

largest gradients of variability corresponded to the separation of samples based on sample 

groups. 

Sub aim 1a: Indirect gradient analysis of genus abundances from fecal microbiota 

communities distributed samples from healthy and IBS patients into distinct clusters in 

ordination space.  

Sub aim 1b: Unconstrained ordination of quantitative fecal metabolite levels from 

healthy and IBS patients separated samples between sample groups in ordination space. 

Sub aim 1c: Indirect gradient analysis of genus abundance profiles from fecal microbiota 

communities distributed samples from healthy US and Egyptian children into distinct 

clusters based on the country of origin (US or Egypt). 

Sub aim 1d: Differences in the microbial phylotype abundances from fecal samples 

collected from patients with Clostridium difficile infection before and after fecal 

transplantation therapy resulted in separate clusters in ordination space. 

 

Specific aim 2: In the tested datasets, direct gradient analyses was successfully used to explain a 

significant portion of the overall variability present in the response variables using known 

independent variables.  

Sub aim 2a: Fecal pH, fecal percent water content, host age and health state contributed 

to a significant portion of the variability in the fecal metabolite profiles acquired from 

IBS and healthy patients. Fecal pH contributed the most, and age contributed the least. 
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Sub aim 2b: A large proportion of the variability within fecal microbiota genus 

abundances profiles from healthy US and Egyptian children can be explained by host age, 

BMI and country of origin. Country of origin explained the most and BMI explained the 

least of the overall variability. 

Sub aim 2c: Time-dependent changes in the distal gut microbiota communities in CDI 

patients coincided with their fecal microbiota transplantation state. Significant change 

was observed for time-points after-transplantation, but not for the time-point before 

transplantation. Transplanted communities maintained their composition in the recipients 

for up to 4 months with very little fluctuations. 

 

Specific aim 3: Highly accurate discriminant models were constructed using multiple 

discriminant analysis techniques, their performances were compared and the top discriminatory 

variables were identified for each dataset. 

Sub aim 3a: Discriminant models to represent differences in fecal microbiota genus 

abundance profiles between healthy and IBS patients were successfully constructed and 

compared using different classifier techniques. RF performed the best and SVM 

performed the worst. The genera Parasporobacterium, Papillibacter, Gemella, 

Oxalobacter, Solobacterium and Actinomyces were highly discriminatory between the 

sample groups. 

Sub aim 3b: Differences in fecal metabolite profiles of healthy and IBS children were 

successfully modelled and identified using different discriminant analyses. OPLS-DA 

performed the best and SVM performed the worst. The metabolites identified as 



89 
 

important for the separation of IBS samples from healthy controls were formate, tyrosine 

and glucose. 

Sub aim 3c: Discriminant models were successfully constructed to identify genera that 

contributed the most to differences in the fecal microbial profiles between healthy US 

and Egyptian children using multiple techniques. RF performed the best and SVM 

performed the worst. Although, all three tested techniques resulted in very high accuracy. 

Discriminant analyses identified Prevotella, Bacteroides, Blautia, Catenibacterium, 

Coprococcus, Ruminococcus and Anaerostipes as the top discriminatory genera. 

Sub aim 3d: Discriminant models using a cumulative distal gut microbiota dataset from 

industrialized and non-industrialized countries were successfully constructed to identify 

the main drivers of the separation between these two groups using multiple techniques. 

RF performed the best, while SVM performed the worst, albeit, all tested techniques 

showed very high performance. Discriminant analyses identified Prevotella, Bacteroides, 

Catenibacterium, Alistipes, Succinivibrio, Bulleidia and Holdemania as highly 

discriminatory between industrialized and non-industrialized populations.  

 

Specific aim 4: Correlation-based bipartite analysis was successfully used to identify and 

statistically test pair-wise associations between two different sets of response variables measured 

for the same set of samples. 

Sub aim 4a: Spearman rank correlation analysis was successfully used to identify 

statistically significant putative associations between microbiota and metabolites from the 

distal environment of healthy and IBS children as well as determine the differences in the 
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associations between these two sample groups. There was a severe loss in the number of 

statistically significant microbiota-metabolite associations in the IBS group. 

Sub aim 4b: Spearman rank correlations analysis successfully identified statistically 

significant putative associations between distal gut microbiota and metabolites that are 

common to US and Egyptian children. 

 

Specific aim 5: We were able to integrate the approaches and insights obtained from the various 

aims into a viable protocol for the analysis of multivariate datasets from field of microbial 

ecology. 
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