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ABSTRACT 

Alawi, Laale Fakhri, M.S, Department of Pharmacology and Toxicology, Wright State University, 
2015. Role of Angiotensin II Type 1A Receptors on Renal and Urinary Angiotensin Converting 
Enzyme 2 (ACE2) and Neprilysin (NEP) in the Two-Kidney One-Clip (2K1C) Model of 
Renovascular Hypertension 

Activation of the renin angiotensin system (RAS) and increased formation of angiotensin (Ang) II 

contribute to the progression of chronic kidney disease (CKD). Ang II, the major biologically active 

peptide of RAS, acts mainly as a vasoconstrictor through binding to the Ang II type 1 receptor 

(AT1R), which leads to increased blood pressure, fluid retention, and aldosterone secretion. The 

actions of Ang II are antagonized by its conversion to the vasodilator Ang (1-7), partly generated by 

the action of angiotensin converting enzyme 2 (ACE2) and/or neprilysin (NEP). The 

metalloprotease ADAM17 has a crucial role in the shedding of renal ACE2 in diabetic mice model. 

The two-kidney, one clip (2K1C) Goldblatt model is an experimental approach designed to mimic 

renovascular hypertension. It consists of the unilateral clamping of the renal artery in one of the 

kidneys. The aim of this study is to test the hypotheses that: 1) renovascular hypertension and 

increased albuminuria in the 2K1C model is mediated by AT1AR and 2) up-regulation of renal 

ADAM17 increase the shedding of renal ACE2 and NEP into the urine. Wild type (WT) and 

AT1AR knockout (AT1 KO) mice were used to test our hypotheses. Mice were subjected to surgical 

procedures to implant radio-telemetry transmitters for measurement of blood pressure (BP), 

followed by induction of renovascular hypertension. BP at baseline was significantly lower in AT1 

KO compared to WT mice, whereas in WT 2K1C, BP was significantly higher than controls 

(p<0.05). However, 2K1C has no effect on BP in AT1 KO mice. Urinary albumin excretion 

significantly increased in WT 2K1C mice compared to sham -operated ones, while no change was 

observed in AT1 KO. In addition, a significant reduction of renal ADAM17 and NEP contents was 

observed in clipped kidney relative to the unclipped and sham kidneys. Western blot analysis 
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showed a significant decrease in renal ACE2, NEP, and ADAM17 protein expression levels in the 

clipped kidney compared to the unclipped or sham-operated ones. Histological assessment of the 

kidneys in the 2K1C model revealed significant mesangial expansion and renal fibrosis. Data 

suggest that renovascular hypertension is mediated by AT1AR and deletion of this receptor 

attenuates albuminuria in the 2K1C model. In 2K1C, the downregulation of renal and urinary ACE2 

and ADAM17 suggest a potential link between ADAM17 and ACE2 shedding in 2K1C mice. 

Decreased renal NEP in the clipped kidney of 2K1C model may thus worsen kidney injury via 

impairment of Ang (1-7) formation. 
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1. INTRODUCTION 

1.1. Hypertension  

High blood pressure is one of the major common risk factors leading to morbidity and 

mortality, due to its role in the development of several disorders, including heart failure, 

cardiac hypertrophy, stroke, and chronic kidney disease (CKD) (Chen & Coffman, 2012). 

Hypertension is a chronic condition that affects around 25% of the total adult population 

worldwide, and is predicted to increase to 29% by the year 2025 (Kearney et al., 2004). A 

recent study shows a link between metabolic syndrome and CKD, in which hypertension 

plays a major role leading to the end stage renal disease (ESRD) when compared to other 

metabolic syndromes (Nashar & Egan, 2014). Hypertension is defined by the guidelines of 

the Joint National Committee on detection, evaluation, and treatment of high blood 

pressure. It consists three stages as shown in Table 1 (Chobanian et al., 2003): 

Table 1: Classification of hypertension 

Classification Systolic BP 
(mmHg) 

Diastolic BP 
(mmHg) 

Normal <120 <80 
Pre-hypertension 120-139 80-89 

Stage 1 hypertension 140-159 90-99 
Stage 2 hypertension ≥160 ≥100 

 

If systolic blood pressure (SBP) is more than 180 mmHg, or diastolic blood pressure 

(DBP) more than 110 mmHg, emergency care is needed. These cases are considered stage 

3 hypertension, also known as hypertensive crisis (Lackland, 2013). According to the 

2014-hypertension guidelines, the target blood pressure in a general population aged ≥60 
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years should be 150/90 mmHg, whereas the target blood pressure should be 140/90 mmHg 

for a population younger than 60 years and with diabetes or CKD, (James et al., 2014).  

1.2. Role of the kidney in hypertension 

The link between kidney and blood pressure control has been identified in the 19th century 

by Richard Bright, followed by Goldblatt’s report who developed a renovascular 

hypertension animal model by narrowing one of the renal arteries, known as the Goldblatt 

hypertension model (Goldblatt et al., 1934). It is well known that essential hypertension 

could be effected either by renal abnormalities such as a decrease of kidney function or by 

over activation of the renin angiotensin system (Hall et al., 1996). Activation of the 

intrarenal renin angiotensin aldosterone system (RAS) plays a crucial role in the 

progression of hypertension primarily through the increase of Ang II and its type 1 

receptor (Kobori et al., 2007). Reduced blood pressure may occur through inhibition of 

specific RAS components such as renin, angiotensin converting-enzyme, and angiotensin 

II type 1 receptor (Crowley et al., 2007).  

1.3. Pathophysiology of renovascular hypertension (RVH)  

Renovascular hypertension (RVH) occurs when main renal arteries are obstructed, 

resulting in an increase in the systemic blood pressure (Textor, 2009).The essential role of 

RAS has been confirmed in the development of high blood pressure in hypertensive 

models (Cervenka et al., 2002; Navar et al., 1998). Emerging evidence demonstrates that 

RVH is associated with ESRD when compared with the other causes of ESRD (Fatica et 

al., 2001). Goldblatt and his colleagues were the first to establish the two classic Goldblatt 

RVH animal models, the two-kidney one-clip (2K-1C) and the one-kidney one-clip (1K-
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1C). Both models lead to hypertension, but with different mechanisms (Goldblatt et al., 

1934). 

1.4. Goldblatt renovascular hypertension models 
 

1.4.1. One-kidney one clip (1K1C)  

The activation of RVH in this model occurs via bilateral renal artery stenosis, by 

occluding the renal artery in one kidney, and removing the other kidney (Wiesel et al., 

1997). Plasma renin elevation is caused by the reduction in renal arterial pressure, leading 

to an increase of Ang II in the circulation, which is considered an early phase of 

hypertension. These steps also occur in the 2K1C model; however, each model has 

different mechanisms. In 2K1C, presence of the contralateral non-clipped kidney keeps 

the RAS activated maintaining blood pressure and volume. However, the 1K1C model is 

considered a low renin volume dependent hypertension model, in which blockade of renin 

plasma secretion results in suppressed RAS activity (Wiesel et al., 1997).  

1.4.2. Two-kidney one clip (2K1C) 

Goldblatt originally developed this model using dogs to study the pathogenesis of RVH 

(Goldblatt et al., 1934). The model was extended to other species such as rats, mice, and 

pigs (Thone-Reineke et al., 2003). In this model, RVH is mediated by a unilateral renal 

artery stenosis, leading to a reduced renal perfusion in the clipped kidney, and activation 

of the Ang II that increased the release of renin from the kidney (Campagnaro et al., 

2013). The 2K1C model recently helped to determine several factors that might play a role 

in the development of cardiovascular and renal diseases (Al-Suraih & Grande, 2014); one 

of which is the activation of RAS that mediates the vasoactive effect. The 2K1C model is 

also categorized as an Ang II-dependent hypertension model, in which increased renin 
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release leads to elevated renal Ang I, Ang II, and ACE resulting in a further increase in 

blood pressure (Prieto et al., 2011). In addition, increased ACE in the 2K1C Goldblatt 

hypertensive model has a reciprocal association with Ang (1-7), ACE2, and neprilysin 

(NEP) in the affected kidney and thoracic aorta (Jongun, 2004). A study by Oliveira Sales 

et al. proposed that angiotensin II type 1 receptor (AT1R) and inducible nitric oxide 

synthase (iNOS) in the kidney, specifically in the rostral ventrolateral medulla, controls 

hypertension and renal sympathetic activation in the 2K1C model (de Oliveira-Sales et al., 

2010). Recently, mesenchymal stem cells show a beneficial effect in the treatment of 

renovascular hypertension, due to reduced systolic arterial pressure, fibrosis, and 

sympathetic hyperactivity (Sales et al., 2015).  

1.5. Stages in the development of renovascular hypertension  

1.5.1. Renin angiotensin system (RAS) dependent phase  

The renin angiotensin system-dependent phase is also known as the early phase of 

hypertension (Brown et al., 1976). Hypertension in this phase is mainly the result of 

excessive activation of the RAS. Diminished renal perfusion stimulates secretion of renin, 

which in turns leads to increased plasma Angiotensin II levels. The elevated blood 

pressure in this phase could be repaired and reversed by the inhibition or blocking of the 

renin angiotensin system, or by surgical repair of the renal artery stenosis (Pipinos et al., 

1998).  

1.5.2. Salt retention phase  

In this transitional phase, hypertension is more likely to occur as a result of the sodium 

and water retention than an increase of Ang II. Activation of AT1R leads to several effects 

besides an increase in blood pressure, including induced salt retention and aldosterone 
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secretion (Robles et al., 2014) (Brewster & Perazella, 2004). Salt retention may suppress 

plasma and renal renin secretion resulting in raised systemic blood pressure, due to the 

lack of response to the blockage Ang II (Garovic et al., 2005)  

1.5.3. Systemic renin angiotensin independent phase  

Systemic renin angiotensin independent phase is also called the chronic or sustained late 

phase of renovascular hypertension. In contrast to the early phase, plasma renin level 

returns to normal, and in this case, hypertension cannot be reversed by surgical correction 

of the stenosis, and this condition is typically less responsive to RAS blockade (Pipinos et 

al., 1998). 

1.6. Components of RAS cascade  

Renin  

Activation of the RAS is initiated by the release of a protease enzyme, called renin, from 

the kidney, primarily synthesized by juxtaglomerular cells (Nguyen et al., 2002). Renin is 

also known as angiotensinogenase; it has a role in the cleavage of the glycoprotein 

angiotensinogen and in forming the inactive decapeptide angiotensin I (Ang I) (Nguyen et 

al., 2002). Renin secretion occurs in response to reduced arterial blood pressure, sodium 

level, and sympathetic nervous system activity (Ferrao et al., 2014).  

ACE/Angiotensin II/Angiotensin II receptor axis 

The octapeptide Ang II is a highly active peptide of the RAS. It has an essential role in 

blood pressure regulation and body fluid homeostasis (Belova, 2000). The effect of Ang II 

is mediated by its binding to either the Ang II type 1 receptor (AT1R) or the Ang II type 2 

receptor (AT2R) (Siragy & Carey, 2010). Binding of Ang II to AT1R leads to several 

physiological effects such as vasoconstriction, sodium retention, reduced glomerular 
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filtration rate, and may cause renal injury (Kobori et al., 2007).  Ang II is considered an 

effective antinatriuretic hormone; it is responsible for the regulation of sodium 

reabsorption through the activation of renal Na+ /H+ exchanger 3 (NHE3) in the proximal 

tubule (Banday & Lokhandwala, 2011). It has been demonstrated that oxidative stress 

could increase AT1R signaling and over-stimulate NHE3, which may lead to down-

regulated sodium excretion and ultimately hypertension (Banday & Lokhandwala, 2011). 

Angiotensin II Receptors subtypes 

- Angiotensin II type 1 receptor  
The two main classes of Ang II receptors belong to the large family of seven trans-

membrane receptors (Sparks et al., 2014). These two receptors activate by Ang II, but 

trigger counteractive mechanisms (Cresci et al., 2003). Binding of AT1R with Ang II 

modulates blood pressure, hormone secretion, and renal function (de Gasparo et al., 2000). 

In rats and mice, AT1R has two distinct subtypes, named AT1A and AT1B (de Gasparo et 

al., 2000); however, these subtypes have not been discovered in humans yet (Bergsma et 

al., 1992).  AT1A and AT1B have similar binding properties, but differ in the genomic 

structure, distribution, and transcriptional regulation (de Gasparo et al., 2000). AT1R is 

expressed in different tissues; however in kidneys it is mainly located in glomerular 

mesangial cells, proximal tubular cells, and interstitial cells (de Gasparo et al., 2000). 

Most studies suggested that the predominate type of these receptors in the RAS is the type 

1 receptor (Timmermans et al., 1993). AT1R has several functions, including 

vasoconstriction effects that lead to high blood pressure via Ang II activation, sodium 

balance, growth regulation, and developmental regulation (Oliverio & Coffman, 2000). 

The up-regulation of AT1R via oxidative stress can lead to excessive sodium transporter 

stimulation and decrease in sodium excretion, which contribute to an increase in blood 
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pressure (Banday & Lokhandwala, 2011). Several past studies are in agreement with the 

notion that a raise in blood pressure, via Ang II activation, is mainly mediated through 

AT1R (Ito et al., 1995; Crowley et al., 2004; Crowley et al., 2010; Balakumar & 

Jagadeesh, 2014). Accordingly, the use of AT1 blockers (ARBs) is recommended in the 

management of hypertension and for delaying the progression of CKD (Imaizumi et al., 

2013; Balakumar & Jagadeesh, 2014).  

- Angiotensin II type 2 receptor 

AT2Rs antagonize the actions of AT1Rs (Jones et al., 2008). The low expression of 

AT2Rs relative to AT1Rs leads to the idea that AT2Rs may have a negligible biological 

impact (Padia & Carey, 2013). However, recent studies showed that AT2R activation 

might have a protective role in hypertensive patients via vasodilation, and prevention of 

sodium retention (Kemp et al., 2014; Danyel et al., 2013). Interestingly, expression and 

function of the renal AT2R depends on sex (Hilliard et al., 2012). Studies show that 

activation of the endogenous AT2R in the brain, specifically in females, may play a 

protective role in deoxycorticosterone acetate (DOCA) salt-induced hypertension (Dai et 

al., 2015). Thus, the use of AT2R could be considered an effective promising target in the 

treatment of fluid retention and hypertension.  

ACE2/Angiotensin (1-7)/mas receptor axis  

ACE2 plays a key role in the cleavage of one amino acid from Ang I and Ang II to form 

Ang (1-9) and the heptapeptide Ang (1-7), respectively (Batlle et al., 2012). The balance 

between ACE and ACE2 in the RAS is required to regulate Ang II levels. The formation 

of the heptapeptide Ang (1-7) occurs either directly from Ang I through neutral 

endopeptidase NEP and propyl endopeptidase (PEP) (Grobe et al., 2013), or from Ang II 
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by angiotensin-converting enzyme 2 (ACE2) and prolyl carboxypeptidase (PCP) (Eriksson 

et al., 2002; Donoghue et al., 2000; Odya et al., 1978). Ang (1-7) is found in the heart, 

kidney, blood vessels, and liver (Santos et al., 2013). It antagonizes the effects of Ang II 

by acting as a vasodilator when it binds to two receptors either the G-protein coupled 

receptor mas (Batlle et al., 2012) or AT2R (Santos et al., 2003). Activation of these 

receptors may lead to many biological processes including proliferation, fibrosis, 

hypertrophy, and thrombosis (Bian et al., 2013; Macedo et al., 2014). A study suggested 

that the counterbalancing effect of the ACE2-Ang (1-7)-mas axis is associated with 

reduced blood pressure in the 2K1C Goldblatt hypertension model (Rakusan et al., 2010). 

The protective role of Ang (1-7) in the renal and cardiovascular system is well 

documented. Moreover, the beneficial effects of Ang (1-7) have also been shown in 

several organs, such as cerebro-protection against ischemic stroke (Mecca et al., 2011), 

gastro-protection against gastric lesions (Brzozowski et al., 2012), and also protection 

against diabetic retinopathy (Verma et al., 2012).  Therefore, the ACE2-Ang (1-7)-mas 

axis could be a new promising target for the development of potential therapies for 

different disorders. 

Angiotensin (1-7) forming enzymes 

- Angiotensin-converting enzyme 2 (ACE2) 

ACE2 is a monocarboxypeptidase and the first human homolog of ACE (Donoghue et al., 

2000). It removes the C-terminal amino acid from several substrates including Ang I to 

form Ang (1-9) and Ang II to give Ang (1-7) (Batlle et al., 2012). Originally, ACE2 was 

identified in the heart, testis, and kidney (Donoghue et al., 2000). However, ACE2 has 

also been observed in others organs, such as the lung, liver, pancreas, adipose, retina, 
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ovary, colon, small intestine, and rat brain (Bindom & Lazartigues, 2009). In the kidney, 

most recent studies have shown that ACE2 is predominantly expressed in the renal cortex 

(Santos et al., 2013), mainly in glomerular podocytes and in the cell wall of Bowman’s 

capsule (Ye et al., 2006), while ACE by contrast, is expressed mostly in endothelial cells 

(Ye et al., 2006). Notably, there was no ACE2 in the plasma of db/db diabetic mice or in 

control animals (Chodavarapu et al., 2013). Recent clinical studies reported that treatment 

of patients with hypertension or with diabetic nephropathy with Olmesartan, one of the 

ARBs, (Abe et al., 2014) (Furuhashi et al., 2015) resulted in increased urinary ACE2, 

suggesting a potential renoprotective role of ACE2.   

- Neutral endopeptidase neprilysin (NEP) 

Neutral endopeptidase neprilysin (NEP, EC 3.4.24.11) belongs to the M13 family of zinc-

containing metallopeptidases (Sexton et al., 2012). It is also known as CD10, 

enkephalinase, or common acute lymphoblastic leukemia CALLA (Sexton et al., 2012). 

The molecular weight of NEP is around 90-110 kDa, with a short cytoplasmic and a large 

extracellular domain (Zraika et al., 2007). Initially, NEP was discovered in the brush 

border membranes of the rabbit kidney as a cleavage peptide of the insulin B chain (Kerr 

& Kenny, 1974). NEP is expressed in different tissues such as lung, brain, fibroblasts, 

various epithelia, vascular cells, and neural synapses of the central nervous system (Kerr 

& Kenny, 1974; Li et al., 1995). Degradation of Ang I by NEP forms the vasodilator Ang 

(1-7), step advantageously used for vascular therapeutic applications (Chappell, 2007; 

Simoes e Silva AC et al., 2006). Apart from Ang I, NEP also degrades other biologically 

active peptides such as bradykinin, atrial natriuretic peptide (Cruden et al., 2004), B-type 

natriuretic peptide (Judge et al., 2014), and C-type natriuretic peptide (Thong et al., 2014). 
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Accumulating evidence suggests a role of NEP in Alzheimer’s disease (Park et al., 2013). 

Indeed, NEP degrades amyloid β peptides (Aß); thus, NEP deficiency could be associated 

with the accumulation of Aß in cerebral regions, the main pathological characteristic of 

Alzheimer’s disease (Yasojima et al., 2001; Iwata et al., 2001). Furthermore, NEP may 

have a therapeutic protective role in pancreatic beta cells via the degradation of islet 

amyloid polypeptide (IAP) (Guan et al., 2012). NEP has been proposed as a diagnostic 

marker of different renal neoplasms (Avery et al., 2000). Moreover, a previous study 

suggested that down regulation of NEP expression is an essential factor in the progression 

of prostate cancer (Papandreou et al., 1998). This was followed by a recent study 

highlighting the need for early biomarkers like NEP to classify different cancer cell 

phenotypes (Ho et al., 2013).  

1.7. Role of A Disintegrin and Metalloprotease 17 (ADAM17) in renal ACE2 

shedding	
  
ADAM17 is a member of A Disintegrin and Metalloprotease family, also known as tumor 

necrosis factor α-converting enzyme (TACE) (White, 2003). ADAM17 is expressed in 

several tissues including brain, heart, kidney, and skeletal muscle and is involved in the 

ectodomain shedding of several transmembrane proteins (Black et al., 1997). The 

ectodomain shedding process is defined as the hydrolytic breakdown of transmembrane 

proteins resulting in the release of their extracellular domains (Mezyk et al., 2003). Ang II 

infusion activates ADAM17, which acts as a sheddase for transforming growth factor-

alpha (TGF-α), suggesting a new therapeutic approach for ADAM17 inhibitor in the 

prevention of CKD (Lautrette et al., 2005). A recent study reported the role of ADAM17 

in the release of NEP via exosomes from endothelial cells (Kuruppu et al., 2014). Our 

previous studies demonstrated the critical role of ADAM17 in the shedding of renal ACE2 
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in type 2 diabetic mice and the effect of using an insulin sensitizer, such as rosiglitazone, 

on the expression of renal ADAM17 and ACE2 proteins (Chodavarapu et al., 2013). 

Furthermore, Somineni et al. showed that daily exercise training attenuates renal ACE2 

shedding through the reduction of renal ADAM17 protein level on db/db diabetic mice 

(Somineni et al., 2014). Emerging studies reported that ADAM17 expression and activity 

increase in several disorders such as akita and OVE26 mouse models of type 1 diabetic 

(Ford et al., 2013; Salem et al., 2014), heart failure, atherosclerosis, cancer, immune and 

neurological diseases (Mendoza & Lazartigues, 2015). Additionally, a recent report 

showed the increase of ADAM17 expression in the brain of deoxycorticosterone acetate 

(DOCA) salt induced-hypertension mice result in an increase of ACE2 shedding from the 

plasma membrane, which may contribute to the development of neurogenic hypertension 

(Mendoza & Lazartigues, 2015; Xia et al., 2013). 

1.8. Management of renovascular hypertension 

There are several options in the management of RVH. These involve pharmacological 

intervention, percutaneous intervention by transluminal angioplasty and stinting, and 

surgical intervention, which includes endarterectomy, aortorenal bypass, and extra-

anatomic bypass (Bloch & Basile, 2007). Usually, medical therapy in combination with 

other interventions is considered more effective than using medical therapy alone (Garovic 

& Textor, 2005). Although several different antihypertensive drugs have been used to 

manage renovascular hypertension, ACE inhibitors and ARBs are, for now, considered the 

ultimate effective drugs (Safian & Textor, 2001).  
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1.8.2.1 ACE inhibitors 

The affectivity of ACE inhibitors in the management of RVH is long recognized (Reams 

& Bauer, 1985; Schwietzer & Oelkers, 1982). It has been proposed as the most effective 

therapy when compared to other antihypertensive drugs available (Hackam et al., 2007). 

The use of ACE inhibitors is especially important in patients with atherosclerotic renal 

artery stenosis (Tullis et al., 1999) and in non-diabetic patients with kidney disease in 

order to prevent development of nephropathy (Tylicki et al., 2012). The renoprotective 

roles of these inhibitors have been demonstrated in several studies (Huang et al., 2014). 

Both ACE inhibitors and ARBs have similar efficiencies in the control of blood pressure 

and in renal protection; however a significant side effect of ACE inhibitors, when 

compared to ARBs, is the high possibility to develop dry cough and angioedema (Matchar 

et al., 2008).  

1.8.2.2 Angiotensin II receptor blockers (ARBs) 

Apart from the use of ARBs to control blood pressure, ARBs have also been used to treat 

heart failure, coronary heart disease, and diabetic nephropathy (Schmieder et al., 2011). 

Unlike ACE inhibitors, several studies discovered that ARBs are less likely to cause dry 

cough and angioedema, due to reduced breakdown of bradykinin (Mallat, 2012; Yusuf et 

al., 2008). Moreover, clinical data reported that ARBs exhibit little or no effect in 

hypertensive patients with hyperlipidaemia (Nishida et al., 2011). In type 2 diabetic 

patients who have microalbuminuria, there is a similar beneficial effect of ACE inhibitors 

and ARBs. However, clinical trials recommend the use of ARBs in diabetic patients with 

proteinuria, as it is more effective in delaying the progression of nephropathy (Mallat, 

2012).  
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1.9. Chronic kidney disease: a risk factor for renovascular disease  

The increase in prevalence of CKD in the United States is associated with the increasing 

prevalence of diabetes and hypertension, which may also lead to several complications 

such as cardiovascular disease and ESRD (Coresh et al., 2007). CKD is defined as the 

presence of any abnormality in the renal structure or in the renal function for more than 3 

months, with some associated effects on health (Stevens & Levin, 2013). The National 

Kidney Foundation Guidelines classified CKD according to the glomerular filtration rate 

or kidney damage indicated by presence of albuminuria. Reduced GFR (<60 mL/min per 

1.73m2) is generally the best indicator of CKD. However, in stage 1 and 2 of CKD, GFR 

could be normal, and a diagnosis is not made. Therefore, recent guidelines recommend the 

use of albuminuria in addition to GFR to have an accurate assessment of CKD (Stevens & 

Levin, 2013). Moreover, GFR categories have been updated with new subdivision in the 

G3 stage with level of 30 to 59 mL/min per 1.73 m2 as G3a for 45 to 59 mL/min per 1.73 

m2 and G3b for 30 to 44 mL/min per 1.73 m2 (Stevens & Levin, 2013). Emerging studies 

showed that development of CKD is widely associated with activation of RAS system 

(Remuzzi et al., 2005). 

1.10. Chronic kidney disease biomarkers  

1.10.1. Albuminuria  

Albuminuria is an indicator of renal dysfunction and is independently associated with 

renal and cardiovascular events (Stephen et al., 2014). Urinary proteins originate mainly 

from glomerular filtration of plasma proteins, such as albumin, while non-plasma proteins 

are produced by renal tubular epithelium (Stephen et al., 2014). Normally, albumin, which 

has a low molecular weight, is filtered by the glomerulus and most of it nearly reabsorbed 

by the renal proximal tubules (Barratt & Topham, 2007). The normal daily range of 
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albumin excretion is from 5 to 10 mg, and the urine albumin: creatinine ratio range from 0 

to 29 mg albumin/g creatinine (Toto, 2004). When proteinuria endures, albumin is the 

most common protein found in urine. Microalbuminuria is defined when values range 

between 30–299 mg of albumin/g of creatinine, whereas the term macroalbuminuria is 

reserved when values ≥300 mg albumin/g creatinine are demonstrated (Toto, 2004; 

Stevens & Levin, 2013). However, recently the term micro and macro have no longer been 

used due to the continuous occurrence of albuminuria (American Diabetes Association, 

2015). Our previous studies suggested a positive correlation of urinary ACE2 with 

albuminuria in both types of diabetes, type 1 diabetic Akita mice (Salem et al., 2014) and 

type 2 diabetic db/db mice (Chodavarapu et al., 2013; Somineni et al., 2014), a concept 

that could place ACE2 as a more sensitive early biomarker for CKD than albuminuria. 

1.10.2. Estimated glomerular filtration rate (eGFR) 

Estimation of glomerular filtration rate is considered the best indicator of renal function 

(Stevens & Levey, 2009). Clinically, estimated GFR (eGFR) usually depends on the 

endogenous serum creatinine marker more than urine collection (exogenous markers) 

(Rule et al., 2013). In addition, the eGFR equation includes other factors beside serum 

creatinine such as age, race, sex, and body weight (Stevens et al., 2006). Several studies 

have shown that eGFR based on serum creatinine is more related to CKD than eGFR 

based on cystatin C (Rule et al., 2013). However, recent studies reported that combining 

serum creatinine with cystatin C would be more effective and accurate in the assessment 

of renal function in CKD (Fan et al., 2014; Wasung et al., 2015). The MDRD 

(Modification of Diet in Renal Disease) equation is the most commonly used equation 

used in clinical laboratories to assess CKD (Miller, 2008). But recently, researchers have 
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developed a new equation known as the CKD-EPI (chronic kidney disease epidemiology 

collaboration) to give a more accurate assessment of GFR, especially in conditions with 

high eGFR levels (Levey et al., 2009).  

1.10.3 The intrarenal RAS components as urinary biomarkers 

Studies have suggested that increased levels of urinary angiotensinogen (UAGT) in CKD 

patients could be used as a reliable marker of CKD (Mills et al., 2012). Moreover, UAGT 

level is also increased in hypertensive subjects (Kobori et al., 2009). These data suggest 

that UAGT may provide an accurate reflection of intrarenal RAS and may be considered 

an early indicator for several disorders including CKD, diabetic nephropathy, and 

renovascular hypertension (Kobori et al., 2009) (Kamiyama et al., 2012). However, Ang II 

could not be considered as an intrarenal RAS biomarker due to its unstable status (Mills et 

al., 2012). Additionally, a study was done by Casarini and her colleagues that established 

the role of urinary ACE as an indicator of hypertension in order to avoid the development 

of RVH and/or cardiovascular disease (Maluf-Meiken et al., 2012).  

1.10.4 Tubular injury biomarkers  

Elevated urinary kidney injury molecule-1 (KIM-1) was found in the injured proximal 

cells in animal models and humans (Zhang et al., 2007). Urinary KIM-1 levels have been 

proposed as a potential indicator of CKD progression. It is considered an optimal marker, 

for at least three reasons: its ectodomain is rapidly chopped and detectable in the urine, it 

is specific to renal tubular damaged cells and not detectable in normal cells, and it shows 

sensitivity in the urinary quantification of kidney injury assessment and for monitoring 

therapeutic effects (Huo et al., 2010). A study in 2014 examined and confirmed the 
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association between kidney tubular damage and cardiovascular disease progression and 

high levels of urinary KIM-1 (Carlsson et al., 2014).  

Other endogenous markers currently used in clinical laboratory tests to assess GFR 

include serum creatinine and cystatin C (Herget-Rosenthal et al., 2007). Cystatin C is also 

considered a tubular injury biomarker, mainly for early kidney dysfunction. In fact, 

Cyctatin C in combination with serum creatinine provides a more accurate assessment of 

GFR (Wasung et al., 2015). 

Neutrophil gelatinase-associated Lipocalin (NGAL) is a member of the Lipocalin family, 

mainly found in neutrophils and tubular epithelial cells (Cowland et al., 2003). NGAL 

increases in response to inflammatory conditions and ischemia (Eirin et al., 2012). Urinary 

and plasma NGAL are currently considered reliable markers of acute kidney injury and 

chronic RVH (Eirin et al., 2012).  

Studies of RAS activation and its components in hypertensive conditions are limited. The 

present thesis will examine the expression of renal and urinary ACE2 and NEP and their 

potential renoprotective effect in the 2K1C renovascular hypertensive mouse model. We 

will investigate the role of AT1AR in general functional parameters, including renal 

function, RAS components and its association with CKD and RVH.   
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2. HYPOTHESIS AND SPECIFIC AIMS 
 

2.1. Hypothesis 

To test the hypothesis that: 1) increased blood pressure and renal ADAM 17 protein 

expression in the 2K1C mouse model of renovascular hypertension increase shedding of 

renal ACE2 and NEP which may contribute to the progression of chronic kidney disease 

in this model and 2) hypertension and shedding of renal ACE2 and NEP is mediated by 

AT1AR 

2.2. Specific aims  
1. To test the hypothesis that hypertension in the 2K1C model of renovascular 

hypertension is mediated via AT1AR. 

2. To test the hypothesis that deleting AT1AR in the 2K1C model of renovascular 

hypertension will attenuate the increased urinary albuminuria excretion. 

3. To test the hypothesis that there is increased shedding of renal ACE2 into the urine 

in 2K1C mice, which could be mediated through AT1AR, and to investigate 

whether this is associated with increased renal ADAM17.  

4. To investigate whether renal and urinary NEP protein expression are altered in 

2K1C mice. 
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3. MATERIAL AND METHODS  
3.1. Animal model  

Adult male AT1A−/− (AT1 KO) and their wild type control AT1A+/+ (WT) mice were 

used. The mice were generated from a breeding colony maintained at Wright State 

University. The breeding stock mice were provided by Dr. Thomas Coffman (Duke 

University, Durham, NC, USA) (Ito et al., 1995). Mice were housed individually in plastic 

cages with ad libitum access to food and water and were maintained at room temperature 

(22°C) with 12:12 h light: dark cycles. Mice were randomly divided into four groups: WT 

(sham), WT (2K1C), AT1 KO (sham), and AT1 KO (2K1C).  

Every alternate day, body weight, food intake, water intake, urine output, and blood 

pressure of the mice were monitored. The Wright State University Animal Care and Use 

Committee approved all the experimental protocols. 

3.2. Telemetry transmitter implantation 

Telemetric catheters devices (model TA11PA-C20) were purchased from Data Sciences 

(Data Sciences International, St. Paul, MN). In a closed chamber, mice were initially 

anesthetized with 2.5% isoflurane and 1 L/min oxygen and then maintained with 2% 

isoflurane and 0.3-0.5 L/min oxygen on a constantly warm pad using a nose cone. Mice 

were placed on their backs using tape to secure their forelimbs. For surgical preparation, 

the anterior neck was shaved and disinfected with Betadine solution and 70% ethanol. A 

small incision (10 mm) was made vertically through the neck, and carefully, a sterile 

telemetry catheter was inserted into the carotid artery and tied in place using a 5.0 gauge 

silk suture. A subcutaneous sack was made on the animal’s flank to place the transmitter 

device inside the body, and then the skin was closed with 5.0 sutures and disinfected with 
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Betadine solution. A dose of 0.1 mg/kg of Carprofen was given subcutaneously to each 

animal immediately after surgery and on the next day for pain reduction to provide 48 

hours of analgesia. All mice were left to recover and rest for 7 days before recording the 

blood pressure. Measurements were taken for 24 hours as baseline prior to the 2K1C renal 

clipping surgery. At the end of the study period, mice were sacrificed using carbon 

dioxide. 

3.3. 2K1C surgical procedure 

Mice were anesthetized with isoflurane (induction 2.5% isoflurane, maintenance 2% 

isoflurane) and kept on a warm pad to avoid hypothermia. U-shaped sterile stainless steels 

clips (0.12-mm, Exidel SA, Switzerland) were used to clip the renal artery. The clip was 

placed on the renal artery of the left kidney after it was isolated through a flank incision by 

using forceps. The kidney was then returned into the retroperitoneal cavity and the 

abdominal wall layers were sutured. The same surgical procedure was done for sham 

animals to dissect the left renal artery with the exception of clipping, in order to use them 

as controls. Carprofen (0.1 mg/kg) was given subcutaneously to mice immediately after 

surgery to reduce pain and also after 24 hours to provide 48 hours of analgesia. 

Postoperatively daily assessment of general health, suture site, body weight, water, and 

food consumption was performed.  

3.4. Radiotelemetry measurements 

Arterial blood pressure, heart rate, and locomotor activity were continuously monitored 

using radiotelemetry (500 Hz) before (baseline period) and up to two weeks after the 

2K1C renal clipping surgery. The standard Ponemah Analysis Modules system (Data 

Sciences International, St. Paul, MN) was used for data analysis.  
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3.5. Twenty-four hour urine collection  

Mice were housed individually in metabolic cages for 24-hour urine collection under a 

12:12 hour light: dark cycle, provided with water and standard rodent chow. Ten 

microliters of protease inhibitor (Roche Diagnostics, IN, USA) containing 2.5 mM/L 

PMSF was added twice to the urine samples through the 24-hour period to prevent protein 

degradation. The samples were then centrifuged at 3,000 x g, 4° C for 5 min. The 

supernatants were aliquoted and stored at -80°C for later use.  

3.6. Perfusion and tissue collection 

Mice were anesthetized with 0.13 mg/g Euthasol intraperitoneally. Once adequate 

anesthesia was assured by checking the reflex and the mice showed no response to the 

tail/toe pinches, a thoracic midline skin incision was made to expose the abdomen and the 

thorax cavity completely. A small incision was made in the atrium and a 25-gauge needle 

was inserted into the left ventricle. The perfusion started by pumping the perfusate buffer 

(1X PBS, 60-70 ml/mouse) through the needle into the animal at a moderate flow. Once 

blood was cleared and the liver became pale, the perfusate buffer was switched to the 

fixative fluid (4% paraformaldehyde, 50-60 ml/mouse) until the mouse limbs became stiff. 

Organs then were collected in paraformaldehyde and kept at 4⁰C for later use.  

3.7. Urinary creatinine assay  

Urinary Creatinine levels are commonly used as an index for kidney function, due to its 

stability and excretion rate in a normal individual. Urinary creatinine protein was 

measured using a Creatinine ELISA kit purchased from Quidel Corporation BoneVue 

(San Diego, CA). The kit is based on the principle of Jaffe reaction under alkaline 

conditions. Creatinine reacts directly with picric ions to produce a color complex solution. 
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Standards and urine samples were diluted with distilled water in the ratio (1:40), and 50 µl 

of samples and standards were added into the 96 wells plate followed by addition of 150 

µl of color reagent (7 ml picric acid + 1 ml 1N NaOH). The plate was incubated at room 

temperature for 30 minutes before taking the readings. Measurements were determined at 

490 nm using a Fusion
 
Packard plate reader. 

3.8. Urinary albumin assay 

Albuminuria is the current indicator for the assessment of kidney damage in CKD. Mouse 

Albumin ELISA Quantitation kit (Bethyl Laboratories, Montgomery, TX, USA) was used 

to determine the excretion amount of urinary albumin protein. Initially, the 96-wells plate 

was coated with 100 µl of goat anti-mouse Albumin antibody diluted in 10 ml carbonate-

bicarbonate buffer for an hour at room temperature. After aspiration of the previous 

solution, the plate was washed 4 times with 250 µl washing buffer (50 mM Tris, 0.14 M 

NaCl, 0.05% Tween 20). It was then blocked by adding 200 µl of blocking buffer (Tris 

buffered saline + 1% BSA) overnight at 4⁰C.  

After overnight incubation, standards were prepared according to the kit’s protocol and 

diluted with sample/conjugate buffer. Also, 24-hour urine samples were diluted in the 

ratio 1:1000 with sample/conjugate buffer. The plate was washed as previously described 

before adding 100 µl of standards and urine samples, and incubated at room temperature 

for an hour. The plate was washed once again before adding the secondary antibody. 

HRP-conjugated detection secondary antibody was diluted in the ratio 1:35000 with 

sample/conjugate buffer and a 100 µl were added to each well for one-hour incubation at 

room temperature.  The enzyme substrate TMB Peroxide was prepared by mixing solution 

A with solution B in 1:1 ratio. It was then washed one more time and 100 µl of that 
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mixture was added to each well and kept in the dark at RT for 15 minutes. In order to stop 

the reaction, 100 µl of 2N H2SO4 was added into the wells and the final absorbance was 

determined at 450 nm using a Fusion Packard plate reader. 

3.9. Renal and urinary NEP ELISA assay 

Mouse NEP Duoset kit was purchased from R&D systems (Cat #DY1126, Minneapolis, 

MN, USA). It was used to quantify NEP in 24-hour urine and kidney lysate samples. 

Kidney tissues were homogenized on ice in phosphate buffered saline (PBS) in the 

presence of protease inhibitor (Complete lysis M, Roche diagnostics, Indianapolis, IN, 

USA) and 2.5 mmol/L PMSF. Homogenate samples were then centrifuged at 10,000 x g 

for 10 min at 4°C to remove cellular debris. The supernatants were collected and the total 

protein content was measured for each sample using a BioRad reagent (Hercules, CA, 

USA) and BSA as a standard. The assay started with the 96-wells plate coated with a 100 

µl of goat anti-mouse NEP capture antibody diluted in PBS and incubated overnight at 

room temperature. After incubation, PBS with 0.05% Tween 20 was used to wash the 

plate 3 times by adding 300 µl in each well. It was then blocked for an hour at RT using 

reagent diluent buffer (1% BSA in PBS). Standards and sample dilutions were prepared 

according to the kit’s protocol; diluted in reagent diluent buffer and a 100-µl aliquot was 

added to each well and incubated for 2 hours at RT. The plate was washed 3 times as 

previously described and incubated with biotinylated goat anti-mouse NEP detection 

antibody (100 µl) for 2 hours at RT. Working solutions of Streptavidin-HRP (streptavidin 

conjugated to horseradish-peroxidase) were added in the dark as stated in the kit’s 

protocol and incubated for 20 minutes at RT. The plate was then washed 3 times before 

the substrate solution TMB (1:1 mixture of color reagent A (H2O2) + color reagent B 
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Tetramethylbenzidine) was added and incubated in the dark for 20 minutes at RT. Finally, 

the reaction was stopped using 2N H2SO4 and final absorbance was read at 450 nm in 

Fusion Packard plate reader. 

3.10. Renal and urinary ADAM17 ELISA assay 

The objective of this technique is to quantify ADAM17 in kidney lysate and 24-hour urine 

samples. The Human ADAM17 Duoset kit was purchased from R&D systems (Cat 

#DY930, Minneapolis, MN, USA). Kidney tissues were homogenized on ice in phosphate 

buffered saline (PBS) containing protease inhibitor and PMSF as described above. Total 

protein content was measured for each sample using BSA as a standard and BioRad 

reagent. The mouse anti-human ADAM 17 diluted Capture antibody was used to coat the 

plate overnight at RT. After incubation, the plate was washed 3 times with PBS +0.05% 

Tween 20, and the blocking step was performed for an hour at RT using reagent diluent 

buffer (1% BSA in PBS). Standards and samples dilutions were prepared as stated in the 

kit’s protocol; 100 µl were added and incubated for 2 hours at RT. After incubation, the 

plate was washed as described above and incubated with 100 µl in each well with 

biotinylated goat anti-human ADAM 17 detection antibody for 2 hours at RT. The 

working solution of Streptavidin-HRP and substrate solution TMB (1:1 solution A + 

solution B) were added in the dark according to the kit’s protocol. After 15 minutes of 

adding the substrate solution TMB, the reaction was stopped by 2N H2SO4 and absorbance 

was read twice at 540 nm and 450 nm with a Fusion Packard plate reader, and final 

absorbance was measured by subtracting the two readings.   

3.11. Western blot analysis 

This immunoblotting technique was used to detect the expression of specific proteins in a 
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24-hour urine and kidney lysate samples. Homogenization of kidney tissues was 

performed as previously described (see section 3.9). Loading buffer (Laemmli Sample 

Buffer + 5% β mercaptoethanol, Bio-Rad, Hercules, CA) was used to prepare samples in 

the ratio 1:1, followed by boiling at 96oC for 5 minutes. According to the total protein 

content, thirty micrograms of kidney lysates were loaded onto gels, while three 

micrograms of creatinine of urine samples were added to each well of a 10% sodium 

dodecyl-sulfate polyacrylamide gel (SDS-PAGE gel), followed by electrophoresis for one 

hour to separate the proteins. Using a Bio-Rad transfer apparatus (Hercules, CA), the 

proteins on the gel were transferred to a 0.2-µm polyvinylidene fluoride membrane 

(Millipore, MA, USA), which had been activated by methanol for 5 min. The membrane 

was blocked for an hour using 10% non-fat milk in 10 mM Tris buffer saline with Tween 

20 (TBS-T) at RT to avoid non-specific binding. Primary antibodies dilutions were used 

as follows: goat anti-ACE2 (1:1000, R&D Systems, MN, USA), goat anti-ACE (1:250, 

Santa Cruz, CA, USA), rabbit anti-ADAM17 (1:500, Enzo Life Sciences, NY, USA), goat 

anti-Albumin (1:500, Santa Cruz, CA, USA), and goat anti-NEP (1:500, R&D system, 

MN, USA). The secondary antibodies were used accordingly as follows: HRP-conjugated 

donkey anti-goat (1:2000 R&D Systems, USA) or donkey anti-rabbit (1:20000, Jackson 

ImmunoResearch, USA). Blots were detected using super-signal chemiluminescent 

substrate (Thermo Scientific, IL, USA) and visualized using ChemiDoc imaging system 

(BioRad, Hercules, CA, USA). The intensity protein bands were quantified using Image 

lab 4.0 software (BioRad, USA).  

3.12. Urinary and plasma ACE2 activity  

The fluorogenic peptide substrate 7-Mca-APK (Dnp) is a specific substrate for ACE2 
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(Biomol International, NY, USA). The principle of the assay is based on the active 

protease ACE2 when it cleaves the substrate at a peptide bond between the fluorescence 

Mca and the quencher Dnp to produce fluorescence. After cleavage, the fluorescence 

signal is quantified by using a Fusion
 
Packard plate reader set to read at excitation (λex): 

328 nm and emission (λem): 393 nm. To avoid interference with the endogenous ACE, an 

ACE inhibitor was used (10µM lisinopril) in the measurement of ACE2 activity. Two 

micrograms of creatinine from urine samples were added directly to the 96 wells plate, 

followed by incubation with 100 µl of ACE2 reaction buffer (50 mM Tris, 5 mM ZnCl, 

150 mM NaCl2 and 10 µM lisinopril) and Mca-APK (Dnp) (Enzo Life Sciences, 

Farmingdale, NY). Readings were taken at 0, 1, 2, 3, 4, and 6 hours. Results of urine 

samples were normalized according to urinary creatinine and expressed as nmol/h/mg 

creatinine. 

3.13. Immunohistochemistry 

The purpose of immunofluorescence experiments is to determine the localization and co-

localization of proteins of interest using specific antibodies. Kidney tissues were collected 

from mice after the perfusion process as mention above and kept in paraformaldehyde at 

4⁰C. To obtain paraffin-embedded kidney sections and to stain them with periodic acid 

Schiff (PAS), kidney tissues were sent to AML laboratories (Baltimore, MD, USA). The 

procedure started by deparaffinizing paraffin sections with xylene for 5 min, followed by 

rehydrating using graded concentrations of ethanol (100%, 95%, 70%, 50%, and 30% for 

5 min each). The slides were rinsed in distilled H2O (dipping slides 4-5 times) and then in 

PBS for 10 min. In a water bath (95-99⁰C), slides were placed into a plastic container 

filled with 10mM sodium citrate buffer for 30 min. After that, the slides were transferred 
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to another container filled with 1X PBS for washing twice (5 min for each). Slides were 

then blocked using 3% normal donkey serum and diluted with 1X PBS containing 0.1% 

Triton-X at 4 ̊C for an hour. Primary antibodies were used as follows: goat anti-NEP 

(1:500, R&D system, MN, USA) and rabbit anti-ADAM17 (1:100, Abcam system, MA, 

USA) diluted in 3% normal donkey serum, and incubated overnight at 4⁰C.  

The next day, slides were washed once again 3 times with 1X PBS before incubation with 

the following secondary antibodies: CY3 conjugated donkey anti-goat (1:500, Jackson 

Immunoresearch, PA, USA) and FITC conjugated donkey anti-rabbit (1:100, Jackson 

Immuonoresearch, PA, USA) for 2 hours at 4 ̊C. Slides were allowed to air-dry and then 

were mounted using vectashield-mounting medium (Vector, Burlingame, CA, USA). 

Images were taken using a conventional fluorescence microscope (Optronics, Goleta, CA). 

Images were quantified using MetaMorph software (Molecular Devices, CA, USA).   

3.14. Statistical analysis  

Graph pad prism 5.01 and Image Lab software were used to analyze the data. All the 

statistics are represented as means ± SEM. The comparison of differences between the 

groups was calculated using the Student’s unpaired two-tailed t-test. One-way ANOVA 

was applied for more than two groups, while two-way ANOVA used for multiple 

comparison among two or more groups, followed by Bonferroni’s multiple comparison 

test. Statistically significance of the data was determined as p<0.05.  
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Table 2: Effect of renal artery clip placement on general physiological parameters 

 

Values represented as mean ±SEM. *p<0.001 vs. age-matched WT sham mice were statistically significant.  

 

 

 

 

 

 

 
Parameters  

 
WT (Sham) 

 

 
WT (2K1C) 

 
AT1KO (Sham) 

 
AT1KO (2K1C) 

 
Age (weeks) 

 

 
12-19 

 

 
12-19 

 
12-19 

 
12-19 

 
Time after 

surgery (weeks) 
 

 
2 

 
2 

 
2 

 
2 

 
Body Weight (g) 
 

 
29.6 ± 0.5 

 
29.2 ± 0.4 

 
31.5 ± 0.3 

 
28.6 ± 0.2 

 
Food intake 

(g/day) 
 

 
4.7 ± 0.1 

 
4.6 ± 0.1 

 
5.3 ± 0.2 

 
5.2 ± 0.3 

 
Water intake 

(ml/day) 
 

 
6.6 ± 0.4 

 
8.8 ± 1.2* 

 
9.9 ± 0.7 

 
10.9 ± 0.6 

 
Urine volume 

(ml/day) 
 

 
1.2 ± 0.1 

 
4.1 ± 1.5* 

 
4.5 ± 0.4 

 
4.5 ± 0.5 

 
Creatinine 

concentration 
(mg/ml) 

 

 
0.4±0.03 

 
0.1±0.03* 

 
0.2±0.02 

 
0.1±0.02 
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Figure 1: Effect of 2K1C on body weight 

Body weight measurements in (A) WT sham (white bar) and WT 2K1C (pink bar) (B) 
AT1 KO sham (black bar) and AT1 KO 2K1C (blue bar) (C) WT (white bar) and AT1KO 
(black bar). Repeated measurements two-way ANOVA using a Bonferroni’s posthoc test 
showed no statistical difference in body weights of WT and AT1 KO mice at the baseline 
(0) and after sham or 2K1C surgical procedures during the two weeks of the study period. 
Data are represented as mean ± SEM, (n=5-8). 
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Figure 2: Effect of 2K1C on food intake 

Food intake measurements in (A) WT sham (white bar) and WT 2K1C (pink bar) (B) AT1 
KO sham (black bar) and AT1 KO 2K1C (blue bar). Repeated measurements two-way 
ANOVA using a Bonferroni’s posthoc test showed that there was no statistical difference 
in food intake before (0) and after sham or 2K1C surgical procedures during the two 
weeks of the study period. Data are represented as mean ± SEM, (n=5-8). 
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 Figure 3: Effect of 2K1C on water intake 

 Water intake measurements in (A) WT sham (white bar) and WT 2K1C (pink bar) (B) 
AT1 KO sham (black bar) and AT1 KO 2K1C (blue bar). Repeated measurements two-
way ANOVA using a Bonferroni’s posthoc test showed that WT mice have a significant 
increase in water intake after 2K1C during the two weeks of the study. As well there was 
an increase in AT1 KO mice after 2K1C but was not significant. (C) At the baseline, 
Water intake was significantly increased in AT1 KO mice (**p<0.0001) compared to WT 
mice, while (D) it was decreased in AT1 KO after 2K1C compared to WT but not 
significant. Data are represented as mean ± SEM, (n=5-8). 
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Figure 4: Effect of 2K1C on urine output 

24-hour urine output measurements in (A) WT sham (white bar) and WT 2K1C (pink bar) 
Repeated measurements two-way ANOVA using a Bonferroni’s posthoc test showed that 
daily urine volume was significantly increased in WT mice after 2K1C applied at the first 
week by #p<0.0001, and in the second week by *p<0.05 vs. time matched WT sham mice. 
(B) AT1 KO sham (black bar) and AT1 KO 2K1C (blue bar). Repeated measurements 
two-way ANOVA using a Bonferroni’s posthoc test showed that daily urine volume was 
increased but not significant in AT1 KO mice after 2K1C applied during the two weeks of 
the study period. (C) At the baseline, the 24-hour urine output was significantly increased 
in AT1 KO mice vs. time matched WT mice (**p<0.001). Data are represented as mean ± 
SEM, (n=5-8). 
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Figure 5: Effect of 2K1C on mean arterial blood pressure in WT mice 

Mean arterial blood pressure (MAP) measurements in WT sham (white bar) and WT 

2K1C (pink bar). Repeated measurements two-way ANOVA using a Bonferroni’s 

posthoc test showed a significant increase in WT 2K1C mice when compared to 

baseline (0) and WT sham mice during the two weeks of the study (*p<0.05). Data 

are represented as mean ± SEM, (n=5-8).  
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Figure 6: Effect of 2K1C on mean arterial blood pressure in AT1 KO mice 

(A) MAP measurements in WT (white bar) and AT1 KO mice (black bar). One-way 
ANOVA showed a significant decrease in blood pressure of AT1 KO mice compared to 
WT mice before (0) and after 2K1C applied (*p<0.05). (B) MAP measurements in AT1 
KO sham and AT1 KO 2K1C mice. Repeated measurements two-way ANOVA using a 
Bonferroni’s posthoc test showed no change in the blood pressure level of AT1 KO mice 
after 2K1C during the two weeks study period. Data are represented as mean ± SEM, 
(n=5-8). 
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  Figure 7: Effect of 2K1C on heart rate and locomotor activity 

(A) Heart rate (HR) measurements in WT sham (white bars) and WT 2K1C (pink bars) 
(B) HR measurements in AT1 KO sham (black bars) and AT1 KO 2K1C (blue bars) (C) 
Locomotor activity in WT mice during light cycle (white bars) and dark cycle (black 
bars). Repeated measurements two-way ANOVA using a Bonferroni’s posthoc test 
showed a significant increase in activity during the dark cycles compared to light cycles 
before (0) and after 2K1C. Data are represented as mean ± SEM, (n=5-8). 
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Figure 8: Effect of 2K1C on urinary albumin excretion 

(A) Urinary Albumin excretion was expressed per creatinine in WT sham (white bar), AT1 KO 
sham (black bar), WT 2K1C (pink bar), and AT1 KO 2K1C (blue bar) (B) Urinary Albumin 
excretion per day. One-way ANOVA showed a significant increase of albumin excretion in WT 
2K1C mice after one week (*p<0.001) and two weeks by (#p<0.0001) compared to baseline, 
sham groups, and AT1 KO 2K1C mice. Data are represented as mean ± SEM, (n=5-10). 
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Renal ACE2 protein expression in WT sham (white bar), unclipped kidney (pink bar), and 
clipped kidney (blue bar). Values were normalized by measurements of proportional intensity 
(NEP\β-actin) for each sample. One-way ANOVA showed a significant decreased in renal 
ACE2 expression in clipped kidney of 2K1C mice compared to sham and unclipped kidney of 
2K1C mice (**p<0.001). Data are represented as mean ± SEM, (n=6). 
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Figure 9: Effect of 2K1C on renal ACE2 protein expression in WT mice 
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Figure 10: Effect of 2K1C on renal ACE2 protein expression in AT1 KO mice 
Renal ACE2 protein expression in AT1 KO sham (black bar), unclipped kidney (gray bar), and 
clipped kidney (blue bar). Values were normalized by measurements of proportional intensity 
(NEP\β-actin) for each sample. One-way ANOVA showed a significant decreased in renal 
ACE2 expression in clipped kidney of 2K1C mice compared to sham and unclipped kidney of 
2K1C mice (*p<0.0001). Data are represented as mean ± SEM, (n=6). 
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Renal ACE protein expression in WT sham (white bar), unclipped kidney (pink bar), and 
clipped kidney (blue bar). Values were normalized by measurements of proportional 
intensity (NEP\β-actin) for each sample. One-way ANOVA showed a significant 
decrease in renal ACE expression in clipped kidney of 2K1C mice compared to sham 
and unclipped kidneys of 2K1C mice (*p<0.0001). Data are represented as mean ± SEM, 
(n=6). 

	
  

Figure 11: Effect of 2K1C on renal ACE protein expression 
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Figure 12: Effect of 2K1C on renal NEP protein expression 
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Renal NEP protein expression in WT sham (white bar), unclipped kidney (pink bar), and 
clipped kidney (blue bar). Values were normalized by measurements of proportional 
intensity (NEP\β-actin) for each sample. Renal NEP expression was decreased in clipped 
kidney of 2K1C mice compared to sham and unclipped kidney of 2K1C mice. Data are 
represented as mean ± SEM, (n=6). 
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Renal ADAM17 protein expression in WT sham (white bar), unclipped kidney (pink bar), 
and clipped kidney (blue bar). Values were normalized by measurements of proportional 
intensity (NEP\β-actin) for each sample. One-way ANOVA showed a significant decrease 
in renal ADAM17 expression in clipped kidney of 2K1C mice compared to sham 
(*p<0.0001) and to unclipped kidney of 2K1C mice (by *p<0.001). Data are represented as 
mean ± SEM, (n=6). 

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
   	
  

0.0

0.5

1.0

1.5

2.0

*

ADAM17

B-actin 42kDa

75kDa

SH UK CK

Sham (SH)
Unclipped kidney (UK)
Clipped kidney (CK)

R
en

al
 A

D
AM

17
/β

-a
ct

in

Figure 13: Effect of 2K1C on renal ADAM17 protein expression 
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Figure 14: Effect of 2K1C on urinary ACE2 excretion 

	
  

	
  

	
  

	
  

	
  

	
  

	
   	
  

	
  

Urinary ACE2 excretion in WT baseline (white bar), sham (pink bar), and 2K1C (blue 
bar). Values were normalized by measurements of creatinine values for each sample. 
One-way ANOVA showed a decrease in urinary ACE2 excretion in 2K1C compared to 
baseline and sham groups. Data are represented as mean ± SEM, (n=5). Kidney lysate 
and urine samples from db/db diabetic mice and kidney lysate from WT mice were used 
as positive controls. 
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Urinary ACE2 activity in WT baseline (lined white bar), sham (white bar), and 2K1C (pink 
bar) 2K1C has no effect on the activity of urinary ACE2 enzyme in WT mice. Urine 
sample from db/db diabetic mice was used as positive control. One-way ANOVA showed a 
significant increase of urinary ACE2 activity in db/db compared to all groups at baseline 
and after 2K1C (*p<0.0001). Data are represented as mean ± SEM, (n=5-8). 

	
  

	
  

Figure 15: Effect of 2K1C on urinary ACE2 activity in WT mice	
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Urinary ACE2 activity in AT1 KO baseline (lined white bar), sham (black bar), and 2K1C mice 

(blue bar). 2K1C has no effect on the activity of urinary ACE2 enzyme in AT1 KO mice. Urine 

sample from db/db diabetic mice was used as positive control. One-way ANOVA showed a 

significant increase of urinary ACE2 activity in db/db compared to all groups at baseline and 

after 2K1C (*p<0.0001). Data are represented as mean ± SEM, (n=5-8). 

Figure 16: Effect of 2K1C on urinary ACE2 activity in AT1 KO mice 
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Figure 17: Effect of 2K1C on renal ACE2 activity 

	
  

	
   	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

Renal ACE2 activity in WT (white bars) and AT1 KO (blue bars) for sham, unclipped, and 

clipped kidneys. 2K1C has no effect on renal ACE2 activity in WT and AT1 KO mice. Urine 

sample from db/db diabetic mice was used as positive control. One-way ANOVA showed a 

significant increase of ACE2 activity in diabetic db/db compared to all groups (*p<0.0001). 

Data are represented as mean ± SEM, (n=6). 
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Plasma ACE2 activity in WT sham (white bar) and WT 2K1C (black bar). Kidney lysate 

sample from db/db mice (dots white bar) was used as positive control. Plasma ACE2 activity 

in sham and 2K1C mice was not detectable. One-way ANOVA showed a significant 

increase of renal ACE2 in db/db compared to all groups (*p<0.0001). Data are represented 

as mean ± SEM of group size (n=5-8). 

Figure 18: Effect of 2K1C on plasma ACE2 activity 
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Renal NEP content in WT (white bar) and AT1 KO (black bar). One-way ANOVA showed 

a significant decrease in renal NEP content in clipped kidney of 2K1C in WT and AT1 KO 

mice, compared to sham and unclipped kidney of 2K1C (#p<0.0001). The unclipped kidney 

had a significant increase of renal NEP content compared to sham kidneys (*p<0.05). Data 

are represented as mean ± SEM of group size (n=5-7). 

	
  

Figure 19: Effect of 2K1C on renal NEP content	
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Urinary NEP content was expressed per day (A) and per creatinine content (B) in WT sham (white 

bars), WT 2K1C (blue bars), and db/db diabetic mice (black bars). One-way ANOVA showed an 

increase in urinary NEP content in clipped kidney of 2K1C mice compared to baseline and sham 

groups, but was not significant. However, there was a significant decreased of urinary NEP in the 

diabetic mice compared to all groups (*p<0.0001). (C) Urinary NEP expression in WT mice baseline 

(white bar), sham (pink bar), and 2K1C (blue bar). Values were normalized to creatinine values for 

each sample. One-way ANOVA showed an increase in urinary NEP expression but not significant in 

2K1C compared to baseline and sham groups. Data are represented as mean ± SEM of group size 

(n=5-7). 

 

 

Figure 20: Effect of 2K1C on urinary NEP content and expression 
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Renal ADAM17 content in WT sham (white bar), unclipped kidney (pink bar), and clipped 

kidney (blue bar). One-way ANOVA showed a significant decrease in renal ADAM17 content in 

clipped kidney of 2K1C compared to sham and unclipped kidney of 2K1C mice (*p<0.0001). 

Data are represented as mean ± SEM of group size (n=6). 
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Figure 21: Effect of 2K1C on renal ADAM17 content 
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Representative images of PAS-stained kidney sections from (A) WT sham, (B) WT 

unclipped, and (C) WT clipped kidney of 2K1C mice at 40X magnification. One-way 

ANOVA showed a significant increase in the mesangial matrix expansion of clipped 

kidney of 2K1C (blue bar) compared to sham kidney (black bar) (**p<0.001).  

Figure 22: PAS-stained kidney sections 
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Representative images for ACE2 immunofluorescence staining taken from kidney sections of WT sham, 

unclipped, and clipped kidney of 2K1C mice at 40X magnification. The left panel shows the cortex area, 

while the right panel shows the medulla area. In the medulla, ACE2 shows a significant increase in the 

unclipped kidney (gray bar) compared to sham (black bar) (*p<0.05) while the clipped kidney (blue bar) 

showed a significant decrease of ACE2 compared to unclipped kidney (**p<0.001). In the cortex, ACE2 

is highly stained in the distal and in the brush border of proximal tubules of sham and unclipped kidneys, 

and it is significantly increased in the unclipped compared to sham and clipped kidneys (*p<0.05).  
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Figure 23: Quantification of renal ACE2 immunostaining 
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Representative images for NEP immunofluorescence staining taken from kidney sections of WT 

sham, unclipped, and clipped kidney of 2K1C mice at 40X magnification. The left panel shows the 

cortex area, while the right panel shows the medulla area. In the medulla, renal NEP is highly 

expressed in the unclipped kidney (gray bar) compared to sham one (black bar) (*p<0.05). It is 

extensively stained in Bowman’s capsule of the glomeruli, and in the distal and the brush border of 

proximal tubules. In the cortex, renal NEP staining is decreased in clipped kidney compared to sham 

and unclipped ones.  

Figure 24: Quantification of renal NEP immunostaining  
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Double immunofluorescence staining for NEP (green) and ACE2 (red) obtained from kidney sections 

of WT sham, unclipped, and clipped kidney of 2K1C mice at 40X magnification. Renal NEP and 

ACE2 were mainly co-localized in the distal and brush border of the proximal tubules. NEP signals 

were intensely stained in the renal capsule of the glomeruli. 

 

 

Figure 25: Co-localization of renal NEP and ACE2 immunostaining 
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Representative images for ADAM17 immunofluorescence staining taken from kidney sections of WT 

sham, unclipped, and clipped kidney of 2K1C mice at 40X magnification. The left panel shows the 

cortex area, while the right panel shows the medulla area. In the cortex, renal ADAM17 is highly 

expressed in the unclipped kidney compared to sham and clipped kidney, specifically in the glomerulus 

and the brush border of proximal tubules. However in the medulla, renal ADAM17 staining is 

significantly increased in clipped kidney compared to sham and unclipped ones (*p<0.05). 	
  

Figure 26: Quantification of renal ADAM17 immunostaining  
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Double immunofluorescence staining for NEP (red) and ADAM17 (green) obtained from kidney 

sections of WT sham, unclipped, and clipped kidney of 2K1C mice at 40X magnification. Renal NEP 

and ADAM17 were mainly co-localized in the distal and brush border of the proximal tubules. NEP 

signals were intensely stained in the renal capsule of the glomeruli, while ADAM17 signals were 

stained in the glomerulus area. 

 

 

Figure 27: Co-localization of renal NEP and ADAM17 immunostaining 
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4. RESULTS 

4.1. Effect of renal artery clipping (2K1C) on general physiological parameters  

Male Wild Type (WT) and AT1AR Knockout (AT1KO) mice were implanted with radio-

telemetry and after one week of recovery, renovascular hypertension was induced in 

AT1KO and WT mice by placing renal clips in the left renal artery. After one week 

recovery, general physiological parameters were measured for 2 weeks. 

Table (2) shows the general physiological parameters, which were measured on 

alternating days for all groups of mice. 

A) Food intake and body weight: 2K1C had no effect on total body weight (Figure 1) 

or food intake (Figure 2) in neither the WT nor the AT1KO mice during the study 

time period.  

B) Water intake:  In WT mice, 2K1C significantly increased water intake compared to 

age-matched WT sham-operated mice (Figure 3A and table 2). However, in 

AT1KO, there was no difference in water intake between AT1KO 2K1C and 

AT1KO sham-operated mice (Figure 3B). At the baseline, when no surgical 

procedures were applied, we observed a significant increase in water intake of 

AT1KO mice compared to WT mice (**p<0.0001, Figure 3C), while after 2K1C, 

water intake was decreased in AT1KO mice compared to WT but was not 

statistically significant (Figure 3D). In addition, water intake of sham-operated 

groups showed no difference compared to the baseline groups.  

C) Urine output: Figure 4, panel (A) represents the daily urine output of WT mice. It 

shows that urine output significantly increased one week after induction of 2K1C 

(#p<0.0001, table 2) and persisted during the second week of 2K1C (*p<0.05, table 

2) compared to baseline and sham-operated groups. However, in AT1KO mice, 
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2K1C increased urine output, but was not statistically significant (Figure 4B). The 

daily urine volumes were significantly higher in AT1KO mice compared with age-

matched WT mice (Figure 4C, **p<0.001).  

D) Cardiovascular parameters and locomotor activity: Radio-telemetry was used to 

measure 24h (mean arterial blood pressure, heart rate, locomotor activity) every 

other day during the two weeks of the study. We observed a significant increase in 

MAP after the unilateral renal artery (clipping) during the two weeks in WT 2K1C 

compared to age-matched WT sham-operated mice (Figure 5, *p<0.05). As 

expected, MAP was significantly decreased in AT1KO mice compared with WT 

mice before (0) and even after induction of 2K1C renovascular hypertension 

(Figure 6A, *p<0.05). Interestingly, in AT1KO mice, no change in MAP was 

observed after 2K1C compared with controls (AT1KO sham-operated) (Figure 

6B). In addition, there was no statistical difference in MAP between the light and 

dark cycles in the 2K1C mice. In Figure 7, heart rate measurements showed no 

statistically difference between sham and 2K1C of WT (Figure 7A) and AT1KO 

(Figure 7B) during the two weeks of the study period. However, the locomotor 

activity in WT was significantly increased during the dark cycle when compared to 

the light one (figure 7C) at the baseline (0) and after the weeks of the 2K1C.  

4.2. Evaluation of renal function in 2K1C mice  

The 24-hour urine samples were collected to determine an estimate of the renal function, 

albumin excretion, creatinine excretion, and total protein. 

A) Urinary Albumin excretion: Figure 8A shows the urinary albumin excretion, 

corrected per unit of creatinine, increased from the first day of the unilateral renal 
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artery clipping (2K1C) throughout the study period. After the first week, the urinary 

albumin excretion level was significantly increased in 2K1C mice (*p<0.001), and 

was increased even more at the end of the study period in the second week 

(#p<0.0001) when compared with the baseline and sham-operated animals. Panel B 

in the figure shows the albumin excretion rate expressed per day. The results are 

consistent with findings obtained using albumin creatinine ratio. As expected, 

AT1KO mice showed no difference in albumin excretion after 2K1C was applied 

during the whole study period. Also, there was no statistical difference in urinary 

albumin excretion in sham-operated mice for both WT and AT1KO mice.  

B) Urinary creatinine excretion: WT 2K1C mice excreted significantly less creatinine 

when compared with age-matched WT sham-operated mice (table 2, *p<0.0001), 

while in AT1KO mice there was no significant difference between sham and 2K1C 

(table 2).  

C) Urinary protein excretion: In agreement with albuminuria results, total urinary 

protein excretion per day in WT mice was significantly higher in 2K1C mice 

compared with their baseline (10.3±2.4 mg/day vs. 6.9±0.6 mg/day) and sham-

operated mice (10.3±2.4 mg/day vs. 5.2±1.9 mg/day).  

4.3. Determination of renal proteins expression in sham and 2K1C mice 

Renal ACE2, NEP, and ADAM 17 protein expressions were quantified by Western blot 

analysis in kidney lysate samples.  

A) Renal ACE2 protein expression: A single band for ACE2 was detected at 

molecular weight ~95 kDa. This result is consistent with the full length of ACE2 

reported by others (Chodavarapu et al., 2013; Somineni et al., 2014). In WT mice, 
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renal ACE2 expression was significantly decreased in the clipped kidneys 

compared to their unclipped and sham kidneys (Figure 9, **p<0.001). In AT1KO 

mice, renal ACE2 was also significantly reduced in the clipped kidneys compared 

to the unclipped and sham kidneys (Figure 10, *p<0.0001).  

B) Renal ACE protein expression: In the kidney, a single band for ACE was seen at 

molecular weight ~195 kDa. In agreement with previous studies (Navar et al., 

1998; Navar et al., 1995), renal ACE expression was significantly decreased in the 

clipped kidney compared to unclipped or sham kidneys (Figure 11, *p<0.0001). 

C) Renal NEP protein expression: In the kidney, a single band for NEP was detected 

at a molecular weight ~96 kDa in clipped, unclipped, and sham-kidneys (Figure 

12). There was a decrease in renal NEP protein expression in clipped kidneys 

compared to sham or unclipped kidneys, however, ANOVA didn’t show statistical 

significance. (Figure 12). 

D) Renal ADAM17 protein expression: In the kidney, a band for ADAM17 was 

detected at a molecular weight ~75 kDa. The clipped kidney of 2K1C showed a 

significant decrease of renal ADAM17 expression compared to unclipped and 

sham kidneys (Figure 13, *p<0.001).  

4.4. Determination of urinary protein expression in sham and 2K1C mice 

In this project, we propose to use urinary ACE2 and NEP as index of intrarenal status. To 

investigate the effect of 2KIC on shedding of renal RAS into urine, Western blot analysis 

was used to determine the urinary protein expression of ACE, ACE2 and NEP in 24-hour 

urine samples collected after 2 weeks of induction of 2K1C renovascular hypertension and 

sham operation. 
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A)  Urinary ACE2 protein expression: Immunoreactive band for urinary ACE2 

expression was seen as a smaller molecular weight ~75 kDa band compared to the 

full length immunoreactive band seen in kidney (Figure 14). Urinary ACE2 was 

decreased in 2K1C mice compared to sham and baseline (Figure 14). 

B)  Urinary NEP protein expression: Urinary NEP expression was detected at 

approximately ~75 kDa, which is smaller in size compare to renal NEP band.  

Urinary NEP protein was increased in 2K1C mice compared to baseline and sham-

operated ones, but it was not statistically significant (Figure 20C).  

4.5. Effect of 2K1C on ACE2 activity  

To investigate the effect of 2K1C on renal and urinary ACE2 shedding, urinary ACE2 

activity was measure in urine and kidney lysate. ACE2 activity was determined using the 

fluorogenic substrate Mca-APK (Dnp) in 2-10 µl urine samples (2-5 µg creatinine) in the 

presence of the ACE inhibitor, lisinopril. 

A) Urinary ACE2 activity: 2K1C had no effect on urinary ACE2 activity in WT mice 

(Figure 15) or AT1KO mice (Figure 16) during the two weeks of the study. Urine samples 

from db/db type 2 diabetic mice were used as positive controls, and as expected showed a 

significant increase in urinary ACE2 activity compared to all groups (*p<0.0001).  

B) Renal ACE2 activity: Thirty-thirty five micrograms (30-35 µg) from kidney lysate 

were added in the presence of the ACE inhibitor, lisinopril. 2K1C had no effect on the 

activity of renal ACE2 in WT and AT1KO, during the two weeks of the study. Urine 

samples from db/db diabetic mice were used as a positive control group, and it showed a 

significant increase of ACE2 activity compared to all groups (Figure 17, *p<0.0001).  
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C) Plasma ACE2 activity: To investigate the impact of 2K1C on circulating ACE2, 

plasma ACE2 activity was measured in plasma samples (1-0 µl). Plasma ACE2 activity 

was not detected in WT and AT1KO regardless of procedures as shown in Figure 18. 

Kidney lysates from db/db diabetic mice were used as a control, and it showed a 

significant increase of renal ACE2 activity compared to all groups (figure 18, *p<0.0001).  

4.6. Quantification of renal and urinary proteins content in sham and 2K1C mice 

A) NEP content: ELISA was used to quantify renal and urinary NEP. The ELISA data 

demonstrate significantly low levels of renal NEP content in the clipped kidney of 

2K1C group in both WT and AT1KO mice compared to the unclipped and sham 

kidneys (Figure 19, #p<0.0001). Moreover, there was a significant increase in renal 

NEP in the WT and AT1KO unclipped kidneys when compared with WT sham 

kidneys (Figure 19, *p<0.05).  

B) However, during the two weeks of the study period, urinary NEP protein excretion 

rate (expressed/day) was increased in WT 2K1C mice compared to baseline and 

sham groups, but it was not statically significant (Figure 20A). Urinary NEP 

protein content showed no significant difference between sham and 2K1C mice 

when normalized to creatinine (Figure 20B). Urine samples from db/db diabetic 

mice were used as a control, showing that urinary NEP content was significantly 

decreased in the diabetic mice compared to baseline, sham-operated, and 2K1C 

(Figure 20, *p<0.0001).  

C) ADAM17 content: Renal ADAM17 contents were measured by ELISA. In WT, 

renal ADAM17 content was significantly decreased in 2K1C clipped kidney 

compared with 2K1C unclipped and sham kidneys (figure 21, *p<0.0001).  
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4.7. Histopathology of sham and 2K1C kidneys  

PAS staining 

To evaluate the renal pathology of clipped, unclipped, and sham (control) kidneys, 

PAS staining was performed. A significant mesangial expansion was observed in 

kidneys of 2K1C, in the clipped and the unclipped one, compared to the sham kidney 

(Figure 22). 

Immunohistochemistry for renal NEP and ADAM17 expression	
  

Immunofluorescence staining was used to determine the localization of ACE2 protein 

expression in kidney sections from sham, unclipped 2K1C, and clipped 2K1C. As 

shown in figure 23, renal ACE2 is located in the brush border of the proximal tubules in 

the sham and unclipped kidneys. Renal ACE2 is significantly decreased in the clipped 

kidney in both the cortex and medulla when compared to the sham and unclipped one. 

In the medulla of the unclipped kidney, renal ACE2 was significantly increased 

compared to the same region of sham or clipped kidneys.  

Renal NEP immunofluorescence staining was observed in all regions of sham, 

unclipped, and clipped kidneys. NEP was mainly expressed in the Bowman’s capsule 

of the glomeruli and in distal and the brush border of the proximal convoluted tubules. 

NEP was highly expressed in sham and unclipped kidneys compared to the clipped one 

(Figure 24, left panel). NEP was also highly expressed in the medulla area in the 

unclipped kidney compared to the sham and clipped one (Figure 24, right panel, 

*p<0.05).  

Figure 26 represents renal ADAM17 immunofluorescence staining, and shows that the 

unclipped kidney has higher staining in comparison to the sham kidney. In the medulla 



	
  
	
  

62	
  

region, ADAM17 staining was observed in the clipped kidney, while no detection of 

ADAM17 staining was found in the sham and unclipped kidney sections (Figure 26, 

right panel).  

Figure 25 represents the double immunofluorescence staining for NEP (green) and 

ACE2 (red) proteins in kidney sections of sham, unclipped, and clipped kidneys, in 

order to determine the co-localization of these proteins. NEP and ACE2 were 

predominantly co-localized in the distal and the brush border of proximal tubules, in 

both kidneys (clipped and unclipped) of 2K1C. NEP was found also in the Bowman’s 

capsule of the glomeruli. Moreover, ADAM17 (green) and NEP (red) proteins were 

mainly co-localized to the distal and the brush border of the proximal tubules in the 

sham kidney as well as in the unclipped one (Figure 27). Furthermore, strong staining 

was found for NEP in the renal capsule of the glomeruli, while ADAM17 staining was 

observed in the glomerulus area (Figure 27).  
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5. DISCUSSION 

In summary, we demonstrate here that 2K1C-induced hypertension is associated with 

decreased renal ACE2 and NEP. Deleting AT1AR in mice is associated with decreased 

MAP and attenuation of microalbuminuria in 2K1C model of renovascular hypertension, 

suggesting a critical role for AT1AR in hypertension and renal physiology. The functional 

significance of arterial and renovascular hypertension on renal and urinary ACE2 has not 

yet been fully elucidated. However, in this study, deleting AT1AR didn’t protect against 

the decreased renal ACE2 protein expression and activity in the clipped kidney. 

According to the Kidney International Supplements, diabetes mellitus and hypertension 

remain the two main causes of CKD, and eventually lead to ESRD (Kidney International 

Supplements, 2013). Previous study stated that the shedding of renal ACE2 in the urine in 

type 2 diabetic db\db mouse model could act as a potential early biomarker for diabetic 

nephropathy (Chodavarapu et al., 2013). In addition, Salem et al. conducted a similar 

study, using the diabetic Akita mouse model, where they suggested that increased urinary 

ACE2 might be associated with increase renal ACE2 shedding through renal ADAM17 

activation (Salem et al., 2014). However, studies on the activation of intrarenal RAS 

components in hypertensive conditions such as the 2K1C, a model of Ang II-dependent 

hypertension (Navar & Harrison-Bernard, 2000), and their involvement in renoprotection 

are limited.  

In the current study, we tested the hypotheses that in the 2K1C renovascular hypertension 

mice model, there is an increase of renal ACE2 shedding into the urine, which may 

contribute to the progression of CKD. In the 2K1C model, the reduction in the renal 

perfusion pressure caused by unilateral renal artery stenosis led to an increase of renin 
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synthesis, which in turn increased the circulation of the vasoconstrictor Ang II (Kobori et 

al., 2007). The G protein-coupled receptor AT1R is the predominant receptor responsible 

for the mediation of most of the Ang II biological functions (Oliverio & Coffman, 2000). 

The action of Ang II is antagonized via the formation of the vasodilator Ang (1-7), which 

is mainly produced by ACE2 or NEP (Rice et al., 2004). Binding of Ang (1-7) with either 

AT2R (Santos et al., 2003) or mas receptor (Batlle et al., 2012) could lead to a decline of 

proliferation, fibrosis, hypertrophy, and the vasoconstriction effect (Bian et al., 2013). 

Treatment of the hypertensive transgenic Ren2 rats with AT1R blocker (ARB) increases 

renal ACE2 and NEP expression, suggesting a contribution of renal RAS components to 

renoprotective effects (Whaley-Connell et al., 2006). Regulation of blood pressure and 

cardiovascular function via ACE2 has been reported recently in the protection from 

neurogenic hypertension, and has been proposed as a new target in the treatment of 

hypertension and cardiovascular disease (Feng et al., 2010). A recent study demonstrated 

the protective role of Ang (1-7) in the attenuation of systemic hypertension and renal 

injury in diabetic mice model, as well as normalizing renal ACE2 and mas receptor 

expression (Shi et al., 2014). Due to the physiological antagonistic effects of mas and 

AT1R, researchers have been focusing on the important balance of these receptors as a 

therapeutic target in vascular diseases (Kostenis et al., 2005). 

Our first aim was to investigate the role of AT1AR in blood pressure mediation in the 

2K1C and its impact on renal and urinary ACE2 and NEP protein. Several studies have 

focused on the most active peptide of the intrarenal RAS, Ang II, due to its critical role in 

hypertension and renal injury (Belova, 2000). The elevation of blood pressure is mainly 

mediated by the vasoconstrictor Ang II when it binds to its receptor, AT1R (de et al., 
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2000). In our study, we found a significant decrease in blood pressure in AT1A KO mice at 

baseline, which is in agreement with previous studies (Gurley et al., 2011; Cervenka et al., 

2002; Grobe et al., 2015b; Oliverio et al., 2000). As expected, WT mice showed a robust 

increase in MAP after placement of the unilateral renal clip when compared to sham-

operated mice throughout the two weeks of the study. In contrast, we observed no change 

in MAP of AT1AKO mice after 2K1C during day and night. The MAP remained 

significantly low in AT1AKO after 2K1C. These data provide strong evidence in support 

of the notion that the AT1R plays a role in the pathogenesis of renovascular hypertension, 

which corresponds with a study that reported the predominate role of AT1AR in the 2K1C 

model (Cervenka et al., 2008). To further clarify the role of RAS in 2K1C, Salguero eat al. 

demonstrated that renovascular hypertension in WT mice was significantly reduced by 

treatment with ACE inhibitor, and ARB (Salguero et al., 2008) In addition, Crowley and 

coworkers stated in one study that AT1R has a direct effect on Ang II resulting in high 

blood pressure and that inhibition of renal AT1R would be more effective in the protection 

from cardiac hypertrophy compared with inhibition of the AT1R in the heart (Crowley et 

al., 2006).  

Our second finding of this study showed that renal ACE2 protein expression was 

significantly decreased in the clipped kidney of 2K1C in both WT and AT1AR KO mice, 

compared with the unclipped and sham-operated kidneys (Figure 9&10). In contrast, there 

was a significant increase of renal ACE2 staining in the unclipped kidney compared to the 

sham and clipped ones. This discrepancy between the expression of renal ACE2 using 

western blot and the immunostaining of kidney sections could be due to the difference of 

antibodies used, in which a goat anti-ACE2 from R&D was used for Western analysis, 
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while a rabbit anti-ACE2 from Sigma was used for the immunofluorescence data. 

However, immunostaining for ACE2 in the medulla demonstrated a significant decrease in 

the clipped kidney in WT mice, which agrees with the western blot analysis. Using db/db 

mice, we demonstrated a significant increase in urinary ACE2 activity (Figure 15,16 

&17), which agrees with previous studies that diabetic nephropathy was associated with 

an increase in urinary ACE2 (Chodavarapu et al., 2013; Somineni et al., 2014). One of our 

original hypotheses that, renovascular hypertension will also increase the shedding of 

ACE2 and contribute to the onset of albuminuria. However, there was no alteration of 

renal and urinary ACE2 activity in 2K1C –induced renovascular hypertension. 

In mouse model of diabetes nephropathy, there was evidence of increased renal ACE2 and 

increased shedding of ACE2 into urine (Batlle et al., 2012). However, data demonstrated 

protective role of AT1AR on albuminuria and against 2K1C –induced hypertension. These 

effects are independent of ACE2, since we found that AT1AR has no effect on the 

expression of either renal or urinary ACE2 protein when compared with WT mice. 

Similarly, in AT1AKO mice, 2K1C has no effect on renal and urinary ACE2 activity.  

One of our previous reports stated that plasma ACE2 activity was undetectable in db/db 

diabetic mice (Chodavarapu et al., 2013); similarly, we found plasma ACE2 undetectable 

in 2K1C and sham-operated mice. Thus, the down-regulation of urinary ACE2 protein 

excretion that we observed in 2K1C mice may reflect the renal ACE2 status. These 

findings of decreased renal and urinary ACE2 contradict both our hypothesis and previous 

findings in diabetic animals, but it is in agreement with a study on subtotal 

nephrectomized (STNx) rats (an acute kidney injury model), stating that renal ACE2 

activity is reduced in acute kidney injury, which contributes to the development of CKD 
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(Velkoska et al., 2010). We could conclude from these results that presence of high levels 

of urinary ACE2 in diabetic models and low levels in 2K1C and STNx models may 

indicate the specificity of ACE2 as a biomarker for the prognosis of renal injury in 

diabetes.  

ADAM17 is a member of a disintegrin and metalloprotease family (White, 2003) and it is 

involved in the ectodomain shedding of several transmembrane proteins (Black et al., 

1997). The ectodomain shedding of ACE2 has been shown in various cell lines such as 

human proximal 323 tubular HK-2 cells (Salem et al., 2014), human hepatoma cell lines 

Huh1 and Huh7 (Ford et al., 2013; Salem et al., 2014), and mouse proximal tubular 

primary cells (Xiao et al., 2014). One of our recent studies using COS7 cell line 

demonstrated the crucial role of ADAM17 in the ectodomain shedding of renal ACE2 

(Grobe et al., 2015a). In addition, renal ADAM17 was highly expressed in Akita and 

db/db diabetic mice models, and mediated the increase shedding of renal ACE2 (Salem et 

al., 2014; Somineni et al., 2014). Corresponding to the low levels of protein expression of 

ACE2 in 2K1C, we also found a significant decrease of renal ADAM17 content and 

protein expression in the clipped kidney of 2K1C mice.	
  

NEP has been reported in several studies to be involved in the degradation of various 

active peptides such as Ang I, bradykinin, natriuretic peptides (Judge et al., 2014), and 

beta amyloid (Park et al., 2013). Previous studies showed a decrease in renal and urinary 

NEP in the db/db diabetic mice, which was normalized by treatment with rosiglitazone 

(Chodavarapu et al., 2012; Chodavarapu et al., 2011). In this study, we also investigate 

whether NEP is modulated by 2K1C. The data demonstrated a significant decrease of 

renal NEP protein expression in the clipped kidney of 2K1C compared to the unclipped 
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and sham-operated kidneys. Grobe et al. showed downregulation of renal protease prolyl 

carboxypeptidase (PRCP) expression and activity, another enzyme that forms Ang (1-7) 

from Ang II, in the clipped kidney of 2K1C compared to the unclipped and control 

kidneys (Grobe et al., 2015b). Since 2K1C is a high renin model, therefore we anticipated 

less production of Ang 1-7 via NEP and this could lead to kidney injury. However, the 

unclipped kidney of 2K1C showed a significant increase of renal NEP content in both 

mice WT and AT1A KO compared to the sham, and this could be a feedback mechanism 

from high level of Ang II.  

Our data showed a decrease in urinary NEP in db/db mice, which agrees with previous 

study. However, 2K1C did not decrease urinary NEP shedding compared to their sham 

controls (Figure 20). Again, this highlights the difference in kidney injury between 

diabetes and 2K1C-induced hypertension. Since in the cancer field, researchers have 

proposed NEP, also known as CD10, as a distinguished biomarker for various malignant 

tumors such as prostate cancer (Ho et al., 2013), renal neoplasm (Avery et al., 2000), and 

malignant melanoma (Bilalovic et al., 2004). Therefore, in this study we could use NEP as 

a biomarker for kidney injury in hypertensive conditions.  

Until now, urinary albumin excretion and estimated glomerular filtration rate (eGFR) were 

the gold standard indicators used diagnostically for the assessment of CKD (Currie et al., 

2014). However, there are some cases presented with renal dysfunction but without 

microalbuminuria, indicating the insensitivity of these biomarkers, especially in the early 

stages of renal disease (Lee, 2014). Therefore, there is a need for an early sensitive 

biomarker in the detection of CKD.  
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Our third aim of the present study was to evaluate the urinary albumin excretion in this 

model as an indicator for kidney dysfunction, as well as to determine if AT1AR has a role 

in the development of CKD in hypertensive subjects. We found that urinary albumin 

excretion per day in WT mice is increased after the unilateral renal clip was placed from 

the first day of the 2K1C surgery. This increase in urinary albumin excretion was 

significant after one week (Figure 8, *p<0.001) when compared with the baseline and 

sham-operated groups. At the end of the study (after two weeks), the 2K1C mice excreted 

more urinary albumin than the first week of the surgery, which indicates albuminuria is 

increased with the progression of age (Figure 8, #p<0.0001). However, 2K1C did not 

change the urinary albumin excretion in the AT1AKO mice during the whole study period. 

This data determines the pivotal role of activation AT1R in the development of 

albuminuria in the renovascular hypertension model. 
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6. CONCLUSION  
Our results support the notion that AT1AR plays a crucial role in the 2K1C model of 

renovascular hypertension, and deleting of this receptor attenuates albuminuria in this 

model.  Moreover, our findings suggest a possible link between ADAM17 and ACE2 

shedding in 2K1C mice. Since previous studies demonstrated the significance shedding of 

renal ACE2 into the urine of diabetic mice models, while no effect was observed in renal 

ACE2 shedding in renovascular hypertensive model, which suggests the specificity of 

ACE2 as a biomarker for diabetic nephropathy. Downregulation of renal ACE2 and NEP in 

the clipped kidney of 2K1C may deteriorate kidney injury and renoprotective effects via 

impaired formation of Ang (1-7) from Ang II and Ang I respectively.  
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