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ABSTRACT 

Levkulich, Nathan Charles. M.S.M.S.E. Department of Mechanical and Materials 
Engineering, Wright State University, 2017. An Experimental Investigation of 
Residual Stress Development during Selective Laser Melting of Ti-6Al-4V. 
 
 

Selective laser melting (SLM) is an additive manufacturing (AM) process 

that gives rise to large thermal gradients and rapid cooling rates that lead to the 

development of undesirable residual stress and distortion. In this work, a number 

of different techniques (i.e., x-ray-diffraction, hole-drilling, layer-removal, and 

contour) were utilized to establish the effect of process parameters on residual-

stress development during SLM of Ti-6Al-4V. The measurements indicated that 

higher laser power, slower scan speed, smaller stripe width, reduced substrate 

overhang, and reduced build plan area each reduce the level of residual stress. 

In addition, the correlation between microstructure, crystallographic texture, and 

residual stress were investigated using electron backscatter diffraction (EBSD) 

and backscatter electron (BSE) imaging. The experimental results from this work 

provide a quantitative foundation for future simulations of residual stress 

evolution during SLM and provide an informed understanding of residual stress 

development that can be used for process planning and improvement. 
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1. INTRODUCTION 

Additive manufacturing (AM), a process that has been evolving for decades, 

is a layer by layer addition process that fabricates 3D components and is 

controlled by computer software. AM enables a reduction in post processing 

waste, geometric friendliness, and a reduction in sub-assemblies. Typically, 

conventional manufacturing components involve rolling, forging, and extrusions 

that often require several assemblies and post processing. Thus, the cost of 

conventional manufactured components increases with complexity. Because of 

this, the AM process has gained interest as a viable cost effective option for 

customized biomedical components (e.g. tissues, implants, scaffold structures), 

and for reducing the buy to fly ratio and lead time in aerospace components [1-3].  

Specifically, titanium and nickel-based alloys are commonly used materials 

for high temperature aerospace applications. One of the most commonly used 

aerospace metals is Ti-6Al-4V because it offers a high strength to weight ratio 

and good corrosion properties. Ti64 is a two phase alloy at room temperature 

and has microstructure and mechanical properties that are reliant on prior 

thermal history. Because of the popularity of conventionally manufactured Ti64 

and the need for lighter and stronger aerospace components, work has been 

undertaken to evaluate the potential of AM Ti64 for future aerospace 

applications. Previous work in AM of Ti64 has primarily focused on evaluating the 

effect of process parameters on porosity, microstructure evolution, and
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mechanical properties [1, 4-9]. 

Selective laser melting (SLM), a commonly used metal AM process, has the 

capability to fabricate fully dense metal components with high resolution and 

internal passages. The SLM process employs a laser beam as its heat source 

and fuses powder particles together one layer thickness at a time in order to 

fabricate 3D components. One disadvantage of the SLM process is that large 

thermal gradients and fast cooling rates occur during the fabrication process and 

typically lead to the development of residual stress. In AM, residual stress is 

undesirable and often leads to component distortion and thermal cracking that 

ultimately results in build failure. However, limited work exists on assessing the 

evolution of residual stress during SLM. Therefore, this thesis is an experimental 

investigation to establish methods to control, reduce, and correctly measure 

residual stress in the SLM of Ti-6Al-4V. 

1.2 Additive Manufacturing Processes  

AM technologies offer an exciting outlook for a variety of new and innovative 

applications that until now have been unachievable. In this regard, AM is a low 

energy process that greatly reduces material waste by up to 90% (compared to 

conventional manufacturing) and eliminates the need for multiple fabrication 

steps. Because fewer fabrication steps are utilized, the component can reach the 

desired market more quickly [10]. Unlike traditional manufacturing, post 

processing is often not required and thus, AM fabricated components can be 

lighter and still maintain their functionality specifications [10]. Furthermore, the 

AM process enables almost unlimited customization for complex and novel 
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geometric components. However, several shortcomings of the AM process 

include process control, dimensional tolerance, and surface finish [10]. 

Throughout the past decade, the number of new and innovated AM 

processes has been increasing. However, only 7 AM processes are currently 

acknowledged by the International Organization for Standardization. Out of the 

seven accepted AM processes, material extrusion, vat polymerization, and 

material jetting are three processes that are utilized for polymer AM, while the 

two most popular metal AM processes are directed energy deposition (DED) and 

powder bed fusion (PBF). Both DED and PBF processes can fabricate fully 

dense metal components, yet their operating process parameter ranges are 

drastically different resulting in several advantages and disadvantages (Figure 1) 

[11]. Nevertheless, the methodology employed for each build fabrication is 

generally the same. 

 

Figure 1: Different process parameter operating ranges of several different DED and PBF processes [11] 

Typically, metal AM build fabrication is initiated by the component being 

modeled in a 3D software package. Next, the model is converted into a 
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STereoLithography (.STL) file containing readable 2D slices. The STL file is input 

into the AM system and process parameters that dictate build quality and 

fabrication rate are selected. The build process is mostly automated and rarely 

requires supervision. Once component fabrication is complete, the component is 

removed from the substrate and additional post processing may be required. 

Furthermore, the AM build fabrication process is shown in Figure 2. 

 

Figure 2: Build methodology utilized for each AM fabrication [12] 

1.2.1 Directed Energy Deposition  

As described in [13], DED metal processes are commonly used to 

manufacture large volume AM components with decent resolution and surface 

roughness (Figure 3). During DED fabrication, material in the form of powder or 

wire is fed into the processes melt pool, hence forming solidified material tracks. 

Each track is deposited adjacent to the previous deposited track and typical track 

thickness is greater than 100 microns. In order to produce fully dense layers and 

components, the melt pool employed during fabrication is 0.25-1 mm in diameter 

and penetrates 0.1-0.5 mm in depth. For each added layer, the scan direction is 

rotated to avoid preferential grain growth and increase anisotropy in the material. 

A visible afterglow occurs throughout the duration of the build process because 

of the large energy density inputted [14]. This allows the AM build to act as a 
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heat sink, hence reducing thermal gradients and the development of residual 

stress [14]. Additionally, larger layer thickness and melt pool size enables DED to 

have a faster fabrication rate than PBF even though scan speeds are much 

slower [14]. However, DED fabricates components with inferior surface 

roughness and dimensional accuracy. 

Several examples of DED processes are Optomec’s Laser Engineered Net 

Shaping (LENS), Direct Metal Deposition (DMD), and NASA Langley’s Electron 

Beam Free Form Fabrication (EBF3). Powder fed DED processes such as 

Optomec’s LENS, are advantageous for restoring damaged components [15]. As 

described in [13], material can be fed into the melt pool by three different 

methods: 4 nozzle feeding, coaxial feeding, or single feeding. Each feeding 

technique has several advantages and disadvantages. In addition, powder 

excess is a common occurrence during powder fed DED and because of this, 

steps must be taken to recycle the unused powder.   

Wire DED processes, such as the NASA’s EBF3, are effective in fabricating 

large simple geometries with low porosity [13]. By utilizing a wire as feed 

material, excess material waste is typically eliminated. Nevertheless, fabrication 

of complex geometric components with low porosity remains a continual 

challenge for this process. 



 

6 

 

 

Figure 3: Overview of wire (left) and powder (right) DED processes [15] 

1.2.2 Powder Bed Fusion 

Unlike DED processes, the PBF process consists of a heat source, powder 

bed, and raking mechanism. Before the heat source is employed, the powder 

bed is raised one layer thickness, and powder is spread uniformly over the build 

region. Typical layer thickness for PBF is less than 100 microns which enables 

PBF to have better surface finish and better dimensional accuracy than DED. 

During PBF fabrication, a rotational scan strategy is implemented to increase 

material anisotropy and help reduce directional residual stress. Two of the most 

popular PBF processes are electron beam melting (EBM) and selective laser 

melting (SLM) (Figure 4).  

As described in [14], EBM processes such as ARCAM, employ an electron 

beam as a heat source and use a two-step process for build fabrication. Powder 

is first spread one layer thickness and a low energy density scan is used to pre-

sinter the entire powder bed surface. A second high energy density scan is 

utilized to melt the sintered powder and form fully dense layers. EBM typically 

has a faster production rate than PBF because electron beams can operate at 

higher scan speeds and higher powers than laser beams. This permits larger 

layer thicknesses and larger powder sizes to be utilized. Furthermore, the build 
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fabrication occurs in a vacuum environment causing contamination, such as, 

oxidation to be largely avoided. Lastly, EBM’s unique ability to maintain a 

preheated powder bed greatly reduces thermal gradients and residual stresses 

throughout the build process [16]. 

Perhaps, the most dimensionally accurate metal AM process is SLM 

because a layer thickness of less than 50 microns is typically utilized. Similar to 

EBM, powder is spread over the build region one layer thickness at a time where 

several lenses and mirrors focus the heat source onto the powder bed. Next, the 

laser beam is employed fusing each freshly spread powder layer to the 

underlying material. Unlike EBM, the PBF process typically transpires in a gas 

atomized environment. Additionally, one of the largest drawbacks of SLM, is that 

the process induces large thermal gradients and fast cooling rates throughout the 

build process. This causes the evolution of residual stress to occur in large 

magnitudes. 

 

Figure 4: Overview of PBF process [17] 
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1.2.3 AM Process Parameters and Process Mapping 

Each metal AM build is controlled by process parameters that are selected 

before each build and dictate density, material properties, and residual stress. 

Some important AM process parameters previously defined in literature are laser 

power, laser spot size, scan speed, layer thickness, powder shape, powder size, 

hatch spacing, dwell time, preheat temperatures, and scan strategy [1]. Energy 

density defined in Equation 1, takes into account several important process 

parameters and influences the shape and size of the processes’ melt pool. In (1), 

P is the laser power, v is the scan speed, h is the hatch spacing, and t is the 

layer thickness. High energy densities induce a large melt pool area, while low 

energy densities will produce a small melt pool area. Additionally, the correct 

tailoring of energy density is a necessity and can lead to lack-of-fusion or 

keyholing defects if done incorrectly (Figure 5).  

Keyholing defects often occur when the depth of the melt pool is greater than 

twice the width. Keyholing takes place at high energy densities and causes 

material to evaporate at the bottom of the melt pool creating circular porosity 

throughout the build. By contrast, lack of fusion porosity occurs when an 

insufficient amount of energy density is input into the added layer. Thus, the melt 

pool does not penetrate deep enough to fuse the added layer to the underlying 

material, which causes the formation of elongated porosity. Each defect 

negatively affects the integrity of the AM build by inducing undesirable porosity. 

Therefore, process parameters must be tailored correctly in order to achieve fully 

dense components. 
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𝐸 =

𝑃

𝑣 ∗ ℎ ∗ 𝑡
 

(1) 

 

 

Figure 5: Key holing (left) and lack of fusion (right) AM defects [18] 

In order to examine AM build quality (e.g. porosity, microstructure, and 

texture), standard metallography must be performed. Therefore, extensive 

amounts of time and cost must be undertaken to gain insight about the overall 

build quality. However, one modeling method developed to reduce the need for 

large experimental investigations is process mapping. Process mapping 

developed by Bueth et al. at Carnegie Melon, eliminates the need for time 

consuming and costly experimental investigation by modeling the effect of 

important process parameter (e.g. laser power, scan speed, material feed rate, 

component geometry, and temperature gradients) on melt pool geometry, cooling 

rates, residual stress, and microstructure evolution [19-24]. This modeling 

approach has gained popularity because it can be applied to a wide variety of 

materials and AM processes. In reference to the present work, some notable 

process mapping attempts have been done by Vasinonta et al [19], Bontha et al. 

[20], and Gockel et al [23]. The importance of each of these authors’ work will be 

discussed in later sections. In addition, Ti64, IN625, and IN718 are several 

materials that have been applied to the process mapping approach [23, 11, 24]. 
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1.3 Ti-6Al-4V 

1.3.1 Overview 

Ti64 is a two phase alloy at room temperature and is currently one of the 

most widely used titanium alloys. Ti64 exhibits excellent toughness, ductility, and 

corrosion properties that make it ideal for applications such as aircraft turbine 

disks, surgical implants, and pressure vessels [25]. At room temperature Ti64 

consists of a hexagonal closed-packed α phase and a body center cubic β phase 

that are dependent on prior thermal history. The 6 atomic % of aluminum 

stabilizes the α phase, while the 4 atomic % of vanadium stabilizes the β phase. 

Compared to commercially pure titanium, the addition of aluminum and vanadium 

increases the β transus of the material to around 980°C. When Ti64 is heated 

above 980°C, the only phase present is the β phase, however, the α phase 

begins to nucleate and grows as the material is cooled below the β transus. The 

shape and size of the α phase is dictated by thermal history of the material. 

The processing of titanium alloy ingots generally occurs in four stages [26]. 

In stage I, the material is homogenized in the β phase. Secondly, during stage II, 

the material is forged and rolled at temperatures above or below the β transus. 

During Stage III, a solution heat treatment is utilized to enable the formation of 

the desired microstructure. Lastly, an annealing heat treatment is sometimes 

implemented to remove residual stresses in the material. During the processing 

of Ti64, three α phase microstructure outcomes can occur: 1) lamellar 2) bimodal 

or duplex, and 3) fully equiaxed (Figure 7).  
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1.3.2 Ti-6Al-4V Microstructure 

As described in [26-27], the lamellar/platelet microstructure occurs when the 

material is homogenized forged, rolled, and heat treated above the β transus. As 

the material is cooled below the β transus, the lamellar microstructure nucleates 

and grows within the previously formed β grains. Alpha laths can either form 

parallel to one another in colonies or cross each other in a basketweave 

configuration known as Widmanstätten microstructure. The size and orientation 

of the alpha grains is determined by the speed of the cooling rate. Faster cooling 

rates produce finer α lath, while slower cooling rates will produce thicker α lath. 

Furthermore, typical methods to cool Ti64 after being heat treated above the β 

transus include furnace cooling, air cooling, and water quenching. 

Furnace cooling Ti-6Al-4V exhibits the slowest cooling rate of the three 

methods and produces a colony α lath structure, in which the alpha phase 

nucleates on the grain boundaries of each β phase [27]. The α-laths begin to 

grow towards the interior of each β grain during the duration of the cooling 

procedure [27]. As the α-laths grow, they replace the prior β grains, hence 

producing a fully laminar microstructure. Air cooling consists of the heat treated 

material being removed from its heat treatment source and slowly being cooled 

by the ambient air. This procedure has a higher cooling rate than furnace cooling, 

and has been documented to produce Widmanstätten microstructure with small 

amounts of β phase still prevalent [27]. Lastly, the material can be cooled by 

water quenching. In this process the material being heat treated is removed from 

the heat source and is directly placed in water. Out of the three cooling 
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processes water quenching has the highest cooling rate and produces a 

martensitic microstructure in Ti64 [27]. 

 

Figure 6: Processing procedures used to obtain bimodal microstructure [26] 

The bimodal and fully equiax microstructures occur when the material is 

homogenized above the β transus. The deformation and solution treatment 

process occurs below the β transus. The bimodal microstructure contains two 

forms of α phase: equiaxed and platelet particles. The platelet particles form 

during stage II, and are replaced by the equiaxed alpha particle during stage III 

(Figure 6). Slower cooling rates enable the equiax particles to grow and reduces 

the volume fraction of platelet particles. In order to obtain a fully equiaxed 

microstructure, the cooling rate must be reduced further allowing a longer 

duration for equiaxed particles to grow. 
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Figure 7: Micrographs of Ti64 α phase microstructures: lamellar (a), bimodal (b), and fully equiaxed (c) [26] 

1.3.3 Crystallographic Texture 

The development of crystallographic texture, commonly found in 

polycrystalline materials, represents the preferred orientation of the grains. In 

particular, titanium alloys are well known to develop crystallographic texture 

because of the low symmetry present in HCP crystal structures [28]. In this 

regard, crystallographic texture can be introduce into titanium alloys by the final 

deformation process of the material in Stage II, recrystallization of the material 

during Stage III, grain growth, or phase transformation [28,29]. During each of 

these scenarios, the grains in the material become strained and in order to 

maintain equilibrium, they plastically deform through several slip systems that 

alter the orientation of the grains. Thus, this process causes crystal lattice 

rotation to occur. Moreover, the understanding of texture in titanium alloys is 

critical because it can be used to predict prior thermo-mechanical history and can 

a) b) 

c) 
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have an effect on mechanical properties, such as fatigue and tensile strength [30, 

31]. 

Specifically, alpha/beta titanium alloys such as Ti64, can have several alpha 

crystallographic orientations (variants) within each β grain. The orientations are 

dictated by the classical burger relationship in which {110} β II (0001) α and ⟨11̅1̅⟩ β 

II ⟨21̅1̅0⟩ α. Therefore, because there is a total of six {110} planes each with two 

⟨111⟩ directions, the total number of alpha variations that can occur within a β 

grain is 12 [29, 32]. If all 12 variants occurred, the texture is considered to be 

weak, however, in most cases only several variants occur within each β grain 

[29]. In addition, one common way to measure material crystallographic texture is 

by utilizing electron backscatter diffraction (EBSD) with pole figures (PF) and 

inverse pole figure maps (IPF maps). 

1.3.4 Selective Laser Melting of Ti-6Al-4V 

Within the last decade, SLM has shown promise in being able to fabricate 

fully dense titanium alloys [33, 34]. In SLM of α+β titanium alloys such as Ti64, 

the microstructure consists of columnar β grains that follow the direction of the 

heat flow and grow parallel to the deposit’s thickness. In addition, each beta grain 

contains a fine α platelet martensitic structure due to the rapid cooling of the 

process. Prior investigations in SLM Ti64 mechanical properties has shown that 

SLM components tensile strength greatly depends on the pull direction and 

porosity of the component [35, 36]. Also, the addition of heat treatments after 

each build fabrication has improved ductility in SLM Ti64 components [36]. 

Furthermore, fatigue properties of SLM Ti64 components are generally worse 
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when compared to conventional made Ti64 components [37]. Nevertheless, heat 

treatments have been utilized to increase the fatigue strength of the SLM 

component by reducing porosity and internal residual stress [37]. Finally, the 

development of large residual stress in SLM Ti64 has been documented in 

several instances [14, 37]. 

1.4 Stress Overview  

1.4.1 Applied Stress 

In mechanics, the total stress imposed on a component is the summation of 

applied and residual stress (Equation 2). Applied stress occurs when an object is 

subject to an external force and can be generated by applying a transverse, 

torsional, or axial load. Moreover, transverse loads lead to bending and 

defection, axial loads lead to stretching or contraction, and torsional loads lead to 

twisting of the material being loaded. Each of these loading scenarios results in 

the development of compression, tensile, or shear applied stress and can lead to 

elastic or plastic deformation. In most instances, if a stress free component is not 

plastically deformed during the loading process, the total stress will return to zero 

once the applied load is removed. However, if the applied load gives rise to 

nonuniform plastic deformation, residual stress will develop, thus affecting the 

unloaded stress state of the component. 

One common way to describe stresses is by utilizing the stress tensor 

(Equation 3). In a 3D example such as a cube, applied stress can occur on each 

surface in the x, y, and z direction. Therefore, a total of 9 stress elements must 

be utilized to fully describe the stress at any given point in the cube. Furthermore, 
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by using simple stress transformation equations, the stress tensor denoted in 

Equation 3 can be converted to principal stresses in Equation 4. In Equation 4, all 

shear stresses in each plane are equal to zero and thus, only three stress 

directions remain. 

 σ 𝑇𝑜𝑡𝑎𝑙 =  σ𝐴𝑝𝑝𝑙𝑖𝑒𝑑 +  σ𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙  (2) 

 

 
σ𝑖𝑗 = [

σ𝑥𝑥 σ𝑥𝑦 σ𝑥𝑧

σ𝑦𝑥 σ𝑦𝑦 σ𝑦𝑧

σ𝑧𝑥 σ𝑧𝑦 σ𝑧𝑧

] 
(3) 

 

 
σ𝑝 = [

σ11 0 0
0 σ22 0
0 0 σ33

] 

 

(4) 

1.4.2 Residual Stress 

Similar to applied stress, residual stress can be compressive or tensile and 

range in magnitude from Pa to GPa. Residual stress is formally defined as the 

presence of stress in a material when no loading or force is applied from the 

surrounding environment [39]. One common way to characterize residual stress 

is by the length scale in which it extends [40]. Type I macro residual stress 

occurs over large amounts of grains or stretches across the entire component. 

Type II micro residual stress occurs because of anisotropic texture or different 

grain orientations which often transpires in polycrystalline material. Finally, Type 

III micro residual stress occurs on the smallest scale because of crystalline 

defects (e.g. interstitials and vacancies). 
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The development of residual stress can occur through mechanical or thermal 

changes and can influence a component’s fatigue life, distortion, corrosive 

resistance, and brittle fracture [39, 40]. In this regard, three possible origins of 

residual stress are material phase transformation, non-uniform shrinkage during 

cooling, and a difference in plastic flow caused by applied stress [39]. All three of 

these residual stress origins may occur in material processing procedures such 

as material deformation, quenching, and machining [39, 41]. However, in some 

instances heat treatments can often be utilized to help reduce the residual stress 

induced in the component. Furthermore, residual stress in a component must 

always maintain force and moment equilibrium because no external loads are 

being applied.  

Residual stress can often negatively affect the mechanical properties of a 

component. However, there are several instances where it enables better 

component performance. For aerospace applications in which aircraft 

components are serviced and utilized for long durations, residual stress must be 

controlled in order to reduce the probability of premature failure. One process 

commonly used on aerospace components to increase fatigue and fretting 

fatigue strength by inducing residual stress is shot peening [41]. During shot 

peening, high velocity balls are shot at a component inducing compressive 

surface residual stress. Compressive surface residual stress helps negate 

surface crack propagation and thus, prolongs the fatigue life of the component. 

Concrete is another example that can utilize residual stress to benefit material 

properties [42]. Without the addition of compressive residual stress, concrete has 
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a relatively low tensile strength. However, if concrete is prestressed by 

compressive stress, it gains the ability to withstand larger applied tensile 

stresses.   

On the other hand, quenching a material after heat treatment leads to fast 

cooling rates that cause different regions of the component to contract at different 

rates. This non-uniform shrinkage negatively affects the integrity of the 

component by creating the development of unwanted residual stress and 

intergranular thermal cracking. Similar to the quenching operation, the AM 

process typically generates undesirable residual stress and distortion that may 

force the AM component to delaminate off the build plate and lose its 

dimensional accuracy. Each time a build failure occurs, time and material is 

wasted and hence, the cost of the component is increased. Therefore, it is 

essential that residual stress is monitored during and after each AM fabrication. 

1.5 Residual Stress Measurement Techniques 

Current residual stress measurement techniques are classified into three 

broad categories: non-destructive, semi-destructive, and destructive (Figure 8). 

In each of these techniques, residual stress cannot be directly measured 

because it is an extrinsic property. Therefore, intrinsic properties such as strain, 

deflection, and forces must be measured first in order to calculate residual stress 

using elastic equations. Non-destructive methods (e.g. x-ray diffraction, Raman 

spectroscopy, and neutron diffraction) often measure an intrinsic parameter that 

is related to stress without removing the component’s material. The set up and 

preparation time needed for non-destructive measurements is usually miniscule 
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when compared to destructive techniques, thus decreasing the cost of the 

measurements [39]. Non-destructive measurements are typically implemented to 

evaluate fatigue related residual stress imposed on a structural component that is 

still in service. This helps reduce the occurrence of unexpected structural failure 

in an operational component.  

 
Figure 8: Three types of residual stress characterization: nondestructive, semi destructive, and destructive 

[39] 

Semi destructive and destructive techniques measure residual stress 

through material removal and release of residual stress [39]. Notable semi-

destructive methods consist of hole drilling and ring-coring, while the contour and 

layer removal methods are well known destructive techniques. Each of these 

methods measures the relaxation of residual stress by drilling or sectioning. 

During material removal, the residual stress must redistribute to re-establish 

equilibrium, and a device is used to measure the deformation or strain. The 

measured parameter enables the original stress state of the removed material to 

be calculated. 
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1.5.1 X-Ray Diffraction 

X-ray diffraction (XRD) is a non-destructive technique that utilizes x-rays 

similar to a strain gauge to measure the change in a material’s crystal lattice. In 

order to measure strain, x-rays are output by the radiation source, perpendicular 

to the sample’s surface and are diffracted at various 2θ (Bragg) angles that follow 

Bragg’s equation (Equation 5). In (5), n is an integer, 𝜆 is the wavelength of the x-

rays, d is the lattice spacing of the atoms, and 𝜃 is the angle in which the x-rays 

contact the surface of the crystal. The diffracted x-rays are collected by the 

system’s detectors, and each time the Bragg equation is satisfied for a material, 

a 2θ peak ensues. While XRD has good spatial resolution, the incoming X-rays 

have limited penetration depth [39].  

 𝑛𝜆 = 2𝑑𝑠𝑖𝑛𝜃 (5) 

For each XRD residual stress measurement, a 2θ angle greater than 120° is 

typically desired because it allows for higher precision and accuracy [14]. In the 

stress relieved condition, a material contains an unstressed lattice spacing of d0 

and a corresponding Bragg angle of 2θo. When residual stress development 

occurs, the lattice spacing of the material is forced to contract or expand and 

thus, the lattice spacing deviates to d1. Therefore, the resulting Bragg angle is 

changed to 2θ1. Moreover, this shift in 2θ peaks enables lattice strain to be 

calculated through Equation 6. Therefore, by utilizing known material constants 

and assuming linear elastic distortion, the residual stress can be calculated. 

However, one limitation of this method is it relies on the correct d0 value which is 

often hard to correctly obtain [42]. 
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𝜀𝐿 =

𝑑1 −  𝑑0

𝑑0
 

(6) 

The sin2Ψ technique is commonly used and reduces the importance of d0 for 

residual stress measurements [43]. During the sin2Ψ technique, multiple Ψ angle 

tilts are utilized and the average lattice spacing at each tilt is averaged into dΨ. 

The d for each Ψ is plotted vs the corresponding sin2Ψ value and the slope of the 

data is utilized to calculate residual stress.The sin2Ψ technique calculates in-

plane surface residual stress. In addition, the slope of the d vs sin2Ψ graph 

indicates if out of plane strain exists. If the measured d vs sin2Ψ slope is linear, 

then no out of plane strain exists. However, if the slope of the d vs sin2Ψ is 

parabolic, then out of plane strain exists. Additionally, XRD has been utilized to 

measure residual stress in metal AM components on several occasions [14, 44, 

45]. In all instances, residual stress was measured only on the surface of the 

component.  

1.5.2 Hole Drilling 

Hole-drilling is a widely used semi destructive residual stress technique and 

is capable of measuring Type I residual stress [46]. The hole drilling technique is 

relatively quick and cost effective compared to other relaxation techniques and 

can be applied to a wide variety of materials. One advantage of the hole drilling 

technique is it can measure residual stress both at the surface and at various 

depths. Nevertheless, disadvantages of the hole drilling technique include: the 

material is assumed to be isotropic and the stress gradient in the hole region is 

assumed to be small [47]. Several notable attempts of applying the hole drilling 

technique to measure residual stress in AM were undertaken in [48, 49]. 
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Figure 9: Schematic of strain gauge positioning in reference to a hole drilling location [50] 

For hole drilling residual stress measurements, strain gauges are typically 

fastened on the surface several mm radially away from the hole drilling location 

at 0°, 45°, 90° or 0°, -135°, -270° (Figure 9). The technique drills a small diameter 

drill bit (of 1.8 mm average diameter to a depth of approximately 2 mm) into the 

component [51]. The drill bit is drilled into the component at speeds and a force 

that does not induce additional residual stress during the process. As the 

stressed material is removed by the drill bit, the local stresses redistribute around 

the drilled region and strain gauges at the surface are utilized to measure the 

strain change. This method enables the initial in-plane stress imposed on the 

surface to be calculated. A tensile surface residual stress leads to results seen in 

Figure 10, while a compressive surface residual stress would have the opposite 

effect [51].  

 

Figure 10: The outcome of the hole drilling procedure removing tensile residual stress on the surface [51] 
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1.5.3 Contour Method 

The contour method is a newer residual stress measurement technique that 

was developed in the 2000’s. In this method, a component is sectioned and the 

residual stress perpendicular to the cut surface is relaxed. As the surface is 

relaxed, deformations in the plane of the cut surface enable the original residual 

stress state to be calculated [52]. Compressive stresses will cause the sectioned 

surface to expand outwards, while tensile stresses will have the opposite effect 

on the sectioned surface, similar to Figure 11. Therefore, the stress needed to 

return the sectioned surface to a non-deformed state represents the original 

residual stress of the component. 

   

Figure 11: An EDM sectioned component showing regions with tensile and compressive residual stress and 
their appropriate distortion when sectioned. The contour method measures these distortions and FEA 

simulations are used to determine the initial stress on the cut region. [52] 

As described in [52], sectioning of the component must be done carefully in 

order to reduce experimental error. Ideally, the most desired cut includes a small 

width and produces no thermal stress during the sectioning operation. Therefore, 

an EDM is traditionally used for the sectioning. The specimen is typical clamped 

during the sectioning procedure to increase contour accuracy and surface 

deflection is measured by a laser line profilometer or coordinate measuring 

machine. The surface deviations are collected and transformed into residual 
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stress via FEA simulations that generate 2D cross-sectional-residual-stress 

maps.  

Generally, traditional relaxation methods such as hole drilling and sectioning, 

measure residual stress by strain gauges that are a set distance away from the 

relaxation procedure [52]. Thus, a complex equation must be used to correct for 

this distance. One advantage of the contour measurement is that residual stress 

is measured directly on the cut surface. This method can also be implemented on 

a wide variety of geometric components. However, spatial resolution is limited, 

and residual stress near the edges of the sectioned plane are assumed to be 

inaccurate. Work in [14, 53] are two instances in which the contour method was 

utilized to measure residual stress in AM. 

1.5.4 Layer Removal Technique 

Similar to the contour method, the layer removal method is another 

destructive technique that is useful in measuring residual stresses throughout the 

thickness of the component. In this method, strain gauges are positioned on the 

bottom of the sample and small thickness slices are sectioned from the top 

surface parallel to the strain gauges (Figure 12) [54]. As slices are removed, the 

component’s forces and moments become unbalanced, hence the stresses 

redistribute to maintain equilibrium. The strain gauges measure the average 

redistribution of stress after each removed layer and the measurements are 

assumed to occur elastically. Typically the cutting mechanism used to section 

each slice should produce low thermal stress. An EDM and chemical etching are 

generally used for this sectioning method. After each slice the strain gauges are 
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connected to a readout box and the change in voltage is measured. The voltage 

is converted to strain and by utilizing a series of simple equations, the stress can 

be calculated. Thus far, the layer removal method has not been utilized to 

measure residual stress in AM. 

 

Figure 12: Mechanics behind the layer removal method [54] 

1.6 Development of Residual Stress and Distortion in AM 

The development of residual stress and distortion in AM is primarily 

influenced by several unavoidable thermal and mechanical mechanisms. Each 

time material is added, large thermal energy must be used to fuse the added 

layer to the solidified material below. The large temperature difference between 

the top and bottom of the AM deposit and low heat transmission between each 

layer enables a large thermal gradient to occur [49]. Also, as the added material 

cools quickly, it solidifies and contracts non-uniformly. Furthermore, during 

cooling, the added material is confined by the underlying material. Thus, large 

thermal gradients, rapid cooling rates, and confinement of the underlying material 

give rise to the development of residual stress and distortion in AM. However, 

despite the negative impact of residual stress on AM components, limited work 
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exists on establishing a methodology to control and reduce it during the process. 

As described next, some notable attempts to control the development of residual 

stress in AM include: tailoring energy density variables (e.g. laser power, scan 

speed, layer thickness, and hatch spacing), preheating temperatures, and scan 

strategies. 

1.6.1 The Effect of Energy Density on Residual Stress 

Controlling melt pool size is one method that has been investigated to 

reduce cooling rates and thermal gradients throughout the AM process. In this 

approach, process parameters associated with the energy density equation are 

often tailored to alter the shape and size of the processes melt pool. Through this 

alteration, the cooling rates and thermal gradients of the melt pool can be 

lowered. However, because fully dense AM components are generally needed, 

the tailoring of only one process parameter is not a sufficient method to change 

melt pool geometry. 

Perhaps two of the most widely examined process parameters in the energy 

density equation are laser power and scan speed. In this regard, work 

undertaken by [19], evaluated the effect of cooling rates and thermal gradients on 

residual stress in the AM process. The author in [19] suggested that slower scan 

speeds, higher laser powers, and higher preheat temperatures lowered thermal 

gradients and reduced the magnitude of residual stress. Gockel et al. in 2013 

established a process mapping model that predicted cooling rates and 

microstructure of various melt pool sizes for AM Ti-6Al-4V [55]. Gockel’s work 
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revealed that melt pool size was increased by an increase in laser power and a 

decrease in scan speed. 

One notable experimental investigation that further validated these modelling 

attempts was done by Vrancken et al [14] in 2016. In Vrancken’s work, a design 

of experiments (DoE) was developed to evaluate the effect of laser power, scan 

speed, and layer thickness combinations on top surface residual stress in SLM. 

The author used XRD to measure the top surface residual stress on each deposit 

and also implemented contour measurements on several builds. The author’s 

conclusions were that higher laser power, slower scan speeds, and larger layer 

thickness all reduced top surface residual stress. In addition, a regression 

equation of residual stress and distortion was developed from the authors work. 

1.6.2 The Effect of Preheating on Residual Stress 

Applying a preheat temperature to the substrate and build material is another 

notable technique that has been studied in an attempt to reduce the development 

of residual stress in AM [19, 44, 56, 14]. EBM processes such as ARCAM, utilize 

this methodology by pre-sintering the entire powder bed surface before each 

added layer is fused to underlying layers. This process enables the powder bed 

to maintain a preheated temperature throughout the entire build process and has 

been reported to minimize the magnitude of residual stress [16]. In processes 

such as SLM, preheating is typically not applied. Nevertheless, Mercelis et al., 

and Vrancken et al. assessed the effect of preheat temperature on residual 

stress and distortion in SLM [44, 57]. 
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In work undertaken by Vrancken, four different preheat temperatures were 

evaluated [57]. At the highest preheat temperature (400°C) the residual stress 

was reduced by 50 percent. Similar conclusions were found by Mercelis et al., 

where a 200°C preheat temperature was utilized and residual stress was 

reduced [44]. However, it was noted by Vrancken that preheating at higher 

temperatures could lead to differences in the microstructure evolution of the 

deposit and could affect mechanical properties. Yet, it is agreed upon by several 

authors that preheating decreases thermal gradients and therefore reduces 

residual stress and distortion in AM processes. 

1.6.3 The Effect of Scan Strategy 

One additional approach investigated to reduce residual stress is utilizing 

different scan strategies for each added layer. A scan strategy is the pattern in 

which the laser beam rasters over the material being melted. Perhaps the most 

common scan strategies are island scanning, stripe scanning, and spiral 

scanning (Figure 13). Prior work has suggested that scan strategies can 

influence residual stress and distortion throughout the AM process [57, 58, 59, 

60]. In reference to residual stress, [14, 38, 58] have proposed that residual 

stress parallel to the track direction of the energy source is much greater than 

residual stress measured perpendicular to the track direction. In addition, it has 

also been suggested that a decrease in scan vector length can help reduce 

residual stress development [14].  
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Figure 13: Common AM scan strategies: checkerboard (a), stripes (b), and spiral (c) [59] 

1.6.4 Other Investigated Process Parameters 

One process parameter that is not often studied to control residual stress is 

inter-layer dwell time. In work undertaken by Denlinger et al, several different 

dwell times (0, 20, and 40 seconds) were utilized to evaluate their effect on 

distortion and residual stress [48]. In the author’s work it was suggested that 

shorter dwell times reduce cooling time and thermal gradients between each 

added layer. Hole drilling measurements enabled the author to conclude that 

decreasing dwell time decreased residual stress and distortion in a titanium alloy. 

Finally, AM build height and AM deposit position are two process parameters 

that were assessed by work done by Casavola et al [49]. In their work, residual 

stress was measured via hole drilling at several different build heights and 

deposit locations. It was concluded through these measurements that residual 

stress decreased as a function of build height. Additionally, the deposit that was 

positioned in the center of the substrate developed the lowest residual stress. 

1.6.5 Issues with Previous Residual Stress Work 

Previous work has revealed that process parameters control and reduce the 

magnitude of residual stress during AM processes. Unfortunately, much of this 

work has focused on utilizing simulations to model the build-up of residual stress 
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and distortion during the AM process, while experimental work was limited. 

Moreover, out of the limited experimental residual stress work in AM, typically 

only one residual stress technique is utilized. Because each technique has its 

own advantages and disadvantages, it is beneficial to apply different methods to 

assess the validity of each. 

Specifically, further experimental residual stress work in AM is currently 

needed to further establish the effect of process parameters on residual stress. In 

this regard, the effect of substrate size, shape, confinement, and condition (e.g. 

stress free, as-received, or machined) on the development of residual stress 

must also be established. Moreover, residual stress control is particularly 

important in processes such as SLM that often produce components with large 

residual stress. Hence, the work in this thesis is an attempt to fill the void of prior 

experimental residual stress work in SLM of Ti64.



31 

 

2. THESIS CONTRIBUTIONS 

The contributions of the present work are fourfold and include: 

1) Experimentally established the effect of various substrate conditions on 

residual stress evolution of SLM deposits 

2) Experimentally established the effect of SLM process parameters on 

residual stress in SLM deposits utilizing an initially stress free substrate  

3) Evaluated (2) by utilizing several different residual stress techniques (e.g. 

XRD, hole drilling, contour method, and layer removal method) 

4) An initial investigation of the effect of microstructure and texture evolution 

on residual stress development during SLM 
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3. PROJECT METHODOLOGY 

3.1 Project Material 

The as-received Ti-6Al-4V powder was gas atomized and had a starting 

composition of 90% Ti, 6% Al, and 4% V in wt. %. The average diameter of the 

powder was measured by Photoshop utilizing scanning electron microscope 

(SEM) images. The average diameter obtained through Photoshop 

measurements was 22.5 microns. The shape of the particles was spherical 

containing very few attached satellites and for each build fabrication fresh 

powder was used (Figure 14). 

 
 

Figure 14: SEM images of the Ti64 SLM powder utilized in this work 

The substrate material was cut via waterjet from a rolled Ti64 sheet. Similar 

to the powder, the Ti64 substrate had a starting composition of 90% Ti, 6% Al, 

and 4% V in wt. %. For all AM fabrications, two different size substrates were 

utilized (76.2 mm x 76.2 mm and 25.4 mm x 25.4 mm). Each substrate had a 

thickness of 7.93 mm and the starting microstructure was primarily equiaxed 

alpha (Figure 15). The area fraction of the alpha particles was ~ 95% and was 
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measured via point counting. Furthermore, the residual stress on the surface of 

the as-received substrate was highly compressive (513 MPa) and therefore, 

stress relieving procedures were utilized. 

 

Figure 15: As-received microstructure of the substrate material (left) and the two substrates geometries 
utilized for experiments (right) 

3.2 Substrate Heat Treatments 

The goal of the heat treatment process was to produce a usable, stress-free 

substrate that would enable the evolution of residual stress throughout the 

deposit to be solely influenced by the SLM process and not by the prior stress 

state of the substrate. Several different heat treatments were conducted 

including: an alpha/beta furnace stress relief, an alpha/beta vacuum stress relief, 

and a beta vacuum stress relief. XRD measurements were utilized to assess the 

substrate’s surface residual stress before and after each heat treatment. In 

addition, because the substrates were cut using an abrasive water jet, small 

excess tabs outside the substrate geometry were used to keep track of the rolling 

and transverse direction. After each heat treatment, these small excess tabs 

were cut and prepared by standard metallography for SEM imaging. The 

microstructure of the tab was utilized to further confirm the temperature and 

cooling rates of each heat treatment. 
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The alpha/beta furnace stress relief procedure was done in a controlled box 

furnace. For this procedure, each substrate was positioned in the middle of two 

large steel plates in an attempt to minimize distortion and oxidation on the 

substrate’s surface. A thermocouple was positioned in the steel plate to monitor 

the heat treatment temperatures. Each substrate was given a heat treatment at 

954°C for 1 hour and was furnace cooled. The resulting substrates were slightly 

oxidized, non-distorted, and stress free. 

The alpha/beta vacuum stress relief and beta vacuum stress relief occurred 

in a controlled vacuum furnace. Before the heat treatments, each substrate was 

individually wrapped in tantalum foil, which reduced contamination on the surface 

of the substrate. An in-house jig was made to hold each substrate upright during 

the heat treatment. For each alpha/beta vacuum stress relief substrate, the 

vacuum was ramped up at 82°C/hour, held at 927°C for 1 hour, and was furnace 

cooled at 55°C/hour. The beta vacuum stress relief treatment was done using 

similar procedures, however, for this treatment the hold temperature was taken 

above the beta transus of the material. In addition, both vacuum stress relief 

treatments produced substrates that were non-oxidized, non-distorted, and stress 

free.  

The microstructure for each heat treatment process is shown in Figure 16. 

Figure 17 shows the final substrate surface finish after each heat treatment. 

Furthermore, XRD principal residual stress measurements on each substrate 

condition is shown in Figure 18. 
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Figure 16: Substrate microstructure after each heat treatment iteration 

 

Figure 17: Substrate surface finish after each heat treatment procedure 

 

Figure 18: XRD measured residual stress on the surface of each substrate 

3.3 SLM System  

A SLM testbed developed by Universal Technologies Cooperation (UTC) 

located in Kettering, Ohio, was utilized for the fabrication of each deposit (Figure 

19). The system used has the unique capability to fabricate a wide variety of 

materials with fully customized process parameters. The fabrication process for 
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each build occurred in an argon filled chamber that had several working stations. 

An IPG 500 W laser beam with a 50 µm spot size and focal length of 152 mm 

was focused onto the test bed by a series of lenses and mirrors.  

 

Figure 19: UTC's in house built SLM system 

The SLM test bed contained two actuators that controlled the movement of 

the build platter region and powder bay. Specifically, the build platter and powder 

bay both had dimensions of 102 mm x 102 mm and were designed for small 

substrate builds. A third actuator was used to control the movement of the raking 

mechanism utilized to spread powder. A custom made software was used to 

control each of the SLM test bed’s movements and the process parameters for 

build fabrication. In addition, several in-process monitoring sensors evaluated the 

quality of each spread and melted layer. These sensors included: high speed 

cameras, infrared sensors, and a laser line profilometer. 

Nominal process parameters for Ti64 were obtained through several initial 

designs of experiments (DoE). In each DoE, the laser power, scan speed, layer 

thickness, and hatch spacing were varied. Based on these trials the 

optimal/nominal process parameters were selected (Table 1). 
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Table 1: Nominal process parameters utilized for Ti64 builds 

3.4 Design of Experiments 

As previously mentioned, the goal of the experiments designed in this work 

was to assess the effect of process parameters on residual stress in SLM 

utilizing several different residual stress measurement techniques. The process 

parameters evaluated were substrate condition, stripe width, laser power, build 

height, scan speed, build plan area, and substrate overhang. Simple build 

geometries such as cubes and rectangular prisms were chosen to enable a 

simple foundation for future simulation attempts. All substrates during the build 

process were unconstrained and thus, free to deform throughout the fabrication 

process.  

In sections 3.4.1 and 3.4.2 all four prepared substrate conditions were 

utilized for the experiments. In sections 3.4.2 - 3.4.5 AM deposits were built in the 

center of their respective substrates. Trials described in sections 3.4.3 – 3.4.5 

only utilized alpha/beta vacuum stress relieved substrates. The coordinate 

system used for each AM build and substrate is shown in Figure 20. Finally, the 

track direction of the laser beam for the first layer of each deposit discussed in 

sections 3.4.2 – 3.4.5 started in the rolling direction and for each added layer the 

stripe scan was rotated 67 degrees clockwise.  
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Figure 20: Substrate and AM build reference system 

3.4.1 Laser Glaze Experiments 

Laser glazes were utilized in this work to assess the effect of stripe width, 

laser power, and substrate condition on residual stress. For each laser glaze 

fabrication, the laser beam is turned on and rastered over the substrate material 

in one direction without adding any material. Therefore, the build height of each 

laser glaze was 0 mm. For each laser glaze fabrication, the track direction of the 

stripe scan strategy was parallel to the rolling direction of the substrate. All four 

substrate conditions (i.e. as-received, alpha/beta furnace stress relieved, 

alpha/beta vacuum stress relieved, and beta stress relieved) were used for the 

laser glaze experiments. 

On each substrate condition, four 19.05 mm x 19.05 mm square laser glazed 

regions were fabricated onto 76.2 mm x 76.2 mm x 7.93 mm substrates (Figure 

21). Each laser glazed region was positioned 19.05 mm away from neighboring 

glazes and from the edges of the substrate. After each laser glaze was complete, 

the fabrication was paused for 5 minutes and then the laser beam proceeded to 

the next laser glaze. This allowed temperatures of the substrate to cool down 

before the next glaze was scanned. In reference to Figure 21, the top left laser 

Top Surface 
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glaze was fabricated with the nominal parameters shown in Table 1. The 

additional three laser glazed regions contained 1 to 2 set variations in process 

parameters. The laser glazes were fabricated in sequential order denoted by the 

red numbers in Figure 21. Furthermore, only XRD measurements were 

performed on the laser glaze builds. Specifically, XRD was performed on the top 

surface of each laser glaze and then the substrate was rotated 180° and XRD 

measurements were completed on the bottom of the substrate in the exact x and 

y location. The XRD scan locations are shown in in Figure 22. 

 

Figure 21: Overview of laser glaze fabrication with process parameters utilized 

 

 
Figure 22: XRD scan strategy used for residual stress measurements completed on the laser glaze builds 
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3.4.2 Deposits Fabricated on Different Substrate Conditions Experiments 

The effect of substrate condition on residual stress was further explored by 

the fabrication of 25.4 x 25.4 x 1.6 deposits onto all substrate conditions (Figure 

23). All AM deposits were fabricated with nominal parameters. Similar to the 

laser glaze fabrications, only XRD was utilized to measure residual stress on the 

top surface of the AM deposit and bottom surface of the substrate. The XRD box 

strategy implemented on the top surface of the AM deposit and on the bottom of 

the substrate surface is shown in Figure 24. 

 

Figure 23: As-received substrate with 25.4 mm x 25.4 mm x 1.6 mm SLM deposit 

 
 

Figure 24: XRD scan strategy used for the 1.6 mm deposits 
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3.4.3 Effect of Build Plan Area on Residual Stress 

In order to assess the effect of build plan area on residual stress, three 

builds were fabricated on 76.2 mm x 76.2 mm x 7.93 mm substrates. The 

dimensions of the three deposits were 25.4 mm x 25.4 mm, 50.8 mm x 50.8 mm, 

and 76.2 mm x 76.2 mm all with a build thickness of 1.6 mm (Figure 25). 

Therefore, the 25.4 mm x 25.4 mm x 1.6 mm deposit had a substrate overhang 

of 50.4 mm on all sides, the 50.8 mm x 50.8 mm x 1.6 mm deposit had a 25.4 

mm overhang on all sides, and the 76.2 mm x 76.2 mm x 1.6 mm deposit had no 

substrate overhang. In addition, each deposit was fabricated using nominal 

parameters. 

Similar to the first two experiments, XRD was utilized to measure the residual 

stress. The same XRD scan strategy shown in Figure 24 was used for the 25.4 

mm x 25.4 mm x 1.6 mm AM deposit. However, the XRD box scan on the top 

surface of the AM deposit and the bottom surface of the substrate increased to 

20 mm x 20 mm for the 50.8 mm x 50.8 mm x 1.6 mm deposit and 30 mm x 30 

mm for the 76.2 mm x 76.2 mm x 1.6 mm deposit.  

 

Figure 25: 50.8 mm x 50.8 mm x 1.6 mm and 76.2 mm x 76.2 mm x 1.6 mm deposits  
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3.4.4 Effect of Substrate Overhang vs. No Overhang Experiment 

A series of deposits were fabricated in this work to evaluate the effect of 

substrate overhang and build height on residual stress. In this regard, the 

deposits utilized were 25.4 mm x 25.4 mm with a build height of 1.6 mm, 12.7 

mm, and 25.4 mm. These three deposit heights were fabricated on both 76.2 mm 

x 76.2 mm x 7.93 mm and 25.4 mm x 25.4 mm x 7.93 mm substrates. Therefore, 

each AM deposit had a substrate overhang of 50.8 mm on the larger substrate, 

while AM builds fabricated on the smaller substrates had no overhang. For the 

substrates with no overhang a square brace was made for the fabrications that 

allowed the substrate to freely distort, but kept it from moving horizontally (Figure 

26). In addition, one extra 25.4 mm x 25.4 mm x 25.4 mm and 25.4 mm x 25.4 

mm x 14.7 mm deposit was fabricated on a 25.4 mm x 25.4 mm x 7.93 mm 

substrate.  

Four residual stress measurement techniques were applied on the builds in 

this section. First, XRD scans were utilized on the top surface of the AM deposit 

and bottom surface of the substrate using the same XRD scheme shown in 

Figure 24. Next, hole drilling measurements were performed on the top surface 

of the deposit and bottom surface of the substrate of the three deposits that were 

fabricated on the 76.2 mm x 76.2 mm x 7.93 mm substrates. The contour method 

was employed on the largest AM deposit fabricated on the 76.2 mm x 76.2 mm x 

7.93 mm substrate (after hole drilling measurements) and on the largest deposit 

fabricated on the 25.4 mm x 25.4 mm x 7.93 mm substrate. Last, the layer 

removal method was applied to a 25.4 mm x 25.4 mm x 14.7 mm and 25.4 mm x 
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25.4 mm x 25.4 mm deposit that were fabricated onto the 25.4 mm x 25.4 mm x 

7.93 mm substrate.  

 

Figure 26: AM deposit with no substrate overhang 

3.4.5 Effect of Scan Speed on Residual Stress 

The final experiment in this work assessed the effect of scan speed on 

residual stress. In this regard, three 25.4 mm x 25.4 mm x 12.7 mm deposits 

were fabricated on 76.2 mm x 76.2 mm x 7.93 mm substrates (Figure 27). The 

three scan speeds used for fabrications were 400 mm/s, 700 mm/s, and 1000 

mm/s. XRD was utilized on the top surface of each AM deposit and bottom 

surface of the substrate using the same XRD scheme shown in Figure 24. In 

addition, hole drilling measurements were applied on the top surfaces of the AM 

deposits and bottom surfaces of the substrates.  

 

Figure 27: 25.4 mm x 25.4 mm x 12.7 mm deposit fabricated with 700 mm/s scan speed 
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3.5 Residual Stress Measurement Techniques 

After all AM builds were fabricated, several residual stress techniques were 

applied to quantify the magnitude of residual stress. XRD was utilized on the top 

surface of each AM fabrication and the bottom surface of each substrate. The 

hole drilling technique was utilized selectively on several AM builds to 

corroborate XRD measurements. Finally, the contour and layer removal method 

were used to evaluate residual stress throughout the thickness of selected builds. 

The settings and procedures for each measuring technique are discussed in the 

following sections. 

3.5.1 X-Ray Diffraction Measurements 

XRD measurements were done on a Proto Laboratory Residual Stress 

Measurement System utilizing XRDWin 2.0 software. The XRDWIN 2.0 software 

used the d vs sin2Ψ technique and applied extensive curve fitting to measure 

surface residual stress. For the measurements, a Cu_K_α radiation source was 

output at 25 KV with a current of 20 mA. Additional XRD settings comprised of a 

2θ angle of 141.5°, a 2 mm circular aperture, a box scan strategy, and a 

diffraction plane of (21.3). The β angles of the x-ray source ranged from -15° to 

15° per measurement with 2.5° increments. Nickel detectors were used to 

capture the diffracted x-rays and at each β oscillation of the x-ray source 10 

exposures for 5 seconds each were captured. 

The d vs sin2Ψ method allows for simplification and increase in measurement 

speeds. By assuming zero stain exists in the out of plane direction of the XRD 

measurements, Equation 7 is obtained: 
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𝜀𝛹𝛷 = [

1 + 𝑣

𝐸
 (𝜎𝛷)𝑠𝑖𝑛2𝛹] −  [

𝑣

𝐸
(𝜎11 + 𝜎22)] 

(7) 

where 

 σΦ = σ11cos2Φ + σ22sin2Φ (8) 

and 

 σΦ = σ11𝑐𝑜𝑠2Φ + σ22𝑠𝑖𝑛2Φ +  σ12𝑠𝑖𝑛2Φ . 

 

(9) 

 

Figure 28: Measurement of stress on a plane [43] 

In Equation (7), (1 + 𝑣)/𝐸 and 𝑣/𝐸 are elastic constants for a specific miller 

index plane of the material, 𝜀𝛹𝛷 is the measured strain at angles 𝛹 and 𝛷, 𝜎11 

and σ22 are principal stresses, and 𝜎𝛷 is the stress at an angle 𝛷 (Figure 28). In 

addition, Equation 8 is used when no in-plane shear stress exists and equation 9 

is used when in plane shear stress exists. 

Furthermore, by using the slope of the d vs sin2Ψ measurements (m), the 

residual stress in the desired direction is obtained by equation 10:  

 
𝜎𝛷 = (

𝐸

1 + 𝑣
)

ℎ𝑘𝑙
(

1

𝑑0
) (𝑚). 

(10) 
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In Equation (10), 𝐸/(1 + 𝑣) is the x-ray elastic constant (XEC) for a specific miller 

index plane. The XEC used for the measurements in this work was 84.1 GPa and 

was provided by [43]. A total of 60-120 XRD measurements were taken on the 

top surface of each AM deposit in the as-fabricated condition and on the bottom 

surface of each substrate. Before each measurement, the system was calibrated 

with a known standard for Ti64. 

3.5.2 Hole Drilling Measurements 

After XRD measurements, five samples were sent for hole drilling at Hill 

Engineering, located in Rancho Cordova, California (Figure 29). As previously 

mentioned, the hole drilling technique was done on the 25.4 mm x 25.4 mm x 

25.4 mm, 25.4 mm x 25.4 mm x 12.7 mm, and 25.4 mm x 25.4 mm x 1.6 mm 

deposits fabricated with nominal parameters on the 76.2 mm x 76.2 mm x 7.93 

mm substrates. In addition, hole drilling was also done on the 25.4 mm x 25.4 

mm x 12.7 mm deposits fabricated with 700 mm/s and 1000 mm/s scan speeds. 

Before being shipped to Hill Engineering, the top surface of each deposit was 

machined to reduce top surface roughness on the AM component. Thus, the 

machining operation slightly changed the total thickness of the deposit (Table 2).  

 

Table 2: Sample height after the top surface was machined for hole drilling measurements 



 

47 

 

 

Figure 29: The five AM deposits that received hole drilling measurements 

The hole drilling measurements were performed on the top surface of each 

AM deposit and on the bottom surface of each substrate. The measurements 

were done in the center of their respective surfaces. Also, on the tallest build 

(25.4 mm x 25.4 mm x 25.4 mm), hole drilling measurements were done on the 

side surface of the deposit at two different heights (Figure 30). The drill bit used 

for hole drilling measurements had a 2 mm diameter and all measurements went 

to a depth of 1 mm. Strain gauges were positioned around the hole drilling 

location at 0°, 45°, and 90°. For the measurements, standard Ti64 material 

properties were used and included: a Poisson’s ratio of 0.33 and a bulk elastic 

modulus of 114 GPa. 
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Figure 30: Hole drilling locations on the AM deposits: a) represents the top surface hole drilling location b) 
represents the substrate bottom surface hole drilling location, and c) represents the side surface hole drilling 

locations 

3.5.3 Contour Method Measurements 

Similar to the hole drilling measurements, the contour measurements were 

also performed by Hill Engineering. In order to assess the residual stress 

throughout the thickness of the SLM deposits, two contour measurements were 

performed. Contour measurements were made on the 25.4 mm x 25.4 mm x 25.4 

mm deposits fabricated on the two substrate sizes. For each contour 

measurement, an EDM cut through the substrate in the transverse direction and 

proceeded up the thickness of the substrate and AM deposit. The sectioning was 

done in the middle of the AM deposits (Figure 31). The distortion of the cut plane 

a) b) 

c) 
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was measured and the initial residual stress on cut surface was obtained via FEA 

simulations.  

 

Figure 31: Sectioned plane cut by EDM for contour measurements: The EDM cut on the 25.4 mm x 25.4 mm 
x 25.4 mm deposit with substrate overhang is shown on the left and EDM the cut on the 25.4 mm x 25.4 mm 

x 25.4 mm deposit with no substrate overhang is shown on the right 

3.5.4 Layer removal measurements 

The layer removal method was the final utilized residual stress technique 

and like the contour method, measured residual stress throughout the thickness 

of the component. This method was applied to a 25.4 mm x 25.4 mm x 14.7 mm 

and 25.4 mm x 25.4 mm x 25.4 mm deposits fabricated on the 25.4 mm x 25.4 

mm x 7.93 mm substrates. Four strain gauges were positioned at 0°, 45°, 90°, 

and 180° on the bottom surface of the substrate. The deposit material was 

removed by a low stress abrasive saw and slices were removed incrementally 

from the top surface of the deposit (Figure 32). Both AM deposits were sliced 

until only substrate material remained. Standard Ti64 material properties were 

used and included: a Poisson’s ratio of 0.33 and a bulk elastic modulus of 114 
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GPa. The residual stress measured by the layer removal method is obtained by 

Equations 11 and 12:  

 
𝜎𝑥 =
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Figure 32: AM sample prepared for layer removal method (left) and cut AM slices during the procedure 
(right) 
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In (11) and (12), 𝜀𝑥 is the strain measured in rolling direction, εy is the strain 

measured in the transverse direction, Wi is the initial height, W is the 

instantaneous height after each cut, E is the elastic modulus, and 𝑣 is the 

Poisson’s ratio. An additional Ti64 cube was stress relieved to assess if residual 

stress was induced during the cutting operation. The starting thickness of the 

specimen was 25.4 mm and the same strain gauge configuration was utilized. 

The specimen was sliced until the thickness reached 4 mm. 

3.6 Microstructure and Texture Analysis 

Because the residual stress was expected to vary throughout the depth of 

the AM build, microstructure and texture analysis were completed throughout the 

thickness of the substrate and AM material. Standard metallography was 

performed on the cut surface made by the contour measurement on the 25.4 mm 

x 25.4 mm x 25.4 mm deposit with the 76.2 mm x 76.2 x 7.93 substrate. 

Backscatter electron (BSE) images were taken in the green regions shown in 

Figure 33. The microscope settings for the images were a voltage of 15KV, a 

spot size of 4, and the magnifications utilized were 500x, 1000x, and 2000x. 

Images were taken of the bottom substrate region, the first melted region of the 

substrate, the mid height of the AM deposit, and the top surface of the AM 

deposit. The BSE images enabled the effect of residual stress on microstructure 

evolution to be investigated. 
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For crystallographic texture analysis, an electron backscatter diffraction scan 

was performed on the prepared surface. The goal of the scan was to determine if 

the residual stress affected the crystallographic texture of the AM build. The 

EBSD scan for location 1 started 1 mm below the substrate material and went 

several mm up the build thickness of the AM deposit. The alpha phase of the 

material was collected for the EBSD analysis. Pole figures and inverse pole 

figure maps were determined at the location to help further understand the 

preferred orientation of the crystallographic texture.  

The EDAX EBSD coordinate system utilized in this work is illustrated in 

Figure 34. In this regard, the RD and TD are in the plane of the EBSD scan while 

the ND is perpendicular to the surface. For the scans, the build direction of the 

SLM deposit was parallel to the TD, the rolling direction of the substrate was 

parallel to the ND, and the transverse direction of the substrate was parallel to 

the RD. An IPF map was collected in the ND direction for the EBSD motage 

LC1 

LC4 

LC1 

Figure 33: Montage locations for BSE images and EBSD: BSE image locations are shown by the 
4 green denoted squares and the EBSD location is denoted by the red rectangle region  
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location shown in Figure 33. In addition, PF in the (0001̅), (101̅1), and (112̅0) 

were calculated in the montage location. 

 

Figure 34: EDAX EBSD coordinate system utilized for this work [61] 
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4. XRD RESULTS AND DISCUSSION 

4.1 Chapter Overview 

In this chapter, XRD results are summarized and discussed. XRD was the 

most utilized residual stress technique and the measurements revealed several 

surface residual stress trends. As previously mentioned, all XRD measurements 

were done on the as-deposited SLM surface and bottom surface of the substrate. 

The residual stress measurements shown and discussed in this chapter are the 

principal stresses measured on each surface (corresponding to 𝜎11 and 𝜎22). 

4.2 Laser Glaze Results  

The effect of several process parameters on residual stress were 

investigated by XRD measurements completed on the laser glaze regions 

fabricated on the four substrate conditions. The four substrate conditions that 

were utilized are discussed in section 3.2. As expected, the laser glaze 

microstructure contained high levels of martensitic alpha phase because of the 

rapid cooling rates of the melted material (Figure 35). The beta grains in the laser 

glaze melted region comprised of an equaixed geometry after cooling because 

no material was added.  
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Figure 35: BSE image of microstructure of melted laser glaze region 

Figure 36 shows the top surface residual stress measured on the laser glaze 

regions that were fabricated with nominal parameters on the four different 

substrate conditions. Moreover, the top surface residual stress measured on the 

laser glazes with a 50 percent power reduction and a 33 percent stripe reduction 

are shown in Figures 37 and 38 respectively. Each laser glaze region in Figures 

36, 37, and 38 exhibited tensile residual stress on the top surface and exhibited a 

noticeable directionality. Moreover, the largest principal direction was within ±8° 

from the track direction of the laser beam, which is in agreement with prior 

literature [14]. In comparing Figures 36 and 37, the residual stress noticeably 

increased in the laser glazes fabricated with a 50 percent power reduction. The 

likely explanation for this trend was the difference in the melt pool sizes and 

cooling rates. In this regard, the laser glaze fabricated with nominal parameters 

had a much larger melt pool than the laser glaze fabricated with a 50 percent 

power reduction. Specifically, the measured melted depth of the nominal 

parameter laser glaze was approximately 207 microns, while the 50 percent 
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power reduction laser glaze had an average melted depth of 143 microns. 

Therefore, the increase in melt pool size of the nominal parameter laser glaze 

enabled the melted region to have slower cooling rates and lower thermal 

gradients. This allowed the residual stress magnitude to be reduced. 

In addition to increasing laser power, there was also a noticeable decrease 

in residual stress when the vector width of the stripe scan was decreased from 3 

mm to 2 mm. Prior work had suggested that reducing scan vectors was beneficial 

in reducing the development of residual stress during the SLM process. In 

comparing Figures 36 and 38, this trend was apparent and was in agreement 

with prior work. Furthermore, XRD measurements were completed on the bottom 

surface of the laser glaze substrates. The bottom surface of the substrates had 

no change in residual stress from their initial state. Hence, the bottom surface 

residual stress was not affected by the laser glaze fabrication. 

Perhaps the most noticeable trend shown in the laser glaze measurements 

was that the residual stress on the top surface was always the greatest in the as-

received substrate. Unfortunately, in much of prior work the initial substrate 

stress condition was often unknown and not discussed in detail. Yet, in Figures 

36, 37, and 38 the condition of the substrate tremendously affected the top 

surface residual stress in the laser glaze regions.  
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Figure 36: Top surface residual stress measured via XRD on the laser glazes fabricated with nominal 
parameters on the four prepared substrate conditions

 

Figure 37: Top surface residual stress measured via XRD on the laser glazes fabricated with a 50% percent 
power reduction on the four prepared substrate conditions

 

Figure 38: Top surface residual stress measured via XRD on the laser glazes fabricated with a 33% stripe 
reduction on the four prepared substrate conditions 
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A possible explanation for the difference in top surface residual stress was 

the difference in the substrate residual stress prior to the fabrication. The as-

received substrate had highly compressive residual stress on all surfaces that 

were balanced by tensile residual stress throughout the thickness of the material. 

However, the stress relieved substrates exhibited low to no residual stress on the 

surface and throughout the thickness. In the as-received substrate condition, the 

melt pool of the laser glaze fabrication relieved the compressive layer of residual 

stress on the top surface of the substrate. Hence, the top surface laser glaze 

residual stress in the as-received substrate was the summation of the tensile 

stress in the thickness of the substrate and the tensile stress developed from the 

shrinkage of the melted region. On the contrary, the tensile surface residual 

stress developed in the laser glaze regions fabricated on the stress relieved 

substrates purely evolved from the shrinkage of the melted region. Thus, the 

resulting residual stress was lower in the laser glazes that were fabricated on 

stress relieved substrates. 

4.3 Substrate Condition Results 

The effect of substrate condition was further investigated by the fabrication of 

25.4 x 25.4 x 1.6 mm SLM deposits onto the four prepared substrate conditions. 

Unfortunately, an SLM deposit could not be fabricated on the alpha/beta furnace 

heat treated substrate. This was because of the alpha case that was present on 

the substrates surface. Alpha case occurs in titanium alloys when the material is 

heated in an oxygen rich environment (such as a furnace) and is a brittle surface 
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layer that is prone to micro cracking. Each SLM build that was attempted on this 

substrate condition separated from the substrate by the 20th layer.  

The measured top surface residual stress on the successful builds is shown 

in Figure 39. Interestingly, the prior substrate residual stress continued to affect 

the top surface residual stress up to a build height of 1.6 mm. In this regard, the 

top surface of the deposit fabricated on the as-received substrate had residual 

stress that was 100 – 200 MPa greater than the SLM deposits fabricated on the 

two stress relieved substrate conditions. On each SLM deposit the largest 

principal stress was parallel to the track direction of the final scanned layer. Also, 

the as-received bottom substrate surface residual stress was decreased from its 

prior state but remained in compression after the 1.6 mm fabrication (Figure 40). 

However, the bottom surfaces of the two stress relieved substrates were in 

tension after the 1.6 mm fabrications. 

 

Figure 39: Top surface residual stress measured via XRD on the nominal parameter laser glazes and 
successful 1.6 mm SLM deposits on the different substrate conditions 
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Figure 40: Bottom surface residual stress measured via XRD on the nominal parameter laser glazes and 
successful 1.6 mm SLM deposits on the different substrate conditions 

4.4 Build Plan Area Results 

The goal of the three different build plan areas was to identify the importance 

of AM build size and substrate size on residual stress. The measured residual 

stress on the top surface of the deposit and the bottom surface of the substrate 

are shown in Figures 41 and 42. The top surface residual stress increased 

slightly as the build plan area increased. Similar to the top surface observation, 

residual stress on the bottom surface of the substrate also increased as build 

plan area increased. Particularly, compared to the smallest build plan area, the 

largest build plan area had a 3 to 4 fold increase in residual stress on the bottom 
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largest out of plane substrate distortion.   
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Figure 41: Top surface residual stress measured via XRD on the three different build plan areas 

 

Figure 42: Bottom substrate surface measured residual stress via XRD on the three different build plan 
areas 
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distortion of the substrate is generally in the concave up position. Moreover, 

because hundreds of layers are generally needed for SLM fabrication, the 

substrate distortion generally increases as build height increases. 

 

Figure 43: Typical bending moment imposed on the substrate during the SLM process. 

As the concave up distortion increases as a function of build height in the 

substrate, the bottom surface of the substrate is stretched by the bending 

moment that is created (Figure 43). Thus, the residual stress on the bottom 

surface of the substrate increases as the distortion increases. The largest out of 

plane distortion occurred on the substrate with the largest build plane area. 

Hence, this enabled the largest build plan area to develop the largest substrate 

bottom surface residual stress. 

In prior work, the residual stress developed on the bottom surface of the 

substrate has often been ignored and not measured. However, controlling and 

measuring distortion on the bottom surface of the substrate is critical. Ideally, 

small distortion and limited residual stress development is desired in the SLM 

process. In this ideal scenario, the substrate remains flat and the deposit 

maintains desired dimensions throughout the process. Moreover, in this ideal 

case the development of limited residual stress enables the deposit to be cut 

from the substrate without distorting. However, this ideal case does not represent 
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what transpires throughout the SLM process. Figure 44 shows common distortion 

that occurs when an SLM component is removed from a distorted substrate’s 

surface without being stress relieved. Thus, it is essential to establish methods to 

reduce the development of build plate residual stress and distortion. 

Nonetheless, results of this work suggest that reducing build plan area is one 

method to reduce bottom substrate surface distortion and residual stress. 

 

Figure 44: Typical build plate distortion that occurs when a SLM component is removed from its substrate 

4.5 Substrate Overhang Results 

The residual stress that developed on the top surface of the SLM deposits 

and the bottom surface of the substrates with and without substrate overhang are 

shown in Figures 45 and 46. In Figure 45, the measured top surface residual 

stress of the SLM deposits decreased as build height increased regardless of the 

substrate size utilized. However, the top surface residual stress was much lower 

in the deposits that were fabricated on the substrates with no overhang. On the 

bottom surface of the substrate, the residual stress increased as build height 

increased for both substrate geometries. However, unlike the top surface residual 

stress, the residual stress on the bottom surface of the substrate was larger in 

the substrates with no overhang. 
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Figure 45: Top surface residual stress measured via XRD at several build heights. The black lines represent 
the top surface residual stress measured on the deposit with overhang and the blue lines are the top surface 

residual stress measured on the SLM deposits that had no overhangs 

 

Figure 46: Bottom substrate surface residual stress measured via XRD at several build heights. The black 
lines indicate the bottom surface residual stress measured on the deposit with overhang and the blue lines 

are the bottom surface residual stress measured on the SLM deposits that had no overhangs 
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to the present work, in [49] it was suggested that top surface residual stress 

decreased as build height increased. However, contradictory results have been 

reported by [44]; in which the author’s results (at build heights of 2mm, 5mm, and 

10 mm) suggested that top surface residual stress increased as a function of 

0

100

200

300

400

500

600

Laser Glaze 1.587 mm 12.7 mm 25.4 mm

R
e
s

id
u

a
l 
S

tr
e
s

s
 (

M
P

a
)

AM Build Height 

Top Surface Residual Stress 

0

100

200

300

400

500

Laser Glaze 1.587 mm 12.7 mm 25.4 mm

R
e
s

id
u

a
l 
S

tr
e
s

s
 (

M
P

a
)

AM Build Height

Substrate Bottom Surface Residual Stress

Back Surface Residual Stress 
on 76.2 mm x 76.2 mm x 7.93 

mm substrate  

Back Surface Residual Stress 
on 25.4 mm x 25.4 mm x 7.93 

mm substrate  

Top Surface Residual Stress on 76.2 

mm x 76.2 mm x 7.93 mm substrate  

Top Surface Residual Stress on 25.4 

mm x 25.4 mm x 7.93 mm substrate  



 

65 

 

build height. In an attempt to solve the discrepancy in prior works, larger build 

heights (3x greater) were fabricated in the present work to further evaluate the 

development of top surface residual stress. A likely explanation for the top 

surface residual stress trend in Figure 45, is that the SLM deposits experienced 

less constraint imposed by the substrate as the build thickness increased. The 

first layer of the SLM deposit was fused to the substrate material initially creating 

a large bending moment. As material was added, the bulkiness of the deposit 

began to oppose the deformation imposed by the substrate, thus lowering the 

residual stress development of the top surface of the SLM deposit. 

4.6 Scan Speed Results 

The top surface residual stress results for the 12.7 mm SLM deposits 

fabricated with the three different scan speeds (400, 700, and 1000 mm/s) are 

shown in Figure 47. The residual stress on the top surface of the SLM deposit 

increased as scan speed increased. Additionally, as shown in Figure 48 the 

substrate’s back surface residual stress was also influenced by the increase in 

scan speed.  

 
Figure 47: The top surface residual stress measured on the three deposits fabricated with three different 

scan speeds 

0

100

200

300

400

500

600

12.7 mm-400 mm/s 12.7 mm-700 mm/s 12.7 mm-1000 mm/s

R
e
s

id
u

a
l 
S

tr
e
s

s
 (

M
P

a
)

Top Surface Residual Stress



 

66 

 

 
Figure 48: The bottom surface of substrate residual stress measured on the three deposits fabricated with 

three different scan speeds 

4.7 Summary and Discussion of XRD Residual Stress Results 

The implementation of XRD was successful in revealing the effect of several 

process parameters on surface residual stress. By utilizing XRD, process 

parameters such as laser power, stripe width, scan speed, build height, and build 

plan area were shown to influence surface residual stress. Perhaps the most 

novel discovery from these measurements was that several substrate conditions 

(e.g. substrate overhang and prior stress state) did influence the evolution of 

residual stress. However, the penetration depth of the x-rays was unfortunately 

limited to the surface. Therefore, the trends established by XRD on the top 

surface of the SLM deposits and bottom surface of the substrate were restricted 

to the surface.  

XRD measurements in this work suggested that SLM top surface residual 

stress was decreased by reducing substrate overhang, decreasing scan speed, 

increasing laser power, decreasing stripe width, increasing build height and 

decreasing build plan area. The XRD residual stress measurements revealed 
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and back surface of the substrate. The tensile residual stress that developed on 

the top surface of the SLM deposits was induced by the shrinkage of each added 

layer, while the tensile residual stress on the bottom surface of the substrate 

occurred because of increasing distortion. Also, XRD measurements displayed 

that a large directionality existed between the two principal stress directions on 

the top surface of the deposit. While residual stress work in SLM is limited, one 

notable effort that utilized XRD to measure the top surface residual stress of 

various Ti64 cubes was Vrancken et al. [14]. Similar to this work, the author’s top 

surface results indicated that slower scan speeds and high laser powers 

decreased top surface residual stress. 
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5.  HOLE DRILLING RESULTS AND DISCUSSION  

5.1 Chapter Overview  

In this chapter residual stress measurements obtained via hole drilling are 

summarized and discussed. The goal of the hole drilling measurements was to 

verify surface measurements taken by XRD. Moreover, the hole drilling 

measurements allowed for residual stress to be quantified at depths below the 

top surface of the SLM deposits and bottom surface of the substrates. Similar to 

XRD, the hole drilling technique measured  𝜎11 and 𝜎22 on the top surface of the 

SLM deposits and bottom surface of the substrates. However, the hole drilling 

technique was also capable of measuring 𝜎22 and 𝜎33 on the side surface of the 

SLM deposit. 

In the previous chapter, all XRD measurements were taken on the as-

deposited SLM surface and as-received substrate surface. By contrast, for the 

hole drilling measurements, an EDM was used to remove several mills from the 

top surface of each SLM deposit. The EDM process generally produces a local 

tensile stress contaminated layer of < 30 microns. This contaminated layer is 

deep enough to affect the XRD measurements; however, hole drilling 

measurements are capable of measuring residual stress well beyond this depth. 

Therefore, this small contaminated layer did not influence the hole drilling 

measurements discussed in this chapter. 

5.2 Top Surface Hole Drilling Measurements 

The results from the top surface hole drilling measurements completed in the 

center of the SLM deposits are shown in Figures 49-53. In each of these figures, 
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the first measurement was taken at a depth of 25.4 microns and the deepest 

measurement was taken at approximately 1 mm. Similar to the XRD 

measurements, tensile residual stress was measured by hole drilling on the top 

surface of each SLM deposits. A noticeable directionality in the measurements 

also occurred throughout the depth of the hole drilling measurements. At several 

hole drilling depths the maximum principal stress was 2x greater than the 

minimum principal stress. In addition, the residual stress did not stay constant 

throughout the depth of the measurements. Instead, the measurements 

oscillated throughout the hole drilling measurement.

 

Figure 49: Top surface hole drilling measurements on the 25.4 mm x 25.4 mm x 1.6 mm SLM deposit 
fabricated with nominal parameters 
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Figure 50: Top surface hole drilling measurements on the 25.4 mm x 25.4 mm x 12.7 mm SLM deposit 
fabricated with nominal parameters 

 

Figure 51: Top surface hole drilling measurements on the 25.4 mm x 25.4 mm x 12.7 mm SLM deposit 
fabricated with 700 mm/s scan speed 
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Figure 52: Top surface hole drilling measurements on 25.4 mm x 25.4 mm x 12.7 mm SLM deposit 
fabricated with 1000 mm/s scan speed 

 

Figure 53: Top surface hole drilling measurements on 25.4 mm x 25.4 mm x 25.4 mm SLM deposit 
fabricated with nominal parameters 
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measured by XRD and hole drilling were relatively close, agreeing within 20 

percent of one another. On the other hand, the minimum principal stresses 

measured by XRD and hole drilling were drastically different at the build heights 

of 12.7 mm and 25.4 mm. Likewise, the hole drilling and XRD residual stress 

measurements completed on the top surface of the three different scan speed 

fabrications (in Figure 55) show similar trends. However, the hole drilling 

measurements were once again lower in magnitude when compared to the XRD 

measurements. Because of this discrepancy, hole drilling measurements were 

taken on the bottom surface of the substrate to further compare the techniques. 

 

Figure 54: XRD and hole drilling top surface residual stress measurements for different build heights.  
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Figure 55: XRD and hole drilling top surface residual stress measurements on the SLM builds fabricated 
with different scan speeds.  

The trends established on the top surface of the AM deposits also continued 

throughout the thickness of the hole drilling measurements (Tables 3 & 4). In this 

regard, the residual stress measured at three different hole drilling depths 

continued to maintain the following two surface established trends: residual 

stress increased as build height increased and residual stress increased as scan 

speed increased.Thus, these trends suggested that process parameters affect 

the development of residual stress on the surface and throughout the bulk of the 

SLM deposit.  

 

 

Table 3: Top surface hole drilling measurements taken at several depths completed on the deposits with 
different build heights 
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Table 4: Top surface hole drilling measurements taken at several depths completed on the deposits 
fabricated with different scan speeds 

5.3 Back Surface Hole Drilling Measurements  

Unlike the top surface of the SLM deposit, the back of the substrate did not 

need to be machined for the hole drilling measurements. Therefore, the first 

measured hole drilling depth was chosen for comparing the XRD and hole 

drilling. Surprisingly, on the bottom surface of the substrate the hole drilling 

measurements were higher than the XRD measurements (Figures 56 & 57). 

Also, unlike the top surface of the deposit, the XRD and hole drilling 

measurements on the bottom substrate surface were within 20 percent of one 

another. Furthermore, both residual stress techniques measured a smaller 

directionality between the principal stresses on the bottom surface of the substrat

 

Figure 56: XRD and hole drilling measurements performed on the bottom surfaces of the substrates 

0

100

200

300

400

500

Laser Glaze 1.587 mm 12.7 mm 25.4 mm

R
e
s

id
u

a
l 
S

tr
e
s

s
 (

M
P

a
)

AM Build Height

Backside Substrate Surface Residual Stress

XRD Measurements

XRD Measurements

HD Measurements

HD Measuremetns

Hole Drilling Measurements at Several Depths: Different Scan Speeds 



 

75 

 

 

Figure 57: XRD and hole drilling measurements performed on the bottom surfaces of the substrates 

5.4 Side Surface Hole Drilling Measurements 

Hole drilling measurements were also implemented on side surface of the 

largest SLM deposit (25.4 mm x 25.4 mm x 25.4 mm). On the side surface of the 

SLM deposit, 𝜎22 and 𝜎33 were measured, and the measurement results are 

shown in Figure 58. The blue lines in Figure 58 correspond to the hole drilling 

measurement taken at a build height of 19.05 mm on the side surface. The red 

lines denote the side surface hole drilling measurement taken at a build height of 

6.35 mm. Similar to the top surface of the AM deposit, the residual stress was 

nonuniform throughout the depth of the hole drilling measurement and a large 

directionality existed between the two measured principal directions.  
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Figure 58: Side surface hole drilling measurements on the largest SLM deposit. The red lines represent the 
hole drilling measurements taken at a height of 6.35 mm and the blue lines represent the residual stress 

measured at a build height of 19.05 mm on the side surface. 

5.5 Summary and Discussion of Surface Residual Stress Results 

In prior residual stress work, typically one experimental method was utilized 

to measure residual stress. Limited literature exists on comparing multiple 

residual stress techniques to measure the same region of interest. One notable 

attempt to measure residual stress by XRD and hole drilling in the same location 

was undertaken by Ceglias et al [62]. In Ceglias’s work, similar trends were 

established by both measurement techniques. However, the two measurement 

techniques measured very different magnitudes of residual stress. Specifically, 

the XRD measurements in Ceglias’s work were typically much greater than the 

hole drilling measurements taken in the same locations. In the present work, 

XRD and hole drilling measured comparable residual stress in Figures 56 and 

57. Yet, XRD and hole drilling measurements were drastically different in Figures 

54 and 55. Thus, it is important to understand possible reasons for these 

discrepancies. 
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Perhaps one of the most important parameters used for XRD measurements 

is the X-ray Elastic Constant (XEC). The XEC varies for a specified hkl plane and 

in each material. For instance, the XEC for the (21.3) hkl plane for pure Titanium, 

Ti-6Al-4V, and Ti-6Ai-2Sn-4Zr-2MO is 90.3 GPa, 84.1 GPa, and 102 GPa 

respectively [43]. Although each of the three materials is a Titanium alloy, the 

XEC for each material is very different. Moreover, errors can arise in XRD 

measurements when incorrect XEC’s are utilized.  

The XEC used for this work was specified by [43] as the correct XEC for 

Ti64. However, different preferred crystallographic textures can influence the 

XEC of the material. In this regard, the crystallographic texture in the SLM builds 

and substrate material could have caused errors in the XRD measurements. 

Furthermore, errors in the XRD measurements could have also occurred from 

defects present on the as-fabricated SLM surfaces. These surface defects 

include: unmelted powder particles attached to the surface, surface roughness, 

and surface cracks created by the utilized scan strategy. 
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6. CONTOUR AND LAYER REMOVAL RESULTS AND 

DISCUSSION 

6.1 Chapter Overview 

Similar to the surfaces of the deposit, two residual stress techniques were 

utilized to measure the residual stress throughout the bulk of the SLM deposits. 

In this regard, the layer removal and contour methods were utilized for the 

measurements. In particular, the contour technique utilized in this work measured 

the residual stress in the rolling direction that aligned closely with 𝜎11. The layer 

removal method measured the residual stress in the rolling and transverse 

direction at several instantaneous heights. Furthermore, the contour method was 

implemented on SLM deposits with and without substrate overhang. The layer 

removal method was only applied on SLM deposits with no substrate overhang.  

6.2 Layer Removal Measurements 

The layer removal results from the 14.7 mm thick SLM deposit are shown in 

Figure 59. Ten slices were taken for the measurements. Upon inspection of the 

results, a tensile region existed near the top surface of the SLM deposit and was 

balanced by a compression region in the middle. The compression region 

occurred for approximately 8 mm and was replaced by tensile residual stress 

near the substrate and SLM material interface. The residual stress measured in 

the rolling and transverse direction at each instantaneous height displayed 

similar trends and magnitudes. In addition, there was no large directionality 

between the two measured directions. Unfortunately, the results in Figure 59 did 

not maintain force and moment equilibrium. Because of this, the layer removal 
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technique was implemented on an additional 25.4 mm x 25.4 mm x 25.4 mm 

deposit fabricated on a substrate with no overhang. 

 

Figure 59: 14.7 thick SLM deposit layer removal results 

In order to better understand the layer removal data, a smaller average slice 

thickness was utilized on the second deposit. In total 38 slices of material were 

removed from the 25.4 thick deposit. When the layer removal procedure was 

complete, only the substrate material was left. Noticeably, the results in Figure 60 

displayed good force and moment balance. One possible reason for the better 

force and moment balancing was the reduction in slice thickness. In this regard, 

Equation 11 and 12 indicate that the residual stress is dependent on the slope 

profile at each instantaneous height. The slopes of the strain measurements at 

each instantaneous height must be smoothed in order to be accurately applied to 

Equation 11 and 12. By increasing the number of slices in the layer removal 

process, the strain measurements can be more accurately smoothed and thus, 

the residual stress can be calculated more accurately. 
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Figure 60: 25.4 thick SLM deposit layer removal results 

One additional layer removal experiment was completed on a 25.4 mm x 

25.4 mm x 25.4 mm cube that was stress relieved prior to the slicing operation. 

Similar to the two SLM deposits, several slices were removed from the sample 

until the height of the cube was 5 mm. The strain measured by the strain gauges 

was not affected after each cut and remained close to zero throughout the slicing 

operation. Traditionally an EDM or chemical etchant is used to remove material 

during the layer removal procedure. However, the results obtained from the 

stress relieved sample suggested that a low abrasive saw is also suitable for this 

procedure. 

6.3 Contour Measurements 

The contour results obtained from the SLM deposit fabricated on the 

substrate with no overhang are shown in Figure 61. The three lines denoted in 

Figure 61 were the three locations at which residual stress was plotted. The 

black line represented the residual stress measured across the mid width of the 

SLM deposit and substrate. The purple line represented the residual stress 

measured through the mid thickness of the substrate. Finally, the red line 
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represented the residual stress measured throughout the mid thickness of the 

SLM deposit (Figures 62-64).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 61: Contour measurement results from the 25.4 mm x 25.4 mm x 25.4 mm SLM deposit with no 
substrate overhang 

 
Figure 62: Mid width contour measurements 
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Figure 63: Mid thickness of SLM deposit measurements 

 
Figure 64: Mid thickness of the substrate measurements 

The contour measurement completed on the SLM deposits with substrate 

overhang is shown in Figure 65. In comparing both of the contour 

measurements, the residual stress throughout the bulk regions were extremely 

different. Strikingly, the top surface and side surface residual stress measured on 

the deposit with substrate overhang was much larger, when compared to the 

deposit with no overhang. Furthermore, while both deposits had large tensile 

regions on the bottom surface of their attached substrate, the compression 

region was much greater in the deposit fabricated on the substrate with 
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overhang. In addition, both contour maps measured tensile residual stress on the 

side surfaces and top surface of the SLM deposit, qualitatively corroborating the 

previous XRD and hole hole drilling measurements. Yet, the largest inaccuracy of 

the contour measurements is near the surfaces of the sectioned plane and 

therefore, the contour measurements cannot be directly compared to the XRD 

and hole drilling measurements.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 65: Contour measurement results from the 25.4 mm x 25.4 mm x 25.4 mm SLM deposit with 
substrate overhang 
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Figure 66: Mid width contour measurements  

 
Figure 67: Mid thickness of the SLM deposit measurements 
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Figure 68: Mid thickness of the substrate measurements 

The layer removal and contour method were both completed on the 25.4 mm 

x 25.4 mm x 25.4 mm deposit fabricated on the substrate with no overhang. Both 

of the techniques measured residual stress throughout the bulk of the component 

in the rolling direction. Therefore, the two methods are compared in Figure 69. As 

shown in Figure 69, the layer removal and contour measurements exhibited 

similar trends. However, there were differences in the measured magnitudes. 

Yet, the difference in the measurements may have occurred because each 

technique measures residual stress differently. 

 
Figure 69: Comparing contour and layer removal measurements taken in the rolling direction 
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6.4 Summary of Bulk Results and Discussion 

The results obtained and discussed in this section helped establish residual 

stress trends throughout the depth of the SLM deposit. XRD, hole drilling, layer 

removal, and contour measurements established that tensile residual stress 

develops on the top surface of the SLM deposit and bottom surface of the 

substrate. The hole drilling and the contour measurements also showed that 

tensile residual stress develops on the side surfaces of the SLM deposit. Also, 

the results in this chapter established that compressive residual stress develops 

throughout the bulk of the SLM component. Furthermore, the two contour 

measurements also suggested that residual stress throughout the SLM deposit 

can be reduced if a substrate with no overhang is utilized. 

Similar to XRD, Vrancken et al. also performed contour measurements on 

several Ti64 SLM deposits [14]. One of the author’s contour measurements is 

shown in Figure 70. Specifically, Vrancken’s contour measurement was done 

throughout the thickness of the SLM deposit after the deposit was machined from 

the substrate. As the SLM deposit was cut from the substrate surface, the 

residual stresses redistributed themselves to maintain equilibrium. Thus, the 

residual stress in Figure 70 does not represent the initial residual stress 

developed in the SLM deposit. In Vrancken’s measurements, tensile residual 

stress was measured at the interface between the substrate and SLM material 

and at the SLM deposit’s top surface. Moreover, the measured residual stress 

was compressive in the bulk of Vrancken’s deposit. For this work, the SLM 

deposits were left on their respective substrates for the contour measurements. 
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Similar to Vrancken’s measurements, the contour measurement in this work 

showed tensile residual stress developed on the top surface of the SLM deposit. 

Yet, the substrate and SLM material interface was in compression because the 

component remained on the substrate. In addition, the residual stress on the 

bottom surface of the substrate was tensile enabling force balancing of the 

component. This side by side examination shows that residual stress in SLM 

deposit is redistributed when it is removed from the substrate. Therefore, in order 

to measure the true residual stress induced by the SLM process, the SLM 

deposit must remain on its respective substrate.  

 

Figure 70: Vrancken's contour measurement made through the thickness of the SLM deposit. The deposit 
was machined off its substrate prior to the measurement [14] 
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7. CONTRIBUTIONS 

The contributions in this thesis include: 
 

1. Established the effect of several process parameters (laser power, stripe 

width, scan speed, substrate overhang, build height, substrate condition, 

and build plan area) on top surface residual stress 

2. Established the effect of scan speed, substrate overhang, and build plan 

area on bottom substrate surface residual stress 

3. Established residual stress development in SLM utilizing several 

measurement techniques (e.g. XRD, hole drilling, layer removal, and 

contour) 
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8. FUTURE WORK 

The work discussed in this thesis has demonstrated the effect of process 

parameters on surface and bulk residual stress. However, several aspects need 

to be further investigated and include: 

1) Modeling of the results obtained and repeated experimental studies of 

work done in this thesis 

2) Establishing the effect of additional SLM process parameters on residual 

stress to further understand methods to reduce and control its 

development throughout the process 

3) Determining the specific XEC for stress relieved Ti64 substrates and 

additively manufactured Ti64 in attempt to solve the discrepancy in the 

XRD and hole drilling measurements  

4) Microstructure and texture analysis to further understand if it impacts the 

development of residual stress or vice versa  

In reference to 4), a preliminary microstructure and texture analysis were 

undertaken. The goal of the analysis was to determine if residual stress in the 

regions could be explained by a change in microstructure. The BSE images 

taken in the specified locations (discussed in section 3.6) are shown in Figure 71. 

The microstructure at the top surface and mid height of the deposit developed a 

very fine martensitic α phase. Thus, the material in both regions experienced 

temperatures above the beta transus and cooled very quickly. The microstructure 

of the bottom surface of the substrate contained equaixed α particles that were 

developed during the initial stress relieving of the substrate. Moreover, the 
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microstructure on the bottom surface of the substrate remained unchanged 

during the SLM fabrication process. 

As previously mentioned, the contour and layer removal method measured 

tensile residual stress on the top surface of the SLM deposit. The microstructure 

in the top region of the SLM deposit suggested a fast cooling rate and high 

thermal gradients occurred and therefore, the development of tensile residual 

stress was expected. Hence, the microstructure is in agreement with the 

developed residual stress. However, this was not the case in the mid height of 

the SLM deposit or bottom substrate surface. In this regard, the same martensitic 

microstructure was present at the mid height of the SLM deposit indicating that 

the material was rapidly cooled. However, the residual stress in this region was 

compressive and therefore, the microstructure is not in agreement with the 

developed residual stress. Furthermore, the microstructure of the bottom surface 

of the substrate contained equaixed alpha particles. This microstructure 

suggested that the material was cooled slowly and therefore, the residual stress 

was expected to be small. Yet, the residual stress in the bottom surface of the 

substrate was highly tensile. Thus, while the microstructure can explain the 

residual stress development in one instance, it fails to do so in other instances. 
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Figure 71: BSE images showing the microstructure of several locations denoted in Section 3.6: a) is the 
microstructure of the bottom surface of the substrate, b) is the microstructure of the SLM material and 

substrate interface, and c) is the microstructure of the top of the SLM deposit 

The EBSD montage of location 1 is shown in Figure 72. The substrate 

material extended approximately 1 mm to the left of the right edge of the 

montage. The SLM build thickness captured in the montage was approximately 6 

mm. In order to better assess the crystallographic texture as a function of build 

height, three regions were cropped from the EBSD montage. These areas 

included: a region containing only substrate material, a region at a build location 

of 3 mm, and a region at build location of 6 mm. The cropped regions are shown 

in Figure 73. Moreover, the 3 PF for each cropped region are shown in Figure 74. 

In Figure 74, the crystallographic texture of the substrate and SLM material was 

very different. By contrast, the crystallographic texture of the two different build 

locations was relatively similar. Thus, it is likely that crystallographic texture does 

a) b) 
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not change throughout the build thickness. Therefore, it is likely that residual 

stress does not influence texture evolution. 

    

Figure 72: EBSD Montage of location 1 

 

 

 

 

 

 

 

 

 

 

 

a) c) 

Figure 73: Cropped EBSD regions: a) cropped region at a build location of 6 mm, b) cropped region  
at a build location of 3 mm, and c) cropped substrate region 

 

b) 
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Figure 74: PF of the cropped regions: a) PF at a build location of 6 mm, b) PF at a build  
location of 3 mm, and c) PF of substrate region  

 

 

 

 

 

 

 

a) b) 

c) 
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9. CONCLUSIONS 

The work in this thesis has experimentally established the effect of many 

process parameters on residual stress in SLM Ti64. It was shown in this work 

that process parameters influence the development of residual stress on the 

surfaces and in the bulk of SLM deposits. Moreover, it is likely that the residual 

stress trends established in this thesis will also exist in the SLM of other material 

systems. Thus, the experimental results in this thesis have enabled a pathway for 

future residual stress modeling efforts in the SLM of various materials. 

Furthermore, this thesis was successful in establishing an experimental 

methodology to control and reduce the evolution of unwanted residual stress in 

SLM builds.
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