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ABSTRACT 

 

Schneider, Bradley A. M.S. Department of Computer Science and Engineering, Wright 

State University, 2017. Gait Analysis from Wearable Devices using Image and Signal 

Processing. 

 

 

We present the results of analyzing gait motion in-person video taken from a 

commercially available wearable camera embedded in a pair of glasses. The video is 

analyzed with three different computer vision methods to extract motion vectors from 

different gait sequences from four individuals for comparison against a manually annotated 

ground truth dataset. Using a combination of signal processing and computer vision 

techniques, gait features are extracted to identify the walking pace of the individual 

wearing the camera and are validated using the ground truth dataset. We perform an 

additional data collection with both the camera and a body-worn accelerometer to 

understand the correlation between our vision-based data and a more traditional set of 

accelerometer data. Our results indicate that the extraction of activity from the video in a 

controlled setting shows strong promise of being utilized in different activity monitoring 

applications such as in the eldercare environment, as well as for monitoring chronic 

healthcare conditions. 
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1 INTRODUCTION 

As our current society ages, the need for elderly care and the early diagnosis of age-

related diseases will sharply increase. While many diagnosis techniques rely on self-

reporting of symptoms, it is acknowledged that self-reporting suffers from inaccuracy and 

bias as it is difficult to enforce a standard scale across patients. There is too much 

subjectivity in the description of symptoms and their severity for reliable and accurate 

diagnosis. What feels painful to one individual may seem completely tolerable to another. 

In addition to this subjectivity, diagnoses following the observations of symptoms may 

occur after a catastrophic event such as a dangerous fall has already occurred. Such 

diagnoses are useful for avoiding repeated issues, but are insufficient for protecting aging 

patients from the initial problem. It is extremely desirable to be able to anticipate these 

issues and take preventative action against them before they occur. 

Existing research has shown that Activities of Daily Living (ADL) are a good indicator 

of elderly health, and monitoring such health indicators shows promise in the early 

diagnosis of age-related disease. ADL’s consist of various activities that are performed on 

a routine basis in one’s daily life. Examples of ADL’s range from concise, well-defined 

activities such as handwashing and brushing teeth, to physical activities such as standing 

up or walking, to longer complex activities such as cooking or doing laundry. Observation 

of ADL’s such as these can provide metrics related to quality and frequency of the activity. 

Most ADL’s are performed in an expected pattern or with some degree of regularity, but 
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when these behaviors change in timing or quality, or cease to occur at all, this is usually an 

indication of a new or worsening health condition. Thus, being able to monitor these 

activities provides rich input to the early recognition of medical conditions.  

In addition to potentially aiding early diagnosis of medical conditions, monitoring of 

ADL’s can also provide a rich means of quantifying rehabilitation progress following an 

injury. When a patient suffers an injury that impacts his or her ability to continue their daily 

routine, the goal is to rehabilitate the injury as quickly as possible so their routine can be 

resumed. Since ADL’s are, by definition, activities that are performed every day by almost 

everyone, they are an excellent measure of basic physical ability. Automated monitoring 

of ADL’s could be used to remove error associated with self-reporting of progress, or the 

hassle of making doctor’s office visits for periodic examination. The monitoring of 

parameters indicating the quality of ADL’s during the rehabilitation process can give a 

quantifiable measure of progress to physicians. 

In this paper we focus specifically on monitoring gait (walking) activities and 

extracting information on how the locomotion is occurring. We aim to provide a non-

invasive, lightweight, and wearable system for extracting gait information from a subject. 

Our system aims to be operable in the home to maximize convenience and usability. 

Existing methods of in-home monitoring require extensive setup of the home environment 

with external sensors. It may be costly or inconvenient to install these sensors, and the area 

in which they are useful is typically limited to a single room. Video-based monitoring is a 

common approach, but may also come with privacy concerns and does not solve the 

limitation of only providing information about a single environment in which it is installed. 
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We address the limitations of existing methods by using wearable sensors. Because the 

sensors are worn on the subject’s body, they are effective in nearly any environment in 

which the subject may be located. Additionally, the cost of installing sensors in a pre-

determined environment, such as the home, is avoided.  

A single camera mounted in a pair of eye glasses provides the primary input to the 

system. Gait analysis performed with computer vision on wearable devices is a challenging 

task due to the limited first-person perspective of the device. Consequently, there may be 

a lack of information available to describe the movement of the subject. However, it has 

the benefit of requiring little configuration and is not prone to accumulated error over time, 

as wearable accelerometers or positioning devices may be [1, 2]. Approaches of this type 

rely on the predictability of a subject’s movement during locomotion to recognize gait. 

Patterns of movement in the captured video are recognized and lead to the recognition of 

the gait activity and extraction of gait parameters. 

To better understand the data that we collect from the video source, we also include the 

use of an accelerometer in some data collection activities. The accelerometer is worn 

simultaneously with the camera by the subject, but measures acceleration at the torso 

instead of the head. The accelerometer provides a physical measure of movement of the 

subject, albeit in a slightly different location. While the gait parameters extracted from the 

video are verified using techniques that to not rely on the accelerometer data, this data 

provides a more traditional measure of movement as a comparison for the movement 

described by the video techniques. We seek to correlate the parameters of the two data 

sources in order to verify our results. 



4 

 

The rest of this paper is organized as follows: Chapter 1 contains an overview of related 

work; Chapter 1 describes the sensors, data collection process, and methods used in this 

work for data collection and processing; Chapter 1 contains the results of the experiments 

conducted described in chapter 1; Chapter 1 contains a discussion and analysis of the 

obtained results. We finally conclude with the Conclusions chapter (Chapter 6) and the 

Future Work (Chapter 7). 
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2 RELATED WORK 

This section contains an overview of the current body of work related to our study of 

gait through wearable and video-based sensors. 

2.1 Non-wearable Video-based methods 

A dominant challenge in the domain of ADL monitoring is finding a method of 

monitoring which does not create too large of a burden on the patient being assessed. 

Monitoring ADL’s involves potentially invasive data collection in the home, and privacy 

concerns of the user must be addressed. Activity detection through video analysis has been 

an active field of research due to the non-invasiveness of the approach. Methods based on 

other (non-video) sensors typically require the subject to be instrumented with cumbersome 

gadgets such as accelerometers that may hinder the normal behavior pattern of users. If the 

subject is not able to perform the activity in the way they normally would, the data 

collection will not allow for measuring the activity as it is usually performed. With 

traditional video-based techniques, stationary cameras are deployed in the environment, 

making for a more practical alternative. The cameras do not interfere with the subject as 

the activity is being performed.  

Banerjee, et. al describe a method for identifying ADL’s in order to study behavior 

patterns of the elderly to detect health changes using a Microsoft Kinect depth camera [3]. 

Because the camera is placed with an external view of the environment, information on the 

movement of the subject as well as the context of labeled items in the scene are used to 
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detect activities using a hidden Markov model. While the third-person camera approach 

often comes with privacy concerns, the use of only the depth channel of the sensor provides 

in implicit amount of privacy. 

In [4], Anderson, et. al use linguistic summarizations of temporal fuzzy inference 

curves to represent the state of a three-dimensional object called a voxel person to perform 

automated fall detection for elderly residents of a nursing home. Multiple cameras are 

required to construct the three-dimensional voxel representation, and to address privacy 

concerns, only the human silhouette is extracted from the frame, and raw video is 

discarded. Fuzzy set theory is used to classify the state of the voxel person as upright, in-

between, or on the ground. 

These works clearly indicate that video-based approaches can be successfully 

developed for activity recognition. However, since the environment must be instrumented 

with one or more cameras, these methods are constrained to operate within that closed 

space or the camera’s field of view, and cannot be used elsewhere without the installation 

of additional cameras. While this is acceptable for certain activities that always occur in a 

predictable place, such as handwashing or cooking, it is severely limiting for the analysis 

of activities such as walking, which require a larger, more open environment. Additionally, 

these methods focus on activity classification only, and do not describe the actual manner 

in which the activity was performed. 

2.2 Wearable Video-based Methods 

Wearable vision sensors can provide a convenient solution to the complexity problems 

from which other techniques suffer. However, many published methods of gait analysis 
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that use wearable technology focus more on instrumenting the subject with accelerometers 

or other inertial-based sensors which can more directly give an accurate indication of 

movement during locomotion. For this reason, there are fewer methods successfully using 

computer vision at this point in time.  

Cho et al. describe an approach combining multiple types of sensors in an attempt to 

take advantage of both the accuracy of accelerometers and the convenience of computer 

vision [5]. A multi-resolutional, grid-based optical flow method is applied to video 

collected from a wearable vision sensor. By examining different regions of the video for 

flows in different directions, activities such as walking forward or backward, turning, and 

sitting down are able to be detected from the video. Activities detected by the video 

component of the system are limited to those describing movement in the environment, 

and two similar activities may not be distinguishable. This video-based approach relies 

solely on the perceived direction of movement of the vision sensor through the 

environment, and the video is not used to estimate the pose of the wearer. Because of the 

lack of consideration for the physical effects of locomotion on the movement of the camera, 

this approach is equally suited to estimating vehicular or robotic movement. That is, the 

camera is used only to perceive location, and does not provide any parameters on the 

quality or form of the gate. To improve the activity detection accuracy, accelerometers 

were also placed on the subject, contributing information about the estimated pose of the 

wearer.  

Taking advantage of published information on human joint movement during 

locomotion to estimate the pose of the subject, rather than just the movement of the subject 

relative to the environment, can lead to the extraction of more detailed information about 
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the gait. For this purpose, it is necessary to utilize information on human behaviors to 

construct a model of human motion. Hirasaki et al. document the effect of locomotion on 

the head and body, demonstrating the translation and rotation during the gait [6]. Unuma 

et al. modeled human locomotion using Fourier expansions due to the cyclic nature of the 

activity [7]. These methods and other related works give a basis for building accurate 

models of human gait for analysis in egocentric video, enabling approaches based entirely 

on video. 

In such an approach based entirely on video, Watanabe et al. take advantage of the 

predictability of limb motion during locomotion to analyze movement and classify gait 

from a single video source [2]. A downward-facing camera is attached to the leg so that it 

captures the motion of the environment as the locomotion occurs. A calibration step is 

performed to document the movement of the camera on the leg during the walking activity. 

Walking samples are taken by a motion-capture system and models of various states, 

including a slow walk, walk, and run. A model is formed based on the waist position, 

traveling speed, and angular speed at a given time. The action is described by up to a fifth 

order Fourier transform, which represents the cyclic motion described in the human motion 

studies [6, 7]. State prediction for the walking state occurs at each sample in time and is 

based on a likelihood estimation from the captured parameters, and includes an error 

calculation based on the difference in the expected location of known landmarks in the 

environment and the actual observed location.  

While these works successfully predict walking state based on the video input, we are 

interested in being able to also capture the parameters of the gait in order to describe 

quantitatively the way in which the activity is being performed.  
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3 METHODS 

In this section, we discuss the devices and methods used to collect data. We also discuss 

the methods and algorithms used to process the collected data. 

3.1 Hardware 

The intent of our study is to design a system with a sensor that can be worn without 

imposing a significant physical burden to user. To accomplish this task, we select a video 

camera embedded within a pair of glasses to collect first-person video segments. Multiple 

commercial solutions that fit this constraint currently exist or are in development. We chose 

to use the Pivothead SMART Architect Edition glasses [8] for our video capture, which 

are pictured in Figure 1. This device appears nearly identical in physical form to a common 

pair of eyeglasses, but provides a high-definition video sensor in the bridge of the glasses 

over the nose. The earpieces also provide a pluggable platform into which an extended 

battery and Wi-Fi module may be inserted, as well as a micro-SD storage card. 



10 

 

 

Figure 1.  Pivothead SMART Architect Edition glasses 

 

Figure 2. Hexoskin Wearable Body Metrics Vest 

Classic approaches to the problem of activity recognition and analysis with wearable 

devices involve the use of accelerometers [9, 10, 11]. To provide a second data set to which 

the data from the Pivothead glasses may be compared, we also selected a commercial 

fitness vest which collects accelerometer data over the course of the activity. The chosen 

device is the Hexoskin Smart Shirt, which is shown in Figure 2 [12]. While the vest is more 

cumbersome to take on and off, it provides a combination of a more traditional sensing 
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modality and a relatively convenient and user-friendly device. The Hexoskin shirt also 

collects pulse and respiration data which are not intended to be used for the purpose of our 

study. 

3.2 Data Collection 

The following sections describe the two data collection events that occurred during this 

study to collect data from subjects performing gait activities. 

3.2.1 Video-only Data Collection 

In the initial validation of the automated method against manually annotated truth data, 

video was collected from four subjects as they performed a walking activity while wearing 

the Pivothead glasses. In order to control as many aspects of the environment as possible, 

the activity was performed indoors on a treadmill set at a constant speed. This provides a 

static background for the video and eliminates the possibility of capturing movement in the 

video which was not a consequence of the activity being performed. For example, a video 

recorded during a walk in the outdoors may include images of other pedestrians. These 

pedestrians will have an independent trajectory through the frame which is not 

consequential to the movement of the camera. Therefore, our method would not want to 

consider this motion.  

3.2.2 Video and Accelerometer Data Collection 

Once the initial validation was complete, additional data was collected in the same 

environment from five subjects. Each subject in this activity wore both the glasses and 

Hexoskin accelerometer vest. The video technique was assumed to be valid, so rather than 

comparing against annotated truth data, the second collection event had the goal of 
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correlating the outputs of the video analysis with the outputs from the accelerometer, hence 

the addition of the second sensor. As with the first data collection event, this collection was 

conducted in a static environment using a treadmill to eliminate extra movement in the 

view of the camera. Each participant walked at five different speeds to form five sets of 

video/acceleration data per subject. The speeds range from 2 to 3.5 miles per hour. This 

was performed so that we could not only test the generalizability of the correlation across 

participants, but also identify whether walking at a slower or faster pace impacted the 

results of the correlation. 

The data collection method was designed to ease the synchronization of the data 

collected from the camera and the accelerometer. The camera device was turned on first in 

each collection. Following this, the accelerometer was initialized in view of the camera. In 

this way, a rough approximation of the difference of start times of the two devices may be 

computed. 

The approximation of the starting times gives some idea of the initial offset of the two 

data recordings, but does not provide enough precision. To get a more precise alignment, 

we perform an activity to embed a physical marker in the data, with the goal of producing 

a unique waveform in both the accelerometer and the video motion. Prior to beginning a 

gait activity, the subject would complete a brief aperiodic movement, followed by at least 

three seconds of no movement.  

The beginning of the gait activity is marked by the transition between very low 

movement (expressed in the sensor as very low amplitude of accelerometer readings) and 

an apparent return to periodic behavior. An alignment of the data was chosen based on this 

transition which was initially found to be too imprecise. To refine the data alignment, we 
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further perform a cross-correlation of the signals from each device (i.e. the camera and the 

vest). The cross-correlation computes a correlation score of the waveforms with one dataset 

fixed in time and the other moved temporally by a single frame. Assuming that the two 

waveforms do in fact have some correlation, a perfectly chosen alignment will produce the 

highest correlation at zero (given that they have already been approximately well-aligned). 

In reality, the correlation from the rough marker position tended to be somewhere near to 

zero, but not at zero. This shows that our rough marker was not perfectly chosen, so we 

then shifted the alignment of the data to maximize that correlation. 

3.3 Motion Extraction Method 

Our initial study aims to validate the use of a body-worn camera as a sensing device 

for collecting parametric gait information using the video collected in 3.2.1. The first step 

in the process of converting raw video to parametric gait information is to extract motion 

vectors from the collected video. It is our observation that the major component of motion 

in first-person video is caused by the motion of the camera itself, rather than by the 

independent movement of objects within view of the camera. We take advantage of this 

observation to determine the motion of the subjects’ head while wearing the fixed camera. 

We evaluated three methods of automatically extracting motion from video. 

3.3.1 Dense Optical Flow 

Dense optical flow is an algorithm that takes two consecutive frames of video as input 

and provides as output a motion vector for each pixel in the frame. Since there is an attempt 

to describe the movement of each and every pixel between the two frames, the algorithm 

is computationally expensive, but may also provide a more complete view of the motion in 
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different regions of the video frame since each pixel is considered. Figure 3 illustrates the 

vector output of performing Dense Optical Flow on a single frame of the captured video. 

 

Figure 3. Sample output from a single frame with the Dense Optical Flow technique. 

Each pixel is evaluated and every fifth motion vector is plotted here with a multiplied 

magnitude for the purpose of visualization. 

We employ the algorithm described by Gunnar Farneback, which bases the calculation 

of motion on the displacement estimation for each pixel neighborhood. The displacement 

estimation for the pixel neighborhood is approximated by a polynomial expansion [13]. 

The general idea of the algorithm is to approximate local neighborhoods of a pixel with a 

polynomial of the form given in equation (1) . 

 𝑓1(𝑥) = 𝑥𝑇𝐴1𝑥 + 𝑏1
𝑇𝑥 + 𝑐1 (1) 

where 𝐴1 is a symmetric matrix, 𝑏1 is a vector, and 𝑐1 is a scalar. 
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If a new function (image) is constructed by adding a displacement 𝑑, this yields 

equation (2) below. 

 𝑓2 (𝑥) = 𝑓1(𝑥 − 𝑑) = (𝑥 − 𝑑)𝑇𝐴1(𝑥 − 𝑑) + 𝑏1
𝑇(𝑥 − 𝑑) + 𝑐1 

= 𝑥𝑇𝐴2𝑥 + 𝑏2
𝑇𝑥 + 𝑐2 

(2) 

 

where 𝐴2 is a new symmetric matrix, 𝑏2 a vector, and 𝑐2 a scalar.  

Since 𝑓2 is a translation of 𝑓1, we can set the coefficients of equations (1) and (2) equal 

to each other, and generate the following system of equations: 

 𝐴2 = 𝐴1, 

𝑏2 = 𝑏1 − 2𝐴1𝑑, 

𝑐2 = 𝑑𝑇𝐴1𝑑 − 𝑏1
𝑇𝑑 + 𝑐1 

(3) 

(4) 

(5) 

The displacement 𝑑 can be solved for using equation (4). This is the basis by which Dense 

Optical Flow provides a motion estimation. The displacement between two consecutive 

frames describes the amount of motion between them for the given pixel. 

3.3.2 Sparse Optical Flow 

Sparse optical flow is another algorithm used to provide an estimation of motion for 

video features across frames. However, unlike Farneback’s method, motion vectors are 

calculated only for regions of the frame that are deemed to be robust for making such 

motion detections, rather than for every pixel. This requires a two-step process of (1) image 

feature extraction and (2) optical flow calculation across the set of identified features. Since 

motion is only computed for a subset of each frame (i.e. the identified features), the 

algorithm is more efficient.  
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The feature extraction method that was used was the Scale Invariant Feature Transform 

(SIFT) [14]. SIFT identifies features which are scale-invariant. Such features are desirable 

for motion detection across frames of video. Because they are scale-invariant, the features 

should be easily identified even as they move around the frame, and even if they move 

nearer to or further from the camera. A reliable identification of the same feature in 

different positions between frames will likely lead to a more accurate estimate of motion. 

The features extracted by SIFT are passed as input to a sparse optical flow 

implementation derived from the work of Lucas and Kanade [15]. The Lucas-Kanade 

optical flow method requires as preconditions that the time increment (and by extension, 

the distance that a feature moves) between frames is very small, and that the intensity 

values change across frame images smoothly. This is because the optical flow method was 

originally intended to accomplish image registration, or finding the same sub-image in two 

different images. As the time step between two frames goes to zero, the location of a given 

sub-image, or image feature in the case of optical flow, in the second image is nearer to its 

original location in the first image. With this assumption, the method is able to restrict its 

search for the displacement to the neighborhood of the feature’s original location, similarly 

to Dense Optical Flow. It is assumed that the camera frame rate of thirty frames per second 

is a sufficiently high framerate for gait-related activities, and that naturally occurring 

scenes tend to have a smooth intensity gradient. 

For two images 𝐹(𝑥) and 𝐺(𝑥), the image registration solution requires finding a 

disparity vector ℎ that minimizes the difference in an image 𝐹(𝑥 + ℎ) and 𝐺(𝑥). To 

illustrate their algorithm, Lucas and Kanade use the single-dimensional case. In a single 

dimension, and for small enough ℎ, ℎ can be approximated with the following: 
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𝐹′(𝑥) ≈

𝐹(𝑥 + ℎ) − 𝐹(𝑥)

ℎ
=

𝐺(𝑥) − 𝐹(𝑥)

ℎ
 

(6) 

 
ℎ ≈

𝐺(𝑥) − 𝐹(𝑥)

𝐹′(𝑥)
 

(7) 

Since the value of ℎ depends on 𝑥, it is suggested that a single score for the difference 

of the two images is found using the average: 

 

ℎ ≈
Σ𝑥

𝑤(𝑥)[𝐺(𝑥) − 𝐹(𝑥)]
𝐹′(𝑥)

Σ𝑥𝑤(𝑥)
 

(8) 

where 𝑤(𝑥) is a weight applied at each 𝑥 that is inversely proportional to the difference 

in the rate of change of 𝐺 and 𝐹 at 𝑥.Unfortunately, the equation given in (8) is undefined 

when 𝐹′(𝑥) = 0. To fix this, Lucas and Kanade replace (7) with the following 

approximation: 

 𝐹(𝑥 + ℎ) ≈ 𝐹(𝑥) + ℎ𝐹′(𝑥) (9) 

Using this new approximation, a replacement for (8) that generalizes to multiple 

dimensions and avoids division by zero can be given by: 

 
ℎ ≈

Σ𝑥𝐹′(𝑥)[𝐺(𝑥) − 𝐹(𝑥)]

Σ𝑥𝐹′(𝑥)2
 

(10) 

In iterative form, which provides a sequence of ℎ𝑖 that converges to the best ℎ, and with a 

similar weighting function to (8): 

 ℎ0 = 0, 

ℎ𝑘+1 = ℎ𝑘 +
Σ𝑥𝑤(𝑥)𝐹′(𝑥 + ℎ𝑘)[𝐺(𝑥) − 𝐹(𝑥 + ℎ𝑘)]

Σ𝑥𝑤(𝑥)𝐹′(𝑥 + ℎ𝑘)2
 

(11) 

In multiple dimensions, the technique is similar, but uses the gradient instead of the 

derivative: 
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ℎ ≈
Σ𝑥 (

𝛿𝐹
𝛿𝑥

)
𝑇

[𝐺(𝑥) − 𝐹(𝑥)]

Σ𝑥 (
𝛿𝐹
𝛿𝑥

)
𝑇

(
𝛿𝐹
𝛿𝑥

)

 

(12) 

  

3.3.3 Speeded Up Robust Features Matching 

Speeded Up Robust Features (SURF) matching is another algorithm which provides an 

estimation of motion between frames for features of video. Instead of estimating a flow 

vector for each feature, as the optical flow methods do, SURF matching attempts to identify 

the same features in each input frame independently [16]. When the position of the same 

feature is known in the two consecutive frames, it is then possible to build the motion 

vector by taking the difference of the two positions. 

3.4 Motion Vector Consolidation 

Through the use of the optical flow and SURF matching algorithms, we are seeking to 

describe the movement of the camera worn by the subject over time. Because the camera 

is stationary and attached to the subject, the movement of the camera directly describes the 

movement of the subject. However, each of the chosen algorithms provide numerous 

differing motion vectors per frame of video. Depending on the number of features chosen 

in each frame and how accurately the motion is determined by the algorithms, it is possible 

to have disagreement between the vectors in a single frame, which necessitates a function 

that can give a single overall result that best represents the larger-scale motion of the frame 

as a whole. 

To achieve motion vector consolidation and produce a single resulting motion vector 

per frame of video from multiple feature vectors, we evaluate four common statistical 
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measures – 𝑚𝑖𝑛, 𝑚𝑎𝑥, 𝑚𝑒𝑑𝑖𝑎𝑛, and 𝑚𝑒𝑎𝑛. These simple measures were chosen to handle 

potential tendencies of the motion algorithms to under- or over-estimate the motion vectors. 

Because the motion vectors have two components, < 𝑢, 𝑣 > (derived from either (4) or 

(12)), we calculate the statistical measures based on the magnitude of the candidate vectors 

rather than on the individual components. 

3.5 Waveform Parameter Extraction 

While the investigation into optical flow algorithms advances the goal of describing 

the motion of the camera by examining the flow vectors extracted from the video, it does 

not directly help to describe the activity that was being performed. To help view the 

changes in activity over time, the optical flow vectors are split into 𝑢 and 𝑣 components 

and plotted against time, constructing two waveforms – one describing the amount of 

horizontal motion over time, and one describing the vertical motion over time. 

 The expectation of each waveform is that it exhibits periodic behavior. It is known 

from physiological research that the head moves in cyclic patterns during a walking 

activity. Since the camera is attached to the head, we also expect the camera to move in a 

cyclic motion, and therefore expect to see a cyclic pattern in the motion vectors over time.  

To extract parametric information from the waveforms, we look to signal processing 

techniques to give information from the frequency domain. By capturing parameters that 

describe the waveform activity over time, we are directly capturing parameters describing 

the motion of the subject. 
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3.5.1 Periodograms 

The periodogram of a signal gives an estimation of the spectral density, revealing the 

frequency components that comprise the signal. It describes the amount of power present 

in the signal at a certain frequency. Therefore, a single distinct peak in the periodogram 

identifies a strong sinusoidal component at that frequency. We use this spectral density 

analysis to find the periodicity of the motion represented by our extracted waveforms. 

3.5.2 Coherence 

The magnitude-squared coherence (or just coherence) is a statistic used to discover 

relationships between two signals with regard to their spectral content. For two waveforms 

𝑥(𝑡) and 𝑦(𝑡), the coherence is defined as 

 
𝐶𝑥𝑦(𝑓) =

|𝐶𝑥𝑦(𝑓)|
2

𝐶𝑥𝑥(𝑓) ∗ 𝐶𝑦𝑦(𝑓)
 

 

(13) 

where 𝐶𝑥𝑦(𝑓) is the cross-spectral density of 𝑥 and 𝑦, and 𝐶𝑥𝑥(𝑓) and 𝐶𝑦𝑦(𝑓) are the auto-

spectral densities of 𝑥 and 𝑦 respectively. Since the coherence measure is based on the 

spectral densities of the signals, it gives a more formal comparison of the frequency content 

than the periodogram. We can see from the equation that the coherence approaches 1 as 

the spectral densities of 𝑥 and 𝑦 are more similar, and approaches 0 as they differ. Similar 

to the periodogram analysis, we expect that the coherence measure of signals representing 

an activity with the same period will have a value near to 1 at least at the matching 

frequency. 
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3.6 Signal Smoothing 

The collection of data from both the camera and accelerometer sensors is affected by 

various kinds of noise and error, depending on the sensor. In the case of the camera sensor, 

image noise, poor exposure, and blur are all sources of error. Each of these provides visible 

artifacts in the recorded images and negatively impacts the motion extraction process. In 

the case of the accelerometer, data is affected by inherent inaccuracies as well as physical 

noise caused by undesired movement of the sensor within the pocket of the vest. Before 

attempting to correlate the data from these sensors, it is desirable to smooth the signals and 

eliminate local variance due to one of the mentioned sources of error.  

A simple moving average is used to smooth the data. For a signal 𝑓 and a given window 

size 𝑤, we define the moving average with the following equation: 

 
𝑓(𝑛) =

1

𝑤
[𝑓(𝑛) + 𝑓(𝑛 − 1) + ⋯ + 𝑓(𝑛 − (𝑤 − 1))] 

(14) 

 

3.7 Correlating Walk Frequency to Speed 

An important goal of our study is to examine and understand the correlation of data 

between the two sensors (the camera and accelerometer), and also the correlation of the 

data from each sensor individually to the actual pace at which the recorded activity was 

performed. Correlation of raw signal data to other raw signal data often gives poor results 

due to noise in the two signals. Even after smoothing or otherwise reducing noise in the 

data, the correlation may not perform well and is especially sensitive to the sampling rate 

and alignment of the data in the time domain. For this reason, we avoid performing a linear 

correlation between the waveforms directly. Instead, we perform correlation on features 

derived from the signals. In this case, we correlate the features presented in Table 1. These 
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features were collected during the data collection described in section 3.2.2. Figure 8 shows 

a visual depiction of the axes/channels used in the dataset relative to the subject. 

Table 1 - Description of features in correlation data set 

Feature Description 

𝑠𝑇 The speed of the treadmill 

𝑠𝑈 the peak frequency in the U (horizontal) 

channel from the glasses times stride length 

𝑠𝑉 the peak frequency in the V (vertical) 

channel from the glasses times stride length 

𝑠𝑋 the peak frequency in the X 

(forward/backward) channel from the 

accelerometer times stride length 

𝑠𝑌 the peak frequency in the Y (vertical) 

channel from the accelerometer times stride 

length 

𝑠𝑍 the peak frequency in the Z (horizontal) 

channel from the accelerometer times stride 

length 

 

Each of the computed features involves a factor of the estimated stride length of the 

subject. The estimated stride length is computed based on the height of the subject using 

equation (15) [17]. This is necessary because subjects of differing heights (stride lengths) 

will take steps at different frequencies when walking at the same speed. Adjusting the 



23 

 

features by a factor of stride length corrects for this difference when correlating across 

subjects. 

 
𝑙𝑒𝑛𝑔𝑡ℎ =  {

2 ∗ 0.415 ∗ ℎ𝑒𝑖𝑔ℎ𝑡  𝑓𝑜𝑟 𝑚𝑎𝑙𝑒 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠
2 ∗ 0.413 ∗ ℎ𝑒𝑖𝑔ℎ𝑡 𝑓𝑜𝑟 𝑓𝑒𝑚𝑎𝑙𝑒 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠

 
(15) 

The six features are computed per trial per subject for a total of 25 recorded values per 

feature. First, we linearly correlate the data from each channel within each sensor. That is, 

we correlate the 𝑈 and 𝑉 channels from the camera with each other, and we correlate the 

𝑋 and 𝑌, 𝑋 and 𝑍, and 𝑌 and 𝑍 channels from the accelerometer. Following this, we 

correlate across sensors, correlating the 𝑈 with each of 𝑋, 𝑌, and 𝑍, and 𝑉 with each of 𝑋, 

𝑌, and 𝑍. This builds an understanding of how the data from each sensor is providing 

related information. Finally, all five channels are correlated to the walking speed of the 

subject. 
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4 RESULTS 

In this section we discuss the results from each of the methods in Chapter 1 that were 

applied to the collected data during our study. 

4.1 Motion Extraction Method 

The Sum of Squared Errors (SSE) measure was used to evaluate the performance of 

the optical flow methods and vector consolidation functions for extracting the video frame 

motion. The SSE was computed for the output of each of the three optical flow methods 

on the same input video to determine which method gave the result most consistent with 

the annotated truth data. The SSE was calculated four times per optical flow method (once 

for each statistical aggregation method) to determine the effect of the various aggregation 

methods on the output of the algorithms. The results of this calculation are presented in 

Table 2. While the SSE measure itself is unit-less, the relative ranking of the SSE values 

in ascending order is indicative of the method that most effectively matched the truth data. 

For Dense Optical Flow method, the lowest SSE produced was in conjunction with the 

mean aggregation method, which resulted in an SSE of 47.253. The Sparse Optical Flow 

produced SSE measures of 6.421 and 7.080 with the median and mean aggregation 

methods, respectively. The best result with SURF matching was given using the minimum 

statistical method and resulted in an SSE of 51.334. Based on the SSE measure, when using 

the median, mean, and max statistical methods, Sparse Optical Flow produced the best 
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result, followed by Dense Optical Flow, and then SURF matching produced the worst 

results.  

Table 2. Computed SSE Values by Algorithm and Aggregation Method, Normalized 

by Total Frame Count 

 

 

 

 

 

 

 

4.2 Waveform Parameter Extraction 

Two waveforms are constructed from the output of the optical flow technique – one 

describing the horizontal component of motion, and the other describing the vertical 

component of the motion. Mapping the individual components of the output vectors over 

time produces two waveforms. Similar waveforms were also manually constructed from 

the annotated truth data for the same video inputs, providing a baseline against which the 

automated methods may be evaluated. We are interested in measuring the similarity 

between the waveforms from the optical flow technique and the manually collected truth 

data to determine whether the methods are appropriate. 

 Dense 

Optical Flow 

Sparse 

Optical 

Flow 

SURF 

Matching 

min 53.846 45.212 51.334 

median 53.689 6.421 1023.548 

mean 47.253 7.080 178.964 

max 4097.331 877.551 489795.918 
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4.2.1 Cross-Correlation 

The cross-correlation of two signals measures the similarity between them at different 

lag intervals. We compute the cross-correlation of the manually constructed truth 

waveforms and the waveforms output by optical flow. In this case, a high correlation at lag 

time 𝑡 = 0 will indicate that the two signals have similar content. A sample of the cross-

correlation output is shown in Figure 4. As expected, a peak at 𝑡 = 0 confirms the similarity 

between the signals. The shape of the cross-correlation result also confirms the periodicity 

of the signal. As the signals come in and out of phase with a consistent frequency, the cross-

correlation plot contains equidistant peaks.  
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Figure 4. Plot of generated waveform and truth waveform for horizontal component 

of motion (top) and plot of cross-correlation of the two signals (bottom) 

4.2.2 Periodograms 

After extracting the motion vectors using the outlined algorithms, we begin extracting 

parametric information from the generated waveforms in the 𝑢 and 𝑣 dimensions. This 

process was performed for the data collection described in section 3.2.1. A periodogram is 
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constructed for the truth data and also for each waveform. Peaks were identified in each 

periodogram to indicate the largest frequency components.   

The periodograms for the 𝑢 dimension of motion for two of the four subjects at the two 

speeds are presented in Figure 5. At 2.3 miles per hour, subjects A and B had an identified 

walking pace of .793 Hz, or one step every 0.63 seconds. At 3.9 mph, the identified rate 

for both increased to 1.02 Hz, or one step every 0.49 seconds. Similarly, at 2.3 miles per 

hour, subject D also had a calculated gait pace of .793 Hz, while subject C had a pace of 

.963 Hz, or one step every 0.52 seconds. 
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Figure 5. Plots of periodograms (calculated and truth) and coherence of calculated 

to truth waveforms for subjects A and B at 2.3 mph and 3.9 mph 

4.2.3 Coherence 

The result of computing the coherence between the generated waveforms and the 

manually annotated truth waveforms is also shown in Figure 5 for two of the subjects at 

two speeds. We notice that the coherence measure for the truth and generated waveforms 

is 1 at each of the peak frequencies in the periodograms. At other frequencies, the 
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coherence measure is often less than 1, but these frequencies do not represent the activity 

that was being performed so we do not expect to find a strong coherence. 

4.3 Signal Smoothing 

 We applied the moving average technique to the data recorded from each sensor with 

the goal of eliminating undesirable noise and erroneous values from the data. Figure 6 

shows four periodograms built from the same recorded data using the accelerometer sensor 

with different sizes of moving average filters applied to the time series data. The upper left 

was built from data with no averaging, the upper right with a window of four frames, the 

lower left with a window of 8 frames, and the lower right with a window of 16 frames. The 

periodograms built from the unsmoothed data and the data with a window size of 𝑤 = 4 

contain peak frequency content at just below 10 Hz, which is much quicker than the 

walking activity was taking place. The periodograms built with window sizes 𝑤 = 8 and 

𝑤 = 16 contain peak frequencies much nearer to 1 Hz, which is much more representative 

of the activity that was being performed. As the size of the averaging filter increases, the 

higher frequency components are removed from the data.  

 We know by the Nyquist-Shannon sampling theorem that the sampling rate must be at 

least twice the maximum frequency identified in the data [18]. While smoothing the signal 

does not strictly modify the sampling rate, it does have the effect of eliminating higher 

frequencies from the data. Sharp changes in the signal within the window are eliminated 

by the average operation. Thus we exercise caution in choosing too large of a window for 

the moving average as we do not wish to lose important frequency information from the 

signal. We do not perform averaging with a window larger than one fourth of the sampling 

rate in order to preserve the integrity of the data.   



31 

 

 

Figure 6. Periodogram of accelerometer data (z-axis) after applying moving average 

with 4 different window size (𝑤 = 0, 4, 8, 16) 

Fortunately, the activities we wish to examine do not occur at these higher frequencies. 

That is, we can logically assume that gait does not occur at 10 Hz (e.g. 20 steps per second), 

so smoothing the values and filtering out these frequencies does not affect the frequency 

data that is considered significant to our findings. 

4.4 Correlating Walk Frequency to Speed 

The computation of the features in Table 1 require the identification of peak frequencies 

in the periodograms of each subject wearing the camera and accelerometer sensors at each 

of the five different speeds. Unfortunately, even after attempting to remove noise with the 

techniques described in section 3.6, some data remained too noisy to give a single clear 
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peak. In these cases, the periodogram may have multiple competing peaks that are similar 

in height, complicating the task of choosing a single representative frequency. When a 

visual inspection of the periodogram revealed such a situation, the data were discarded 

from the correlation computations as a bad collection, regardless of whether it may cause 

the correlation to improve or worsen. Figure 7 shows an example of a histogram that led to 

discarded data.  

Here we see that our algorithm has identified a single maximum peak in the signal at a 

frequency of 2.227 Hz. However, several other local maxima exist in the signal. There is 

another peak of nearly equal power near 0.5 Hz, and multiple other significant peaks 

between the two largest. Such a number of large peaks in the periodogram indicate a very 

noisy signal resulting from inaccurate results from the optical flow method that was used. 
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Figure 7. Example of noisy periodogram that resulted from a bad collection 

 

All computed pairwise correlation results are presented in Table 3, and the definition 

of each discussed feature below is in Table 1. Figure 8 illustrates the axes of each device. 

The axes of the same color between the sensors correspond to the same physical direction 

of travel, though the sensors are worn on different parts of the body.  

The first set of correlations computed were between channels within each sensor. For 

the camera, we find that the 𝑠𝑈 and 𝑠𝑉 features have an extremely strong correlation with 

each other (with significance at 𝛼 =0.01). The features from the 𝑌 and 𝑍 channels of the 
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accelerometer vest, 𝑠𝑌 and 𝑠𝑍 respectively, also have a strong correlation with each other, 

and are significant at the 𝛼 = 0.01 level. There is also a significant correlation at the 𝛼 =

0.05 level between the 𝑠𝑋 and 𝑠𝑌 features. The feature computed from the 𝑋 channel of the 

accelerometer is not expected to be significantly correlated to the other features, since it 

represents the front/back acceleration of the subject, which is minimal when walking on a 

treadmill. This would not be the case for data collected from a gait activity where the 

subject was not on a treadmill. However, since the alignment of the axes in the 

accelerometer vest is not precisely measured, we cannot guarantee that the X-axis of the 

accelerometer is pointing exactly forward in the direction of travel. That is, there may still 

be some component of motion in the U- and V-axes of the camera data that correlates to 

the X-axis of the accelerometer, so we retain that feature in the dataset. 

After finding several significant within-group correlations, we begin examining 

between-group (i.e. between-sensor) correlations. The results of correlating features 

between the two sensors indicate that there is significant correlation between 𝑠𝑈 and 𝑠𝑌 at 

the 𝛼 = 0.01 level, and weaker but significant correlations between 𝑠𝑉 and 𝑠𝑌, which are 

significant at the 𝛼 = 0.05 level. There also exists correlations between 𝑠𝑈 and 𝑠𝑍,  and 𝑠𝑈 

and 𝑠𝑋, significant at the 𝛼 = 0.05 and 𝛼 =  0.01 levels respectively. Refer to Figure 88 

and Table 1 for descriptions of these features. 

Finally, we turn to examine correlations between each feature from each sensor and the 

“ground truth” feature – the 𝑠𝑇 derived from the recorded speed of the treadmill. A very 

strong correlation of 0.954 was found between 𝑠𝑌 and 𝑠𝑇 as well as 𝑠𝑍 and 𝑠𝑇, each 

significant at the 𝛼 = 0.01 level. A correlation also exists between 𝑠𝑋 and 𝑠𝑇 which is 

significant at the 𝛼 = 0.05 level, implying that all channels of the accelerometer have 
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frequencies that are relatively well-correlated to the true speed of the gait.  From the camera 

data, we find a correlation significant at 𝛼 = 0.05 between 𝑠𝑈 and 𝑠𝑇.  

We find no significant correlation between the 𝑠𝑉 and 𝑠𝑇 features, so the frequency of 

the vertical motion in the camera data is not significantly correlated to the true speed of 

gait. We find that the features computed from the V channel tend to be noisier than the 

features from other channels, which hurts the linear correlation. A more robust outlier 

detection or signal filtering method may be able to remove such outliers and improve the 

strength of this correlation, since we do expect that the V channel feature would be 

correlated to the gait speed as the other features are (as shown in Table 3).  

 

Figure 8. Subject wearing Hexoskin vest and Pivothead camera glasses with axes 

overlaid 
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Table 3 – Correlations between computed features 

  𝑠𝑇 𝑠𝑈 𝑠𝑉 𝑠𝑋 𝑠𝑌 𝑠𝑍 

𝑠𝑇 1      

𝑠𝑈 0.492424** 1     

𝑠𝑉 0.38651 
0.970096**

* 1    

𝑠𝑋 0.415744** 0.387766* 0.340153 1   

𝑠𝑌 0.954*** 
0.554251**

* 
0.49274*

* 
0.397917*

* 1  

𝑠𝑍 

0.797043**
* 0.441839** 0.373742 0.279735 

0.846169**
* 1 

* - significant at 𝛼 = 0.1 
** - significant at 𝛼 = 0.05 
*** - significant at 𝛼 = 0.01 
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5 DISCUSSION 

In this section we discuss the findings, complications encountered, and the implications 

of the results documented in section 3.7. 

5.1 Motion Extraction 

When considering the performance of the three different motion extraction algorithms, 

it is clear that the Sparse Optical Flow produces the best results. In each of the cases, 

regardless of the aggregation method that was applied, the Sparse Optical Flow algorithm 

produced data with a lower SSE than each of the other methods. We attribute the superior 

performance to the targeted selection of features that provide a more accurate estimate of 

motion within the frame. Features are identified based on their ability to be found in 

consecutive frames, providing motion vector estimates with less variance. We recall that 

the assumption has been made that the motion extracted from the video is resultant from 

the motion of the subject wearing the camera device. The environment being recorded has 

been limited to otherwise static objects. Thus an ideal motion extraction will produce 

vectors for each feature that are identical. Due to noise and error in the detection methods, 

we expect some variance among the extracted vectors, but a method producing vectors with 

lower variance indicates a preferable result. 

Optical Flow-based algorithms do not perform well in regions of video with uniform 

brightness, such as a blank wall. In these areas, features are difficult to detect from frame 

to frame, so the algorithm produces vectors that are very small or zero. For this reason, 
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these points are avoided as features in Sparse Optical Flow. However, Dense Optical Flow 

includes every pixel, including these undesirable ones, in the set of features. When 

examining the motion vectors produced by the Dense Optical Flow method, it is apparent 

that the method suffers from finding too many of these near-zero vectors. This influences 

the distribution of the vectors and damages the results produced by all of the statistical 

aggregation methods with the Dense Optical Flow algorithm. 

SURF matching provided the least consistent SSE across the aggregation methods. The 

best result from SURF matching was produced with the 𝑚𝑖𝑛 aggregation method, where it 

out-performed Dense Optical Flow, but still resulted in greater error than Sparse Optical 

Flow. However, the SSE values from SURF matching with the other aggregation methods 

had a much greater variance than the SSE values from the other motion detectors. While 

SURF matching does not suffer from the problem of too many features that degraded the 

performance of the Dense Optical Flow, the high amount of error when using the other 

aggregation methods reveals that the SURF matching has a tendency to over-estimate the 

amount of motion in the frame in comparison to the truth data. A visual inspection of the 

data supports this conclusion. Such large overestimations for certain image features in the 

video frame skewed the motion estimates produced by this method. The minimum vectors 

produced per-frame were the only vectors that were reasonably near to the truth values 

since the others were so large. 

Since the Sparse Optical Flow method outperformed the other methods by such a large 

margin, it was used in all subsequent activities as the motion extraction method. The mean 

was used as the vector aggregation method. Even though the median aggregation method 
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produced a lower SSE, it was only marginally better, and at the expense of computational 

complexity. 

5.2 Waveform Parameter Extraction 

We verify the similarity between the extracted motion vectors and the manually 

annotated truth data using several methods. A visual inspection of the data presented in 

Figure 4 shows that the optical flow produces a time series of motion components that is 

nearly identical to the annotated vectors. However, it is desirable to prove this relationship 

using quantitative methods. 

5.2.1 Cross Correlation 

We use cross-correlation to successfully prove that the two signals have similar content. 

The cross-correlation calculation is maximized at lag time 𝑡 = 0, indicating that the two 

signals are most nearly correlated when they are aligned at the start. We identify that the 

data has a cyclic nature from the shape of the cross-correlation plot as well. The correlation 

varies from a positive local maximum to a negative local minimum in a periodic fashion. 

These phenomena are equally spaced across frames, supporting the claim that the two 

signals are periodic. The points corresponding to local maxima are points where the two 

signals are aligned and in phase, and the local minima are where the signals are misaligned 

and out of phase. Since the two signals match so nearly, the resulting chart is nearly 

symmetric about the line t = 0, as seen in Figure 4.  

5.2.2 Periodograms 

Periodograms are regularly used to extract frequency information from signals. In our 

data collection routines, we fixed the speed of the participant to a constant. This means that 
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we expect to identify one major frequency on which the signal is focused. While there is 

an expectation that other frequencies may have some content associated with them due to 

noise (perhaps due to the camera sensor), we expect this to be the minority case. A visual 

inspection of the periodograms shows agreement in each of the eight collected video 

segments (see Figure 5). In fact, in all cases, we confirm that the peak in the truth data 

occurs at the same frequency as the peak in the extracted motion vector data. We further 

confirm by manual analysis of the collected video that the identified frequencies represent 

the true frequency at which the gait occurred. 

During the data collection described in section 3.2.1, four subjects walked at two 

different speeds. As seen in Figure 5, at 2.3 miles per hour, subjects A, B, and D had an 

identified walking pace of .793 Hz, which equates to one step every 0.63 seconds. At 3.9 

mph, both subjects had an extracted stride frequency of 1.02 Hz, or one step every 0.49 

seconds. At 2.3 miles per hour, subject C had a pace of 0.963 Hz, or one step every 0.52 

second. The more frequent steps at the same speed are expected, possibly due to differences 

in the height of the subjects.  

5.2.3 Coherence 

While the identified peaks prove that the majority of frequency content in the computed 

and truth signals are similar, we attempt to quantify the degree to which the frequency data 

matches using the magnitude squared coherence (Figure 5). As noted earlier, this 

confirmed our expectations that the signals have matching frequency content with regard 

to the true frequency at which the gait was occurring. 
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The single frequency at which we expect the waveforms to match – the frequency at 

which the gait activity occurred – has a perfect coherence of 1 for each participant. We 

notice that some other frequencies also produce a high measure of coherence between the 

two waveforms. For example, the coherence plot for subject A (Figure 5) at 2.3 miles per 

hour shows a significant amount of coherence between the truth and generated data at just 

less than 2.5 Hz. A similar peak in coherence occurs just above 3 Hz for subject A at 3.9 

mph. These are much quicker than the activity that was taking place, so these frequencies 

do not directly describe the rate at which the gait occurred. However, it may represent 

another cyclic movement that takes place within a single stride (since it was more frequent 

than the gait). More analysis would be required to determine the cause and whether the 

pattern may be generalized to multiple subjects. 

5.3 Comparing Video to Accelerometer 

The comparison methods in section 5.2 provide evidence that the motion vectors 

extracted by the optical flow algorithm produce similar content to vectors manually 

annotated by hand. Once this procedure was validated, we adopted the assumption that the 

results produced from subsequent data collections were also going to be valid. Rather than 

continue to verify the vectors produced by optical flow against truth data, we seek to 

correlate them to data from a more traditional accelerometer sensor. As referenced in 

section 1, the current body of work contains accelerometer-based approaches to measuring 

gait parameters with wearable devices.  

5.3.1 Data Alignment 

One of the most difficult challenges in comparing the video- and accelerometer-based 

data is aligning the data such that the samples from the devices are appropriately correlated 
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in time. The two commercial devices used must be powered on separately, meaning that 

they are highly unlikely to begin recording at exactly the same moment. The video data 

conveniently provides the context of the surrounding seen in the video to temporally locate 

the time of the recording. The accelerometer, however, contains no information regarding 

the environment, which poses a problem. 

5.3.1.1 Temporal Alignment 

The data collection process was designed in a way that aided the synchronization. The 

camera device was turned on first in each collection. Following this, the accelerometer was 

initialized in view of the camera. In this way, a rough approximation of the difference of 

start times of the two devices may be computed. 

The approximation gives some idea of the initial offset of the two data recordings, but 

does not provide enough precision. To get a more precise alignment, we perform a second 

physical marker in the data to produce a unique waveform in both the accelerometer and 

the video motion. Prior to beginning a gait activity, the subject would complete a brief 

aperiodic movement, followed by at least three seconds of no movement. The gait activity 

then began immediately following the period of no movement. In the extracted waveforms, 

this created a unique signature of high amplitude followed by nearly zero amplitude, 

followed by periodic movement of gait. 

5.3.1.2 Accounting for Sampling Rate 

Another difficulty with aligning the data is that the two devices have different sampling 

rates. The frame rate of the video is 30 frames per second, and the sampling rate of the 

accelerometer is 64 Hz. This leaves the option of down-sampling the accelerometer or up-

sampling the video. We decided to up-sample the video in order to get matching frame 
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rates which is necessary for the frequency-based calculations of correlation and coherence. 

Down-sampling was not used on the accelerometer because the final rate would have been 

less than half of the original, resulting in loss of information. 

5.3.2 Frequency Content 

A comparison of frequency content between the camera and accelerometer data reveals 

that the data from each device produced a waveform with identical frequencies. It is clear 

from the periodograms in Figure 6 that the measurements from the two sensors have 

distinct errors and the data must be smoothed before comparing between the camera and 

accelerometer. The unsmoothed accelerometer data does not appear to contain the 

frequency component of the walking activity as its primary feature. Instead, a much more 

frequent pattern is prominent in the periodogram. However, as the data is smoothed with a 

large enough window, the higher frequencies are eliminated from the signal, leaving only 

the truly significant frequency from the given activity. In this case, the higher frequency 

noise is likely due to the sensitivity of the accelerometer device to very slight movements 

inside the pocket of the vest. A window size of 𝑤 = 16 (one fourth of the sampling rate of 

the device) appears to give the best results for isolating the desired frequency and was used 

in subsequent comparisons of the accelerometer data to the camera data. 

5.4 Correlating Walk Frequency to Speed 

The correlation of computed features provides insight into the data being collected by 

each sensor. The strong within-group correlations (correlations between channels from the 

same sensor) are expected, but confirm that there is a strong relationship between the 

correlated axes of motion during the activity. That is, there is a strong linear relationship 
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between the movement captured by each sensor in the horizontal and vertical planes during 

the walking activity. 

The between-group relationships (correlations between channels from different 

sensors) were not as strong as the within-group relationships. This should also be expected 

since the sensors are worn on different parts of the body. However, there is still a moderate 

correlation between data from the two sensors. This result supports the conclusion that the 

camera sensor and optical flow method can produce similar (correlated) data to the 

accelerometer for the gait activity. Since related work often involves the use of 

accelerometer sensors, finding that camera data is correlated provides support for applying 

existing techniques across sensor types. 

The correlation between computed features and the actual true walking speed of the 

subject is another important result. We find that the most prominent frequencies detected 

in all channels of data being collected are correlated to the true walking speed, except for 

the 𝑉-channel from the camera glasses. As discussed in Section 4.4, this result could be 

improved with additional outlier detection or signal filtering. For example, some of the 

outlier frequencies fall into ranges that are not realistic for the activity being performed, 

such as a stride frequency of less than 0.25 Hz (one stride every 4 seconds). These 

frequencies could easily be eliminated with a bandpass filter on appropriate frequencies 

determined by the activity under investigation such as walking or running. 

Our strong correlation results  provide validation that the features being computed (and 

the methods used to compute them) are providing useful information for the task of 

estimating the walking speed. That is, we confirm that the estimated frequency of the 
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activity and the estimation of stride length are in fact providing information related to the 

true gait parameter of speed. 

 Through this research, we are seeking to determine whether the data between the 

sensors is significantly correlated to allow for one sensor to take the place of the other. We 

find similar elimination of sensors based on correlation with promising results in [19]. 

Minimizing the number of sensors in our approach provides a simpler and less expensive 

solution, and improves the usability for applications with the targeted demographics, which 

include the elder-care and rehabilitation communities. In the case of our devices, there is 

much more existing research on accelerometer-based methods, making the accelerometer 

a reliable choice. However, the camera sensor is most convenient for a subject to put on 

and use, so it would be desirable to eliminate the accelerometer vest from our approach. 

We expect from our findings that we should receive acceptable results from applying 

existing methods to the camera data since the camera data is significantly correlated to the 

accelerometer data. 

 In the general case, our conclusion is that the data between the sensors is strongly 

correlated enough to allow for one sensor to replace the other. A system which retains both 

the accelerometer and camera sensor, may provide richer data than a system with just one 

of the sensors. Since the sensing modalities differ, they are prone to differing types of noise 

under different circumstances. In the event that one sensor provides a bad dataset, the other 

sensor may be used to fill in a temporal gap in the data, making the system more robust 

than a system with a single sensor or even with multiple sensors of the same type. 
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6 CONCLUSION 

  In this work we had the goal of identifying parameters that describe a gait activity 

using a wearable camera and accelerometer sensors. Our instrumentation is non-invasive 

and lightweight, providing convenience to the subject. We performed two data collection 

events in controlled environments – one with subjects wearing only the camera, and one 

with subjects wearing the camera and accelerometer vest simultaneously. 

Using sparse optical flow methods, statistical aggregation, and signal processing 

techniques, we are able to identify frequencies of motion that occur during a subject’s gait 

from video data alone. We also have success in correlating the frequencies of motion in the 

horizontal plane (perpendicular to the ground) to the true frequency at which the subject 

was walking. 

Building upon these results, we perform similar signal processing techniques to identify 

frequencies in data collected from the accelerometer vests. We find significant correlations 

between the data derived from 1) channels within each sensor, 2) channels between the two 

sensors, and 3) channels from each sensor and the true walking speed. 

Our results indicate that it is possible to perform parametric gait analysis via a 

commercial wearable camera and vest which are very simple to use. Our method is 

currently limited to controlled environments, but the devices also provide an easily portable 

hardware configuration. 
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7 FUTURE WORK 

The following sections detail additional work that could be conducted in the future to 

advance or improve upon the results found and described herein. 

7.1 Environmental Variability 

Each of the described data collection events were conducted on a treadmill in a room 

with a static background and consistent lighting conditions to minimize errors in motion 

detection. However, the downside to this decision is that it effectively removes a dimension 

of movement by keeping the subject stationary. Therefore, removing this restriction will 

improve the portability of the system and potentially improve the results of the method.  

To remove the environmental restrictions requires having a method of removing 

unwanted objects from consideration when computing motion vectors. The current method 

is based on the assumption that the majority of motion on the frame may be attributed to 

the motion of the subject. If other objects in view have motion independent of the subject’s 

motion, this will invalidate the assumption. To correct for this, objects that are not part of 

the background need to be detected and removed. We save the exercise of detecting these 

objects and ignoring them during motion analysis for a future project. 

7.2 Kinematic Model of Gait 

The work described herein extracts gait parameters from collected data and compares 

the extracted parameters to truth data. While the methods produce the desired result, the 
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collected data does not provide a complete model of gait. A limitation of the camera and 

accelerometer is that they do not provide such truth data against which a comparison may 

be formed. The data provides little or no external view of the subject. For example, in the 

collected data, we would expect to find a strong correlation between subject height and the 

frequency of steps at a fixed speed (having shorter legs requires more frequent steps than 

having longer legs), but unfortunately did not collect this data from the participants and no 

such measure can be drawn from the data. We were also unable to explain the weaker 

frequencies detected in the video (discussed in section 4.2.3). This would require richer 

data on the pose of the subject during the activity, as well as understanding the noise 

sources of the video and accelerometer data. 

 A future data collection is scheduled to provide a full gait model via a motion capture 

system that collects video from 21 time-synchronized cameras. This system will provide a 

detailed model of major joint movement during gait, and a much richer truth dataset against 

which parameters may be extracted.  
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