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ABSTRACT 

Putchala, Manoj Kumar. M.S., Department of Computer Science and Engineering, Wright State 

University, 2017.   Deep Learning Approach for Intrusion Detection System (IDS) in the Internet 

of Things (IoT) network using Gated Recurrent Neural Networks (GRU). 

 

The Internet of Things (IoT) is a complex paradigm where billions of devices are connected 

to a network.  These connected devices form an intelligent system of systems that share the data 

without human-to-computer or human-to-human interaction.  These systems extract meaningful 

data that can transform human lives, businesses, and the world in significant ways.  However, the 

reality of IoT is prone to countless cyber-attacks in the extremely hostile environment like the 

internet.  The recent hack of 2014 Jeep Cherokee, iStan pacemaker, and a German steel plant are 

a few notable security breaches.  

To secure an IoT system, the traditional high-end security solutions are not suitable, as IoT 

devices are of low storage capacity and less processing power. Moreover, the IoT devices are 

connected for longer time periods without human intervention. This raises a need to develop smart 

security solutions which are light-weight, distributed and have a high longevity of service.  Rather 

than per-device security for numerous IoT devices, it is more feasible to implement security 

solutions for network data. The artificial intelligence theories like Machine Learning and Deep 

Learning have already proven their significance when dealing with heterogeneous data of various 

sizes. To substantiate this, in this research, we have applied concepts of Deep Learning and 

Transmission Control Protocol/Internet Protocol (TCP/IP) to build a light-weight distributed 

security solution with high durability for IoT network security. 

First, we have examined the ways of improving IoT architecture and proposed a light-

weight and multi-layered design for an IoT network. Second, we have analyzed the existing 
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applications of Machine Learning and Deep Learning to the IoT and Cyber-Security. Third, we 

have evaluated deep learning’s Gated Recurrent Neural Networks (LSTM and GRU) on the 

DARPA/KDD Cup '99 intrusion detection data set for each layer in the designed architecture. 

Finally, from the evaluated metrics, we have proposed the best neural network design suitable for 

the IoT Intrusion Detection System. With an accuracy of 98.91% and False Alarm Rate of 0.76 %, 

this unique research outperformed the performance results of existing methods over the KDD Cup 

’99 dataset. For this first time in the IoT research, the concepts of Gated Recurrent Neural 

Networks are applied for the IoT security. 
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1. Introduction 

1.1     Overview 

The world is currently witnessing the rapid product launches and high expectations from 

emerging Internet of Things (IoT) technology.  It is growing at an accelerating pace connecting 

billions of devices in our daily life.  As per the Gartner event analysis, there will be around 25 

billion connected things by the year 2020 [1]. These connected devices enhance day to day 

activities and build smart solutions.  But, the massive opportunities and utilities delivered by IoT 

technologies are shadowed by privacy trade-offs and grievous security concerns.  One must 

consider the numerous connected devices, complexities, competing trends and diversities that must 

be managed while developing solutions for IoT. The current security protocols are only applicable 

for high powered computers for short-lived sessions. It is not viable to use the same protection 

technique for long-running sessions.  For these reasons, IoT devices became attractive targets for 

the hackers making our lives endangered with unexpected threats. 

One practical approach for dealing with these complexities of the IoT could be the use of 

the concepts of "lightweight" and "adoption" to develop robust security solutions.  "Adaptive 

Lightweight" solutions have proven their worth many times in dealing with inconsistencies in very 

large distributed systems. It is almost impossible to design a security solution for each IoT device 

in a network because there are so many. However, securing the data that is transmitted between 

the devices in an IoT network would be a practical approach. With the help of artificial intelligence, 

wide ranges of sizes and types of data can be analyzed to develop adaptive solutions for the IoT 

system.  

Machine Learning and Data Analytics techniques are already employed to improve 

customer service and network efficiency by analyzing the huge amounts of IoT data. Machine 
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Learning concepts such as pattern recognition, anomaly detection, and behavioral analytics can be 

used in IoT networks for detecting any potentially harmful behavior and blocking abnormal 

activities. 

In this thesis, we came up with a unique research that involves a Multi-Layer architecture 

for an IoT system. We then applied deep learning algorithms to the IoT network for monitoring 

the network data to classify activity either as “normal” or “malware attack” for each layer in the 

architecture. We have used the KDD 99’Cup intrusion detection dataset [29] which is a benchmark 

data set used in most of the machine learning research on network data security.  

1.2     Motivation: 

Deep Learning ‘mimics the brain functionality’ with the help of robust neural network 

algorithms. The wide range of deep learning applications includes image recognition, computer 

vision, speech recognition, pattern recognition and behavior recognition.  In the world of IoT, the 

datasets are high-dimensional, temporal and multi-modal.  Deep Learning algorithms with robust 

computation power are more suitable for complex IoT datasets compared to legacy machine 

learning techniques.  The application of deep learning to the IoT domain, particularly in IoT 

security is still in the initial stages of research and has a great potential to find insights from the 

IoT data. With smart use of deep learning algorithms, we believe that IoT solutions can be 

optimized.  For example, recurrent neural networks in deep learning have the capability to learn 

from previous time-steps of the input data. The data at each time-step is processed and stored and 

given as input to the next time-step.  The algorithm at the next time step utilizes the previous 

information stored to process the information.  Though the neural network structures are complex, 

the hyperparameters can be tuned to obtain light-weight functionality for IoT solutions.  This 

hypothesis motivated us to apply deep learning concepts to IoT network security. 
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1.3    Problem Statement 

The goal of this thesis is to analyze and answer the following research questions: 

• What are the security and privacy issues relevant to the IoT environment? 

• Does GRU better than the other machine learning approaches for Intrusion 

Detection on the IoT? 

• Does a separate GRU based IDS for each network layer perform better than the all 

layer GRU?  

1.4     Purpose, Scope, and Contribution 

The purpose of this thesis is to analyze the applications of deep learning to the Internet of 

Things (IoT) network security by evaluating recurrent neural network algorithms on the intrusion 

detection dataset. We believe that this research has an immense potential to open the doors for 

Deep Learning applications to both the cyber security domain and the IoT domain. The importance 

of security in today’s connected world requires analyzing the humongous amount of heterogeneous 

data, and this cannot be possible without the help of artificial intelligence. This research can be 

extended by applying the algorithms on GPU environment on real-time IoT data. 

 

Though there are various deep learning algorithms such as deep neural networks, auto 

encoders, convolutional neural networks and recurrent neural networks, the research problem 

requires an algorithm that can learn from historical data. Therefore, we have selected the family 

of recurrent neural networks for the research. Considering the need of building smart and light-

weight solutions for the IoT network, we have performed the experiments with only the Gated-

Recurrent-Unit (GRU) algorithm while the vanilla RNN and LSTM are ignored. However, we 
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have evaluated various versions of GRU such as bi-directional GRU and multi-layer GRU to 

obtain optimized results on the dataset. Due to the unavailability of intrusion detection data for an 

IoT network, we have considered the KDD 99’ Cup / DARPA dataset, which is used as a 

benchmark by most other IDS-Machine Learning researchers. However, we have modified the 

data by dividing it into various layers such that the same procedure can be applied in an IoT 

network.  

As this is an inter-disciplinary research project which involved cybersecurity, artificial 

intelligence and computer networks, a lot of time has been spent in understanding the depth of the 

concepts in each field. We started with understanding the attack types in an intrusion detection 

dataset. We followed up with learning the architecture of TCP/IP and analyzed the possible 

malware attacks at each layer. We then realized that the intrusion detection data-set must be 

classified with machine-learning algorithms. We also learned the IoT architecture and started 

evaluating machine learning algorithms satisfying the IoT characteristics. However, we recognized 

that the application of deep learning algorithms is the most suitable approach for the research 

problem defined. We performed the experiments using a robust deep learning tool called Google’s 

Tensorflow. We have also applied the higher versions of recurrent neural networks. The 

performance results are compared for each designed IDS layer with All-layers IDS. This overall 

interdisciplinary practical approach made this research unique. 

 

1.5     Research Methodology 

We started with a rigorous literature review on the current security and privacy issues in 

the IoT. We then framed the characteristics which are apt for building IoT solutions. In the next 

step, we proposed a multilayer approach that satisfies the defined IoT characteristics. As a proof 
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of concept, we have selected the IoT network data security issue to design a smart solution. We 

have applied deep recurrent neural network algorithms on the network data to classify each sample 

as “normal” or “intrusion”. Due to the IoT data unavailability, we have used the IDS benchmark 

data-set as it provides us an opportunity to compare the results of this thesis with existing results 

on that dataset. We have evaluated the performance of algorithms using accuracy, precision, recall, 

f1 score, false alarm rate, the area under ROC curve and the confusion matrix.  We then compared 

the results at each layer of the designed IoT architecture with the all-layers IDS and existing 

literature.     The overview of the methodology of this research is summarized as below in Figure 

1. 

 

 

 

 

 

 

 

     

                                                         Figure 1: Research Methodology 

 

 

Literature review on Internet of Things 

and the applications of Machine 

Learning and Deep Learning for IoT 

network security 

Propose a smart approach for the 

network security in an IoT system 
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Networks on the KDD 99’ Cup dataset 

Compare the results at each point of the 

designed architecture 
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results of other machine learning 

and deep learning research on IDS 
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2. Background 

This chapter provides information on the background involved in developing this research. 

It introduces the concepts and technologies of Internet of Things (IoT) followed by its security and 

privacy concerns. Further, this chapter addresses the characteristics to be considered while 

developing IoT security solutions. This chapter continues to elucidate the concepts of network 

security and intrusion detection systems. Later, explanation of the network architecture is provided 

for the Long-Short-Term-Memory (LSTM) and Gated-Recurrent-Unit (GRU) recurrent neural 

networks. The final sections of the chapter explain the importance of Machine Learning and Deep 

Learning for IoT security by quoting their relevant applications. The main intention of this chapter 

is to provide a complete overview of the concepts and algorithms for the reader with minimal 

knowledge in this field of research. 

2.1 What is the Internet of Things? 

The Internet of Things (IoT) incorporates everything in the world, from the body sensor to 

modern cloud computing.  It ubiquitously connects machines, networks, and humans, thus creating 

a complex distributed system.  It advances human life by achieving robust machine-to-machine 

communication and machine-to-human communication.  In this context, the IoT introduced smart 

grids, smart homes, smart cities and the Industrial Internet of Things (IIoT). Due to its wide range 

of applications and diverse technologies, the IoT has created many research opportunities in recent 

years. 
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2.2    Technologies in IoT 

The reality of the IoT is possible by integrating various enabling technologies. Major 

contributors to the IoT are sensors, radio-frequency identification (RFID), nanotechnologies and 

smart technologies as shown in Figure 2 

 

Figure 2: Underlying Technologies of Internet of Things(IoT) 

RFID: Radio-Frequency Identification (RFID) devices are microchips which are wireless 

for automated identification and tagging objects. These devices can identify the object without 

line-of-sight wirelessly, with the use of a reading device called a reader and tags to detect the 

channel and sense the collections. RFID technology is used in various current day applications like 

credit cards, automobile ignition keys and so on. The application of RFID technologies to the 

Internet of Things (IoT) system is crucial to exploit the moving nodes and to build intelligent 

systems. 

Sensor: The Internet of Things (IoT) is impossible without the use of sensors in the system.  

The communication between the IoT ecosystem is achieved with data flow between the devices 
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where the data is collected and received. Sensors act as a gateway to collect the data and to detect 

the physical status of the things. 

Smart Technologies: Smart technology devices like smart fridge, smart phone, and other 

wearable technologies make the Internet of Things(IoT) dream possible with robust performance 

in the network. The smart technologies adapt smart solutions while accessing the resources in the 

IoT system and enhance the processing capabilities of the network. 

Nano Technologies: Complex IoT systems make use of nanotechnologies, which have a 

potential impact to design smart solutions. For example, nanosensors can be used in city locations 

to monitor the spread of diseases. 

2.3    Privacy and Security Issues in IoT: 

Even though the Internet of Things (IoT) is a boon to the society, it also creates serious 

security and privacy concerns. With the day-to-day interactions with real-time applications and 

with most of the IoT devices left unattended without any monitoring, the IoT system raises 

numerous privacy and security concerns. The range of vulnerabilities that the IoT raises is vast in 

terms of infrastructures, network, device, and interface.  Based on the exposure of the network, the 

issues in privacy and security can be categorized as shown in Figure 3. 
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Figure 3: Security Threats in IoT with respect to architecture 

2.4     Importance of network security in IoT: 

 The size and count of the devices in the IoT network makes it difficult to implement per-

device security. Network-based security can be implemented to act as a protective shield by 

monitoring the data throughout the network. Moreover, the network based solutions can be easily 

applied to other IoT networks with minor required changes, unlike device security. The devices in 

the IoT network should be registered to allow access to the network to be protected from intruders. 

All the incoming and outgoing traffic for each device needs to be monitored and a template should 

be created for the normal behavior of the network traffic. Any network data which does not fall in 
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the established behavior is identified as a threat and alarms are signaled to the owners of the 

devices.   

2.5     Intrusion Detection System (IDS) 

Network security can be achieved with the help of a software application called an Intrusion 

Detection System (IDS), which monitors the malicious activities of the system or the networks. 

IDS can be classified into different types. Based on their responsive nature, IDS is categorized into 

Active IDS and Passive IDS. An Active IDS is designed to block the malware attacks 

automatically, without any human intervention, whereas a passive IDS only monitors the network 

traffic and alerts the users. Another categorization of IDS is Signature-Based IDS and Anomaly-

based IDS.  In the signature based approach, the IDS access a database of known signatures and 

vulnerabilities. Each intrusion attack contains the complete details of the attack called a signature 

and that is used to detect and prevent future attacks. The main drawback of this method is that the 

database needs to be updated frequently, whereas the anomaly-based IDS (behavior-based) learns 

from the baseline patterns to detect new intrusion attacks. Any deviation from the existing baseline 

patterns are identified as attacks and alarms are triggered. Another division of the IDS is based on 

the place where it is mounted. When an IDS is placed on the network segment it is said to be a 

Network Intrusion Detection System, whereas, when an IDS is deployed in workstations, they are 

said to be Host-based Intrusion Detection Systems. Host-based Intrusion Detection Systems have 

a significant number of drawbacks and may not be suitable for research purposes.  
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2.6    Machine Learning and Deep Learning 

Machine Learning is a branch of artificial intelligence that deals with the analysis and 

construction of systems from the knowledge gained from the data [3]. The wide range of 

applications of machine learning includes regression, classification, prediction and so on. It is 

categorized mainly into three types based on the use of labeled data– a) Supervised learning, b) 

Unsupervised learning, and c) Semi-supervised learning. The commonly used algorithms in 

machine learning include linear regression, Navie-Bayes classifier, logistic regression, support 

vector machines, artificial neural networks and so on. 

 Deep Learning is a complex version of machine learning with multiple levels of abstraction 

of data at multiple processing layers [4].  Deep Learning can learn the intricate structures in the 

dataset through back-propagation and indicates how machine changes the internal parameters at 

each layer. The frequently used deep learning algorithms include deep belief networks, auto-

encoders, convolutional neural networks and recurrent neural networks. 

2.7   Why is Deep Learning better than Machine Learning for the IoT? 

Deep learning, which is also known as hierarchical learning or deep structural learning, is 

a broader version of machine learning in terms of complexity in the structure and learning data 

representations. The key difference between machine learning and deep learning is the change in 

the performance as the scale of the data increases. Deep Learning algorithms require a larger 

amount of data to find the patterns in the network where machine learning requires the less data. 

Artificial Neural Networks (ANN) that contain one or more hidden layers will make the structure 

deep and the data is processed at each layer, thus, making the learning task deeper. The commonly 

used deep learning architectures include deep belief networks (DBN), deep neural networks 
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(DNN) and recurrent neural networks (RNN), which are applied to research fields such as natural 

language processing, speech recognition, computer vision, audio recognition, machine translation 

and social network filtering. Deep Learning can also be applied to IoT data research where the 

data is heterogeneous and multi-modal. Traditional machine learning algorithms fail to deliver 

long term results for IoT devices which are usually connected for longer time-periods. Recurrent 

neural networks (RNN) in deep learning have the capability to learn from the previous time-steps 

and can be used with less human intervention. In RNN, the output of each node in the hidden layer 

is given as input to the same node at each time-step. The useful information is stored in the memory 

and can be used for learning purposes in future time steps. The difference between an RNN and 

Feed-forward neural network(FNN) can be seen in Figure 4: 

 

Figure 4: Hidden Units in Recurrent Neural Network vs Feed Forward Neural Network 

2.8    Long-Short-Term Memory RNN (LSTM): 

 Recurrent Neural Networks (RNN), when trained in real-time learn from previous time-

steps by backpropagation through time (BPTT).  A deep neural network is unfolded in time and 

constructs an FNN for every time-step. Then, the gradient rule updates the weights and biases for 

each hidden layer, thus, minimizing the loss between the expected and actual outputs. However, 

standard RNNs cannot perform better when the time-steps are more than 5-10. The prolonged 

back-propagation leads to vanishing or blow up of error signals, leading to oscillating weights, 

which makes the network performance poor. To overcome this vanishing gradient problem, 
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researchers came up with the Long-Short-Term-Memory (LSTM) network which bridges the 

minimal time gaps. LSTM makes use of a gating mechanism to handle long-term dependencies. 

The LSTM structure can be seen in Figure 5: 

 

Figure 5: Long Short Term Memory Cell 

 

LSTM has a cell state which is passed to every-time step. A gating mechanism is used to 

optimize the information that is passing through. It contains a sigmoid function layer which outputs 

between one and zero. A value of one means “pass all the information through”, whereas the value 

of zero means “do not pass any information through”. The "forget gate" decides the information 

that needs to be let through between the current input and previous cell state output using the 

sigmoid function. The "input gate" decides what information is required to store in the cell state. 

This gate contains two functions - "sigmoid" to decide what values need to be updated, and the 

“tanh” function to create a new vector of values that are to be added to the cell state. The “output 

gate” decides on what information from the cell state is required to output with the help of a 
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sigmoid function. The output information is passed through the “tanh” function before passing 

through the “sigmoid”, to make sure that the values are between -1 and +1. 

2. 9     Gated Recurrent Unit (GRU): 

 A Gated Recurrent Unit (GRU) is a lighter version of an LSTM where the complexity in 

the structure is reduced by decreasing the gates in the architecture. The GRU merges both the 

“forget gate” and “input gate” in an LSTM to an “update gate” and combines the hidden state and 

cell state, resulting in a simpler architecture of the network as shown below Figure 6:  

 

Figure 6: Gated Recurrent Unit Cell 

2.10     Multi-Layer GRU RNN: 

 Deep recurrent neural networks can have various architectures which influence greatly the 

performance of the algorithm. One can add many layers of RNN (plain RNN, LSTM or GRU) 

cells and stack the network into a deep structure called a Multi-Layer RNN as shown in Figure 7. 

This technique has a wide range of applications in speech recognition systems and weather forecast 
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systems with high dimensional data. When GRU cells are used in each hidden layer of a recurrent 

neural network it is said to be a Multi-Layer GRU. In the multilayer structure, the input of the 

network is passed through multiple GRU layers apart from back propagation through the time. It 

has been proven that multi-layered RNNs learn from the different time lengths of input sequences 

[4]. Another key important feature of multi-layered RNNs is that they share the hyperparameters, 

weights, and biases across the layers, thus achieving optimized performance.  

 

                                                                   ........................ 

 

  

 

 

 

 

 

 

 

Figure 7: A Multi-Layered LSTM/GRU recurrent neural network 
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Layer 2 

GRU/LSTM 
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2.11     Hyper-Parameters: 

The hyperparameters used in the design of the recurrent neural network have a great impact 

on the performance of the network [5]. Although there are many hyper-parameters involved in the 

design of a recurrent neural network, the parameters having the largest impact on the performance 

of the network are learning rate, number of hidden layers, number of units/cells in the hidden layer 

and the number of time-steps. 

Learning Rate: It is a measure of the rate at which the network optimizes the minimization 

of the loss function in a neural network. Mathematically, if the loss function is L (X; W, b), then 

the goal of the network is to minimize the loss (cost) function L. The weights are constantly 

updated to achieve the best possible output reducing the loss value. The learning rate determines 

how fast the parameters are updated. One must vary the learning rate during the training of the 

neural network to obtain the best results. 

Time-Steps: Selecting the number of time-steps also plays a crucial role in the 

performance of the system. The information required to find the correct patterns depends on the 

number of time-steps that are required to back propagate. Tuning the number of time-steps 

improves the output of the network. When more time-steps are selected, the network takes longer 

to time to train and vice-versa.  

 Hidden Units: The number of cells in a hidden layer determines the amount of 

computation performed on the input data [6]. The more hidden units in the network, the longer it 

takes to train. The neural network should be trained for a various numbers of hidden units to verify 

the performance of the system.  
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 Hidden Layers: The stacking of GRU layers as discussed in the above multilayer GRU 

section, has a great impact on higher dimensional datasets. However, most deep neural networks 

obtain optimized performance with a single hidden layer [6]. One must decide on the number of 

hidden layers to be used with respect to their data-set size and the dimensions. 

2.12     Evaluation Metrics 

To evaluate the performance of the classification model the following metrics are used in 

machine learning research. In general, the confusion matrix visualizes the performance of the 

algorithm in a tabular form as shown in the figure below: 

 

Where, 

• True Positive (TP) is the total number of samples predicted as “normal” while they 

were “normal”. 

• False Negative (FN) is the total number of samples predicted “normal” while they 

were “attack”. 

• False Positive (FP) is the total number of samples predicted “attack” while they 

were “normal”. 

• True Negative (TN) is the total number of samples predicted “attack” while they 

were “attack”. 
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All other important metrics such as Precision, Accuracy, Recall, False Alarm Rate (FAR) 

and Area under ROC curve (AUC) can be calculated using these 4 measures taken from the 

confusion matrix as shown below: 

 

 

 

 

2.13     Random Forest Classifier (RF) 

 A Random Forest Classifier is an ensembled machine learning technique for supervised 

learning tasks. This algorithm was initially suggested by Breiman where he described the 

advantages of Random Forest as below [21]: 

• Ability to handle numerous input variables without a necessity for variable deletion. 

• Can run on huge data bases efficiently 

• Provides estimates of important variables for the classification 

• Robust to noise and outliers when compared to single classifiers 

• Lightweight when compared to other boosting methods 

We have made use of the ability of the random classifier method to rank the importance of the 

features set to the target variables. We have selected those variables based on the maximum 

importance levels. Those features with low values of the importance will add less information to 

the learning model and are ignored based on the threshold values of the importance.  
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3. Literature Review 

3.1   Machine Learning for Cyber-Security 

With the rapid advancements in cyber-attacks and availability of huge amounts of 

malicious data in cyber infrastructures, machine learning and data mining and other 

interdisciplinary capabilities are frequently used to address the challenges of cyber security.  

Machine learning can be applied in signature detection, anomaly detection, scan detection, network 

traffic profiling and privacy-preserving data mining.  

Machine Learning for Signature/Misuse Detection: Signature Detection, also called 

misuse detection, is recognizing unique patterns of unauthorized behavior to detect and predict 

future similar attempts [2].  To handle uncertainties and improve robustness fuzzy-rule-based 

techniques are used.  When new attacks occur, these fuzzy-rule systems generate human-like 

expertise in decision making rather than relying on humans to update [2].   

Machine Learning for Anomaly Detection: Finding any event of the system falls outside 

of a predefined set of normal behaviors is the goal of anomaly detection.  Clustering-based 

anomaly detection was done by Portnoy et al (2001), who found that the unlabeled data has more 

potential in detecting unknown attacks through a semi-automated or automated process, allowing 

cyber security experts to focus on the most likely attack data [2].  Zhang 2006, applied random 

forests to the DARPA MIT KDD Cup 1999 data set and evaluated the performance using ROC.  

The best detection rate was achieved by keeping the lower FP rate when compared to other 

unsupervised anomaly systems [2]. 
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3.2    Machine Learning and Deep Learning for IoT: 

Smart homes:   Smart home is one of the most sensitive IoT environments as it involves 

users and daily use devices. The security and privacy must be at top-notch when it comes to IoT 

intelligent homes. Advanced deep learning techniques like Deep Belief Network-

Artificial/Recurrent Neural Networks (DBN-ANN/RNN) can perform behavior analysis on living 

habits and provide continuous service with smart home automation [7]. 

Smart City: With smarter infrastructure and signal timing adjustments and dynamic re-

routing, traffic flow can be improved. Despite all the hype, the smarty city faces potential cyber 

threats which can be influenced mainly by technology, governance, and socio-economic factors.  

The deployment of sensors, meters and the integration of real-time information from the citizens' 

results in a tremendous amount of data.   The machine learning approach involves a huge amount 

of network traffic flows and detecting patterns in the huge traffic data. Network profiling contains 

the steps data capturing, filtration and generation of associated rules.  The privacy of the data being 

the most crucial part as smart city network involves a large number of devices and citizens, 

machine learning uses privacy-preserving data mining(PPDM) algorithms to ensure security to the 

data [8].   

Industrial IoT: The Industrial Internet of Things(IIoT) is the part of the Internet of Things 

(IoT) that focusses on devices and objects used in business settings.  Devices can be used to sense 

and collect data from maritime fleets, to help reduce unplanned downtime or for manufacturing 

systems to provide better control processes. These IIoT systems generate large amounts of privacy-

sensitive and security-critical data that needs to be protected in an efficient way.  Luo X 2016, 
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applied kernel machine learning algorithm in an Industrial IoT setting to predict large-scale web 

Quality of Service (QoS) [9]. 

Smart Grid: Smart grid encompasses the modernization of the power transmission and 

distribution grids that exist within the current power grid. This approach aims to improve the use 

of resources, distribute information and assets across organizational and geographical boundaries, 

integrate all critical information, and provide security from hazardous threats. A variety of attacks 

like eavesdropping, traffic analysis, replaying, spoofing, cracking and destruction can be 

performed by attackers on smart grid systems.  Esmalifalak, M 2014, proposed a Support Vector 

Machine based method to detect the “stealth” attacks in the IoT smart grid [10]. 

Health-Care IoT: With a growing population, the IoT becomes crucial by being able to 

track every patient, piece of equipment and batch of drugs to improve efficiency and safety by 

extending the care beyond the hospital. In the same way, the IoT has caused new security issues 

in the healthcare industry which requires reformed measures to handle them.  A few risks include 

possible harm to patient's health and safety, loss of infrastructure and physical attacks. An attacker 

that successfully hacks an IoT healthcare device can obtain access to a patient's sensitive 

information including his movements, health, and habits, making security and privacy concerns to 

the end users. H. Abie and I. Balasingham in their paper "Risk-Based Adaptive Security for Smart 

IoT in eHealth", described an adaptive security monitoring framework along with a case-study to 

support.  The model consists of five important steps- 1) Identify the threat 2) Analyze the problem 

and predict the impact 3) Plan the corresponding actions 4) Track the focus on risk mitigation 

actions 5) Control the risk exposure [1]. At every point of this model, robust machine learning 

algorithms are used to provide sufficient security to the patient using the IoT Health care device 

[11].  
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3.3     Machine Learning applications on IDS: 

Many researchers have already applied machine learning techniques to intrusion detection. 

Li, Y., & Guo, L. (2007), carried out a supervised active learning method based on Transductive 

Confidence Machines for K-Nearest Neighbors (TCM-KNN algorithm) for intrusion detection. 

Their research could achieve a false positive rate of 0.027 which can be improved further [13].  

Another unsupervised method using clusters was proposed by Leung, K., & Leckie, C. (2005, 

January), with best Area Under ROC (AUC) of 0.973 [14]. Ashfaq, R. A. R., (2017), applied a 

fuzzy based semi supervised technique for intrusion detection datasets and achieved an accuracy 

of 84.12% and 68.62% on the KDD Cup ’99 test datasets. However, better-improved results on 

larger intrusion detection data sets are obtained using deep learning techniques that can be 

reviewed in section 3.4  

3.4      Deep Learning applications on IDS: 

Deep belief networks, auto-encoders, and restricted Boltzmann machines are widely used 

for the feature extraction for the intrusion detection data sets. Tao, X., (2016), used a supervised 

Fisher and Deep Auto-Encoder to extract the important features required for the KDD Cup '99 

dataset [16]. Recurrent neural networks are highly used for classification and regression tasks, 

many the researchers have applied LSTM and GRU for IDS classification.  Kim. J., (2017 

February) has applied the Long-Short-Term-Memory algorithm along with Gradient Descent 

Optimization for an effective intrusion detection classifier with an accuracy of 97.54% and recall 

of 98.95% [17]. The same research team applied the Gated Recurrent Unit for the first time in the 

research on intrusion detection data sets with satisfactory results where the values of recall, false 

alarm rate, and accuracy are 97.06%, 10.01% and 98.65% [20].  Staudemeyer, R. C., (2013, 
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October) evaluated the performance of LSTM networks on the KDD 99 ‘Cup IDS data set with 

satisfactory results [21]. The same team came up with improved results in which the cost of 

training the network and training accuracy were 22.13 and 93.82% [22]. All the existing research 

has considered random records with a small size, which is not apt for deep recurrent neural 

networks. We have tried to overcome this drawback by applying gated recurrent networks to the 

whole dataset.  
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                                 4.     Design and Architecture 

4.1     Introduction 

This chapter provides a brief information to the design approach and the datasets used in 

building an intelligent model for an IoT network. The key features required for IoT solutions are 

adaptive, lightweight, multi-layer, distributive and ability to learn from the past. We designed an 

innovative architecture for an IoT home network that would reduce the size of the datasets for the 

IDS classifier. We have selected the KDD Cup 1999 Intrusion Detection Dataset for the 

experiments and proposed an intelligent solution which satisfies the key requirements of the IoT 

solutions. We have performed the feature engineering using a Random Forest classifier and 

selected those features with high importance. We performed a rigorous data analysis and prepared 

the data in the required format before it was used as an input to the model.  

4.2    Key features for IoT solutions 

Internet of Things (IoT) security solutions are multi-faceted, where the data flow is 

protected with integrity, confidentiality, and authentication services; the system is secured against 

disruptions and intrusions. An IoT system deals with various heterogeneous devices and multi-

modal data over time and hence, standard solutions may not be effective. There is a need to develop 

smart solutions which are applicable to various levels of data flow in the network. It raises an urge 

to invent scalable solutions to apply on devices with various memory sizes. We came up with three 

key features that are exactly required to handle the IoT systems as described below: 
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4.2.1 Light-Weight: 

Unlike smartphones and computers, a significant number of IoT devices are not capable of 

processing anti-malware software due to the low-end operating system used in such devices. They 

do not have the infrastructure to perform advanced techniques to protect from sophisticated 

malware threats and at the same time, they lack sufficient memory space to store the ever-

expanding list of malware databases. Lightweight security solutions make it easier for developers 

to roll out any security updates and to collect the performance of the devices which are used to 

take an action if new services or products are required to improve the performance. Thus, 

lightweight solutions make the system dynamic, scalable, performance optimized, interoperable 

and flexible. 

4.2.2 Multi-Layered (Distributive): 

The differences in the capabilities of IoT endpoint devices highlight the idea of a multi-

layered distributive approach in the IoT architecture. With an open traditional architecture, the IoT 

system is easily prone to information, privacy and security leaks. The multi-layered architecture 

deals with devices and their data at various levels, making the system robust. In an IoT network, 

data is produced by various kinds of devices, processed and stored in different ways, and 

transmitted to various locations. A single layer model may not generate optimized performance 

across the IoT system, restricting the locality or scope of the components; whereas, a multi-level 

or multi-layered architecture is distributed across the system, allowing the processes to be executed 

at each level, from complex to trivial, based on the situation. 
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4.2.3 Longevity:  

In terms of the Internet of Things, the longevity levels are different from typical handheld 

consumer devices. For example, in a smart city application, the life cycle of the device would be 

10 to 20 years. Therefore, the IoT solutions designed for those devices should have the capability 

to learn continuously from past experiences without human assistance. The life span of IoT 

applications like smart TVs and refrigerators tend to have longer time-periods and must function 

in the absence of the manufacturer. Longevity is important to gather any demand for the IoT system 

devices as it improves the Return on Investment(ROI). It costs a lot for any agency to monitor the 

maintenance of the deployed devices in an IoT environment for a long time. There is a significant 

amount of research on developing IoT solutions which can work for more than 10 years with good 

longevity. Moreover, security solutions when processed for longer periods should have the 

capability to accommodate newer malware attacks over the period. Hence, there is an urge to 

improve the existing solutions in a smarter way.   

4.3    Architecture: 

Considering the above features for IoT security solutions, we have come up with a robust 

architecture to monitor intrusion detection activity in a sophisticated manner. Out of various 

security measures, we have selected network security as the use case to prove the defined features 

are apt for an IoT network.  As we are going to deal with IoT network security, the research is 

performed on an intrusion detection data which contains information about “normal” and 

“malware” connection types logged in an  IoT network. In a regular wireless system, the 

Intrusion Detection System (IDS) monitors the network data using either a “Signature-based 

approach” or an “Anomaly-based approach”. The IDS mounted at a point in the network obtains 
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all the network data and classifies the data into “normal” or “attack”. Other than traditional 

approaches, Machine Learning (ML) algorithms are applied to a dataset and classification is 

performed through supervised learning. However, this legacy approach may not be suitable for 

smart IoT network systems due to their heterogeneity. As mentioned in section 4.2, the security 

solutions for intrusion detection should be light-weight, multi-layered and have a good amount of 

longevity. Hence, we developed a multi-layered architecture and applied light-weight machine 

learning algorithms which can work with better performance for longer periods of the time. 

An IoT system contains various devices which are placed at different locations with long 

distances between them. The number of devices involved in IoT systems is higher when compared 

to a regular wireless or wired system. A single IDS system must have the memory capacity to 

process the network data among all the devices and must be responsive in a short amount of time. 

In this case, the performance will be poor in the IoT network due to the high number of devices 

and the large distance between the devices. Therefore, we have come up with an architecture where 

an IDS for the whole system can be replaced by four Intrusion Detection Systems based on the 

malware attacks that occur at each TCP/IP layer. Each TCP/IP layer has specific devices, for 

example, the transport layer contains switches, while the network layer contains routers. Each IDS 

placed at a TCP/IP layer monitors only the data obtained from the devices that belong to that layer. 

This way, the network load will be shared the system, so that it becomes light-weight and the 

response time improves. The architecture can be seen in the Figure 8 below: 



 

28 
 

 

 

 

 

 

  

 

 

Figure 8: Multi-Layer architecture for IoT network 

The next key features that need to be handled in developing an IoT security solutions are the "light-

weight" and "Longevity" characteristics. We originally selected an anomaly detection approach 

where we planned to apply and evaluate various machine learning algorithms that occupy less 

memory. However, “Longevity” cannot be achieved when traditional machine learning algorithms 

are used because they do not have the capability to learn from past experiences. The entry of deep 

learning algorithms like recurrent neural network algorithms opened the path to develop solutions 

that can learn from past occurrences. Recurrent neural network algorithms such as Long-Short-

Term-Memory (LSTM) and Gated-Recurrent-Unit (GRU) had already proven a great success in 

various domain applications. As discussed in Chapter 2, the GRU has less complexity in the 

architecture when compared to LSTM, thus, making it light-weight. We have performed the 

anomaly detection experiments using GRU and LSTM and evaluated the performances on the 

intrusion detection data set obtained at the various IDS layers. We have also applied improved 
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versions of GRU algorithms like Dynamic GRU, Bi-directional GRU and obtained the optimized 

performance and results for the dataset. Thus, the GRU algorithm has the capability to satisfy both 

the key features of IoT solutions which are “light-weight” and “Longevity”. The results obtained 

at each layer are compared with results obtained for single layer IDS, and are explained in detail 

in Chapter 4. 

 4.4    IDS - Datasets: 

Intrusion detection data for training machine learning algorithms are limited in the 

literature. The two mainly used datasets are the UNB ISCX 2012 datasets and KDD Cup'99 

/DARPA datasets. The most literature on the application of machine learning algorithms on 

intrusion detection data set uses the DARPA KDD Cup '99 dataset and hence we selected this for 

the research. This way, the results obtained in this research can be compared to the results of the 

previous research. 

The DARPA KDD Cup '99 datasets were generated by the Defense Advanced Research 

Projects Agency (DARPA ITO) on a simulated air force model. The training data was collected 

for seven weeks and the testing data were collected for two weeks. The whole dataset contains 39 

network-based attack types and has more than 200 instances of background traffic compared to an 

air force base model. The complete network traffic is either classified as one of the attack types or 

"normal". The datasets can be found on the UCI website where repository links to the three 

different versions of data set exist. The three versions of the KDD 99'Cup IDS datasets are – full 

KDD data set, corrected KDD, 10% KDD.  Among these three, 10% KDD data set is used in most 

literature and hence, we are using the same for this research. As discussed before, using the same 

dataset which was used before will provide a chance to compare this thesis results with the existing 
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results. The 10% KDD dataset contains 24 attack types, which are mainly categorized into four 

classes – Probe, Denial of Service(DoS), User to Root (U2R) and Remote to Local (R2L). The 

training and testing samples are represented with 41 features and a label with either "normal" or 

"attack type". The features can be divided into three types: the first group describes the features 

that are used for providing information on the command that is used for connections, the second 

group of features describes the specifications of the commands, and the third group describes the 

features that convey information about the connections having the same destination with the same 

service.  In most of the literature that uses the intrusion detection dataset, the researchers randomly 

selected a specific amount of records and used it for training and testing their models. However, 

in this thesis, we considered the whole dataset. As the GRU algorithm requires a time series 

dataset, we have neither randomized the sequence nor removed the duplicates, thus, making it apt 

for GRU classification analysis. 
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4.5    Data Flow: 

          The end to the flow diagram of the deep machine learning model is represented in Figure 9. 

 

Figure 9: End to End data flow of the machine learning model 

4.6     Experimental Settings: 

4.6.1 Data Preparation: 

As explained above we have selected the 10% KDD dataset to train and test the machine 

learning algorithms. The dataset is split into different layers based on the attack types at the 
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respective TCP/IP layers as shown in the architecture diagram. We are not considering Link Layer 

as part of this research because no attack type in the data set falls into the Link Layer category. All 

attack types in the dataset fall under one of the three TCP/IP layer category shown in below Table 

1: 

Layer Attack Types 

Application Layer pod,Smurf,back,buffer_overflow,load module, warezmaster,Perl,Nmap, 

guess_passwd,Satan,impa,ftp_write, multihop and normal. 

Transport Layer Neptune, land, teardrop, port sweep, buffer overflow, Nmap and normal 

Network Layer overflow, Smurf, pod, IP sweep and normal 

All Layer IDS Normal and all attack types 

 

Table 1: Attack Types for each TCP/IP Layer 

 Each sample is read and appended to a new dataset based on the attack type. The dataset 

for the Application Layer IDS has 382,266 samples, out of which 97,278 samples are “normal” 

and the remaining samples are categorized as one of the attack types. The dataset for the Transport 

Layer has 206,780 samples, out of which 109,502 are categorized as one of the attack types and 

the remaining samples are “normal”. The dataset for the Network layer and all layers contains 

379,609 and 490,251 samples respectively. The dataset contains three categorical features which 

need to be encoded into numerical form before they are provided as input to the algorithm model. 

The features “protocol_type”, “service” and “flag” are encoded to numerical values. For every 

data set, 80% of the data is considered as the training data and 20% of the data is considered as the 

testing data. Each dataset is later divided into a features set and the corresponding label set. We 

have encoded the label "normal" as [0 1] and "all other attack types" as [1 0]. 
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4.6.2 Feature Engineering 

 The main motive of this research is to build a light-weight security solution for IoT systems. 

Therefore, it is important to reduce the number of features and use only the important features 

required for training and testing the algorithm. We have used a random forest classifier as the 

feature selection technique which is proven as the best method for reducing the dimensionality for 

the KDD’99 Cup dataset [12]. The random forest uses tree-based methods that rank the features 

importance based on their ability to improve the node purity (Gini impurity). We have graphically 

visualized the importance of each feature and selected the top six features for each dataset before 

inputting them to the model. The decrease in the features in the input data from 41 to 6 makes the 

model faster to train and respond, making it flexible and adaptive. The graphical visualizations 

and the selected feature set for each IDS are detailed in the next chapter 

4.6.3 Hardware and Software used 

We have selected Google’s Tensorflow to perform the experiments as it provides an option 

to visualize the network design which is important for the developers. The experiments are 

implemented in the below environment: 

CPU: Intel ® Core ™ i5-5200U CPU @ 2.20 GHz  

RAM: 8GB 

 OS: Windows 10 

 Programming Language: Python 

 Libraries used: numpy, scikit-learn, pandas, and Tensorflow.  
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5. Results: 

5.1     Introduction: 

In this chapter, we provide the detailed results for each IDS classifier obtained using a 

Gated-Recurrent-Unit (GRU) neural network and their evaluation measures. We started the 

experiments with a light-weight GRU where we used one hidden layer and one hidden unit. We 

performed 10 sets of experiments for each hyper parameter set (learning rate, time-steps, hidden 

layers) and tuned them to obtain the optimized results. This turned out to be a binary classification 

problem where the classifier classifies each sample as “normal” or “attack”. Hence, we used the 

evaluation metrics for classification like accuracy, precision, recall, false positive rate and AUC. 

We have decided upon the best models by considering every relevant metric for the defined 

research problem which will be explained in detail in the later part of the chapter. 

5.2     Feature Selection 

As explained in previous chapters, we have used the random forest classifier algorithm to 

select the top important features for each IDS classifier. The selected features and the graphical 

results of the importance of the features for each classifier are shown in Table 2 and Figures 

10,11,12,13. It can be seen from the table that “Protocol_type” feature has been selected in all the 

intrusion detection layers. This shows that the feature “Protocol_type” provides high information 

to categorize the label as “attack” or “normal”. It can also be seen that the application layer IDS 

and network layer IDS select four features (Protocol_type, count, srv_count, dst_host_count) in 

common. 
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Layer Type Features Selected 

All layers Protocol_type, service, flag, src_bytes, dst_bytes, logged_in, count, srv_count, 

same_srv_rate, diff_srv_rate, dst_host_same_srv_rate, dst_host_diff_srv_rate 

Application 

Layer 

Protocol_type, flag, count, srv_count, dst_host_count, dst_host_same_src_port_rate 

Network Layer Protocol_type, src_bytes, count, srv_count, dst_host_count, dst_host_same_srv_rate 

Transport Layer Service, count, srv_error_rate,same_srv_rate, diff_srv_rate, 

dst_host_same_src_port_rate 

 

Table 2: Selected Features list for each IDS classifier based on the performance 

 

Figure 10: Feature Importance graph for all layers IDS 

 

Figure 11: Feature Importance graph for Application Layer IDS 
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Figure 12: Feature Importance graph for Network Layer IDS 

 

Figure 13: Feature Importance graph for Transport Layer IDS 

5.3     Evaluation Metrics 

In this section, we have evaluated the performance of the IDS classifiers by tuning the 

hyper-parameters of the GRU algorithm. We have performed a similar type of experiments on 

each IDS classifier (All layers, application layer, transport layer, and network layer classifiers). 

We compared the values of training accuracy, recall and false alarm rate with learning rate and 

time-steps to understand the behavior of model with change in hyper-parameters. 
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5.3.1 Performance results of All-Layer IDS Classifier: 

In this experiment section, first, we started with a time-step range 

[10,20,30,40,50,60,70,80,100] and selected the time-steps which has best training accuracy. After 

selecting the time-step we searched for the learning-rate which produces best training accuracy. 

We used one hidden layer and one hidden unit in the network to satisfy the “light-weight” property 

of the IoT system. The detailed results are shown in Table 3. 

Time-Steps Train Accuracy Precision Recall F-1 Score FAR 

10 98.694 0.9994 0.99 0.9977 0.0022 

20 98.833 0.9943 0.3296 0.9922 0.0077 

30 96.71 0.986 0.9952 0.9418 0.05812 

40 98.706 0.9996 0.9902 0.9983 0.0016 

50 97.7799 0.9967 0.9919 0.9865 0.0134 

60 84.89 0.8914 0.9935 0.5011 0.4988 

70 98.911 0.9981 0.9939 0.9923 0.0076 

80 98.359 0.9999 0.9842 0.9997 0.0002 

90 98.382 0.9995 0.9859 0.9981 0.0018 

100 97.618 0.9937 0.9925 0.974 0.0257 

 

Table 3: Evaluation Metrics for All Layer IDS Classifier 

From the Table above, it can be inferred that the model performance is optimized when 

the input is given with ‘70’ time-steps and thus, this value is selected for further experiments for 

the All-Layers IDS in the research. The plots for the impact of time-steps and learning rate over 

recall, false alarm rate and training accuracy for All-Layer IDS classifier can be observed in 

Figures 14,15,16.  
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Figure 14: Impact of time-steps on recall in All-Layer IDS classifier 

 

Figure 15: Impact of learning rate over training accuracy in All-Layer IDS classifier 

 

Figure 16: Impact of time-steps on false alarm rate (FAR) in All-Layer IDS classifier 
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 The confusion matrix in Figure 17 provides information about the true-negatives (TN), 

false-negatives (FN), false-positives (FP) and true-positives (TP). The detailed confusion matrix 

values for the All-Layer IDS classifier with the best hyper-parameter combination (time-steps = 

40, learning_rate = 0.01) is presented in Table 4 and Figure 17:  

       

 

 

 

 

 

  

5.3.2 Performance results of Application Layer IDS classifier 

 In this experiments section, we have used the dataset with attacks occurring at the 

application layer which was prepared during the data preparation stage. A similar series of 

experiments as in the All-Layer IDS case is performed on the Application Layer IDS and we 

have achieved the best training accuracy with ‘40’ time steps. The complete results for 

Application Layer IDS can be interpreted in Table 5 and Figure 18, 19, 20. 

Time-

Steps 

Train 

Accuracy Precision Recall F-1 Score FAR 

10 93.73 0.9242 0.9978 0.9596 0.2414 

20 99.71 0.9989 0.9971 0.998 0.003 

30 96.6 0.9678 0.9871 0.9774 0.0964 

40 99.72 0.9998 0.9965 0.9981 0.0005 

True-Negatives 76503 

False-Positives 1467 

False-Negatives 8394 

True-Positives 308813 

Table 4: Confusion Matrix 

for All-Layer IDS         

Figure 17: Confusion Matrix plot for the All-Layer IDS 
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50 99.04 0.9998 0.9837 0.9935 0.0003 

60 99.6 0.9999 0.9948 0.997 0.0001 

70 98.05 0.99104 0.9827 0.9868 0.026 

80 99.671 0.9998 0.9937 0.9968 0.0003 

90 98.767 0.9969 0.9864 0.9917 0.0088 

100 99.64 0.9996 0.9956 0.997 0.0011 

 

                                Table 5: Evaluation Metrics for Application Layer IDS classifier 

 

 

Figure 18: Impact of time-steps on recall in Application-Layer IDS classifier 

 

Figure 19: Impact of learning rate over training accuracy in Application-Layer IDS classifier 
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Figure 20: Impact of time-steps on false alarm rate (FAR) in Application-Layer IDS classifier 

The confusion matrix of the optimized (time-steps = 40, learning rate – 0.01) and the 

corresponding plot for the Application-Layer IDS can be analyzed in Table 6 and Figure 21. 

 

 

 

 

 

      

 5.3.3 Performance results of Transport-Layer IDS classifier: 

 The set of experiments for the Transport-Layer IDS classifier can be found in Table 7, 

Figures 22, 23, 24. We have achieved best-optimized results with time-steps '60' when processed 
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True-Negatives 77305 

False-Positives 44 

False-Negatives 795 

True-Positives 22768 

Table 6: Confusion Matrix 

for Application-Layer IDS         
Figure 21: Confusion Matrix plot for the Application-

Layer IDS 
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with learning rate 0.01.  All the experiments are performed on the transport layer data set which 

contains those attacks of samples belonging to the transport layer with results presented in Table 

7 and Figures 22,23 24. 

Time-

Steps 

Train 

Accuracy Precision  Recall 

F1 

Score FAR 

10 99.3 0.9938 0.993 0.9934 0.0068 

20 98.78 0.9952 0.981 0.9884 0.0052 

30 99.27 0.9995 0.9867 0.9931 0.0005 

40 99.05 0.9988 0.9832 0.9909 0.0012 

50 99.106 0.998 0.985 0.9914 0.0022 

60 99.475 0.9988 0.9911 0.995 0.0012 

70 99.43 0.9994 0.9902 0.9948 0.0005 

80 98.83 0.9986 0.9793 0.9888 0.0015 

90 98.74 0.9977 0.9785 0.988 0.0024 

100 99.167 0.9963 0.9878 0.992 0.004 

 

                                Table 7: Evaluation Metrics for Transport Layer IDS classifier 

 

Figure 22: Impact of time-steps on recall in Transport-Layer IDS classifier 
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Figure 23: Impact of learning rate over training accuracy in Transport-Layer IDS classifier 

 

 

Figure:24 Impact of time-steps on false alarm rate (FAR) in Transport-Layer IDS classifier 

 

The confusion matrix of the optimized (time-steps = 60, learning rate – 0.1) and the 

corresponding plot for the Transport-Layer IDS can be analyzed in Table 8 and Figure 25. 
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 5.3.4 Performance results of Network-Layer IDS classifier: 

 The results for the Network IDS classifier are detailed in Table 9, Figures 26,27,28. It can 

be observed that the best-optimized results are obtained for the time-steps ‘40' and learning rate 

‘0.001'. 

Time-Steps Train Accuracy Precision Recall F1 score FAR 

10 99.32 0.9993 0.9915 0.9954 0.0018 

20 99.21 0.9999 0.9894 0.9964 0.00006 

30 99.42 0.9989 0.9932 0.9961 0.0029 

40 99.901 0.9921 0.9938 0.993 0.018 

50 99.49 0.9998 0.993 0.9964 0.0002 

60 99.45 0.9999 0.9927 0.9963 0.00006 

70 99.43 0.9943 0.9999 0.9961 0.00026 

80 99.42 0.9999 0.9922 0.996 0.0012 

90 99.45 0.9999 0.9927 0.9963 0.0001 

100 99.39 0.9977 0.9941 0.9959 0.0064 

 

                                Table 9: Evaluation Metrics for Network Layer IDS classifier 

True-Negatives 77853 

False-Positives 97 

False-Negatives 771 

True-Positives 86643 

Table 8: Confusion Matrix 

for Transport-Layer IDS         
Figure 25: Confusion Matrix plot for the Transport-

Layer IDS 
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Figure 26: Impact of time-steps on recall in Network-Layer IDS classifier 

 

Figure 27: Impact of learning rate over training accuracy in Network-Layer IDS classifier

 

Figure 28: Impact of time-steps on false alarm rate (FAR) in Network-Layer IDS classifier 
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The confusion matrix of the optimized (time-steps = 40, learning rate – 0.001) and the 

corresponding plot for the Transport-Layer IDS can be analyzed in Table 10 and Figure 29. 

 

 

 

 

 

 

  

5.4    Comparison of the results for IDS classifiers: 

The optimized results of all the IDS classifiers are compared and it was found that the 

performance of the All-Layers IDS classifiers is inferior to the individual layer IDS classifiers in 

terms of training accuracy and training time.  The light-weight algorithms, when used in a multi-

layer architecture, perform better which is suitable for an IoT system. The comparison of the 

results can be found in Table 11: 

 

True-Negatives 77865 

False-Positives 43 

False-Negatives 1510 

True-Positives 224229 

Figure 29: Confusion Matrix plot for the Network-Layer 

IDS 

Table 10: Confusion Matrix for 

Network-Layer IDS         
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Feature Selection 

Method IDS Type 

Number of 

features 

Training 

Accuracy Training Time 

Random Forest 

Classifier 

All Layer IDS 12 98.911 58.64 seconds 

Application Layer 

IDS 6 99.72 35.84 seconds 

Transport Layer 

IDS 6 99.475 27.91 seconds 

Network Layer 

IDS 6 99.71 31.03 seconds 

 

Table 11: Performance comparison among proposed IDS classifiers 

5.5    Comparison of the IDS classifiers performance with existing work 

We have performed additional analysis and compared the results with existing research 

performed by machine learning algorithms on intrusion detection classification as seen in Table 

12. It can be observed that our research has outperformed the performances of all the existing 

work. 

Algorithm 

Precision 

(%) 

Recall 

(%) 

Accuracy 

(%) 

FAR 

(%) 

GNNN [22] 87.08 59.12 93.05 12.46 

FNN [22] 92.47 86.89 97.35 2.65 

RBNN [22] 69.56 69.83 93.05 6.95 

Jordan ANN [23] - 62.9 - 37.09 

KNN [25] - 91 - 8 

K-Mean-KNN [27] 98 98.68 93.55 47.9 

LSTM RNN [24] - 98.88 96.93 10.04 

Fuzzy association rule [26] - 91 - 3.34 

RNN Hessian-free [28] - 95.37 - 2.1 

GRU RNN [20] 95.72 98.65 97.06 10.01 

All Layers IDS 99.81 99.39 98.91 0.76 

Application Layers IDS 99.98 99.65 99.72 0.05 

Transport Layer IDS  99.88 99.11 99.47 0.12 

Network Layer IDS  99.21 99.38 99.9 1.8 

 

Table 12: Comparisons of existing IDS classifiers to the proposed IDS classifiers 
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6. Conclusion and Future Work 

This inter-disciplinary research is novel in a way that, for the first time, it has applied 

deep learning methods for IoT security.  We performed a rigorous analysis of the architecture of 

IoT, followed by its security issues and privacy issues.   As part of this research, we limited the 

scope of this thesis to network data security. We have proposed a light-weight architecture for an 

Intrusion Detection System (IDS) in an IoT network. Based on TCP/IP layer architecture and the 

attack types at each layer, we have suggested placing IDS classifiers at each layer. This has 

reduced the data set size at each classifier and improved the performance in terms of accuracy, 

recall, training time and false alarm rate.  We have applied deep learning algorithms to classify 

the data at each IDS classifier.  This approach has achieved outstanding results with better results 

than existing work in the literature. Moreover, we have used the full KDD 99’cup 21% data set 

for the experiments, unlike previous research work. As seen in section 4.4, the training time of 

Transport Layer IDS, Application Layer IDS and Network Layer IDS is almost half of the All 

Layer IDS which is important for dynamic IoT networks. As seen in section 4.5, the accuracy 

and false alarm rate of All-Layer IDS is 98.91% and 0.76% respectively which outperformed all 

other existing IDS classifiers in literature. 

The applications of deep learning to IoT applications to develop security solutions is still in the 

naïve stage, and we believe, it has a lot of potentials. As the IoT deals with user's personal data 

and industry's information, it is crucial to implement robust solutions to protect from security 

threats.  This can be possible with the concepts of machine learning and deep learning as IoT 

generate a humongous amount of heterogeneous data. We have applied Gated-Recurrent-Unit 
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neural networks to the dataset. However, there are many improvised versions of recurrent neural 

networks such as Dynamic RNN, Bi-Directional RNN which can achieve better performances 

than basic GRU cells. One can also build a hybrid network using convolutional neural networks 

and recurrent neural networks to deal with multi-modal data. This research focused on dealing 

with IoT devices where the processing power is low and the data size is not huge. This research 

can be taken forward by applying it to large amounts of real-time IoT data.  

The Internet of Things (IoT) is a revolution rather than an evolution. As the IoT evolves, 

the security issues evolve. The IoT is a boon to the society only when it is secured, and this can 

possible with artificial intelligence. 
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