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ABSTRACT 

Hawash, Ahmed Alaa. Ph.D., Biomedical Sciences Ph.D. Program, Wright State 
University, 2017. Persistent Inward Currents Play a Role in Muscle Dysfunction Seen in 
Myotonia Congenita. 
 
 
Myotonia congenita is a rare skeletal muscle channelopathy caused by a reduced chloride 

channel (ClC-1) current, which results in debilitating muscle hyperexcitability, prolonged 

contractions, and transient episodes of weakness.  

The excitatory events that trigger myotonic action potentials in the absence of stabilizing 

ClC-1 current are not fully understood. My in vitro intracellular recordings from a mouse 

homozygous knockout of ClC-1 revealed a slow after-depolarization (AfD) that triggers 

myotonic action potentials.  The AfD is well-explained by a tetrododoxin-sensitive and 

voltage-dependent Na+ persistent inward current (NaPIC). Notably, this NaPIC 

undergoes slow inactivation over seconds, thus providing the first mechanistic 

explanation for the end of myotonic runs. Highlighting the significance of this 

mechanism, we show that ranolazine and elevated serum divalent cations eliminate 

myotonia by inhibiting AfD and NaPIC.  

The electrophysiological events responsible for the transient weakness are not well 

understood either. My in vitro intracellular recordings revealed a novel behavior, in 

which the muscle is functionally inexcitable for seconds to minutes. This hanging 

behavior, as I refer to it, is likely to be responsible for periods of weakness described by 
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patients and is explained by another persistent inward current. Partial pharmacological 

block of this other PIC decreases the hanging behavior in myotonic muscle. 

This work significantly changes our understanding of the mechanisms underlying 

myotonia and transient weakness seen in myotonia congenita and reveals a novel and 

highly effective therapeutic target. 
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Chapter I: Purpose & Aims 

 

Purpose 

Myotonia congenita is an uncommon inherited skeletal muscle disease, with a prevalence 

of about 1:100,000, caused by a loss of chloride conductance. However, through the 

understanding of the electrophysiological consequences of the CLC-1 loss-of-function 

mutation caused by this disease, we can further understand the interplay of ionic currents 

that result in the production of myotonia, or involuntary firing of action potentials by the 

muscle.  

Through recognizing the ionic currents and their dynamics in producing myotonia, we 

can then begin to target specific channel kinetic states using available pharmacological 

agents, alleviating some of the symptoms myotonia congenita patients complain of.  

 

Hypothesis: The activity of persistent inward currents, in addition to K buildup in the 

T-tubules, produces dysfunctions seen in myotonia congenita muscles. 
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Specific Aims 

Specific Aim I:  

Hypothesis:  A persistent inward current plays a central role in triggering myotonic 

bursts, producing muscle stiffness in myotonia congenita patients. 

Adrian and Bryant concluded that K buildup in the T-tubules is largely responsible for 

myotonic firing of myotonia congenita muscle, mentioning the need for an additional 

depolarizing current to produce myotonia (Adrian and Bryant 1974; Adrian and Marshall 

1976). Using current clamp and voltage clamp recordings of myotonic muscle, we will 

determine the presence of such an ionic current that would contribute to the production of 

myotonia and test whether or not its presence is a requirement for myotonic firing. We 

expect to identify a persistent current that is central to the production of myotonia, 

making it a pharmacological target for the elimination of muscle stiffness seen in 

patients.  

 

Specific Aim II: 

Hypothesis: A persistent inward current is responsible for novel behaviors seen in 

myotonia congenita muscle that may explain symptoms of transient weakness in 

myotonia congenita patients. 

 A common complaint of myotonia congenita patients is intermittent bouts of muscle 

weakness, following episodes of stiffness. Preliminary current clamp records in myotonia 

congenita show a behavior that may very well correlate with the aforementioned 

weakness. Through further investigation of current clamp records and voltage clamp 
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records, we aim to determine the ionic currents and their interactions in producing this 

novel behavior seen in myotonic muscle. We expect to identify another persistent current 

that is responsible for this novel behavior. Furthermore, we will attempt to target this 

current to abolish this behavior. 
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Chapter II: Background 

 

Skeletal Muscle Contraction  

Skeletal muscle differs from other excitable tissues in that the electrical signal is 

translated into a mechanical force that can be seen grossly (Huxley 1958). Skeletal 

muscle fibers rapidly convert an electrical signal (action potential) into a mechanical 

contraction. One nerve stimulus induces one action potential which is converted into one 

contraction.  

The signal for contraction to begin is a quick increase in the [Ca]i in the vicinity of 

myosin and actin filaments (Ashley and Ridgway 1968). [Ca]i acts as a secondary 

messenger, translating the electrical signal (action potential) into a mechanical 

contraction. This phenomenon is known as excitation-contraction (E-C) coupling (Frank 

1958; Sandow 1965). This occurs over two phases: (1)Depolarization of the T-tubules, 

activating the dihydropyridine receptor (DHPR) (CaV1.1) and (2)Ca release from the 

sarcoplasmic reticulum through a physical interaction of the DHPR and the ryanodine 

receptor (RYR1)(Desmedt and Hainaut 1977; Wagenknecht, Grassucci et al. 1989).   

Action potentials propagate along the sarcolemma and down the T-tubules (Gonzalez-

Serratos 1971; Bastian and Nakajima 1974). Ca is released from the SR through the 

RYRs, and diffuses throughout the myoplasm (Suarez-Isla, Orozco et al. 1986). Ca is 
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then sequestered using binding proteins like troponin C, SERCA, and calmodulin, 

bringing the myoplasmic [Ca]i back to resting levels.  

Whereas normal muscle responds with a single action potential in response to a single 

stimulus, myotonic muscle will respond to the same stimulus with runs of action 

potentials, causing a sustained contraction.  

 

Skeletal Muscle Channelopathies 

Ion channelopathies of the skeletal muscle are numerous and include a wide variety of 

phenotypes ranging from changes in excitability to disruption of E-C coupling (Cannon 

2006). Mutations of ion channels range from coding deficits leading to the absence of 

functional channels in the plasma membrane to aberrant gating properties of the mutated 

channel. These channel defects predispose patients to acute attacks of stiffness or 

transient attacks of paralysis (Cannon 2015) These disorders are very rare (1:100,000).  

The neuromuscular junction (NMJ) is a synapse wherein the postsynaptic end-plate 

potential (EPP) elicited by a single motoneuron impulse exceeds the threshold for 

generation of an action potential (AP) in the muscle fiber (Strickholm 1974). Coupling of 

the EPP to the generation and propagation of an AP throughout the muscle fiber is 

essential to achieve rapid and spatially uniform contraction. The APs travel both 

longitudinally along the surface membrane sarcolemma and radially inward along the T-

tubules where depolarization induces the conformational change of CaV1.1 channels that 

activates RYRs (the Ca channel of the SR) (Gonzalez-Serratos 1971; Bastian and 

Nakajima 1974; Suarez-Isla, Orozco et al. 1986). 
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Myotonia 

Myotonia is the delayed relaxation of a muscle or prolonged contraction after brief 

electrical stimulation or mechanical stimulation (as in percussion myotonia), and is most 

often due to a channelopathy causing an increased excitability in the muscle (Adrian and 

Bryant 1974; Jurkat-Rott and Lehmann-Horn 2005). Myotonia, as a behavior, can be seen 

in multiple disorders. These can be largely split into 2 categories based on the presence or 

absence of degenerative findings in the skeletal muscle. Dystrophic myotonias, as seen in 

Myotonic Dystrophy, show “denervation-like” findings on microscopy including 

increases in fiber size variation, central nucleation, nuclear clumps, and fiber atrophy 

(Schoser, Schneider-Gold et al. 2004). In contrast, non-dystrophic myotonias, as seen in 

Myotonia Congenita, do not show similar histological findings.  

Myotonia congenita is a disease, strictly of the skeletal muscle, caused by a loss-of-

function mutation in CLCN1 gene, encoding the CLC-1 chloride channel found in the 

sarcolemma (Kubisch, Schmidt-Rose et al. 1998). Patients often complain of “muscle 

stiffness” and have difficulty in relaxation of muscle after extended use.  

This disease is diagnosed by familial history with an accompaniment of symptoms. A 

needle electromyogram (EMG) is a classical diagnostic tool for myotonia congenita 

(Fournier, Arzel et al. 2004; Colding-Jorgensen 2005). Myotonia is seen very uniquely 

through EMG, showing sustained bursts of muscle after-discharges that persist for 

seconds to minutes after the end of a voluntary contraction (Heatwole, Statland et al. 

2013) The amplitude and frequency of these bursts wax and wane, producing a classical 

“dive-bomber” sound (Fournier, Arzel et al. 2004; Colding-Jorgensen 2005; Heatwole, 

Statland et al. 2013).  
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The earliest evidence that myotonic bursting is indeed caused by a defect in the skeletal 

muscle, independent of motoneurons input, was shown in myotonic goat muscle in 1939 

(Brown & Harvey 1939). Further evidence was shown by selective curare block of the 

NMJ with sustained myotonic firing (Lanari 1946). As curare eliminates muscle 

excitation from the NMJ, it proved that the muscle itself was the origin of the 

spontaneous firing of action potentials. These myotonic bursts vary in amplitude and 

frequency, but are sufficient to produce sustained contraction by SR Ca release, leading 

to muscle stiffness in the patient (Colding-Jorgensen 2005).   

 

Non-dystrophic Myotonia: Myotonia congenita 

The most common non-dystrophic myotonias are caused by chloride channel mutations 

and sodium channel mutations.  

The first evidence of myotonia being caused by a decrease in resting chloride 

conductance were shown by Lipicky in 1966, in which myotonic muscle was shown to 

have a large input resistance, as compared to untreated WT muscle (Lipicky and Bryant 

1966). Myotonic behavior can be introduced acutely to WT muscle by reversible block of 

the CLC-1 chloride channel with 9-AC. This was found in conjunction with a decrease in 

the rheobase current, the amount of injected current required to fire a single action 

potential (Lipicky and Bryant 1966; Lipicky, Bryant et al. 1971).  

Genetic causation of myotonia congenita has been further confirmed with the 

identification of loss-of-fucntion mutations in the CLCN1 gene, which encodes for the 

CLC-1 channel, in mice, humans, dogs, and goats (Steinmeyer, Klocke et al. 1991; Koch, 
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Steinmeyer et al. 1992; Beck, Fahlke et al. 1996; Rhodes, Vite et al. 1999). There are 

over 60 distinct mutations identified that result in loss-of-function changes, leading to 

myotonia congenita (Pusch 2002). The range of CLCN1 mutations include missense, 

nonsense, insertions, deletions, and splice mutations (Matthews, Fialho et al. 2010). 

There is no clear correlation between genotype and phenotype for the various mutation 

types.  

 

Clinical Features of Myotonia Congenita 

Myotonia congenita can follow an autosomal dominant (Thomsen’s disease) or 

autosomal recessive (Becker’s disease) inheritance pattern (Heine, George et al. 1994; 

Steinmeyer, Lorenz et al. 1994). Thomsen’s disease was first described in the 1870s by 

Dr. Thomsen, who suffered from the disease himself. Becker’s disease was first 

identified in 1966, even though it is far more common than Thomsen’s disease. These 

two present very similarly, except for the presentation of transient weakness, which 

typically presents only in the autosomal recessive form (Deymeer, Cakirkaya et al. 1998). 

Prognosis for both Thomsen’s and Becker’s patients are favorable with a normal life 

expectancy (Gutmann and Phillips 1991). 

Myotonia congenita patients develop muscle stiffness, early on in childhood. In response 

to this involuntary firing, many patients exhibit muscle hypertrophy and a bodybuilding 

appearance, even as a child. Intensity of stiffness seems to correlate with suddenness of 

voluntary movements and is often followed a period of transient weakness (Ricker, Haass 

et al. 1978; Drost, Blok et al. 2001). The pattern of affected muscles varies from patient 
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to patient. The severity of muscle stiffness also varies based on several factors including 

emotion, temperature, exercise, and pregnancy (Gutmann and Phillips 1991; Lacomis, 

Gonzales et al. 1999; Colding-Jorgensen 2005). Patients report accompanying pain with 

myotonia (Trip, Drost et al. 2006). 

Relief of muscle stiffness is seen with repeated use of muscle. This compensatory 

behavior is almost universal among myotonia congenita patients. Low-level use of a 

muscle group before full use will alleviate stiffness and involuntary contraction. This is 

known as the warmup phenomenon (Trivedi, Bundy et al. 2013; Novak, Norman et al. 

2015). 

Myotonia congenita patients are generally advised to make lifestyle modifications and 

avoid triggering activities, as these differ greatly from person to person (Colding-

Jorgensen 2005). Instead of sudden, forceful movements, patients are advised to 

gradually increase muscle exertion in an attempt to warm up the muscle. The use-

dependent Na channel blocker, mexiletine, is somewhat effective at reducing the severity 

of myotonia (Statland, Bundy et al. 2012; Desaphy, Gramegna et al. 2013; Trivedi, 

Bundy et al. 2013). Ranolazine, a slow inactivator of the Na channel, has been shown to 

reduce myotonia as well, although no clinical data is available yet (Novak, Norman et al. 

2015). There are currently no drugs available that act directly on the chloride channel. As 

gene therapy to introduce normal ClC-1 channels is not available, targeting and 

modulating other genetically normal channels is the approach currently being taken. 

  

CLC-1 Role in Muscle Excitability 
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The CLC-1 channel is encoded by the CLCN1 gene, located on Chromosome 7q35. CLC-

1 is almost exclusively expressed in skeletal muscle, with minimal expression in the 

kidneys, liver, and smooth muscle (Steinmeyer, Ortland et al. 1991). There is no 

concensus on the precise localization (sarcolemma vs T-tubule) of the channel. Some 

have found it to localize to the sarcolemma only (Lueck, Rossi et al. 2010) while others 

have called into question this conclusion based on the imaging methodologies used 

(Lamb, Murphy et al. 2011) . Neonatal mice show low CLC-1 mRNA levels and chloride 

currents and increase to adult levels over 20 days (Klocke, Steinmeyer et al. 1994; Lueck, 

Lungu et al. 2007).  

The CLC-1 channel is a homodimeric, double-pored chloride channel. Each of these 

pores is comprised of two protopores that gate independently but can also be gated by a 

common gate (Pusch, Steinmeyer et al. 1994; Fahlke, Knittle et al. 1997; Saviane, Conti 

et al. 1999; Dutzler, Campbell et al. 2002). Open probability at normal resting potentials 

is ~20% and increases with further depolarization. Open probability also increase with 

external chloride (Pusch, Steinmeyer et al. 1994). Gating is also modified by pH and ATP 

(Rychkov, Pusch et al. 1996; Tseng, Bennetts et al. 2007).  

In stark contrast to other excitable tissues, the resting membrane conductance in muscle is 

about 70-80% due to chloride conductance (Hodgkin and Horowicz 1959; Palade and 

Barchi 1977). The Cl current in resting fibers, however is minimal, as the Cl equilibrium 

potential is near the resting membrane potential, providing minimal driving force for Cl. 

In skeletal muscle, the main functions of the Cl conductance are: 
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1. Regulate muscle excitability and act as a “voltage clamp.” The large chloride 

conductance acts as an electrical buffer to keep the membrane potential at its 

resting values.  

2. In addition to K efflux, a Cl influx contributes to repolarization from an action 

potential in skeletal muscle (Cannon 2015).  .  

3. Counteract the depolarizing effect of K accumulation in the muscle’s T-tubule 

system. With a Cl current, each impulse depolarizes the fiber by 0.1 mV. Without 

a Cl current, that increases to 1 mV. (Adrian and Bryant 1974; Adrian and 

Marshall 1976; Cannon 2006) 

A reduction of Cl conductance by 50% does not cause myotonia (Chen, Niggeweg et al. 

1997). The presumption is that the remaining functional Cl channels generate enough of a 

Cl current to offset the K buildup in the T-tubules. A reduction of at least 70% Cl 

conductance is necessary to produce myotonia, explaining why heterozygotes of the 

autosomal recessive disease (Becker’s Disease) show no symptoms (Adrian and Marshall 

1976; Furman and Barchi 1978).  

 

Current Understanding of Mechanism Underlying Myotonia 

The working hypothesis of the mechanism underlying myotonic bursting was introduced 

by Adrian and Bryant. They stated that an activity-dependent accumulation of K ions in 

the extracellular T-tubular system is the source of the depolarization needed for sustained 

myotonic firing (Adrian and Bryant 1974). With each individual action potential’s 

repolarization phase, K effluxes into the extracellular compartment through both the 
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surface membrane and the T-tubular membrane. Passive diffusion is not fast enough to 

equilibrate the K accumulated in the T-tubules, due to its long, narrow geometry (Fraser, 

Huang et al. 2011). The high surface area/volume ratio of the T-tubules results in an 

increase of the local [K]o in the T-tubule by 0.4mM with each individual action potential 

(Adrian and Marshall 1976; Cannon, Brown et al. 1993; Wallinga, Meijer et al. 1999). 

Normally, K will efflux during repolarization both in WT muscle as well as ClC muscle. 

But with a loss in chloride current, K currents become vital to repolarization. In the 

absence of a Cl current, the depolarization induced by K buildup would be unopposed.  

This K buildup in the T-tubules of CLCN1adr-mto2J muscle produces an after-

depolarization from resting potential, thought to be large enough to reach action potential 

threshold and induce myotonic firing. This is an additive effect, depolarizing the fiber by 

~1mV per action potential (Adrian and Bryant 1974). This value increases with higher-

frequency firing, as less and less time is available for passive diffusion. This hypothesis is 

supported by data showing that detubulation, the elimination of the T-tubular system 

through osmotic shock, prevents afterdepolarization and abolishes myotonic firing 

entirely (Adrian and Bryant 1974; Cannon, Brown et al. 1993).  

 

Warmup Phenomenon 

Repetitive activity in patients with myotonia congenita induces a reduction in muscle 

stiffness. This is known as the warmup phenomenon (Birnberger, Rudel et al. 1975; 

Horlings, Drost et al. 2009). The mechanism behind warmup has perplexed the field for 

years. Understanding the mechanism underlying warmup could be instrumental in 
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treatment of myotonia congenita. Changes in membrane potential and slow inactivation 

of the fast Na channels have been proposed as mechanisms (Van Beekvelt, Drost et al. 

2006; Lossin and George 2008; Lossin 2013).  

A classical test used to demonstrate the warmup phenomenon is the step-climbing test. 

After five consecutive attempts of climbing a flight of steps, patients will take a 

significantly shorter time to complete the task once more than when compared directly 

after a rest period (Rudel, Ricker et al. 1988). 

Novak and Rich have shown, through in vivo testing, that our CLCN1adr-mto2J mice 

exhibit warmup. Righting reflex time decreases with repeated testing. Also shown was 

induction of warmup in in vitro CLCN1adr-mto2J muscle (Novak, Norman et al. 2015). 

Current clamp recordings showed that muscle was warmed up after inducing 5,000 action 

potential was no longer myotonic. After allowing the muscle to rest for minutes 

afterwards, the warmup was relieved and the muscle returned to its original myotonic 

state. They concluded that warmup was acting through the slow inactivation of sodium 

channels, proposing Na channel slow inactivators as a potential treatment for myotonia 

congenita patients.  

 

Persistent Inward Currents 

Motoneurons have the ability to sustain steady, repetitive firing in response to prolonged 

inputs (Granit, Kernell et al. 1963; Kernell 1965). The transformation of steady 

depolarization into repetitive firing is thought to be achieved by persistent inward 

currents (PICs). Motoneurons have been shown to possess large PICs that could increase 
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firing rate and prolong firing after cessation of an input (Schwindt and Crill 1977; 

Schwindt and Crill 1980; Schwindt and Crill 1982). The PIC is a depolarizing inward 

current that activates for as long as the membrane potential stays depolarized. It is not 

susceptible to voltage-dependent fast inactivation, and so it continues to pass an inward 

current long after the fast Na currents have inactivated. This mechanism comes into play 

when sustained firing is needed. PICs have a voltage-dependence of activation, 

distinguishing them from ion channels that are always open, as seen in the leak channels 

or the channels that lack a strong voltage-dependence.  

In spinal motoneurons, there are two recognized PICs: Persistent Na (Hsiao, Del Negro et 

al. 1998; Lee and Heckman 2001; Li and Bennett 2003) and low voltage-activated L-

Type Ca (Schwindt and Crill 1980; Hounsgaard and Kiehn 1985; Hounsgaard and Kiehn 

1993).  

The NaPIC activates quickly at subthreshold potentials, helping depolarize the cell to 

threshold, and has partial time-dependent inactivation (Hsiao, Del Negro et al. 1998; Li 

and Bennett 2003). It plays an essential role in the initiation of action potentials during 

rhythmic firing. This subthreshold NaPIC is hypothesized to pass through the same fast 

Na channels that are responsible for action potentials. A small percentage of these 

channels (1-3%) enter a non-inactivating or persistent conductive state (Alzheimer, 

Schwindt et al. 1993). The NaPIC plays an essential role in intitiating spikes during 

repetitive firing (Lee and Heckman 2001; Kuo, Lee et al. 2003; Harvey, Li et al. 2006; 

Theiss, Kuo et al. 2007). Modulation of this current by serotenergic and noradrenergic 

agonists and antagonists changes neuronal excitability. This PIC has been shown to be 

blocked by riluzole and phenytoin, although the mechanisms are not clearly delineated as 
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these drugs have numerous off-target effects (Lampl, Schwindt et al. 1998; Zeng, Powers 

et al. 2005; Harvey, Li et al. 2006; Theiss, Kuo et al. 2007). 

The CaPIC activation potentials are more variable. It has very slow activation and 

deactivation kinetics and little to no time-dependent inactivation (Hounsgaard and Kiehn 

1989; Perrier, Alaburda et al. 2002; Li and Bennett 2003). This PIC passes through the L-

Type Ca channel. Repeated depolarization of the membrane potential allows for the 

activation of the CaPIC. The CaPIC tends to increase in amplitude with repeated 

activation and may underlie the hysteresis seen in PIC activation and deactivation 

potentials. PICs classically exhibit onset-offset or activation-deactivation hysteresis, in 

which they are deactivated at more negative potentials than they are activated (Schwindt 

and Crill 1980). This is known as “warm up” – not to be confused with the warmup 

phenomenon seen in myotonia congenita muscle (Svirskis and Hounsgaard 1997; Lee 

and Heckman 1998; Li and Bennett 2003; Elbasiouny, Bennett et al. 2005; Elbasiouny, 

Bennett et al. 2006; Li and Bennett 2007). Warmup of the CaPIC is thought to come 

about by additional L-Type Ca channel openings due to an increased intracellular Ca 

concentration caused by the repeated depolarizations (Dolphin 1996; Perrier, Mejia-

Gervacio et al. 2000).  

PICs are difficult to recognize, as they are relatively small and necessary for function. 

PICs were only described when blockers of other voltage-gated channels were used to 

unmask the PIC.  

Motoneurons exhibit a phenomenon known as bistability due to the presence of PICs. A 

short pulse of excitatory input may produce self-sustained firing, which could be 

terminated with an inhibitory input (Heckman, Johnson et al. 2008). When blocking the 
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firing, the membrane potential can be seen to be held at a plateau, pointing to the steady 

depolarization caused by the activation of the PIC. This is needed for sustained firing and 

has been implicated in postural motoneuron firing, where steady firing must be sustained 

for long periods of time (Hounsgaard, Hultborn et al. 1988).  

 

Slow Inactivation of Voltage-Dependent Channels 

Slow inactivation is believed to be a distinct process, independent of fast inactivation. 

When a muscle fiber is depolarized for seconds or minutes, Na channels enter a slow 

inactivation state, which can only be relieved by long periods of repolarizations 

(Adelman and Palti 1969; Adelman and Palti 1969; Chandler and Meves 1970; 

Khodorov, Vornovitskii et al. 1974; Fox 1976; Khodorov, Vornovitskii et al. 1976; 

Khodorov 1981; Almers, Stanfield et al. 1983). This process is thought to involve 

multiple channel states.  

Different parts of the channel are responsible for fast and slow inactivation. Evidence for 

this is shown in treatments that remove fast inactivation still leave channels susceptible to 

slow inactivation. These were named N-type and C-type inactivation in Shaker K 

channels (Hoshi, Zagotta et al. 1991). Fast inactivation occurs via an intracellular N-

terminus inactivation gate, obstructing the inner pore (Hille 1978). C-Type slow 

inactivation closes a gate at the extracellular end of the pore, the selectivity filter (Hille 

1978). The outermost end of the selectivity filter rearranges during slow inactivation of 

Na channels (Balser, Nuss et al. 1996; Townsend and Horn 1997) 
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Chapter III: General Methods 

Using in vitro electrophysiology recordings, this proposal will investigate the 

mechanism(s) underlying behaviors leading to muscle dysfunction in myotonia 

congenita. The general methods used are described in detail below. 

Mice 

All animal procedures used were performed in accordance with the policies of the 

Institutional Animal Care and Use Committee of Wright State University. The great 

majority of experiments were performed using a colony of CLCN1adr-mto2J mice, which 

have a null mutation in the CLCN1 gene, representative of myotonia congenita. The mice 

were obtained from Jackson Laboratory (Bar Harbor, ME) and a breeding colony was 

established. Myotonia was confirmed visually via the myotonic appearance of the 

animals as previously described (Hoppe, Lehmann-Horn et al. 2013). Asymptomatic WT 

and heterozygous littermates were used as controls. As unaffected littermates have 

previously been shown not to have myotonia or alterations in macroscopic chloride 

currents, we did not make an effort to distinguish them from wild-type mice (Mehrke 

1988, Reininghaus 1988). Mice were used from 2 months to 6 months of age, irrespective 

of sex.  

Mouse cages contained corn cob bedding and environmental enrichment. Mice were 

supplied with moistened chow paste (Irradiated Rodent Diet; Harlan Teklad 2918) and 

water ad libitum. Environmental conditions were maintained with a 12-h day/night cycle 

and constant temperature (21–23 °C). The behavior and physical condition of the mice 
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are tested daily for weight loss and priapism.  

Electrophysiology 

Current Clamp 

Prior to removal of muscle for recording, mice were euthanized via CO2 inhalation 

followed by cervical dislocation.  For current clamp recordings, both extensor digitorum 

longus muscles were dissected out tendon to tendon. Experiments were done on the first 

muscle while the second muscle was maintained in oxygenated solution. Records from 

the second muscle began within 3 hours of dissection. Muscles were maintained and 

recorded from at 21-23 oC. Electrical properties of the muscle have been shown to be 

stable for 6 hours in vitro (Novak 2015).  The recording chamber was continuously 

perfused with 40mL of recirculating Ringer solution. 

To prevent muscle contraction and allow for stable electrical recordings, muscles were 

loaded with 50µM BTS (Tokyo Chemical Industry, Tokyo, Japan) for 45 minutes prior to 

recording. BTS was dissolved in DMSO and added to the perfusate. Maximal DMSO 

concentration was kept under 0.15%, which has been found not to affect resting 

membrane properties of skeletal muscle (Pedersen 2009).   

Staining and impaling of muscle fibers was performed as previously described (Novak 

2015).  Briefly, muscles were stained for 3 minutes with 10µM 4-(4-diethylaminostyrl)-

N-methylpyridinium iodide (Molecular Probes, Eugene, OR) and imaged with an upright 

epifluorescence microscope (Leica DMR, Bannockburn, IL).  Muscle fibers were 

impaled with 2 sharp microelectrodes filled with 3M KCl solution containing 1mM 

sulforhodamine to visualize the electrodes with epifluorescence. Electrode resistances 
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were ~20 MΩ on average. Capacitance compensation was optimized prior to recording. 

Fibers with resting potentials more depolarized than -70mV were excluded from analysis. 

Action potential voltage-threshold was defined as the voltage at which dV/dt was equal to 

10 mV/ms. 

The recording chamber was continually perfused with: 

Ringer solution containing (in mM): 118 NaCl, 3.5 KCl, 2 CaCl2, 0.7 MgSO4, 26.2 

NaHCO3, 1.7 NaH2PO4, 5.5 glucose, and pH 7.3-7.4 with 95% O2 and 5% CO2.  

Modified Ringer solution for high divalent experiments containing (in mM): 118 NaCl, 

3.5 KCl, 5 CaCl2, 2 MgSO4, 26.2 NaHCO3, 1.7 NaH2PO4, 5.5 glucose, and pH 7.3-7.4 

with 95% O2 and 5% CO2. 

Drugs (in mM): 

0.4 9-AC 

0.01 Nifedipine 

0.02 Bay-K 

0.01 Retigabine 

  

Voltage Clamp 

Flexor digitorum brevis and interosseous muscle fibers were used rather than extensor 

digitorum longus as these muscles contain shorter fibers which allow for better space 

clamp and voltage control.  Isolation of fibers and recordings were performed as 

previously shown (Waters, Varuzhanyan et al. 2013). Briefly, muscles were surgically 

removed, pinned to Sylgard-bottomed Petri dishes, and enzymatically dissociated at 37 

°C under mild agitation for ∼1 h using 1,000 U/mL of collagenase type IV (Worthington 
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Biochemical). Collagenase was dissolved in the extracellular solution used for recordings 

(below). Mechanical dissociation was completed using mild trituration in buffer with no 

collagenase. The fibers were allowed to recover at 21–23 °C for 1 h before being used for 

electrical measurements. 

Fibers were visualized using an Olympus BX51WI microscope, and images were 

acquired with a CCD camera (ST-7XMEI-C1, Santa Barbara Instruments). Electrical 

properties were measured under standard current and voltage clamp conditions at 21–23 

°C using two aluminosilicate intracellular microelectrodes (part 30-0110, Harvard 

Apparatus) an Axoclamp 900A amplifier, a Digidata 1440a digitizer, and pCLAMP 10 

data acquisition and analysis software (Molecular Devices). The voltage-sensing 

electrode was connected with an Axoclamp HSx1 headstage. The current-passing 

electrode was connected with an Axoclamp HSx10 headstage that was modified to have a 

2-MΩ output resistor (HSx5). Both the current-passing and voltage-sensing electrodes 

were filled with the same solutions (below). Data were acquired at 20 kHz. Current and 

voltage records were low-pass filtered with the internal Axoclamp 900A filters at 1 kHz. 

The voltage clamp command signal was low-pass filtered with an external Warner LFP-8 

at 1 kHz. Filtering the voltage clamp records at 2 or 4 kHz produced no difference in 

measurements of peak current, conductance, or capacitance. 

The internal (electrode) and extracellular solutions are listed below. The average 

electrode resistance was 15.0 MΩ. After impalement, 20 minutes of hyperpolarizing 

current injection was allowed for equilibration of the electrode solution with the 

sarcoplasm before data acquisition. 30mM EGTA was used in the internal solutions to 

prevent contractions. 
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Physiological Solutions 

Internal solution (in mM) was as follows: 75 aspartate, 30 EGTA, 15 Ca(OH)2, 5 MgCl2, 

5 ATP di-Na, 5 phosphocreatine di-Na, 5 glutathione, 20 MOPS, and pH 7.2 with KOH.  

Extracellular solution (in mM) was as follows: 144 NaCl, 4 KCl, 1.2 CaCl2, 0.6 MgCl2, 

5 glucose, 1 NaH2PO4, 10 MOPS, and pH 7.4 with NaOH. 

K-Free Solutions 

Internal solution (in mM) was as follows: 75 aspartate, 30 EGTA, 15 Ca(OH)2, 5 MgCl2, 

5 ATP di-Na, 5 phosphocreatine di-Na, 5 glutathione, 20 MOPS, and pH 7.2 with CsOH.  

Extracellular solution (in mM) was as follows: 144 NaCl, 4 CsCl, 1.2 CaCl2, 0.6 MgCl2, 

5 glucose, 1 NaH2PO4, 10 MOPS, 0.05 BaCl2 and pH 7.4 with NaOH. 

K-Free Solutions with Increased Extracellular Divalents 

Internal solution (in mM) was as follows: 75 aspartate, 30 EGTA, 15 Ca(OH)2, 5 MgCl2, 

5 ATP di-Na, 5 phosphocreatine di-Na, 5 glutathione, 20 MOPS, and pH 7.2 with CsOH.  

Extracellular solution (in mM) was as follows: 144 NaCl, 4 CsCl, 5 CaCl2, 2 MgCl2, 5 

glucose, 1 NaH2PO4, 10 MOPS, 0.05 BaCl2 and pH 7.4 with NaOH. 

Drugs (in mM): 

0.4 9-AC 

0.02 Nifedipine 

0.001 TTX 

0.1 3,4-DAP 

0.01 Ouabain 

0.02 Bay-K 

0.1 Verapamil 
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Statistical Analyses 

Differences between two data sets were analyzed using Student's (unpaired) two-tailed t-

test, assuming unequal variance (Sigmaplot 13.0). For comparisons within the same fiber 

or myotonic runs, paired two-tailed t-tests were used. All data are presented as means ± 

SEM. p < 0.05 was considered to be significant. Sample sizes were chosen based on the 

lab’s previous experiences in the calculation of experimental variability. The numbers of 

animals and fibers used are described in the corresponding figure legends and text. No 

blinding was used for the animal groups as ClCn1adr-mto2J mice are easily identifiable from 

their unaffected littermates phenotypically. This was not significant issue for analysis of 

voltage clamp and current clamp data as analysis is largely automated and thus not 

susceptible to subjective bias.    
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Chapter IV: Specific Aim I 

Presence of a Na Persistent Current Playing a Central Role in Myotonic Firing 

 

The overall objective of Specific Aim I is to establish the presence of a Na persistent 

inward current in myotonic muscle and describe its role in myotonic firing. 

 

Introduction 

Myotonia congenita is a member of a group of inherited skeletal muscle diseases known 

as the non-dystrophic myotonias (Lehmann-Horn, Jurkat-Rott et al. 2008; Trivedi, 

Cannon et al. 2014; Cannon 2015) and results from a loss-of-function in the muscle 

chloride channel (ClC-1) (Lipicky, Bryant et al. 1971; Steinmeyer, Klocke et al. 1991; 

Koch, Steinmeyer et al. 1992). The debilitating slowed muscle relaxation patients with 

myotonia congenita experience following voluntary contraction is caused by involuntary 

firing of action potentials (myotonia). Although it is well established that a decrease in 

ClC-1 conductance causes muscle hyperexcitability, the excitatory events that trigger 

myotonic action potentials (APs) are not fully understood. Because of this, the mainstay 

of therapy remains avoiding activities that trigger myotonia (Cannon 2015), which can 

include running, walking, or other daily activities. Alternatively, drugs that block Na+ 

channels, such as mexiletine, are used to reduce excitability (Lehmann-Horn, Jurkat-Rott 
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et al. 2008; Trivedi, Cannon et al. 2014; Cannon 2015). However, many patients suffer 

side 

effects or incomplete symptom resolution. Thus, there is a need to advance our 

understanding of the currents which trigger myotonia if we are to develop improved 

therapies. 

The currently accepted explanation for the generation of myotonia is that K+ exits the 

fiber during voluntary APs and accumulates in the transverse tubules (t-tubules). T-

tubules are narrow invaginations of the surface membrane that are needed to conduct APs 

into the middle of muscle fibers (Peachey 1975). The resulting K+ build-up depolarizes 

the resting membrane potential (Adrian and Bryant 1974; Adrian and Marshall 1976; 

Wallinga, Meijer et al. 1999; Fraser, Huang et al. 2011) and is thought to open voltage-

gated Na+ channels that trigger the involuntary APs causing myotonia (Burge and Hanna 

2012; Skov, Riisager et al. 2013). Normally, ClC-1-mediated chloride currents, which 

account for 70%-80% of resting muscle membrane conductance, offset the depolarizing 

influence of K+ accumulation and prevent myotonia (Adrian and Bryant 1974; Palade and 

Barchi 1977; Steinmeyer, Klocke et al. 1991; Steinmeyer, Ortland et al. 1991).  

One shortcoming of only considering t-tubular K+ buildup is that this model does not 

clearly explain the cessation of myotonia after a time-course of seconds. Notably, we are 

not the first to question K+ build-up as the sole explanation for myotonia: In one of Dr. 

Adrian’s seminal papers on myotonia, he noted that “in the absence of a surface chloride 

conductance tubular potassium accumulation could certainly contribute to the instability 
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of the membrane; but it is clear that potassium accumulation is not the only reason for the 

instability of myotonic muscle fibres” (Adrian and Marshall 1976). However, in the 40 

years since this statement was published, no additional contributor to the generation of 

myotonia has been identified. 

In neurons, repetitive firing is maintained by persistent inward currents (PICs), which are 

activated by long depolarizations and mediated by Na+ (NaPIC) or Ca2+ (Harvey, Li et al. 

2006; Heckman, Johnson et al. 2008; Powers, Nardelli et al. 2008; Heckman and Enoka 

2012). A NaPIC has also been described in wild type skeletal muscle (Gage, Lamb et al. 

1989). However, since its discovery in 1989, little attention has been paid to the muscle 

NaPIC and its function remains unknown. We hypothesized that the NaPIC in skeletal 

muscle plays a central role in triggering pathologic repetitive firing during myotonia. 

Indeed, in this report we show that the activation and inhibition of skeletal muscle NaPIC 

can explain both the onset and termination of myotonic APs. Moreover, we demonstrate 

that the inhibition of NaPIC prevents myotonic APs. Our findings lead to a new 

understanding of muscle hyperexcitability in myotonia congenita, explain the time-course 

for cessation of myotonic firing, and reveal a novel target for more effective therapies.   

 

Results 

The current accepted mechanism underlying myotonic firing is based on K buildup in the 

T-tubules, in addition to a lowered threshold (presumptively in response to the major loss 

in leak conductance). 

I proposed an alternate hypothesis – one that includes the K buildup phenomenon but also 

accounts for an additional depolarizing event that was previously unaccounted for. 
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K+ buildup cannot be solely responsible for the depolarization needed for myotonic 

firing. 

Upon closer examination of a current clamp recording of myotonia, as seen in Figure 1.1, 

one can tell that K+ buildup in the T-tubules does not fully explain the myotonic behavior 

for several reasons: 

i. The variation in time and slope of the afterdepolarization phase cannot be 

explained by K buildup in the T-tubule system. The slow and steady 

depolarization of the membrane potential towards firing threshold is 

referred to as the afterdepolarization (AfD) phase. Throughout the 

myotonic run seen in Figure 1.1, the AfD lengthens in time and decrease 

in slope. 

The slope of the afterdepolarization phase decreases as the number of 

myotonic action potentials increase. This is further demonstrated in Figure 

1.6. 

K buildup should be similar between action potentials, as in each 

individual action potential should allow for similar amounts of K flow into 

the T-tubules and cause similar amounts of depolarization. In fact, the 

depolarization caused by the K buildup of a single action potential was 

measured by Adrian and Bryant and found to be ~1 mV per action 

potential in EDL muscle (Adrian and Bryant 1974). It should be a 

consistent depolarization independent of the myotonic run. This behavior 
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led me to hypothesize that an additional source of depolarization must be 

at least partially responsible for the afterdepolarization phase.  

ii. The membrane potential at which K channel conductance is maximal is a 

good estimate of the upper limit of EK. EK can only be more 

hyperpolarized than this membrane potential. On Figure 1.1, the red arrow 

points to the end of the repolarization (Max Repol.) phase of the action 

potential, known to be the time at which relative K channel conductance is 

maximal. If relative K channel conductance is maximal and there are no 

other major leak currents at play (Cl current is absent in myotonic 

muscle), then this membrane potential is close to EK. The depolarization 

(moving away from EK) seen after the red arrow leads up to the myotonic 

action potential.  

iii. One can then safely assume that another depolarizing current is likely at 

play during the myotonic run. This current turns off with delay as the 

myotonic run goes on. This can especially be seen at the very end of the 

myotonic run. The AfD (minimal at this point) depolarizes the fiber in an 

attempt to reach firing threshold but it ultimately fails to do so and the 

fiber returns towards its original resting membrane potential.  

 

Details of myotonic firing 

Intracellular recordings of myotonic APs were performed under current clamp conditions 

in the extensor digitorum longus (EDL) muscle, a standard muscle used for this 
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procedure that can be removed with little perturbation and thus closely approximates in 

vivo conditions.  

Evoked APs were triggered with 200ms step current pulses that depolarized the 

membrane potential by 15 to 25mV (Fig. 1.1). Following the evoked APs, I recorded 

trains of involuntary (myotonic) APs that were quite variable in length, lasting from 0.1 

to 100 seconds. During the myotonic APs, the average maximum repolarization (Max 

Repol) was 16.2 ± 1.3mV (n = 51 fibers, 12 mice) more depolarized than the original 

resting potential (prior to current injection) and did not return to resting level until 

hundreds of ms or > 1s after the myotonic APs (Fig 1.1). This steady depolarization could 

be interpreted as K+ buildup in the t-tubules.  

The average AP threshold, defined as the voltage at which the AP rate of rise (dV/dt) was 

10mV/ms, was 13.3 ± 0.5mV more depolarized than the Max Repol. After reaching the 

Max Repol between APs, the membrane potential would gradually depolarize over 20 to 

50 ms until the AP threshold was reached. No explanation for the AfD has yet been 

proposed. During myotonia, the rate of AfD gradually decreased during the run of 

myotonia from 320.7 ± 20.9mV/sec at the first myotonic AP to 141.9 ± 8.9mV/sec by the 

last myotonic AP (Fig 1.1, n=51 fibers, 12 mice, p<.01).  

 

Opening of K+ channels eliminates myotonia. 

Opening the K channels pharmacologically should increase extracellular K flow into the 

extracellular T-tubule. This should then increase the magnitude of depolarization caused 

by the K buildup following each individual AP. If K buildup alone was responsible for 

myotonia, then opening more K channels should exacerbate the myotonia.  
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There has been some evidence showing that opening K channels pharmacologically 

eliminates myotonia in acutely myotonic muscle treated with 9-AC (Su, Zei et al. 2012). I 

hypothesized that treating ClC muscle with the same drugs would yield the same result – 

elimination of myotonia.  

Retigabine, an FDA-approved drug for treatment of epilepsy, is a KCNQ channel opener 

(Large, Sokal et al. 2012; Grunnet, Strobaek et al. 2014). KCNQ channels have been 

shown to localize to the T-tubular membrane in skeletal muscle (Iannotti, Panza et al. 

2010). Figure 1.2 shows that myotonia is eliminated by 10 µM retigabine. Opening the 

KCNQ channels should exacerbate K buildup in the T-tubules, but it eliminates myotonia 

altogether.  

 

Depolarizing event contributing to myotonic firing 

My current clamp data strongly suggests that the AfD triggers myotonic APs and that the 

decreasing slope of the AfD is responsible for the termination of myotonia. To determine 

what underlies the AfD, we applied slow depolarization under well-controlled voltage 

clamp conditions. Before executing my planned voltage clamp studies, I delineated the 

characteristics of a depolarizing current that would play a role in the production of 

myotonic firing through the AfD. They are as follows: 

i. Voltage-dependence: A depolarizing current involved in the production of 

myotonic firing would need to be able to depolarize the muscle fiber from the 

Max Repol. towards firing threshold. The fiber repolarizes and rests briefly 

between myotonic action potentials at voltages of -60 to -70 mV. From this 
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membrane potential, the fiber goes through its AfD, which this current would be 

at least partially responsible for. 

ii. Amplitude: Based on current clamp records, this AfD is 13.3 ± 0.5 mV. Through 

this, one can estimate the current density amplitude needed for this amount of 

depolarization. Input resistance of the EDL muscle was measured to be 0.9 ± 0.12 

MΩ at RMP (prior to current injection). So, a current of ~14.8 nA would be 

needed for the AfD. 

iii. Kinetics: Of most interest was the kinetics that a depolarizing current must have 

to play a role in myotonia production. A myotonic run may run from <1 second to 

minutes. Even the shortest of myotonic runs require a current that can be 

repeatedly activated for seconds to minutes without inactivating.  

 

Characteristics of Na+ persistent inward current in muscle from ClC mice  

In motor neurons, repetitive firing is triggered by persistent inward currents (PICs), 

which are carried by both Na+ and Ca+ channels (Harvey, Li et al. 2006; Heckman, 

Johnson et al. 2008; Powers, Nardelli et al. 2008; Heckman and Enoka 2012). A NaPIC 

has been described previously in skeletal muscle (Gage, Lamb et al. 1989); this NaPIC 

lacked fast inactivation and activated between –80 and –70mV, such that it would convert 

a steady depolarization from K+ buildup into myotonia. In motor neurons, PICs are 

commonly measured by applying slow ramp depolarizations to inhibit channels with fast 

inactivation. To determine if PICs could contribute to the myotonic AfD, I applied slow 

ramp depolarization to dissociated flexor digitorum brevis (FDB) fibers. Because of their 

small size (400-500µm length x~40µm diameter), we were able to control whole FDB 
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fibers under voltage clamp. During ramp depolarizations at a rate of 10mV/sec in a 

normal K+ solution with 20µM nifedipine to block Cav1.1 channels (Fig. 1.3A), we 

recorded an inward deflection in current consistent with the activation of a PIC in ClC 

FDB fibers (Fig 1.3B&C). This current activated at −73.7 ± 1.1 mV and was maximal at 

–34.7 ± 2.1 mV with a current density of –8.0 ± 1.6 nA/nF (n=3 mice, 21 fibers). 

To determine whether this apparent PIC was due to a channel activation or a K+ channel 

closing during ramp depolarization, I repeated recordings in K-free solutions that also 

contained 0.1mM 3,4-diaminopyridine and 50µM Ba2+ in the external solution to block 

Kv channels and Kir channels, respectively (Alagem, Dvir et al. 2001; Cheong, Dedman 

et al. 2001). Under these conditions, the apparent PIC was reduced by ~80% (Fig 1.3D), 

suggesting that the closing of a K+ channel is a major contributor to the recorded current. 

The PIC that remained in the K+-free conditions activated at –71.4 ± 0.78 mV, was 

maximal at –42.1 ± 2.0 mV, had a –1.4 ± 0.2 nA/nF maximum current density. Although 

the current is small, the depolarization caused by NaPIC would drive the closing of 

inwardly rectifying K+ (Kir) channels (Standen and Stanfield 1980; Struyk and Cannon 

2008) causing a further depolarization in a small positive feedback cycle. Thus, NaPIC 

could be a key depolarizing trigger that drives myotonia.  

We also performed voltage-clamp ramp depolarizations on FDB fibers from unaffected 

wild-type siblings of ClC mice (WT) in K-free solutions. We used 400µM 9-

anthracenecarboxylic acid to block ClC-1, an established method of pharmacologically 

inducing myotonia (Palade and Barchi 1977). In the WT FDB fibers, we recorded a 

NaPIC that activated at –73.3 ± 0.8 mV, was maximal at –51.1 ± 1.8mV, and had a –0.9 

± 0.2nA/nF maximum current density. The NaPIC in both ClC and WT fibers had 
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characteristics similar to that reported previously for NaPIC in skeletal muscle (Gage, 

Lamb et al. 1989).  

To identify the channel through which this PIC passes, I attempted to block the PIC 

pharmacologically. After trial of multiple drugs, including nifedipine and verapamil, 

targeting a range of ion channels known to depolarize the skeletal muscle, tetrodotoxin 

(TTX) was the only drug to successfully block the PIC. This confirmed that the PIC, 

recorded in K-free conditions, does indeed pass through a TTX-sensitive channel. The 

current is likely mediated by Na+ channels since it was eliminated by application of 1µM 

TTX (n=4 mice, 23 fibers) (Fig. 1.3D). It is very likely that the PIC passes through 

NaV1.4, the same channel that is responsible for the fast Na current that depolarizes the 

fiber during an action potential. This finding is in line with findings in the motoneurons, 

as the NaPIC in motoneurons is thought to pass through NaV1.6, the same channel 

responsible for the fast Na current (Brocard, Plantier et al. 2016). 

Attempts to characterize this PIC using classical rectangular pulses for longer time 

periods were unsuccessful. The PIC was too difficult to discriminate out of the 

background currents, even with pharmacological block.  

 

PIC is susceptible to slow inactivation 

Slow inactivation is a property exhibited by some voltage-dependent ion channels, 

including Na channels (Adelman and Palti 1969; Almers, Stanfield et al. 1983). Longer 

depolarizations (on the order of seconds) lead to the slow inactivation of these channels 

and consequently require long periods of repolarization to relieve this inactivation.  
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As described earlier, the rate of AfD gradually declines during myotonia (Fig 1.1), 

suggesting that the underlying current slowly inactivates over hundreds of ms to seconds 

and lacks fast inactivation (which occurs over ms). The previous study which identified 

NaPIC in muscle (Gage, Lamb et al. 1989) did not determine whether the current 

inactivated over seconds. To examine slow inactivation, we modified our ramp protocols 

to slowly return to the baseline holding potential before repeating the slow 

depolarization, resembling a symmetrical saw-tooth pattern (Fig. 1.4). The mean current 

density of NaPIC on the descending ramp was reduced by 86% in ClC FDB fibers (–1.4 

± 0.2nA/nF on ascending ramp vs. –0.2 ± 0.1nA/nF on descending ramp, n = 20 fibers; 6 

mice, p < .01). Slow inactivation was relieved by the hyperpolarization at the end of the 

descending ramp, as the mean NaPIC during the subsequent ascending ramp was –1.3 ± 

0.2 nA/nF.  

During the initial depolarizing phase of the ramp, the PIC activates at –71.4 ± 0.78mV 

and peaks at –42.1 ± 2.0mV, but then decreases in amplitude again before reaching -10 

mV. This could possibly mean that the current has lost its driving force by this point. But 

earlier data showing TTX sensitivity points to the notion that this PIC passes through a 

Na channel. Our calculated equilibrium potential for Na is ~+50mV. So, the loss in 

driving force may account for slight decreases in the current amplitude, but the main 

cause of this decrease is likely caused by a decrease in conductance. Because the PIC 

isn’t susceptible to fast inactivation, the cause of this decreased conductance is likely to 

be slow inactivation. 

These data suggest that, while NaPIC lacks fast inactivation, it undergoes a reversible 

slow inactivation that could contribute to the reduction in the rate of the AfD during runs 
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of myotonia. These findings suggested that slow inactivation of NaPIC underlies the 

termination of myotonic firing.  

 

Warmup abolishes myotonic firing and may be acting through the slow inactivation of 

PIC. 

The warmup phenomenon has been described in myotonia congenita patients. Upon 

repeated use of a muscle group, the muscle acts normally and is no longer myotonic. 

Essentially, warmup is myotonic muscle acting normally after repetitive, high-frequency 

firing of muscle, on the order of minutes. However, it is not understood how warmup 

affects the state of the myotonic muscle.  

The warmup phenomenon is demonstrated in Fig 1.5. Current clamp recordings show 

that, upon 200ms of depolarizing current injection, a CLCN1adr-mto2J muscle will exhibit 

myotonic firing. 5,000 APs are then triggered at a rate of 50Hz to induce warmup. The 

200ms depolarizing current injection is then applied once again to induce myotonia. But 

the muscle, at this time, is “warmed up,” and fires no myotonic action potentials. As time 

elapses from the “warmup” period, one can see that the afterdepolarization following the 

200ms pulse gradually increases in size. This signifies the progressive relief of warmup 

and the muscle nearing a myotonic state. As time passes, this afterdepolarization is 

finally large enough to reach action potential threshold and fire myotonic action 

potentials.  

If indeed this novel PIC is a requirement for myotonic firing, it is possible that “warming 

up” a muscle will act on the PIC. To test this, I attempted similar ramp voltage protocols 
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as those seen in Figure 1.3 prior to and after 5,000 induced “action potentials.” These 

“action potentials” were done under voltage clamp as an instantaneous depolarization 

from -85mV to 0mV for 2ms at 50Hz. I expected to find a decrease in the PIC amplitude 

after this pseudo-warmup protocol. If the fiber was still intact and behaved properly, 

expected an increase in PIC amplitude towards its original size after a 5-minute rest 

period at -85mV. Unfortunately, my several attempts at this set of experiments were not 

successful. With such a harsh protocol, muscle fibers could not make it through the 

records. This is further discussed in the Discussion section. 

 

Reduction in the rate of AfD is responsible for termination of myotonia 

In a NaPIC model of myotonia, slow inactivation of NaPIC during a run of myotonia will 

cause a gradual decrease in the rate of the AfD. Furthermore, if inhibition of NaPIC 

underlies the termination of myotonia, the rate of the AfD should be at its minimum prior 

to termination of myotonia. This was the case. Before the first myotonic AP, the average 

AfD slope was 320.7 ± 20.9mV/sec; after the last myotonic AP, the average AfD slope 

was 141.9 ± 8.9 mV/s, its lowest value (51/51 fibers, 12 mice). Figure 1.6 shows a plot of 

the rate of the AfD during myotonia from a representative fiber. These data suggest that 

slow inactivation of NaPIC plays a central role in the termination of myotonia.  

We also examined whether slow inactivation of the transient Na+ current contributed to 

resolution of myotonia, as has recently been proposed (Lossin 2013; Novak, Norman et 

al. 2015). If the transient Na+ channel availability decreases, the AP peak and dV/dt will 

decrease, whereas the AP threshold increases. By these measures a decrease in transient 

Na+ channel availability only occurred in 13.7% of fibers prior to termination of 
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myotonia, there was no change in 27.5% of fibers, and an increase in 58.8% of fibers (Fig 

1.6). The lack of correlation between transient Na channel availability and termination of 

myotonia argues strongly that inactivation of transient Na+ currents does not play a 

central role in termination of myotonia. Another possibility is the resolution of t-tubular 

K+ buildup. However, arguing against this idea is that the maximal repolarization 

following each myotonic AP did not correlate with termination of myotonia (Fig 1.6). 

The only parameter that closely correlated with termination of myotonia was reduction in 

the slope of the AfD.  

 

Treatments that eliminate myotonia reduce NaPIC 

The tight correlation between AfD rate and termination of myotonia, suggests that 

pharmacologically inhibiting NaPIC would prevent myotonia. We studied the mechanism 

of action of two different manipulations that eliminate myotonia (Fig 1.7A). The first was 

the Drug ranolazine, which was previously demonstrated to be effective in treating 

myotonia (Novak, Norman et al. 2015). With no exposure to ranolazine, myotonia was 

detected in 100% of ClC EDL fibers (n = 217 fibers, 28 mice); in the presence of 50µM 

ranolazine, 0% of ClC EDL fibers exhibited myotonia (Fig 1.7A, n=35 fibers, 4 mice). 

The second treatment we studied was elevated extracellular Ca2+ and Mg2+, which has 

been shown to prevent myotonia (Skov, Riisager et al. 2013; Skov, De Paoli et al. 2015). 

We recorded from ClC EDL muscle in the presence of physiological (1.5mM Ca2+ and 

1.4mM Mg2+) and elevated (5mM Ca2+ and 2mM Mg2+) extracellular divalent cation 

concentrations. Myotonia was detected in only 8.33% of fibers in the presence of high 

divalent cations (4 of 48 fibers, 4 mice, Fig 1.7A).  
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We next studied whether both treatments reduced NaPIC. Voltage clamp recordings in 

the presence of 50µM ranolazine revealed an 80% reduction in NaPIC current density (n 

=20 fibers, 3 mice, Fig 1.7B&C). When NaPIC was recorded in the presence of elevated 

extracellular divalent cations, the current density was reduced by 55% (n=25 fibers, 3 

mice, Fig 1.7B). Thus, both ranolazine and the elevation of extracellular divalent cations 

eliminate myotonia and reduce NaPIC. The differences between control and treatment 

groups were statistically significant as determined by one-way ANOVA. 

If NaPIC plays a central role in triggering the AfD, elimination of myotonia by both 

treatments should be paralleled by reduction in the rate of the AfD. The rate of the AfD in 

the presence of 50µM ranolazine was 54.7 ± 8.6mV/s, a value much lower than the rate 

of the AfD in untreated muscle just prior to termination of myotonia (141.9 ± 8.9mV/s). 

Elevation of divalent cation reduced the rate of the AfD to 38.1 ± 5.3mV/sec. These data 

are consistent with the possibility that a reduction of NaPIC causes a reduction in AfD 

and this is the mechanism underlying the efficacy of both treatments against myotonia.  

That NaPIC and AfD are key determining factors in the onset and termination of 

myotonia is a dramatic shift from current views on myotonia. Hitherto, it was thought 

that treatments eliminate myotonia via effects on transient Na+ channels that lead to 

elevation of AP threshold (Desaphy, Carbonara et al. 2014; Cannon 2015). Moreover, the 

previous model did not address termination of myotonia. To assess the previous model, 

we compared the AP threshold to the AfD in our ranolazine and high divalent records. If 

treatments eliminate myotonia by raising AP threshold and not altering AfD, the AfD 

following treatment should reach the pre-treatment AP threshold, but not trigger 

myotonia. The AP threshold of the first myotonic AP measured in ClC muscle was –48.9 
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± 0.8mV (n=51 fibers, 12 mice, Fig 1.7C). The peak of the AfD following a 200ms 

stimulation in the presence of 50µM ranolazine averaged –62.1 ± 0.9mV (n=35 fibers, 4 

mice, Fig 1.7C), a value significantly more negative than the pre-treatment AP threshold. 

In the presence of elevated extracellular divalent cation, the peak voltage reached by the 

AfD averaged –59.9 ± 0.8mV (n=4 mice, 42 fibers, Fig 1.7C). Thus, while both 

treatments elevate AP threshold, in neither case does this appear to be the mechanism by 

which they eliminate myotonia. In contrast, the onset, termination, and treatment of 

myotonia can be understood by considering AfD and NaPIC.   

 

 

Discussion 

A new model of myotonic muscle hyperexcitability  

In both the autosomal dominant (Thomsen) and recessive (Becker) forms of myotonia 

congenita, loss of function mutations in the ClC-1 gene (CLCN1) cause muscle 

hyperexcitability (Lehmann-Horn, Jurkat-Rott et al. 2008; Trivedi, Cannon et al. 2014; 

Cannon 2015). However, it has remained unclear what excitatory events triggers 

myotonic APs in the absence of the stabilizing ClC-1 current. Prior to this study, the only 

excitatory factor implicated in the generation of involuntary action potentials (APs) in 

myotonia congenita was a steady membrane depolarization from K+ build-up in t-tubules 

(Adrian and Bryant 1974; Adrian and Marshall 1976; Wallinga, Meijer et al. 1999; 

Fraser, Huang et al. 2011) that activated the transient Na+ channels responsible for APs 

(Burge and Hanna 2012; Skov, Riisager et al. 2013). It was posited over four decades ago 

that some additional factor was necessary to account for the spontaneous firing of APs 



39	
	

during myotonia (Adrian and Marshall 1976); but, until now, no such factor had been 

identified. While closely examining action potentials in the Clcn1adr-mto2J (ClC) mouse 

model of myotonia congenita, we observed two possible contributors to the 

depolarization that brings fibers to threshold during runs of myotonic APs: 1) a blunted 

repolarization between action potentials, presumably from K+ build-up, and 2) a slow 

depolarization after each myotonic AP, which we termed the after-depolarization (AfD). 

We found that the onset of myotonia is accompanied by a steep AfD slope and the 

termination of myotonia follows a decrease in the AfD slope. Moreover, effective 

treatments reduced the AfD rate. No other action potential characteristic predicted the 

presence or end of myotonia. We further posited that a current, unmasked in the absence 

of ClC-1, underlay the AfD. A persistent inward Na+ current (NaPIC) previously 

identified in wild type (WT) skeletal muscle (Gage, Lamb et al. 1989) exhibited 

characteristics that could generate the AfD. We found a NaPIC in muscle from ClC mice 

and WT siblings with properties similar to those initially described by Gage et al. 

Notably, the voltage dependent activation and very slow inactivation describe an 

excitatory current that would drive the closure of Kir channels and explain the AfD. 

Based on characteristics of the NaPIC, we present a modified model of the generation of 

myotonia in Fig 1.8. 

In both models, the absence of a stabilizing chloride current through ClC-1 unmasks the 

depolarizing events. This occurs because the equilibrium potential for chloride is at or 

near the resting membrane potential (RMP) in skeletal muscle (–80 to –90mV) (Adrian 

and Bryant 1974; Palade and Barchi 1977). In the K+ buildup model (Fig. 1.8, Left panel) 

the only depolarizing event is K+ buildup in t-tubules, which is sufficient to drive the 
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membrane to the AP threshold. The role of K+ buildup in myotonia is established from 

experiments showing that de-tubulation of muscle fibers eliminated myotonia (Adrian 

and Bryant 1974; Adrian and Marshall 1976). Arguing against this model fully 

explaining myotonia, we show that the average maximum repolarization between 

myotonic APs, which is driven primarily by the EK, is 13mV more negative than the AP 

threshold. This strongly suggests that K+ buildup alone could not trigger myotonia.  

In the NaPIC model presented here, t-tubular K+ buildup provides the initial depolarizing 

event, which explains the steady depolarization during myotonia. The maximum 

repolarization between APs reflects the magnitude of this depolarizing effect. Since the 

membrane potential remains subthreshold without an additional depolarizing event, the 

membrane potential would return to resting values. However, K+ buildup is sufficient to 

activate NaPIC. In response to NaPIC, the membrane potential begins to depolarize past 

the maximum repolarization to generate the after-depolarization (AfD). Although NaPIC 

is small, we propose that the resulting depolarization will begin to close inwardly 

rectifying K+ (Kir) channels. The steep voltage-dependence of Kir channels is such that 

they close at potentials slightly depolarized relative to the K+ equilibrium potential 

(Standen and Stanfield 1980; Struyk and Cannon 2008).  

In fact, the difference in amplitude seen between PICs recorded in physiological solutions 

versus K-free solutions can be accounted for by the closing of Kir channels. This would 

mimic a PIC activation and increase the apparent PIC amplitude. My model suggests that 

a possible approach to MC treatment may be using a K channel opener, as demostarted in 

the retigabine findings. This is unexpected as outward K flow into the T-tubule has been 

seen as the main culprit behind myotonic firing. 
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NaPIC in WT muscle 

Our demonstration that NaPIC is present in WT muscle leads to the idea that the 

excitatory currents triggering myotonia are simply unmasked by the absence of ClC-1. 

Importantly, it also implies that NaPIC has a role in normal muscle function. One role of 

PICs in neurons is to convert steady depolarizations caused by the asynchronous firing of 

many weak synaptic inputs into repetitive spiking (Harvey, Li et al. 2006; Heckman, 

Johnson et al. 2008; Powers, Nardelli et al. 2008; Heckman and Enoka 2012). However, 

since skeletal muscle fibers receive only one synaptic input, there is no need for a PIC to 

convert multiple asynchronous synaptic firings into repetitive muscle APs. The normal 

function of NaPIC in muscle might be to improve the fidelity of neuromuscular 

transmission during periods of intense stimulation: in addition to enabling repetitive 

firing, PICs in neuronal dendrites serve as amplifiers for weak synaptic inputs (Lee and 

Heckman 2000; Heckman and Enoka 2012). During intense exertion, the neuromuscular 

junction is stimulated at rapid rates, resulting in depression of the endplate potential, such 

that synaptic transmission might fail (Rich 2006). The NaPIC in muscle could thus 

amplify subthreshold endplate potentials during strenuous activity.  

 

Molecular identity of NaPIC 

That NaPIC is sensitive to low doses of tetrodotoxin in ClC and WT muscle suggests that 

NaPIC is mediated by a standard skeletal muscle Na+ channel that drives the AP rising 

phase, namely Nav1.4 (Yang, Sladky et al. 1991). It is likely that NaPIC derives from 

small subset of Nav1.4 channels that are in a different conformation. This understanding 
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is based on recordings from frog skeletal muscle, as well as rat and cat neurons, that 

single Na+ channels shift modes between a normal, fast-inactivating mode and a mode 

lacking fast inactivation (Patlak and Ortiz 1986; Alzheimer, Schwindt et al. 1993). For 

simplicity, we refer to the currents through the Nav1.4 channels that lack fast inactivation 

as NaPIC and the currents through the normal fast-inactivating Nav1.4 channels as the 

transient Na+ currents. We hypothesize that some Na+ channel mutations that trigger 

myotonia do so by promoting the channel conformation that generates PIC. Mechanisms 

that have been identified in neurons as promoting NaPIC include cleavage by calpain and 

association of Na+ channels with calmodulin (Brocard, Plantier et al. 2016; Yan, Wang et 

al. 2017).  

We note that the NaPIC present in ClC muscle is distinct from the pathological persistent 

inward currents arising from mutations in Na+ or Ca+ channels that trigger periodic 

paralysis (Cannon 2015). NaPIC is too small to cause depolarization sufficient to cause 

muscle inexcitability and paralysis. Also, as it inactivates over seconds and could thus not 

cause the sustained depolarization that underlies periodic paralysis 

 

NaPIC Models 

The modeling of the functional behavior of ion channels has usually been based on the 

assumption of channel homogeneity – that every channel of the same subtype and 

isoform behaves similarly. However, single-channel electrical recordings have shown 

that this is not the case and is an oversimplication. I suggest that a subpopulation of the 

genetically normal NaV1.4 channels are in an alternate mode, with altered kinetics, 

making them responsible for the NaPIC.  
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Na channels in muscle have been shown to function in several different modes. Open-

time distributions of single Na channels involved in the bursting behavior seen in the 

Sartorius muscle of frogs were studied by Patlak. Although 80% of all bursts consisted of 

similar open-times. He concluded that the gating kinetics of individual Na channels are 

heterogenous (Patlak, Ortiz et al. 1986).  

There are numerous possible explanations for the functional heterogeneity seen in these 

channels. Post-transcriptional modifications may result in slightly different sub-

populations of these channels, leading to a permanent heterogeneity, as seen in the 

expression of TTX-sensitive and TTX-insensitive Na channels in denervated or 

developing muscle (Sherman and Catterall 1985). Another possibility is enzymatic 

degradation that could be introduced via the experimental setup. Cleavage of the Na 

channel by calpain has been shown to increase NaPIC in the spinal cord after injury. 

Although there are many reasons for a rise in intracellular Ca that can activate a calpain 

cleavage, experimental manipulation may be partially responsible for that.   

Another explanation may be a phenomenon known as mode shifting (Hess, Lansman et 

al. 1984). Mode shifting can be due to reversible chemical modifications or slow changes 

in the protein conformation of the channel.  

Yet another explanation is induced changes in the rate constants of Na channel modes. 

Inactivation is usually recognized as an inactivation form the open-state or Osi. Osi 

brings a channel form an aO-state (activation-gate and inactivation-gate open) to an aOI-

state (activation-gate open, inactivation-gate closed) channel. The rate constant for the 

forward reaction is designated ĸ, while the rate constant for the reverse reaction is 
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designated λ. Normally, ĸ is much larger than λ (Armstrong 2006).  A mild reduction in ĸ 

in a subset of the Na channels can also account for the presence of a NaPIC. 

I suggest that the underlying mechanism for generation of NaPIC is a transient 

dysfunction in the inactivation gate of genetically normal NaV1.4 channels. 

 

 

Treating ClC-1 disorders by targeting NaPIC 

Our model of NaPIC in myotonia reveals an attractive target for developing novel 

therapies with minimized side effects. Previously, the only ion channel target available 

for treatment was the transient Na+ current responsible for the AP. Blocking this critical 

current poses serious difficulties, such as how to provide sufficient relief from 

involuntary APs while minimizing interference with voluntary APs, which can produce 

weakness and paralysis. Highlighting the importance of NaPIC to myotonia, we 

demonstrate that highly effective treatments for myotonia act against NaPIC. Prior to our 

study, treatment with ranolazine and elevation of extracellular divalent cations were 

thought to eliminate myotonia by different mechanisms. As we had not yet identified 

NaPIC, we proposed that ranolazine was eliminating myotonia by enhancing slow 

inactivation of transient Na+ currents (Novak, Norman et al. 2015). Elevation of 

extracellular divalent cations was suggested to eliminate myotonia by a rightward shift in 

the voltage dependence of transient Na+ activation, such that the AP threshold shifted to 

more depolarized potentials (Skov, Riisager et al. 2013; Skov, De Paoli et al. 2015). In 

the current study, we found that both ranolazine and elevated divalent cations eliminate 

myotonia primarily by inhibiting NaPIC, which is paralleled by a reduction in the rate of 



45	
	

AfD such that the threshold for triggering myotonic APs was not reached. Thus, while 

both ranolazine and elevation of extracellular divalent cations may raise AP threshold, 

this does not appear to be the mechanism underlying their efficacy against myotonia. 

These findings lead to the conclusion that targeting NaPIC is the most effective method 

of preventing myotonia.  

 

 

Clinical Trial – Ranolazine as MC treatment 

Arnold, W. D., Kline, D., Sanderson, A., Hawash, A. A., Bartlett, A., Novak, K. R., 
Rich, M. M., Kissel, J. T. (2017). “Open label trial for the treatment of myotonia 
congenita.” Journal of Neurology. In press. 

 

An open label, pilot study was designed to determine whether ranolazine could improve 

signs and symptoms of myotonia and muscle stiffness in patients with myotonia 

congenita (MC). Thirteen participants were assessed at baseline, 2, 4, and 5 weeks.  

Ranolazine was started after baseline assessment (500mg twice daily), increased as 

tolerated after week 2 (1000mg twice daily), and maintained until week 4. Outcomes 

included change from baseline to week 4 in self-reported severity of symptoms (stiffness, 

weakness, and pain), timed-up-and-go (TUG), hand grip and eyelid myotonia, and 

myotonia on electromyography (EMG). 

Severity of stiffness, weakness, and pain symptoms were graded by participants (0-9, 

with 9 being the most severe) similar to a previously used symptom diary (Statland, 

Bundy et al. 2012). Hand grip myotonia was assessed by timing hand opening with a 

stopwatch following tight hand closure for 5 seconds.   Five consecutive trials were 
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performed. Eyelid myotonia was tested in a similar manner.  A single trial of the Timed-

up-and-go (TUG) was performed (Podsiadlo and Richardson 1991).  

EMG myotonia was assessed in the tibialis anterior (TA) and abductor digiti minimi 

(ADM) muscles at baseline and Week 4.  Presence or absence of myotonia following 15 

needle movements (EMG frequency) and the duration of the longest sustained myotonic 

run (EMG duration) were quantified in each muscle.    

Results show improvement in clinical and EMG assessments of myotonia.  Assessment 

of EMG myotonia frequency has been used  as an outcome in anti-myotonia trials 

(Statland, Bundy et al. 2012).  We quantified EMG frequency and duration of myotonia, 

and interestingly, ranolazine showed an effect on duration but not frequency.   

Mexiletine is the current treatment of choice in MC(Kwieciński, Ryniewicz et al. 1992; 

Statland, Bundy et al. 2012; Trivedi, Cannon et al. 2014). While this study does not allow 

comparison of ranolazine to mexiletine, having an alternative to mexiletine may be 

beneficial. An advantage of ranolazine is that mexiletine can easily completely block 

sodium current and induce loss of muscle excitability and weakness(Courtney 1981; 

Desaphy, Carbonara et al. 2014).  Ranolazine does not directly block the sodium current, 

but instead enhances slow inactivation (Novak, Norman et al. 2015).  As the voltage 

dependence of Nav1.4 slow inactivation is shallow, ranolazine is unlikely to completely 

eliminate sodium current and thus may be less prone to cause muscle weakness(Rich and 

Pinter 2003; El-Bizri, Kahlig et al. 2011).   

The findings, shown in Table 1.1, suggest that ranolazine is well tolerated over a period 

of four weeks and has possible benefit in MC suggesting the need for investigation in a 

randomized, controlled trial. The method by which ranolazine is acting on patient 
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symptoms can be explained directly by my earlier data showing ranolazine’s effect on the 

NaPIC.  
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Fig. 1.1: Myotonic firing in muscle from ClC mice due to both a steady depolarization 

and an after-depolarization. 

Shown is the response of a ClC muscle fiber to a 200ms injection of stimulating current. 

The fiber fires multiple APs for the duration of the current injection, a normal behavior; 

then also continues to fire APs after the cessation of current injection (myotonia). 

Contributors to myotonic firing of APs include a steady depolarization and an after-

depolarization (AfD) occurring between APs. The AfD occurs over 20-50ms and brings 

the fiber to threshold. The inset shows the final two APs of the run of myotonia on an 

expanded timescale. Max Repol.= the maximal repolarization following each AP; 

Threshold = AP threshold (dV/dt = 10mV/ms). An AfD is present following the last 

myotonic AP, but is too small to bring the fiber to threshold. Following the final AfD, 

there is a resolution of the steady depolarization as the fiber gradually returns to its 

resting membrane potential. Shown on the lower right is the mean value of the first and 

last AfD slopes (n=51 fibers, 12 mice, ** indicates p<.01 based on fiber variability).  
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Fig 1.2: Myotonia is eliminated upon addition of 10 µM retigabine 

(A) CLCN1adr-mto2J muscle is injected with a depolarizing current for 200 

milliseconds, resulting in the firing of multiple action potentials for the duration of 

the injection, a normal behavior. The fiber continues to fire action potentials after the 

cessation of current injection (myotonia). (B)Upon addition of 10 µM retigabine, a 

KCNQ channel opener, the same fiber shows no myotonic firing with the 

preservation of firing during the current stimulus.  

n = 6 mice, 67 fibers. p<.001 based on fiber variability 

 

 

 

 

 

 

 

 

 



52	
	

 

 

 

 

 

 

 

 

 

 

 

 

 



53	
	

Fig. 1.3: Characterization of a TTX-Sensitive Persistent Inward Current in ClC 

muscle.  

(A)The voltage protocol used to identify PICs. From a holding potential of –85mV, fibers 

were depolarized to –10mV at a rate of 10mV/sec. (B) The current trace generated by the 

ramp depolarization in normal K+ solution with 20µM nifedipine. A fit line (red) is drawn 

using the first 0.5 seconds of the raw trace, representing the leak current. Deviations from 

the leak current/fit line in the negative direction are consistent with activation of a PIC. 

n=3 mice, 21 fibers) (C) Shown is a trace generated by subtracting the leak trace shown 

in B and plotting against voltage. (D) Plot of leak-subtracted PIC in K-free solutions (-

TTX). The PIC was blocked by the addition of 1µM TTX to the external solution 

(+TTX). (n=4 mice, 23 fibers) 
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Fig. 1.4: Current recorded during a voltage-clamp ramp protocol with repeated slow 

depolarization  

Current recorded during a voltage-clamp ramp protocol in which the fiber was slowly 

depolarized from a holding potential of –85mV to –10mV, repolarized to –85mV, and 

again depolarized to –10mV. The larger PIC during the depolarizing ramps than the 

repolarizing ramp shows that the muscle NaPIC undergoes slow inactivation. The 

recording was performed in K+-free solutions. The fit lines for linear leak currents are 

superimposed on all three ramps.  

n = 20 fibers; 6 mice, p < .01, paired t-test 

 

 

 



56	
	

 

 

 

 

 

 



57	
	

Fig 1.5: Warmup eliminates myotonia temporarily. 

Shown, in the top trace, is the response to a CLCN1adr-mto2J muscle fiber to a 200ms of 

depolarizing current injection. At the end of the current pulse, the fiber continues to fire 

myotonic action potentials.  

5,000 APs are then triggered at a rate of 50Hz to induce warmup. The 200ms 

depolarizing current injection is then applied immediately to induce myotonia. But the 

muscle is warmed up and fires no myotonic action potentials.  

As time elapses after the 5,000 APs, the afterdepolarization following the 200ms pulse 

gradually increases in size and rate, signifying the progressive relief of warmup and the 

muscle returning towards its original myotonic state. As more time passes, this 

afterdepolarization is finally large enough to reach action potential threshold and fire 

myotonic action potentials.  
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Fig. 1.6: Changes in AP parameters during a myotonic run. 

Shown at the top is a 10-second run of myotonia triggered by a 200 ms stimulation. On 

the lower left is a blow-up of two APs from the middle of the myotonic run to 

demonstrate the AP parameters measured. On the lower right is a plot of the values of the 

various parameters, time-matched to the run of myotonia shown above. Termination of 

myotonia correlates with a reduction in the slope of the after-depolarization. AfD = after 

depolarization, AP peak = AP peak; Max dV/dt = the maximal rate of rise of the AP; AP 

thresh = AP threshold; Max Repol = the maximal repolarization reached between APs.  
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Fig. 1.7: Elimination of myotonia and parallel reduction of NaPIC by ranolazine, and 

divalent cation-treated ClC muscle. 

(A) In untreated ClC muscle (top), myotonia is triggered with a 200ms depolarizing 

current pulse, whereas, 50µM ranolazine treatment (middle) and high extracellular 

divalent solutions (bottom) eliminate myotonia. (B) Representative NaPIC traces evoked 

by slow-depolarizing voltage ramps (similar to those shown in Fig. 2D) for untreated 

(top), ranolazine (middle), and elevated cation (bottom) groups. NaPIC current density is 

reduced by both ranolazine and elevated extracellular divalent concentration. (C) Top 

plot: ClC muscle (untreated) shows a maximal PIC current density of –1.25 ± 0.17nA/nF 

(n=23 fibers, 4 mice) vs. treatment with 50µM ranolazine (maximal PIC current density 

is reduced to –0.38 ± 0.11nA/nF; n = 20 fibers, 3 mice); and vs. elevated cation solutions 

(maximal PIC current density is decreased to –0.61 ± 0.16nA/nF; n = 25 fibers, 3 mice). 

Lower plot: Mean threshold of the first AP of a myotonic run of APs in ClC muscle 

(control) compared to the peak AfD following treatment with ranolazine and high 

divalent solution. Both treatments that eliminate myotonia cause the AfD to fail to reach 

the threshold at which myotonic firing is triggered in untreated, control muscle.  

 

The differences between control and treatment groups were statistically significant as 

determined by one-way ANOVA. 
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Fig. 1.8: A new model of generation of myotonia. 

In the K+ buildup model on the left, myotonia is triggered solely by a steady 

depolarization caused by K+ buildup in t-tubules, which is sufficient to depolarize the 

membrane to the AP threshold and trigger myotonia. In the NaPIC and K+ buildup model 

on the right, K+ build-up is insufficient to trigger myotonia in isolation; but rather 

depolarizes the membrane sufficiently to activate NaPIC, which then contributes to the 

final depolarization that triggers myotonic APs. 
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Variable Visit N Raw Mean 
/ Median 

Standard 
Deviation / 
Quartiles 

Comparison 
to Baseline 

95% 
Confidence 
Interval 

p-value 

Self-
Reporte
d 
Stiffness 
(0-9, 
9=worst
) 

 

Baseline 1
3 

5.46 2.18 0   

Week 2 1
3 

3.46 2.37 -2 (-3.42, -
0.58) 

0.0073 

Week 4 1
2 

2.08 1.73 -3.53 (-4.99, -
2.07) 

<0.0001 

Week 5 1
3 

6 2.45 0.54 (-0.89, 
1.96) 

0.4476 

          
Self-
reported 
Weakne
ss (0-9, 
9=worst
) 

 

Baseline 1
3 

4.15 2.67 0   

Week 2 1
3 

3.23 2.45 -0.92 (-2.03, 
0.19) 

0.1005 

Week 4 1
2 

2.5 2.15 -1.81 (-2.95, -
0.67) 

0.0028 

Week 5 1
3 

5.08 2.6 0.92 (-0.19, 
2.03) 

0.1005 

          
Self-
reported 
Pain (0-
9, 
9=worst
) 

Baseline 1
3 

4.08 3.01 0   

Week 2 1
3 

2.92 2.66 -1.15 (-2.42, 
0.11) 

0.0732 

Week 4 1
2 

2.42 2.61 -1.73 (-3.03, -
0.43) 

0.0107 

Week 5 1
3 

3.92 3.01 -0.15 (-1.42, 
1.11) 

0.8069 

        
Hand 
Grip 
Opening 
Time 
(second
s) 

 

Baseline 1
3 

2.16 1.53 1   

Week 2 1
3 

1.75 0.47 0.91 (0.74, 1.13) 0.4045 

Week 4 1
2 

1.45 0.37 0.76 (0.61, 0.93) 0.0109 

Week 5 1
3 

1.91 0.89 0.94 (0.76, 1.16) 0.5928 

          
Eyelid 
Opening 
Time 
(second
s) 

 

Baseline 1
3 

1.94 1.50 1   

Week 2 1
3 

1.81 0.90 1.000 (0.75, 1.32) 0.9919 

Week 4 1
2 

1.40 0.57 0.811 (0.60, 1.08) 0.1459 

Week 5 1
3 

1.73 0.66 0.980 (0.73, 1.30) 0.8747 



65	
	

        
Timed 
Up and 
Go 
(second
s)b 

 

Baseline 1
2 

9.99 3.36 1   

Week 2 1
2 

9.08 1.78 0.942 (0.84, 1.04) 0.2147 

Week 4 1
1 

8.68 1.59 0.887 (0.80, 0.99) 0.0318 

Week 5 1
2 

9.86 3.25 0.99 (0.90, 1.11) 0.8895 

          
EMG 
Duration 
ADMb 

(microse
conds) 

Baseline 1
1 

10082.73 13932.3 1   

Week 4 1
1 

8582.55 14121.37 0.48 (0.35, 0.66) 0.0008 

          
EMG 
Duration 
TAb 

(microse
conds) 

Baseline 1
1 

7159.09 7022.78 1   

Week 4 1
1 

6288.27 6881.83 0.48 (0.29, 0.78) 0.0088 

          
EMG 
Frequen
cy ADMc 

 (0-15 
insertion
s) 

Baseline 1
3 

13 (8, 15) 0   

Week 4 1
2 

13 (2.5, 14) 1 (0, 3) 0.125 

          
EMG 
Frequen
cy  TAc  

(0-15 
insertion
s) 

Baseline 1
3 

12 (6, 14) 0   

Week 4 1
2 

11.5 (4, 14.5) 0.5 (-1, 3) 1 
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Table 1.1: Results of symptom diary, clinical measures of muscle stiffness and mobility, 

and electrophysiology 
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Chapter V: Specific Aim II 

Presence of a Ca Current Playing a Role in Producing Symptoms of Transient 

Weakness 

 

The overall objective of Specific Aim II is to establish the presence of a Ca persistent 

inward current in myotonic muscle and describe its potential role in patient 

symptomology. 

 

Introduction 

Myotonia congenita patients complain of transient bouts of muscle weakness brought on 

by sudden movement after rest (Ferradini, Cassone et al. 2017). It appears after repetitive 

muscle contractions and improves with further contractions (Ricker, Haass et al. 1978). 

They are described to last seconds to minutes following episodes of muscle stiffness. It is 

known to be associated with a transient drop in compound muscle action potential 

amplitude, likely due to muscle inexcitability. Some patients report that transient 

weakness (in specific muscle groups) was a greater impediment than the stiffness (Rudel, 

Ricker et al. 1988). This weakness is not caused by failure of neuromuscular transmission 

(Ricker and Meinck 1972). Compound muscle action potentials (CMAPs) were shown to 
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fade with repetitive nerve stimulation. Decreases in muscle force measurements were also 

shown (Ricker, Meinch et al. 1973). 

MC patients have been shown to be unable to sustain maximal muscle contraction for 

long periods of time. Isometric force measurements show maximal force on initial 

voluntary contraction, but a drop to a plateau afterwards (Rudel, Ricker et al. 1988).  

An unanswered question is why patients experience transient weakness when myotonia 

congenita is believed to be a disease of muscle hyperexcitability. This novel behavior 

points to long periods of hypoexcitability and changes the view of this disease from one 

of strictly hyperexcitability to a constant flux between hyperexcitability and 

hypoexcitability, corresponding to patient symptoms of muscle stiffness and transient 

weakness. 

 

Results 

During current clamp recordings in Clcn1adr-mto2J (ClC) muscle, I discovered a novel 

behavior, not described in myotonic muscle before. In fact, this behavior was very 

reminiscent of behaviors seen in periodic paralysis, a skeletal muscle channelopathy 

caused by mutations in NaV1.4 or CaV1.1. This incidental finding, seen during recordings 

of myotonic runs, was of great interest to me as the paralytic episodes seen in periodic 

paralysis have similarities to the weakness experienced by myotonia congenita patients.  

This novel “hang” state, as I refer to it, lasts seconds to minutes. Spontaneous behaviors 

like this with no external stimulus led me to hypothesize that this behavior may be 

explained in part by the activation of a PIC. This PIC would not be the same NaPIC as 
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that described in the previous chapter. Although this current would have to be persistent 

(able to consistently pass current for extended time periods without inactivation), it 

would have a different voltage-dependence and amplitude than the NaPIC to play a role 

in this hanging behavior. 

A novel source of depolarization would be needed to induce this “hang” state. A PIC 

would fit this requirement. I aimed to identify and characterize the current by using the 

following methods: 

I. To identify the characteristics of this depolarizing event, I acquired 

current clamp recordings from myotonic muscle demonstrating the hang 

state and analyzed them. 

II. To identify the presence of a novel inward current that may play a role in 

“hanging”, I acquired voltage clamp recordings from myotonic muscle 

using a variety of protocols.  

 

Discovery of the “hang” state in Clcn1adr-mto2J (ClC) muscle  

Current clamp recordings were taken in ClC EDL muscle with protocols to induce 

myotonia. Specifically, 200 milliseconds of depolarizing current was injected into a 

muscle fiber, eliciting a myotonic run. Often, a myotonic run would lead into a hang 

state, as shown in Figure 2.1. Following a run of myotonia, the fiber spontaneously goes 

into a depolarized state or hang, rather than repolarizing towards the original resting 

membrane potential as seen in Figure 1. What determines whether a myotonic run will 

end as shown in Figure 1 or as shown in Figure 2.1 will be discussed later. 93.4% exhibit 
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this hanging behavior following a myotonic run at least once while recording (n=20 

mice, 152 fibers). Myotonic fibers hang for 125.5 ± 10.1 seconds (n= 20 mice, 61 

fibers) before the spontaneous repolarization to RMP. The consistency of this finding in 

ClC muscle confirmed that this a reproducible, physiological behavior of the myotonic 

muscle, rather than irreversible damage caused by muscle damage due to muscle 

movement during the myotonic run. Further confirmation of this as a reproducible 

behavior, and not an artifact of damage is the return to the original resting membrane 

potential. If fibers were damaged due to the muscle movement, we would not see a return 

to resting membrane potential. 

Figure 2.1 shows a rapid depolarization over a few myotonic action potentials to this 

depolarized hang state of -26.4 ± 0.4 mV (n= 20 mice, 78 fibers). What this means for 

the individual muscle fiber is an absolute loss of excitability. At -26.4 mV, the transient 

NaV1.4 channels responsible for initiating an action potential are almost completely 

inactivated and are unable to pass current (Rich and Pinter 2003; Novak, Nardelli et al. 

2009). Figure 2.2 shows attempts to demonstrate this inexcitability by injecting larger and 

larger depolarizing currents during the hang state in an attempt to initiate an action 

potential, with no success. What is seen is a graded passive response of the membrane 

(depolarization proportional to current injected). A fiber in this hang state will not fire an 

action potential regardless of the strength of a synaptic input from the motoneuron 

innervating the muscle fiber. The muscle fiber is functionally paralyzed during this hang 

state. This finding led me to hypothesize that this novel behavior in myotonic muscle 

may be responsible for the episodes of transient weakness described by patients.  
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Another focus of Figure 2.1 is the demonstration of the repolarization from the hang state 

back towards RMP. This particular trace shows a spontaneous repolarization over the 

span of a few milliseconds. Prior to this repolarization or “pop-back”, however, one can 

see a much slower repolarization during the hang state at a rate of 0.24 ± 0.1 mV/sec (n= 

20 mice, 61 fibers). It is, as though, there is a slow repolarization of a few mV over 

seconds or minutes till the rapid pop-back over a few milliseconds. This pop-back only 

occurs at certain membrane potentials - always more hyperpolarized than the initial 

hanging potential. This value was measured to be -38.9 ± 0.6 mV (n= 20 mice, 61 

fibers). The initial hanging potential and the potential at which the fiber spontaneously 

repolarizes were compared via paired t-test and the difference was found to be 

statistically significant (p<0.001). 

The repolarization can also be induced by a hyperpolarizing current injection. But the 

same rule applies. The membrane potential must be hyperpolarized with respect to the 

initial hang state membrane potential before it can be induced to pop back. If it has not 

yet reached that potential, a negative current pulse, regardless of amplitude (tested up to -

100nA), will not induce a pop-back. This forced repolarization from the hang state is 

demonstrated in Figures 2.3 and 2.4. (n= 6 mice, 8 fibers) 

 

Variations in the hang state  

Of great interest is the variation in the pattern of events leading to the hang state and its 

resolution. Figure 2.5 shows five variations of myotonic runs leading into a hang state.  
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Hang states from ClC muscle differs in patterns of depolarization and repolarization. The 

rate of depolarization that triggers the hang state is not conserved, with periods of slow 

and rapid depolarization.  

Typically, a fiber will begin to oscillate at some point during the hang state leading into a 

sudden repolarization towards RMP. The oscillations increase in amplitude with time and 

eventually lead into a spontaneous repolarization. These increasingly larger oscillations 

prior to spontaneous repolarization is consistent within each fiber 

These variations tell me that the characteristics of the current underlying entry, duration, 

and resolution of the hang state can be modulated and may change due to several reasons.   

 

The determinant of whether a myotonic run ends in a hang is the average membrane 

potentials achieved by the myotonic run. 

Figure 2.6 shows two myotonic runs recorded from the same fiber minutes apart from 

each other.  

Comparisons of myotonic runs ending in a hang state versus those ending in a 

conventional repolarization to the original RMP further reinforce that there is something 

fundamentally different about the myotonic runs. My focus was on measurements of the 

average membrane potential over the last second of the myotonic run. To account for any 

confounding factors that might differ between fibers, these analyses were done using a 

paired t-test (pairing of two myotonic runs in the same fiber). The two compared events 

had similar RMPs prior to 200ms current injection of similar magnitudes. Paired t-test 

revealed a significant difference in the average membrane potential of the last second of 
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the myotonic run (p < .001). Average membrane potential during the final second of 

firing for conventionally ending myotonic runs was -55.1 ± 1.5 mV (n= 8 mice, 26 fibers) 

while average membrane potential for myotonic runs ending in a hang was -37.9 ± 1.2 

mV (n= 8 mice, 26 fibers). Paired t-tests revealed that this was a significant difference 

(p<.001). 

I hypothesized that the reason myotonic runs that do depolarize into a hang state do so 

because the average membrane potential reaches the activation potential for a current that 

is responsible for the hang state. On the other hand, if the average membrane potential is 

not depolarized enough to activate this current (either a myotonic run is too short or fires 

at too low a frequency), the fiber will repolarize towards RMP after the last myotonic AP 

rather than go into a hang state. 

 

Hang state is caused by the activation of an inward current. 

The first question to address when attempting to understand the mechanism behind the 

hang state is the nature of the depolarization. To depolarize the membrane potential, an 

activated outward current may close or an inactive inward current may be activated. To 

distinguish the two, I measured input resistance. Input resistance gives a good estimate of 

the cumulative ion channel conductance of the fiber. Once steady-state is reached during 

an input resistance pulse, one can assume that no voltage-dependent currents are opening 

or closing during the pulse.  

Figure 2.3 also shows responses to constant current injection – measurements of input 

resistance both during the hang state and after repolarization to the RMP. Measurements 
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were only included in the data set if steady-state was achieved during the input resistance 

pulse, ensuring that no voltage-dependent channels were opened or closed during the 

measurement. Input resistance during the hang state was decreased during the hang state 

when compared to RMP.  

Input resistance during the hang state was 0.50 ± 0.06 MΩ while input resistance at RMP 

was 0.90 ± 0.12 MΩ (n= 4 mice, 13 fibers). A paired t-test revealed a significant 

difference in the input resistance (p < .01). This finding led me to hypothesize that a 

channel is open during the hang state that is not open at RMP. This channel is likely to 

also be responsible for entry into the hang state.  

 

Depolarizing current plays a role in inducing the “hang” state. 

With the previous observations, I concluded that a depolarizing current is likely playing a 

central role in inducing the hang state. Upon closer inspection of the current clamp 

recording, as seen in Figure 2.1, one can get an idea of the characteristics of a 

depolarizing current that would be responsible for a hang state. 

i. Voltage-dependence: A depolarizing current involved in the hang state would 

need to activate at a mean membrane potential that triggers the hang state. 

Based on Figure 2.6, the fiber’s average membrane potential depolarizes 

slowly over seconds during a myotonic run, till it is depolarized to a potential 

able to activate this current. Only then can the fiber enter the hang state. The 

membrane potential at which the sudden repolarization takes place suggest a 

voltage at which many of these channels are closing. 
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ii. Amplitude: A depolarizing current involved in the hang state would need to be 

able to depolarize the muscle fiber from the maximal repolarization during a 

myotonic run towards the hanging start potential of -26.4 mV. The amplitude 

of this current must be relatively large, as compared to the NaPIC described in 

the previous chapter. 

iii. Kinetics: The slow kinetics of activation and apparent lack of fast inactivation 

were pointing me in the direction of a PIC once again. The hang state varies in 

duration before spontaneous repolarization, but lasts 125.5 ± 10.1 seconds (n= 

20 mice, 61 fibers) on average. For a depolarizing current of this magnitude 

to not inactivate and continue to pass current for that long a period, it would 

likely be resistant to fast inactivation and have very slow kinetics. This led me 

to search for another PIC, aside from the NaPIC described earlier. 

 

Presence of another persistent inward current in myotonic skeletal muscle. 

Similar voltage clamp ramp protocols were used to characterize this PIC as those used in 

the previous chapter. The major differences are in the membrane potentials used. Ramp 

protocols were used, depolarizing from -85mV to +20mV at a rate of 10mV/sec.  Based 

on the characteristics of the hang seen in the current clamp records, this PIC will have a 

larger amplitude and more depolarized voltage of activation than the previously described 

NaPIC.  

During voltage clamp ramp protocols, one can first see the activation of the NaPIC 

studied earlier followed by the activation of a larger PIC that activates at a more 
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depolarized potential. Figure 2.7 shows this larger PIC clearly.  Based on ramp protocols, 

this PIC activates at a membrane potential of -18.3 ± 1.8 mV and reaches its maximum at 

24.2 nA/nF at -2.8 ± 1.5 mV (n= 12 mice, 32 fibers).  

Rectangular voltage clamp protocols were also used in the study of this PIC, as it was 

large enough to clearly distinguish from the background currents. This is shown in Figure 

2.8.  Based on rectangular protocols, this PIC has a maximal amplitude of 30.5 ± 5.4 

nA/nF at -5 mV (n= 7 mice, 15 fibers).  

With a current density of this magnitude and voltage-dependence, this PIC is likely 

responsible for the depolarization leading to the hang state. 

 

This PIC likely passes through the L-Type Ca Channel. 

Voltage clamp PIC recordings showed the following results: 

i. Nifedipine (20 µM): Nifedipine is a dihydropyridine blocker, used 

clinically for hypertension and angina. It is known to block L-Type Ca 

channels, including CaV1.1 (Jorquera, Altamirano et al. 2013). At 20 µM 

concentration, nifedipine largely blocks the PIC of interest as shown in 

Figure 2.9.  

ii. Verapamil (100 µM): Verapamil is a non-dihydropyridine blocker, used 

clinically as an anti-arrhymtic agent. It is also known to block L-Type Ca 

channels, including CaV1.1 (Striessnig, Bolz et al. 2010). At 100 µM 

concentration, verapamil largely blocks the PIC of interest as shown in 

Figure 2.10.  
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iii. Bay-K (20 µM): Bay-K is an L-Type Ca channel activator, including 

CaV1.1 (Jorquera, Altamirano et al. 2013). It acts by increasing the open 

probability over a certain voltage range and increasing open time (Hadley 

and Hume 1988). At 20 µM concentration, Bay-K enhances the PIC of 

interest as shown in Figure 2.11.  

Based largely on the pharmacological findings, this PIC passes through the L-Type Ca 

channel. Specifically, this PIC likely passes through the CaV1.1 channel, as it is the main 

L-Type Ca channel in the skeletal muscle, playing a necessary role in the excitation-

contraction coupling (Catterall 2011).  

 

Nifedipine decreases the frequency of the hanging behavior  

After recognizing that this PIC appears to pass through the L-Type Ca channel and is 

susceptible to nifedipine as a blocker, I decided to check on the effect of nifedipine on the 

hanging behavior directly. This would show a more direct relationship between the 

properties of this PIC and the effect it has on myotonic muscle. I have previously 

demonstrated that myotonic muscle goes into the hang state frequently and for long 

durations.  

Upon treatment with 10µM nifedipine, the frequency of hanging was decreased from 

93.4% (n=20 mice, 152 fibers) to 25.0% (n=3 mice, 24 fibers). This finding provides a 

clear link between the Ca PIC and the hanging behavior. 
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Wild-Type muscle exhibits similar behaviors and currents. 

Wild-type muscle, made acutely myotonic by 9-AC treatment, taken from asymptomatic 

littermates of the CLCN1adr-mto2J mice, exhibit similar hanging behavior after myotonic 

runs, as shown in Figure 2.12. The most significant difference between CLCN1adr-mto2J 

muscle and WT muscle treated with 9-AC is the length of the hang period.  

The hang state of myotonic WT muscle is briefer in duration than that of CLCN1adr-mto2J 

muscle, never exceeding 5 seconds before the sudden repolarization towards RMP. On 

average, myotonic WT muscle hangs for of 1.1 ± 0.1 sec (n=5 mice, 26 fibers). In stark 

contrast, CLCN1adr-mto2J muscle hangs for 125.5 ± 10.1 seconds (n= 20 mice, 61 fibers). 

This difference in hang duration is likely related to the slope with which the hang 

repolarizes before it pops back towards RMP. Analyses show that the hang of WT muscle 

has a sharper slope and repolarizes during the hang more quickly at a rate of 10.8 ± 1.1 

mV/sec (n=5 mice, 26 fibers). This would mean that the fiber is reaching that critical 

membrane potential for the sudden repolarization towards RMP more quickly, ending the 

hang phase. ClC myotonic muscle shows a much slower repolarization during the hang 

state at a rate of 0.24 ± 0.1 mV/sec (n= 20 mice, 61 fibers). 

 

Discussion 

Myotonia congenita patients often complain of transient bouts of muscle weakness, 

especially with movement after a resting period. The mechanism by which this 

dysfunction comes about is not understood. The specificity of the weakness after sudden 
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movement is very interesting. Sudden movement, especially after rest, will lead to a 

myotonia in ClC muscle as the muscle is not “warmed up.”  

 

 

Similarities to Periodic Paralysis  

Myotonia congenita patients, specifically those with the autosomal recessive type, often 

complain of transient episodes of weakness. This complaint has similarities to a major 

complaint made by patients who suffer from a different skeletal muscle channelopathy 

called periodic paralysis. Episodic muscle weakness is a hallmark clinical sign for 

periodic paralysis (Statland and Barohn 2013; Al-Ghamdi, Darras et al. 2017). 

Periodic paralysis is a disease of the skeletal muscle, causing transient episodes of muscle 

weakness/paralysis when triggered. This disease is very rare in the US. There are many 

subtypes of periodic paralysis but they all share a commonality of transient, triggered 

episodes. The subtypes are classified using various criteria, most commonly by episode 

trigger.  

Periodic paralysis is further broken down depending on the causative mutation. The 

causative mutations are all ones of ion channels of the skeletal muscle. Periodic paralysis 

can be caused by mutations in the L-Type Ca channel (CaV1.1), the voltage-gated Na 

channel (NaV1.4), the potassium inward-rectifier channel (Kir 2.1), and others. The most 

common mutation seen in patients is the R528H missense mutation of the CaV1.1 

channel, responsible for about 30% of Periodic paralysis cases (Cannon 2010; George 

2012; Wu, Mi et al. 2012; Cannon 2015). Specifically, this mutation produces a gating 
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pore, that allows for a substantial depolarizing gating pore current (Wu, Mi et al. 2012). 

This current is large enough to keep the membrane potential of a muscle fiber inexcitable 

(by Na channel inactivation) for minutes to hours, until the initiating trigger (most 

commonly decreased serum K levels) is alleviated.  

A key difference between the two periods of inexcitability must be a property of the 

underlying channel kinetics, specifically slow inactivation. In periodic paralysis, the 

underlying current likely lacks slow inactivation, as an episode of weakness can last 

hours until the initiating trigger is resolved. In myotonia congenita, periods of weakness 

generally last much shorter periods, on the order of minutes. The reason for this is that 

the CaPIC, implicated in triggering the hang state, exhibits slow inactivation, making the 

attacks much shorter.   

Discovery of the hang state in ClC muscle gives us great insight into the complaint of 

weakness among MC patients. Indeed, ClC fibers stay depolarized for extended periods 

of time, leaving the fast Na channels in an inactivated state just as periodic paralysis 

muscle fibers do. Reductions in CMAP amplitudes have also been demonstrated in both 

models, further pointing to similarities in the end behaviors of these diseases with 

differing depolarizing events leading to this state.  

 

Activation and Inactivation of the CaPIC  

I have concluded that the fate of a myotonic run (whether or not it would end in a hang 

state) was determined by the average membrane potential during the myotonic run. 

CaPICs in neurons are known to activate very slowly and then persist. A quick 
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depolarization to the activation potentials needed for CaPIC activation alone is not 

enough to activate the PIC. It needs to be an prolonged period of depolarization 

(Hounsgaard and Kiehn 1989; Alaburda, Perrier et al. 2002). Therefore, I conclude that 

the CaPIC is activating in response to the depolarized average membrane potential. When 

the average membrane potential is equal to or greater than the activation threshold for the 

PIC, the CaPIC will activate and begin to pass current, depolarizing the cell further and 

further till it reaches a new steady-state membrane potential – the hang.  

The CaPIC must also be susceptible to some sort of inactivation which would explain the 

end of the hang state. Its identification on ramp protocols and persistence during 

rectangular protocols mean that it does not fast inactivate but both protocols show that it 

does slow inactivate. More experiments should be done to explore the exact kinetics of 

the slow inactivation via rectangular protocols, but my recordings show that it is on the 

order of seconds, not milliseconds. This likely plays a role in the slow repolarization 

during the hang and the sudden repolarization that ends the hang.  

 

Discrepancies between CaPIC and Hanging Behavior  

I have implicated the CaPIC as the major component in triggering the hang state. Upon 

closer investigation, however, one may notice two discrepancies. The first is that the 

CaPIC’s activation potential does not necessarily match that of the starting hang 

potential. The second is that CaPIC slow inactivates over seconds (although more should 

be done to confirm this) while the hang in myotonic muscle lasts for over a minute on 

average. One reason for this mismatch is the difference in muscles used for current clamp 
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and voltage clamp experiments. The EDL is a much larger and more robust muscle than 

the smaller, more fragile FDB/IO muscles. But that very fact is what makes the FDB/IO 

muscles suitable for voltage clamp experiments (able to space clamp the shorter fibers). 

Additionally, the voltage clamp preparation involves 20 minutes of dialyzing the 

intracellular solution to buffer Ca using EGTA to eliminate contraction during 

recordings. Although this allows us to record from damaged fibers, this will have a 

significant effect on free Ca concentrations in the cell, and will therefore have effects on 

the voltage-dependence and kinetics of the recorded current. There is evidence that the 

Ca channel current activation and inactivation properties have a dependence on 

intracellular Ca concentrations in cardiac muscle (Lee, Marban et al. 1985) and in 

skeletal muscle (Donaldson and Beam 1983). It has also been shown that the decay of 

slow calcium currents in frog muscle fibers is influenced by intracellular EGTA (Francini 

and Stefani 1989). Additionally, calcium currents have been shown to have a temperature 

dependence (Cota, Nicola Siri et al. 1983; Donaldson and Beam 1983). 

 

Nifedipine as a Therapy for Patient Weakness  

At first glance, one may think that nifedipine then provides a therapeutic option for 

myotonia congenita patients, specifically for their complaints of transient weakness. 

Unfortunately, this is not the case. Nifedipine acts on most L-Type Ca channels 

throughout the body, not only those in the skeletal muscle. At 10 µM doses, nifedipine 

would block the L-Type Ca channels of the heart and smooth muscle of the vasculature 

too much because they are more sensitive to the drug. 



83	
	

Nifedipine reduced the hanging behavior to 25% of ClC fibers only. This finding was 

perplexing as nifedipine significantly blocked the CaPIC under voltage clamp, yet did not 

completely eliminate the hanging behavior.  

Pharmacologic studies always suffer from issues of drug dosing and delivery. To address 

this issue, future studies of hanging will be performed in mice with a mutation in the pore 

region of CaV1.1, eliminating ion passage through the main pore. I hypothesize that these 

mice will show no evidence of a CaPIC. Crossing these mice with the ClC mice should 

produce offspring that show no hanging behavior nor CaPIC. This finding would directly 

confirm the CaPIC role in the hanging behavior.  

 

Differences between WT and ClC Hanging Behavior  

While I do not know the mechanism underlying the differences in the hang state of WT 

muscle vs ClC muscle, there are some potential mechanisms to be explored in the future. 

This is of great interest as both muscles have genetically normal Ca channels and would 

be expected to behave similarly. This may be explained by some compensatory 

mechanism of the mutant muscle during development, where Ca channels are 

downregulated. Another potential explanation is a difference in K current passing through 

the BK channel. BK channels open in response to increases in intracellular Ca levels 

(Kim, Kim et al. 2014). If a CaPIC is activated, increasing intracellular Ca levels, it may 

activate a robust BK current response, strongly counteracting the hang state and 

repolarizing faster. Activation of large-conductance K channels have been shown to lead 

to membrane hyperpolarization (Latorre and Brauchi 2006).  
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Alternate Roles of the CaPIC  

Another area of interest is the potential downstream effects of such a large Ca influx. Ca 

acts as a secondary messenger. This is a large flux of Ca as it is of large magnitude and 

stays open for very long (seconds). This rise in cytosolic Ca is very different than that 

experienced by the muscle fiber in response to a single AP. The depolarization during a 

single AP is known to activate CaV1.1. CaV1.1 is recognized to have a mechanical 

relationship with the RYR1. When CaV1.1 is activated, it opens the RYR allowing for Ca 

stores to be released from the sarcoplasmic reticulum. This, in turn, will lead to a 

contraction of the muscle fiber. This mechanism is what’s responsible for excitation-

contraction coupling (Cherednichenko, Hurne et al. 2004). The Ca is then resequestered 

and returned to the sarcoplasmic reticulum rapidly to prepare the stores for a following 

action potential.  

The CaPIC is a previously unrecognized function of CaV1.1. As stated earlier, the CaPIC 

requires an elongated depolarization to activate. Physiologically, this would only occur 

with high-frequency firing of action potentials, which would lead to a depolarized 

average membrane potential. The only times a muscle fiber would reach a rapid enough 

firing frequency to achieve such a depolarized average potential is with maximal effort, 

as seen in weightlifting and progressive resistance exercise.  

Keeping in mind Ca’s role as a secondary messenger, I hypothesize that this CaPIC is 

involved in the muscle hypertrophy pathway. With further investigation, the CaPIC may 

prove to be a target for treatment against muscle-wasting disorders. Gain-of-function 
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mutants of L-Type Ca channels have previously been shown to have a bulky 

phenotype/body in C. elegans models (Lee, Lobel et al. 1997; Laine, Segor et al. 2014).  

With these findings and confirmation of this hypothesis, I will have added to the field’s 

view of the role of the L-Type Ca channel in skeletal muscle and its current’s role in 

physiological pathways. This PIC may also be involved in Ca signaling and 

replenishment of Ca stores for the muscle fiber (Bannister and Beam 2013). This is in 

addition to CaV1.1’s known role as a voltage sensor to open the RYR to release Ca from 

SR stores (Tanabe, Beam et al. 1988). 

Another physiological role of this CaPIC may be a response to depletion of Ca within the 

sarcoplasmic reticulum to allow Ca entry through the plasma membrane in order to refill 

SR stores. This mechanism has been described as SOCE or store-operated Ca entry 

(Cherednichenko, Hurne et al. 2004). 
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Figure 2.1: Myotonia leads into a hang state before returning to resting membrane 

potential 

A run of myotonia, induced by a 200ms injection of depolarizing current, does not 

immediately return towards baseline after the last myotonic AP. The fiber spontaneously 

enters an extended period of depolarization and remains there for seconds. Over seconds, 

there is a slow repolarization. This is followed by a sudden, spontaneous repolarization 

towards resting membrane potential. This extended period of depolarization is referred to 

as the hang state.  

The hang begins at -26.4 ± 0.4 mV (n= 20 mice, 78 fibers) and spontaneously 

repolarizes from -38.9 ± 0.6 mV (n= 20 mice, 61 fibers) to -67.9 ± 0.9 mV (n= 20 mice, 

51 fibers). Over seconds, the RMP repolarizes towards the RMP pre-myotonic run, 

presumably through the Na/K pump activity. 
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Figure 2.2: Inexcitability during hang periods 

Shown is a myotonic run that leads into a hang state. During the hang state, depolarizing 

current is injected of varying amplitudes in an attempt to trigger action potentials. No 

action potentials can be triggered regardless of the current amplitude injected, 

demonstrating the inexcitability of the muscle fiber while in the hang state. 
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Figure 2.3: Input Resistance during hang state is less than Input Resistance at RMP. 

Repolarization to RMP can be triggered by a hyperpolarizing current injection   

Hyperpolarizing current injections were repeated throughout the slow repolarization of 

the hang state. All current injections were of the same amplitude and duration. Only when 

the hang state was repolarized enough was the current injection able to force 

repolarization from the hang state towards RMP. This shows the voltage-dependence of 

the sudden repolarization. 

n= 4 mice, 13 fibers. A paired t-test revealed a significant difference in the input 

resistance (p < .01) 
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Figure 2.4: Induced recovery from hang state 

Hang state can be triggered to repolarize to RMP with a current stimulus, demonstrating 

that the underlying current responsible for the hang is voltage-dependent.  
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Figure 2.5: Hang states present in different patterns 

Hang states from ClC muscle differ in pattern of depolarization and repolarization. The 

rate of depolarization that triggers the hang state is not conserved, with periods of slow 

depolarization and rapid depolarization.  
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Figure 2.6: Myotonic runs end in a hang state only if the average membrane potential 

is depolarized enough. 

Shown are two myotonic runs taken from the same fiber. Prior to stimulation by 200ms 

current injections, Above the myotonic run traces are average membrane potentials over a 

one second span.  

The top myotonic run does not end in a hang state and reaches an average membrane 

potential of -55.1 ± 1.5 mV (n= 8 mice, 26 fibers). The bottom myotonic run, which 

results in a hang, reaches an average membrane potential of -37.9 ± 1.2 mV (n= 8 mice, 

26 fibers) immediately prior to the hang.  

Similar analyses (comparison of average membrane potentials of 2 myotonic runs in the 

same fiber) was done on 26 fibers from 8 mice. A paired t-test, comparing the average 

membrane potential of the last second of a myotonic run,was performed yielding a p<.01. 
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Figure 2.7: Ramp protocols showing another PIC that is larger and activates at a more 

depolarized potential than the NaPIC. 

A representative ramp voltage clamp record from a CLCN1adr-mto2J fiber showing 

activation of two distinct PICs. From a holding potential of -85mV, the fiber is 

depolarized to +20 mV at a rate of 10mV/sec. 

A PIC, in addition to the NaPIC, is seen to activate at -18.3 ± 1.8 mV and reach its 

maximum amplitude of 24.2 ± 3.4 nA/nF at -2.8 ± 1.5 mV (n= 12 mice, 32 fibers) 
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Fig 2.8: Rectangular protocols showing the CaPIC 

A representative rectangular voltage clamp record from a CLCN1adr-mto2J fiber showing 

activation of a PIC. Voltage steps are taken from a holding potential of -85mV to -25, -

15, -5, +5, and +15mV for 4 seconds. 

Maximal PIC activation is seen during the -5mV step at 30.5 ± 5.4 nA/nF (n= 7 mice, 15 

fibers). 
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Fig 2.9: Nifedipine blocks the CaPIC 

A single CLCN1adr-mto2J fiber is run through multiple voltage protocols with addition of 

drugs. This is a representative fiber. 

A. Ramp voltage protocol used to identify CaPIC. From a holding potential of -

85mV, the fiber is depolarized to 0mV at a rate of 10 mV/sec. 

B. Current trace generated by voltage protocol. A fit line is drawn using the first 0.5 

seconds of the raw trace.  

C. Addition of 1 µM TTX blocks NaPIC 

D. Addition of 20 µM Nifedipine blocks CaPIC 

E. Rectangular voltage protocol used to identify CaPIC. From a holding potential of 

-85mV, the fiber is depolarized to different potentials for 4 seconds. 

F.  Current trace generated by voltage protocol. CaPIC is seen to activate at -5mV 

step. 

G. Addition of 1 µM TTX blocks NaPIC 

H. Addition of 20 µM Nifedipine blocks CaPIC 

n = 3 mice, 9 fibers 
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Fig 2.10: Verapamil blocks the CaPIC 

A single CLCN1adr-mto2J fiber is run through multiple voltage protocols with addition of 

drugs. This is a representative fiber. 

A. Ramp voltage protocol used to identify CaPIC. From a holding potential of -

85mV, the fiber is depolarized to +10mV at a rate of 10 mV/sec. 

B. Current trace generated by voltage protocol. A fit line is drawn using the first 0.5 

seconds of the raw trace.  

C. Addition of 100 µM Verapamil largely blocks CaPIC 

D. Rectangular voltage protocol used to identify CaPIC. From a holding potential of 

-85mV, the fiber is depolarized to different potentials for 4 seconds. 

E.  Current trace generated by voltage protocol. CaPIC is seen to activate at -5mV 

step. 

F. Addition of 100µM Verapamil largely blocks CaPIC 

n = 3 mice, 12 fibers 
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Fig 2.11: BayK enhances the CaPIC 

A single CLCN1adr-mto2J fiber is run through multiple voltage protocols with addition of 

drugs. This is a representative fiber. 

A. Ramp voltage protocol used to identify CaPIC. From a holding potential of -

85mV, the fiber is depolarized to +20mV at a rate of 10 mV/sec. 

B. Current trace generated by voltage protocol. A fit line is drawn using the first 0.5 

seconds of the raw trace.  

C. Addition of 20 µM BayK enhances CaPIC 

n = 3 mice, 7 fibers 
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Fig 2.12: WT muscle made acutely myotonic exhibits similar hanging behavior 

WT muscle treated with 9-AC is shown to exhibit hanging behavior after myotonic runs.  

The hang state of acutely myotonic WT muscle is briefer in duration than that of 

CLCN1adr-mto2J muscle and has a sharper repolarization slope before the sudden 

repolarization towards RMP. 
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Chapter VI: Conclusions & Future Directions 

 

I have identified two distinct PICs in ClC muscle. The NaPIC, described in Specific Aim 

I, activates at subthreshold voltages and contributes to the afterdepolarization necessary 

for myotonic firing. The CaPIC, described in Specific Aim II, activates at more 

depolarized potentials and is responsible for the hang state, making the muscle fiber 

temporarily inexcitable. In this chapter, I discuss several topics that remain unanswered. 

 

K+ Contributions to Myotonia 

I have previously described the role of K+ buildup in the T-tubules as a major contributor 

to the depolarization required for the production of myotonia. I hypothesize that K+ 

contributes to this depolarization in yet another way.  

The NaPIC was measured in K+-free solutions and K+ channel blockers to be –1.4 ± 0.2 

nA/nF and this portion of the overall PIC was shown to be TTX-sensitive. Figure 1.3B 

shows a significantly larger PIC when measured in physiological solutions. Switching 

from physiological solutions to K+-free solutions reduced the maximal apparent PIC 

amplitude by ~90%. I hypothesize that the closing of K+ channels is responsible for this 

discrepancy. Closing of an outward current, in a voltage clamp ramp protocol, would 

mimic the opening of an inward current. Further studies must be done to identify which 

specific channel is being closed to produce this apparent PIC and add to the 

depolarization required for myotonic firing. This also provides another avenue for 

therapeutic targeting. If we can pharmacologically inhibit the closing of this specific K 
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channel, it may decrease the maximal AfD amplitude so much so that myotonia is 

eliminated. This is demonstrated in Figure 3.1. 

At first, this suggestion of treating myotonia with such a drug seems counterintuitive. If 

K buildup is involved in the depolarization required for myotonic firing, then the opening 

of K channels would be expected to allow for greater K buildup in the T-tubules and the 

worsening of myotonia. However, my findings with retigabine treatment, a KCNQ 

channel opener, showed the elimination of myotonia.  

I hypothesize that the retigabine results, shown in Figure 1.2, were a result of the 

following series of events. Indeed, the opening of KCNQ channels exacerbates the 

depolarization caused by K buildup in the T-tubules. This is further supported by the 

localization of these channels to the T-tubular membrane. Even though there is a greater 

degree of K buildup and a more depolarized EK than in an untreated ClC muscle, the fiber 

does not fire myotonic APs. The open K channel acts as a “voltage clamp” to the EK. The 

depolarization is enough to activate the NaPIC, which would lead to myotonia, but the 

open KCNQ channels counteract any further depolarization by PIC, thereby eliminating 

myotonia.  

 

Interplay between NaPIC and CaPIC 

Further investigation should be performed into identifying the cause of the depolarized 

average membrane potential triggering the hang. I hypothesize that the firing frequency 

during the myotonic run might be responsible. And I suggest that the maximal firing 
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frequency achieved during a myotonic run is directly proportional to the NaPIC 

amplitude.  

A larger NaPIC amplitude will result in a faster subthreshold depolarization (AfD). A 

faster AfD would result in a higher firing frequency – a greater percentage of time spent 

in action potentials and less time spent at the RMP. When measuring an average 

membrane potential, it would be more depolarized, leading to the activation of CaPIC 

and entry into the hang state.  

Another topic of interest is the effect of the hang on the NaPIC. I’ve described in the 

NaPIC chapter how the NaPIC is susceptible to slow inactivation (over seconds to 

minutes). This is evident in the warmup data showing that NaPIC is slow inactivated to 

the degree that it can no longer depolarize the fiber to AP threshold, so that there is no 

myotonia. I suggested that NaPIC slow inactivates over the course of a myotonic run, 

leading to the cessation of myotonic firing. Here, I suggest that the hanging behavior is 

another compensatory mechanism by the ClC muscle. By entering a hang state, the 

muscle fiber is completely inexcitable for the duration of the hang state – a temporary 

deficit. But this hang state provides a benefit to the fiber as well in its side effect of slow 

inactivating the NaPIC and normalizing the excitability of the fiber. In other words, the 

hang state induces the warmup phenomenon in the muscle so that the fiber is no longer 

myotonic (will cease firing once current injection is stopped). This can be seen in Figure 

3.2, where I attempt to induce a myotonic run immediately after return from a hang state. 

The fiber reacts with no myotonia, as though it is warmed up. 

The interplay of these PICs and the dependency of the hang state on a prior myotonic run 

gives us great insight for treatment options. Targeting the NaPIC helps the MC in two 
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ways – by eliminating myotonia and eliminating the possibility of a hang state. This may 

not hold true as myotonic firing is not the only way with which an average membrane 

potential can be depolarized enough to activate the CaPIC. Skeletal muscle can reach 

high frequencies upon maximal exertion, thereby producing a depolarized average 

membrane potentials. But targeting the NaPIC in addition to patient avoidance of 

maximal exertion should eliminate both major MC complaints. 

 

 

 

 

 

	

Roles of PICs in MC Behaviors 

In conclusion, the two identified PICs (NaPIC and CaPIC) play major roles in behaviors 

seen in MC muscle. This can be seen in Figure 3.2. 

Activation of the NaPIC has been shown to be a necessary contributor to the AfD, 

responsible for myotonic firing. Decreasing the NaPIC amplitude has been shown to 

decrease the AfD to the point of eliminating myotonic firing altogether. The slow 

inactivation of the NaPIC is responsible for the spontaneous end of a myotonic run. 
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And activation of the CaPIC is responsible for entry into the hang state from a myotonic 

run. The slow activation of this PIC is responsible for the resolution of the hang state and 

the spontaneous return to RMP. 

 

Implications for Other Diseases 

Beyond myotonia congenita, our findings have implications for trinucleotide repeat 

disorders in which there are decreased currents through muscle ClC-1 channels. These 

disorders include myotonic dystrophies 1 and 2, Huntington’s disease and spinal bulbar 

muscular atrophy (Cho and Tapscott 2007; Waters, Varuzhanyan et al. 2013; Oki, 

Halievski et al. 2015; Miranda, Wong et al. 2017). In myotonia congenita and the 

myotonic dystrophies, severe loss of ClC-1 currents produces the myotonic runs of 

involuntary APs we examined in this study. It is not yet known whether myotonia also 

occurs in Huntington’s disease or spinal bulbar muscular atrophy. Analysis of muscle 

from mice at the end-stage of Huntington’s disease revealed that the loss of chloride 

current is relatively severe such that it might trigger myotonia (Waters, Varuzhanyan et 

al. 2013; Miranda, Wong et al. 2017). 

Identification of these PICs and their implications for MC behaviors provides novel 

therapeutic targets for MC as well as other non-dystrophic myotonias and alters the 

current standard of care. 
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Fig 3.1: Contributors to depolarization required for myotonia 

K buildup in the T-tubule system causes an initial depolarization, which activates the 

apparent PIC seen in physiological solutions. This apparent PIC can be accounted for by 

the activation of a NaPIC and the closing of an outward K current. Together, they 

depolarize the fiber enough for myotonic firing. This also provides two therapeutic 

targets.  
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Fig 3.2: Role of PICs in MC Behaviors 

(A) Activation of the NaPIC contributes to the AfD, a necessary contributor to the 

depolarization needed to fire myotonic APs. (B)  The fiber is warmed up after a 

prolonged depolarization in the hang state. In response to a 200ms depolarizing 

current pulse, the fiber fires no myotonic action potentials. (C) In response to a 

depolarized average membrane potential, the CaPIC is activated and depolarizes 

the fiber into a hang state. (D) After minutes, of hanging, the CaPIC inactivates, 

allowing for the sudden repolarization towards RMP. 
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Appendix 

Abbreviations 

9-AC    9 - Anthracenecarboxylic acid 

AfD    Afterdepolarization 

AP    Action potential 

CaPIC    Calcium persistent inward current 

dV/dt    Rate of rise of action potential 

EMG    Electromyograph 

MC    Myotonia Congenita 

NaPIC    Sodium persistent inward current 

NMJ    Neuromuscular junction 

PIC    Persistent inward current 

RMP    Resting membrane potential 

SR    Sarcoplasmic reticulum 

T-tubule   Transverse-tubule 

TTX    Tetrodotoxin 

WT    Wild-Type 
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