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REVIEW OF PILOT PERFORMANCE AND PILOT-AUTOMATION INTERACTION 
MODELS IN SUPPORT OF NEXTGEN 

 
Angelia Sebok & Christopher D. Wickens 

Alion Science and Technology 
Boulder, Colorado  

 
Computational models of aircraft pilot performance will gain importance over the next decades, as 
major evolutions in the national airspace continue to emerge with the NextGen program. 
Evaluating new technology, or procedures such as self-separation, requires time and resource-
consuming pilot-in-the-loop (PITL) simulations. Models can augment PITL findings and they can 
help to constrain the scope of PITL simulations. If they are validated, such computational models 
may actually answer some design questions in place of PITL simulations. This paper summarizes 
a review of modeling efforts to address pilot performance, and elaborates on pilot-automation 
interaction models. 

 
In the transition to NextGen operations, a major concern is identifying and evaluating potential concepts 

well before they are put into operation.  One approach is through the use of computational modeling to predict 
operator performance, or human performance modeling. Computational modeling provides a means of predicting 
performance and evaluating numerous “what if” situations, and is thus particularly useful for evaluating to-be-built 
systems.  In addition, models need to make valid predictions of operator performance.  This requires comparing 
model predictions with actual human performance in real or (for to-be-built systems) simulated conditions.      
 

Methods 
 

To identify the scope of existing pilot performance models and their associated validation efforts, we 
searched more than 40 potential sources (e.g., the Human Factors Society Proceedings, Human Factors Journal,  
International Symposium for Aviation Psychology Proceedings,  International Journal for Aviation Psychology) to 
identify papers that described either a modeling effort for predicting pilot performance, or an empirical study to 
validate such a model.  Initially, we identified approximately 500 papers. Upon closer inspection, we were able to 
eliminate approximately two thirds of these papers as duplicates of other articles, air traffic control (ATC; not pilot) 
related, or model descriptions without provision of specific model predictions. This left a final set of 187 references. 
We reviewed these papers to characterize the modeling efforts and compare across the studies.  We identified a set 
of criteria by which to evaluate the models, including descriptive and evaluative features.  Descriptive features 
include the name and type of model (e.g., simulation, analytical), the specific aspect of pilot performance that was 
modeled (e.g., pilot-automation interaction, communication, error).  Evaluative features included 1) whether or not 
empirical, PITL data were provided to validate the model predictions, 2) whether the empirical data provided 
correlations (or other quantitative evaluations), or were qualitative in nature, 3) the participants in the study (e.g., 
professional pilots, college students), 4) the test bed (e.g., flight simulator, desktop flight simulator with mouse and 
keyboard, or other).  The descriptive features allowed us to distinguish the different modeling efforts, and the 
evaluative criteria provided data to compare the extent to which validation studies had been performed.  

 
After this initial assessment, we conducted five separate deep dive analyses to examine in detail the state of 

the art of modeling efforts of particular relevance to NextGen operations:  Pilot-automation interaction (PAI), error, 
workload and multitasking (see a companion paper, Wickens & Sebok, 2013, for details), situation awareness, and 
roles and responsibilities. The deep dive analyses identified how the models predict pilot performance and included 
a review of the verification and validation efforts for these specific topic areas.  As implicitly stated previously, 
validation was considered to be a comparison of model predications against data gathered in an empirical PITL 
study.  In contrast, verification efforts included subject matter expert (SME) reviews of model predictions for 
“sensibility” of results, or researchers’ own interpretation of the results.   

 
Overview of Model Review Results 

 
We carried out an extensive analysis of the extent to which each modeling effort in the deep dive analysis 

had been verified and, if verified, also validated; by assigning ratings to the levels of verification and validation (See 
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Wickens et al., 2013 for details). From this analysis, we concluded that only 5% of modeling efforts included no 
discernible attempt at verification or validation.  Nearly 40% of efforts included verification efforts, and 31% 
included qualitative evaluations of predictions against empirical data.  Twenty-five percent of modeling efforts 
included human in the loop simulation studies to provide empirical data for comparison with model predictions.  
This situation leaves room for improvement, and the analysis identifies clear gaps.  Studies frequently focused on a 
small subset of model predictions, rather than the full range of predictions. 
 

Pilot-Automation Interaction Models 
 

Overview 
           

In NextGen operations, new technologies and capabilities are required to provide a significantly increased 
volume of operations.  One of the key features envisioned to enable integration of these capabilities into the aviation 
system is a greater reliance on automation.  As pilots’ tasks expand to include maintaining separation from 
surrounding aircraft, negotiating trajectories with ATC, and monitoring weather and wake vortex conditions, 
automation is expected to provide pilots with the support needed to perform these tasks. Thus, models that predict 
pilot performance when using different types of flight deck automation are highly relevant to NextGen operations.  
Since “pilot-automation interaction on the flight deck” is a broad area, modeling efforts evaluated specific aspects of 
the domain. The models reviewed here were diverse, some focusing on specific equipment such as the Flight 
Management System (FMS), some on particular high-workload phases of flight, and others on specific action 
sequences used in programming automation.   

 
Architectures Used for Pilot-Automation Interaction 
 

  We distinguish a modeling architecture as a software tool and / or a theoretical framework that serve as 
the basis for specific modeling efforts.  A successful validation of one modeling effort provides support for the 
underlying architecture, but it does not “validate” that architecture.  If an architecture addresses a specific aspect of 
performance (e.g., visual scanning), and one model using the architecture has been shown, through comparison with 
empirical data to be valid, this finding does lend support for other, similar models developed using that same 
architecture. Three architectures appeared repeatedly in the review of PAI models, described below. 

 
The Adaptive Control of Thought – Rational (ACT-R) is a unified theory of cognition that integrates 

theories of attention, cognition, and motor actions (Anderson & Lebiere, 1998).  ACT-R models cognition through 
“production rules” or goal-directed behavior, implemented through a series of “if-then” rules.  It includes perceptual 
inputs and motor outputs.  ACT-R’s main components are modules, buffers, and a pattern matcher.  ACT-R uses 
perceptual-motor modules (visual and manual modules) to simulate interaction with the physical environment.  
ACT-R models simulate declarative and procedural knowledge. In addition ACT-R models the actual time required 
for cognitive steps (e.g., retrieving an item from declarative memory) or implementing an action (e.g., shifting gaze, 
selecting an item on a display).  Thus it readily models procedural activities such as programming an FMS.  

 
The CASCaS (Cognitive Architecture for Safety Critical Task Simulation) architecture, like ACT-R, is a 

cognitive architecture, which provides a structure and set of rules for simulating human cognition (Lüdtke et al.,  
2009).  CASCaS divides cognitive processes and errors into three different levels, depending on operator experience 
with a particular task:  the autonomous, the associative, and the cognitive level which correspond, respectively, to 
the skill-based, rule-based, and knowledge-based levels of behavior defined by Rasmussen (1983).   

 
The SEEV and N-SEEV models (Wickens & McCarley, 2008; Steelman-Allen et al., 2011) of visual 

scanning and noticing predict that attention within a given visual field (e.g., a flight deck) is driven by bottom-up 
factors of display salience and effort (distance between displays), and the top-down factors of expectancy 
(bandwidth) and value or importance of the display for the task.  SEEV predicts visual scanning behavior. N-SEEV 
(Noticing SEEV) uses SEEV to predict scanning and noticing of discrete events within the cockpit.  

 
Modeling architectures and efforts that address PAI take a variety of approaches in predicting pilot 

performance.  Models predict performance based on pilot visual scanning and noticing, the time required to 
complete tasks, workload, and automation induced errors.  PAI models have also been applied to design tools and 
proposed as a basis for adaptive automation systems. These predictions and application areas are described below. 
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Modeling Approaches to Predicting Performance  

 
Attention / Noticing and Visual Scanning. Several  modeling efforts addressed PAI in terms of predicted 

noticing of important changes on the flight deck (e.g., flight mode annunciator indications on the FMS), or in terms 
of visual scanning.  These efforts all start with the premise that a pilot has to notice an indication to be able to 
interpret and respond to it, so noticing is a necessary (but not sufficient) first step that a pilot must perform.  Boehm-
Davis et al. (2002) used an ACT-R model to predict pilot noticing of automation mode changes.  The model 
predicted that pilots were more likely to notice mode changes that were initiated by the pilot, rather than the 
automation.  The authors note that similar trends were observed in previously gathered empirical data.   

 
The SEEV and N-SEEV models of visual attention and noticing have been used to predict pilot noticing on 

the flight deck (Sebok et al., 2012).  The SEEV and N-SEEV models have been empirically validated in previous 
efforts (Wickens et al., 2008; Steelman-Allen et al., 2011).  In each of these efforts, model predictions in aviation 
flight deck contexts, including a high fidelity Boeing 747-400 simulator (Sarter et al., 2007) were found to predict 
empirical data of scanning and noticing behavior with correlations above 0.60.  

 
CASCaS was used to predict visual scanning behavior, dwell times in areas of interest on an advanced 

FMS, and the time required to notice specific visual indications in the cruise and approach phases of flight (Lüdtke 
et al., 2012).  The authors indicated that the overall correlation between model predictions and empirical data was 
high (r2=0.85).  For specific aspects of pilot performance, the model predictions were reasonably accurate. Predicted 
average dwell times on a display in three phases of flight closely paralleled by empirical data. Similarly, average 
noticing times for specific visual indications in two phases of flight were predicted to be approximately 1 s in each 
phase, and were found to be 0.8 s and 1.2 s.  These results indicate that the model does a reasonable job of 
approximating pilot behavior.  One concern is that validation data provided are for highly specific tasks or visual 
areas, yet the operational context includes many tasks and areas.  

 
Polson and Javaux (2001) present a model that predicts why pilots do not often scan the flight mode 

annunciators, a major issue in FMS monitoring. They apply a Goals, Operators, Methods and Selection rules 
(GOMS; Card et al., 1983) modeling analysis that, among other features, highlights differences in task priorities in 
multi-tasking, to predict why this task should be of lower priority when other sources of redundant, equivalent 
information are available.  The authors describe a qualitative evaluation of the similarity between their predictions 
and the data on FMS monitoring by Huttig, Anders & Tautz (1999). 
 

Time to Complete Tasks.  CASCaS was also used to predict time to  to handle an uplink from ATC in the 
cruise and approach phases of flight (Lüdtke et al., 2012). The model predicted that the uplink would require 
approximately 1 minute, with slightly longer times in the approach phase than in cruise. An empirical study of those 
conditions revealed that pilots performed the uplink faster during approach than in cruise.  No quantitative data were 
provided.  Discussion with pilot SMEs provided insights into the reversal between model predictions and data, 
explaining that, during the approach phase, pilots typically have to work faster just to get everything done.  

 
Manton and Hughes, 1990, developed a regression equation, based on previously-gathered empirical data, 

to predict the time to complete tasks using a Multi-Function Keyset (MFK) on the S-70B-2 Seahawk Helicopter, 
used by the Royal Australian Navy.  The MFK, much like an FMS, includes a special purpose keyboard and an 8-
line alphanumeric display, used to enter data into or view data contained in a tactical database.  The equation 
predicts time as a function of the number of key presses required, operator pauses, and page changes.  Using a 
stepwise regression, the authors found that the equation predicts 79% of the variance in the data (p < 0.001).  The 
authors propose that the model can be used to evaluate different types of automation and system configurations.   

 
Air Man-Machine Integration Design and Analysis System (MIDAS, v1; Pisanich & Corker, 1995) was 

used to predict which type of FMS automation pilots would use to perform a descent based on the time available to 
implement the clearance and the modality in which the clearance was delivered (voice or datalink).  Three types of 
automation were considered:  an autoload capability (the most highly automated), a CDU, and an MCP (mode 
control panel, the least automated).  The Air MIDAS model predicted that the less time available to implement a 
clearance, the more likely pilots were to use a less-automated mode.  Further, the model predicted that pilots were 
more likely to select the less-automated modes if a clearance was given by voice than by datalink. While the model 
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was validated against a PITL simulation, the results of that validation could not be easily interpreted because of the 
use of inappropriate t-test statistics.  

 
Workload. Another approach to predicting pilot performance with automation uses workload.  Gil et al., 

2009, used enhanced (E)-GOMS to model pilot performance when working with a flight control panel (FCP), a 
control display unit (CDU) or an enhanced CDU.  They predicted workload based on the complexity of the 
procedures, including the number of submethods being performed, the number of steps needed to complete the 
submethods, the chunks of information that pilots needed to remember, and the number of information transactions.  
As complexity increases, so does workload.  The authors ran the model for each of the three types of automation and 
collected data on the complexity indices that varied across automation types.  In an empirical study, they gathered 
four different measures of workload:  heart rate, subjective workload (NASA-TLX predictions), vertical flight path 
deviations, and lateral flight path deviations.  They calculated the Spearman correlations for the different complexity 
indices and empirical performance data, and identified positive and significant (p < 0.05) correlations between the 
model predictions and heart rate, and between model predictions and vertical flight path deviations.   

 
Automation-Induced Errors. CogTool (John et al., 2009) is based on ACT-R code, and models the time 

to complete tasks, errors made on task steps, and failure to complete task steps.  In their research, the authors 
identified three sequential tasks associated with entering a landing speed into the CDU, a critical interface between 
the pilot and the FMS. They ran their model to predict errors, and iterative improved the model.  CogTool accesses a 
latent semantic analysis (LSA) corpus of terms to predict if pilots will understand the terminology on the CDU.  
During their first model run, they identified that no pilots would be able to complete the first step of the procedure 
because they did not understand the terms.  The LSA corpus represented a college student’s knowledge, not the 
specialized knowledge that a pilot would possess.  By switching to an aviation-specific corpus, the researchers 
obtained a 10 percent success rate on the first task. A series of other changes were implemented to account for 
pilots’ specialized knowledge, and the model eventually predicted success rates of 92% for the entire procedure.  
This was considered reasonably accurate, based on one of the author’s experience as a pilot who trains new pilots to 
use the FMS, but it was not validated against PITL simulation data.   

 
Schoppek & Boehm-Davis (2004) used ACT-R to create a model (ACT-Fly) to model pilot awareness, 

cognition, and errors.  They evaluated pilot use of automation at the end of the cruise phase of flight until the initial 
approach fix. ACT-Fly predicted when pilots would choose a more automated mode (VNAV) or a less-automated 
mode (FLCH and V/S) in two scenarios. In summary, the model predictions were not well supported by empirical 
findings.  Two scenarios showed 20% and 60% agreement in terms of predicted mode selection.  The model did 
predict the types of errors pilots would make (errors of omission and commission), but the model incorrectly 
predicted error recovery.  Actual pilots were able to recover from their errors.  Gil et al. (2009) indicate that their E-
GOMS model can predict error, by identifying when the number of chunks to be held in working memory exceeds 5.  
This approach is based on limitations of working memory (Miller, 1956).  No error predictions were made, however. 

 
CASCaS was used by Lüdtke et al., (2009) to predict cognitive errors such as Learned Carelessness, which 

occurs when pilots routinely perform procedures with multiple steps included to ensure safety criteria are met.  If 
these steps typically do not identify safety concerns, pilots learn that they improve efficiency by skipping these steps.  
The problem is that sometimes these unsafe conditions do exist, and, by skipping those steps, pilots may sacrifice 
safety for efficiency.  Lüdtke & Osterloh (2010) used CASCaS to predict learned carelessness in a flight re-planning 
procedure. The researchers modeled a flight condition in which a pilot was repeatedly given ATC clearances that 
required verification.  The model predicted that the pilot would, over time, begin neglecting these checks. An actual 
pilot performed the same conditions, and – as the model predicted – quit performing the verifications.  However, 
unlike the model, the pilot resumed checking after receiving a supposedly related prompt. The researchers updated 
their model to include contextual factors (strengthening or inhibiting associations between elements in memory).  
The updated model then correctly predicted (in 23 of the 24 trials) when the pilot checked the vertical view.    
 

Applications of PAI Models within Design Tools. Three papers described efforts to use PAI models in 
computerized design tools.  These efforts used different types of models, but all had the same goal of helping 
aviation designers identify and avoid potential design problems.  One effort (Gonzales-Calleros et al., 2010) 
evaluated the FMS interface design for adherence to human factors standards such as font type and color contrast 
between text and background. The paper outlined an approach to include a cognitive model of pilot performance, but 
the model was not actually integrated with the evaluation tool.   
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The Automation Design Advisor Tool (ADAT; Sebok et al., 2012) evaluates and compares potential FMS 

designs. This effort included multiple analytic models to assess design quality based on human factors principles.  
The analytic models evaluated design issues of 1) information layout, 2) noticeability of changes, 3) meaningfulness 
of terms, 4) confusability of terms and symbols, 5) complexity of system design (e.g., modes), and 6) procedures 
necessary to program the FMS.  ADAT included attention models (Wickens & McCarley, 2008), described above, 
to predict pilot scanning behavior and noticing of FMS mode changes.   

 
A third design tool, CogTool (John et al., 2009), allows a designer to create a “use-case storyboard” with a 

graphical user interface (GUI), and predict time to complete task or errors made.  The GUI is connected with an 
underlying cognitive model, so the planned sequence of actions on the interface is associated with steps such as 
noticing and interpreting. These steps are then used to identify the time to complete tasks, and the likelihood of the 
user selecting the correct action in the sequence. 
 
Summary of Pilot-Automation Interaction Models 
 

In summarizing, we note that we did not include models of adaptive automation, because we found no 
efforts in which automation was adapted (rather than using automation to adapt an interface). There are many ways 
to model pilot-automation interaction and predict performance on the flight deck including attention and noticing 
changes, the design of the automation (interface, interaction), the tasks the pilot performs when using the automation, 
errors that the pilot can potentially commit.  Because there are so many factors that can have an influence, it is 
difficult to capture all in a single model. The ADAT project integrates several process models applicable to the FMS 
in software tool. However, to date, the CASCaS effort (Lüdtke et al., 2012) appears to be the most comprehensive 
type of pilot performance model, addressing attention, interaction, and errors. 

 
Conclusions 

 
Several additional points require mentioning.  One of the main findings of this review is that human 

performance modeling provides a viable tool for predicting pilot performance in to-be-built systems.  While models 
typically focused on limited aspects of performance, we did note that many of the models made predictions that 
offered insights into potential difficulties with both existing and not-yet-developed systems.  Models frequently 
provided useful data for comparing across conditions, and – even when predictions were incorrect – the models 
offered insights into pilot cognition and behavior that would have been difficult to learn otherwise. In addition, the 
vast majority (95%) of modeling efforts included some form of verification or validation.  We believe that further 
efforts should be made to develop standards and guidelines for verification and (particularly) empirical validation, to 
support the development of more realistic and credible human performance models. 
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