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EXAMINING MEMORY FOR SEARCH USING A SIMULATED AERIAL SEARCH AND RESCUE TASK 
 

Brandon S. Perelman 
Michigan Technological University, Department of Cognitive and Learning Sciences 

Houghton, MI 
Shane T. Mueller 

Michigan Technological University, Department of Cognitive and Learning Sciences 
Houghton, MI 

 
In this paper, we report on the development of a synthetic task environment (STE) 

representing wilderness search and rescue using unmanned aerial vehicles (UAVs) for 
investigating human unmanned aerial search behavior. Participants navigated using a north up 
topographical map and detected targets using a more detailed track up satellite image representing 
the view through the UAV’s camera. Participants then completed (1) a path reconstruction task 
and (2) a memory test in which they indicated locations where they found targets.  These tasks aim 
to address two information types that map onto distinct visual processing pathways afferent to the 
hippocampus.  We discuss example applications using this paradigm, including several methods 
for scoring memory and navigation performance.  Finally, we discuss how the STE enables 
assessment of the effects of combining or separating pilot and sensor operator roles, search 
behaviors and strategies, and other human factors limitations faced by operators in aerial search 
tasks.  

 
Wilderness search and rescue (WiSAR) is the search for missing persons in remote environments. WiSAR 

operations are often carried out by volunteers on foot aided by resources such as canines, rotary and fixed wing 
aerial platforms, and marine assets. WiSAR operations begin with the report of a missing person. WiSAR personnel 
begin by establishing the point last seen, then create a map of probability for target locations distributed according to 
factors including terrain features, characteristics of the missing person, and current weather (Ferguson, 2008; Lin & 
Goodrich, 2010; Perkins, Roberts, & Feeney, 2003). Personnel and other assets then begin to search those locations 
and update the probability map, typically in a Bayesian fashion that considers both the background probability 
imposed by the terrain and the case based evidence about the missing person (e.g., Lin & Goodrich, 2010). 

 
 Recent research has focused on the use of unmanned aerial vehicles (UAVs) in WiSAR (Adams et al., 
2007; Adams et al., 2009; Goodrich et al., 2008; Goodrich, Morse, Engh, Cooper, & Adams, 2009). While manned 
aerial search in general is beneficial to WiSAR operations, the costs of manned aircraft often exceed the resources of 
WiSAR organizations, which are staffed largely by volunteers (Hoekstra, M. [West Michigan Search and Rescue], 
personal communication, July 25, 2012). Therefore, WiSAR is an ideal domain for unmanned aerial search.  
 

A typical UAV team in WiSAR consists of a navigator, who is responsible for directing the UAV, and the 
sensor or payload operator, who examines the video feed from the UAV’s sensor package. UAV teams sometimes 
also incorporate a third individual who oversees the navigator and sensor operator to increase situational awareness 
(Adams et al., 2009). These characteristics are also found in military UAV teams; however, WiSAR personnel were 
selected for the present study as a more convenient and accessible population. The goal in both domains (and 
perhaps others) is to reduce the personnel required to control a single UAV, with a long term goal that a single 
operator may eventually control multiple UAVs (for a review of this literature, see Cummings, Nehme, & Crandall, 
2006). To this end, Cooper and Goodrich (2008) tested multiple control interfaces and found that, with the 
appropriate interface changes, one human can effectively control a UAV.  

 
One platform for studying unmanned aerial search is the open source Aviones UAV flight simulator 

(http://aviones.sourceforge.net/). The software has been used to simulate both highly automated algorithmic flight 
(e.g., Bhatia, Graziano, Karaman, Naldi, & Frazzoli, 2008; Collins, Stankevitz, & Liese, 2011) and human 
controlled flight (Cooper & Goodrich, 2008). We created a lower fidelity synthetic task environment (STE; 
Perelman & Mueller, 2013; available at https://sites.google.com/a/mtu.edu/aerialste/) in the Psychology Experiment 
Building Language (PEBL; Mueller, 2013) to approximate the cognitive requirements of unmanned aerial search 
tasks while affording greater control over experimental variables related to testing. STEs differ from simulations in 
that the chief goal in their design is not to replicate environmental characteristics, thus while they are lower fidelity 
than simulations, STEs permit a greater deal of experimental flexibility and control (Cooke & Shope, 2004). Finally, 
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because the STE is comparatively easy to control and requires very little training to operate, it will permit the 
inclusion of untrained participants in domain relevant research. One example of this is expert novice differences 
between untrained undergraduate students and trained UAV pilots. Whereas a high fidelity simulation would require 
the acquisition and operationalization of novice and expert trained pilots, the present STE would allow untrained 
participants to fill the control group. While the remainder of this paper pertains specifically to unmanned aerial 
search in the WiSAR domain, the STE discussed herein may be used to study aerial search in other domains, such as 
military and law enforcement, as well.  
 

General Features of the STE 
 

 The STE consists of two main windows – a north up topographical display with an overlaid probability 
map, used for navigation, and a track up high resolution satellite image display representing the view through the 
UAV’s sensor package (hereinafter “camera view”) (see Figure 1, panel A). At any given time, the entire 
topographical display is visible, while the camera view display is constricted to only the area directly underneath the 
UAV. Since the goal of the present study is to analyze search behavior rather than target detection or piloting ability, 
sensor quality and flight characteristics were approximated arbitrarily to maximize usability during the task. 
However, these characteristics can be parametrically manipulated to meet specific research requirements.  
 
 Gross control of the STE is accomplished either via touchscreen or mouse. Participants navigate the UAV 
using a carrot and stick method. The UAV orbits the target destination once it arrives until a new destination is 
selected. Participants designate targets by touch or mouse click inside the camera view display when the target 
appears, and sound effects provide participants with auditory feedback on hits or misses.  
 

Experimental Tasks 
 

In its current revision, the STE permits two types of tasks: a multiple target search task and a probability 
density decision test (hereinafter “decision test”). The multiple target search task was created to resemble search and 
rescue for multiple missing persons using an approximated probability map, while the decision test is intended to 
test participants’ preference for weighing cost versus reward in a more controlled fashion (see Figure 1, panels A 
and B, respectively). The tasks were parameterized to provide the data necessary for a study in human memory and 
navigation. However, these tasks may be easily parameterized for additional experiments, and serve as a base from 
which future experimental tasks may be developed.   
 
 During the multiple target search task, participants search for targets, representing lost boy scouts, depicted 
as blue tents (see Figure 1, panel A). Probable target locations, distributed randomly in each trial, are indicated by 
blue circles on the north up topographical map. This paradigm is designed to require similar strategic decision 
heuristics to those required of UAV operators in WiSAR for searching probability maps. Since the present study 
investigated search behavior and navigation, and not detection, targets were drawn to maximize salience so that if a 
participant flew over a target, it would be easily spotted. PEBL affords a number of ways with which to adjust target 
salience in a controlled fashion, such as image alpha (i.e., target transparency), that will permit investigation of 
probability of detection in future studies.  Trial duration is set by a “fuel” variable. In the present study, participants 
were provided 1,000 fuel units, equating to 79.5 seconds of flight time. This fuel was sufficient for participants to 
cover roughly 40 % of the total area, assuming that the flight path did not intersect with itself (i.e., areas were not 
flown over more than once). Fuel was intentionally limited to force participants to make strategic choices during 
their search.  

 
The multiple target search task contains two subtasks: a path reconstruction task testing spatial memory, in 

which participants attempt to recreate the path flown by the UAV, and a target memory task testing semantic 
memory, in which participants indicate which of the possible target locations contained targets (see Figure 1, panels 
C and D, respectively). These tasks are intended to test performance on tasks requiring processing via dissociated 
hippocampal afferents, with the path reconstruction and the target memory tasks engaging the dorsal (spatial) and 
ventral (object) visual processing pathways, respectively (Haxby et al., 1991).  

 
During the decision test, participants search for a single target in two probability regions, one rectangular 

high density region, representing an oasis, that can be explored in its entirety by flying over a single point, and a 
long linear low density region, representing a road, for which exploring fully requires a greater time investment (see 
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Figure 1, panel B). The distances of these two regions from the starting location are parametrically varied (see 
Figure 2) to test participants’ evaluation of temporal cost versus reward.   
 
Data Collection and Analysis 
 
 At the beginning of each trial, for both the multiple target search task and the decision test, the STE records 
target (and foil, in the case of the multiple target search task) locations, the trial number, and parametric and scaling 
information. Throughout each trial, the STE records the remaining fuel, the UAV’s current position, and records the 
targets that are flown over and reported. Following the multiple target search task, the STE records the coordinates 
of each point indicated during the path reconstruction task, and a list of the probability locations indicated as 
containing targets by participants. From these data, the flight trajectory, target information, and the results of the two 
subtasks can be easily reconstructed.  
 
 Data analysis for the path reconstruction subtask of the multiple target search task was accomplished using 
a path correspondence algorithm (Mueller, Perelman, & Veinott, 2013) that computes congruity between the flown 
and reconstructed paths (see Figure 3). Since the algorithm simply requires Cartesian coordinates for two paths, it 
has additional utility as a performance metric in future applications, such as flight formation conformity. Target 
memory data were analyzed in terms of the temporal serial position in which the targets were discovered.  
 

Demonstration Experiment Methods 
 

 Two experiments were conducted to demonstrate using the STE to test participants’ performance, and to 
examine human performance in memory and navigation. Participants in both experiments were drawn from the 
Michigan Technological University undergraduate participant population. Both experiments were methodologically 
identical with the exception of the parametric settings during the decision test. In the first experiment (n = 30), the 
parameters were varied as a 3 x 3 design (road [close / medium / far] x oasis [close / medium / far] in distance from 
the starting location), whereas in the second experiment these parameters varied according to a 3 x 4 design (road 
[close / medium / far from starting] x oasis [very close / close / medium / far] in distance from the starting location). 
The locations of the features during these two experiments are available in Figure 2.  In both experiments, 
participants completed five trials of the multiple target search task in which they searched 12 probability regions, six 
of which contained targets and six of which were foils (i.e., probability regions not containing targets).  
  

Demonstration Experiment Results 
 

Multiple Target Search Task 
 
 Across all trials, participants exhibited a significant improvement in flight performance, as measured both 
by percent map coverage, F (4, 22) = 4.60, p = .008, and target flyovers, F (4, 26) = 4.32, p = .008 (see Table 1). 
Generally, participants reported (i.e., clicked) a large percentage of targets that they flew over (M = .87, SD = .22). 
Across all trials, participants identified a mean of 2.97 targets per trial (SD = 1.32) and remembered a mean of 1.88 
(SD = 1.45) of those identified (see Table 1 for specific trial by trial memory scores). Sample results for the path 
reconstruction task are shown in Figure 3. Since the present study is exploratory and did not use a between groups 
design, no statistical tests involving the path reconstruction results are presented. However, no statistical relationship 
was found for performance on the two memory tasks (results not shown).  
 
Decision Test 
  
 Results of the decision test revealed a strong preference for searching the high density probability region. 
To test the efficacy of participants’ behavior, we developed an optimal model that computes the cost of 
preferentially searching the high and low probability regions, and then compares these two costs to generate a cost 
ratio and declare the optimal route. Participants’ behavior, in aggregate, correlated strongly with the cost ratio 
derived from the optimal model in the initial (r = .97, p < .001) and follow up studies (r = .89, p < .001). 
Participants, in aggregate, probability matched the cost ratio of the two choices generated by the optimal model.  
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Discussion 
 

 The present study describes the development and preliminary evaluation of a STE for unmanned aerial 
search. Preliminary evaluation indicates that participants generally improve with practice. Additional research is 
needed to determine consistency with memory effects, such as recency, in the present task and the literature 
concerning memory in other tasks. Finally, in aggregate, participants appear to be probability matching the cost to 
reward ratio associated with each route when forced to weigh probability densities.  
 
 Potential limitations of the STE include, but are not limited to, the following. First, the STE is not a high 
fidelity simulation; it attempts to approximate the cognitive requirements of unmanned aerial search in WiSAR. It is 
possible that this loss of fidelity fundamentally changes the way in which the task is approached cognitively. For 
example, the STE uses distinct points of probability, whereas probability maps generally produce distributions that 
are less uniform (i.e., not perfect circular regions). Second, presently, features such as flight characteristics and scale 
do not map perfectly onto real UAVs. Fortunately, the STE is sufficiently malleable as to permit scaling. Finally, the 
ecological validity of the STE has yet to be experimentally tested. Therefore, a future study should investigate 
performance differences between experienced WiSAR professionals and control participants (i.e., college 
undergraduates).  
 
 In future research, the STE described here will allow us to test a number of issues specific to the WiSAR 
domain and others. Since the STE is highly controlled in its data collection and easy to use, it permits testing of the 
following phenomena at the basic level with minimal training required. First, the STE will allow us to explore 
differences between combined and dissociated pilot and sensor operator roles (for an analysis of this problem, see 
Cooper & Goodrich, 2008). Between groups differences in target identification, memory for the flight path, and 
memory for targets, can be investigated simply by automating the flight path of the UAV and telling participants that 
it is being controlled by another user.  
 
 Second, the STE allows us to test memory for specific types of targets found during the multiple target 
search task (i.e., the contents of each high probability region). This is relevant to all aerial search tasks. For example, 
in actual UAV trials in WiSAR, targets may include clues to the missing person’s location rather than the target 
itself, such as discarded perishables or other items (Goodrich et al., 2009). In military reconnaissance, the precise 
nature of relevant military targets on the ground may be important for strategic reasons (i.e., remembering the 
location of an enemy troop transport versus a tank).  
 
 Finally, the STE will permit testing the effects of target salience of search behavior and memory. Since the 
STE can vary the α value (i.e., transparency) of any image object created from a portable network graphics (.png) 
file, varying target salience is easily achieved in a controlled fashion. Reduced target salience will make signal 
detection analyses applicable to the data generated by the STE, and probability of detection can be compared 
between different interface displays and role assignments.  
 
Tables and Figures 
 
Table 1.  
Trial by trial data for coverage, flyovers, and memory for targets. 
 

  Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 
Map Coverage (M, SD) .25, .06 .28, .06 .29, .06 .29, .06 .30, .06 
Target Flyovers (M, SD) 2.80, 1.27 3.17, 1.68 3.60, 1.35 3.43, 1.57 3.67, .88 

Targets Identified (M, SD) 2.47, 1.25 2.67, 1.67 3.23, 1.25 3.27, 1.51 3.23, .94 
Target Memory (M, SD) 1.57, 1.28 1.67, 1.73 2.27, 1.48 1.87, 1.61 2.03, 1.16 
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Table 2.  
Number of targets remembered and identified, by serial position.  
                              

 1st Target 2nd Target 3rd Target 4th Target 5th Target 6th Target 
Identified 
(M, SD) 3.70, 1.41 3.07, 1.44 3.00, 1.71 3.11, 1.45 2.44, 1.48 1.81, 1.57 

Remembered 
(M, SD) 2.22, 1.42 1.74, 1.26 1.74, 1.29 2.00, 1.27 1.74, 1.40 1.15, 1.06 

Proportion 
Remembered 

(M, SD) 
.59, .34 .55, .34 .56, .41 .64, .36 .69, .46 .44, .47 

 
 
Figure 1. Panel A shows the STE running the multiple target search task. The UAV is depicted with the airplane 
icon. The UAV’s current destination and orbit trajectory are indicated by the red dot and ring, respectively. The 
north up topographical map (left) permits navigation and depicts possible target locations as represented by the blue 
circles. Panel B shows the STE running the probability density decision test. The two orange regions represent 
possible target locations. Panels C and D show the path reconstruction and target memory tasks, respectively.  
 

                
Figure 3. Sample results from the path reconstruction 
subtask. Participants’ flight paths are shown in red, 
while the reconstructed paths are shown in black. The 
area of the polygon created by mapping analogous 
points on each path, shown above each panel, acts as 
a measure of path congruity and performance

Figure 2. Feature locations for each study. Panel A 
depicts locations of the road (grey line) and oasis 
(blue rectangle) in Experiment 1, while Panel B 
depicts the feature locations in Experiment 2.  
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