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FRACTAL TIME SERIES ANALYSIS OF HUMAN HEARTBEAT INTERVALS FOR PHYSICAL AND 
MENTAL WORKLOAD 

Sheldon M. Russell, Gregory J. Funke, Benjamin A. Knott, Matt Middendorf 
 

Air Force Research Laboratory 
Wright-Patterson AFB, OH 

 
As the environments and tasks that teams (in both military and civilian settings) are faced with 
increase in complexity, standard statistical methods may not fully capture team dynamics and 
processes.  Nonlinear analyses provide alternative, mathematically derived descriptions 
quantifying the level of complexity and variability inherent in a data set, and may provide a more 
accurate understanding of dynamic systems. The goal of the present study was to investigate 
changes in heart interbeat interval associated with task workload using one type of nonlinear 
analysis, power spectral density analysis. In this study, physical and mental workload were 
manipulated in separate tasks to explore the contributions of each to interbeat interval variability.  
Results indicated that spectral analysis can identify large changes in overall workload, but may be 
insensitive to small or medium changes. However, these conclusions are based on preliminary 
results; follow-up research is necessary to determine the veracity of these conclusions.  
 

Introduction 
 

Although a relatively new addition to the sciences, the study of nonlinear dynamical systems (formerly known 
as chaos theory) has yielded interesting findings in a variety of scientific disciplines (an easily accessible general 
overview of this body of work can be found in Gleick, 1998). These types of systems (referred to from here on as 
fractal systems) are characterized by complex interdependencies in system variables and often unpredictable long-
term outcomes.  Long term weather patterns are a primary example of this, as the many interdependent factors 
associated with weather (humidity, solar activity, cloud cover, etc.) make long term predictions of specific weather 
outcomes very difficult.  Although long-term outcomes are unpredictable, studying the behavior of systems over 
time (via time series analysis)  has led interested researchers to conclude that, though specific predictions are not 
possible, fractal systems will generally behave in structured ways across time and scale, a property known as self-
similarity.  A variety of mathematical techniques are available to assess the fractal characteristics (including self-
similarity) of a system, but the type of interest here involves frequency analysis of the time series output from a 
system.          
 Fractal analysis of time series data can involve a variety of frequency analysis techniques, such as Fourier 
transform, Lomb-periodogram, and wavelet analysis (Malamud & Turcotte, 1999). The goal of frequency analysis is 
to break the time series into frequency components (sine and cosine base signals) to determine the power spectral 
density characteristics of the time series. Correlations between these frequency characteristics indicate specific 
attributes of the system that produced the time series. Specifically, systems that are fractal in nature produce a power 
spectral density plot that has a power-law distribution (as opposed to, for example, a normal distribution). When the 
probability of measuring a specific value varies inversely as a function of a power of that same value, it is said to 
follow a power law.  
  Many natural systems, including biological processes such as cardiac interbeat intervals (IBIs), have been 
shown to fit a scaling that has power-law characteristics (see Newman, 2005, for a review). In the area of nonlinear 
applications to heart rate variability and IBIs, most research has focused on medical applications, examining cardiac 
risk (Goldberger, 2002), gender differences (Ryan et al., 1994), as well as determining baseline or normal resting 
heart rate characteristics (Ivanov et al., 1999). For an overview of fractal geometry research in biological systems, 
including the human heart, see Iannaccone & Khokha (1996).  
 In addition to research focused on fractal characteristics, other measures of heart rate variability have 
previously been explored as indices of cognitive workload and stress (see, e.g., O’Donnell & Eggemeier, 1986, for a 
review). Such research typically compares mean IBI variability across conditions for evidence of differences 
attributable to experimental manipulations. Overall, decrements in heart rate variability have been observed with 
increases in mental workload (Kalsbeek, 1971; Kalsbeek & Ettema, 1963). These decrements appear in frequency 
ranges similar to those reported in the cardiac nonlinear analysis literature.       
 In the present research we utilized the Fourier transform method, as previous research has demonstrated its 
accuracy as a method for determining the fractal characteristics of typical heart rate data (McSharry & Malamud, 



2005). The following equations were reported in McSharry & Malamud (2005), and describe the Fourier transform 
of IBI time series data ( , where the total duration of the time series, T, is divided into N intervals of size = T/N: 
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The power-spectral density function  is then defined as: 
 

 
 

 While in general fractal systems follow power law scaling, correlations between values of  for all 
reported frequencies further specify characteristics of the system that generated the time series. Correlation values 
for spectral densities typically are reported as β = x, where x is the value of the exponent in the power equation 
multiplied by -1. For example, white noise (and other random processes) result in β = 0, in that there are no 
correlations between power spectral densities at any frequency value in the time series. Processes with long range 
correlations (i.e., preceding time series values influence subsequently observed values, a phenomenon termed 
persistence), result in correlations of β = 2, often called Brownian motion. A very common finding in natural 
systems is a correlation of β = 1, often referred to as  noise or pink noise. Systems characterized by pink noise 
are not random, in that frequency values are correlated; however, these systems are not as persistent as systems 
characterized by Brownian motion. Previous research indicates that, in healthy individuals, a normal, resting cardiac 
IBI exhibits pink noise characteristics for frequencies below .1 Hz (e.g., McSharry & Malamud, 2005). 
 In general, deviations from β values of 1 have been shown to be associated with abnormal heart function 
and health risk. In the most extreme cases, β values of 0 indicate that the heart is fibrillating, and β values higher 
than 2 indicate states of congestive heart failure. The emerging consensus is that normal, healthy hearts display 
regular variability in IBI, and too much or too little variability can create significant problems (Iannaccone & 
Khokha, 1996). The complex nature of heart rate variability has led some to conclude that heart rate dynamics can 
be termed multi-fractal, in that the heart has a variety of different variability characteristics depending on the 
demands placed on the cardiovascular system (Ivanov, 1999).  

Since fractal analysis of IBI has been demonstrated to be diagnostic in clinical settings (e.g., Goldberger, 
2002), it is possible that the fractal dynamics of a heartbeat time series may also provide a sensitive index of 
workload and stress, and yield new insights into human performance. Of particular interest is the possibility that 
fractal indicators of workload may be more sensitive than averaged measures when comparing across individuals 
due to the computational process required for analysis. This process essentially normalizes the data to the frequency 
domain, thereby reducing individual differences often associated with physiological measures, which should result 
in increased sensitivity (Malamud & Turcotte, 1999). 
 Within the domain of workload and team performance, an initial, exploratory study was conducted by 
Russell, Funke, Knott, and Knott (2009) to examine the fractal characteristics of IBI during a visual search task. 
Data for the analysis was drawn from an experiment conducted by Knott, Nelson, McCroskey, and Miller (2007). In 
that study, task workload was manipulated by varying the number of on screen distracters (8 or 48 objects) in a 
visual search task. The results of the analysis conducted by Russell et al. (2009) were relatively promising, 
indicating that it may be possible to observe differences in fractal exponents (β values) by manipulating task 
demands. 
 While the results from Russell et al. (2009) were encouraging, the experiment in that study was focused on 
visual search, rather than workload.  The present study expands on the idea that changes in fractal exponents can be 



indicative of workload by testing several tasks.  The present study also explores differences in physical and 
cognitive workload, with the goal of determining the sensitivity of fractal methods to sources and levels of 
workload. We initially hypothesized that the fractal exponents associated with primarily cognitive tasks would be 
differentiable from those associated with physical tasks. We also hypothesized that task difficulty would influence 
fractal exponents such that more difficult tasks would be associated with increased fractal exponent values. It is 
worth noting that the results reported herein are preliminary; data collection for this experiment is still ongoing. 

Methods 

Participants 
 24 people, 11 men and 13 women, between the ages of 18 and 30 participated in the experiment.  Prior to 
participation, prospective participants were asked to confirm that they met the study’s inclusion criteria, i.e., that 
they did not have abnormal heart conditions (e.g., heart murmurs, pace makers, etc.), that they were not taking any 
drug that would alter normal circulatory system function (e.g., blood pressure medications, blood thinning 
medications, etc.), and that they had abstained from caffeine and nicotine for 12 hours prior to the study. Participants 
who did not meet these requirements were not allowed to participate in the experiment. 

Experimental Design 
 The current experiment utilized a 4 × 2 mixed design. The between-subjects factor was experimental task 
(mental arithmetic, anagrams, card sort, treadmill).  For the purposes of description and subsequent statistical 
analysis, tasks were also grouped based on their primary sources of demand; mental arithmetic and anagrams 
required cognitive resources for task performance, and the card sort and treadmill tasks required physical resources. 
In the two physical task conditions, the within-subjects factor was trial (first, second). For the cognitive tasks, 
participants also completed 2 experimental trials, but these trials were further differentiated by a manipulation of 
task difficulty (easy, hard).  All experimental trials were 20 minutes in duration.  The primary dependent measure 
examined for this manuscript was the β values of the power spectral density analyses derived from participant heart 
inter-beat intervals (IBIs). 
 
Cognitive Tasks 

Two cognitive tasks (mental arithmetic and anagrams) were selected for this experiment as exemplars of 
task processes (i.e., working memory, mental computation, and verbal ability) utilized by many people during their 
normal work activities. In addition, these two types of tasks (i.e. mental calculation and verbal ability) have been 
used to evaluate the sensitivity and diagnosticity of more traditional measures of heart rate variability (e.g., Nickel & 
Nachreiner, 2003).  The present study also featured a manipulation of task difficulty (easy, hard) between trials to 
examine the sensitivity of fractal analytic methods to variations in mental load.  The order of the presentation (easy-
hard or hard-easy) was counterbalanced across participants.  A description of each task, including easy and hard 
conditions, follows below: 

Mental arithmetic. In the easy condition, participants were required to calculate the sum of a pair of two 
digit numbers (e.g., 24 + 48) and input the answer using the keyboard.  The hard condition required participants to 
divide a three digit number by a one digit number (e.g., 210 / 7).  All answers in the hard condition were whole 
numbers.  In both conditions, participants were free to respond to the problems at their own pace (i.e., there was no 
maximum response time to items). 

Anagrams. Word lists utilized for this task were drawn from The Teacher's Word Book of 30,000 Words 
(Thorndike and Lorge, 1944). The easy condition included common four letter words; the hard condition word list 
was drawn from common 6, 7, and 8 letter words.  Scrambled words were presented to participants on a computer 
screen, and participants were required to type in the correct word (e.g., “enes” was presented to the participant, and 
the correct response was “seen”).  Each easy presentation was timed so that participants had 7 seconds to view the 
scrambled word and input the correct response; in the hard condition, participants had 10 seconds. 
 
Physical Tasks 
 Two tasks (a card sorting task and walking on a treadmill) were selected to simulate physical exercise as 
might be encountered by many people during their day-to-day work activities. These conditions were included to 
examine the sensitivity of fractal analytic methods in discriminating physical and mental sources of task load. As in 
the cognitive tasks, participants completed two 20-minute trials.  However, the experimental task in each trial for the 



physical tasks was identical.  This arrangement was selected to assess the effects of light fatigue on β values and to 
ensure that the duration of all tasks were comparable. A short description of each physical task is included below: 

Card sort.  The card sorting task was chosen to generate physical workload levels akin to light office 
work.  Two tables were set up 10 feet apart from each other.  Each table contained 8 decks of shuffled playing cards.  
Participants’ task in this condition was to sort a deck of cards (by number) at one table, then move to the second 
table and sort a second deck of cards. This process (moving between tables and sorting cards) was repeated for the 
duration of the trial. 

Treadmill.  The treadmill task was designed to generate moderate physical workload.  In the treadmill task, 
resting heart rate was established using averaged values from the baseline period.  The task in this condition was to 
walk on the treadmill for the duration of the trial. The target heart rate for participants during each trial was 30% 
above resting baseline, and this goal was achieved by manipulating the speed of the treadmill, leaving the elevation 
setting at a 0° incline. 
 
Heart IBI Recording 
 Heart rate information was collected using CleveMed Bio Radio devices sampling at 256 Hz.  Custom 
software was written to detect R-wave peaks from the raw signal.  This system required three surface electrodes 
attached to the participant to detect the electrocardiogram (ECG) signal.  Electrodes were attached to the sternum in 
two places (the manubrium at the top of the sternum and the xiphoid process at the bottom of the sternum), and to 
the left clavicle (as a ground).  The skin below the electrodes was prepared by cleaning each site with alcohol, and 
then applying NuPrep ECG skin abrasion gel to the site, gently wiping the skin with gauze, and finally applying the 
electrode pads.  Heart rate data was recorded to text files and then imported into Matlab and Microsoft Excel for 
subsequent analysis. 

Procedure 
Participants first completed an informed consent document. Next, participants were asked to confirm that 

they met the study’s inclusion criteria. Those who did not meet these requirements were not allowed to participate in 
the experiment. Participants were then assigned at random to an experimental task condition. The basic procedure 
for all experimental conditions was to first apply the electrodes and attach the heart rate monitor. Participants were 
then asked to sit quietly while a 5-minute baseline was recorded. Next, participants performed their assigned task 
during the first 20-minute experimental trial. Participants were then given a 15 minute rest break. Following the 
break, participants again completed a five-minute baseline and their experiment task. 

 
Results 

Spectral Analysis 
  All data files were imported into Microsoft Excel and cleaned for erroneous data points due to artifacts 
associated with the wireless radio devices.  The final 1024 IBI intervals were taken from each time series and a 
segmented Fast Fourier Transform (FFT) with a Triangle window was performed on the data using Matlab software.   
The FFT segmented the data such that there were four unique 256 point analyses, and three overlapping 256 point 
analyses, with the average power at each frequency used for the final slope calculation.  The resulting power spectral 
density for each participant was then plotted and β values were generated by calculating the regression slope for 
each participant.   

Manipulation Check 
 As a manipulation check, the cognitive and physical tasks were examined for differences due to fatigue 
between the first and second experimental trials using separate paired sample t-tests (one for experimental task). 
Results of the analyses indicated there were no statistically significant differences between trials (p > .05 for all 
tasks), suggesting that fatigue did not influence spectral slope values in this experiment. 

Task Difficulty 
 To examine spectral slope values for differences associated with task difficulty in the two cognitive tasks, a 
2 (task) × 2 (task difficulty) analysis of variance (ANOVA) was computed. The results of the analysis revealed no 
statistically significant sources of variance in the analysis (all p > .05). These results indicate that the spectral slope 
values observed were similar across the cognitive tasks and task difficulties employed in this experiment. 
 



Task Comparison 
 Given that the previously discussed analyses did not reveal statistically significant differences between 
trials due to experimentally manipulated factors, mean spectral slopes were calculated for each participant across 
experimental trials. As an index of the sensitivity of spectral slope values to task type, mean slope values for all 
experimental tasks were compared in a one-way ANOVA. The purpose of the analysis was to determine if spectral 
slope could be used to distinguish between primarily cognitive and physical sources of workload. Results supporting 
the sensitivity of spectral slope values would include a statistically significant main effect of task type, followed by 
statistically significant post hoc tests demonstrating differences between the cognitive and physical tasks.  
 Analysis of the spectral slope data revealed a main effect of task type, F (3, 20) = 3.88, p < .05.  A follow-
up post hoc Tukey HSD test indicated a statistically significant difference in spectral slopes between the treadmill 
and anagram tasks, and between the treadmill and mental arithmetic tasks. In addition, a trend in the data suggested 
a difference between the treadmill and card sort tasks (p < .10). No other comparisons were statistically significant 
(all p > .05).  Mean spectral slope values for each condition are presented in Table 1. 

Table 1.  Mean spectral slope values for each experimental task. 

Task M SE 

Cognitive Tasks   
     Anagrams 1.95 .17 
     Mental Arithmetic 1.88 .18 

Physical Tasks   
     Card Sort 1.86 .22 
     Treadmill .97 .35 

Note. M = mean, SE =  standard error
 

Discussion 

The goal of the present study was to examine the utility of a fractal analytic method, spectral slope analysis, 
as an index of workload.  The results provide some interesting insight into the use of fractal measures of heart rate 
variability for assessing cognitive workload.  We initially hypothesized that the fractal exponents associated with 
primarily cognitive tasks would be differentiable from those associated with physical tasks. This hypothesis was 
partially supported, in that both cognitive tasks had greater spectral slopes than those observed in the treadmill task. 
However, spectral slopes did not differ between the cognitive tasks and the card sort task. In addition, we 
hypothesized that task difficulty would influence fractal exponents such that more difficult tasks would be 
associated with increased fractal exponent values. This hypothesis was not supported; no differences were observed 
between the easy and hard task difficulty conditions for either of the cognitive tasks. It is again worth noting that 
these results are preliminary; our final results may differ from those discussed here. 
 The results concerning task type were more nuanced than initially hypothesized. Spectral slopes in the 
treadmill task differed from all other tasks, but no such differences were observed between the other three tasks. 
This seems to suggest that the fractal metric employed may not be sensitive to sources of workload (cognitive versus 
physical), but that it is sensitive to large differences in workload regardless of source.  Although the current data 
seem to indicate that fractal techniques do not discriminate between physical and cognitive workload, the current 
data do suggest that light workload (i.e. using a computer, light office work) should not be a major concern in future 
experiments examining cognitive workload using fractal methods, as there were no significant differences between 
the card sorting task and the cognitive tasks examined in this experiment.  This information is important for future 
research, as cognitive workload experiments are likely to include low levels of physical activity. 

As mentioned previously, the results of the task difficulty manipulation employed in the current experiment 
did not match initial hypotheses in that the cognitive task conditions did not appear to generate changes in β values.  
This is at odds with the results reported by Nickel & Nachreiner (2003), who found mean IBI differences between 
verbal and other cognitive tasks.  The results observed in the current experiment may be due to the manipulations 
themselves (i.e., the manipulations of task difficulty employed were insufficient to drive changes in β), or to 
relatively low power in these analyses (as overall N was relatively small).  Alternatively, it may be that, unlike other 
measures of heart rate variability, β values do not lend themselves to observable differences based on workload 
manipulations (i.e., while IBIs follow power law scaling, β values may be relatively stable across individuals and 



most situations).  Further research will be necessary to determine which of these alternative explanations is most 
accurate. 
 The results of this study indicate a strong need for future research.  As previously mentioned, increasing the 
sample size reported here should provide greater statistical power for our analyses.  To better understand the 
stability of β values under levels of workload, future research should explore the relationship of fractal heart rate 
variability with a greater diversity of workload levels and also in conditions more akin to “real world” tasks.  More 
specifically, workload levels should include higher levels of cognitive workload than were employed in the present 
study, as our current results suggest that fractal measures appear to be sensitive only to large differences in 
workload.  Furthermore, future research should also examine if fractal measures of workload are sensitive to 
changes between resting and working heart rates.  Although baseline data was collected in this experiment, the 
duration of the baseline (5 minutes) provided an insufficient number of IBIs for a spectral analysis of the baseline 
period.  Finally, future research should better address the issue of fatigue and cognitive workload.  Although 
intertrial differences were not observed in the present experiment, it is likely that fatigue will exert some influence 
on fractal measures, provided that the task is of sufficient duration.  
 Overall, the (preliminary) results of the current experiment suggest that fractal analysis may yield useful 
metrics for understanding workload.  At present, however, it appears that these metrics are unlikely to be more 
sensitive than those reported by previous researchers in the area (e.g., Kalsbeek, 1971; Kalsbeek & Ettema, 1963). 
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