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Automation for Human-Robotic Interaction:  Modeling and Predicting Operator Performance 
 

Angelia Sebok, Christopher Wickens, Marc Gacy 
Alion Science & Technology, MA&D Operation 

4949 Pearl East Circle, Suite 200 
Boulder, CO  80301 

www.alionscience.com 
 

Human-robotic interaction presents numerous challenges to designers and operators. One way to 
address these challenges is through task automation. However, appropriate application of 
automation, reducing workload while keeping the operator informed and in control, without 
causing skill degradation, is not generally understood.  In this paper, we describe a human 
performance modeling and simulation approach to evaluating the effects of automation on 
operator and system performance. In this research, we identify and combine relevant factors that 
affect operator performance into operator-robotic system interaction models.  The result of this 
project will be a partially-validated tool to help system designers evaluate potential automation 
strategies for their expected effects on operator and system performance. 

 
This paper describes a unique research and development project to address human-automation interaction 

in robotic missions.  In this project, we are developing the Function Allocation Simulation Tool (FAST) to help 
mission planners, automation designers and human performance researchers at NASA Johnson Space Center (JSC) 
evaluate human-automation interaction in space robotics missions.  On the International Space Station (ISS), robotic 
equipment provides a primary means for performing repairs, and conducting docking, assembly, and maintenance 
tasks in the hostile environment of space.  These robotic tasks offer multiple challenges.  In particular, mismatches 
between the operator’s viewpoint and the direction of movement of the robotic arm, and between the direction of 
control movement and corresponding arm movement adversely impact performance.  Further, a limited number of 
cameras, few lighting options, and multiple potential collision surfaces add to the complexity of the task.   

 
One potential solution for helping astronauts perform these missions is to automate the robotic tasks.  

Giving control to the automation could alleviate some of the operator’s workload, but automation includes its own 
hazards.  In particular, unreliable automation, or even highly-reliable automation that unexpectedly fails, can result 
in worse performance than continuous manual control (Wickens et al, 2010; Bainbridge, 1983; Parasuraman & 
Riley, 1997; Endsley & Kiris, 1995).  As one example, if the operator expects that collision avoidance automation 
will prevent any impacts, s/he can become complacent, fail to diligently monitor the arm’s position with respect to 
collision surfaces, lose situation awareness, and be surprised when the arm collides with a structure.   

 
Other challenges with human-automation interaction include specifying how automation is to be 

implemented and the ways in which automation failures occur.  Automation can be implemented so it takes over the 
“easy to automate” tasks.  In these situations, it is typically the manual control tasks that get automated.  This can 
reduce operator workload, but leave the operator removed from the loop.  This can contribute to degraded operator 
situation awareness, and eventually cause the operator to lose their direct control proficiency.   

 
Given the high-stakes missions in space, where collisions can damage expensive equipment, compromise 

mission completion, or potentially put astronauts’ lives in jeopardy, it is imperative that human-automation 
allocations are carefully evaluated prior to implementation.  Our approach to this work is to build human 
performance models of operators performing typical robotic missions, and have these models interact with an actual 
robotic simulation, to make predictions of human and system performance in different conditions.  The tool we are 
developing, FAST, will allow planners, researchers, and designers to evaluate potential automation strategies, and 
identify their predicted effects on human and system performance, before implementing them.  It will provide the 
opportunity to compare the effects of different types of automation by testing them (i.e., running simulations to 
gather data on predicted performance), evaluate the effects of sub-optimal reliability, and evaluate different types of 
automation failures.   

 
The modeling and simulation (M&S) approach we describe in this paper has been used successfully in 

many applications (e.g., Allender, 2000; Foyle & Hooey, 2007).  Modeling approaches offer the significant 



advantages of providing operator and system performance data without requiring human-in-the-loop research.  The 
time and expense of obtaining institutional review board (IRB) approval for research with human subjects, planning 
and conducting studies, and the common problem of only being able to evaluate a few, limited scenarios is avoided.  
Models that represent situations being evaluated can be easily modified, allowing analysts to evaluate a wide variety 
of situations.  Performance data can be gathered with a few computer key presses, rather than multiple experimental 
scenarios.  

 
Human Automation Interaction in Space Robotic Missions 

 
One of our first tasks in this work was to explore the domain of space robotics and identify the relevant 

human-automation interaction issues.  We obtained a NASA JSC robotic simulation to include in the tool and 
attended a week-long Generic Robotics Training course offered at JSC.  Based on the course, interviews with NASA 
robotics system instructors and a former astronaut, and findings from readings of the space human factors literature 
(e.g., Cizaire, 2007; Kanas & Manzey, 2008), we identified a set of potential automation concerns to include in the 
tool.  The starting point for our model development was grounded in the stages-levels view of automation 
(Parasuraman, Sheridan & Wickens, 2000).  This model defines stages of automation that correspond to different 
roles in an information processing / decision making / action framework.  In this model, automation can support 
humans by:  (1) gathering information and presenting it, (2) integrating information in such a way as to improve 
operator understanding, (3) supporting decision making by presenting options, and (4) implementing actions.  
Within each stage of automation, there are different levels, where the degree of automation increases.  The following 
table shows how we characterize the robotic domain in terms of the stages-levels framework.  
 
Table 1 
 
Examples of Stages and Levels of Automation in Space Robotic Tasks 
 

 Stage 
 
Level 

Information 
Acquisition 

Information Analysis 
/ Integration 

Choosing / Deciding Executing 

High Automation 
highlights the camera 
view it infers is most 
valuable. 

The automation  
diagnoses which 
control axis has 
excessive deflection  

Automation assigns 
the best 3 views to 
the 3 viewports (but 
allows human to 
override) 

Automatic control of 
XYZ trajectories, to 
points that are human 
designated 

Inter- 
mediate 

Highlights joints 
approaching 
singularities, 
potential collisions  

Auto diagnoses 
collision  state based 
on trajectory 
extrapolation 

Automation 
recommends 3 
camera views 

Manual control of 
XYZ trajectories but 
automation control of 
joint angles 

Low Presents all raw data None Automation 
recommends a set of 
camera views to 
choose between 

Manual control of 
joint angles 

 
Following the task of identifying stages and levels, we identified a variety of specific types of automation, 

relevant to the robotic domain.  These include trajectory control, camera control, lighting control, hazard alerting, 
and rate control.  Within these different types of automation, there are different ways in which the automation can 
fail.  Automation can simply fail to alert users, and lead them into an unsafe condition they were expecting to avoid.  
Automation can provide false alarms, alerting the operator to a hazard when none exists.  Further, automation can 
recommend a suboptimal course of action; in the worst cases, this recommended course of action can be more risky 
than the one currently being performed by the operator. In the executing stage, automation can fail to implement an 
action correctly; it could choose and execute an incorrect trajectory for example.  

 
Our current challenges include: determining the breadth of possible changes, identifying those most 

relevant to NASA, and focusing our research on a highly-relevant subset of those factors.  Our main concern is to 
specify the automation conditions that can affect operator and system performance, and model these appropriately.    



 
The goal of the project is to produce a Function Allocation Simulation Tool (FAST) that allows users at 

NASA JSC to evaluate predicted operator and system performance in robotic tasks under a variety of different 
automation situations.  Thus, we have been actively identifying and specifying what types of automation are 
reasonable to consider, how these might fail, and what types of adaptive automation strategies might be included.  
These are all factors we will include in our software tool and in the operator models.   

 
Tool Development 

 
Software Development:  FAST  
 

FAST is a wrapper-based tool that includes a NASA JSC robotic simulation (The Basic Operational 
Robotic Instructional System, BORIS), a computational model of a human controller, known as MORRIS, and a 
user interface through which different scenarios can be created and evaluated.  The MORRIS operator provides 
inputs to the BORIS simulation, and BORIS responses provide inputs to the operator model.  The user interacts with 
the tool by creating and evaluating specific scenarios.  Figure 1 shows a concept display for the data-entry screen.  
The user specifies what mission is being performed (e.g., moving to a destination, grappling an object, or 
performing an extra vehicular activity), what systems will be automated, how automation will be implemented, e.g., 
if trajectory control is performed manually by the operator using hand controllers or if the operator merely specifies 
the destination and the automation moves the robotic arm to that location and orientation.  The FAST user also 
specifies if the automation is progressively adaptive, and if the automation is unreliable.  Unreliable automation is 
further specified in terms of degree of reliability and type of failure.  FAST users also specify aspects of the 
environment in which the task is performed, by placing obstructions (i.e., tables and no fly zones) in the area.  
Finally, users select the simulated operator’s level of experience (i.e., novice, experienced, or expert).  The tool then 
provides predictions of operator and system performance.  FAST will allow users to evaluate and compare predicted 
performance across different automation conditions, to identify the best operating situation for the particular 
mission.  Users have the flexibility to define the “best situation” according the parameters of most importance, e.g., 
minimal time to complete the task, most reliable performance, and/or lowest operator workload. 
 

 
Figure 1.  Concept of a FAST data entry screen, through which the user specifies the scenario. 
 

Once users define a scenario, the tool sends parameters to both BORIS and MORRIS to configure the 
simulation and select the appropriate mission model, and set the human performance modeling parameters.  By 
hitting Run the user initiates the simulation.  The visualization of a run shows the following information (Figure 2 
below):  the BORIS screens of the robotic simulation (on the left) and the graphical user interface (on the right), the 
name of the scenario and time into the run, the operator performing the task and his SEEV-predicted viewcone (the 
area where the eyes are looking at any given time), and his/her predicted situation awareness and workload, and 
major events as identified in the interaction between the operator model and robotic simulation. 
 



 
Figure 2.  Sample display of the FAST scenario visualization capability, showing predicted operator performance. 

 
BORIS Robotic Simulation 
 

The Basic Operational Robotic Instructional System (BORIS) is a simulation environment consisting of a 
six-degree of freedom (DoF) generic robot arm in a simulated room with tables and payload latch-points. BORIS is 
the primary instructional aide in the General Robotics Training (GRT) program at NASA JSC, used for training 
general robotic arm control concepts and camera manipulations.  BORIS provides a generic environment in which to 
encounter and practice many of the issues with robotic arm control.  The BORIS training environment simulates a 
15m x 30m x 15m room with a six DoF arm attached to one of two wall mounts. The room includes grids and 
distinguishing features on the walls. BORIS offers the capability to insert a large table, either for payload placement 
or as an obstacle, into the room (see Figure 3).  Finally, BORIS has seven camera positions:  a “window” view, four 
cameras mounted in the room corners, one at the end of the robot arm, and one mounted on the arm joint.  The 
operator controls the arm through two hand controllers and receives feedback on arm position and certain features 
such as self-collisions and arm singularities (positions where automated arm movement fails) on a set of displays. In 
our simulation, a virtual operator will be controlling the arm, giving commands and receiving the update 
information.  

 

 

Figure 3.  The BORIS training simulation, showing the robotic arm and operating environment 
 

Operator Model Development 
 

MORRIS: the computational model of the robotic operator  
 

The goal of MORRIS was to create a software model of a robotics controller, working with BORIS, in a 
manner that generates the same sorts of errors, makes the same kinds of decisions, and experiences the same sorts of 
workload and situation awareness profiles (across a mission) as would the actual human controller. Initially, the 



model will be validated against human performance data from live operators controlling the equivalent systems. 
Then, to the extent that MORRIS is valid, it can be used to predict the consequences of different design, automation 
and mission changes that a mission planner would wish to predict.  MORRIS attempts to incorporate the cognitive 
and physical aspects of the robotics task.  Based on the inputs from our data collection efforts described previously, 
we refined and integrated three cognitive models, (Figure 4).  The models represent decision making, spatial 
transformation (the Frame of Reference Transformation, FORT; Wickens, Keller, Small, 2010), and eye movements 
(Salience, Expectancy, Effort, and Value;  the SEEV attention model;  Wickens et al, 2009).  These affect the 
critical operator behaviors of trajectory control, control mode selection, and camera view assignment, and contribute 
to predictions of workload and situation awareness.  
 

 

Figure 4.  The simulated operator cognitive model, showing decision making, trajectory selection and attention. 

The decision model makes three types of decisions: 1)  trajectory decisions - how to move the robotic arm 
and whether to halt it in mid trajectory (e.g., if it should be approaching a hazard), 2) control mode decisions – 
which type of movement should be selected (e.g., rate of movement, arm-referenced or room-referenced 
movements), and 3) camera view decisions – which cameras should be selected for display in the three windows 
available to the operator. All of these decisions are based in part upon certain fixed if-then rules, where the “if” 
defines a context. For example if the end-effector is within 1.6 m of the target, then the slow, Vernier rate control 
mode should be selected. Importantly however, the decisions are also based on continuously varying utility of 
different choices, determined by continuous and changing variables as the arm moves through the workspace. Most 
of these variables are represented, cognitively, by the frame of reference with which the end-effectors is viewed in 
the cameras, and by which the control movement governs the arm movement. Thus a second model, the (2) frame-
of-reference transformation, or FORT model provides critical inputs to all three classes of decisions.  

 
The FORT model was developed for a broader class of spatial manipulations (Wickens, Keller & Small,  

2010), and based on extensive empirical data from spatial cognitive operations (see Wickens, Vincow & Yeh, 2005). 
In the current project, we are modifying it to account for particular costs (cognitive and perceptual-motor 
challenges) imposed on the operator in the robotic environment, including line-of-sight ambiguity and control-
display compatibility.  FORT calculations are used to assess the quality of various camera views, and influence the 
modeled operator’s decision to select a different camera view.   

 
The model of visual attention across the workspace is SEEV (Wickens & McCarley, 2008; Steelman-

Allen et al, 2009). The model is particularly important because it can predict attentional tunneling and areas of 
neglect, such as when an operator becomes so focused on a window guiding precise movement to a target, s/he fails 
to monitor another display that portrays the proximity of the arm’s elbow to colliding with an object in the 
workspace. Essentially SEEV predicts the moment to moment scan between the three different camera windows and 



the master system monitor display (i.e., the GUI), based upon the Salience or each display, the Effort (proportional 
to distance) required to move the scan from one area to another, the Expectancy that information will change in an 
area and, most importantly the Value of each display to the robotics subtask in question. The FORT and SEEV 
models in FAST interact with one another, in that displays returning high FORT penalties are of low value, whereas 
those of low FORT penalties are of high value, and will be looked at much of the time.   
 

Discussion 
 

This paper describes the initial development of a model and simulation-based tool for predicting operator 
and system performance in robotic missions.  The efforts described in this paper are being conducted  to develop the 
FAST tool, to support researchers in evaluating human performance in potential robotic automation strategies, and 
help ensure that the design of new automation concepts does indeed support better operator and system performance. 
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