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The emerging wearable human performance monitoring technologies can help evaluate the 
cognitive status and capacities of the crew in the cockpit as well as those operating ground control 
stations. Traditionally the use of behavioral measures and subjective metrics has been used to 
address cognitive factors associated with pilots or operators of safety critical systems. However, 
the advance in wearable physiology technologies could provide additional performance metrics 
directly driven from brain based measures, potentially validating subjective assessments and 
ultimately bringing us closer towards maintaining safe and effective performance. Furthermore, 
these techniques may also aid the design and evaluation of new technologies that are being 
presented as increasing operational capacity, efficiency and safety across the aerospace domain. 
The measurement of real time brain activity from the operator can help evaluate decision making, 
and reliably compare workload burden of next generation system versus legacy systems in the air 
transportation domain. This paper outlines key cognitive areas of interest when attempting to 
explore the correlation between physiological state changes and psychological constructs. A 
number of studies are described whereby wearable systems, namely electroencephalography 
(EEG), and functional near infrared spectroscopy (fNIRS), are used to evaluate human 
performance. The potential advantages and challenges are discussed in relation to implementing 
these sensors in real operational settings.  
 
 
Civilian pilots, air traffic controllers, ground controllers are all increasingly required to utilize larger 

amounts of data and more complex systems. Hence, we are likely to observe an increase in the information-
processing load and decision-making demands on aviation personnel. Many of these issues have been symbiotic 
with initiatives being developed under initiatives such as Next Generation Air Transportation System (NextGen) and 
the Single European Sky Air Traffic Management Research (SESAR) programmes. The human element within any 
future concept still represents a critical point that may either be seen as a point of failure or a means by which these 
new technologies are optimized. It is therefore important to consider how we not only assess such technologies, but 
the way in which the human interacts with them and ultimately arrives at making decisions.  

 
The last decade has seen significant advances in physiological monitoring techniques, and in particular 

their integration into ubiquitous devices. One aspect of this has been the increase in wearable human performance 
monitoring technologies that can be used to evaluate the cognitive status and capacities of the crew on the flight 
deck, as well as on the ground (such as the ground control station or air traffic terminals). Non-invasive wearable 
technologies offer the potential to observe human cognitive performance directly driven from brain-based measures, 
which would be an important asset in evaluating (and maintaining) safe and effective operational performance. 
Further, such sensory input from the operator can help evaluate decision making, and reliably compare the cognitive 
workload burden of future versus legacy systems in the air transportation domain. Currently the most widely used 
brain activity measures are functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), 
electroencephalography (EEG), and functional near infrared spectroscopy (fNIRS).  

  
This paper introduces some key theoretical aspects of cognition that are prevalent within aerospace, with 

particular attention to cognitive workload and human performance in safety critical environments; with a view to 
bridging the gap between cognition and measurement. Following this, a number of operational views are outlined 
through the description of field use cases: including ATC human-in-the-loop studies and the nature of human 
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performance in weather decision making. Principles of EEG and fNIRS are discussed in relation to application and 
calibration, before highlighting their potential contribution in providing reliable and objective assessment of pilot’ 
and operator’ cognitive performance.  

 
Maintaining the Objective: Assessing Pilot and Operator Cognitive State 

 
The Aerospace Industry is regarded as one of the safest transport domains, with a constantly improving 

safety record (Harris, 2014). However, when we consider the different roles and responsibilities that we ask of the 
humans that operate across the national airspace system (NAS) we can appreciate the diversity of tasks and systems 
that users of those systems have to utilize. When tasks become complex, laborious or dramatically increase, 
automation is commonly (and effectively) applied. Although we have traditionally seen a rise in the use of 
automation within aerospace applications, it is fair to say that the human will remain responsible for making critical 
decisions based on the information they are presented with.  

 
Human Factors (HF) within aviation has provided us with a good understanding of the cognitive processes 

involved in aviation operations, predominantly focused on manned and unmanned aviation and the critical 
management task provided by Air Traffic Control Operations (ATCO). It is of little surprise, therefore, that we can 
identify a number of key cognitive components that play a role in human performance. In order to understand how 
an individual processes and acts on information it is critical that we define two important aspects that underpin 
Aviation HF; that of human information processing (HIP), mental workload (MW) and situation awareness (SA).  

 
We must first consider the nature of a number of theoretical constructs that we need to understand when 

discussing these cognitive constructs. Without descending into an essay on the many different theories and 
approaches to understanding cognition, it is best to approach this by outlining the way in which humans process 
information. To start at the beginning we can describe, in general terms, the core aspects of HIP as related to how 
information travels from the environment to the human, and subsequently how he/she acts on that information.  This 
in turn can be further deconstructed into three key factors: (1) Encoding data from the environment, (2) Processing 
the data into meaningful information we can use, and (3) Executing actions as a result of the first two steps. 
Although this sounds like a simple mechanistic approach we must remember that all of this activity must take place 
rapidly across different dynamic models of memory; namely sensory, short term (often referred to as working 
memory), and long term memory (Atkinson & Shiffrin, 1968, 1971). These distinct models of memory allow us to 
understand the processing of information in terms of how we attend to sensory stimuli, before we move on to 
register and encode aspects of the information, see Figure 1. 

 
Figure 1 - Three component memory model of Information Processing (adapted from Atkinson & Shiffrin) 
 
Of course the manner by which we process information is somewhat dependent on the characteristics of the 

information being attended to and the specific requirements of the task. This will further determine how attentional 
resource is utilized during the context of the task demand and which stimuli are attended to (Baddeley & Hitch, 
1974; Baddeley, 2003). Inevitably this represents a constraint in terms of how humans process and store 
information, more so when confronted with dynamic and complex tasks to perform. Unsurprisingly there are many 
instances where this constraint of HIP can sometimes lead to bottlenecks whereby information will compete for the 
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attention of the individual to process. The human brain adapts to this by selectively attending to certain information 
(very much dependent on the task context) whilst filtering out less salient information (Moran & Desimone, 1985).  

 
If we focus on the processing of information within working memory, then it has been suggested that this 

represents our understanding of the external environment - or, to put it another way, our SA (Bell & Lyon, 2000). 
Endsley (1995) however views SA more as a cognitive product of information processing, and developed perhaps 
the most influential model of this construct. In essence Endsley (1995, 2000) suggests that SA is an active and 
ongoing process of achieving a state of knowledge of a given situation. But, in order to achieve this it is necessary to 
process information sequentially through the stages of (1) Perceiving the attributes and state of the elements within 
the environment, before beginning to (2) Comprehend what is being perceived, and then finally understanding this 
information by (3) Projecting ahead what is likely to happen in the future. While there are many different 
interpretations on the nature of SA as a theoretical construct, what it all boils down to is the nature of what it is we 
are attempting to measure; trying to make the intangible tangible. Stanton et al (2005) provide an overview of 
different methods employed to measure SA, which can be categorised into different techniques such as freeze probe 
recall, real-time probe techniques, post-trial subjective ratings, observer ratings and process indices (Salmon et al., 
2006). All of these techniques have both good and bad points and may be used to claim a measure of SA (depending 
on which technique and definition you ascribe to). Indeed, Endsely (2015) concludes that the very nature of the 
construct makes it difficult in itself to measure it.  

 
We can all think back to an instant where we have felt overwhelmed by a situation that has affected our 

ability to act efficiently and in a timely manner. Regardless of whether that experience was within an aviation 
context or not, it is likely that this increase in MW could also raise the likelihood of inducing human error and 
ultimately reducing your effectiveness (Moray, 1988). As with many cognitive constructs there is no single agreed 
definition of MW, but we can broadly agree that it is composed of a number of features that require: an input (or 
task load), a specified amount of effort required by the human to satisfy the task, and the actual performance of the 
human in doing the task (Jahns, 1973). Clearly the ability to assess an individual's MW during critical tasks can 
provide important details as to the manner of the task demand, which may then assist in the future design and 
integration of that system into an operational context.  

 
The key element to consider here is that the assessment of MW requires a tangible value that can be 

assessed by employing a range of techniques. Primarily we can use observation and measurement to determine 
whether the task has been successfully completed, which may further be constructed of behavioral markers assigned 
to primary or secondary tasks. Thus, quantifiable measures (such as holding altitude or maintaining safe separation) 
may be used to determine whether the individual is operating under a higher or lower amount of MW. Either way we 
would witness an effect that could be translated as having an impact on the individual completing these tasks. 
Measuring behavioral response aligned to a particular task does not directly involve direct interaction with the 
participant, but an observation of the task with which they are engaged. However, it is almost impossible to enforce 
a completely sterile condition whereby we can state that any behavioral effect is solely attributed to MW. A more 
direct perception of what the participant may report in terms of their perceived effort can be gathered by a large 
number of available subjective MW measures.  

 
Assessment and Measurement 
 

Both MW and SA are cognitive processes that are theoretical constructs and somewhat illusive to direct 
measurement. However, all is not lost, as we may use a number of methods to assess human performance. We can 
see that there are several techniques that can be used, and these broadly fall into three categories: (1) Rating scales, 
(2) Performance Measures associated with primary and secondary tasks, and (3) Psychophysiological measures. In 
the past the most widely used of these methods would center on the first two methods of gathering data; due to their 
ease of use and lack of physiological techniques that can be readily applied and interpreted.  

 
However, when selecting (or developing) an appropriate measurement technique there are a number of 

factors we must take into account. These factors are outlined in Figure 2, and show that the context within which we 
conduct human performance assessments plays a pivotal role in how we attempt to measure cognitive processes. 
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Figure 2 - Factors that should be considered within the selection criteria for metrics 

 
While behavioral measures are largely non-intrusive and possess high participant acceptance, they are poor 

in terms of their sensitivity and diagnosticity for measuring mental workload. And consequently the validity of such 
approaches must often be examined.  

 
Operational View of Human Performance Assessment 

 
To assess the impact of changes being adopted under programmes such as NextGen and SESAR, we often 

run high fidelity Human-In-The-Loop (HITL) simulation experiments. Research efforts commonly examine the the 
impact of new technologies on human performance, with a particular focus on pilot/operator cognitive processing. 
Changes to mental state of the operator will directly affect the safety and efficiency of the NAS. One of the 
challenges with HITL experiments is to use an objective measure that is unobtrusive, real-time, and sensitive enough 
to detect changes due to human-automation interaction or procedural changes.  

 
We have seen that the cognitive theories discussed in this paper are complex multi-dimensional constructs 

that are by their very nature difficult to quantify using any one single metric. By adopting a range of metrics, and 
choosing those that suit the nature of the task being examined, it brings us closer to a clearer picture of what an 
individual's cognitive response is within a given context.  We have used several physiological measures in 
conjunction with system-derived as well as subjective measures. Here we present our experience across several 
studies as well as the pitfalls of using subjective measures to assess new technologies. The studies were conducted at 
the FAA’s William J Hughes Technical Center and some reported by Willems (2002), Ayaz et al., (2011; 2012), and 
Harrison, et al. (2014). These provide a number of contexts which have shown promising results that appear to 
benefit from the application of neuropsychological measurement.  

 
Context One: Decision Making and Significant Weather for Air Traffic Controllers and Pilots 

 
About 70% of aviation delays are related to weather. To enhance NAS efficiency and safety, it is important 

that air traffic controllers and pilots work together to make sound decisions when encountering severe weather. 
Decision making and communication for air traffic controllers and pilots during severe weather situations could 
cause excessive MW for both controllers and pilots.  

 
Severe weather creates challenges in decision making and communications for both controller and pilots in 

the complex sociotechnical system. Air traffic controllers need to make quick assessment about the weather 
scenarios and understand the current situation as well as future progress of the severe weather phenomenon. 
Additionally, they need to disseminate relevant weather information to pilots in the most effective way (Ahlstrom, 
2005). For the pilots, with challenges created by severe weather, they have to make decisions about whether to 
divert from their original flight path with the help from air traffic controllers (Chamberlain & Latorella, 2001; 
Delaura & Evans, 2006). Effective and timely communication between controllers and pilots is critical to ensure 
safety and efficiency. To maintain a common weather picture and allow for shared SA, which facilitates 
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collaborative decision making between controllers and pilots, communication protocol and channel (via Data 
Comm, ADS-B weather display enabled by NextGen technologies, voice) should be carefully designed. 

 
As all weather forecasts are probabilistic in nature, controller and pilots also need to be trained to deal with 

inherent uncertainty in weather. National Severe Storm Laboratory (NSSL) from NOAA is developing Probabilistic 
Hazard Information (PHI) system, part of the vision of Forecasting a Continuum of Environmental Threats 
(FACETs; Rothfusz, Karstens, & Hilderbrand, 2014.). This new system provides dynamically updated probabilistic 
information of areas being impacted by severe weather threats, using graphical design methods to convey the 
likelihood of threat occurrence (Karstens, Stumpf, Ling et al., 2015). A graphical probabilistic weather display may 
become a useful tool to enhance decision making and communication for controllers and pilots. 

 
Context Two: To Improve Safety and Evaluation of Training in ATM Using  

Neuroscience-Based technology 
 
Air traffic management (ATM) is an essential part of air transportation and aviation, connecting cities and 

people citizens as well as boosting jobs and growth. However, worldwide ATM systems are based on aging 
technology and procedures and needs updating particularly in light of the expected traffic growth in the near future. 
The future ATM scenarios describe a system where high levels of automation should be deployed to support 
humans. However, automation brings a range of new challenges. A series of problems concerning the interaction 
between human and automation that have been reported are: deficiencies in human operator states, including 
vigilance decrements, complacency and out-of-the-loop problems, and training deficiencies. 

 
  We reviewed the state-of-the-art in assessing human performance and training under the advancement of 
aviation automation. Such technology capacities have been reflected in documented publications on MW 
assessment, alertness, training in air transportation management (ATM) with realistic environments and testers. We 
examined the state-of-the-art portable sensor technologies that are adaptable and inexpensive. This allowed us to 
identify a number of neurophysiologic conditions that can be associated with the levels of cognitive control (Astolfi 
et al., 2011; Shou et al., 2012; Borghini et al., 2014b; Kong et al., 2015). Further to this, we obtained information 
about the level of MW of ATM operators, through a combination of neurometrics and other physiologic measures 
(Arico et al., 2015; Borghini et al., 2015), in a realistic ATM context (Arico et al., 2014, 2016; Dasari et al., 2015). 
This allows us to recommend a number of safety measures. Finally, we gathered valuable data on the use of 
neurometrics that can assess the current learning level of trainees (Borghini et al., 2013, 2014a, 2016; Krishnan et 
al., 2014).  

 
Context Three: An Investigation of Optical Brain Imaging Sensor in Performance Assessment 

 
The safe and effective performance of aviation personnel depends on their ability to manage and maintain 

high levels of cognitive performance. A field-deployable optical brain imaging device can provide team member’s 
cognitive state and relative level of expertise for a given level of performance by monitoring cortical areas that are 
known to be associated with MW, learning and the development of expertise.  
 

Near-infrared spectroscopy (NIRS) has been widely used in brain studies as a noninvasive tool to study 
changes in the concentration of oxygenated hemoglobin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb). Based 
on the NIRS technique, a functional brain activity assessment (fNIRS: functional Near InfraRed Spectroscopy) 
system has been deployed as a means to monitor cognitive functions, particularly during attention and working 
memory tasks as well as for complex tasks such as pilot training and air traffic control scenarios performed by 
healthy volunteers under operational conditions. The fNIRS is a field-deployable non-invasive optical brain 
monitoring technology that provides a direct measure of cerebral hemodynamics from the forehead in response to 
sensory, motor, or cognitive activation. This study also allowed us to progress brain based measures and biometrics 
across different human roles in aviation. 

 
Our work utilizing fNIRS has allowed us to progress this technique towards deploying this device in the 

field; whereby operators can be assessed in their normal working condition and have included multiple studies with 
the Federal Aviation Administration (FAA) as well as with the Department of Defense (DoD).  In the first study, we 
explored the impact of the different Conflict Resolution Advisory (CRA) conditions on air traffic control operator's 
behavior and MW. The fNIRS sensor was utilized to monitor the MW of the 12 operators using this new CRA 
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system across 3-day human experimentation sessions (Harrison et al., 2014). Further to this, a HITL study was 
conducted using fNIRS to evaluate MW within a NextGen air traffic system that examined the difference between 
Data communication (DataCom) and Voice communication (VoiceCom) between pilot and air traffic controllers 
(Ayaz et al., 2012). Finally, we also adopted fNIRS to assess human performance unmanned aerial vehicle (UAV) 
operators (Izzetoglu et al., 2015). The results provided within these studies revealed that such fNIRS can be used to 
monitor true MW changes during aerospace operations. It also proved to be an objective measure of expertise 
development, i.e., the transition from novice to expert during operator training (Ayaz et al., 2012). 

 
Discussion 

 
Advances in neurophysiology and neuro-monitoring technologies have demonstrated that changes in 

physiology can explicitly be assessed and correlated with different tasks. These may relate to instances where the 
human is confronted with high cognitive loading, or events that can be identified as leading to a change in situation 
awareness. It may also be used to develop adaptive, personalized training regimes and provide indicative markers 
that are associated with expertise development. It is therefore essential that before we start to decide which metric to 
use, we must consider the context within which the measurement is to be applied, what we are exactly attempting to 
measure, and so on. Once we can establish these requirements we can begin to address the robustness of these 
neurophysiological biometrics in terms of reliability: does it produce the same results in similar situations? and 
validity: does it actually measure what it says it does?  

 
It is worth noting that the sensitivity of these metrics may only provide one side of the story, in that they 

are perceived measures and sometimes do not reveal the full picture. Both subjective and objective metrics clearly 
have a role to play here, but we must exercise caution in not placing all our EEGs in one basket. Indeed, some 
studies have revealed contrasting results when we compare subjective versus physiological metrics in terms of MW 
(Richards et al, 2016). There has also been observations that suggest that subjective metrics, such as the NASA-
TLX, can be limited by the nature of individual differences in introspection skills (Paulhus & Vazire, 2005). Chen et 
al (1995) even go so far to suggest that this limitation may even be observed at a cultural level, whereby instructing 
an individual to report perceived feelings of cognitive state are difficult to articulate.  

 
We have shown that the advances in wearable sensors can be used to measure physiological state changes, 

and they represent an exciting opportunity to explore the psychology-physiology divide. Brain imaging measures 
allow us to add to our growing human performance toolkit, and when used with a battery of other metrics (including 
both behavioral and subjective), it provides us with a more robust understanding of cognitive performance. 

 
References 

 
Ahlstrom, U. (2005) Work domain analysis for air traffic controller weather displays. Journal of Safety Research, 

36(2), 159-169. 
Arico P, Borghini G, Di Flumeri G, Colosimo A, Pozzi S, Babiloni F. A passive Brain Computer Interface application for the 

mental workload assessment on professional air traffic controllers during realistic ATM tasks. Progress in Brain 
Research, 2016 (in press). 

Arico P, Borghini G, Di Flumeri G, Colosimo A, Graziani I, Imbert JP, Granger G, Benhacene R, Terenzi M, Pozzi S, 
Babiloni F. Reliability over time of EEG-based mental workload evaluation during Air Traffic Management (ATM) 
tasks. Conf Proc IEEE Eng Med Biol Soc. 2015 Aug;2015:7242-5. 

Aricò P, Borghini G, Graziani I, Taya F, Sun Y, Bezerianos A, Thakor NV, Cincotti F, Babiloni F. Towards a multimodal 
bioelectrical framework for the online mental workload evaluation. Conf Proc IEEE Eng Med Biol Soc. 
2014;2014:3001-4. 

Astolfi L, De Vico Fallani F, Toppi J, Cincotti F, Salinari S, Vecchiato G, Wilke C, Yuan H, He B, Babiloni F: Imaging the 
social brain by simultaneous “hyperscanning” of different subjects during their mutual interactions. IEEE Intelligent 
Systems, 26(5), 38-45, 2011. 

Atkinson, R. C. & Shiffrin, R. M. (1968) Human memory: A proposed system and its control processes. In Spence, 
 K. W., & Spence, J. T. The psychology of learning and motivation (Volume 2). New York: Academic 
 Press. pp. 89–195. 
Ayaz, H., Willems, B., Bunce, S., Shewokis, P. A., Izzetoglu, K., Hah, S., ... & Onaral, B. (2011). Estimation of cognitive 

workload during simulated air traffic control using optical brain imaging sensors. In International Conference on 
Foundations of Augmented Cognition (pp. 549-558). Springer Berlin Heidelberg. 

 
509



Ayaz, H., Shewokis, P. A., Bunce, S., Izzetoglu, K., Willems, B., & Onaral, B. (2012). Optical brain monitoring for operator 
training and mental workload assessment. Neuroimage, 59(1), 36-47.  

Baddeley, A. (2003) Working memory: looking back and looking forward. Nature Reviews Neuroscience, 4 (10), 
 829–39. 
Baddeley, A.D. & Hitch, G.J. (1974) Working memory. In Bower, G.H. (ed.), Recent Advances in Learning and 
 Motivation (Volume 8), New York: Academic Press. 
Bell, H. H. & Lyon, D. R. (2000) Using observer ratings to assess situation awareness. In M. R. Endsley 
 & D. J. Garland (Eds.), Situation Awareness Analysis and Measurement (pp. 129-146). Mahwah, NJ: 
 Lawrence Erlbaum Associates. 
Borghini G, Arico P, Astolfi L, Toppi J, Cincotti F, Mattia D, Cherubino P, Vecchiato G, Maglione AG, Graziani I, Babiloni 

F. Frontal EEG theta changes assess the training improvements of novices in flight simulation tasks. Conf Proc 
IEEE Eng Med Biol Soc. 2013;2013:6619-22. 

Borghini G, Aricò P, Di Flumeri G, Salinari S, Colosimo A, Bonelli S, Napoletano L, Ferreira A, Babiloni F. Avionic 
technology testing by using a cognitive neurometric index: A study with professional helicopter pilots. Conf Proc 
IEEE Eng Med Biol Soc. 2015 Aug;2015:6182-5. 

Borghini G, Aricò P, Ferri F, Graziani I, Pozzi S, Napoletano L, Imbert JP, Granger G, Benhacene R, Babiloni F. A 
neurophysiological training evaluation metric for air traffic management. Conf Proc IEEE Eng Med Biol Soc. 
2014a; 3005-8.  

Borghini G, Aricò P, Graziani I, Salinari S, Sun Y, Taya F, Bezerianos A, Thakor NV, Babiloni F. Quantitative Assessment 
of the Training Improvement in a Motor-Cognitive Task by Using EEG, ECG and EOG Signals. Brain Topogr. 
2016 Jan;29(1):149-61. 

Borghini G, Astolfi L, Vecchiato G, Mattia D, Babiloni F. Measuring neurophysiological signals in aircraft pilots 
and car drivers for the assessment  of mental workload, fatigue and drowsiness. Neurosci Biobehav Rev. 
2014b Jul;44:58-75. 

Chamberlain, J. P. & Latorella, K. A. (2001). Convective weather detection by general aviation pilots with 
conventional and data-linked graphical weather information sources. 20th Digital Avionics Systems 
Conference October 2001. 

Dasari D., Shou G. F., and Ding L. (2015). Monitoring Mental States of the Human Brain in Action: from Cognitive 
Test to Real-world Simulations, Foundations of Augmented Cognition, Proceedings of 9th International 
Conference, AC 2015, held as part of 17th International Conference on Human-Computer Interaction, pp. 
178-186. 

Dasari D., Shou G. F., and Ding L. (2013). Investigation of Independent Components based EEG Metrics for Mental 
Fatigue in Simulated ATC Task. Proc. of the 6th International IEEE EMBS Neural Engineering 
Conference, pp. 1331-1334. 

Endsley, M. R. (1995) Toward a theory of situation awareness in dynamic systems. Human Factors, 37, 32–64. 
Endsley M. R. (2000) Theoretical underpinnings of situation awareness: A critical review In Endsley M. R., Garland 
 D. J. (Eds.), Situation awareness analysis and measurement (pp. 3–32). Mahwah, NJ: Erlbaum 
Endsley, M.R. (2015) Final Reflections: Situation Awareness Models and Measures. Journal of Cognitive 

Engineering and Decision Making, 9(1), 4-32. 
Harris, D. (2014) Improving Aircraft Safety. The Psychologist, February 2014, Vol.27, pp.90-95. 
Harrison, J., Izzetoglu, K., Ayaz, H., Willems, B., Hah, S., Ahlstrom, U, ... & Onaral, B. (2014). Cognitive workload 

and learning assessment during the implementation of a next-generation air traffic control technology using 
functional near-infrared spectroscopy. IEEE Transactions on Human-Machine Systems, 44(4), 429-440. 

Izzetoglu, K., Ayaz, H., Hing, J. T., Shewokis, P. A., Bunce, S. C., Oh, P., & Onaral, B. (2015). UAV operators 
workload assessment by optical brain imaging technology (fNIR). In Handbook of Unmanned Aerial Vehicles 
(pp. 2475-2500). Springer Netherlands. 

Jahns, D.W. (1973) A Concept of Operator Workload in Manual Vehicle Operations. Forschungsingstitut 
 Anthropotechnik: Meckenheim. Bericht Nr. 14. 
Karstens, C., Stumpf, G, Ling, C., Hua, L., Kingfield, D., Smith, T., Correia, J., Calhoun, K., Ortega, K., Melick, C., 

Rothfusz, L. (2015) .Evaluation of a probabilistic forecasting methodology for severe convective weather in 
the 2014 Hazardous Weather Testbed. Weather and Forecasting, 30(6), 1551-1570. 

Kong W, Lin W, Babiloni F, Hu S, Borghini G. Investigating Driver Fatigue versus Alertness Using the Granger 
Causality Network. Sensors (Basel). 2015 Aug 5;15(8):19181-98. 

Kopardekar, P., Rhodes, J., Schwartz, A., Magyarits, S. and Willems, B., 2008, September. Relationship of 
maximum manageable air traffic control complexity and sector capacity. In 26th International Congress of 
the Aeronautical Sciences (ICAS 2008), and AIAA-ATIO-2008-8885, Anchorage, Alaska, Sept (pp. 15-19). 

 
510



Krishnan V. K., Dasari D., and Ding L. (2014). EEG Correlates of Fluctuations in Cognitive Performance in an Air 
Traffic Control Task. Federal Aviation Administration. DOT/FAA/AM-14/12. 

Moran, J. & Desimone, R. (1985) Selective attention gates visual processing in the extrastriate cortex. Science, 229, 
 782-784. 
Moray, N. (1988) Mental workload since 1979. In D. J. Osborne (Ed.), International Review of Ergonomics (pp. 
 123-150). Taylor & Francis. 
Pribram, Karl H., Miller, George A., Galanter, E. (1960) Plans and the structure of behavior. New York: Holt, 

Rinehart and Winston. p. 65. ISBN 0-03-010075-5. OCLC 190675. 
Richards, D. Scott, S., Furness, J., Lamb, P., Jordan, D., & Moore, D. (2016) Adaptive Symbology: Evaluation of 

Task-Specific Head-Up Display Information for use on a Commercial Flight Deck. Aviation 2016, 
Washington: June 2016.  

Rothfusz, L., Karstens, C. D., & Hilderbrand, D. (2014). Forecasting a Continuum of Environmental Threats: 
Exploring Next-Generation Forecasting of High Impact Weather, EOS Transactions, American Geophysical 
Union, 95, 325-326. 

Salmon, P., Stanton, N., Walker, G., Green, D. (2006). Situation Awareness measurement: a review of applicability 
for C4i environments. Journal of Applied Ergonomics 37, 225–238 

Shou G. F., Ding L, and Dasari D. (2012). Probing neural activations from continuous EEG in a real-world task: 
Time-frequency independent component analysis. Journal of Neuroscience Method, 209(1): 22-34. 

Stanton, N.A., Salmon, P.M., Walker, G.H., Baber, C., Jenkins, D. (2005). Human Factors 
Methods: A Practical Guide for Engineering and Design. Ashgate, Aldershot. 

Willems, B. (2002). Decision support automation research in the en route air traffic control environment (No. 
DOT/FAA/CT-TN02/10). FAA Technical Center, Atlantic City, NJ. 

 

 
511

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-03-010075-5
https://en.wikipedia.org/wiki/OCLC
https://www.worldcat.org/oclc/190675

	Human Performance Assessment: Evaluation and Experimental
	Use of Wearable Sensors for Brain Activity Measures



