
Portland State University Portland State University 

PDXScholar PDXScholar 

University Honors Theses University Honors College 

6-2019 

Utilizing Parallelism in the Conjugate Gradient Utilizing Parallelism in the Conjugate Gradient 

Algorithm Algorithm 

Adam James Craig 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/honorstheses 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Craig, Adam James, "Utilizing Parallelism in the Conjugate Gradient Algorithm" (2019). University Honors 
Theses. Paper 749. 
https://doi.org/10.15760/honors.766 

This Thesis is brought to you for free and open access. It has been accepted for inclusion in University Honors 
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more 
accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/honorstheses
https://pdxscholar.library.pdx.edu/honors
https://pdxscholar.library.pdx.edu/honorstheses?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F749&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://doi.org/10.15760/honors.766
mailto:pdxscholar@pdx.edu


Utilizing Parallelism in the Conjugate Gradient Algorithm

Adam Craig

May 24th, 2019



0.1 Introduction

There are a myriad of applications that motivate the discussion of numerical solutions of linear
systems, especially in the field of machine learning, where the matrices at hand may also be sym-
metric positive definite. For example, Fischer discriminate analysis, which is commonly used in
computer vision algorithms, requires one to solve many such systems repeatedly. There is certainly
no shortage of situations in which one might need to solve these systems numerically (a typical case
for large-scale problems).

This paper will examine the conjugate gradient method specifically, which is an algorithm that
approximates the inverse action of a symmetric positive definite matrix, and outline an approach
that is designed to improve performance on modern machines. The original conjugate gradient
method was published in 1952 by Eduard Stiefel and Magnus Hestenes, and is totally iterative [1].
Further, the modern philosophy behind the method is that the system is solved without explicitly
storing the matrix in question in memory. We will outline a preconditioner of the conjugate gradient
method that (a) converges in fewer iterations and (b) lends itself to parallel computation, which
creates a real-time speed increase on modern machines with many cores.

0.2 Development of the conjugate gradient method

We examine the system Ax = b, where b ∈ Rn is given and A ∈ Rn×n is assumed to be symmetric
and positive-definite. Because A is symmetric positive-definite, A−1 exists and thus there is an
exact solution x∗ to the system. If the set {v1,v2, ...,vn} is a collection of A-orthogonal vectors,
then it is a basis for the domain of A. Therefore, it must be the case that there exist scalars ci
such that,

Ax∗ =
n∑
i=1

ciAvi ⇒ vk
TAx∗ =

n∑
i=1

civ
T
kAvi ⇒ vTkAx∗ = ckv

T
kAvk ⇒ ck =

vTk b

vTkAvk

This holds primarily because vi is A-orthogonal to vj when i 6= j, meaning vTi Avj = 0. However,
this direct solution requires one to procure such a set of n orthogonal vectors and then perform this
computation to attain each ci. So we develop a procedure such that we may not need n vectors to
get an acceptable approximation of x∗. Clever choices of each vi, which are canonically referred
to as search directions, will allow us to perform the algorithm without (theoretically) needing all n
vectors.

This begins by exploring a seemingly unrelated problem: consider optimizing the quadratic
function φ : Rn → R defined by φ(x) = 1

2x
TAx− xTb. It can be shown readily that φ is a convex

function, and so it has a unique minimizer. In fact, setting ∇φ(x) = Ax− b = 0, we see that this
minimizer is x∗. Therefore, minimizing φ and solving Ax = b are equivalent problems. So, how
does this help us produce clever choices of vi? We initially take v0 = −∇φ(x0) because this is the
direction that φ decreases the fastest. This idea describes the beginning of the “steepest descent”
algorithm.

The steepest descent algorithm is straightforward. Set x = 0 or a guess approximating x∗.
Define the residual at x by r = b−Ax = −∇φ(x). In this way, we augment x by setting x := x+αr,
for some real α, which causes us to ‘step’ in the direction of steepest descent at each iteration. To
expand on this idea, we can do even better by minimizing φ(x + αr) with regards to α. Setting
α = rT r/rTAr at each iteration minimizes φ(x+αr) and in fact φ(x+αr) < φ(x). Because x and
r change with each iteration, it is helpful to introduce the following relation: xk+1 = xk + αkrk
and rk = b − Axk, where αk = rTk rk/r

T
kArk. In this case, each search direction is αkrk. But the

1



steepest descent has the potential to be “prohibitively slow” because situations can arise in which
each search direction is ‘too similar’ to the last [2].

So we wish to improve upon our set of search directons {v1,v2, ...,vn} such that they are not
all equal to the residual at each iteration. In a similar manner, φ(xk−1 + αkvk) is minimized by
setting αk = vTk rk−1/v

T
kAvk, so long as vk is not orthogonal to rk−1, and it can be shown that

such a vk ∈ span{vk−1, rk−1} that satisfies this requirement exists at each iteration k ≥ 2 [2].
Therefore, this provides an easy way to compute the next search direction: vk = rk−1 + βkvk−1,
where βk = −vTk−1Ark−1/vTk−1Avk−1.

Of course, it is not always necessary to achieve the exact solution x∗, and instead we may wish
to be ‘close enough.’ For example, given some ε, say, ε = 10−6, we can consider the value εbTb and
consider the the algorithm complete when rTk rk < εbTb. Furthermore, we may want to impose the
limitation that the process must terminate within a certain amount of iterations. So, if iterMax
is the maximum number of iterations and iter the current iteration, this gives us the following
algorithm [2]:

Initialize x = 0, r = b, and iter = 0.
Set v = r, δ0 = bTb, and δ = δ0.
while(δ0 ≥ ε2bTb and iter ≤ iterMax)

(1) Set δOld = δ.
(2 Compute g = Av.
(3) Compute α = δ/vTg.
(4) Compute x := x + αv.
(5) Compute r := r− αg.
(6) Compute δ = rT r.
(7) Compute v := r + βv, where β = δ/δOld.
(8) iter := iter + 1.

It should be noted that this algorithm requires 10n flops each iteration, and so the O(n) con-
vergence time can be cumbersome, when n is very large. Further, there exists iterative machine
error, and even without error convergence is not even guaranteed [2]. The benefit, however, is that
only one ‘matrix-times-vector’ is performed each iteration. Indeed, only four vectors are required
to be stored, too, so this method’s primary benefit is the low memory requirement. Combining this
with a kernel function to produce a SPD A, we would not need to store A, either. But the main
drawback is in the O(n) time, which can surely be improved upon.

It is appropriate to mention now a few conditions that would be indicative of a ‘speed up’ in
this scenario. For one, if A’s condition number is sufficiently close to 1, the algorithm is faster.
Also, if A has many repeated eigenvalues, then we would see improved speed [2].

0.3 Preconditioning

The idea of a preconditioned conjugate gradient method is relatively straightforward. We begin by
working with the new system Âx̂ = b̂. Here, Â = B−1AB−1, x̂ = Bx, and b̂ = B−1b, where B is
symmetric positive definite. From here, we just apply the conjugate gradient method to this new
system [2]. Clearly, in light of the fact that we can improve the speed of this algorithm by ensuring
Â has repeated eigenvalues or a sufficiently low condition number, we have an idea of what types
of B we are looking for.

It follows naturally that r̂k+1 = b̂− Âx̂k, x̂k = r̂k +αv̂k, and v̂k = r̂k +βv̂k−1. But notice that,

2



once this system has been solved, we must procure B−1 to compute x = B−1x̂. If B ∈ Rn×n, then
this is exactly the type of direct computation that we originally wished to avoid. To circumvent
this, we define v̂k = Bvk, x̂k = Bxk, and r̂k = B−1rk. Defining terms in this way, our modified
algorithm uses the benefits of preconditioning without needing to find B−1 and instead uses B2.
We call M = B2 the preconditioner, and we have the following preconditioned algorithm [2]:

Initialize x = 0, r = b, and iter = 0.
(0) Solve Mz = r and let δ = δ0 = zT r.

while (δ ≥ ε2δ0 and iter ≤ iterMax)
(1) Set δOld = δ.
(2) Compute α = δ

vTAv
and then x := x + αv.

(3) r := b−Ax.
(4) Solve Mz = r and let δ = zT r.
(5) Compute β = δ

δOld
and then v := z + βv

(6) iter := iter + 1.

It is worth noting that because we have slightly altered the definitions of some of these terms,
αk−1 = rTk−1zk−1/v

T
kAvk, and βk = rTk−1zk−1/r

T
k−2zk−2. In this version of the method, our choice

of M is essential because it will ultimately determine the speed of the method. One must take care
to make sure that the system Mz = r is able to be solved rapidly because this system will be solved
at each iteration. Clever choices of M can significantly increase the speed of the algorithm [2].

0.4 An exponential kernel and additive Schwarz preconditioner

We initially set out to test the original conjugate gradient method, and the first part of this process
involves producing some A. As we stated previously, the main benefit of this algorithm is that it
requires little in the way of memory, to continue with this trend, we choose to produce our matrix
from a kernel, so that entries can be computed on the fly and do not need to be stored in memory.

This kernel requires that, if A ∈ Rn×n, then it must be the case that n = k2, for some
k ∈ N. This is because we map each element of [n] = {1, 2, ..., n} to a distinct point on a
tensor product mesh on [0, 1]2. Specifically, we have a function γ : {1, 2, ..., n} → [0, 1]2 de-
fined to be γ(x) = (γ(x)1, γ(x)2) := (q/(k − 1), r/(k − 1)), where x = qk + r by the division
algorithm. This mapping from an index value exists to provide an input value to another nec-
essary function: the euclidian distance function in two dimensions. In other words, we compute√

(γ(i)1 − γ(j)1)2 + (γ(i)2 − γ(j)2)2. This gives a kernel function:

Ai,j = K(γ(i), γ(j)) = e−
√

(γ(i)1−γ(j)1)2+(γ(i)2−γ(j)2)2 .

There are a few things to discuss about this kernel. First note that it is indeed an SPD matrix.
It is also worth mentioning that, because the value decreases as the distance between γ(x) and
γ(y) increases, it can be intuitively interpreted as a measurement of dissimilarity. This was chosen
because of its intuitive and practical simplicity, as well as the fact that it is a commonly used kernel
in many other learning algorithms.

The subject of interest in this paper is the idea of a preconditioned system that can be computed
in parallel, which we will develop now. First, consider the standalone additive Schwarz method,
which is an analytic generalization of the Block-Jacobi algorithm [3]. This algorithm considers a
system Au = f with A ∈ Rn×n and the residual rk defined as usual. Further, partition [n] into the
blocks N1 = {1, 2, ..., l}, N2 = {l + 1, l + 2, ..., n}, and let N = N1 ∪ N2. Let the matrix Ri be the

3



restriction operator from N to Ni and RTi the extension operator from Ni to N . Finally, define
ui := u|Ni

, f i := f |Ni
, and Aij := A|NixNj

. This partitions the system in the following block form(
A11 A12

A21 A22

)
=

(
u1

u2

)(
f1

f2

)
Beginning with some approximation of the solution uk define the following iteration:

uk+1 = uk + (RT1 (R1AR
T
1 )−1R1 +RT2 (R2AR

T
2 )−1R2)r

k

The preconditioner in question (actually its inverse), however, will be defined as

M−1 =

p∑
i=1

RTi A
−1
ii Ri, where Aii = RiAR

T
i .

Above, each Ni can be any random subset of [n] of chosen size m (such that mp ≥ n). Further,
when the system Mz = r is solved at each iteration, we will not be interested in z explicitly but
instead r̃ =

∑p
i=1R

T
i (RiAR

T
i )−1Rir, which can be thought of as a rough approximation of z. This

preconditioner is used because it can be computed in parallel, thus satisfying the requirement that
Mz = r is quickly solvable, and it serves as a crude approximation of A−1, thereby aiding in finding
the next search direction. In this experiment, we set the size of the sub problems m =

√
n. This

lets us define the following algorithm:

Initialize x = 0, r = b, r̃ = 0, and iter = 0.
Create p (possibly overlapping) subsets of [n] of size m {N1, ...,Np}.
Compute r̃ =

∑p
i=1R

T
i (RiAR

T
i )−1Rir in parallel.

Set v = r̃.
Set δ0 = r̃T r and δ = δ0.
while(iter ≤ iterMax and δ ≥ ε2δ0)

(1) Compute g = Av
(2) Compute τ = vTg
(3) Compute α = δ/τ
(4) Update x := x + αv
(5) Update r := r− αg
(6) Construct m blocks {N1, ...,Np}
(7) Solve each (RiAR

T
i )−1 in parallel and compute r̃ =

∑p
i=1R

T
i (RiAR

T
i )−1Rir

(8) Set δOld = δ
(9) Compute δ = r̃T r
(10) Increase the iteration counter iter := iter + 1
(11) Compute the next search direction: v := r̃ + βv, where β = δ/δOld.

0.5 The empirical data

The experiment was done on Portland State University Linux server and using mostly my own
C++11 library, made specifically for this project [4], but for all computations done in parallel,
the OpenMP library was used [5]. Stephan Gelever of Portland State aided in debugging and
trouble-shooting during the development of the software used to run the experiment.

4



The process was straightforward: generate a random vector x∗ ∈ Rn, and create a system
Ax∗ = b using the actions of A generated by the kernel described in the previous section. From
here, apply the conjugate gradient and preconditioned conjugate gradient algorithms to the system,
beginning by setting x = 0, and collecting the resulting iteration and time data. We did this for
nine different values of n.

Figure 1: Execution time data for the CG method (left) and preconditioned CG method (right).

Figure 2: Iteration data for the CG method (left) and preconditioned CG method (right).

0.6 Conclusion

The preconditioned system ends up converging in fewer iterations as n gets large, signifying that
search directions found by the parallel Block-Jacobi analogue are more effective than the search

5



directions produced by the standalone conjugate gradient method. This difference becomes more
pronounced as n increases, resulting in a real-time speed increase, even though each iteration of
the preconditioned method may take longer, on average. Moreover, one would see a greater speed
up with access to many cores (or nodes, in the case of a computer cluster), so that computation
can be done in parallel.

There are a number of caveats one must be aware of before employing this preconditioner to
solve large systems, however. First, notice how the requirement that A was not stored explicitly in
memory was relaxed to the requirement that A was not stored in a single node. This is because we
require p parallel m×m systems, and this assumption may be too relaxed for very large systems, but
there a number of possible avenues to remedy this. One could restrict the domain decomposition
– instead of allowing overlap between blocks – and solve fewer blocks per iteration. Also, the
implementation used in this experiment relied on direct Gaussian elimination to solve each block,
which will not scale with the linear time of the conjugate gradient. One possible fix for this is to
use the symmetric Gauss-Seidel method instead, seeing as each block is also guaranteed to also be
symmetric positive definite.

To conclude, we mention that possible applications of interest include linear discriminant anal-
ysis and classification problems, including problems in computer vision, marketing, and computa-
tional medicine.

6



Bibliography

[1] Hestenes, M., Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems.
Journal of Research of the National Bureau of Standards, 49 (6), 409. doi:10.6028/jres.049.044

[2] Golub, G. H., F., V. L. C. (1996). Matrix computations (3rd ed.). Baltimore: The Johns
Hopkins University Press.

[3] Victorita Dolean, Pierre Jolivet, Frédéric Nataf. An Introduction to Domain Decomposition
Methods: algorithms, theory and parallel implementation. Master. France. 2015. cel-01100932v5

[4] Craig, A. A preconditioned conjugate gradient linear algebra C++ library, (2019), GitHub
repository, https://github.com/acraigmath/CGtest

[5] OpenMP Architecture Review Board, “OpenMP Application Program Interface, Version 5.0”,
November 2018.

7


	Utilizing Parallelism in the Conjugate Gradient Algorithm
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1560491464.pdf.qRHA4

