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Introduction: 

Task-based functional MRI (fMRI) has had a profound impact on our understanding of brain 

functioning.  Using this non-invasive neuroimaging method, it is possible to design experiments 

that target specific sensorimotor, perceptual, or cognitive operations in efforts to understand the 

brain basis of those functions. Complementing neuroscientific findings based on other methods 

(e.g. single cell or multiunit recording), and lesion cases, task-based fMRI studies have identified 

the functional neuroanatomy underlying various sensorimotor/perceptual systems such as visual   

(Engel et al., 1994; Goebel, Khorram-Sefat, Muckli, Hacker, & Singer, 2001; Sereno et al., 

1995) and auditory systems (Moerel, De Martino, & Formisano, 2014), as well as systems 

associated with higher order cognitive operations such as memory retrieval (Cabeza, Ciaramelli, 

Olson, & Moscovitch, 2008; Dobbins & Wagner, 2005; Nelson et al., 2010; Rugg & Vilberg, 

2013; Wheeler & Buckner, 2003; Yonelinas & Levy, 2002; Yonelinas, Otten, Shaw, & Rugg, 

2005), semantic processing (Badre, Poldrack, Paré-Blagoev, Insler, & Wagner, 2005; Donaldson, 

Petersen, Ollinger, & Buckner, 2001; Fiez, 1997; Friederici, Opitz, & von Cramon, 2000; 

Gordon et al., 2016; Petersen, Fox, Posner, Mintun, & Raichle, 1988; Roskies, Fiez, Balota, 

Raichle, & Petersen, 2001; Thompson-Schill, D’ Esposito, Aguirre, & Farah, 1997; Wagner, 

Paré-Blagoev, Clark, & Poldrack, 2001) and cognitive control (Botvinick Todd S Braver et al., 

2001; Braver & Barch, 2006; Dosenbach et al., 2006; F Dosenbach et al., 2007). 

 

The primary measure in fMRI studies is the blood oxygen level dependent (BOLD) signal. 

Although not a direct measure of neural activity, it has been shown that the measured BOLD 

signal is correlated with neural activity, particularly with local field potentials (Logothetis, 2003; 

Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001). The BOLD signal, however, is slow 

compared to neural activity. After an initial stimulus it takes approximately 20 seconds for the 

BOLD signal to return to baseline, this observed activation trend is the hemodynamic response 

function. The peak activation of the BOLD signal typically observed 6 seconds after stimuli 

presentation (Vazquez & Noll, 1998). The signal delay in returning to baseline needs to be 

considered in experimental design. For example, in a typical task experiment, participants are 

exposed to a given stimulus (visual or auditory) or are asked to perform a task. Given the 

knowledge of the delayed peak on activation, methods are tuned to look for brain areas that 

respond specifically to the experimental paradigm once peak response is achieved. 

 

The subsequent development of resting state functional connectivity MRI (rs-fcMRI) was 

another milestone in neuroimaging. Biswal et al.’s seminal work (Biswal, Zerrin Yetkin, 

Haughton, & Hyde, 1995) established that the low frequency (<0.1 Hz) resting BOLD activity in 

brain regions that are typically coactivated during task-states (or known to be members of a 

common brain system e.g. left and right primary motor cortex) shows a high degree of temporal 

correlation. This high degree of correlation is hypothesized to be a correlate measure of the 

functional connectivity among the said regions. rs-fcMRI has since become a very convenient 

technique to characterize brain function because, since it doesn’t require the presence of an overt 

cognitive task, it could be employed in animals, developmental populations, or in patients that 

may otherwise be unable to perform intentional cognitive tasks.    

 

One limitation commonly shared by both task-based and resting state fMRI is that, due to the 

noisy nature of the fMRI signal, many trials or functional runs are acquired and subsequently 

averaged, both within and across subjects, to get a reasonable estimate of the functional measures 



under consideration. This limitation has several consequences, the obvious one being the cost, in 

terms of both time and money, of collecting a sizeable dataset. The other consequence of this 

limitation is that averaging is required across many trials and subjects effectively erasing 

individual differences and potentially informative moment-to-moment or dynamic functional 

information. For instance, one may reasonably hypothesize that there are dynamic functional 

connectivity changes on the systems supporting a mental process that may occur on the order of 

seconds during the instantiation, computation, and response frame of a given task. The noted 

limitations have to date precluded worthwhile approaches in testing the aforementioned 

hypothesis. 

 

Connectotyping, a computational approach recently developed in our lab (Miranda-Dominguez 

et al., 2014), has been demonstrated to have the potential to address the above limitations and 

allow characterization of dynamic cross-region and cross-network connectivity when applied to 

rs-fcMRI datasets. Here, we aim to demonstrate that the same technique can be applied to a task 

fMRI dataset to track changes in network-network functional connectivity during the progression 

of a task.   

 

The connectotyping approach rests on a simple linear model that proposes that the activity of a 

given brain region can be described by the weighted sum of other brain regions. The resulting 

beta coefficients correspond to a personalized model-based “connectotype” beta matrix that is 

capable of predicting the timeseries of each subject.  Connectotyping is an effective way to 

depict unique patterns of brain connectivity in individuals because it optimizes the signal to noise 

ratio intrinsic to fMRI allowing us to characterize heritable patterns of brain connectivity 

(Miranda-Dominguez, Feczko, Grayson, Walum, Nigg, Fair, et al., 2018). This optimization 

allows connectivity to be defined using a relatively small amount of data (e.g. 5 minutes of rs-

fcMRI), which is the typical amount of movement-free data able to be acquired in most studies. 

In addition to allowing for a better characterization of individual differences, the approach also 

allows us to capture dynamic temporal changes occurring at the time scale of seconds during task 

progression.  

 

As noted above, the aim of the current study is to determine, as demonstrated using resting state 

datasets, if connectotyping can be used to track individualized changes in brain connectivity 

using a task fMRI dataset. To do this, we first identified a task fMRI dataset without the 

confounding effect of BOLD activity from several past stimuli shown at each time point. As 

noted above, one of the characteristics of the BOLD signal that must be considered in this 

context is that it takes about 20 seconds for the hemodynamic response function to return to 

baseline following stimulus presentation. If stimuli are not presented in a widely-spaced manner, 

then mathematical modeling would need to be applied to separate the BOLD activity 

corresponding to each stimulus. However, we avoid this by using data from widely spaced event-

related fMRI experiment (at least 20 seconds between individual stimuli) in which subjects were 

performing a visually presented word vs. pronounceable nonword (hereafter pseudoword or PW) 

lexical decision task (Nardos, 2015).  

 

After having calculated individualized connectyotypes at each time point (i.e. frame or functional 

run corresponding to 1 TR) of the experiment, we used a 2-way repeated measures ANOVA 

using time point (8 frames corresponding to about 20 seconds), stimulus type (word vs. PW), and 



their interaction to identify potentially distinct dynamic functional relations during word vs. PW 

processing.  We hypothesized that dynamic connections between networks implicated in 

cognitive control (Botvinick et al., 2001; Dosenbach et al., 2006; 2007; Braver & Barch, 2006), 

memory retrieval (Iidaka, Matsumoto, & Nogawa, 2006), and semantic processing(Badre et al., 

2005; Donaldson et al., 2001; Fiez, 1997; Friederici et al., 2000; Petersen et al., 1988; Roskies et 

al., 2001; Thompson-Schill et al., 1997; Wagner et al., 2001) would have differences as a 

function of the type of stimulus (word vs. PW) being processed.  

 

 

Methods: 

Participants 

The original study sample consisted of 28 participants; after excluding participants who had 

incomplete or compromised data quality, our study included 24 individuals. Participants were 24 

monolingual (English-speaking), right-handed participants (12 male, mean age 24.8 years, 2.57 

std. dev) recruited from neighborhoods surrounding Washington University in Saint Louis as 

well as from the university student body (Nardos, 2015). All participants had no history of 

psychiatric or neurological illness and scored above the 50th percentile on the Woodcock-

Johnson III reading assessment (Woodcock & Johnson, 2002). The Washington University 

Human Studies Committee approved the study (IRB ID # 201202083) and all participants were 

reimbursed for their participation. 

 

Task 

In a visually-presented lexical decision task, individuals identified words vs. PWs while in the 

MRI scanner via button pressing. A set of words (50% animals; 50% artifacts; 3-9 letters; 1-3 

syllables) and PWs (5 letters, 1 or 2 syllables) were selected from the English Lexicon Project 

(Balota et al., 2007; Nardos, 2015). When in the scanner participants had two buttons, one on 

each hand. Each button corresponded either to words or PWs, participants pressed the buttons 

with the thumb of either hand to identify the stimuli. Stimuli were presented in a widely spaced 

manner, i.e. separated by ~20s, to avoid hemodynamic response signal overlap across individual 

stimuli and allow extraction of individual trial BOLD responses (Nardos, 2015). In a given trial, 

a word or PW stimulus was presented for 2.5 seconds (1 TR or MR frame) with each letter 

subtending 0.5° of horizontal visual angle, followed by 17.5 seconds (7TRs or MR frames) of a 

black fixation screen with a white cross. Participant underwent 10 functional MRI runs each with 

24 stimuli (18 PWs and 6 words) per run. Communication with participants was facilitated by 

MR- compatible headphones which were also used to reduce noise from the scanner. Head 

movement was minimized by using a molded thermoplastic mask. Stimuli were presented using 

Psyscope (Cohen, MacWhinney, Flatt, & Provost, 1993) installed on an iMAC computer (Apple, 

Cupertino, CA) and projected via an LCD projector (Sharp model PG-C20XU) onto an MRI-

compatible rear-projection screen combined with a mirror attached to the head coil (CinePlex). 

 

Data acquisition 

Structural and functional MRI data were collected as described in Nardos, 2015 (Nardos, 2015) 

from a Siemens 3 Tesla MAGNETOM Trio system (Erlangen, Germany). The scanner included 

total imaging matrix technology (TIM) and utilized a 12-channel head matrix coil. A high 

resolution a T1-weighted MP-RAGE was acquired (TE =3.08 ms, TR [partition] = 2.4 s, TI = 

1000 ms, flip angle = 8", 176 slices with 1 X 1 X 1 mm voxels). To improve atlas alignment a 



T2-weighted turbo spin echo structural image (TE = 84 ms, TR = 6.8 s, 32 slices with 2 X 1 X 

4mm voxels) matching the acquisition plane of the BOLD images were also collected. 

Alignment to the anterior commissure-posterior commissure (AC-PC) plane was performed by 

Siemens pulse sequence protocol. BOLD contrast-sensitive gradient echo echo-planar sequence 

(TE =27 ms, flip angle = 90", in-plane resolution = 4 X 4 mm) was used for functional data 

collection. Using a TR of 2.5 seconds, 32 contiguous, 4mm- thick axial slices whole-brain EPI 

volumes were collected. To allow steady state magnetization, the first four volumes of each run 

were discarded. 

 

fMRI data preprocessing 

Data were processed using surface-based registration applying a modified version from the 

Human Connectome Project (Glasser et al., 2013) plus in-house denoising methods 

(https://github.com/DCAN-Labs). Processing includes the use of FSL (Jenkinson, Beckmann, 

Behrens, Woolrich, & Smith, 2012; Smith et al., 2004; Woolrich et al., 2009) and FreeSurfer 

tools (Desikan et al., 2006; Fischl & Dale, 2000; Sereno et al., 1995). Briefly, gradient distortion 

corrected T1-weighted and T2-weighted volumes were first aligned to the MNI’s AC-PC axis 

and then non-linearly normalized to the MNI atlas. Later, the T1w and T2w volumes were re-

registered using boundary-based registration (Greve & Fischl, 2009) to improve alignment. The 

BOLD data were corrected for field distortions (using FSL’s TOPUP) and processed by doing a 

preliminary 6 degrees of freedom linear registration to the first frame. After this initial 

alignment, the average frame was calculated and used as a final reference. Next, the BOLD data 

were registered to this final reference and to the T1-weighted volume, all in one single step, by 

concatenating all the individual registrations into a single registration. Individual brains were 

segmented using recon-all from FreeSurfer. Segmentations were improved by using the 

enhanced white matter-pial surface contrast of the T2-weighted sequence. Additionally, the 

initial pial and white matter surfaces were used to distinguish an initial cortical ribbon. From 

these segmentations, a tailored 3D surface was created for each participant and registered to the 

Conte 69 surface atlas of the Human Connectome Project.  

 

The cortical ribbon defined by the structural T1-weighted and T2-weighted volumes was used to 

define a high-resolution mesh used for surface registration of the BOLD data. This cortical 

ribbon was also used to quantify the partial contribution of each voxel in the BOLD data in 

surface registration. Timecourses in the cortical mesh were calculated by obtaining the weighted 

average of the voxels neighboring each vertex within the grid, where the weights are given by 

the average number of voxels wholly or partially within the cortical ribbon. Voxels with a high 

coefficient of variation, indicating difficulty with tissue assignment or containing large blood 

vessels, were excluded. Next, the resulting timecourses in this mesh were downsampled into a 

standard space of 91, 282 anchor points (grayordinates), which were defined in the brain atlas 

and mapped uniquely to each participant’s brain after smoothing them with a 2mm full-width-

half-max Gaussian filter. Subcortical regions were treated and registered as volumes. Two-thirds 

of the grayordinates were vertices located in the cortical ribbon while the remaining 

grayordinates were subcortical voxels. Subsequently, resulting timecourses (surface registration 

for cortex and volume registration for subcortical gray matter) were detrended and further 

processed to remove the effect of movement such that, volumes where the total relative 

movement in any direction (frame displacement, FD) in relation to the previous volume were 

https://github.com/DCAN-Labs


greater than 0.2 mm were censored (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012; Siegel 

et al., 2013). 

 

ROIs and functional networks 

Collected BOLD data were parcellated using the Gordon schema with 12 networks composed of 

333 regions of interest (ROIs). Each grayordinate was assigned a network and region within this 

parcellation. The networks, their abbreviation and the number of ROIs included are: Auditory 

(Aud, n=24), Cingulo Opercular (CiO, n=40), Cingulo Parietal (CiP, n=5), Default (Def, n=41), 

Dorsal Attention (DoA, n=32), Fronto-Parietal (FrP, n=24), Retrosplenial Temporal (ReT, n=8), 

Somato-sensory hand (Sml, n=38), Somato-sensory mouth (SMm, n=8), Salience (Sal, n=4), 

Ventral Attention (VeA, n=23), and Visual (Vis, n=39). From the 333 ROIs, 47 ROIs were not 

assigned to any network. The functional networks are visually described in Figure 1. 

 

 
Figure 1: The Gordon parcellation schema was used to separate BOLD data into functional 

networks. 

The left side displays a visual representation of the 13 defined cortical networks in the 

Gordon Parcellation. Network are color codes with the number of ROIs included in 

parentheses (this parcellation defines cortical areas into 333 ROIs, 47 of which are not 

assigned to any network) 

On the right is a model connectivity matrix, displaying how connectivity between ROIs 

was organized using the 13 networks defined on the left panel. 

 

Motion censoring 

Correction for head motion was completed by calculating 6 parameters of head movement, 

movement and rotation along the x, y, and z axes. The absolute sum of movement along these 

parameters was evaluated after each change of frame and termed the frame displacement (FD). 

For our study, we set our FD threshold at 0.3 mm and set the FD of the first frame at 0. This 

measure was only used as a way to detect motion and was not used for regression (Power et al., 

2012). 

 



Grouping data for connectotyping 

Connectotypes (model-based connectivity matrices) were calculated per participant at each frame 

and condition, i.e. for words and PWs, as shown in Figure 2, panel c. To do this we grouped the 

frames per TR (i.e., TR, from 1 to 8) and stimulus type (i.e., word and PW), ending up with 16 

stacks of frames for each case (See Figure 2, panel c). We ensured that for consideration, a 

particular trial had to constitute 8 frames of data, with the additional constraint that the preceding 

trial in the experiment took place at least 20 seconds prior, ensuring that the timecourse for the 

current trial under consideration is not adulterated by that previous trial. Frames were excluded if 

head movement was higher than a given frame displacement (FD) threshold of 0.3 mm (Power, 

Jonathan D Anish Mitraa, Timothy O Laumanna, Abraham Z Snydera, b, Bradley L Schlaggar, 

2014). 15 participants remained after motion censoring. Connectotypes were calculated if all the 

16 cases had at least 40 frames. Connectotypes were calculated using the same number of frames 

on each condition. Such frames were selected randomly from the surviving frames with head 

movement lower than the pre-selected threshold. Data used to create individual connectotypes 

did not account for correct word or PW identification.   



 
Figure 2: The widely-spaced design of the word vs PW experiment allows us to characterize 

dynamic changes in functional connectivity using connectotyping. 

a)  Example of what stimuli would look like in the scanner on the left is PW and on the 

right is a word. 

b) The widely-spaced design of the data we used allowed us to present a stimulus every 

20 seconds and collect whole brain data every 2.5 seconds. This allowed us to have 8 

frames of data which are shown with dashed grey-lines.  

c) For each participant, we separated the data by frame and stimuli type and then applied 

our connectotyping technique. We then grouped concatenated the connectotypes for 

all participants to perform statistical analyses testing for changes across frame and 

stimuli type. 

 



Connectotyping 

As described in the original connectotyping publication, this approach calculates model-based 

connectivity matrices applying a linear model to the timecourses (Miranda-Dominguez, Mills, 

Carpenter, Grant, & Kroenke, 2014). In our experiment connectotyping procedures (Miranda-

Dominguez et al., 2014) were applied to the data of each participant separated by frame of task 

evolution and paradigm to characterize regional connectivity occurring during the evolution of a 

task. This created 16 connectotypes per participant: one per frame (1 to 8) and task (word/PW) 

using the parcellated timecourses as defined by Gordon. Connectotyping created matricial 

connectomes with the dimension ROI X ROI (333 X 333) holding weighted values termed beta-

weights. These values represent the directional contribution of the signal from each brain area to 

another’s signal representing each region’s signal as a weighted sum of remaining brain regions, 

thereby they also account for all the connections occurring in the brain. Overfitting of 

connectomes was reduced by truncated singular value decomposition and removal of 

autocorrelation was avoided because of interference with collected functional data (Miranda-

Dominguez, Feczko, Grayson, Walum, Nigg, & Fair, 2018a). 

 

Statistical analysis 

Independent repeated measures ANOVA tests were run for each functional system’s pair using 

MATLAB. For this pilot study, we excluded primary somatosensory and unimodal networks and 

included only the following functional systems: Cingulo Parietal, Default, Dorsal Attention, 

Fronto-Parietal, Salience, and Ventral Attention, ending up with 36 functional system’s pairs. 

Table 1 shows all the functional system pairs including the count of unique beta-weights. The 2-

way repeated measures ANOVA used each participant’s beta weights grouped two within-

subject factors, i.e. frame (1 to 8), stimulus type, i.e. (word/PW) and their interaction. In 

MATLAB, the repeated measures ANOVA tests are performed in two steps. First, a linear mixed 

effects model was fit to predict optimal beta weights as a function of frame, stimulus type and 

the interaction between the two within-subject factors. The resulting marginal means (beta-

weighted values) are grouped according to the said factors to characterize statistical differences 

(See Figure 3 for a visualization of the distribution of the marginal means of the data functional 

system’s pairs included in this study). A false discovery rate was used as a correction for the 

multiple comparisons across networks, and if Mauchly’s Test for asymmetry was not met epsilon 

adjusted values were used. When indicated, connectivity data was box-cox transformed to 

normalize distributions (Montgomery, 2005) and the logarithmic base was optimized by gradient 

descent. Differences were assessed as significant using a threshold of 0.05. All statistical 

analyses were performed in MATLAB. 

 



 
Table 1: List of all 36 functional system pairs tested in the ANOVA with the number of ROI 

connections between networks listed in the third column. 

 

 

Results: 

Repeated measures ANOVA were performed for each possible functional system pairs among 

six networks of interest, the Cingulo Parietal, Default, Dorsal Attention, Fronto-Parietal, 

Salience, and Ventral Attention networks from the Gordon parcellation (Gordon et al., 2014). A 

total of 36 functional system pairs were tested. The ANOVA examined activation differences 

across frame, stimulus type, and the interaction between the two factors, for each network pair. 

Our main results were derived from analysis of connectomes created from functional MRI data 

of 15 participants using 40 frames having FD values less than 0.3 mm at each frame and with 6 

networks tested in the repeated measures ANOVA. The results from all of the functional system 

pairs tested are shown in Figure 3. 



 
Figure 3: Results from repeated measures ANOVA comparing network level connectivity 

differences using connectotyping. 

To establish network level differences, the beta-weights representing the connectivity 

between each network to the remaining networks were plotted. The functional system 

pairs tested were between the following six networks: Auditory (Aud, n=24), Cingulo 

Opercular (CiO, n=40), Cingulo Parietal (CiP, n=5), Default (Def, n=41), Dorsal 

Attention (DoA, n=32), Fronto-Parietal (FrP, n=24), Retrosplenial Temporal (ReT, n=8), 

Somato-sensory hand (Sml, n=38), Somato-sensory mouth (SMm, n=8), Salience (Sal, 

n=4), Ventral Attention (VeA, n=23), and Visual (Vis, n=39) networks. 36 separate 



functional system pairs were tested. For each comparison of how the network listed on 

the leftmost side predicts the network listed at the bottom of the figure, individual 

functional system pair plots were created. The y-axis of each pair represents the beta 

weight prediction between the networks. The center circle represents the mean and the 

error bars show 1.15 standard deviations. The frame was plotted on the x-axis of each 

plot. These plots show the beta-weight for both word (green) and PW (purple) stimuli. 

From this analysis we found a significant difference in how the Fronto-Parietal and 

Cingulo Parietal networks communicate over time and per stimuli type, this finding is 

outlined in purple. 

 

Differences in frame 

When comparing differences across time, we found significant differences across frames 

(F=3.7330, p=0.046, corrected) for beta-weights relating the Fronto-Parietal and Default 

networks, as shown in Figure 4. Differences were driven by changes in beta weights between 

frames 3 and 7(t-test, p=0.018), frames 1 and 3 (t-test, p=0.041), and frames 1 and 6 (t-test, 

p=0.043). 

 

 
Figure 4: Differences across frames of task progression found to be significant between the 

Fronto-Parietal and Default networks. 

The left panel shows the change in beta-weights between the Default and Fronto-Parietal 

networks. Changes were found to be significant with a corrected p-value of 0.046.  

The right panel shows a topological representation of cortical areas for both the Fronto-

Parietal (yellow) and Default (red) networks.  

 

 

 

 



Differences across stimulus types (word/PW) 

We found no significant network level connectivity differences based on word or non-word 

exposure. The greatest differences in network-network connectivity were found within the 

Dorsal Attention; between the Cingulo Parietal and Fronto-Parietal; and between the Fronto-

Parietal and Cingulo Parietal networks. These three functional system pairs had network-network 

differences with corrected p-values of 0.117. 

 

Differences for the interaction 

We found significant differences in beta weights for the interaction of frame and task for the 

Cingulo Parietal and Fronto-Parietal systems (F=3.7155, p=0.047, corrected). Differences were 

driven by the dynamic changes of beta-weights at frames 3 (paired t-test word vs non-word, 

p=2.65e-5) and 4 (paired t-test word vs non-word, p=2.68e-4), as shown in Figure 5.  

 

 
Figure 5: Significant difference observed in how the Cingulo Parietal and Fronto-Parietal 

networks interact due to both progression of task and stimulus type. 

The left panel shows the change in beta-weights between the Fronto-Parietal and Cingulo 

Parietal networks. When testing for how these values changed across frame and stimuli 

type, this functional system pair was found to be significant with a corrected p-value of 

0.047. Beta weights represent how the Fronto-Parietal network interacts with the Cingulo 

Parietal network. 

The right panel shows the topological representation of cortical areas for both the 

Fronto-Parietal (yellow) and Cingulo Parietal (blue) networks.  

 

Robustness of results at different motion censoring thresholds 

To test the robustness of our analysis using a more stringent threshold, we calculated 

connectotypes using an FD of 0.25 and recalculated the connectotypes and corresponding 

repeated measures ANOVA tests. While results were no significant, the Cingulo Parietal and 



Fronto-Parietal systems also exhibited the strongest differences in beta-weights for the 

interaction of frame and stimulus type (p=0.0698, corrected), as shown in Figure 5, Supplement 

1. In addition, we also recalculated our analysis with an FD of 0.5, allowing for more participants 

and found a similar beta-weight response between these two networks. However, when 

correcting for multiple comparisons, the findings were not significant (Figure 5, Supplement 1). 

These similarities in observed connectivity between the Cingulo Parietal and Fronto-Parietal 

networks at different thresholds display a trend in temporal connectivity response. 

 

Characterizing changes in connectivity values in connectivity matrices calculated using Pearson-

correlations 

We repeated all the previous analysis using connectivity matrices calculated via Pearson 

correlations instead of connectotypes using the same frames used to calculate connectotype. No 

FD threshold led to significant differences in functional connectivity. Figure 5 supplement 2 

shows the distribution of marginal means of connectivity values when connectivity matrices 

were calculated using an FD threshold of 0.3 (i.e., the same threshold used for connectotyping). 

 

Discussion: 

Connectopying allows for characterization of dynamic functional connectivity changes during 

task performance 

Recent advances in rs-fcMRI analysis approaches have led to increased understanding of brain 

functioning – where experimental designs have been able to identify brain areas supporting 

consciousness (Lloyd, 2002), moral judgment (Greene, Sommerville, Nystrom, Darley, & 

Cohen, 2001), as well as heritable patterns of brain connectivity (Miranda-Dominguez, Feczko, 

Grayson, Walum, Nigg, & Fair, 2018). Successful execution of mental tasks might require the 

collaboration of different brain systems in a timely manner. Activation dynamics occurring 

during overt cognitive tasks have yet to be explored. Given the noisy nature of functional MRI 

and the averages that are typically done to improve signal to noise ratios, a smother signal comes 

at the price of blurring individual and dynamic changes in functional connectivity. In this study, 

we aimed to track temporal changes in brain connectivity during task performance at the 

individual subject level using connectotyping, an efficient way to calculate dynamic functional 

connectivity between brain regions. We tested the viability of connectotyping on task data from a 

lexical decision-based fMRI study that used a widely spaced event-related design (~20 second 

trials). The use of this particular dataset allowed for the hemodynamic response function 

corresponding to a single stimulus to be detected without signal interference from the next or 

preceding stimulus. Our approach has the potential to reveal how functional connections between 

ROIs (here at the network level) progress during the performance of a task not just at the peak of 

activation. As hypothesized, application of connectotyping to the word vs PW dataset revealed 

significant dynamic (i.e. across frames) connectivity differences between the Cingulo Parietal 

and Fronto-Parietal networks, as a function of stimulus type (i.e. word vs. PW). Our 

interpretation of these findings is further elaborated below.  

 

The significantly different dynamic temporal relation occurring as a function of stimulus type 

between the Cingulo Parietal and Frontal-Parietal networks suggest that the evolving and 

directional contributions from the Fronto-Parietal to the Cingulo Parietal network are distinct in 

pattern depending on whether participants were viewing something meaningful (i.e. word) vs. 



meaningless (i.e. PW). Additionally, because connectotypes are calculated through beta-weights 

which display how each region of the brain interacts with another our results can state which 

network is driving these differences.  Prior studies using correlations have not been able to 

identify the direction of information flow for task performance and has limited analyses. 

Through our model we are able to identify changes in the way one network influences another, 

providing directional resolution to the connectivity between networks. 

 

After further testing and creating connectotypes with more and less stringent movement 

thresholds (at 0.25 and 0.5 frame displacement thresholds), this observed Cingulo Parietal and 

Frontal-Parietal network pattern of coactivation persisted, implying the stability of the findings 

(Figure 5 supplement 1). These trends, however, did not survive corrections for multiple 

comparisons. Although these additional analyses did not withstand statistical significance, the 

presence of the same pattern of results supports the robustness of our primary finding.  

 

The presence of dynamic connectivity differences between the Cingulo Parietal and Fronto-

Parietal networks support our principal hypothesis that task dependent regional brain 

communication changes during task progression; something that to our knowledge is a novel 

finding. Our findings consequently also validate the use of connectotyping as a tool for task 

fMRI analysis which can provide a novel depiction of brain activity including dynamic temporal 

changes in functional connectivity. 

 

Although our current methodological approach is notably different from prior traditional task 

fMRI analysis approaches, we did expect some overlap in the identified functional neuroanatomy 

involved in distinguishing word vs. PW. Exposure to words vs. PWs resulted in significantly 

different temporal connectivity patterns between areas known to have a role in cognitive control, 

semantic processing, and memory retrieval. The Fronto-Parietal network is characterized as a 

task control network that has a particular role in the adaptive moment-to-moment requirements 

of a cognitive task such as task instantiation and dynamic feedback or error detection 

(Dosenbach et al., 2007). In 2013, Cole et al. produced evidence suggesting that the Fronto-

Parietal network works as a cognitive hub by communicating with other control and processing 

networks to allow cognitive adaption during tasks (Cole et al., 2013). The Fronto-Parietal 

network also initiates and adjusts cognitive control to produce higher-level cognitive functions 

(Marek & Dosenbach, 2018). Here, the fact that such an adaptive control network displays 

distinct relations as a function of stimulus type is consistent with an expectation that resolution 

of the identity of a word vs. nonword may have different cognitive control demands.  

The regions corresponding to the Cingulo Parietal network have previously been linked with 

memory retrieval processes (Power et al., 2011). Parts of the Cingulo Parietal network are found 

in the precuneus and near the posterior cingulate, regions that have previously been linked with 

semantic processing. For instance, the regions have been shown to distinguish between words 

and PWs in prior work using traditional fMRI analysis (Binder, Desai, Graves, & Conant, 2009). 

The same two regions have also previously been associated with supporting word learning in 

young adults (Nardos, 2015). In addition, there is ample prior work that has associated those 

same two regions with memory retrieval (Cabeza et al., 2008; Dobbins & Wagner, 2005; Nelson 

et al., 2010; Rugg & Vilberg, 2013; Wheeler & Buckner, 2003; Yonelinas & Levy, 2002; 

Yonelinas et al., 2005). In aggregate, the aforementioned findings linking regions in the Cingulo 



Parietal network with semantic processing and memory retrieval is consistent with our finding 

that dynamic functional connectivity between this network and the Fronto-Parietal network 

supporting adaptive cognitive control is what distinguishes meaningful words from meaningless 

PWs.   

Connectotyping provides additional understanding of brain activity 

Our study not only describes the presence of a connectivity pattern that occurs between two 

networks but shows that this connectivity evolves throughout the progression of the task. We not 

only identify networks key to the differential processing of words vs. PWs but also display that 

these networks are tuning their level of communication with each other in a dynamic manner 

across time. Thus, our results show that this functional system pair can be influenced by the type 

of lexical stimuli and that these observed changes in this connectivity likely reflect differences in 

the interactive functional neuroanatomy recruited in processing meaningful vs. meaningless 

stimuli. While our findings are supported both by repeated testing and established functions of 

the Cingulo Parietal and Fronto-Parietal networks, there is no current precedent for the validity 

of tracking temporal connectivity changes on task data.  

 

These results also provide the direction of connectivity flow through the beta weights used to 

model activation patterns, in our finding the Fronto-Parietal network is changing how it interacts 

with the Cingulo-Parietal network to produce these overall network level effects shown in Figure 

5 which we believe indicate differential processing methods for our stimuli. Because the Fronto-

Parietal network’s established role in modulating tasks through moment-to-moment control and 

dynamic feedback, this directionality which our findings have is further supported. For this task 

it is possible that the Frontal-Parietal network exerted through moment-to-moment control and 

dynamic feedback to the Cingulo Parietal network to drive observed differences, supporting the 

directionality of our findings. 

 

Limitations and future work 

Because of our stringent motion censoring, our analyses are based on the data of only 15 

participants of a narrow age range, which could limit the generalizability of our results. In this 

exploratory study, we decided to focus on higher order heterometal systems and to exclude 

primary sensory cortex. Studies with a larger number of participants and different tasks might 

allow the inclusion of more systems. The usage of a widely-spaced dataset was ideal to test the 

feasibility of using connectotyping to track dynamic changes in functional connectivity. A 

widely-spaced design, however, limits the number of contrasts that can be performed and 

measured. As we succeed in using a linear model to track dynamic changes, superposition and 

convolution can be used in event-related experiments where stimuli can be changed at each TR. 

By applying those validated methods to deconvolve the beta weights corresponding to each 

frame and stimulus, the same statistical analysis (i.e., repeated measures ANOVA) can be used to 

track dynamic changes in functional connectivity. 

 

While limited by the constraints of our data and the novelty of our approach, our findings serve 

to expand on the roles and functions of the Cingulo Parietal and Fronto-Parietal networks as an 

incentive for others to pursue analyses which account for patterns of dynamic whole-brain 

connectivity and provide temporal resolution. The application of this approach to additional 

studies exploring other tasks and with differentially spaced study designs will not only further 



validate the use of this approach but also has the potential to expand our understanding of brain 

activity during the performance of a task. 
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Supplementary Figures: 

 

 
Figure 5 Supplement 1: Difference of how the Cingulo Parietal and Fronto Parietal 

networks interact over time at other thresholds of movement suggest robust initial finding. 

The left side shows the change in beta-weights between the Fronto-Parietal and Cingulo 

Parietal networks at a movement threshold of 0.25 mm. After correcting for multiple 

comparisons, this functional system pair was not found to be significant(p=0.0698). 

The right side shows the results from the same analysis as the left information when the 

movement threshold was set at a higher value of 0.5mm. When this data underwent 

corrections for multiple comparisons, this functional system pair was not found to be 

significant (p=0.921).  

 

 



 
Figure 5 Supplement 2: Statistical analysis using traditional correlations did not reveal 

temporal differences.  

Repeated measures ANOVA results on functional connectivity data characterized through the 

traditional correlation approach. 36  functional system pairs were tested within the following six 

networks: Auditory (Aud, n=24), Cingulo Opercular (CiO, n=40), Cingulo Parietal (CiP, n=5), 

Default (Def, n=41), Dorsal Attention (DoA, n=32), Fronto-Parietal (FrP, n=24), Retrosplenial 

Temporal (ReT, n=8), Somato-sensory hand (Sml, n=38), Somato-sensory mouth (SMm, n=8), 

Salience (Sal, n=4), Ventral Attention (VeA, n=23), and Visual (Vis, n=39) networks. The 

functional system pair found to be significant with connectotyping is outlined in purple but with 

this approach did not reveal similar findings. 
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