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Effects of water level fluctuation on
thermal stratification in a typical tributary
bay of Three Gorges Reservoir, China
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Jun Ma3 and Zhengjian Yang3

1 School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan,
Hubei, China

2 Department of Civil and Environmental Engineering, Portland State University, Portland,
OR, USA

3 Hubei Key Laboratory of Ecological Restoration of River-Lakes and Algal Utilization,
Hubei University of Technology, Wuhan, Hubei, China

4 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,
Nanjing Hydraulic Research Institute, Nanjing, China

ABSTRACT
Xiangxi River is a typical tributary of Three Gorges Reservoir (TGR) in China. Based
on field observations in 2010, thermal stratification was significant in most months of
the year. Through field data analysis and numerical simulations, the seasonal and
spatial variation of thermal stratification as related to the impact of the operation of
TGR were investigated. Thermal stratification was most pronounced from April to
September in the Xiangxi River tributary. Air temperature (AT) and water level (WL)
were the two dominant variables impacting thermal stratification. AT affected the
surface water temperature promoting the formation of thermal stratification, and
high WLs in TGR deepened the thermocline depth and thermocline bottom depth.
These results provide a preliminary description of the seasonal variation and spatial
distribution of thermal stratification, which is important for better understanding
how thermal stratification affects algae blooms in Xiangxi River.

Subjects Ecohydrology, Environmental Impacts
Keywords Thermal stratification, CE-QUAL-W2, Three Gorges Reservoir, Xiangxi River,
Water level fluctuation

INTRODUCTION
Reservoirs are constructed for multiple purposes, such as hydropower production, flood
control, water supply, and commercial fisheries. While reservoirs provide benefits for
society, they can also have negative impacts on ecosystems. For example, serious algal
blooms have occurred in many tributaries of Three Gorges Reservoir (TGR) in China since
its impoundment (Liu et al., 2012; Zhuan-xi et al., 2007). These blooms were not only
influenced by water temperature, solar radiation, and nutrients, but also by hydrodynamics
and thermal stratification (Wu, Liu & Hsieh, 2004; Tufford & McKellar, 1999). Since the
surface water temperature is affected by incoming long wave radiation, evaporation,
heat conduction and solar radiation, thermal stratification is common in many reservoirs
and deep lakes (Ma et al., 2008; Kim & Kim, 2006; Boland & Padovan, 2002). Stratification
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can provide a stable habitat for the growth of phytoplankton and result in algae bloom if
other conditions, such as nutrients, are favourable. To control the water quality in the
tributaries of TGR and to optimize its operational objectives, it is necessary to study the
hydrodynamic characteristics of thermal stratification in the tributaries influenced by the
operation of TGR.

Thermal stratification in reservoirs is affected not only by meteorological conditions
(Owens & Effler, 1989; Effler et al., 1986), but also by the operation of the reservoirs (Milstein &
Zoran, 2001; Han et al., 2000). Xiangxi River is the nearest tributary to the TGR dam (32 km
upstream), and is more directly influenced by the TGR operation (primarily water level
fluctuations (WLFs)) than the other tributaries further upstream. The maximum WLF
between the flood and dry seasons can reach almost 30 m, which can significantly affect
the hydrodynamics of the tributaries. Although many studies have addressed the
hydrodynamics of Xiangxi River (Ma et al., 2015; Yang, 2014; Jiang, Dai & Liu, 2013; Ji
et al., 2010a, 2010b), research is very limited on the variation of thermal stratification
and the interaction between thermal stratification and hydrodynamic process as
influenced by the operation of the TGR.

The goal of the present study is to develop an understanding of how thermal
stratification is affected by WLFs through field observations and numerical simulations. It
is hoped that this study will contribute to building a foundation for studying the
interaction between thermal stratification and algae blooms in the Xiangxi River.

REGION OF INTEREST AND METHODS
Region of interest
Xiangxi River is located in Hubei Province, China. The length of Xiangxi River is 94 km
starting from Shennongjia Forest Region to Yangtze River, and the catchment area is
approximately 3,095 km2. Due to the operation of TGR, the 30 m WLF between the flood
and dry seasons results in large variations on the backwater area of the Xiangxi River.
The water from the Yangtze River intrudes into the Xiangxi River tributary when the TGR
water level (WL) rise, and the maximum backwater area can extend to almost 40 km when
the TGR WL reaches 175 m. This backwater area is referred to as Xiangxi Bay (XXB,
Liu et al., 2012; see Fig. 1A). XXB is the focus of this study.

Measured data
Inflow discharge data was measured in 2010 from a hydrological station at Xingshan
(Fig. 2A). WL data at the most downstream point of Xiangxi River at the intersection
with the TGR for 2010 was obtained from the China Three Gorges Corporation
(see Fig. 2B). As shown in Fig. 2A, the average inflow was 26.8 m3/s, with a maximum value
of 348.8 m3/s on June 8 and a minimum value of 1.6 m3/s on December 9, 2010.
From Fig. 2B, the high WL of 175 m was reached in late October and the lowWL of 145 m
occurred in mid-June. Based on the daily WL data, we calculated the daily WLF by
comparing it with the value from the previous day. The daily WLF varied sharply during
the flood season, with values ranging from 4.09 m on August 25 to -1.73 m on August 5.
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Water temperature and the corresponding depth were measured using a Hydrolab DS5X
multi-probe sonde (Hach, Loveland, CO, USA) with a vertical resolution of one m. Vertical
profile measurements were taken weekly at sites XXU and XXD, and daily at site XXM.

Figure 1 Location of the Xiangxi River. (A) Three sampling sites are from upstream to downstream in Xiangxi River: upstream (XXU), middle
(XXM), and downstream (XXD); (B) grid used in the CE-QUAL-W2 model of the Xiangxi River showing longitudinal segments and vertical layers.

Full-size DOI: 10.7717/peerj.6925/fig-1

Figure 2 Hydrological conditions in 2010. (A) Upstream inflow; (B) the water level and daily water level fluctuations at the estuary of the Xiangxi
River. Full-size DOI: 10.7717/peerj.6925/fig-2
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Daily meteorological data were collected from the Xingshan Hydrological Station.
The data show that the average AT was 17.4 �C, with a maximum of 32.4 �C on July 2 and a
minimum of 3.2 �C on December 15. The average solar radiation was 127.5 J/m2s
with a range from 5.8 to 304.4 J/m2s. The average surface water temperature was
20.1 �C, with a maximum of 31.0 �C on August 2 and a minimum of 11.3 �C on February
17 at site XXM. The surface water temperature, AT and short wave solar radiation in
2010 is shown in Fig. 3. AT from April to September correlated well with surface
temperature with a correlation coefficient of 0.86.

CE-QUAL-W2 MODEL
Model description
The CE-QUAL-W2 (Cole & Wells, 2017) model is a vertical, 2D, laterally averaged
hydrodynamic and water quality model that has been applied successfully in many stratified
waterbodies (Sadeghian et al., 2018; Zhang, Sun & Johnson, 2015; Noori et al., 2015;
Deus et al., 2013; Thomson & Fine, 2003). Because the model assumes lateral homogeneity,
it is well-suited for relatively long and narrow waterbodies, which is the case for the
XXB (Ma et al., 2015). Thus the CE-QUAL-W2 model was selected to simulate the
hydrodynamic characteristics of XXB.

Simulation conditions and calibration
The model grid for the Xiangxi River was divided into 64 longitudinal segments of 500 m in
length, and 109 vertical layers of one m in thickness; the entire water column was configured

Figure 3 Measured air temperature, solar radiation, and surface water temperature in the Xiangxi River
in 2010. This graph displays seasonal variations in meteorological conditions (air temperature, solar
radiation) and surface water temperature. Full-size DOI: 10.7717/peerj.6925/fig-3
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for a total of 4,385 cells (see Fig. 1B). The maximum depth was 100 m at the most
downstream segment (the mainstem Yangtze River), while the depth in the upstream sections
was only a few meters. To study the thermal stratification and its seasonal variation, field
observation data for a complete year were acquired. Based on available field measurements,
the simulated period was from January 1 to December 31 in 2010. The boundary conditions
(upstream flow and downstream head) used for the simulation are shown in Fig. 2.

Calibration is the process of adjusting appropriate model parameters by matching the
simulation results with the observed data. When the model can reproduce the observed
results well, then it can be applied to simulate different but similar scenarios. Hydrodynamic
conditions can be affected by several model parameters, such as the longitudinal eddy
viscosity, longitudinal eddy diffusivity by influencing the temperature and hence density,
Manning’s roughness coefficient, and the wind-sheltering coefficient. Little adjustment of
model parameters or calibration was performed since most of the parameters used in the
model were assigned default values. The wind sheltering coefficient was adjusted to 0.9 for
Xiangxi River according to a previous study (Ma et al., 2015). This coefficient corrects the
wind on the Xiangxi River from the measurement location by reducing the wind 10%
throughout the entire waterbody. The model coefficients affecting hydrodynamics used in
the study are shown in Table 1 and are largely default model coefficients.

Data analysis
The thermocline refers to the profile of maximum decrease rate of temperature in the
metalimnion, and methods for estimating the thermocline from profile data including
threshold of temperature and density or a critical gradient (Chung & Gu, 2009).
In this study, the temperature-gradient threshold was used to calculate the thermocline
parameters (Zhang et al., 2014). The uniform criterion of 0.2 �C/m was selected to
determine the thermocline according to previous research on Xiangxi River (Liu et al.,
2012). The thermocline depth (TD) and thermocline bottom depth (TB) were used
as the scale of thermal stratification. The TD was defined as the depth of the upper most
part of the thermocline, and the TB was defined as the depth of the lower most part
of the thermocline (Liu et al., 2019), the thermocline thickness was the distance between
the TD and the TB. Correlation analysis was performed using R software.

RESULTS AND DISCUSSION
Thermal stratification in Xiangxi River
The seasonal variation in the water temperature at site XXM was analysed using data
measured in 2010. As shown in Fig. 4A, the seasonal temperature variation was significant

Table 1 The coefficients used in the model for XXB.

Coefficient Value

Longitudinal eddy viscosity 1.0 m2/s

Longitudinal eddy diffusivity 1.0 m2/s

Manning’s roughness coefficient 0.04 s/m1/3

Wind sheltering coefficient 0.9
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in Xiangxi River. At the surface layer, the minimum water temperature occurred between
February and March, then increasing rapidly from April to its maximum value of
approximately 31 �C in August. This seasonal variation of the water temperature of the
surface layer was also seen in the variation of AT and solar radiation (see Fig. 3). Water
temperature decreased from September to December. As the water depth increased,
the variation in water temperature significantly trailed the AT variation. The maximum
water temperature at different vertical elevations was reached at different times. For
example, the maximum water temperature at the surface layer occurred in August, while
the maximum water temperature at a depth of 35 m occurred in mid-October.

Figure 4 shows the stratification and destratification processes at site XXM. The water
temperature rapidly increased at water depths between 0 and 15 m from 11 to 31 �C
between February and August, with an increase of temperature at a rate of 0.1 �C/day. The
rate of temperature increase rate was approximately 0.05 �C/day during the same period at
a depth of 35 m. However, the maximum rate of increase of water temperature in the
deeper layers could be higher than that of the surface layers. For example, the maximum
value of the temperature increase rate was 0.23 �C/day (from May 21 to July 14) at a depth
of 15 m, while the maximum rate of 0.51 �C/day (from April 16 to May 6) was found
at a depth of 25 m. At a depth of 35 m, the increase rate was 1.28 �C/day (from February 1
to 10). This result may, however, be related to the hydrological conditions of Xiangxi River,
with large temperature changes originating from inflow currents.

The surface water temperature began to rapidly decrease beginning in September
(Fig. 3), and the epilimnion deepened following the reduced surface water temperature.

Figure 4 Vertical profile of water temperature measured in Xiangxi River in 2010. (A) Contour of water temperature measured at site XXM in
2010; (B) contour of water temperature in Xiangxi River on August 9, 2010, the flow direction is from left to right.

Full-size DOI: 10.7717/peerj.6925/fig-4
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The epilimnion reached a depth of 30 m in September, and the depth increased to 40 m
in November. An unstable water temperature structure was observed from February to
March, which triggered strong vertical mixing. The surface water temperature reached a
minimum value in February. Stratification was therefore weak, and the waterbody was
unstable, leading to strong vertical mixing.

The spatial variation in the water temperature of Xiangxi River was evaluated using data
from August 9, 2010. As shown in Fig. 4B, there were thermal layers in Xiangxi River, and
the thickness of each layer changed longitudinally from upstream to downstream.

Simulation of thermal stratification
Since thermal stratification was observed between April and September, the numerical
model results were compared with data measured during this period. As shown in Fig. 5,
the model not only reproduced the temperature profile but also the formation and
duration of the thermal stratification. The simulated thermocline agreed well with the
field-measured data from the downstream to the upstream, with an error of generally less
than 1 �C. The simulated model results were consistent with the conclusions drawn by the
analysis of measured data.

Thermal stratification was not evident in the downstream section of the XXB in late
March, but stratification was significant in the middle and upstream sections during this
period. In June, thermal stratification developed at a depth of 10 m in the downstream
section of the XXB. The depth of the thermocline increased following the increased surface
water temperature such that by August it had increased to a depth between 13 and 20 m.
The water temperature difference between the surface water and the bottom was
approximately 3 �C in August but completely disappeared by November at the
downstream station, which indicated that the duration of thermal stratification in the
middle and upstream portions of the XXB was longer than that in the downstream
portion, reflecting the influence of the Yangtze River.

The impact of water level fluctuation on thermal stratification
The operation of TGR can cause WLFs which influence the hydrodynamic processes
and the thermal regime in the Xiangxi River. Based on hydrological data from 2010,
we found that WL significantly varied from June to October. During this period, only
consecutive daily WLFs greater than 0.2 m/day were considered (see Table 2). The
maximum total WLF was -14.03 m, which occurred from August 2 to August 16.
The maximum mean daily WLF was 2.46 m/day, which occurred from July 20 to July 24.
This result indicated that the WL rose and fell alternately from late June to mid-August.
Then, the WL rose gradually, starting from late August, and reached a maximum
elevation in late October.

Thermal stratification structure variation
The analysis of the correlation between TD and TB and the impact factors of AT,
daily WLF, WL reveals that AT and WL had a significant effect on the thermocline
parameters (see Fig. 6). AT was negatively correlated with TD and TB. The correlation
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coefficient between AT and TD and TB were -0.70 and -0.79, respectively, indicating
that both the TD and the TB deepened with decreasing AT. The correlation between
the daily WLF and the TDs was not significant during this period. The WL was positively

Figure 5 Calibration assessments of the vertical temperature profiles. These graphs display the observed and simulated vertical profiles of the water
temperature at sites XXD, XXM and XXU, from downstream to upstream in the Xiangxi River. Full-size DOI: 10.7717/peerj.6925/fig-5
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correlated with the TDs. The correlation coefficient between the WL and TD and TB
were 0.67 and 0.94, respectively. It indicates that WL variation had a strong effect on the
thermal stratification structure.

The variations of the TD, the TB, the AT and the WL at XXM were evaluated from
June to October 2010. As showed in Fig. 7, it was found that the TD was zero to

Table 2 Statistics of water level variation in Xiangxi River in 2010.

Date Initial and
terminal water
level (m)

Total water
level variation
(m)

Mean daily
water level
fluctuation
(m/day)

Air temperature
variation (�C)

June 21–June 23 145.9–148.09 2.19 1 27.0–27.8 (27.3*)

June 28–July 4 149.59–146.07 -3.52 -0.53 27.7–32.4 (30.1*)

July 11–July 15 146.2–149.45 3.25 0.71 23.5–28.6 (25.9*)

July 16–July 19 148.91–146.46 -2.45 -0.75 25.2–27.9 (26.7*)

July 20–July 24 148.59–158.76 10.17 2.46 26.8–28.1 (27.5*)

July 25–July 27 158.08–156.71 -1.37 -0.68 26.7–28.6 (27.8*)

July 28–August 1 157.53–160.97 3.44 0.85 27.6–31.2 (29.5*)

August 2–August 16 160.46–146.43 -14.03 -0.97 25.0–32.1 (29.8*)

August 23–August 28 148.54–159.79 11.25 2.12 21.1–25.4 (23.2*)

September 8–September 11 158.2–161.62 3.4 0.96 21.8–23.3 (22.7*)

September 29–October 24 161.96–174.7 12.74 0.57 16.7–21.9 (19.1*)

Note:
* Mean air temperature. Only continuous daily water level fluctuation greater than 0.2 m/day and a total water level
variation greater than one m were taken into account in this statistics.

Figure 6 Correlation relationships of the thermocline depth (TD), thermocline bottom depth (TB),
air temperature (AT), daily water level fluctuation (daily WLF), and water level (WL). This graph
displays the correlation coefficients and distributions of the thermocline parameters (TD, TB) and the
impact factors (AT, WLF, WL); the number of asterisks indicate the strength of the correlation, and the
numerical value represents the correlation coefficient between the corresponding variables.

Full-size DOI: 10.7717/peerj.6925/fig-6
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five m with slight changes from June to late September, then below 25 m in October.
The TB gradually increased from around 20 m on August 15 to approximately 45 m on
October 15. The thermocline thickness varied from 1 to 44 m with a mean value of 18 m.
The mean value of thermocline thickness was 19 m from June to late September,
then decreased to three m in October. The WL significantly changed from late September
to October, demonstrating that both the TD and TB deepened following increasing
WL (see Fig. 7B). Hence, water level variations can affect the thermal stratification
structure significantly.

The effect of various water levels on thermal stratification
To evaluate the effect of WL on thermal stratification, the CE-QUAL-W2 model was used
to simulate different hypothetical situations. Since theWL and thermal stratification varied
significantly from June to October in 2010, simulations were performed for the period
between June 1st and October 31st. The range of WL was from 145.1 to 174.9 m, AT from
9.5 to 32.5 �C with a mean value of 24.4 �C, the inflow discharge from 6.1 to 348.8 m3/s,
and the inflow temperature from 6.8 to 21.5 �C during this period. Hypothetical
situations were designed in which WL was the only variable in each design condition.
The baseline scenario used the measured field data as boundary conditions. The other two

Figure 7 The variation process of thermocline parameters with air temperature\water level (WL) from June to October at site XXM. (A) The
variation process of thermocline depth (TD)\thermocline bottom depth (TB)\thermocline thickness with air temperature (AT); (B) the variation
process of thermocline depth (TD)\thermocline bottom depth (TB)\thermocline thickness with water level (WL).

Full-size DOI: 10.7717/peerj.6925/fig-7

Table 3 Boundary conditions of hypothetical situations from June to October in XXB in 2010.

Experimental case Water level (m) Air temperature
(�C)

Inflow
discharge (m3/s)

Inflow
temperature (�C)

Mainstream
temperature (�C)

Baseline 145.1–174.9 9.5–32.5 6.1–348.8 6.8–21.5 20.7–27.5

Water level+5% 152.4–183.6 9.5–32.5 6.1–348.8 6.8–21.5 20.7–27.5

Water level-5% 137.8–166.2 9.5–32.5 6.1–348.8 6.8–21.5 20.7–27.5
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Figure 8 The effect of water level variation on thermal stratification at site XXM. (A) Water level increases by 5%; (B) water level decreases by
5%; (C) baseline; (D) thermocline thickness variation under different water levels; (E) thermocline depth variation under different water levels;
(F) thermocline bottom depth variation under different water levels. Full-size DOI: 10.7717/peerj.6925/fig-8
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scenarios varied the WLF by ±5%. The other meteorological and hydrological conditions
used the measured boundary conditions (see Table 3).

Variations in WLs affected the thermal stratification structure in Xiangxi River (see
Fig. 8). The thermocline thickness increased with the increasing WL from June to late
September, with little variation in October (see Fig. 8D). Both the TD and the TB increased
when the WL increased by 5%, and the TD and the TB decreased when the WL decreased
by 5% compared to the baseline simulation (see Figs. 8E and 8F). Hence, WL variation
can affect the TD and the TB. As the WL rises, the TD and the TB were deepened. Nowlin
et al. (2004) found reservoir stratification was more sensitive to WLFs than a natural lake.
Naselli-Flores & Barone (2005) found that different hydrological years may result in
different patterns of thermal stratification in summer.Wang et al. (2012) found that a low
WL resulted in a higher surface temperature due to a decrease of impounded cold water.
These studies indicated that WL variation can affect the thermal stratification, which is
consistent with the findings of the current investigation.

CONCLUSIONS
The process of thermal stratification resulting from the operation of TGR was studied
using both field data analyses and numerical simulations for the period from June to
October 2010. Analysis of the field observations in 2010 indicated that
thermal stratification was significant during the summer months. Thermal stratification
was evaluated using the thermocline upper and lower depth. The results indicated that
WL and AT were two main factors which correlated with the thermal stratification.
WL was positively correlated with the TDs, and the correlation coefficient between
the TB and the WL was 0.94, indicating that WL variation can affect the thermal
stratification vertical structure. AT was negatively correlated with the TD and the TB
implying that the thermocline deepened following a decrease in AT. The correlation
with air temperature is really a surrogate for correlation with surface heat transfer since
air temperature directly affects long-wave radiation, evaporative, and conductive heat
fluxes. Also, the air temperature is responding to the same meteorological forcing as
the water body and hence this approximates the impact of all the atmospheric forcing
at the air-water interface.

The CE-QUAL-W2 model was developed and calibrated using field observations, and
results showed that it could satisfactorily reproduce the temporal and spatial variation
of water temperature in Xiangxi River. The results of the numerical simulations indicated
that the WLFs can affect the thermal stratification structure. The model showed that
increasing WLFs were accompanied by the deepening of the TD and the TB, agreeing with
the results of the field data analysis.

The formation of thermal stratification was usually followed by algae blooms in the
spring. Since the thermal stratification structure can be affected by the WL variation
under the operation of TGR, water level variation may be one of the tools that could be
used to manage the growth of phytoplankton. The effect of variations in the thermal
stratification structure on algae blooms requires further study.
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