Portland State University PDXScholar

Dissertations and Theses

Dissertations and Theses

5-20-1992

Applications of Digital Signal Processing with Cardiac Pacemakers

Merry Thi Tran Portland State University

Let us know how access to this document benefits you.

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the <u>Electrical and Electronics Commons</u>, and the <u>Signal Processing Commons</u>

Recommended Citation

Tran, Merry Thi, "Applications of Digital Signal Processing with Cardiac Pacemakers" (1992). Dissertations and Theses. Paper 4582.

10.15760/etd.6466

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

AN ABSTRACT OF THE THESIS OF Merry Thi Tran for the Master of Science in Electrical Engineering presented May 20, 1992.

Title: Applications of Digital Signal Processing with Cardiac Pacemakers.

APPROVED BY THE MEMBERS OF THE THESIS COMMITTEE:

Vih Chun Jeng, Chair	
i în Chyun Jenq, Chan	
Richard P.E. Tymerski	
• /	

Because the voltage amplitude of a heart beat is small compared to the amplitude of exponential noise, pacemakers have difficulty registering the responding heart beat immediately after a pacing pulse. This thesis investigates use of digital filters, an inverse filter and a lowpass filter, to eliminate the effects of exponential noise following a pace pulse. The goal was to create a filter which makes recognition of a haversine wave less dependent on natural subsidence of exponential noise.

Research included the design of heart system, pacemaker, pulse generation, and sensor system simulations. The simulation model includes the following components:

• Signal source, A MATLAB generated combination of a haversine signal, exponential noise, and myopotential noise. The haversine signal is a test signal used to simulate the QRS complex which is normally recorded on an ECG trace as a representation of heart function. The amplitude is approximately 10 mV. Simulated myopotential noise represents a uniformly distributed random noise which is generated by skeletal muscle tissue. The myopotential noise has a frequency spectrum extending from 70 to 1000 Hz. The amplitude varies from 2 to 5 mV. Simulated exponential noise represents the depolarization effects of a pacing pulse as seen at the active cardiac lead. The amplitude is about ~1 volt, large in comparison with the haversine signal.

• A/D converter, A combination of sample & hold and quantizer functions translate the analog signal into a digital signal. Additionally, random noise is created during quantization.

• Digital filters, An inverse filter removes the exponential noise, and a lowpass filter removes myopotential noise.

• Threshold level detector, A function which detects the strength and amplitude of the output signal was created for robustness and as a data sampling device.

The simulation program is written for operation in a DOS environment. The program generates a haversine signal, myopotential noise (random noise), and exponential noise. The signals are amplified and sent to an A/D converter stage. The resultant digital signal is sent to a series of digital filters, where exponential noise is removed by an inverse digital filter, and myopotential noise is removed by the Chebyshev type I lowpass digital filter. The output signal is "detected" if its waveform exceeds the noise threshold level.

To determine what kind of digital filter would remove exponential noise, the spectrum of exponential noise relative to a haversine signal was examined. The spectrum of the exponential noise is continuous because the pace pulse is considered a non-periodic signal (assuming the haversine signal occurs immediately after a pace pulse). The spectrum of the haversine is also continuous, existing at every value of frequency ω . The spectrum of the haversine is overlapped by the spectrum of and amplitude of the exponential, which is several orders of magnitude larger. The exponential cannot be removed by conventional filters. Therefore, an inverse filter approach is used to remove exponential noise. The transfer function of the inverse filter of the model has only zeros. This type of filter is called FIR, all-zero, non recursive, or moving average.

Tests were run using the model to investigate the behavior of the inverse filter. It was found that the haversine signal could be clearly detected within a 5% change in the time constant of the exponential noise. Between 5% and 15% of change in the time constant, the filtered exponential amplitude swamps the haversine signal. The sensitivity of the inverse filter was also studied: when using a fixed exponential time constant but changing the location of the transfer function, the effect of the exponential noise on the haversine is minimal when zeros are located between 0.75 and 0.85 of the unit circle.

After the source signal passes the inverse filter, the signal consists only of the haversine signal, myopotential noise, and some random noise introduced during quantization. To remove these noises, a Chebyshev type I lowpass filter is used.

APPLICATIONS OF DIGITAL SIGNAL PROCESSING WITH CARDIAC PACEMAKERS

by

MERRY THI TRAN

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE in ELECTRICAL ENGINEERING

> Portland State University 1992

TO THE OFFICE OF THE GRADUATE SUDIES:

The members of the committee approve the thesis of Merry Thi Tran presented May 20, 1992.

Kwok-Wai Tam

APPROVED: Rolf Schaumann, Chair, Department of Electrical Engineering C. William Savery, Interim Vice Provost for Graduate Studies and Research

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank those who have contributed to the completion of this thesis. First, I deeply appreciate contributions from Dr. Y.C. Jenq, professor at Portland State University; Mr. Bob Weyant, Vice President of System Design and Development at Micro Systems Engineering, Inc.; and Mr. Dick Schomburg, Principal Engineer from the same above company, for their guidance during the writing of this paper. I would also like to thank Miss Laura Riddell for her typing contribution. Finally, I greatly appreciated my friends Mr. John Sandbo, Mr. Rick Sanborn, Mr. Roger Hoffman, engineers at Micro Systems Engineering, Inc. who have provided me with their support thoughout the execution of this thesis.

TABLE OF CONTENTS

	PAGE
ACKNOWL	EDGEMENTSiii
LIST OF TA	BLESvii
LIST OF FIG	URESix
CHAPTER	
I	INTRODUCTION1
	Pacemakers1
	The Problem2
	The Solution2
	Conclusions4
	Organization of the Thesis4
Π	THE MODEL7
III	HAVERSINE SIGNAL
	Cardiac Conduction System9
	Atrial Representation15
	Atrial Waveform Atrial Spectrum
	Ventricular Representation17
	Ventricular Waveform Ventricular Spectrum
	Atrial/Ventricular Representation21
	Atrial/Ventricular Waverform

	Software22
IV	MYOPOTENTIAL NOISE25
	Uniformly Distributed Noise25
	Software
v	EXPONENTIAL NOISE
	Pace Pulse32
	Spectrum of Exponential Noise
	Software
VI	INPUT SIGNAL
	Software40
VII	AMPLIFIER41
	Software42
VIII	A/D CONVERTER43
	Sample and Hold43
	Software
	Quantization45
	Software
IX	DIGITAL FILTER49
	Inverse Digital Filter49
	Software
	Lowpass Digital Filter111
	Software
	Threshold Level Detector115
	Software

v

Х	CONCLUSIONS	118
	Procedure Summary	
	Conclusions	
REFERENC	ES	
Α	SOFTWARE	121
В	GLOSSARY	

LIST OF TABLES

TABLE	PAGE
I	Inverse Filter (2nd Order) Behavior, Where
	Input Signal = Exponential Only: at 0%,
	b = -400(1/sec), a=0.5 in a * exp (-bt)61
II	Inverse Filter Behavior (2nd Order) Resulting
	from Changing a and b in a*exp(-bt).
	Input Signal = Exponential + Haversine67
III	Inverse Filter (1st Order) Behavior Resulting
	from Changing in a*exp(-bt).
	Input Signal = Exponential Only76
IV	Inverse Filter (1st Order) Behavior Resulting
	from Changing in a*exp (-bt).
	Input Signal = Exponential + Haversine
v	Inverse Filter (2nd Order) Behavior Resulting
	from Changing the Location of Zeros.
	Input = Exponential + Haversine
VI	Inverse Filter (2nd Order) Behavior Resulting
	from Changing the Location of Zeros.
	Input = Exponential Only97
VII	Inverse Filter (1st Order) Behavaior Resulting
	from Changing the Location of Zeros.
	Input = Exponential Only

VIII	Inverse Filter (2nd Order) Behavior Resulting
	from Changing the Location of Zeros.
	Input = Exponential + Haversine105
IX	Location of Poles, and Zeros by order112

LIST OF FIGURES

FIGURE	PAGE
1.	Model7
2.	Heart10
3.	QRS complex11
4.	y(t) Haversine signal12
5.	Graphs of waveform h(t) and P(t)14
6.	Atrial signal16
7.	Atrial spectrum analysis17
8.	Ventricular signal19
9.	Ventricular spectrum analysis20
10.	Atrial/ventricular signal21
11.	Unipolar lead system26
12.	Bipolar lead system26
13.	Sensitivity curve for sensing R waves27
14.	An atrial pacing with myopotential interference.
	During the interference, the ventricular lead
	sences muscle activity and inhibits ventricular
	output27
15.	Examples of tape recorded myoelectric signals
16.	Uniformly distributed random noise

17.	Chebyshev typeI, bandpass filter order 8th,	
	pass band : 70Hz to 1000Hz	.29
18.	Myopotential noise	.30
19.	Spectrum of myopotential noise	.30
20.	The pacing artifact	.33
21.	Pulse width = 530 uS Amplitude = -4.8 V, LeCroy	
	9400A Dual 175 MHz scope	.33
22.	Detail of the Pace Pulse	.35
23.	Spectrum of the exponential noise	.37
24.	Haversine + exponential + myopotential	.39
25.	Amplifier the input signal	.41
26.	Sample and hold	.44
27.	VFS = 10,8 bits resolution	46
28.	After quantizer, signal gains some random noise	.47
29.	Inverse filter removes the exponential	.52
30.	Magnitude of inverse filter (2nd order) at different zero location	54
31.	Magnitude of inverse filter (1st order) at different zero location	54
32.	Fixer inverse filter (2nd order) coefficients, 0% a&b	55
33.	Fixed inverse filter. (2nd order) coefficients, 2% a&b	55
34.	Fixed inverse filter (2nd order) coefficients, 5% a&b	56
35.	Fixed inverse filter (1st order) coefficients, 0% a&b	56
36.	Fixed inverse filter (1st order) coefficients, 2% a&b	57
37.	Fixed inverse filter (1st order) coefficients, 5% a&b	57

38.	Change zero location (2nd order inverse filter), $zero = 0.7$	58
39.	Change zero location (2nd order inverse filter), zero = 0.8	58
40.	Change zero location (2nd order inverse filter), zero = 0.9	59
41.	Change zero location (1st order inverse filter), $zero = 0.7$	59
42.	Change zero location (1st order inverse filter), zero = 0.8	.60
43.	Change zero location (1st order inverse filter), zero = 0.9	.60
44.	Magnitude of lowpass filter, Chebyshev type I	.114
45.	Lowpass filter filters out myopotential	.115
46.	Detect output level	.116

CHAPTER I

INTRODUCTION

PACEMAKERS

A pacemaker feeds electrical stimulating pulses to the heart to keep the heart beating at a steady, healthy rhythm. The pacemaker is a pulse generating system, including a battery and a circuit. The unit operates continuously from the day of manufacture.

The circuit is sometimes encapsulated in epoxy and silicone rubber, and is always covered with metal (titanium). The unit contains a battery, usually of 4 or 5 cells. Almost all pacemakers made today use mercury-zinc cell battery packs with lithium anodes. A flexible electrical wire (pacing lead) is plugged into the pulse generator, and carries the stimulating pulses to the heart. The pacing lead is also used as a sensor which receives heart status data. The received data are used to control the output of the pulse generator.

Several lead configurations exist. A unipolar lead has one conducting wire and an electrode. The pulse generator uses body fluids for its return pathway. A bipolar lead has two conducting wires inside its insulation. The electrical signal travels down one wire to an electrode, passes through the myocardium, causes the heart tissue to depolarize, and then returns by the second electrode. Multiple lead configurations also exist.

The simplest pulse generator consists of a power source and a timing device which deliver electrical signals often enough to maintain an adequate cardiac output. A small electrical charge is delivered from the pulse generator, through the pacing lead, and to the heart in pulses separated by an appropriate interval to produce a desired heart rate.

THE PROBLEM

Contact between the pacing lead and tissue produces noise which is called exponential noise. Exponential noises have a large voltage amplitude. Because the voltage amplitude of a heart beat is small compared to the amplitude of exponential noise, pacemakers have difficulty registering the responding heart beat immediately after a pacing pulse.

This problem is called a "stimulus recognition" problem. This problem is very important because it controls the actions of the pacemaker. As soon as the heart beat can be sensed, the pacemaker emits or suppresses a pace pulse based on the strength of the heart beat. Solving the sensing problem requires a filter structure that will sense haversine type signals in the presence of non-periodic exponential signals resulting from a pace pulse and myopotential noise.

This thesis investigates use of digital filters, an inverse filter and a lowpass filter, to eliminate the effects of exponential noise following a pace pulse. The goal was to create a filter which will eliminate the effect of the large exponential noise and make recognition of a haversine wave easier. Comparison of Figures 4 and 22 (exponential #3) shows that the exponential noise is several orders of magnitude larger than the typical haversine signal.

THE SOLUTION

In order to research the problem stated above, it was necessary to design heart system, pacemaker, pulse generation, and sensor system simulations. The simulation model includes the following components: • Signal source, A MATLAB generated combination of a haversine signal, exponential noise, and myopotential noise. The haversine signal is a test signal used to simulate the QRS complex which is normally recorded on an ECG trace as a representation of heart function. The amplitude is approximately 10 mV. Simulated myopotential noise represents a uniformly distributed random noise which is generated by skeletal muscle tissue. The myopotential noise has a frequency spectrum extending from 70 to 1000 Hz. The amplitude varies from 2 to 5 mV. Simulated exponential noise represents the depolarization effects of a pacing pulse as seen at the active cardiac lead. The amplitude is about ~1 volt, large in comparison with the haversine signal.

• A/D converter, A combination of sample & hold and quantizer functions translate the analog signal into a digital signal. Additionally, random noise is created during quantization.

• Digital filters, An inverse filter removes the exponential noise, and a lowpass filter removes myopotential noise.

• Threshold level detector, A function which detects the strength and amplitude of the output signal was created for robustness and as a data sampling device.

The simulation program is written for operation in a DOS environment. The program generates a haversine signal, myopotential noise (random noise), and exponential noise. The signals are amplified and sent to an A/D converter stage. The resultant digital signal is sent to a series of digital filters, where exponential noise is removed by an inverse digital filter, and myopotential noise is removed by the Chebyshev type I lowpass digital filter. The output signal is "detected" if its waveform exceeds the noise threshold level.

To determine what kind of digital filter would remove exponential noise, the spectrum of exponential noise relative to a haversine signal was examined. The spectrum of the exponential noise is continuous because the pace pulse is considered a non-periodic signal (assuming the haversine signal occurs immediately after a pace pulse). The spectrum of the haversine is also continuous, existing at every value of frequency ω . The spectrum of the haversine is overlapped by the spectrum of and amplitude of the exponential, which is several orders of magnitude larger. The exponential cannot be removed by conventional filters. Therefore, an inverse filter approach is used to remove exponential noise. The transfer function of the inverse filter of the model has only zeros. This type of filter is called FIR, all-zero, non recursive, or moving average.

CONCLUSIONS

Tests were run using the model to investigate the behavior of the inverse filter. It was found that the inverse filter method is very effective. Sensing problems were also studied and it was found that the haversine signal can be clearly sensed if there is a 5% change in the time constant of the exponential. Between 5% and 15% of change in the time constant, the filtered exponential amplitude swamps the haversine signal (Presented in Tables I, II, III, and IV). The sensitivity of the inverse filter was also studied. When using a fixed exponential time constant but changing the location of the zeros, the effect of the exponential noise on the haversine is minimal when zeros are located between 0.75 and 0.85 of the unit circle (Presented in Tables V, VI, VII, and VIII).

After the source signal passes the inverse filter, the signal consists only of the haversine signal, myopotential noise, and some random noise introduced during quantization. To remove these noises, a Chebyshev type I lowpass filter is used.

ORGANIZATION OF THE THESIS

• Chapter I describes the difficulties pacemakers have with myopotential and exponential noise. The solution discussed in this thesis is also outlined.

- Chapter II describes the simulation model which consist of a source signal generator, an amplifier, an A/D converter, digital filters, and a threshold detector. The model in this chapter provides a context for discussion by isolating and identifying components and their relationships to one another. Further details about each stage of the model appear in later chapters.
- Chapter III describes normal cardiac contraction, the QRS wave which describes contraction on an ECG trace, and the haversine signal which can replace the QRS for laboratory purposes. The chapter then describes the atrial waveform of the haversine signal, the ventricular waveform of the haversine signal, the ventricular waveform of the haversine signal, the ventricular wave spectrum, and the atrial ventricular representation by haversine signals. Finally, the chapter provides a MATLAB listing of the FFT translation of ECG data to a haversine signal.
- Chapter IV describes natural occurrence of myopotential noise, the sensitivity range for detection of myopotential noise, and the conflict between myopotential noise and ventricular output. Finally, code for creation of laboratory simulated myopotential noise is presented.
- Chapter V defines and describes the "pulse interval". The division of a pacing pulse into 2 parts, the conflict between exponential noise and the pacemaker's ability to register the heart's response to a pacing pulse, the possible causes of exponential noise, and the reasons a bandpass filter can not remove exponential noise are described. Finally, the code used to simulate exponential noise is presented.
- Chapter VI describes the test input signal and provides a code sample that combines haversine, exponential, and myopotential signals to create the test input.
- Chapter VII describes the need for a signal amplifier and provides a code sample which simulates the signal amplification done by a normal pacemaker.

- Chapter VIII describes an analog to digital converter, the sample and hold function, and presents the code sample for the test sample and hold functionality. The chapter then describes the quantization process and the introduction of random noise into the quantized signal. Finally, the code which represents the quantization process is presented.
- Chapter IX describes the need for and inadequacy of a digital filter, the instability of inverse digital filters, the use of a stable psuedo-inverse filter to remove the presence of the exponential noise, the effects of the filter on the test signal, and the use of a lowpass filter to minimize myopotential noise.
- Chapter X presents conclusions based on the test system. The conclusions include a description of limitations suggested by test runs of the simulation.
- Appendix A contains the simulation software listing. MATLAB was used as supporting software. MATLAB functions are detailed in the body text where necessary.
- Appendix B contains a Glossary of terms used in this document.

CHAPTER II

THE MODEL

This chapter presents the simulation model used to test the inverse filter and the lowpass filter. Figure 1 shows the entire model. The remaining chapter presents details used throughout the remainder of this paper.

Figure 1. Model.

During normal operation a pacemaker sends a pace pulse. The pace pulse is impressed on the heart by the implanted leads. The heart then contracts, producing the ECG's record of polarization, the QRS trace. How a QRS trace can be replaced with a haversine waveform for test purposes is described in Chapter III. In the model shown in Figure 1, the QRS corresponds to V_signal. The pacemaker can detect the QRS through the implanted leads.

After the trailing edge of the pace pulse, an exponential decay signal appears (exponential noise). V_pulse, shown in Figure 1, represents the appearance of exponential noise. Until the exponential noise subsides, it is difficult for the pacemaker to sense the V_signal.

To make matters more complicated, the V_signal is also overlaid with myopotential noise (V_noise in Figure 1) caused by the surrounding skeletal muscle.

Zload in Figure 1 represents a 500 Ω ringers solution load. Ringers solution is a combination of 8.6g NaCl, 0.3g KCl, 0.44g CaCl.2H20 in one liter of water. It is an essentially isotonic medium present in many animal tissues.

The V_signal amplitude is very small compared to the pacing pulse (V_pulse). Therefore, the signal is passed through an amplification stage before it is manipulated.

The output of the amplifier is sent to an analog to digital converter (A/D converter) which contains a sample and hold function and a quantizer. The signal, which would be used as an analog signal in many applications, is converted to a digital signal previous to manipulation by the filters presented and studied in this paper.

The converted digital signal then passes through a two digital filters, an inverse filter and a lowpass filter. The inverse filter removes the residual exponential noise from the pacing pulse. The lowpass filter removes the myopotential noise. Output of the digital filters is the unencumbered V_signal produced by the heart muscle.

Finally, the threshold detector records the V_signal when the V_signal rises above the level of residual unfiltered noise.

For the purposes of textual discussion, V_pulse is referred to as exponential noise; V_signal is referred to as haversine signal; and V_noise is myopotential noise.

CHAPTER III

HAVERSINE SIGNAL

This chapter describes normal cardiac contraction, the QRS wave which describes contraction on an ECG trace, and the haversine signal which can replace the QRS for laboratory purposes. The chapter then describes the atrial waveform of the haversine signal, the ventricular waveform of the haversine signal, the ventricular wave spectrum, and the atrial ventricular representation by haversine signals. Finally, the chapter provides a MATLAB listing of the FFT translation of ECG data to a haversine signal.

CARDIAC CONDUCTION SYSTEM

The cardiac conduction system is composed of specialized muscle tissues which transfer electrical impulses across the tissue of the heart. The impulses determine the moment of contraction for the various chambers of the heart. This system provides stimulating pulses at a rate appropriate for the body's needs. The system then conducts these impulses rapidly to all the muscle fibers of the ventricular chamber. Figure 2 shows the structures of the cardiac conduction system.

Of specific interest are the sinus-atrial node (the S-A node) and the atrial-ventricular node (A-V node). The former triggers atrial contractions. The latter triggers ventricular contractions.

A muscle cell receiving a stimulus and contracting or a nerve cell receiving stimulus and transmitting the stimulus to the next nerve cell is called depolarization. Recovery of the cell, so that it is ready to receive the next stimulus, is called repolarization. A pacemaker provides the trigger stimulation for heart contractions when the A-V node, the S-A node, or both do not properly trigger depolarization.

Figure 2. Heart.

From the electrical point of view, one cardiac cycle can be described as follows:

- Based on chemical information in the blood stream, the Sino-atrial (S-A node) fires and depolarization spreads through the atrial chamber.
- Depolarization spreads through the atrium and stimulates the Atrio-Ventricular node (A-V node).
- The atrial chamber starts to contract, emptying blood into the ventricular chamber.
 The atrial chamber remains at rest for the remainder of the cycle.
- 4. After a 1/10 -sec delay during which the atrial empties and the ventricular is filled, the A-V node fires and the ventricular contracts to empty blood into the arteries.
- 5. The QRS waveform (depicted in Figure 3) is recorded with an ECG.

6. Repolarization begins immediately.

Figure 3. QRS complex.

In Figure 3, the components of the cardiac cycle can be seen on an ECG trace. The small P wave represents the depolarization of sino-atrial tissues. The QRS wave, or R wave, is produced by the relatively large voltage caused by the depolarization of the atrio-ventricular tissues. The T wave is very small, and results from ventricular repolarization.

A QRS complex, called the QRS wave, or simply an R wave, is a large signal generated during depolarization of the ventricular. This is the beginning of ventricular contraction. When a pacing pulse is delivered to the heart, the response is almost immediate. The QRS commences within 1/100 sec.

For laboratory purposes, the QRS complex can be replaced by a single peak signal called the haversine signal. Figure 4 illustrates a haversine signal with an amplitude of 10 mV, a pulse width of 40 msec, and a period of 480 msec.

An expression for the haversine signal is presented below:

1A:
$$y(t) = Amp/2 * (1 - cos(2 \pi t/PW)), 0 < t \le PW$$

1B: $y(t) = 0$, $PW < t \le Per$

Figure 4. y(t) Haversine signal.

PW is the pulse width of the haversine in milliseconds (msec), Amp is the amplitude of the haversine in milli-volts (mV), Per is the period of the haversine in milliseconds (msec), and bpm defines the beats per minute (60,000/period), ppm defines the pulses per minute (60,000/period).

Figure 5 h(t) displays the waveform of equation (1A) and Figure 5 p(t) displays the rectangular waveform. By analyzing the equation (1A) and the rectangular waveform equation, multiplying the results, the haversine signal is formed as it is displayed in Figure 4. This method is applied in MATLAB to generate the haversine signal. The duty cycle of the rectangular waveform can be adjusted in the simulation to meet with requirements in the simulation.

The results of the Fourier transform applied to achieve the waveform displayed in Figure 4 are as follows:

From definition of the Fourier transform,

$$G(w) = \int_{-\infty}^{\infty} g(t) e^{(-j.w.t)} dt$$
$$g(t) = h(t)*p(t)$$
$$h(t) = \frac{Amp}{2} \cdot (1 + \cos(2\pi \frac{t}{pw}))$$
$$g(t) = \frac{Amp}{2} \cdot p(t) + \frac{Amp}{2} \cdot p(t) \cdot \cos(\frac{2\pi t}{pw})$$

Amp = amplitude, pw = pulse width

==> G(w) =
$$\frac{\operatorname{Amp \ sin} \frac{pw.w}{2}}{w} \cdot \frac{-4\pi^2 / pw^2}{w^2 - \frac{4\pi^2}{pw^2}}$$

P(t) wave form

Figure 5. Graphs of waveform h(t) and P(t).

ATRIAL REPRESENTATION

In order to create a model to test the proposed filters, it was necessary to simulate the atrial contraction as represented by a haversine signal waveform. The depolarization and subsequent contraction of the atrial produces a P wave with the following characteristics:

- Amp = 5 mV peak (amplitude)
- PW = 15 msec (pulse width)
- Per = 400 to 1000 msec (period)

Atrial Waveform

The haversine waveform component represented by: y(t) = h(t) * P(t), P(t) is a square wave. The duty cycle of this wave (P(t)) can be adjusted in the simulation to meet with requirements in the simulation.

Figure 6 shows the waveform of the atrial haversine signal with the amplitude is 5 mV, pulse width is 15 msec, period is 480 msec.

Atrial Spectrum

The spectrum of the atrial haversine is continuous, exiting at every value of fr equency w.

At w = 0, the amplitude of the spectrum represents the area under the haversine curve. FFT is calculated at the sampling frequency of 1000 Hz, with 1024 points FFT, and one period interval.

Since f(n) = Td * f(n*Td), the result of the magnitude spectrum are multiplied by the sampling period.

Figure 7 shows the frequency spectrum of the atrial haversine. At w = 0 Hz, the

magnitude spectrum is 0.0375. So, the dc level of the atrial haversine is 0.0375 mV (a dc signal has only one frequency component at w = 0).

Figure 6. Atrial signal.

Figure 7. Atrial spectrum analysis.

VENTRICULAR REPRESENTATION

In order to create a model to test the proposed filters, it was necessary to simulate the ventricular contraction as represented by a haversine signal waveform. The depolarization and subsequent contraction of the ventricular produces a QRS wave with the following characteristics:

- Amp = 10 mV peak (amplitude)
- PW = 40 msec (pulse width)
- Per = 400 to 1000 msec (period)

Ventricular Waveform

In Figure 8, the haversine waveform component represented by: y(t) = h(t) * P(t), P(t) is a square wave. The duty cycle of this wave can be adjusted in the simulation to meet with requirements in the simulation.

Ventricular Spectrum

The spectrum of the ventricular haversine is continuous, exiting at every value of frequency w.

At w = 0, the amplitude of the spectrum represents the area under the haversine curve. The FFT is calculated at the sampling frequency of 1000 Hz, with 1024 points FFT, and one period interval.

Since f(n) = Td * f(n*Td), the result of the magnitude spectrum are multiplied by the sampling period.

Figure 9 shows the frequency spectrum of the ventricular haversine. At w = 0 Hz, the magnitude spectrum is 0.2. So, the dc level of the ventricular haversine is 0.2 mV (a dc signal has only one frequency component at w = 0). This number 0.2 mV is very important because it is compared with the magnitude spectrum of the exponential noise in later chapter.

Calculating the FFT of the haversine signal, the exponential noise and the myopotential noise will define what type of digital filters can be used to remove the exponential noise and the myopotential noise.

Remember that, if the voltage amplitude of the pacing pulse is large enough to stimulate the heart then the haversine signal will respond immediately after the pacing pulse.

Figure 8. Ventricular signal.

Figure 9. Ventricular spectrum analysis.

ATRIAL/VENTRICULAR REPRESENTATION

For practical purposes, it was necessary to simulate the combined atrial/ventricular action. The atrial contracts to empty the blood into the ventricular. After a time interval delay, the ventricular contracts to empty blood into the arterial system. Both the atrial and the ventricular signals are represented in the simulation by with haversine signals.

Atrial/Ventricular Waveform

Figure 10 shows that the amplitude of the atrial is 5 mV and the amplitude of the ventricular is 10 mV. The pulse width of atrial is 15 msec, and the pulse width of the ventricular is 40 msec. The atrial interval is 480 msec, and the ventricular interval is 480 msec. The atrial-ventricular delay is equal to 100 msec.

As before, y(t) = h(t) * P(t), P(t) is a square wave, and the duty cycle can be adjusted to meet wave characteristic requirements for the simulation.

The delay interval is computed from tav = AV delay interval.

Figure 10. Atrial/ventricular signal.

21
SOFTWARE

This section contains the section of MATLAB code that simulates the atrial pulse (pwa), the ventricular pulse (pwv), the duty cycle, and then produces a ventricular haversine with a period of 480 msec and a pw of 40 msec. To achieve an even number of duty cycles, an atrial period of 480 msec was chosen and a ventricular period of 960 msec was chosen.

The FFT is calculated at the sampling frequency = 1000 Hz, and 1024 points FFT.

Again, f(n) = Td * f(n*Td). So, the result of the magnitude spectrum must be multiplied by the sampling period.

clear				
t = 0:.001:.48;	% sampling at 1msec (1000 Hz)			
pwa = 0.015;	% atrial pulse width = 15 msec			
pwv = 0.040;	% ventricular pulse width = 40 msec			
ampv = 0.010;	% V amplitude = 10 mV			
ampa = 0.005;	% A amplitude = 5 mV			
per1 = 0.48;	% period, type $1 = 480$ msec			
per2 = 0.96;	% period, type $2 = 960$ msec			
dutyv1 = 100/12;	% 100/12% duty cycle			
dutyv2 = 100/24;	% 100/24% duty cycle			
dutya1 = 3.125;	% 3.125% duty cycle			
dutya2 = 1.5625;	% 1.5625% duty cycle			
n = 1024;	% number of point			
fs = 1000;	% sampling rate (Hz)			
%% Ventricular: Haversine, period=480ms, pw=40ms% $ff = fs/2*(0:n/2)/(n/2);$ % frequency range (Hz) term 1 = ((ampy/2)*(1 = cos(2*ni*t/pwy))):				
$temp? = ((1+square(2*ni*t/ner1_duty(1))/2);$				
$h_{2} = temp1 + temp2$	1 u por1, u uty (1))/2),			
hav 1 = comp1. $comp2$, hav 1 = fft(hav 1 n).	% FFT of haversine			
magy 1 - abs(hav 1)	% magnitude of spectrum			
$m_{2} = aos(nav11),$	// magintude of speed unit			
$\max_{1}(2\cdot n/2) = 1*\max_{1}(2\cdot n/2)$				
temn1=[]	(2.142),			
temp2=[];				
plot(hav1)				
title('Ventricular haversine.pw=40ms.period=480ms'),				
xlabel('time (ms)'), vlabel('voltage (V)')				
grid				
hav1=[]:				
LJ,				

```
plot(ff(1:200),magv1(1:200)),
title('FFT magnitude ventricular,pw=40ms,period=480ms'), ...
xlabel('frequency (Hz)'), ylabel('|Y|')
grid
magv1=[];
%------ Ventricular: haversine, period=960ms, pw=40ms-----%
temp3 = ((ampv/2)*(1 - cos(2*pi*t/pwv)));
temp4 = ((1+square(2*pi*t/per2, dutyv2))/2);
hav2 = temp3.* temp4;
havf2 = fft(hav2,n);
magv2 = abs(havf2);
magv2((n/2+2):n)=[];
magv2(2:n/2)=1*magv2(2:n/2);
temp3=[];
temp4=[];
plot(hav2),
title('Ventricular haversine,pw=40ms,period=960ms'), ...
xlabel('time (ms)'), ylabel('voltage (V)')
grid
hav2=[];
plot(ff(1:200),magv2(1:200)),
title('FFT magnitude ventricular haversine,pw=40ms,period=960ms'), ...
xlabel('frequency (Hz)'), ylabel('|Y|')
grid
magv2=[];
%-----Atrial: haversine, period=480ms, pw=15ms-----%
temp5 = ((ampa/2)*(1 - cos(2*pi*t/pwa)));
temp6 = ((1+square(2*pi*t/per1, dutya1))/2);
haa1 = temp5 \cdot* temp6;
haaf1 = fft(haa1,n);
maga1 = abs(haaf1);
maga1((n/2+2):n)=[];
maga1(2:n/2)=1*maga1(2:n/2);
temp5=[];
temp6=[];
plot(haa1),
title('Atrial haversine,pw=15ms,period=480ms'), ...
xlabel('time (ms)'), ylabel('voltage (V)')
grid
plot(ff(1:200),maga1(1:200)),
title('FFT magnitude atrial haversine,pw=15ms,period=480ms'), ...
xlabel('frequency (Hz)'), ylabel('|Y|')
grid
maga1=[];
%-----Atrial: haversine, period=960ms, pw=15ms-----%
temp7 = ((ampa/2)*(1 - cos(2*pi*t/pwa)));
temp8 = ((1+square(2*pi*t/per2, dutya2))/2);
haa2 = temp7 .* temp8;
```

23

```
haaf2 = fft(haa2,n);
maga2 = abs(haaf2);
maga2((n/2+2):n)=[];
maga2(2:n/2)=1*maga2(2:n/2);
temp7=[];
temp8=[];
plot(haa2),
title('Atrial haversine,pw=15ms,period=960ms'), ...
xlabel('time (ms)'), ylabel('voltage (V)')
grid
haa2=[];
plot(ff(1:200),maga2(1:200)),
title('FFT magnitude atrial haversine,pw=15ms,period=960ms'), ...
xlabel('frequency (Hz)'), ylabel('|Y|')
grid
maga2=[];
%-----Atrial/ventricular representation, period = 480 msec----%
temp9 = ((ampv/2)*(1-cos (2* pi *(t-0.1) /pwv)));
temp10 = ((1 + square (2* pi (t - 0.1)/per 1, dutyv1))/2);
hav = tamp9 .* temp10;
temp9 = [1]; temp10 = [1];
plot (t, haa1, t, hav)
title ('Atrial/Ventricular representation')
xlabel ('time (sec)'), ylabel ('voltage (V)')
grid
```

haa1 = []; hav = [];

CHAPTER IV

MYOPOTENTIAL NOISE

This chapter describes the natural occurrence of myopotential noise, the sensitivity range for detection of myopotential noise, and the conflict between myopotential noise and ventricular output. Finally, code for creation of laboratory simulated myopotential noise is presented.

UNIFORMLY DISTRIBUTED NOISE

Simulated myopotential noise represents a uniformly distributed random noise which is generated by skeletal muscle tissue. The myopotential noise has a frequency spectrum extending from 70 to 1000 Hz. The amplitude varies from 2 to 5 mV. Simulated Exponential noise represents the depolarization effects of a pacing pulse as seen at the active cardiac lead. The amplitude is very large, ~1 volt.

Myopotential noise results from random signals and can frequently be observed on ECGs. For the purpose of this work, myopotential noises can be assumed to be transient bursts of uniformly distributed noise that typically has a frequency spectrum extending from 70 to 1000 Hz and amplitudes in the 2 to 5 mV range.

When unwanted signals such as myopotentials are sensed, the pulse generator is often inappropriately inhibited; oversensing myopotential noise is one of the more common failings of unipolar pacing. Sometimes over sensing of myopotential noise occurs with bipolar configurations as well.

A unipolar lead configuration has one conducting wire and an electrode. The pulse

generator uses body fluids for its return pathway (Figure 11). A bipolar lead has two conducting wires inside its insulation. The electrical signal travels down one wire to an electrode, passes through the myocardium, causing the heart to depolarize and contract, and returns by the second electrode (Figure 12).

Pacemakers designed for atrial application with a sensitivity of 0.5 to 1 mV are always influenced by myopotential noise.

Figure 11. Unipolar lead system.

Figure 12. Bipolar lead system.

Figure 13 shows the sensitivity curve for sensing an R wave. The amplitude of the myopotential is in the 1 to 2.5 mV range and the frequency is in the 70 to 1000 Hz range. Figure 14 shows the simulated ventricular output with the myopotential noise which inhibits the ventricular output because the ventricular lead senses the muscle activity which interferes with the atrial signal. Figure 15 shows a tape record of the myopotential signals.

Figure 13. Sensitivity curve for sensing R waves.

Figure 14. An atrial pacing with myopotential interference. During the interference, the ventricular lead senses muscle activity and inhibits ventricular lar output.

Figure 15. Examples of tape recorded myoelectric signals.

For the simulation, myopotential noise is generated by sending uniformly distributed random noise to through a bandpass filter with a pass band from 70 to 1000 Hz. Figure 16 shows the uniformly distributed random noise with amplitudes in the 1 to 5 mV range. Figure 17 shows the bandpass filter, a Chebyshev type I set to order 8, where ripple is equal to 0.1 dB in the pass band. Figure 18 shows the myopotential noise waveform. Figure 19 shows the frequency spectrum of myopotential noise created by filtering with the bandpass filter, as described above.

Figure 16. Uniformly distributed random noise.

Figure 17. Chebyshev type I, bandpass filter order 8th, pass band: 70Hz to 1000Hz.

Figure 18. Myopotential noise.

Figure 19. Spectrum of myopotential noise.

SOFTWARE

The following MATLAB code was used to simulate myopotential noise. The code creates a uniformly distributed random noise. The signal amplitude is 5 mV, and the sampling frequency is 2500 Hz. This signal is filtered by a bandpass filter. The filter is a Chebyshev type I. Ripple is at pass band .1 db, order is 8th, and the pass band is from 70 to 1000 Hz.

clear t = 0:.0004:1;rand('uniform') % uniformly distributed random noise y = 0.005*rand(t);% noise, standard deviation = .005 fs = 2500: % sampling rate n = 512: % number of point ff = fs/(2*n) * (0:n-1);ripple = .1; % allowable ripple, in decibels % filter order N = 8;% passband specification passband = [.056.8];[Bc,Ac] = cheby1(N, ripple, passband);hc = freqz(Bc,Ac,n);% frequency response h = abs(hc);% magnitude z = filter(Bc,Ac,y);% filter % FFT of myopotential noise $y_2 = fft(z,n);$ m = length(y2);% length of myopotential noise fm = fs/2*(0:n/2)/(n/2); % frequency range (Hz) magy2 = abs(y2);% magnitude of FFT myopotential magy2((n/2+2):n)=[];magy2(2:n/2)=1*magy2(2:n/2); plot(y(1:200)),title('uniformly distributed, random noise before filter') xlabel('time (ms)'), ylabel('standard deviation') grid y=[];plot(ff,h), title('Chebyshev filter, type 1') xlabel('frequency (Hz)'), ylabel('magnitude (mV)') grid h=[]; plot(z(1:200)),title('uniformly distributed, random noise, myopotential noise') xlabel('time (ms)'), ylabel('standard deviation') grid z=[]; plot(fm,magy2), title('magnitude of FFT myopotential noise') xlabel('frequency (Hz)'), ylabel('magnitude |Y|') grid

CHAPTER V

EXPONENTIAL NOISE

This chapter defines and describes the "pulse interval." The chapter then describes the division of a pacing pulse into 3 parts, the conflict between exponential noise and the pacemaker's ability to register the heart's response to a pacing pulse, the possible causes of exponential noise, and the reasons a bandpass filter can not remove exponential noise. Finally, the code used to simulate exponential noise is presented.

PACE PULSE

A pacemaker delivers a small electrical pulses during an appropriate millisecond interval to produce a desired heart rate. A typical pulse interval which results in a pulse rate of 72 pulses per minute (ppm) is 833 msec. The time periodic between pulses of electrical energy, or the distance between two pacings, is the pulse interval.

The output pulse of a pacemaker has a typical shape and time duration, depending on the type of circuitry. Figure 20 shows a typical artifact magnified on an oscilloscope.

Pulse width is the time during which electrical energy is being delivered to the heart as measured from the leading edge to the trailing edge of the pace pulse.

The voltage amplitude of the output pulse and the impedance of the lead pacing system are related to electrical current flow. The measuring method differs from one manufacture to another.

Figure 21 shows the pulse width and the voltage amplitude of a pacing pulse on an oscilloscope (LeCroy 9400A Dual 175 MHz oscilloscope).

Figure 20. The pacing artifact.

<u>Figure 21</u>. Pulse width = 530 S Amplitude = -4.8 V, LeCroy 9400A Dual 175 Mhz scope.

33

Normal pacemakers allow pulse width and voltage amplitude to be programmed to satisfy the requirements for each patient. In the simulation model, pulse width and voltage amplitude can be manipulated by changing the initial settings of the corresponding variables.

The pacing pulse shown in Figure 21 can be divided into three parts: exponential #1; exponential #2; exponential #3 (Figure 22). Exponential #3 is considered exponential noise.

Figure 21 describes the ventricular pacing pulse of the pacemaker. This pacemeker is one of the products of the MicroSystems Engineering company.

After the trailing edge of the pacing pulse, the pulse does not return immediately to ground level; rather, exponential signal decay after the trailing edge demonstrates that additional noises are produced by a pacemaker. This trailing edge noise is called exponential noise.

The amplitude of the exponential noise is very large (~ 1 volt) compared to the voltage amplitude of the heart beat (10mV). The overlap of exponential noise on the QRS signal which identifies the heart beat makes it is difficult for a pacemaker to register the response of a heart immediately after a pacing pulse. Usually, a pacemaker has to wait a certain time until the voltage amplitude of the exponential noise decreases to a low enough level that the QRS is clear of the exponential noise. Only then the pacemaker can sense the heart beat clearly. At that time the pacemaker can read the QRS and respond by sending the next pace pulse or by suppressing a pace pulse. The important thing is how to design a digital filter to remove the exponential noise, and this problem will be solved in later chapters.

Figure 22. Detail of the pace pulse.

Exponential noise results from a number of causes; however, the main cause is the contact of the surface lead with the muscle tissue of the body. This contact establishes capacitance between the lead and the muscle tissue. So, the amplitude and the time constant of the exponential (which is also a function of time) varies from patient to patient, as well as from moment to moment. To minimize noise, manufacturers have designed many different lead configurations that reduce the surface area contact. Professor Dr. Max Schaldach, the author of "Electrotherapy of the Heart," described the electro/myocardium interface very clearly. He also places emphasis on selection of the electrode materials.

Spectrum of Exponential Noise

The spectrum of exponential noise is shown in Figure 23. At the point of generation in the simulation, the exponential noise spectrum is continuous. The pace pulse is considered a non-periodic signal at this sample point because of the assumption that the haversine happens immediately after the pace pulse. The non-periodic signal has a continuous spectrum. Sometimes the pace pulse is considered a periodic signal when the pacemaker works without sensing a response.

A pacemaker allows the heart to beat by itself if the heart can. The pacemaker will save energy during dormant times. The pacemaker will take over only when a heart cannot supply enough blood to the body.

Figure 23 shows the frequency spectrum of the exponential noise, at 0Hz frequency the dc level is read 1.6mV. The ventricular dc level is 0.2 mV and the atrial dc level is .0375mV. The ratio between the exponential noise and the ventricular signal is 8:1, between the exponential noise and the atrial signal is 42:1.

Because the amplitude of the exponential noise is much higher than the amplitude of the haversine, there is no way to remove the exponential noise by using bandpass filters. Another difficulty is that the frequency spectrum of the exponential noise overlays the frequency spectrum of the haversine.

Figure 23. Spectrum of the exponential noise.

SOFTWARE

The following software listing is the MATLAB code for generating the exponential noise used in the simulation. The FFT is calculated at a sampling frequency of 1000 Hz and 512 points.

CIC	ear		
ste	ep 1=.1;		
t	= 0:.001:.7;	%	time interval of exponential#1
n	= 512;	%	number of point
fs	= 1000;	%	sampling rate
ff	= fs/2 * (0:n/2)/(n/2);	%	frequency range

```
aexp3 = 0.38912;
                       % amplitude of exponential #3
bexp3 = -524.395452; % time constant of exponential #3
%-------Kponential noise ------%
temp3 = (1+sign(t-step1))/2;
exp3 = (aexp3 * exp(bexp3*(t-step1))).* temp3;
temp3 = [];
plot(t(1:300),exp3(1:300))
title('exponential noise #3')
xlabel('time (us)'), ylabel('voltage (V)')
grid
expf = fft(exp3,n);
                                   % FFT of exponential noise
exp3 = [];
                                   % magnitude of FFT
magexp= abs(expf);
magexp(((n/2)+2):n)=[];
magexp(2:n/2)=1*magexp(2:n/2);
plot(ff,magexp)
title('magnitude of FFT exponential noise'), ...
xlabel('frequency (Hz)'), ylabel('magnitude |Y|')
grid
magexp = [];
```

CHAPTER VI

INPUT SIGNAL

This chapter describes the test input signal and provides a code sample that combines haversine, exponential, and myopotential signals to create the test input.

The signal used as input to the test filters consists of the haversine signal, exponential noise, and myopotential noise. Figure 24 shows a combination of these signals. The pace pulse is chosen such that the ventricular pace pulse has a pulse width equal to 40 msec, a period equal to 480 msec, and an amplitude equal to 10 mV. The haversine signal is very difficult to observe in Figure 24. At t=.02sec, the presence of haversine signal is seen as a tiny amplitude of the signal.

Figure 24. Haversine+exponential+myopotential.

SOFTWARE

The following software listing is the MATLAB code which provides a combination of exponential, haversine and myopotential signals for the simulation. This signal is then sent to the amplifier.

> clear % sampling rate fs = 2500;step = 1/fs; % sampling at 1msec (1000 Hz) t = 0:step:.48;pwv = 0.040;% ventricular pulse width = 40 msec % amplitude = 10 mV amp = 0.01;% period, type 1 = 480 msec per1 = 0.48;dutyv1 = 100/12;% 100/12% duty cycle % amplitude of exponential #3 a3 = .5;% time constant of exponential #3 b3 = -100;%----- Ventricular: haversine, period=480ms-----% temp1 = ((amp/2)*(1-cos(2*pi*t/pwv)));temp2 = ((1+square(2*pi*t/per1, dutyv1))/2);hav1 = temp1.* temp2; temp1=[]; temp2=[]; %----- Exponential noise ------% exp3 = a3 * exp(b3*(t));%---- Myopotential noise -----% % uniform distribution random noise rand('uniform') % noise, standard deviation = .005 y = 0.005*rand(t);% allowable ripple, in decibels ripple = .1;N = 8: % filter order passband = [(2*70)/fs (2*1000)/fs]; % passband specification [Bc,Ac] = cheby1(N, ripple, passband); % filter myo = filter(Bc,Ac,y);y=[]; Bc=[]; Ac=[]; %-----% $s_{in} = exp3 + hav1 + myo;$ exp3=[]; hav1=[]; myo=[]; plot(t,s_in) title('input signal=noise+haversine+exponential noise') xlabel('time (sec)'), ylabel('voltage (V)') grid

CHAPTER VII

AMPLIFIER

This chapter describes the need for a signal amplifier and provides a code sample which simulates the signal amplification done by a normal pacemaker.

Because the haversine signal is so small, an amplifier is used to make the haversine large enough to view after filtering takes place. The maximum gain of commercially available amplifiers is approximately 400. This number is not a fixed number. It varies from one manufacture to another. For the purposes of the simulation, the gain can be manipulated.

amplifier the input signal 6 5 4 voltage (V) 3 2 1 0 -1 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 time (sec)

Figure 25. Amplifier the input signal.

SOFTWARE

The following software listing presents the simulated amplifier used in the test of the proposed filter. For the purposes of the simulation, assume the input signal is s_in and the amplifier gain is set to 10.

clear gain = 10; % gain of amplifier % Amplifier the input signal (s_in) % s_in = gain * s_in; plot(t,s_in) title('amplifier the input signal') xlabel('time (sec)'), ylabel('voltage (V)') grid

CHAPTER VIII

A/D CONVERTER

This chapter describes an analog to digital converter, the sample and hold function, and presents the code listing for the sample and hold functionality. The chapter then describes the quantization process and the introduction of random noise into the quantized signal. Finally, the code which represents the quantization process is presented.

Most pacemakers handle an analog signal. In order to manipulate the pacemaker's signals with digital filters, an analog to digital converter (A/D converter) was used. The A/D converter is a physical device that converts an input voltage amplitude into a binary code representing a quantized amplitude value closest to the amplitude of the input. Because the conversion is not instantaneous, a high performance A/D typically includes a sample and hold function to compensate for the bottleneck caused by processing delays.

SAMPLE AND HOLD

The sample and hold function is designed to sample an analog signal as nearly instantaneously as possible and to hold the sample value as nearly constant as possible until the next sample is taken. The sample value is held for quantization by the A/D converter. In the test case, the signal is sampling and holding at 2048 Hz = 2^{11} . Figure 26 shows the result of the sample and hold.

Figure 26. Sample and hold.

Software

The following listing represents the simulated sample and hold function prepares the signal for the A/D converter. The signal is sampled at a frequency of 2048 Hz, and it holds at the same frequency.

> clear fs = 2048; % sampling rate step = 1/fs; t = 0:step:.48; % sampling at 2048 Hz %------% holdtime = step; holdsample = ceil(holdtime/step); m = length(s_in); s_hold = [];

```
t_hold = [];
s_{hold}(1) = s_{in}(1);
t_{hold}(1) = t(1);
k = 1;
num = 1;
while (k \le (m-1))
   k = k + 1;
    num = (k/holdsample) - fix(k/holdsample);
   if(num > 0)
           s_hold(k) = s_hold(k-1);
           t_hold(k) = t(k);
    end
   if(num \le 0)
           s_hold(k) = s_in(k);
           t_hold(k) = t(k);
    end
end
s_in=[]; t=[]; holdtime=0; holdsample=0; m=0; k=0; num=0;
plot(t_hold(1:200),s_hold(1:200))
title('sample and hold the input signal')
xlabel('time (sec)'), ylabel('voltage (V)')
grid
```

QUANTIZATION

A quantizer is a nonlinear system that transforms the input sample into one of a finite set of prescribed values. The quantization steps are usually uniform in signal processing.

```
Let X = input signal

<sup>X</sup>B = quantized input signal

B = bits resolution

VFS = voltage full scale

delta = step size of the quantizer

delta = VFS/(2<sup>B</sup>-1)
```

If the above is true, then the following expression represents the quantization done in the simulation. X_B =delta * round(X * (2^B-1)/VFS)

Because of the loss of precision due to the round-off function, the quantizer signal gains some random noise.

In this case, the signal is quantized at an 8 bit resolution. The input signal is above voltage full scale (VFS) and does not return to the output data. Figure 27 shows the relationship between the quantizer input signal and a VFS input signal of 10 V at an 8 bit resolution. Figure 28 shows the result of the input signal after going through the quantization stage.

Figure 27. VFS=10, 8 bits resolution.

Figure 28. After quantizer, signal gains some random noise.

Software

The following code listing represents the quantization function of the simulation. After the signal is quantized, it is ready to move through the filters for removal of exponential and myopotential noise.

clear

```
disp('----- Quantization -----');
VFS=0; bits=0; maxcount=0; delta=0;
VFS = input('Enter volts full scale (V) [VFS] ==>');
bits= input('Enter number of bits solution [bits] ==>');
maxcount = (2^bits)-1; % number of quantizer points
delta = VFS/maxcount; % voltage resolution at quantizer
l = 0;
l = length(s_hold);
q = 0;
```

```
s_quan=[];
t_quan=[];
s_inq=[];
while (q \le (l-1))
   q=q+1;
   num1 = abs(s_hold(q));
   num2 = sign(s_hold(q));
   s_iq(q) = s_hold(q);
   if (num1 > VFS)
         s_quan(q) = num2 * VFS;
         t_quan(q) = t_hold(q);
   end
   if (num1 \le VFS)
     s_quan(q) = num2 * delta * round((maxcount*num1)/VFS);
     t_quan(q) = t_hold(q);
   end
end
1=0; q=0; num1=0; num2=0; s_hold=[]; t_hold=[];
plot(s_inq,s_quan)
title('quantize the input signal')
xlabel('input signal (V)'), ylabel('quantized input signal(V)')
grid
s_inq=[];
plot(t_quan(1:200),s_quan(1:200))
title('quantize the input signal')
xlabel('time (sec)'), ylabel('quantize input signal(V)')
grid
```

CHAPTER IX

DIGITAL FILTER

This chapter describes the need for and inadequacy of digital filters, the instability of inverse digital filters, the use of a stable psuedo-inverse filter to remove the presence of the exponential noise, the effects of the filter on the test signal, and the use of a lowpass digital filter to minimize myopotential noise.

Since the purpose of this thesis is to show how to detect a haversine signal immediately following a pace pulse, the ability of the proposed digital filters to remove or minimize exponential noise and myopotential noise must be demonstrated. To this end, two filters are described here, the inverse digital filter, and the lowpass digital filter. When both filters have been applied to the signal which has been prepared by the simulation code described in previous chapters, the result should be output which contains only the haversine signal.

INVERSE DIGITAL FILTER

The input to the inverse digital filter is the combined signal containing the nonperiodic haversine signal, non-periodic exponential noise, and myopotential random noise. The spectrum of the haversine is overlapped by the spectrum of and amplitude of the exponential, which is several orders of magnitude larger. So, classical filters like the Chebyshev, the Butterworth, and the Elliptic are not useful.

Based on the characteristics of the exponential noise, an inverse filter was designed to filter out only the exponential noise. The parameters of the exponential noise signal (amplitude and time constant) are a function of time and this makes the inverse filter desirable because it is more sensitive to noise. Design of a usable inverse filter is difficult because they are often unstable. A pseudoinverse filter combines characteristics of the inverse filter with characteristics of more stable designs to create a usable and stabilized version of the inverse filter.

Some properties of inverse system:

H(z) - transfer function of the systemH_i(z) - inverse transfer function

$$H_i(z) = 1 / H(z)$$

To meet the definitional characteristics of inverse filters, the region of convergence of H(z) and $H_i(z)$ must overlap. Poles of $H_i(z)$ are zeros of H(z). If the region of convergence of $H_i(z)$ includes the unit circle, then the $H_i(z)$ is stable.

Suppose, the exponential signal is described as:

h(t) =
$$\frac{A}{2} e^{-b.t} (1 + \cos(\frac{\pi .t}{Ts}))$$

1) ===> H(z) = $\frac{z^2}{z^2 - a^2}$
2) ===> H_i(z) = $\frac{z^2 - a^2}{z^2}$
a= e^{-bTs}

Then the envelope of h(t) is an exponential decay. This is a second order system of the exponential. Since the H_i(z) has only zeros, this filter may be called FIR (finite impulse response), all-zero, non recursive, or moving average(MA). It follows that the system has a finite duration impulse response. Therefore, the system is stable.

Since the $H_i(z)$ is a polynomial with only negative powers of z, the system is

causal. However, if the zeros are outside the unit circle, the system is in non-minimum phase.

Analysis of the above (1)&(2) yields:

$$Y(z) = H(z).H_i(z) = 1$$

In time domain, $y(t) = \delta(t)$ impulse response

Summary:

$$H(Z) = Y(Z) / X(Z)$$

==> Y(Z) = X(Z) . H(Z)
let H(Z) = 1 / X(Z)
==> Y(Z) = 1 ==> y(t) = $\delta(t)$

After the signal goes through the inverse filter, the output is the haversine, the myopotential, and the impulse response. Figure 29 illustrates the perfect inverse filter, the exponential is completely removed.

Figures 30 and 31 show the different magnitudes of an inverse filter of 2nd order and an inverse filter of 1st order when zero locations change.

By changing the time constant of the exponential noise, the behavior of the inverse filter changes as shown in Tables I, II, III, and IV.

Figure 29. Inverse filter removes the exponential.

Tables I and II show the behavior of 2nd order inverse filter. By varying the a and b constants from the ideal exponential signal, Table I emphasizes the filtered results of the exponential signal and Table II emphasizes the filtered results for the combination of exponential and haversine signal. The difference between Table I and II is the haversine signal and the impulse response. From Table I, at t = 0 msec, the presence of the large amplitude of the filtered signal determines the presence of the impulse response function. At. 0%, a&b, the amplitude of the filtered signal approaches zero after 0 msec. This represents the perfect inverse filter. Increasing the percentage of the a and b coefficients causes the amplitude of the filtered signal to ring after 0 msec. This represents the exponential signal is still present after being filtered. Figure 32, 33, and 34, show three special cases describing Table II: Figure 32 shows the filtered signal at 0% a&b; 33

shows the signal at 2% a&b; and 34 at 5% a&b. The haversine in all cases is still clearly observed.

Tables III and IV show the behavior of the 1st order inverse filter. The presentation is similar to Tables I and II. Figures 35, 36 and 37 show three special cases describing Table IV that are similar to Figures 32, 33, and 34.

Tables V and VI show the sensitivity of the input signal for the second order inverse filter by changing the location of the zeros of the inverse filter. Table VI emphasizes the filtered results of the exponential signal. It describes the starting position of the zeros at 0.1, and when the zeros move closer to the ideal location (e^{-bT}) , the amplitude of the filtered signal decreases after 0 msec. But, when the zeros pass through the ideal location, the amplitude of the filter signal is negative, indicating the instability of the inverse filter. Figures 38, 39, and 40 show three special cases describing Table V: Figure 38 shows the filtered signal at zero = 0.7, Figure 39 shows the filtered signal at zero = 0.8, and Figure 40 shows the filtered signal at zero = 0.9. At zero = 0.8 the haversine signal is clearly observed. Figures 38, 39, and 40.

Tables VII and VIII display the sensitivity of the input signal for a 1st order inverse filter. The comparison procedure is similar to that of Table V and VI. Figure 39 shows the filtered signal at zero = 0.8, and Figure 40 shows the filtered signal at zero = 0.9. At zero = 0.8 the haversine signal is clearly observed.

Figure 30. Magnitude of inverse filter (2nd order) at different zero location.

Figure 31. Magnitude of inverse filter (1st order) at different zero location.

Figure 32. Fixed inverse filter (2nd order) coefficients, 0% a&b.

Figure 33. Fixed inverse filter (2nd order) coefficients, 2% a&b.

Figure 34. Fixed inverse filter (2nd order) coefficients, 5% a&b.

Figure 35. Fixed inverse filter (1st order) coefficients, 0% a&b.

Figure 36. Fixed inverse filter (1st order) coefficients, 2% a&b.

Figure 37. Fixed inverse filter (1st order) coefficients, 5% a&b.

Figure 38. Change zero location (2nd order inverse filter), zero = 0.7.

Figure 39. Change zero location (2nd order inverse filter), zero = 0.8.

Figure 40. Change zero location (2nd order inverse filter), zero = 0.9.

Figure 41. Change zero location (1st order inverse filter), zero = 0.7.

Figure 42. Change zero location (1st order inverse filter), zero = 0.8.

Figure 43. Change zero location (1st order inverse filter), zero = 0.9.

INVERSE FILTER (2ND ORDER) BEHAVIOR, WHERE INPUT SIGNAL = EXPONENTIAL ONLY: AT 0%, B = -400(1/SEC), A=0.5V IN A*EXP(-BT)

time msec	0% mV	.25% mV	.5% mV	.75% mV	1% mV	2% mV
0.000	500.000	498.750	497.500	496.250	495.000	490.000
0.977	-0.000	0.330	0.658	0.985	1.311	2.600
1.953	-0.000	0.223	0.446	0.669	0.890	1.773
2.441 2.930	0.000	0.000 0.151	0.000 0.302	$0.000 \\ 0.454$	0.000 0.605	0.000 1.209
3.418 3.906	0.000 - 0.000	0.000 0.102	0.000	0.000	0.000 0.411	0.000
4.395	0.000	0.000	0.000	0.000	0.000	0.000
4.883	0.000	0.009	0.139	0.209	0.279	0.562
5.859 6.348	-0.000	0.047 0.000	0.094 0.000	0.142 0.000	$0.190 \\ 0.000$	0.384 0.000
6.836 7.324	-0.000	0.032	0.064	0.096	0.129	0.262
7.813	0.000	0.022	0.043	0.065	0.087	0.178
8.789	-0.000	0.015	0.029	0.000	0.000	0.000
9.277 9.766	-0.000	0.000	0.000	0.000	0.000 0.040	0.000 0.083
10.254 10.742	0.000 -0.000	0.000 0.007	0.000 0.013	0.000 0.020	0.000 0.027	0.000
11.230	0.000	0.000	0.000	0.000	0.000	0.000
12.207	0.000	0.000	0.000	0.0014	0.000	0.009
12.695	0.000	0.003	0.006	0.009	0.013	0.026 0.000
13.672 14.160	0.000 0.000	0.002 0.000	0.004 0.000	0.006 0.000	0.009 0.000	0.018 0.000
14.648 15.137	$-0.000 \\ 0.000$	0.001	0.003	0.004	0.006	0.012
15.625 16.113	-0.000	0.001	0.002	0.003	0.004	0.008
16.602	-0.000	0.001	0.001	0.002	0.003	0.006
17.578	-0.000	0.000	0.001	0.001	0.002	0.000
18.066	-0.000	0.000	0.000 0.001	0.000 0.001	0.000	0.000

INVERSE FILTER (2ND ORDER) BEHAVIOR, WHERE INPUT SIGNAL = EXPONENTIAL ONLY: AT 0%, B = -400(1/SEC), A=0.5V IN A*EXP(-BT) (continued)

time	0%	.25%	.5%	.75%	1%	2%
msec	mV	mV	mV	mV	mV	mV
19.043 19.531 20.020 20.508 20.996 21.484 21.973 22.461 22.949	0.000 -0.000 -0.000 0.000 -0.000 -0.000 -0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000	$\begin{array}{c} 0.000\\ 0.001\\ 0.000\\ 0.001\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	0.000 0.002 0.000 0.001 0.000 0.001 0.000 0.001 0.000

INVERSE FILTER (2ND ORDER) BEHAVIOR, WHERE INPUT SIGNAL = EXPONENTIAL ONLY: AT 0%, B = -400(1/SEC), A=0.5V IN A*EXP(-BT) (continued)

time msec	3% mV	4% mV	5% mV	6% mV	7% mV	8% mV
$18.555 \\19.043 \\19.531 \\20.020 \\20.508 \\20.996 \\21.484 \\21.973 \\22.461 \\22.949 \\23.438 \\23.926 \\24.414 \\24.902 \\25.391 \\25.879 \\26.367 \\26.855 \\$	$\begin{array}{c} 0.004\\ 0.000\\ 0.003\\ 0.002\\ 0.002\\ 0.000\\ 0.001\\ 0.000\\ 0.001\\ 0.000\\ 0.001\\ 0.000\\ 0.001\\ 0.000\\ 0.$	0.006 0.000 0.004 0.000 0.003 0.000 0.002 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000	0.008 0.000 0.005 0.000 0.004 0.000 0.003 0.000 0.002 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.000	0.010 0.000 0.007 0.000 0.005 0.000 0.003 0.000 0.002 0.000 0.002 0.000 0.001 0.000 0.001 0.000 0.001 0.000	0.013 0.000 0.009 0.000 0.006 0.000 0.004 0.000 0.003 0.000 0.002 0.000 0.001 0.000 0.001 0.000 0.001 0.000	0.015 0.000 0.011 0.000 0.007 0.000 0.005 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.001 0.000 0.001 0.000

INVERSE FILTER (2ND ORDER) BEHAVIOR, WHERE INPUT SIGNAL = EXPONENTIAL ONLY: AT 0%, B = -400(1/SEC), A=0.5V IN A*EXP(-BT) (continued)

INVERSE FILTER (2ND ORDER) BEHAVIOR, WHERE INPUT SIGNAL = EXPONENTIAL ONLY: AT 0%, B = -400(1/SEC), A=0.5V IN A*EXP(-BT) (continued)

time msec	9% mV	10% mV	11% mV	12% mV	13% mV	14% mV	15% mV
time msec 0.00 0.49 0.98 1.47 1.95 2.44 2.93 3.42 3.91 4.40 4.88 5.37 5.86 6.35 6.84 7.32 7.81 8.30 8.79 9.28 9.77 10.25 10.74 11.23 11.72 12.21 12.70	9% mV 455.0 0.00 11.02 0.00 7.72 0.00 5.41 0.00 3.79 0.00 2.66 0.00 1.86 0.00 1.31 0.00 0.92 0.00 0.64 0.00 0.45 0.00 0.45 0.00 0.45 0.00 0.32 0.00 0.22 0.00 0.22 0.00	10% mV 450.0 0.00 12.13 0.00 8.53 0.00 6.00 0.00 4.23 0.00 2.97 0.00 2.10 0.00 2.10 0.00 1.47 0.00 1.47 0.00 1.04 0.00 0.73 0.00 0.51 0.00 0.51 0.00 0.36 0.00 0.25 0.00	11% mV 445.0 0.00 13.22 0.00 9.34 0.00 6.60 0.00 4.60 0.00 3.30 0.00 2.32 0.00 1.64 0.00 1.64 0.00 1.16 0.00 1.16 0.00 0.82 0.00 0.58 0.00 0.58 0.00 0.58 0.00 0.29 0.00	12% mV 440.0 0.00 14.29 0.00 10.13 0.00 7.18 0.00 5.09 0.00 3.61 0.00 2.56 0.00 1.82 0.00 1.82 0.00 1.29 0.00 1.29 0.00 0.91 0.00 0.65 0.00 0.46 0.00 0.33 0.00 0.23 0.23	13% mV 435.0 0.00 15.33 0.00 10.92 0.00 7.77 0.00 5.53 0.00 3.94 0.00 2.80 0.00 2.80 0.00 2.80 0.00 2.80 0.00 2.00 0.00 1.42 0.00 1.42 0.00 1.01 0.00 0.72 0.00 0.51 0.00 0.37 0.00 0.26	14% mV 430.0 0.00 16.36 0.00 11.69 0.00 8.35 0.00 5.97 0.00 4.27 0.00 4.27 0.00 4.27 0.00 3.05 0.00 2.18 0.00 2.18 0.00 1.56 0.00 1.56 0.00 1.11 0.00 0.80 0.00 0.57 0.00 0.57 0.00 0.57 0.00 0.57 0.00 0.57 0.00 0.00	15% mV 425.0 0.00 17.35 0.00 12.45 0.00 8.93 0.00 6.41 0.00 4.60 0.00 3.30 0.00 2.37 0.00 1.70 0.00 1.22 0.00 1.22 0.00 0.87 0.00 0.87 0.00 0.63 0.00 0.45 0.00 0.32
$13.18 \\ 13.67 \\ 14.16 \\ 14.65 \\ 15.14 \\ 15.62 \\ 16.11 \\ 16.60 \\ 17.10 \\ 17.58 $	0.00 0.11 0.00 0.08 0.00 0.05 0.00 0.04 0.00 0.03	0.00 0.13 0.00 0.09 0.00 0.06 0.00 0.04 0.00 0.03	$\begin{array}{c} 0.00\\ 0.14\\ 0.00\\ 0.10\\ 0.00\\ 0.07\\ 0.00\\ 0.05\\ 0.00\\ 0.04 \end{array}$	0.00 0.16 0.00 0.12 0.00 0.08 0.00 0.06 0.00 0.04	0.00 0.16 0.00 0.13 0.00 0.09 0.00 0.07 0.00 0.05	0.00 0.20 0.15 0.00 0.11 0.00 0.08 0.00 0.06	0.00 0.23 0.00 0.17 0.00 0.12 0.00 0.09 0.00 0.06

INVERSE FILTER (2ND ORDER) BEHAVIOR, WHERE INPUT SIGNAL = EXPONENTIAL ONLY: AT 0%, B = -400(1/SEC), A=0.5V IN A*EXP(-BT) (continued)

time msec	9% mV	10% mV	11% mV	12% mV	13% mV	14% mV	15% mV
18.07 18.56 19.04 19.53 20.02 20.51 21.48 21.97 22.46 22.95 23.44 23.93 24.41 24.90 25.39	$\begin{array}{c} 0.00\\ 0.02\\ 0.00\\ 0.01\\ 0.00\\ 0.01\\ 0.00\\ 0.01\\ 0.00\\$	0.00 0.02 0.00 0.02 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00	0.00 0.03 0.00 0.02 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00	0.00 0.03 0.00 0.02 0.00 0.02 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00	0.00 0.03 0.00 0.02 0.00 0.02 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00	0.00 0.04 0.00 0.03 0.00 0.02 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01	0.00 0.04 0.00 0.03 0.00 0.02 0.00 0.02 0.00 0.01 0.00 0.01 0.00 0.01 0.00
25.88 26.37 26.86	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00

.

INVERSE FILTER BEHAVIOR (2ND ORDER) RESULTING FROM CHANGING A AND B IN A*EXP(-BT). INPUT SIGNAL = EXPONENTIAL + HAVERSINE

INVERSE FILTER BEHAVIOR (2ND ORDER) RESULTING FROM CHANGING A AND B IN A*EXP(-BT). INPUT SIGNAL = EXPONENTIAL + HAVERSINE (continued)

68

INVERSE FILTER BEHAVIOR (2ND ORDER) RESULTING FROM CHANGING A AND B IN A*EXP(-BT). INPUT SIGNAL = EXPONENTIAL + HAVERSINE (continued)

time	0%	.25%	.50%	.75%	1%	2%
msec	mV	mV	mV	mV	mV	mV
37.598 38.086 38.574 39.063 39.551 40.039 40.527 41.016 41.504 41.992 42.480 42.969 43.457 43.945 44.434 44.922 45.410 45.898 46.875 47.363 47.852 48.340 48.828 49.316 49.805 50.293 50.293	$\begin{array}{c} -0.114\\ -0.119\\ -0.113\\ -0.098\\ -0.072\\ -0.037\\ -0.008\\ -0.000\\$	$\begin{array}{c} -0.114\\ -0.119\\ -0.113\\ -0.098\\ -0.072\\ -0.037\\ -0.008\\ 0.000\\ 0.$	$\begin{array}{c} -0.114\\ -0.119\\ -0.113\\ -0.098\\ -0.072\\ -0.037\\ -0.008\\ 0.000\\ 0.$	$\begin{array}{c} -0.114\\ -0.119\\ -0.113\\ -0.098\\ -0.072\\ -0.037\\ -0.008\\ 0.000\\ 0.$	$\begin{array}{c} -0.114\\ -0.119\\ -0.113\\ -0.098\\ -0.072\\ -0.037\\ -0.008\\ 0.000\\ 0.$	$\begin{array}{c} -0.114\\ -0.119\\ -0.113\\ -0.098\\ -0.072\\ -0.037\\ -0.008\\ 0.000\\ 0.$

· · · · ·

time	3%	4%	5%	6%	7 %	8%
msec	mV	mV	mV	mV	mV	mV
msec 0.000 0.488 0.977 1.465 1.953 2.441 2.930 3.418 3.906 4.395 4.883 5.371 5.859 6.348 6.836 7.324 7.813 8.301 8.789 9.277 9.766 10.254 10.742 11.230 11.719 12.207 12.695 13.184 13.672 14.160 14.648 15.137 15.625 16.113 16.602	mV 485.000 0.015 3.927 0.122 2.842 0.274 2.175 0.458 1.801 0.669 1.633 0.902 1.607 1.152 1.680 1.413 1.818 1.679 1.998 1.943 2.200 2.199 2.410 2.442 2.617 2.666 2.810 2.865 2.982 3.034 3.126 3.171 3.238 3.270 3.315	mV 480.000 0.015 5.173 0.122 3.709 0.274 2.778 0.458 2.221 0.669 1.924 0.902 1.810 1.152 1.820 1.413 1.916 1.679 2.066 1.943 2.247 2.199 2.443 2.247 2.199 2.442 2.640 2.865 2.865 2.993 3.034 3.134 3.244 3.270	mV 475.000 0.015 6.398 0.122 4.568 0.274 3.380 0.458 2.642 0.669 2.220 0.902 2.016 1.152 1.965 1.413 2.017 1.965 1.413 2.017 1.965 1.413 2.017 1.943 2.297 2.199 2.478 2.442 2.664 2.843 2.865 3.004 3.142 3.171 3.250 3.270 3.323	mV 470.000 0.015 7.600 0.122 5.418 0.274 3.981 0.458 3.067 0.669 2.519 0.902 2.228 1.152 2.114 1.413 2.122 1.679 2.211 1.943 2.349 2.515 2.442 2.690 2.515 2.442 2.666 2.865 3.017 3.034 3.151 3.256 3.270 3.277	mV 465.000 0.015 8.781 0.122 6.259 0.274 4.580 0.458 3.493 0.669 2.822 0.902 2.443 1.152 2.268 1.413 2.268 1.413 2.268 1.413 2.268 1.943 2.404 2.199 2.554 2.404 2.199 2.554 2.442 2.717 2.666 2.880 3.031 3.161 3.263 3.270 3.320	mV 460.000 0.015 9.939 0.122 7.091 0.274 5.177 0.458 3.922 0.669 3.130 0.902 2.663 1.152 2.425 1.413 2.344 1.679 2.369 1.943 2.462 2.199 2.595 2.442 2.747 2.666 2.901 2.865 3.046 3.034 3.171 3.270 3.270 3.270
16.602	3.315	3.319	3.323	3.327	3.332	3.3
17.090	3.331	3.331	3.331	3.331	3.331	
17.578	3.353	3.356	3.358	3.362	3.365	

time	3%	4%	5%	6%	7ቄ	8%
msec	mV	mV	mV	mV	mV	mV
msec 18.555 19.043 19.531 20.020 20.508 20.996 21.484 21.973 22.461 22.949 23.438 23.926 24.414 24.902 25.391 25.879 26.367 26.855 27.344 27.832 28.320 28.809 29.297 29.785 30.273 30.762 31.250 31.738 32.227 33.691 34.180	mV 3.351 3.322 3.229 3.173 3.272 3.229 3.173 3.110 3.037 2.957 2.868 2.773 2.669 2.561 2.327 2.669 2.561 2.327 2.203 2.077 1.947 1.816 1.550 1.417 1.286 1.029 0.787 0.564 0.365 0.277 0.196	mV 3.353 3.322 3.311 3.272 3.230 3.173 3.111 3.037 2.958 2.868 2.773 2.958 2.869 2.561 2.327 2.203 2.077 1.816 1.683 1.550 1.417 1.286 1.029 0.906 0.787 0.564 0.365 0.277 0.196	mV 3.355 3.322 3.272 3.231 3.173 3.173 3.173 3.173 3.173 3.173 2.958 2.868 2.773 2.958 2.869 2.561 2.446 2.327 2.203 2.077 1.947 1.816 1.683 1.550 1.417 1.286 1.029 0.906 0.787 0.564 0.365 0.277 0.196	mV 3.357 3.322 3.314 3.272 3.232 3.173 3.112 3.037 2.959 2.868 2.774 2.669 2.562 2.328 2.077 1.947 1.816 1.683 1.550 1.417 1.286 1.029 0.787 0.564 0.365 0.277 0.196	mV 3.360 3.322 3.316 3.272 3.233 3.173 3.173 3.173 3.173 3.173 3.037 2.959 2.868 2.774 2.669 2.562 2.446 2.328 2.077 1.947 1.816 1.683 1.550 1.417 1.286 1.029 0.906 0.787 0.564 0.365 0.277 0.196	mV 3.363 3.322 3.318 3.272 3.234 3.173 3.114 3.037 2.960 2.868 2.774 2.669 2.562 2.446 2.328 2.203 2.977 1.947 1.816 1.683 1.550 1.417 1.286 1.550 1.417 1.286 1.029 0.906 0.787 0.672 0.564 0.365 0.277 0.196
34.668	0.124	0.124	0.124	0.124	0.124	0.124
35.156	0.061	0.061	0.061	0.061	0.061	0.061
35.645	0.006	0.006	0.006	0.006	0.006	0.006
36.621	-0.038	-0.038	-0.038	-0.038	-0.038	-0.038

time	3%	4%	5 %	6%	7%	8%
msec	mV	mV	mV	mV	mV	mV
37.109 37.598 38.086 38.574 39.063 39.551 40.039 40.527 41.016	-0.099 -0.114 -0.119 -0.113 -0.098 -0.072 -0.037 -0.008 0.000	-0.099 -0.114 -0.119 -0.113 -0.098 -0.072 -0.037 -0.008 0.000	-0.099 -0.114 -0.119 -0.113 -0.098 -0.072 -0.037 -0.008 0.000	-0.099 -0.114 -0.119 -0.113 -0.098 -0.072 -0.037 -0.008 0.000	-0.099 -0.114 -0.118 -0.098 -0.072 -0.037 -0.008 0.000	-0.099 -0.114 -0.118 -0.113 -0.098 -0.072 -0.037 -0.008 0.000

INVERSE FILTER BEHAVIOR (2ND ORDER) RESULTING FROM CHANGING a and b IN a*exp(-bt). INPUT SIGNAL = EXPONENTIAL + HAVERSINE (continued)

time	9%	10%	11%	12%	13%	14%	15%
msec	mV	mV	mV	mV	mV	mV	mV
time msec 18.56 19.04 19.53 20.02 20.51 21.00 21.48 21.97 22.46 22.95 23.34 23.93 24.41 24.90 25.39 25.88 26.37 26.86 27.34 27.83 28.91 29.30 29.78 30.27 30.76 31.25 31.74 32.23 33.20	9% mV 3.37 3.33 3.22 3.27 3.24 3.17 3.11 3.04 2.96 2.87 2.77 2.67 2.56 2.45 2.33 2.20 2.08 1.95 1.82 1.68 1.55 1.42 1.27 1.15 1.03 0.91 0.78 0.67 0.56 0.46 0.37	10% mV 3.37 3.33 3.32 3.27 3.24 3.17 3.12 3.04 2.96 2.87 2.78 2.78 2.67 2.56 2.44 2.33 2.20 2.08 1.95 1.81 1.68 1.55 1.42 1.29 1.17 1.03 0.91 0.79 0.67 0.56 0.46 0.37	11% mV 3.37 3.33 3.27 3.24 3.17 3.12 3.04 2.96 2.87 2.78 2.67 2.56 2.45 2.33 2.20 2.08 1.95 1.82 1.68 1.55 1.42 1.29 1.17 1.03 0.91 0.79 0.67 0.56 0.46 0.36	12% mV 3.37 3.33 3.27 3.24 3.17 3.12 3.04 2.96 2.87 2.77 2.67 2.56 2.45 2.33 2.20 2.08 1.95 1.82 1.68 1.55 1.42 1.27 1.16 1.03 0.91 0.79 0.67 0.56 0.46 0.36	13% mV 3.38 3.33 3.27 3.24 3.17 3.12 3.04 2.97 2.87 2.77 2.67 2.57 2.45 2.33 2.20 2.08 1.95 1.82 1.68 1.55 1.42 1.27 1.16 1.03 0.91 0.79 0.67 0.56 0.46 0.37	14% mV 3.39 3.33 3.34 3.27 3.25 3.17 3.12 3.04 2.97 2.87 2.78 2.67 2.57 2.45 2.33 2.20 2.08 1.95 1.82 1.68 1.55 1.42 1.29 1.17 1.03 0.91 0.79 0.67 0.56 0.46 0.37	15% mV 3.39 3.33 3.34 3.27 3.25 3.17 3.13 3.04 2.98 2.87 2.78 2.67 2.57 2.45 2.33 2.20 2.08 1.95 1.82 1.68 1.55 1.42 1.29 1.17 1.03 0.91 0.79 0.67 0.56 0.46 0.37
33.69	0.28	0.28	0.28	0.27	0.28	0.28	0.28
34.18	0.20	0.20	0.20	0.20	0.20	0.20	0.20
34.67	0.12	0.12	0.12	0.12	0.12	0.12	0.12
35.17	0.06	0.06	0.06	0.06	0.06	0.06	0.06
35.65	0.01	0.01	0.01	0.01	0.01	0.01	0.01
36.13	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04
36.62	-0.07	-0.07	-0.07	-0.07	-0.07	-0.07	-0.07

INVERSE FILTER BEHAVIOR (2ND ORDER) RESULTING FROM CHANGING
A AND B IN A*EXP(-BT). INPUT SIGNAL = EXPONENTIAL + HAVERSINE
(continued)

time	9%	10%	11%	12%	13%	14%	15%
msec	mV	mV	mV	mV	mV	mV	mV
37.12 37.60 38.09 38.57 39.06 39.55 40.04 40.53 41.02 41.50	$\begin{array}{c} -0.10 \\ -0.11 \\ -0.12 \\ -0.11 \\ -0.01 \\ -0.07 \\ -0.04 \\ -0.01 \\ 0.00 \\ 0.00 \end{array}$	$\begin{array}{c} -0.10 \\ -0.11 \\ -0.12 \\ -0.11 \\ -0.07 \\ -0.07 \\ -0.04 \\ -0.01 \\ 0.00 \\ 0.00 \end{array}$	$\begin{array}{c} -0.10 \\ -0.11 \\ -0.12 \\ -0.11 \\ -0.07 \\ -0.07 \\ -0.04 \\ -0.01 \\ 0.00 \\ 0.00 \end{array}$	$\begin{array}{c} -0.10 \\ -0.11 \\ -0.12 \\ -0.11 \\ -0.07 \\ -0.07 \\ -0.04 \\ -0.01 \\ 0.00 \\ 0.00 \end{array}$	$\begin{array}{c} -0.10 \\ -0.11 \\ -0.12 \\ -0.11 \\ -0.01 \\ -0.07 \\ -0.04 \\ -0.01 \\ 0.00 \\ 0.00 \end{array}$	$\begin{array}{c} -0.10 \\ -0.11 \\ -0.12 \\ -0.11 \\ -0.07 \\ -0.04 \\ -0.01 \\ 0.00 \\ 0.00 \end{array}$	$\begin{array}{c} -0.10 \\ -0.11 \\ -0.12 \\ -0.11 \\ -0.07 \\ -0.07 \\ -0.04 \\ -0.01 \\ 0.00 \\ 0.00 \end{array}$

•

time .25% .75% 0% .50% 18 28 msec mV mV mV mV mV mV 0.000 500.000 498.750 497.500 496.250 495.000 490.000 0.200 0.400 0.488 0.000 0.598 0.796 1.578 0.165 0.329 0.977 -0.000 0.493 0.656 1.303 0.000 0.136 0.271 0.406 0.541 1.465 1.076 0.000 0.112 0.223 0.335 1.953 0.446 0.888 2.441 0.000 0.092 0.184 0.276 0.367 0.734 0.076 0.151 0.227 0.303 2.930 0.000 0.606 0.125 0.187 3.418 -0.000 0.062 0.250 0.500 0.000 0.051 0.103 0.154 0.206 3.906 0.413 4.395 0.000 0.042 0.084 0.127 0.169 0.341 0.105 0.035 0.070 0.140 4.883 0.000 0.282 5.371 0.000 0.029 0.057 0.086 0.115 0.233 0.047 0.192 5.859 0.000 0.024 0.071 0.095 0.039 0.000 0.019 0.058 0.078 6.348 0.159 -0.000 0.016 0.032 0.048 0.064 6.836 0.131 0.026 7.324 0.000 0.013 0.040 0.053 0.108 0.022 7.813 0.000 0.011 0.033 0.044 0.089 8.301 0.000 0.009 0.018 0.027 0.036 0.074 8.789 -0.000 0.007 0.015 0.022 0.030 0.061 9.277 -0.000 0.006 0.012 0.018 0.025 0.050 0.015 9.766 0.000 0.005 0.010 0.020 0.042 0.004 0.008 0.012 10.254 0.000 0.017 0.034 0.003 0.007 0.010 10.742 -0.000 0.014 0.028 11.230 0.000 0.003 0.006 0.008 0.011 0.023 0.002 0.005 0.007 11.719 0.000 0.009 0.019 0.002 0.004 0.006 12.207 -0.000 0.008 0.016 0.002 0.003 0.005 0.006 12.695 -0.0000.013 0.003 0.004 13.184 0.000 0.001 0.005 0.011 13.672 0.000 0.001 0.002 0.003 0.004 0.009 -0.000 0.001 0.002 0.003 0.004 0.007 14.160 0.001 0.001 0.002 0.003 14.648 0.000 0.006 0.001 0.002 0.002 15.137 0.000 0.001 0.005 15.625 -0.000 0.000 0.001 0.001 0.002 0.004 0.000 0.000 0.001 0.001 0.002 0.003 16.113 -0.000 0.000 0.001 0.001 0.001 0.003 16.602 0.001 0.001 0.000 0.001 0.002 17.090 -0.000 0.001 0.000 0.001 17.578 0.000 0.000 0.002 0.001 18.066 0.000 0.000 0.000 0.001 0.002 0.000 0.000 0.001 0.001 18.555 -0.000 0.000

time	0%	.25%	.50%	.75%	1%	2%
msec	mV	mV	mV	mV	mV	mV
19.043 19.531 20.020 20.508 20.996 21.484 21.973	$\begin{array}{c} 0.000\\ 0.000\\ -0.000\\ 0.000\\ 0.000\\ -0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.001 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \end{array}$	$\begin{array}{c} 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.000 \\ 0.000 \\ 0.000 \end{array}$

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	time 3%	4%	5ቼ	6%	7용	8%
	msec mV	mV	mV	mV	mV	mV
7.813 0.137 0.186 0.237 0.290 0.345 0.4 8.301 0.113 0.154 0.197 0.242 0.288 0.3 8.789 0.094 0.128 0.164 0.201 0.240 0.2 9.277 0.077 0.106 0.136 0.167 0.200 0.2 9.766 0.064 0.088 0.113 0.139 0.167 0.1 10.254 0.053 0.073 0.094 0.116 0.139 0.1 10.742 0.044 0.060 0.078 0.096 0.116 0.1 11.230 0.036 0.050 0.065 0.080 0.097 0.1 11.719 0.030 0.041 0.054 0.067 0.081 0.0 12.207 0.025 0.034 0.045 0.056 0.067 0.0 12.695 0.021 0.029 0.037 0.046 0.056 0.0 13.184 0.017 0.024 0.031 0.039 0.047 0.0 14.160 0.012 0.016 0.027 0.033 0.0 14.648 0.010 0.013 0.018 0.023 0.0 15.625 0.007 0.008 0.010 0.013 0.016 0.013 16.602 0.005 0.006 0.008 0.011 0.013 0.016 16.602 0.005 0.006 0.007 0.009 0.011 0.013	0.000 485.00 0.488 2.34 0.977 1.94 1.465 1.60 1.953 1.32 2.441 1.09 2.930 0.90 3.418 0.75 3.906 0.62 4.395 0.51 4.883 0.42 5.371 0.35 5.859 0.29 6.348 0.24 6.836 0.20 7.324 0.16 7.813 0.13 8.301 0.11 8.789 0.09 9.277 0.07 9.766 0.06 10.254 0.05 10.742 0.04 11.230 0.03 11.719 0.03 11.719 0.03 12.207 0.02 13.184 0.01 14.60 0.01 14.648 0.01 15.137 0.00 15.625 0.00 16.113 0.00	$\begin{array}{c} 1.10\\ 480.000\\ 3.097\\ 2.567\\ 2.128\\ 1.764\\ 1.463\\ 1.213\\ 1.005\\ 0.833\\ 0.691\\ 0.573\\ 0.475\\ 0.326\\ 0.573\\ 0.475\\ 0.326\\ 0.271\\ 0.326\\ 0.271\\ 0.326\\ 0.271\\ 0.128\\ 0.154\\ 0.128\\ 0.154\\ 0.128\\ 0.154\\ 0.128\\ 0.154\\ 0.128\\ 0.020\\ 0.041\\ 0.088\\ 0.073\\ 0.060\\ 0.050\\ 0.041\\ 0.029\\ 0.024\\ 0.024\\ 0.020\\ 0.041\\ 0.029\\ 0.024\\ 0.029\\ 0.024\\ 0.020\\ 0.013\\ 0.009\\ 0.008\\ 0.005\\ 0.008\\ 0.005\\ 0.006\\ 0.005\\ 0.005\\ 0.006\\ 0.005\\ 0.006\\ 0.005\\ 0$	$\begin{array}{c} 475.000\\ 3.834\\ 3.185\\ 2.646\\ 2.198\\ 1.825\\ 1.516\\ 1.260\\ 1.046\\ 0.869\\ 0.722\\ 0.600\\ 0.498\\ 0.414\\ 0.344\\ 0.285\\ 0.237\\ 0.197\\ 0.164\\ 0.237\\ 0.197\\ 0.164\\ 0.235\\ 0.237\\ 0.197\\ 0.164\\ 0.344\\ 0.285\\ 0.237\\ 0.0197\\ 0.164\\ 0.031\\ 0.078\\ 0.065\\ 0.054\\ 0.078\\ 0.054\\ 0.054\\ 0.078\\ 0.021\\ 0.018\\ 0.015\\ 0.012\\ 0.010\\ 0.008\\ 0.007\\ 0.006\\ 0.026\\ 0.026\\ 0.026\\ 0.021\\ 0.010\\ 0.008\\ 0.007\\ 0.008\\ 0.007\\ 0.006\\ 0.006\\ 0.007\\ 0.006\\$	$\begin{array}{c} 1.1.7\\ 470.000\\ 4.557\\ 3.793\\ 3.157\\ 2.627\\ 2.187\\ 1.820\\ 1.515\\ 1.261\\ 1.049\\ 0.873\\ 0.727\\ 0.605\\ 0.503\\ 0.727\\ 0.605\\ 0.503\\ 0.419\\ 0.290\\ 0.242\\ 0.201\\ 0.167\\ 0.139\\ 0.290\\ 0.242\\ 0.201\\ 0.167\\ 0.139\\ 0.116\\ 0.096\\ 0.080\\ 0.067\\ 0.056\\ 0.080\\ 0.067\\ 0.056\\ 0.046\\ 0.039\\ 0.022\\ 0.022\\ 0.022\\ 0.022\\ 0.018\\ 0.015\\ 0.013\\ 0.011\\ 0.009\\ 0.027\\ 0.022\\ 0.018\\ 0.015\\ 0.013\\ 0.011\\ 0.009\\ 0.007\\ 0.027\\ 0.022\\ 0.013\\ 0.011\\ 0.009\\ 0.007\\ 0.009\\ 0.007\\ 0.009\\ 0.007\\ 0.009\\ 0.007\\ 0.009\\ 0.007\\ 0.009\\ 0.007\\ 0.009\\ $	465.000 5.265 4.391 3.662 3.053 2.546 2.123 1.771 1.476 1.231 1.027 0.856 0.714 0.595 0.496 0.414 0.345 0.288 0.240 0.200 0.414 0.345 0.288 0.240 0.200 0.116 0.097 0.081 0.097 0.081 0.097 0.081 0.007 0.039 0.033 0.027 0.023 0.019 0.016 0.013 0.010	$\begin{array}{c} 460.000\\ 5.959\\ 4.979\\ 4.160\\ 3.476\\ 2.904\\ 2.426\\ 2.027\\ 1.694\\ 1.415\\ 1.183\\ 0.988\\ 0.826\\ 0.690\\ 0.576\\ 0.482\\ 0.402\\ 0.336\\ 0.281\\ 0.235\\ 0.196\\ 0.402\\ 0.336\\ 0.281\\ 0.235\\ 0.196\\ 0.137\\ 0.114\\ 0.096\\ 0.080\\ 0.067\\ 0.056\\ 0.047\\ 0.039\\ 0.033\\ 0.027\\ 0.023\\ 0.019\\ 0.016\\ 0.013\\ 0.003\\ $

INVERSE FILTER (1ST ORDER) BEHAVIOR RESULTING FROM CHANGING A AND B IN A*EXP(-BT). INPUT SIGNAL = EXPONENTIAL ONLY (continued)

time	3%	4%	5%	6%	7ቄ	8%
msec	mV	mV	mV	mV	mV	mV
18.55519.04319.53120.02020.50820.99621.48421.97322.46122.94923.43823.92624.41424.90225.39125.879	0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000	0.004 0.003 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000	0.005 0.004 0.003 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000	0.006 0.005 0.004 0.003 0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.008 0.005 0.005 0.004 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001

•

79

time msec	9% mV	10% mV	11% mV	12% mV	13% mV	14% mV	15% mV
0.00 0.49 0.98 1.46 1.95 2.44 2.93 3.42 3.91 4.40 4.88 5.37 5.86 6.35 6.84 7.32 7.81 8.30 8.79 9.77 10.25 10.74 11.23 11.72 12.70 13.18 13.67 14.16 14.65 15.14 15.62 16.11 16.60 17.09 17.58 18.07	$\begin{array}{c} 455.0\\ 6.64\\ 5.56\\ 4.65\\ 3.89\\ 3.26\\ 2.73\\ 2.28\\ 1.91\\ 1.60\\ 1.34\\ 1.12\\ 0.94\\ 0.79\\ 0.66\\ 0.55\\ 0.46\\ 0.39\\ 0.32\\ 0.27\\ 0.23\\ 0.27\\ 0.23\\ 0.19\\ 0.16\\ 0.13\\ 0.11\\ 0.09\\ 0.16\\ 0.13\\ 0.11\\ 0.09\\ 0.08\\ 0.07\\ 0.06\\ 0.05\\ 0.04\\ 0.03\\ 0.02\\ 0.02\\ 0.02\\ 0.01\\ 0.01\\ \end{array}$	$\begin{array}{c} 450.0\\ 7.30\\ 6.12\\ 5.14\\ 4.31\\ 3.61\\ 3.03\\ 2.54\\ 2.13\\ 1.79\\ 1.50\\ 1.26\\ 1.07\\ 0.87\\ 0.74\\ 0.62\\ 0.52\\ 0.44\\ 0.37\\ 0.31\\ 0.26\\ 0.52\\ 0.44\\ 0.37\\ 0.31\\ 0.26\\ 0.22\\ 0.18\\ 0.15\\ 0.13\\ 0.11\\ 0.09\\ 0.08\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.01\\ \end{array}$	$\begin{array}{c} 445.0\\ 7.95\\ 6.68\\ 5.62\\ 4.72\\ 3.97\\ 3.33\\ 2.80\\ 2.35\\ 1.98\\ 1.66\\ 1.40\\ 1.18\\ 0.98\\ 0.83\\ 0.69\\ 0.59\\ 0.49\\ 0.41\\ 0.35\\ 0.29\\ 0.49\\ 0.41\\ 0.35\\ 0.29\\ 0.25\\ 0.21\\ 0.17\\ 0.15\\ 0.12\\ 0.10\\ 0.09\\ 0.02$	$\begin{array}{c} 440.0\\ 8.58\\ 7.23\\ 6.09\\ 5.13\\ 4.32\\ 3.63\\ 3.06\\ 2.58\\ 2.17\\ 1.83\\ 1.54\\ 1.30\\ 1.09\\ 0.92\\ 0.77\\ 0.65\\ 0.55\\ 0.46\\ 0.39\\ 0.23\\ 0.20\\ 0.77\\ 0.65\\ 0.55\\ 0.46\\ 0.39\\ 0.23\\ 0.20\\ 0.17\\ 0.14\\ 0.12\\ 0.10\\ 0.08\\ 0.23\\ 0.20\\ 0.17\\ 0.14\\ 0.12\\ 0.10\\ 0.08\\ 0.07\\ 0.06\\ 0.05\\ 0.04\\ 0.03\\ 0.02\\ 0.02\\ 0.02\\ \end{array}$	$\begin{array}{c} 435.0\\ 9.20\\ 7.76\\ 6.55\\ 5.53\\ 4.66\\ 3.93\\ 3.32\\ 2.80\\ 2.36\\ 1.99\\ 1.68\\ 1.42\\ 1.20\\ 1.01\\ 0.85\\ 0.72\\ 0.61\\ 0.51\\ 0.43\\ 0.37\\ 0.31\\ 0.26\\ 0.22\\ 0.19\\ 0.16\\ 0.13\\ 0.21\\ 0.11\\ 0.09\\ 0.08\\ 0.07\\ 0.06\\ 0.05\\ 0.04\\ 0.03\\ 0.02\\ 0.02\end{array}$	$\begin{array}{r} 430.0\\ 9.81\\ 8.29\\ 7.01\\ 5.92\\ 5.01\\ 4.23\\ 3.58\\ 3.03\\ 2.56\\ 2.16\\ 1.83\\ 1.55\\ 1.31\\ 1.10\\ 0.93\\ 0.79\\ 0.67\\ 0.56\\ 0.48\\ 0.20\\ 0.79\\ 0.67\\ 0.56\\ 0.48\\ 0.24\\ 0.20\\ 0.17\\ 0.15\\ 0.12\\ 0.11\\ 0.09\\ 0.07\\ 0.06\\ 0.05\\ 0.05\\ 0.04\\ 0.03\\ 0.02\end{array}$	$\begin{array}{c} 425.0\\ 10.39\\ 8.80\\ 7.46\\ 6.32\\ 5.35\\ 4.53\\ 3.84\\ 3.25\\ 2.75\\ 2.33\\ 1.98\\ 1.67\\ 1.42\\ 1.20\\ 1.02\\ 0.86\\ 0.73\\ 0.62\\ 0.52\\ 0.44\\ 0.38\\ 0.32\\ 0.27\\ 0.23\\ 0.19\\ 0.16\\ 0.14\\ 0.38\\ 0.32\\ 0.27\\ 0.23\\ 0.19\\ 0.16\\ 0.14\\ 0.12\\ 0.10\\ 0.08\\ 0.07\\ 0.06\\ 0.05\\ 0.04\\ 0.03\\ 0.0$

time msec9% mV10% mV11% mV12% mV13% mV14% mV15% mV18.560.010.010.010.020.020.020.0219.040.010.010.010.010.010.020.020.0219.530.010.010.010.010.010.010.020.0220.020.010.010.010.010.010.010.0120.510.010.010.010.010.010.0121.000.000.010.010.010.010.0121.480.000.000.010.010.010.01								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	time msec	9% mV	10% mV	11% mV	12% mV	13% mV	14% mV	15% mV
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18.56 19.04 19.53 20.02 20.51 21.00 21.48 21.97 22.46 22.95 23.44 23.93 24.41 24.90 25.39 25.88 26.37	$\begin{array}{c} 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.00\\$	$\begin{array}{c} 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.00\\$	$\begin{array}{c} 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.00\\$	0.02 0.01 0.01 0.01 0.01 0.01 0.00	0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.00	0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01	0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01

time msec	0% mV	.25% mV	.50% mV	.75% mV	1% mV	2% mV
msec 0.000 0.488 0.977 1.465 1.953 2.441 2.930 3.418 3.906 4.395 4.395 4.383 5.371 5.859 6.348 6.836 7.324 7.813 8.301 8.789 9.277 9.766 10.254 10.254 10.254 10.254 10.742 11.230 11.719 12.207 12.695 13.184 13.672 14.648 15.137 15.625 16.113	mV 500.000 0.015 0.047 0.083 0.125 0.171 0.221 0.276 0.333 0.394 0.458 0.525 0.593 0.664 0.735 0.808 0.954 1.027 1.098 1.169 1.238 1.305 1.369 1.431 1.489 1.595 1.642 1.684 1.722 1.754 1.782 1.805	mV 498.750 0.215 0.212 0.219 0.237 0.263 0.297 0.338 0.385 0.437 0.493 0.553 0.493 0.553 0.617 0.683 0.751 0.892 0.963 1.034 1.104 1.242 1.308 1.372 1.433 1.491 1.596 1.643 1.685 1.722 1.755 1.783 1.805	mV 497.500 0.415 0.376 0.355 0.348 0.355 0.373 0.400 0.436 0.479 0.528 0.641 0.703 0.582 0.641 0.703 0.767 0.834 0.903 0.972 1.041 1.110 1.246 1.311 1.375 1.435 1.435 1.435 1.597 1.644 1.686 1.723 1.756 1.783 1.805	mV 496.250 0.613 0.540 0.490 0.460 0.447 0.448 0.463 0.521 0.563 0.611 0.664 0.722 0.784 0.981 1.049 1.049 1.117 1.184 1.250 1.315 1.378 1.438 1.438 1.495 1.599 1.645 1.724 1.756 1.784 1.806	mV 495.000 0.811 0.703 0.624 0.571 0.538 0.525 0.525 0.598 0.640 0.688 0.742 0.800 0.861 0.925 0.990 1.056 1.123 1.189 1.255 1.318 1.380 1.440 1.497 1.550 1.600 1.646 1.688 1.725 1.757 1.784 1.806	mV 490.000 1.592 1.349 1.159 1.013 0.905 0.827 0.776 0.747 0.736 0.740 0.758 0.740 0.758 0.740 0.758 0.740 0.758 0.740 0.758 0.740 0.758 0.740 0.758 0.740 0.758 0.740 0.758 0.740 0.758 0.740 0.758 0.740 0.758 0.740 0.758 0.740 0.758 0.740 0.758 0.740 0.758 0.740 0.970 1.028 1.087 1.149 1.210 1.272 1.333 1.393 1.450 1.557 1.606 1.651 1.691 1.728 1.760 1.786 1.808
16.602 17.090 17.578 18.066	1.803 1.822 1.833 1.839 1.839	1.803 1.822 1.833 1.839 1.840	1.803 1.822 1.834 1.839 1.840	1.823 1.834 1.840 1.840	1.823 1.834 1.840 1.840	1.824 1.835 1.841 1.841
18.555	1.834	1.834	1.834	1.835	1.835	1.83

time	0%	.25%	.50%	.75%	1%	2%
msec	mV	mV	mV	mV	mV	mV
38.086 38.574 39.063 39.551 40.039 40.527 41.016	-0.065 -0.049 -0.032 -0.010 0.000 0.000	-0.065 -0.060 -0.049 -0.032 -0.010 0.000 0.000	-0.065 -0.049 -0.032 -0.010 0.000 0.000	-0.065 -0.060 -0.049 -0.032 -0.010 0.000 0.000	-0.065 -0.060 -0.049 -0.032 -0.010 0.000 0.000	$\begin{array}{c} -0.065 \\ -0.060 \\ -0.049 \\ -0.032 \\ -0.010 \\ 0.000 \\ 0.000 \end{array}$

time msec	3% mV	4% mV	5% mV	6% mV	7% mV	8% mV
msec 0.000 0.488 0.977 1.465 1.953 2.441 2.930 3.418 3.906 4.395 4.883 5.371 5.859 6.348 6.836 7.324 7.813 8.301 8.789 9.277 9.766 10.254 10.254 10.254 10.254 10.254 10.254 10.254 11.230 11.719 12.207 12.695 13.184 13.672 14.160 14.648 15.137 15.625 16.113 16.602 17.000	mV 485.000 2.359 1.986 1.689 1.453 1.270 1.131 1.028 0.956 0.909 0.885 0.909 0.885 0.909 0.885 0.973 1.018 1.067 1.120 1.067 1.120 1.233 1.291 1.349 1.405 1.656 1.656 1.696 1.731 1.762 1.789 1.810 1.826	mV 480.000 3.111 2.614 2.212 1.890 1.634 1.434 1.281 1.167 1.085 1.031 1.000 0.987 0.990 1.006 1.032 1.067 1.085 1.031 1.067 1.085 1.032 1.067 1.108 1.257 1.311 1.365 1.419 1.472 1.572 1.618 1.661 1.700 1.735 1.766 1.791 1.812 1.828	mV 475.000 3.849 3.232 2.729 2.323 1.997 1.738 1.535 1.380 1.263 1.180 1.255 1.380 1.124 1.092 1.077 1.079 1.535 1.180 1.234 1.535 1.383 1.434 1.581 1.626 1.667 1.705 1.739 1.739 1.739 1.739 1.739 1.739 1.705 1.7	mV 470.000 4.572 3.840 3.240 2.752 2.358 2.041 1.790 1.594 1.444 1.332 1.252 1.198 1.167 1.154 1.157 1.157 1.157 1.228 1.266 1.308 1.354 1.401 1.449 1.497 1.545 1.590 1.633 1.674 1.773 1.798 1.817 1.817 1.832	mV 465.000 5.280 4.437 3.745 3.178 2.717 2.345 2.046 1.810 1.626 1.485 1.381 1.259 1.232 1.222 1.226 1.242 1.226 1.242 1.226 1.242 1.226 1.242 1.267 1.299 1.336 1.377 1.421 1.466 1.5511 1.556 1.600 1.642 1.681 1.717 1.749 1.777 1.801 1.820 1.835	mV 460.000 5.973 5.025 4.243 3.601 3.075 2.648 2.303 2.027 1.810 1.641 1.513 1.419 1.354 1.312 1.289 1.283 1.290 1.307 1.333 1.365 1.402 1.442 1.442 1.483 1.526 1.651 1.651 1.688 1.723 1.754 1.782 1.805 1.824 1.837
17.578	1.842 1.842	1.843 1.843	$1.845 \\ 1.844$	1.846 1.846	1.848 1.847	1.850 1.849

time	3%	48	5%	6%	7%	8%
msec	mV	mV	mV	mV	mV	mV
msec 18.555 19.043 19.531 20.020 20.508 20.996 21.484 21.973 22.461 22.949 23.438 23.926 24.414 24.902 25.391 25.879 26.367 26.855 27.344 27.832 28.320 28.809 29.297 29.785 30.273 30.762 31.250 31.738 32.227 33.691 34.180	mV 1.836 1.825 1.809 1.787 1.759 1.727 1.690 1.648 1.602 1.551 1.497 1.313 1.247 1.313 1.247 1.178 1.108 1.036 0.963 0.890 0.817 0.745 0.603 0.534 0.467 0.403 0.283 0.228 0.177 0.131 0.089	mV 1.837 1.826 1.809 1.787 1.760 1.727 1.690 1.648 1.602 1.551 1.497 1.439 1.378 1.313 1.247 1.178 1.036 0.964 0.890 0.817 0.745 0.603 0.534 0.467 0.403 0.283 0.228 0.177 0.131 0.089	mV 1.838 1.827 1.810 1.788 1.760 1.728 1.690 1.648 1.602 1.551 1.497 1.439 1.378 1.314 1.247 1.178 1.314 1.247 1.178 1.036 0.964 0.891 0.745 0.603 0.534 0.467 0.403 0.283 0.228 0.177 0.131 0.089	mV 1.839 1.828 1.811 1.788 1.761 1.728 1.691 1.649 1.602 1.552 1.497 1.439 1.378 1.314 1.247 1.178 1.036 0.964 0.891 0.818 0.745 0.603 0.534 0.467 0.403 0.228 0.177 0.131 0.089	mV 1.841 1.829 1.811 1.789 1.761 1.729 1.691 1.649 1.603 1.552 1.497 1.439 1.378 1.314 1.247 1.178 1.314 1.247 1.178 1.036 0.964 0.891 0.818 0.745 0.603 0.534 0.467 0.403 0.283 0.228 0.177 0.131 0.089	mV 1.842 1.830 1.812 1.790 1.762 1.729 1.692 1.650 1.603 1.552 1.498 1.440 1.378 1.314 1.247 1.179 1.108 1.036 0.964 0.891 0.818 0.745 0.603 0.534 0.467 0.403 0.283 0.228 0.177 0.131 0.089
34.668	0.051	0.051	0.051	0.051	0.051	0.051
35.156	0.019	0.019	0.019	0.019	0.019	0.019
35.645	-0.009	-0.009	-0.009	-0.009	-0.009	-0.009
36.133	-0.031 -0.048	-0.031 -0.048	-0.031	-0.031	-0.031 -0.048	-0.031 -0.048

time	3%	4%	5%	6%	7%	8%
msec	mV	mV	mV	mV	mV	mV
37.109 37.598 38.086 38.574 39.063 39.551 40.039 40.527 41.016	$\begin{array}{c} -0.059 \\ -0.065 \\ -0.065 \\ -0.049 \\ -0.032 \\ -0.010 \\ 0.000 \\ 0.000 \end{array}$	$\begin{array}{c} -0.059 \\ -0.065 \\ -0.065 \\ -0.049 \\ -0.032 \\ -0.010 \\ 0.000 \\ 0.000 \end{array}$	$\begin{array}{c} -0.059 \\ -0.065 \\ -0.065 \\ -0.060 \\ -0.049 \\ -0.032 \\ -0.010 \\ 0.000 \\ 0.000 \end{array}$	$\begin{array}{c} -0.059 \\ -0.065 \\ -0.065 \\ -0.060 \\ -0.049 \\ -0.032 \\ -0.010 \\ 0.000 \\ 0.000 \end{array}$	-0.059 -0.065 -0.060 -0.049 -0.032 -0.010 0.000 0.000	$\begin{array}{c} -0.059 \\ -0.065 \\ -0.065 \\ -0.049 \\ -0.032 \\ -0.010 \\ 0.000 \\ 0.000 \end{array}$

			2 20 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
time msec	9% mV	10% mV	11% mV	12% mV	13% mV	14% mV	15% mV
$\begin{array}{c} \text{Imsec}\\ 0.00\\ 0.49\\ 0.98\\ 1.47\\ 1.95\\ 2.44\\ 2.93\\ 3.42\\ 3.91\\ 4.40\\ 4.88\\ 5.37\\ 5.86\\ 6.35\\ 6.84\\ 7.32\\ 7.81\\ 8.30\\ 8.79\\ 9.28\\ 9.77\\ 10.25\\ 10.74\\ 11.23\\ 12.21\\ 12.70\\ 13.18\\ 13.67\\ 14.16\\ 14.65\\ \end{array}$	$\begin{array}{c} 1110\\ 455.0\\ 6.65\\ 5.60\\ 4.73\\ 4.02\\ 3.43\\ 2.95\\ 2.56\\ 2.25\\ 2.00\\ 1.80\\ 1.65\\ 1.53\\ 1.45\\ 1.39\\ 1.36\\ 1.34\\ 1.35\\ 1.37\\ 1.40\\ 1.43\\ 1.35\\ 1.37\\ 1.40\\ 1.43\\ 1.46\\ 1.50\\ 1.54\\ 1.58\\ 1.62\\ 1.66\\ 1.70\\ 1.73\\ 1.76\end{array}$	$\begin{array}{c} 1110\\ 450.0\\ 7.32\\ 6.17\\ 5.22\\ 4.43\\ 3.78\\ 3.25\\ 2.82\\ 2.47\\ 2.18\\ 1.96\\ 1.78\\ 1.65\\ 1.55\\ 1.48\\ 1.43\\ 1.40\\ 1.39\\ 1.40\\ 1.39\\ 1.40\\ 1.39\\ 1.40\\ 1.39\\ 1.40\\ 1.39\\ 1.40\\ 1.39\\ 1.40\\ 1.52\\ 1.56\\ 1.60\\ 1.63\\ 1.67\\ 1.71\\ 1.74\\ 1.77\end{array}$	$\begin{array}{c} 1117\\ 445.0\\ 7.96\\ 6.73\\ 5.69\\ 4.84\\ 4.14\\ 3.56\\ 3.08\\ 2.69\\ 2.37\\ 2.12\\ 1.92\\ 1.77\\ 1.65\\ 1.51\\ 1.47\\ 1.45\\ 1.56\\ 1.51\\ 1.47\\ 1.45\\ 1.44\\ 1.45\\ 1.44\\ 1.45\\ 1.51\\ 1.54\\ 1.51\\ 1.57\\ 1.61\\ 1.57\\ 1.61\\ 1.65\\ 1.68\\ 1.71\\ 1.75\\ 1.77\end{array}$	$\begin{array}{c} 1110\\ 440.0\\ 8.60\\ 7.27\\ 6.17\\ 5.25\\ 4.49\\ 3.85\\ 3.34\\ 2.91\\ 2.57\\ 2.29\\ 2.06\\ 1.89\\ 1.76\\ 1.65\\ 1.58\\ 1.53\\ 1.50\\ 1.49\\ 1.48\\ 1.50\\ 1.51\\ 1.54\\ 1.57\\ 1.60\\ 1.63\\ 1.67\\ 1.70\\ 1.72\\ 1.75\\ 1.78\end{array}$	$\begin{array}{c} 1110\\ 435.0\\ 9.22\\ 7.81\\ 6.63\\ 5.65\\ 4.83\\ 4.17\\ 3.59\\ 3.13\\ 2.76\\ 2.45\\ 2.21\\ 2.01\\ 1.86\\ 1.75\\ 1.66\\ 1.56\\ 1.56\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.59\\ 1.61\\ 1.64\\ 1.67\\ 1.71\\ 1.74\\ 1.76\\ 1.79\end{array}$	$\begin{array}{c} 1110\\ 430.0\\ 9.82\\ 8.34\\ 7.09\\ 6.05\\ 5.18\\ 4.46\\ 3.86\\ 3.36\\ 2.95\\ 2.62\\ 2.35\\ 2.62\\ 2.35\\ 2.14\\ 1.97\\ 1.84\\ 1.74\\ 1.67\\ 1.62\\ 1.59\\ 1.58\\ 1.59\\ 1.58\\ 1.59\\ 1.61\\ 1.64\\ 1.66\\ 1.69\\ 1.72\\ 1.75\\ 1.77\\ 1.80\end{array}$	$\begin{array}{c} 110\\ 425.0\\ 10.41\\ 8.85\\ 7.54\\ 6.44\\ 5.52\\ 4.75\\ 4.11\\ 3.59\\ 3.15\\ 2.79\\ 2.50\\ 2.27\\ 2.08\\ 1.94\\ 1.82\\ 1.74\\ 1.68\\ 1.94\\ 1.62\\ 1.61\\ 1.62\\ 1.61\\ 1.62\\ 1.61\\ 1.62\\ 1.64\\ 1.62\\ 1.64\\ 1.62\\ 1.61\\ 1.62\\ 1.62\\ 1.61\\ 1.62\\ 1.61\\ 1.62\\ 1.61\\ 1.62\\ 1.61\\ 1.62$
15.14 15.63 16.11 16.60 17.10 17.58	1.79 1.81 1.83 1.84 1.85 1.85	1.79 1.81 1.83 1.84 1.85 1.86	1.80 1.82 1.84 1.85 1.86 1.87	1.80 1.82 1.84 1.85 1.86 1.86	1.81 1.83 1.86 1.86 1.86 1.86	1.82 1.84 1.85 1.86 1.87 1.87	1.83 1.84 1.86 1.87 1.87 1.87
18.07	1.85	1.85	1.86	1.86	1.86	1.86	1.87

time	9%	10%	11%	12%	13%	14%	15%
msec	mV	mV	mV	mV	mV	mV	mV
msec 18.56 19.04 19.53 20.02 20.51 21.00 21.48 21.97 22.46 22.95 23.44 23.93 24.41 24.90 25.39 25.88 26.37 26.86 27.34 27.83 28.32 28.81 29.30 29.79 30.27 30.76 31.25 31.74 32.23 32.72 33.20 33.70	mV 1.84 1.83 1.81 1.79 1.76 1.73 1.69 1.65 1.60 1.55 1.60 1.55 1.50 1.44 1.38 1.31 1.25 1.18 1.11 1.04 0.96 0.89 0.82 0.75 0.67 0.60 0.53 0.47 0.40 0.38 0.28 0.23 0.13	mV 1.86 1.83 1.82 1.79 1.76 1.73 1.69 1.65 1.60 1.55 1.60 1.55 1.50 1.44 1.38 1.31 1.25 1.18 1.11 1.04 0.96 0.89 0.82 0.75 0.67 0.60 0.53 0.47 0.40 0.34 0.28 0.23 0.17 0.13	mV 1.85 1.83 1.82 1.79 1.76 1.73 1.69 1.65 1.60 1.55 1.60 1.55 1.60 1.55 1.60 1.44 1.40 1.31 1.25 1.18 1.11 1.04 0.96 0.89 0.82 0.72 0.67 0.60 0.53 0.47 0.40 0.34 0.28 0.23 0.13	mV 1.85 1.84 1.82 1.79 1.77 1.73 1.69 1.65 1.61 1.55 1.61 1.55 1.50 1.44 1.38 1.32 1.25 1.18 1.11 1.04 0.96 0.89 0.82 0.75 0.67 0.60 0.53 0.47 0.40 0.34 0.28 0.13	mV 1.85 1.84 1.82 1.80 1.77 1.73 1.70 1.65 1.61 1.55 1.61 1.65 1.61 1.55 1.61 1.55 1.61 1.65 1.61 1.65 1.61 1.65 1.61 1.04 0.96 0.89 0.82 0.67 0.65 0.67 0.60 0.53 0.44 0.28 0.23 0.13	mV 1.85 1.84 1.82 1.80 1.77 1.74 1.70 1.65 1.61 1.56 1.50 1.44 1.38 1.32 1.25 1.18 1.11 1.04 0.96 0.89 0.82 0.75 0.67 0.60 0.53 0.47 0.40 0.28 0.23 0.13	mV 1.86 1.84 1.82 1.80 1.77 1.74 1.70 1.65 1.61 1.56 1.50 1.44 1.38 1.32 1.25 1.18 1.11 1.04 0.96 0.89 0.82 0.75 0.67 0.60 0.53 0.47 0.40 0.34 0.28 0.13
34.18	0.09	0.09	0.09	0.09	0.01	0.09	0.09
34.67	0.05	0.05	0.05	0.05	0.05	0.05	0.05
35.16	0.02	0.02	0.02	0.02	0.02	0.02	0.02
35.65	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01
36.13	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03
36.21	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05

time msec	9% mV	10% mV	11% mV	12% mV	13% mV	14% mV	15% mV
37.11 37.60 38.09 38.57 39.06 39.55 40.04 40.53	$\begin{array}{c} -0.06 \\ -0.07 \\ -0.07 \\ -0.06 \\ -0.05 \\ -0.03 \\ -0.01 \\ 0.00 \end{array}$	$\begin{array}{c} -0.06 \\ -0.07 \\ -0.07 \\ -0.06 \\ -0.05 \\ -0.03 \\ -0.01 \\ 0.00 \end{array}$	$\begin{array}{c} -0.06 \\ -0.07 \\ -0.07 \\ -0.06 \\ -0.05 \\ -0.03 \\ -0.01 \\ 0.00 \end{array}$	$\begin{array}{c} -0.06 \\ -0.07 \\ -0.07 \\ -0.06 \\ -0.05 \\ -0.03 \\ -0.01 \\ 0.00 \end{array}$	$\begin{array}{c} -0.06 \\ -0.07 \\ -0.07 \\ -0.06 \\ -0.05 \\ -0.03 \\ -0.01 \\ 0.00 \end{array}$	$\begin{array}{c} -0.06 \\ -0.07 \\ -0.07 \\ -0.06 \\ -0.05 \\ -0.03 \\ -0.01 \\ 0.00 \end{array}$	$\begin{array}{c} -0.06 \\ -0.07 \\ -0.07 \\ -0.06 \\ -0.05 \\ -0.03 \\ -0.01 \\ 0.00 \end{array}$

time z=.1 z=.2 z=.3 z=.4z=.5 msec mV mV mV mV mV 0.000 500.000 500.000 500.000 500.000 500.000 0.488 0.015 0.015 0.015 0.015 0.015 0.977 318.376 293.376 333.376 258.376 213.376 1.465 0.132 0.131 0.130 0.129 0.128 1.953 225.766 215.615 198.696 175.010 144.556 0.362 2.441 0.358 0.351 0.342 0.330 2.930 153.121 146.247 134.789 118.749 98.125 3.418 0.700 0.689 0.671 0.645 0.613 3.906 104.164 99.501 91.731 80.852 66.865 4.395 1.138 1.117 1.081 1.032 0.969 71.258 4.883 68.086 62.800 55.400 45.886 5.371 1.573 1.665 1.631 1.493 1.390 49.233 5.859 47.063 43.448 38.386 31.877 6.348 2.269 2.219 2.135 2.018 1.867 6.836 34.584 33.085 30.587 27.090 22.594 7.324 2.937 2.868 2.754 2.594 2.388 7.813 24.933 23.881 22.127 19.671 16.513 8.301 3.652 3.563 3.415 3.208 2.941 8.789 18.666 17.908 16.644 14.874 12.598 4.397 9.277 4.286 4.102 3.845 3.513 9.766 14.685 14.117 13.171 10.144 11.847 10.254 5.155 5.022 4.800 4.490 4.091 10.742 12.238 11.792 11.048 10.007 8.669 11.230 5.908 5.752 5.492 5.129 4.661 10.815 11.719 10.443 9.824 8.956 7.842 12.207 6.639 6.460 6.162 5.745 5.209 9.732 12.695 10.061 9.186 8.420 7.435 7.330 13.184 7.130 6.795 6.326 5.723 13.672 9.733 9.428 8.920 8.208 7.292 14.160 7.966 7.744 7.374 6.856 6.190 14.648 9.663 9.368 8.876 8.188 7.303 8.530 15.137 8.289 7.887 7.324 6.601 15.625 9.733 9.440 8.952 8.268 7.390 16.113 9.011 8.752 8.322 7.719 6.944 16.602 9.859 9.564 9.073 8.385 7.500 17.090 9.396 9.123 8.668 8.031 7.212

INVERSE FILTER (2ND ORDER) BEHAVIOR RESULTING FROM CHANGING THE LOCATION OF ZEROS. INPUT = EXPONENTIAL + HAVERSINE

INVERSE FILTER (2ND ORDER) BEHAVIOR RESULTING FROM CHANGING THE LOCATION OF ZEROS. INPUT = EXPONENTIAL + HAVERSINE (continued)

time msec	z=.1 mV	z=.2 mV	z=.3 mV	z=.4 mV	z=.5 mV
17.578 18.066 18.555 19.043 19.531 20.020 20.508 20.996 21.484 21.973 22.461 22.949 23.438 23.926 24.414 24.902 25.391 25.879 26.367 26.855 27.344 27.832 28.320 28.809 29.297 29.785 30.273 30.762 31.250 31.738 32.227 33.691 34.180 34.668	9.985 9.676 10.070 9.846 10.087 9.901 10.019 9.839 9.662 9.595 9.234 8.984 8.243 7.631 7.290 6.540 5.492 5.492 5.492 5.492 5.492 5.492 3.668 2.855 2.231 1.631	9.686 9.392 9.553 9.553 9.553 9.552 9.602 9.713 9.552 9.364 9.295 9.395 9.295 9.395 9.295 9.394 9.295 9.394 8.2977 7.672 7.381 7.050 6.302 9.552 8.207 7.672 7.381 4.566 3.427 2.786 3.427 2.458 3.127 2.458 3.127 2.458 3.127 2.458	9.188 8.917 9.263 9.263 9.263 9.263 9.264 9.273 9.204 9.203 9.204 9.203 9.204 9.203 9.204 8.798 8.798 8.799 8.227 8.227 8.227 8.227 7.242 6.649 6.341 6.327 5.338 3.255 2.926 2.294 1.716 1.450	$\begin{array}{c} 1110\\ 8.491\\ 8.253\\ 8.557\\ 8.380\\ 8.561\\ 8.409\\ 8.339\\ 8.339\\ 8.338\\ 8.172\\ 8.339\\ 8.338\\ 8.171\\ 7.911\\ 7.780\\ 7.563\\ 7.137\\ 6.641\\ 6.381\\ 6.088\\ 5.491\\ 5.184\\ 4.546\\ 4.546\\ 3.801\\ 5.491\\ 5.184\\ 4.546\\ 3.260\\ 2.947\\ 2.644\\ 2.348\\ 2.064\\ 1.791\\ 1.534\\ 1.292\end{array}$	7.595 7.399 7.650 7.501 7.646 7.514 7.574 7.277 7.204 7.277 7.204 7.033 6.908 6.711 6.320 6.113 5.868 5.631 5.367 5.107 4.827 4.551 4.263 3.978 3.686 3.399 3.111 2.829 2.551 2.281 2.019 1.768 1.528 1.098
35.156 35.645	1.360 1.109	1.301	0.976	1.067	0.892 0.712

time msec	z=.1 mV	z=.2 mV	z=.3 mV	z=.4 mV	z=. 5 mV
36.133 36.621 37.109 37.598 38.086 38.574 39.063 39.551 40.039 40.527 41.016	0.881 0.677 0.498 0.345 0.219 0.121 0.052 0.011 -0.000 -0.000 0.000	0.840 0.643 0.471 0.324 0.204 0.111 0.045 0.007 -0.002 -0.000 0.000	$\begin{array}{c} 0.771 \\ 0.587 \\ 0.426 \\ 0.290 \\ 0.179 \\ 0.093 \\ 0.034 \\ 0.001 \\ -0.005 \\ -0.001 \\ 0.000 \end{array}$	$\begin{array}{c} 0.674 \\ 0.508 \\ 0.364 \\ 0.242 \\ 0.143 \\ 0.069 \\ 0.018 \\ -0.008 \\ -0.009 \\ -0.002 \\ 0.000 \end{array}$	$\begin{array}{c} 0.550 \\ 0.407 \\ 0.283 \\ 0.180 \\ 0.098 \\ 0.037 \\ -0.002 \\ -0.019 \\ -0.013 \\ -0.003 \\ 0.000 \end{array}$

INVERSE FILTER (2ND ORDER) BEHAVIOR RESULTING FROM CHANGING THE LOCATION OF ZEROS. INPUT = EXPONENTIAL + HAVERSINE (continued)
INVERSE FILTER (2ND ORDER) BEHAVIOR RESULTING FROM CHANGING THE LOCATION OF ZEROS. INPUT = EXPONENTIAL + HAVERSINE (continued)

time	z=.6	z=.7	z=.8	z=.9	z=1
msec	mV	mV	mV	mV	mV
0.000 0.488 0.977 1.465 1.953 2.441 2.930 3.418 3.906 4.395 4.883 5.371 5.859 6.348 6.836 7.324 7.813 8.301 8.789 9.277 9.766 10.254 10.742 11.230 11.719 12.207 12.695 13.184 13.672 14.160 14.648 15.625 16.102	500.000 0.015 158.376 0.126 107.335 0.316 72.919 0.573 49.769 0.891 34.257 1.264 23.923 1.683 17.099 2.137 12.654 2.616 9.817 3.108 8.063 3.603 7.033 4.089 6.479 4.553 6.232 4.986 6.174 5.377 6.221 5.716 6.316 5.997 6.419	500.000 0.015 93.376 0.125 63.346 0.299 43.129 0.526 29.565 0.800 20.513 1.116 14.522 1.465 10.605 1.840 8.093 2.231 6.530 2.630 5.603 3.027 5.099 3.413 4.869 3.778 4.810 4.115 4.852 4.810 4.115 4.852 4.942 4.671 5.047 4.878 5.141	500.000 0.015 18.376 0.122 12.590 0.279 8.757 0.471 6.253 0.694 4.656 0.944 3.674 1.213 3.111 1.497 2.831 1.787 2.737 2.766 2.362 2.868 2.633 3.011 2.884 3.169 3.169 3.169 3.169 3.305 3.465 3.583 3.586 3.666	500.000 0.015 -66.624 0.120 -44.934 0.256 -30.199 0.409 -20.167 0.575 -13.316 0.749 -8.619 0.928 -5.381 1.108 -3.133 1.284 -1.561 1.452 -0.451 1.608 0.339 1.749 0.905 1.871 1.597 2.048 1.795 2.098 1.923 1.923 2.122 1.995	$\begin{array}{c} 500.000\\ 0.015\\ -161.624\\ 0.117\\ -109.225\\ 0.231\\ -73.737\\ 0.340\\ -49.695\\ 0.441\\ -33.403\\ 0.532\\ -22.359\\ 0.610\\ -14.873\\ 0.532\\ -22.359\\ 0.610\\ -14.873\\ 0.532\\ -22.359\\ 0.610\\ -14.873\\ 0.752\\ -4.045\\ 0.752\\ -4.045\\ 0.766\\ -2.487\\ 0.761\\ -1.449\\ 0.738\\ -0.768\\ 0.699\\ -0.335\\ 0.642\\ -0.073\\ 0.571\\ 0.069\\ 0.486\\ 0.127\end{array}$
17.578	6.500	5.205	3.712	2.019	0.127
18.066	6.356	5.123	3.700		0.285

INVERSE FILTER (2ND ORDER) BEHAVIOR RESULTING FROM CHANGING THE LOCATION OF ZEROS. INPUT = EXPONENTIAL + HAVERSINE (continued)

time msec	z=.6 mV	z=.7 mV	z=.8 mV	z=.9 mV	z=1 mV
msec 18.555 19.043 19.531 20.020 20.508 20.996 21.484 21.973 22.461 22.949 23.438 23.926 24.414 24.902 25.391 25.879 26.367 26.855 27.344 27.832 28.320 28.809 29.297 29.785 30.273 30.762 31.250 31.738 32.227 32.715 33.203 33.691 34.180 34.668	mV 6.540 6.426 6.420 6.453 6.339 6.314 6.184 6.109 5.959 5.841 5.669 5.515 5.321 5.137 4.923 4.715 4.485 4.258 4.258 4.017 3.777 3.529 3.284 3.034 2.788 2.542 2.303 2.067 1.838 1.617 1.406 1.205 1.016 0.840	mV 5.229 5.156 5.205 5.128 5.129 5.039 4.998 4.892 4.815 4.690 4.581 4.437 4.302 4.141 3.983 3.632 3.443 3.255 3.058 2.863 2.263 2.263 2.263 2.263 2.266 1.871 1.680 1.494 1.315 1.142 0.979 0.824 0.680 0.546	mV 3.717 3.690 3.680 3.636 3.600 3.539 3.480 3.401 3.321 3.225 3.127 3.016 2.902 2.779 2.652 2.518 2.382 2.241 2.098 1.953 1.808 1.661 1.517 1.373 1.233 1.095 0.962 0.834 0.291 0.207	mV 2.002 2.029 1.950 1.946 1.868 1.839 1.759 1.711 1.628 1.566 1.479 1.406 1.316 1.235 1.143 1.058 0.965 0.8787 0.700 0.612 0.528 0.287 0.287 0.288 0.217 0.148 0.085 0.227 -0.026 -0.073 -0.149 -0.177	mV 0.086 0.172 0.018 0.056 -0.068 -0.061 -0.164 -0.177 -0.264 -0.289 -0.363 -0.394 -0.457 -0.490 -0.543 -0.574 -0.618 -0.645 -0.645 -0.645 -0.762 -0.762 -0.762 -0.762 -0.762 -0.762 -0.762 -0.762 -0.762 -0.762 -0.763 -0.725 -0.762 -0.762 -0.7641 -0.607
35.645 36.133	0.530	0.315	0.067	-0.214	-0.528

INVERSE FILTER (2ND ORDER) BEHAVIOR RESULTING FROM CHANGING THE LOCATION OF ZEROS. INPUT = EXPONENTIAL + HAVERSINE (continued)

time	z=.6	z=.7	z=.8	z=.9	z=1
msec	mV	mV	mV	mV	mV
37.109 37.598 38.086 38.574 39.063 39.551 40.039 40.527 41.016 41.504 41.992	$\begin{array}{c} 0.185\\ 0.104\\ 0.042\\ -0.002\\ -0.027\\ -0.033\\ -0.019\\ -0.004\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.068\\ 0.015\\ -0.024\\ -0.048\\ -0.056\\ -0.049\\ -0.027\\ -0.006\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} -0.066\\ -0.088\\ -0.100\\ -0.100\\ -0.089\\ -0.067\\ -0.035\\ -0.008\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} -0.218 \\ -0.205 \\ -0.186 \\ -0.160 \\ -0.128 \\ -0.089 \\ -0.044 \\ -0.010 \\ -0.000 \\ 0.000 \\ -0.000 \end{array}$	$\begin{array}{r} -0.388\\ -0.336\\ -0.282\\ -0.227\\ -0.170\\ -0.112\\ -0.054\\ -0.012\\ -0.000\\ 0.000\\ -0.000\end{array}$

INVERSE FILTER (2ND ORDER) BEHAVIOR RESULTING FROM CHANGING THE LOCATION OF ZEROS. INPUT = EXPONENTIAL ONLY

time	z=.1	z=.2	z=.3	z=.4	z=.5
msec	mV	mV	mV	mV	mV
time msec 0.000 0.488 0.977 1.465 1.953 2.441 2.930 3.418 3.906 4.395 4.883 5.371 5.859 6.348 6.836 7.324 7.813 8.301 8.789 9.277 9.766 10.254 10.742	z=.1 mV 500.000 0.000 333.317 0.000 225.534 0.000 152.604 0.000 103.257 0.000 69.867 0.000 47.274 0.000 47.274 0.000 31.987 0.000 21.644 0.000 14.645 0.000 9.909 0.000 6.705	z=.2 mV 500.000 0.000 318.317 0.000 215.384 0.000 145.736 0.000 98.610 0.000 98.610 0.000 66.723 0.000 45.147 0.000 30.548 0.000 20.670 0.000 13.986 0.000 9.463 0.000 6.403	z=.3 mV 500.000 293.317 0.000 198.468 0.000 134.290 0.000 90.865 0.000 61.483 0.000 61.483 0.000 41.601 0.000 28.149 0.000 19.046 0.000 19.046 0.000 12.887 0.000 8.720 0.000 5.900	z=.4 mV 500.000 0.000 258.317 0.000 174.786 0.000 118.266 0.000 80.023 0.000 54.146 0.000 36.637 0.000 24.790 0.000 16.774 0.000 11.350 0.000 7.680 0.000 5.196	z=.5 mV 500.000 0.000 213.317 0.000 144.337 0.000 97.664 0.000 66.083 0.000 44.714 0.000 30.255 0.000 20.471 0.000 13.852 0.000 13.852 0.000 9.372 0.000 6.342 0.000 4.291
10.742	6.705	6.403	5.900	5.196	4.291
11.230	0.000	0.000	0.000	0.000	0.000
11.719	4.537	4.333	3.992	3.516	2.903
12.207	0.000	0.000	0.000	0.000	0.000
12.695	3.070	2.932	2.701	2.379	1.965
13.184	0.000	0.000	0.000	0.000	0.000
13.672	2.077	1.984	1.828	1.610	1.329
14.160	0.000	0.000	0.000	0.000	0.000
14.648	1.405	1.342	1.237	1.089	0.899
15.137	0.000	0.000	0.000	0.000	0.000
15.625	0.951	0.908	0.837	0.737	0.609
16.113	0.000	0.000	0.000	0.000	0.000
16.602	0.643	0.614	0.566	0.499	0.412
17.090	0.000	0.000	0.000	0.000	0.000
17.578	0.435	0.416	0.383	0.337	0.279
18.066	0.000	0.000	0.000	0.000	0.000
18.555	0.295	0.281	0.259	0.228	0.189

INVERSE FILTER (2ND ORDER) BEHAVIOR RESULTING FROM CHANGING THE LOCATION OF ZEROS. INPUT = EXPONENTIAL ONLY (continued)

time msec	z=.1 mV	z=.2 mV	z=.3 mV	z=.4 mV	z=.5 mV
19.043 19.531 20.020 20.508 20.996 21.484 21.973 22.461 22.949 23.438 23.926 24.414 24.902 25.391 25.879 26.367 26.855 27.344 27.832 28.320 28.809 29.297 29.785 30.273 30.762 31.250 31.738 32.227 32.715 33.203	0.000 0.199 0.000 0.135 0.000 0.091 0.000 0.062 0.000 0.042 0.000 0.042 0.000 0.028 0.000 0.028 0.000 0.019 0.000 0.013 0.000 0.001 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.000000	0.000 0.190 0.000 0.129 0.000 0.087 0.000 0.059 0.000 0.040 0.000 0.027 0.000 0.027 0.000 0.027 0.000 0.012 0.000 0.012 0.000 0.001 0.000 0.001 0.001 0.001	0.000 0.175 0.000 0.119 0.000 0.080 0.000 0.054 0.000 0.054 0.000 0.025 0.000 0.017 0.000 0.017 0.000 0.011 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.001 0.000	0.000 0.154 0.000 0.105 0.000 0.071 0.000 0.048 0.000 0.032 0.000 0.022 0.000 0.022 0.000 0.015 0.000 0.010 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.000 0.005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000000	$\begin{array}{c} 0.000\\ 0.128\\ 0.000\\ 0.086\\ 0.000\\ 0.058\\ 0.000\\ 0.058\\ 0.000\\ 0.040\\ 0.000\\ 0.027\\ 0.000\\ 0.027\\ 0.000\\ 0.012\\ 0.000\\ 0.012\\ 0.000\\ 0.008\\ 0.000\\ 0.008\\ 0.000\\ 0.008\\ 0.000\\ 0.001\\ 0.000\\ 0.001\\ 0.000\\ 0.001\\ 0.000\\ 0.001\\ 0.000\\ 0.001\\ 0.001\\ 0.000\\ 0.001\\ 0.000\\ 0.001\\ 0.000\\ 0.001\\ 0.000\\ 0.001\\ 0.000\\ 0.$
32.227 32.715 33.203 33.691 34.180 34.668	0.001 0.000 0.001 0.000 0.001 0.000	0.001 0.001 0.001 0.001 0.001 0.000	0.001 0.001 0.000 0.001 0.000	0.001 0.000 0.001 0.000 0.000 0.000	0.001 0.001 0.000 0.000 0.000

•

.

INVERSE FILTER (2ND ORDER) BEHAVIOR RESULTING FROM CHANGING THE LOCATION OF ZEROS. INPUT = EXPONENTIAL ONLY (continued)

time	z=.6	z=.7	z=.8	z=.9	z=1.0
msec	mV	mV	mV	mV	mV
msec 0.000 0.488 0.977 1.465 1.953 2.441 2.930 3.418 3.906 4.395 4.883 5.371 5.859 6.348 6.836 7.324 7.813 8.301 8.789 9.277 9.766 10.254 10.254 10.742 11.230 11.719 12.207 12.695 13.184 13.672 14.160 14.648 15.137 15.825 16.117 15.825 16.117 15.825 16.117 15.825 16.117 15.825 16.117 15.825 16.117 15.825 16.117 15.825 16.117 15.825 16.117 15.825 16.117 15.825 16.117 15.825 16.117 15.825 16.117 15.825 15.8555 15.8555 15.8555 15.8555 15.8555 15.8555 15.85555 15.855555 15.855555555555555555555555555555555555	mV 500.000 0.000 158.317 0.000 107.123 0.000 72.483 0.000 49.044 0.000 33.185 0.000 22.454 0.000 15.193 0.000 10.280 0.000 0.000 10.280 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	mV 500.000 93.317 0.000 63.141 0.000 42.724 0.000 28.908 0.000 19.560 0.000 13.235 0.000 13.235 0.000 6.059 0.000 6.059 0.000 4.100 0.000 2.774 0.000 1.877 0.000 1.877 0.000 1.877 0.000 1.270 0.000 0.859 0.000 0.859 0.000 0.859 0.000 0.582 0.000 0.582 0.000 0.582 0.000 0.582 0.000 0.582 0.000 0.582 0.000 0.582 0.000 0.582 0.000 0.582 0.000 0.266 0.000 0.266 0.000 0.266 0.000 0.266 0.000 0.266 0.000 0.000 0.266 0.000 0.266 0.000 0.000 0.266 0.000 0.000 0.266 0.000 0.266 0.000 0.266 0.000 0.000 0.266 0.000 0.266 0.000 0.000 0.266 0.000 0.000 0.266 0.000 0.000 0.266 0.0000 0.00000 0.00000 0.00000 0.0000000 0.00000000	mV 500.000 0.000 18.317 0.000 12.394 0.000 8.386 0.000 5.674 0.000 3.839 0.000 2.598 0.000 1.758 0.000 1.758 0.000 1.758 0.000 1.758 0.000 0.545 0.000 0.545 0.000 0.545 0.000 0.545 0.000 0.545 0.000 0.545 0.000 0.545 0.000 0.368 0.000 0.000 0.368 0.000 0.249 0.000 0.114 0.000 0.114 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000000	mV 500.000 -66.683 0.000 -45.120 0.000 -30.530 0.000 -20.657 0.000 -13.978 0.000 -9.458 0.000 -6.399 0.000 -4.330 0.000 -2.930 0.000 -1.982 0.000 -1.341 0.000 -0.908 0.000 -0.614 0.000 -0.614 0.000 -0.281 0.000 -0.281 0.000 -0.281 0.000 -0.190 0.000	$\begin{array}{c} mV \\ 500.000 \\ 0.000 \\ -161.683 \\ 0.000 \\ -109.400 \\ 0.000 \\ -74.024 \\ 0.000 \\ -50.087 \\ 0.000 \\ -50.087 \\ 0.000 \\ -33.891 \\ 0.000 \\ -22.932 \\ 0.000 \\ -15.516 \\ 0.000 \\ -15.516 \\ 0.000 \\ -15.516 \\ 0.000 \\ -15.516 \\ 0.000 \\ -15.516 \\ 0.000 \\ -15.52 \\ 0.000 \\ -1.489 \\ 0.000 \\ -1.489 \\ 0.000 \\ -1.489 \\ 0.000 \\ -1.008 \\ 0.000 \\ -1.008 \\ 0.000 \\ -0.682 \\ 0.000 \\ -0.461 \\ 0.000 \\ -0.$
16.602	0.306	0.180	0.035	-0.129	-0.312
17.090	0.000	0.000	0.000	0.000	0.000
17.578	0.207	0.122	0.024	-0.087	-0.211

INVERSE FILTER (2ND ORDER) BEHAVIOR RESULTING FROM CHANGING THE LOCATION OF ZEROS. INPUT = EXPONENTIAL ONLY (continued)

INVERSE FILTER (1ST ORDER) BEHAVIOR RESULTING FROM CHANGING THE LOCATION OF ZEROS. INPUT = EXPONENTIAL ONLY

time	z=.1	z=.2	z=.3	z=.4	z=.5
			III V	ni v	111 V
Lime msec 0.000 0.488 0.977 1.465 1.953 2.441 2.930 3.418 3.906 4.395 4.883 5.371 5.859 6.348 6.836 7.324 7.813 8.301	z=.1 mV 500.000 361.289 297.188 244.460 201.087 165.410 136.063 111.922 92.065 75.730 62.294 51.242 42.150 34.672 28.520 23.460 19.298 15.874	z=.2 mV 500.000 311.289 256.059 210.629 173.258 142.518 117.232 96.433 79.323 65.250 53.673 44.150 36.317 29.873 24.573 20.213 16.627 13.677	z=.3 mV 500.000 261.289 214.930 176.797 145.429 119.627 98.402 80.943 66.582 54.769 45.052 37.059 30.484 25.075 20.626 16.967 13.956 11.480	z=.4 mV 500.000 211.289 173.801 142.965 117.600 96.735 79.572 65.454 53.841 44.289 36.431 29.967 24.650 20.277 16.679 13.720 11.286 9.283	z=.5 mV 500.000 161.289 132.673 109.133 89.771 73.843 60.742 49.965 41.100 33.808 27.810 22.876 18.817 15.478 12.732 10.473 8.615 7.087
8.789 9.277 9.766 10.254 10.742 11.230 11.719 12.207 12.695 13.184 13.672 14.160 14.648 15.137 15.625 16.113 16.602 17.090 17.578 18.066	13.058 10.741 8.835 7.268 5.978 4.918 4.045 3.327 2.737 2.251 1.852 1.523 1.253 1.031 0.848 0.697 0.574 0.472 0.388 0.319	11.250 9.254 7.612 6.262 5.151 4.237 3.485 2.867 2.358 1.940 1.596 1.313 1.080 0.888 0.731 0.601 0.494 0.407 0.334 0.275	9.443 7.768 6.390 5.256 4.323 3.556 2.925 2.406 1.979 1.628 1.339 1.102 0.906 0.745 0.613 0.504 0.341 0.281 0.231	7.636 6.281 5.167 4.250 3.496 2.876 2.366 1.946 1.601 1.317 1.083 0.891 0.733 0.603 0.496 0.408 0.276 0.227 0.187	5.829 4.795 3.944 3.244 2.669 2.195 1.806 1.485 1.222 1.005 0.827 0.680 0.559 0.460 0.379 0.311 0.256 0.211 0.173 0.143

INVERSE FILTER (1ST ORDER) BEHAVIOR RESULTING FROM CHANGING THE LOCATION OF ZEROS. INPUT = EXPONENTIAL ONLY (continued)

time msec	z=.1 mV	z=.2 mV	z=.3 mV	z=.4 mV	z=.5 mV
$19.043 \\ 19.531 \\ 20.020 \\ 20.508 \\ 20.996 \\ 21.484 \\ 21.973 \\ 22.461 \\ 22.949 \\ 23.438 \\ 23.926 \\ 24.414 \\ 24.902 \\ 25.391 \\ 25.879 \\ 26.367 \\ 26.855 \\ 27.344 \\ 27.832 \\ 28.320 \\ 28.809 \\ 29.297 \\ 29.785 \\ 30.273 \\ 30.762 \\ 31.250 \\ 31.738 \\ 32.227 \\ 32.715 \\ $	0.216 0.178 0.146 0.120 0.099 0.081 0.055 0.045 0.031 0.025 0.021 0.017 0.014 0.012 0.001 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.004 0.002 0.002 0.002 0.002 0.001 0.001	0.186 0.153 0.126 0.104 0.085 0.070 0.058 0.047 0.039 0.032 0.026 0.022 0.018 0.015 0.015 0.012 0.010 0.001 0.005 0.005 0.004 0.003 0.002 0.001 0.001 0.001 0.001	0.156 0.129 0.106 0.087 0.072 0.059 0.048 0.040 0.033 0.027 0.022 0.012 0.015 0.012 0.012 0.010 0.008 0.007 0.006 0.005 0.004 0.003 0.003 0.002 0.002 0.001 0.001 0.001 0.001	0.126 0.104 0.085 0.070 0.058 0.048 0.039 0.032 0.026 0.022 0.018 0.015 0.012 0.010 0.001 0.005 0.005 0.004 0.003 0.003 0.003 0.003 0.002 0.001 0.001 0.001 0.001 0.001	0.096 0.079 0.065 0.054 0.044 0.036 0.030 0.025 0.020 0.017 0.014 0.011 0.009 0.008 0.006 0.005 0.004 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.000
33.203 33.691	0.001 0.001	0.001 0.001	0.001 0.000	0.000	0.000
34.180 34.668	0.001 0.000	0.000	0.000 0.000	0.000 0.000	0.000 0.000

INVERSE FILTER (1ST ORDER) BEHAVIOR RESULTING FROM CHANGING THE LOCATION OF ZEROS. INPUT = EXPONENTIAL ONLY (continued)

time msec	z=.6 mV	z=.7 mV	z=.8 mV	z=.9 mV	z=1.0 mV
msec 0.000 0.488 0.977 1.465 1.953 2.441 2.930 3.418 3.906 4.395 4.883 5.371 5.859 6.348 6.836 7.324 7.813 8.301 8.789 9.277 9.766 10.254 10.254 10.742 11.230 11.719 12.207 12.695 13.184 13.672 14.160 14.648 15.137 15.625 16.113	mv 500.000 111.289 91.544 75.302 61.942 50.952 41.912 34.476 28.359 23.327 19.189 15.784 10.680 8.785 7.226 5.944 4.890 4.022 3.309 2.722 2.239 1.841 1.515 1.246 1.025 0.843 0.694 0.386 0.318 0.261 0.215	mV 500.000 61.289 50.415 41.470 34.112 28.060 23.082 18.986 15.618 12.847 10.568 8.693 7.150 5.882 4.838 3.980 3.274 2.693 2.215 1.822 1.499 1.233 1.014 0.834 0.686 0.564 0.464 0.382 0.314 0.258 0.213 0.175 0.144 0.118	mV 500.000 11.289 9.286 7.638 6.283 5.168 4.251 3.497 2.877 2.366 1.946 1.601 1.317 1.083 0.891 0.733 0.603 0.496 0.227 0.187 0.126 0.227 0.187 0.126 0.104 0.086 0.070 0.058 0.032 0.022	$\begin{array}{r} mV \\ 500.000 \\ -38.711 \\ -31.843 \\ -26.193 \\ -21.546 \\ -17.723 \\ -14.579 \\ -11.992 \\ -9.864 \\ -8.114 \\ -6.675 \\ -5.490 \\ -4.516 \\ -3.715 \\ -3.056 \\ -2.514 \\ -2.068 \\ -1.701 \\ -1.399 \\ -1.151 \\ -0.947 \\ -0.779 \\ -0.641 \\ -0.527 \\ -0.433 \\ -0.357 \\ -0.293 \\ -0.241 \\ -0.198 \\ -0.163 \\ -0.134 \\ -0.110 \\ -0.075 \end{array}$	$\begin{array}{r} mV \\ 500.000 \\ -88.711 \\ -72.972 \\ -60.025 \\ -49.375 \\ -40.615 \\ -33.409 \\ -27.481 \\ -22.606 \\ -18.595 \\ -15.296 \\ -12.582 \\ -10.350 \\ -8.513 \\ -7.003 \\ -5.760 \\ -4.738 \\ -3.898 \\ -3.206 \\ -2.637 \\ -2.169 \\ -1.784 \\ -1.468 \\ -1.207 \\ -0.993 \\ -0.817 \\ -0.672 \\ -0.553 \\ -0.455 \\ -0.374 \\ -0.308 \\ -0.253 \\ -0.208 \\ -0.171 \end{array}$
17.090	0.145	0.080	0.015	-0.051	-0.116
18.066	0.098	0.054	0.010	-0.034	-0.078

INVERSE FILTER (1ST ORDER) BEHAVIOR RESULTING FROM CHANGING THE LOCATION OF ZEROS. INPUT = EXPONENTIAL ONLY (continued)

INVERSE FILTER (1ST ORDER) BEHAVIOR RESULTING FROM CHANGING THE LOCATION OF ZEROS. INPUT = EXPONENTIAL + HAVERSINE

time msec	z=.1 mV	z=.2 mV	z=.3 mV	z=.4 mV	z=.5 mV
msec 0.000 0.488 0.977 1.465 1.953 2.441 2.930 3.418 3.906 4.395 4.883 5.371 5.859 6.348 6.836 7.324 7.813 8.301 8.789 9.277 9.766 10.254 10.742 11.230 11.719 12.207 12.695 13.184 13.672 14.160 14.648 15.137 15.625 16.113 16.602	mV 500.000 361.303 297.245 244.586 201.308 165.750 136.546 112.574 92.906 76.784 63.580 52.778 43.955 36.761 30.908 26.158 22.317 19.224 16.744 14.769 13.208 11.985 11.040 10.320 9.783 9.393 9.121 8.943 8.808 8.790 8.784 8.808 8.908 8.908	mV 500.000 311.303 256.115 210.749 173.465 142.835 117.680 97.032 80.095 66.212 54.844 45.547 37.954 31.765 26.732 22.650 19.351 16.695 14.569 12.877 11.542 10.498 9.081 8.627 8.299 8.073 7.807 7.807 7.873 7.979 7.873 7.979	mV 500.000 261.303 214.985 176.911 145.623 119.920 98.813 81.491 67.283 55.640 46.108 38.315 31.953 26.770 22.556 19.142 16.384 14.167 12.394 10.985 9.876 9.011 8.345 7.842 7.471 7.205 7.024 6.829 6.847 6.823 6.895 6.895 6.990	mV 500.000 211.303 173.854 143.073 177.781 97.005 79.947 65.950 54.472 45.068 37.373 31.084 25.952 21.774 18.381 15.633 13.417 11.638 10.218 9.093 8.209 7.523 6.998 6.604 6.315 5.851 5.851 5.851 5.851 5.851 5.851 5.851 5.851 5.851 5.851 5.852 5.851 5.851 5.852 5.959 6.001	mV 500.000 161.303 132.724 109.236 89.938 74.090 61.080 50.408 41.660 34.497 28.637 23.852 19.951 16.778 14.205 12.125 10.451 9.110 8.043 7.201 6.543 6.036 5.365 5.159 5.018 4.927 4.875 4.855 4.857 4.875 4.903 4.938 4.976 5.012
17.578	9.028 9.082 9.126	8.080 8.118	7.077	6.075 6.101	5.045 5.073 5.092
18,555	9.157	8.144	7.130	6.117	5.103

INVERSE FILTER (1ST ORDER) BEHAVIOR RESULTING FROM CHANGING THE LOCATION OF ZEROS. INPUT = EXPONENTIAL + HAVERSINE (continued)

time	z=.1	z=.2	z=.3	z=.4	z=.5
msec	mV	mV	mV	mV	mV
19.043 19.531 20.020 20.508 20.996 21.484 21.973 22.461 22.949 23.438 23.926 24.414 24.902 25.391 25.879 26.367 26.855 27.344 27.832 28.320 28.809 29.297 29.785 30.273 30.762 31.250 31.738 32.227 32.715 33.203 33.691 34.180 34.668 35.156 35.645	$\begin{array}{c} 111 \\ 9.172 \\ 9.170 \\ 9.148 \\ 9.104 \\ 9.039 \\ 8.952 \\ 8.842 \\ 8.710 \\ 8.555 \\ 8.379 \\ 8.181 \\ 7.963 \\ 7.726 \\ 7.470 \\ 7.198 \\ 6.911 \\ 6.610 \\ 6.297 \\ 5.974 \\ 5.642 \\ 4.617 \\ 4.271 \\ 3.927 \\ 3.586 \\ 3.251 \\ 2.923 \\ 2.604 \\ 2.297 \\ 2.002 \\ 1.723 \\ 1.459 \\ 1.214 \\ 0.988 \end{array}$	$\begin{array}{c} 111 \\ 8.155 \\ 8.129 \\ 8.088 \\ 8.027 \\ 7.947 \\ 7.947 \\ 7.947 \\ 7.726 \\ 7.248 \\ 7.051 \\ 6.838 \\ 6.609 \\ 6.108 \\ 5.559 \\ 5.557 \\ 4.975 \\ 4$	$\begin{array}{c} mv \\ 7.138 \\ 7.132 \\ 7.110 \\ 7.071 \\ 7.071 \\ 7.071 \\ 6.942 \\ 6.851 \\ 6.742 \\ 6.616 \\ 6.474 \\ 6.315 \\ 6.140 \\ 5.951 \\ 5.748 \\ 5.532 \\ 5.305 \\ 5.067 \\ 4.821 \\ 4.567 \\ 4.307 \\ 4.567 \\ 4.307 \\ 4.567 \\ 4.307 \\ 3.236 \\ 2.969 \\ 2.705 \\ 2.445 \\ 2.192 \\ 1.946 \\ 1.710 \\ 1.484 \\ 1.270 \\ 1.069 \\ 0.883 \\ 0.712 \end{array}$	mv 6.121 6.091 6.054 6.003 5.937 5.855 5.647 5.382 5.229 5.647 5.382 5.229 5.063 4.699 4.501 4.2963 3.639 3.411 3.181 2.950 2.264 2.043 1.827 1.618 1.417 1.225 1.044 0.875 0.718 0.574	mV 5.104 5.094 5.072 5.038 4.991 4.932 4.859 4.775 4.678 4.569 4.448 4.317 4.176 4.025 3.866 3.698 3.524 3.344 3.160 2.971 2.780 2.588 2.394 2.202 2.011 1.824 1.640 1.461 1.289 1.124 0.966 0.818 0.680 0.552 0.436
36.133	0.782	0.509	0.557	0.445	0.332
36.621	0.599		0.420	0.330	0.241
37.109	0.438		0.300	0.232	0.163

INVERSE FILTER (1ST ORDER)	BEHAVIOR RESULTING FROM CHANGING
THE LOCATION OF ZEROS.	INPUT = EXPONENTIAL + HAVERSINE
	(continued)

time	z=.1	z=.2	z=.3	z=.4	z=.5
msec	mV	mV	mV	mV	mV
37.598 38.086 38.574 39.063 39.551 40.039 40.527 41.016 41.504 41.992	$\begin{array}{c} 0.301 \\ 0.189 \\ 0.103 \\ 0.042 \\ 0.007 \\ -0.001 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \end{array}$	$\begin{array}{c} 0.251 \\ 0.154 \\ 0.080 \\ 0.029 \\ 0.002 \\ -0.002 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \end{array}$	$\begin{array}{c} 0.200\\ 0.119\\ 0.058\\ 0.017\\ -0.004\\ -0.004\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.149\\ 0.084\\ 0.035\\ 0.004\\ -0.009\\ -0.005\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.099\\ 0.048\\ 0.013\\ -0.008\\ -0.015\\ -0.006\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$

INVERSE FILTER (1ST ORDER) BEHAVIOR RESULTING FROM CHANGING THE LOCATION OF ZEROS. INPUT = EXPONENTIAL + HAVERSINE (continued)

INVERSE FILTER (1ST ORDER) BEHAVIOR RESULTING FROM CHANGING THE LOCATION OF ZEROS. INPUT = EXPONENTIAL + HAVERSINE (continued)

time msec	z=.6 mV	z=.7 mV	z=.8 mV	z=.9 mV	z=1.0 mV
msec 18.555 19.043 19.531 20.020 20.508 20.996 21.484 21.973 22.461 22.949 23.438 23.926 24.414 24.902 25.391 25.879 26.367 26.855 27.344 27.832 28.320 28.809 29.297 29.785 30.273 30.762 31.250 31.738 32.227 32.715 33.691 34.180 34.180	mv 4.090 4.087 4.075 4.021 3.979 3.926 3.708 3.708 3.616 3.515 3.406 3.2885 3.164 3.2895 2.805 2.304 2.149 1.994 1.839 1.685 1.533 1.237 1.096 0.960 0.592 0.265 0.595 0.5	mv 3.076 3.070 3.056 3.034 3.005 2.967 2.921 2.868 2.739 2.664 2.582 2.494 2.302 2.199 2.092 1.982 1.636 1.518 1.401 1.283 1.636 1.518 1.636 1.518 1.636 1.518 1.636 1.518 1.636 1.518 1.636 1.518 1.636 1.537 0.631 0.537 0.448 0.366 0.290	mv 2.063 2.053 2.015 1.988 1.955 1.916 1.872 1.823 1.770 1.711 1.649 1.583 1.514 1.441 1.366 1.289 1.210 1.049 0.968 0.887 0.728 0.650 0.575 0.502 0.432 0.365 0.302 0.244 0.189 0.140 0.955	mv 1.050 1.036 1.018 0.997 0.971 0.943 0.911 0.876 0.839 0.800 0.759 0.716 0.672 0.626 0.580 0.533 0.486 0.583 0.486 0.583 0.486 0.536 0.535 0.535 0.535 0.525 0.525 0.213 0.0029 0.0029 0.0029 0.0029 0.0029 0.0026 -0.026	$\begin{array}{c} mV \\ 0.036 \\ 0.019 \\ -0.001 \\ -0.022 \\ -0.045 \\ -0.069 \\ -0.094 \\ -0.119 \\ -0.144 \\ -0.169 \\ -0.261 \\ -0.261 \\ -0.261 \\ -0.281 \\ -0.261 \\ -0.300 \\ -0.317 \\ -0.333 \\ -0.346 \\ -0.358 \\ -0.358 \\ -0.367 \\ -0.375 \\ -0.380 \\ -0.383 \\ -0.383 \\ -0.383 \\ -0.383 \\ -0.383 \\ -0.383 \\ -0.383 \\ -0.383 \\ -0.383 \\ -0.383 \\ -0.383 \\ -0.375 \\ -0.375 \\ -0.365 \\ -0.355 \\ -0.355 \\ -0.355 \\ -0.313 \\ -0.295 \\ -0$
35.645 36.133	0.298	0.160 0.107	0.022	-0.116 -0.118 -0.117	-0.254 -0.231

time msec	z=.6 mV	z=.7 mV	z=.8 mV	z=.9 mV	z=1.0 mV
37.109 37.598 38.086 38.574 39.063 39.551 40.039 40.527 41.016 41.504	$\begin{array}{c} 0.094\\ 0.048\\ 0.013\\ -0.010\\ -0.021\\ -0.020\\ -0.007\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.025 \\ -0.003 \\ -0.022 \\ -0.032 \\ -0.033 \\ -0.025 \\ -0.009 \\ 0.000 \\ 0.000 \\ 0.000 \end{array}$	$\begin{array}{c} -0.044 \\ -0.054 \\ -0.057 \\ -0.055 \\ -0.046 \\ -0.031 \\ -0.010 \\ 0.000 \\ 0.000 \\ 0.000 \end{array}$	-0.112 -0.104 -0.092 -0.077 -0.058 -0.036 -0.011 -0.000 -0.000 -0.000	$\begin{array}{r} -0.181 \\ -0.155 \\ -0.128 \\ -0.099 \\ -0.071 \\ -0.042 \\ -0.012 \\ -0.000 \\ -0.000 \\ -0.000 \end{array}$

INVERSE FILTER (1ST ORDER) BEHAVIOR RESULTING FROM CHANGING THE LOCATION OF ZEROS. INPUT = EXPONENTIAL + HAVERSINE (continued)

1

Software

The following code are listing represents the inverse filter (1st order and 2nd order). After the exponential noise is filtered out, it is ready to move through the lowpass filter for removal of myopotential noise.

%------Filter #1: filter the exponential noise-----%

```
if (order == 1)
t1 = \exp(-b3*step);
b = [1 - t1];
a = [1];
end
if (order == 2)
t1 = \exp(-b3*step) * \exp(-b3*step);
b = [1 \ 0 - t1];
a = [1];
end
y = filter(b,a,s_quan);
                                  %filter
s_quan=[];
y(1) = 0;
plot(t_quan(1:200),y(1:200))
title('input signal, filter out the exonential')
xlabel('time(sec)'), ylabel('voltage (V)')
grid
t1=0; b=[]; a=[];
```

LOWPASS DIGITAL FILTER

To minimize myopotential noise, the output signal from the inverse filter is filtered by a lowpass digital filter. Myopotential noise has a wide band spectrum from 70 to 1000 Hz (see Figure 13). A lowpass Chebyshev type I filter has a pass band of 50 Hz, or order 2, 4, 6, or 8, is used to filter the myopotential noise.

TABLE IX

LOCATION OF POLES, AND ZEROS BY ORDER

order	i	bi		ai	zeros	poles
N	1	.0163		1.0	-1	.8157+j.1766
N= 2	2	.0326		-1.6315	-1	.8157-j.1766
	3	.0163		.6966		
N=	1	.025	e-3	1.0	-1	.9044+j.0649
4	2	.1001	e-3	-3.7013	-1	.9044-j.0649
	3	.1501	e-3	5.1677	-1	.9463+j.1646
	4	.1001	e-3	-3.2244	-1	.9463-j.1646
	5	.025	e-3	.7584		
	1	.0371	e-6	1.0	-1	.9354+j.0408
N= 6	2	.2225	e-6	-5.7033	998-j.0016	.9354-j.0408
	3	.5563	e-6	13.5919	979+j.0014	.9464+j.1130
	4	.7418	e-6	-17.3241	-1.0009-j.0024	.9464-j.1130
	5	.5563	e-6	12.4547	-1.0007+j.0025	.9698+j.1585
	6	.2225	e-6	-4.7883	-1.0026+j.0001	.9698-j.1585
	7	.0371	e-6	.7691		
N=	1	.0055	e-8	-1.0	-1.0	.9513+j.0300
8	2	.0438	e-8	-7.6962	-1.0124-j.0157	.9513-j.0300
	3	.1532	e-8	25.9629	9954-j.0193	.9552+j.0860
	4	.3065	e-8	-50.1425	-1.0200	.9552-j.0860
	5	.3831	e-8	60.6377	9822-j.0085	.9779+j.1561
	6	.3065	e-8	-47.0169	-1.0124+j.0157	.9779-j.1561

TABLE IX

order	i	bi		bi		ai	zeros	poles
N=	7	.1532	e-8	22.8261	9822+j.0085	.9637+j.1302		
8	8	.0438	e-8	-6.3438	9954+j.0193	.9637-j.1302		
	9	.0055	e-8	.7727				

LOCATION OF POLES, AND ZEROS BY ORDER (continued)

Software

The folowing code listing represents the lowpass filter Chebyshev type I of the stimulation. After the myopotential noise is filtered out, it is ready to move through the threshold level detector.

%------Filter #2: filter the myopotential noise-----%

```
y = filter(b,a,s_quan);
                                       %filter
s_quan=[];
y(1) = 0;
plot(t_quan(1:200),y(1:200))
title('input signal, filter out the exonential')
xlabel('time(sec)'), ylabel('voltage (V)')
grid
t1=0; b=[]; a=[];
rp2 = .1; Wn2 = (2*50)/fs;
[Bc2,Ac2] = chebyl (Nc2, rp2, Wn2);
yf = filter(Bc2,Ac2,y);
\mathbf{y} = \mathbf{f};
Nc2=0; Wn2=0; Rp2=0; Bc2=[]; Ac2=[];
plot(t_quan(1:200), yf(1:200))
title('input signal, filter out the myopotential')
xlabel('time (sec)'), ylabel('voltage (V)')
grid
```

A z-transform of a differential equation for a digital filter yields the following frequency domain or transfer function model description:

$$H(z) = \frac{[b1\ b2\ b3\ b4\ b5\ b6\ b7\ b8\ b9]}{[1\ a2\ a3\ a4\ a5\ a6\ a7\ a8\ a9]}$$

Table IX shows the filter coefficients, location of poles and the zeros of the lowpass filter for order 2, 4, 6, and 8. Figure 44 shows the magnitude reskponse of the lowpass digital filter with different orders 2, 4, 6, and 8. Figure 36 shows the lowpass filter's output is clear of myopotential noise.

Figure 44. Magnitude of lowpass filter Chebyshev type I.

Figure 45. Lowpass filter filter out myopotential.

THRESHOLD LEVEL DETECTOR

The threshold level detector in the simulation can be set to any level. Signals that exceed this level are detected. In the simulation, this function corresponds to the pacemaker's sensor function. Figure 46 below shows the results of running the simulation as seen by the threshold level detector.

Figure 46. Detect output level.

Software

The following code lisitng represent the threshold level detector of the simulation.

%------threshold level = +/- .2V-----%

```
\begin{split} & \text{level1} = 5; \\ & \text{level0} = 0; \\ & \text{th\_hold} = []; \\ & \text{l1} = 0; \\ & \text{l1} = \text{length}(yf); \\ & \text{h} = 0; \\ & \text{while} \ (h <= (11 - 1)) \\ & \text{h} = h + 1; \\ & \text{if} \ (abs(yf(h)) >= VHOLD) \\ & & \text{th\_hold}(h) = \text{level1}; \\ & \text{end} \\ & \text{if} \ (abs(yf(h)) < VHOLD) \\ & & \text{th\_hold}(h) = \text{level 0}; \\ & \text{end} \\ \end{split}
```

end h=0; yf=[]; plot(t_quan,th_hold) title('detection output level') xlabel('time (sec)'), ylabel('haversine signal (V)') grid t_quan=[]; th_hold=[]; h=0; 11=0;

.

CHAPTER X

CONCLUSIONS

This chapter presents conclusions based on the test system. The conclusions include a description of limitations suggested by test runs of the simulation.

PROCEDURE SUMMARY

Using MATLAB as supporting software, the simulation program is written for operation in a DOS environment. The program generates a haversine signal, myopotential noise (random noise), and exponential noise. All three signals are combined and sent through an amplifier stage and an A/D converter stage. The exponential noise is filter out by an inverse digital filter, and the myopotential noise is filtered out by a lowpass digital filter. The output signal is deemed "detected" if its waveform exceeds threshold level.

CONCLUSIONS

The inverse filter is designed to eliminate the effects of the exponential response following a pace pulse, such that the resultant haversine signal is recognized. First order and second order systems are used to represent the exponential signal. An inverse filter is used to filter out the exponential signal.

Tests show that the haversine signal can be clearly sensed if there is a 5% change in the time constant of the exponential. Within a 5 to 15% change of the time constant, the filtered exponential amplitude swamps out the haversine. See Tables I, II, III, and IV.

The sensitivity of the inverse filter was also studied:when using a fixed exponential time constant but changing the location of the zeros, the effect of the exponential noise

on the haversine signal is minimal when zeros are located between 0.75 to 0.85 of the unit circle. See Tables V, VI, VII, and VIII.

The lowpass digital filter is used to filter out the myopotential noise. Tests showed that an order of 8 for the lowpass filter was most successful for this purpose.

REFERENCES

Alan V. Oppenheim & Ronald W. Schafer. "Discrete Time Signal Processing".

- Journal of the North American Society of Pacing and Electrophysiology, November 1987, volume 10, no. 6, page 1235-1409
- Journal of the North American Society of Pacing and Electrophysiology, January 1987, volume 10, no. 1, part 1, page 1 159

Max Schaldasch. "Electrotherapy of the Heart". Technical Aspects in Cardiac Pacing.

Max Schaldasch & S. Furman. "Advances in Pacemaker Technology", p.9

Thomas Morton & William Jakobi. "Introduction to Pacing".

Yoshio Watanabe, Tokyo March 14 - 18, 1976. "Cardiac Pacing" Proceeding of the Vth International Symposium.

APPENDIX A

SOFTWARE

This program is using MATLAB tool. It is written by Merry Tran.
It includes:

create a haversine signal
create a exponential noise
create a myopotential noise
amplifier signal
sample and hold
quantization
filter out the exponential noise
filter out the myopotential noise
filter out the myopotential noise
threshold

fs = input ('Enter sampling frequency (Hz) [fs] ==>'); tf = input ('Enter max on time axis (sec) [tf] ==>'); step = l/fs; t = 0:step:tf; % time axis n = 512; % number of point ff = fs/ (2*n) * (0:n-1); % sampling frequency (Hz) disp('------haversine signal------'); amp=0; pw=0;per=0; amp = input ('Enter the amplitude (V) [amp] ==>'); pw = input ('Enter the pulse width (sec) [pw] ==>'); per = input ('Enter the period (sec) [per] ==>');

disp('--Exponential signal : 1st & 2nd order----'); a3=0; b3=0; order=0;

a3 = input ('Enter the amplitude (V) [a3] ==>');
b3 = input ('Enter the time constant (1/sec) [b3] ==>');

order = input ('Enter the order of system [order] ==>');

disp('-----'); amy=0;

amy = input ('Enter the amplitude (max=.005 V) [amy] ==>');

disp('-----Amplifier-----');
gain=0;
gain = input ('Enter the gain amplifier [gain] ==>');

disp('-----Quantization-----'); VFS=0; bits=0; maxcount=0; delta=0; VFS = input ('Enter volts full scale (V) [VFS] ==>'); bits= input ('Enter number of bits solution [bits] ==>'); maxcount = (2^{bits})-1; %number of quantizer points delta = VFS/maxcount; %voltage resolution at quantizer output

disp ('--Filter out the myopotential, Chebyshev lowpass filter--');

Nc2=0; Nc2 = input ('Enter the order of filter [Nc2] ==>');

```
disp('-----Threshold-----');
VHOLD=0;
VHOLD = input ('Enter threshold level (V) [VHOLD] ==>');
```

```
%************Calculation**********************
```

```
%------%
duty=0;
duty=0;
duty = (pw/per)*100; %duty cycle
temp1 = ((amp/2)*(l-cos(2*pi*t/pw)));
temp2 = ((1+square(2*pi*t/per, duty))/2);
hav1 = temp1 .* temp2;
temp1 = []; temp2=[];
%-----exponential noise-----%
```

```
if (order == 1)

exp3 = a3 * exp (-b3*t);

end

if (order == 2)

exp3 = ((a3/2)*exp(-b3*t)) .* (1 + cos(pi*t/step));

end
```

%------%

```
rand ('uniform') % uniformly distributed random noise
y = amy * rand(t); \% noise, standard deviation = .005
ripple = .1;
                  % allowable ripple, in decibels
N = 8;
                        %filter order
passband = [(2*70)/fs (2*1000)/fs]; \% passband specification
[Bc,Ac] = chebyl (N, ripple, passband);
myo = filter (Bc,Ac,y); \% filter
y=[]; Bc=[]; Ac=[];
%---- Input signal = haversine + exponential + myopotential ----%
disp('you can test filters by following menu:');
disp('1=exponential,2=haversine,3=myopotential');
disp('4=exponential+haversine,5=exp.+haversine+myo.');
no = input('enter number, [no]==>');
if(no ==1)
       s_in = exp3;
end
if(no == 2)
       s_in = hav1;
end
if (no == 3)
      s_{in} = myo;
end
if(no == 4)
       s_in = hav1 + exp3:
end
if(no == 5)
       s_{in} = exp3 + hav1 + myo;
end
no=0:
plot(t(1:200),s_in(1:200))
title('input signal=myopotential+haversine+exponential')
xlable('time (sec)'), ylabel('voltage (V) ')
grid
%-----%
```

s_in = gain * s_in;

.

```
plot(t(1:200),s_in(1:200))
 title('amplifier the input signal')
xlabel('time (sec)'), ylabel('voltage (V) ')
 grid
 %------sample and hold-----%
holdtime = step;
holdsample = ceil(holdtime/step);
m = length(s_in);
s_hold = [];
t_hold = [];
s_hold(l) = s_in(l);
t_{hold}(1) = t(1);
k = 1;
num = 1;
while (k \le (m-1))
      k = k + 1;
      num = (k/holdsample) - fix(k/holdsample);
      if(num > 0)
             s_hold(k) = s_hold(k-1);
            t_hold(k) = t(k);
      end
end
s_in=[]; t=[]; holdtime=0; holdsample=0; m=0; k=0; num=0;
plot(t_hold(1:200),s_hold(1:200))
title('sample and hold the input signal')
xlabel('time (sec)'), ylabel('voltage (V)')
grid
%------quantizer the input signal------%
1 = 0;
l = length(s_hold);
q = 0;
s_quan=[];
t_quan=[];
s_inq=[];
while (q \le (l-1))
      q=q+1;
      num1 = abs(s_hold(q));
      num2 = sign(s_hold(q));
      s_iq(q) = s_hold(q);
```

```
if(num1 > VFS)
             s_quan(q) = num2 * VFS;
             t_quan(q) = t_hold(q);
      end
      if (num1 \le VFS)
             s_quan(q) = num2 * delta * round((maxcount*num1)/VFS;
             t_quan(q) = t_hold(q);
      end
end
1=0; q=0; num1=0; num2=0; s_hold=[]; t_hold=[];
plot(s_inq,s_quan)
title('quantize the input signal')
xlabel('input signal (V)'), ylabel('quantized input signal (V)')
grid
s_inq=[];
plot(t_quan(1:200),s_quan(1:200))
title('quantize the input signal')
xlabel('time (sec)'), ylabel('quantize input signal(V)')
grid
%------Filter #1: filter the exponential noise-----%
if (order == 1)
t1 = \exp(-b3*step);
b = [1 - t1];
a = [1];
end
if (order == 2)
t1 = \exp(-b3*step) * \exp(-b3*step);
b = [1 0 - t1];
a = [1];
end
y = filter(b,a,s_quan);
                                      %filter
s_quan=[];
y(1) = 0;
plot(t_quan(1:200),y(1:200))
title('input signal, filter out the exonential')
xlabel('time(sec)'), ylabel('voltage (V)')
grid
t1=0; b=[]; a=[];
```

%------Filter #2: filter the myopotential noise-----%

```
rp2 = .1; Wn2 = (2*50)/fs;
[Bc2,Ac2] = chebyl (Nc2, rp2, Wn2);
yf = filter(Bc2,Ac2,y);
y = [];
Nc2=0; Wn2=0; Rp2=0; Bc2=[]; Ac2=[];
plot(t_quan(1:200),yf(1:200))
title('input signal, filter out the myopotential')
xlabel('time (sec)'), ylabel('voltage (V)')
grid
level1 = 5;
level0 = 0;
th_hold = [];
11 = 0;
11 = \text{length}(\text{yf});
h = 0;
while (h \le (11 - 1))
      h = h + 1;
      if (abs(yf(h)) \ge VHOLD)
            th_hold(h) = level1;
      end
      if (abs(yf(h)) < VHOLD)
            th_h(h) = level 0;
      end
end
h=0;
yf=\Pi;
plot(t_quan,th_hold)
title('detection output level')
xlabel('time (sec)'), ylabel('haversine signal (V)')
grid
t_quan=[]; th_hold=[]; h=0; 11=0;
```

APPENDIX B

GLOSSARY

•

.

GLOSSARY

- *amplifier*, The signal amplification stage. The amplifier increases the visibility of the haversine signal.
- analog to digital converter (A/D converter), The A/D converter transforms an analog signal into a binary signal.
- Atrial representation, Atrial contracts and produces a P wave that is simulated with the haversine waveform.
- Bandpass filter, A signal filter which allows only signals that fall within a preset band to pass through.
- Bipolar configuration, A pacemaker with two leads.
- *Cardiac Cycle*. The rhythmic contraction and expansion of the heart muscle. For the purposes of this paper, the signals which result from depolarization and repolarization.
- Depolarization, A muscle cell receiving a stimulus and contracting or a nerve cell receiving stimulus and transmitting the stimulus to the next nerve.
- *Digital Filter*, A signal filter designed to evaluate a binary signal, identify some component of that signal and remove interfering components.
- Duty cycle, The peak of the square wave used to create the haversine signal.
- ECG, An Electro Cardio Graph records signals from the cardiac cycle on a trace sheet.
- *Exponential noise*, Exponential signal decay after the trailing edge of a pace pulse.
- *Implanted Leads*, Electrodes which extend from the pacemaker and have been surgically attached to the trigger nodes of the heart.
- *myocardium*, Tissue of the wall of the heart to which the implanted leads are connected.
- *myopotential noise*, Myopotential noise is interfering noise generated by the contraction of skeletal muscles.
- *Pace pulse*, The electrical charge sent by the pacemaker to the heart.
- *Pulse generator*, The part of a pacemaker that actually creates the electrical pulse. Usually the pulse generator consists of a timer and a battery.
- *pulse interval*, The time periodic between pulses of electrical energy, or the distance between two pacings.
- *pulse width*, The time during which electrical energy is being delivered to the heart, it is measured from the leading edge to the trailing edge of the pace pulse.
- QRS, or simply an R wave, is a large signal generated during depolarization of the ventricular. This is the beginning of ventricular contraction.
- *R wave*, or simply a QRS wave, is a large signal generated during depolarization of the ventricular. This is the beginning of ventricular contraction.
- *Repolarization*, Recovery of a cell from depolarization so that it is ready to receive the next stimulus.
- S_A node, The Sino-Atrial is the point at which depolarization begins in the atrium.
- S_V node, The Sino-ventricular node is the point at which depolarization begins in a ventricular contraction.

- *Threshold detector*, The threshold detector examines the returning signal for the haversine signal.
- Unipolar pacing, A pacemaker with a single implanted lead which is used for both sending the pace pulse and sensing responses.
- Ventricular representation, The Ventricular contracts and produces a QRS wave that is simulated with the haversine waveform.