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A B S T R A C T

Coastal shell middens are known for their generally excellent preservation and abundant identifiable faunal
remains, including delicate fish and bird bones that are often rare or poorly preserved at non-shell midden sites.
Thus, when we began our human ecodynamics research project focused on the fauna from Čḯxwicən (45CA523,
pronounced ch-WHEET-son), a large ancestral village of the Lower Elwha Klallam Tribe, located on the shore of
the Strait of Juan de Fuca, Port Angeles, Washington (USA), we anticipated generally high levels of bone
identifiability. We quickly realized that the mammal bones were more fragmented and less identifiable than we
had expected, though this was not the case with the bird and fish bone or invertebrate remains. To better
understand why this fragmentation occurred at Čḯxwicən, we evaluate numerous hypotheses, including both
post-depositional and behavioral explanations. We conclude that multiple factors intersected (to varying de-
grees) to produce the extreme bone fragmentation and low identifiability of mammal bones at the site, including
bone fuel use, marrow extraction, grease rendering, tool production, and post-depositional breakdown. Using a
human ecodynamics framework, we further consider how both social factors and external environmental forces
may mediate human choices, such as the economic decision to use bone for fuel or render bone grease. We place
our findings from Čḯxwicən in a regional context and discuss the potential of the approach for other coastal
archaeological sites worldwide.

1. Introduction

Taphonomy is the study of the myriad behavioral, physical, and
chemical factors that collectively influence deposition, survival, and
recovery of bones and other animal parts from archaeological sites.
Since the 1970s, archaeologists have recognized the importance of ta-
phonomic analysis in isolating the factors that affect faunal remains
across their ‘life history’ before drawing meaningful interpretations
about past human activities (e.g., Behrensmeyer and Hill, 1980;
Blumenschine, 1988; Brain, 1981; Ferraro et al., 2013; Gifford, 1981;
Lyman, 1994; Orton, 2012). Taphonomic scholarship has two main
goals: “to strip away the taphonomic overprint” (Lawrence, 1979:903;
cited in Gifford, 1981) to obtain an accurate understanding of the ori-
ginal biological community or the systemic context (e.g., sensu Schiffer,
1987); and to understand the so-called overprint itself—with the idea
that the overprint holds behavioral meaning in its own right (Gifford,

1981; Lyman, 1994).
The different ways scholars have approached bone fragmentation

illustrates this important distinction. In some cases researchers have
evaluated the extent to which differences in bone fragmentation may
affect taxonomic or element identifiability (Grayson, 1991; Lyman and
O'Brien, 1987; Nagaoka, 2005). In these cases, fragmentation is viewed
as a bias structuring the assemblage, since it can misdirect our view of
the target variable of interest—taxonomic or element representation.
On the other hand, bone fragmentation itself has become a major focus
of scholarship, as it can provide insights into carcass processing and
broader questions of resource use. Scholars have studied bone frag-
mentation for its potential link to extraction of marrow, extraction of
grease, and use as fuel (e.g., Binford, 1978; Church and Lyman, 2003;
Ellis et al., 2011; Morin, 2010; Noe-Nygaard, 1977; Outram, 2003).
Building on this theme, some researchers have sought to identify factors
that promote bone processing, for example nutritional stress (Ellis et al.,
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2011; Outram, 2003). Nagaoka's (2005) study of moas, large flightless
birds, at a southern New Zealand site illustrates both of these ap-
proaches. She evaluated changing bone fragmentation through time to
see if it affected body part representation, and then drew on human
behavioral ecology to account for changing patterns in processing moa
bones for grease. She found that processing intensity increased through
time, which she explains in the larger context of declining foraging
efficiency.

The developing field of human ecodynamics offers a useful inter-
disciplinary framework for the study of the drivers behind patterning in
bone fragmentation. Such research incorporates concepts from histor-
ical ecology, resilience theory, human behavioral ecology, and systems
thinking—with the goal of building a long-term history of human-en-
vironmental interactions (Fitzhugh et al., this issue). Human ecody-
namics scholarship takes the view that people are integral parts of the
environment, not external actors. Human agency and historical con-
tingency are incorporated into explanations of socio-ecological change.
Faunal remains have figured prominently in human ecodynamics re-
search, as a proxy for evaluating changes in the overall subsistence
economy. Given that faunal remains are also a critical source of raw
material across many human societies, for tools, fuel and grease, house
construction and landform construction, we suggest that changing dy-
namics of environmental and social conditions would influence the
ways human groups selected and processed animal carcasses through
time.

The Čḯxwicən research project provides an important case study for
applying human ecodynamics research to bone fragmentation.
Čḯxwicən,1 located in northwest Washington State on the shore of the
Strait of Juan de Fuca (Fig. 1), is a traditional village of the Lower
Elwha Klallam Tribe, and is linked more broadly to Coast Salish groups
of the Salish Sea. The site was excavated as part of a large-scale miti-
gation in 2004, with materials excavated from an area of over 500m2,
representing multiple houses and extramural middens (Butler et al., this
issue a). Geoarchaeological study shows that both abrupt and gradual
environmental processes (earthquakes, climate change, shoreline de-
velopment) occurred over the ~2700 year period of site occupation
(Campbell et al., this issue; Hutchinson et al., this issue).

Our research project, focusing on a large sample of the fauna re-
presenting the last ~2150 years of occupation, identified over one
million specimens from at least 39 orders, 68 families and 81 genera of
shellfish, fish, birds, and mammals (Butler et al., this issue b). A sig-
nificant and unexpected finding was that the mammal bones are ex-
tremely fragmented, both in comparison to other vertebrate remains at
the site, and to other sites in the region. Out of 16,520 specimens re-
covered in 1/4″ and larger mesh screens identified as mammal from all
contexts, only 9% could be identified at least to order, while approxi-
mately 50% of both fish and bird were identified. The high degree of
mammal fragmentation is distinctive in a regional context (Table 1, and
see Section 2).

We initially viewed this high degree of fragmentation as a detrac-
tion, as it limited our ability to obtain specific taxonomic identifica-
tions, important to the larger project goal of studying the ways animals
(and, in turn, people) were affected by a range of socio-ecological
changes. On further reflection, we realized that taxon-specific patterns
and temporal trends in fragmentation itself could provide insights on
changing carcass use under differing socio-ecological conditions. The
high level of precision in field sampling and deposit description, good
chronological control (with 102 radiocarbon dates), and faunal samples
obtained from multiple houses and extramural activity areas would
allow us to begin to disentangle the many factors that challenge ta-
phonomic analyses in general. In addition, we could use the human

ecodynamics framework, which we were already using to examine
changing animal use, to consider the range of factors behind frag-
mentation.

Thus our project on Čḯxwicən bone fragmentation emerged. This
paper summarizes that effort. First we place the Čḯxwicən faunal record
in a larger regional context to illustrate the distinctiveness of mammal
fragmentation at the site. Then we outline the main behavioral factors
that could account for the breakage, including bone tool manufacture,
grease production, and use of bone as fuel, as well as post-depositional
factors such as diagenesis, trampling, and carnivore gnawing. Next, we
evaluate the relative importance of these factors at Čḯxwicən using
comparisons from the bird and fish remains. Finally, we examine the
higher-level economic and cultural factors that might condition carcass
processing (group size, social interaction, circumscription). We con-
sider how environmental forces mediate cultural decision-making about
grease production or use of bone for fuel, and whether it is possible to
link bone fragmentation to ritual practices.

2. Čḯxwicən mammal fragmentation in regional context

As noted above, we were initially surprised by the high degree of
fragmentation in the Čḯxwicən mammal bone assemblage, which did not
fit our expectations based on prior experiences with coastal archae-
ological sites in the North Pacific. We first need to place the Čḯxwicən
mammal data in a larger regional context to see if our impressions were
correct. Is the Čḯxwicən mammal assemblage more fragmented than
assemblages from other sites in the region? For that comparison, we
compiled data from selected published and unpublished literature
(Table 1). To be included in our review, site reports needed to meet
three main criteria: 1, materials must have been recovered with a
minimum mesh size of 1/4″; 2, if smaller size fractions were recovered,
they must have been analyzed and reported separately from the larger
size fractions; and 3, the number of bones identified only as ‘mammal’
must also have been reported. Many sites, including Ozette (45CA24;
Huelsbeck, 1994) and McNichols Creek (Coupland, 2006), discussed
below, did not meet these criteria and were excluded from the regional
comparison.

Our comparative sample of 13 sites includes nine on the outer coast
of Washington and Vancouver Island to Alaska and four from the Salish
Sea in Washington State (Fig. 1, Table 1). Our sample derives from a
large geographic area reflecting the broad similarity in dietary use of
animals by coastal foragers along this entire region of the North Pacific.
We assess the identifiability of each assemblage (as a proxy for frag-
mentation) using a simple comparison of two standard zooarchaeolo-
gical measures: Number of Identified Specimens (NISP) and Number of
Specimens (NSP) (Grayson, 1991—see Section 4.1). NISP includes spe-
cimens identified at least to order, while NSP is the total number of
mammal specimens in the assemblage (including both identifiable and
unidentifiable fragments). The ratio of NSP to NISP provides an in-
dication of identifiability, with values increasing as identifiability de-
creases. The NSP:NISP values from our list of comparative sites range
from 1.4 (Amaknak Bridge) to 11.0 (Čḯxwicən). The English Camp site
(45SJ24) has a comparable value to Čḯxwicən (10.6), but all of the
others are ≤7.0. The average for all fourteen sites in the sample is 4.4,
which corresponds to an identification rate (NISP/NSP*100) of 23%,
which is considerably higher than the 9% identification rate for
Čḯxwicən. We conclude that the mammal bones from Čḯxwicən are, in-
deed, more fragmented than is the norm for shell midden and rock-
shelter sites from the North Pacific coast.

While some of the differences between specific NSP:NISP values
may be due to issues of site preservation (e.g. variation in abundance
of shell and thus pH) or differing analysis methods, they also likely
reflect disparities in how people processed different kinds of animals.
For example, McMillan and McKechnie (2015) have noted that sites
on the outer coast tend to be dominated by marine mammals, while
terrestrial mammals are more frequent in sites in the Salish Sea. The

1 An alternative spelling for the site name, Tse-whit-zen, has been used in
some previous reports and publications. The Klallam language spelling,
Čḯxwicən (Montler, 2012) is preferred by the Lower Elwha Klallam Tribe.
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two sites with the greatest identifiability, Amaknak Bridge
(49UNL50) and Hesquiat Village (DiSo1) are located on the outer
coast and have assemblages dominated by pinnipeds (seals and sea
lions; Calvert, 1980; Crockford et al., 2004). In contrast, the two sites
with lowest identifiability, Čḯxwicən and English Camp, are located
on interior waters and have greater relative proportions of artio-
dactyls (deer and elk; Butler et al., this issue b; Pegg, 1999). Thus,
the differences in identifiability may be due, in part, to differences in
how sea mammals and terrestrial mammals are processed, a point we
return to below (Section 5.4).

3. Overview of factors controlling bone breakage

Extensive scholarship on bone fragmentation in archaeology, as well
as in paleontology and forensics, includes ethnographic, experimental,
and zooarchaeological analyses (see Church and Lyman, 2003; Outram,
2001; Morin and Soulier, 2017 and Munro and Bar-Oz, 2005 for sum-
maries of archaeological bone fragmentation research). Many of these
studies focus either on domesticated animals or large terrestrial mam-
mals. Here we focus on the most relevant literature related to complex

coastal foragers, such as the people living at Čḯxwicən, who hunted and
processed both terrestrial and marine mammals, as well as birds, fish
and shellfish. We investigated a number of systemic and post-deposi-
tional explanations for bone fragmentation (Table 2, Fig. 2). We give a
brief overview of these factors here, and provide more detail on the
most relevant ones below (Section 5).

Fig. 2 compares the hypothetical ‘life histories' of bones from birds,
fish, and three types of mammals: pinnipeds, cetaceans (whales, por-
poises), and artiodactyls. All of these taxonomic groups have the po-
tential to be fragmented during processing or cooking; for example, bird
bones may be broken during roasting (as evidenced by burning along
the broken shaft; e.g., Bovy, 2005:120; Howard, 1929:379). Selected
bird and mammal bones may be chosen for bone tool production. Bird
wing bones are commonly curated for both awls and ornaments (e.g.,
Bovy, 2012; Crockford et al., 1997). Tougher materials like antler and
whalebone are favored for wedges and harpoons, and hard brittle ma-
terials (e.g., splintered artiodactyl long bones) are used for pointed
tools, such as awls and points (Margaris, 2009, 2014). Large cetacean
bones may be used as building material for construction of features
(e.g., water-diversion or bank stabilization features; Huelsbeck, 1994)

Fig. 1. Map of North Pacific showing the location of Čḯxwicən village (12) and comparative sites: (1) Amaknak Bridge, (2) Igvak, (3) Cape Addington Rockshelter, (4)
Coffman Cove, (5) Hesquiat Village, (6) Yaksis Cave, (7) Ts'shaa, (8) Huu7ii, (9) Hoko River Rockshelter, (10) English Camp, (11) Watmough Bay, (13) Minard, and
(14) Burton Acres. Dashed line shows outline of Salish Sea watershed. See Table 2 for more information on each site (figure drafted by Kendal McDonald.)
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or house architecture (e.g., McCartney and Savelle, 1993). Artiodactyl
bones are likely to be broken to extract nutritious marrow (Binford,
1978; Munro and Bar-Oz, 2005), while bones from all types of mam-
mals may be fragmented for grease and oil extraction or soup making
(Munro and Bar-Oz, 2005).

Further processes may cause fragmentation after bones are dis-
carded, both during the occupation of the site (systemic context) or
after site abandonment (post-depositional processes). Discarded
mammal bones may be mixed with wood for use as a fuel (Heizer,
1963), resulting in increased fragmentation (Théry-Parisot, 2002; see
Section 5.2). All types of animal bone (mammals, birds, fish) may be
burned intentionally for trash disposal and hence further fragmented or
completely destroyed (Yravedra and Uzquiano, 2013). Wild carnivores
or domesticated dogs may gnaw on and fragment discarded animal
bones (Marean, 1991). All types of animal bone are also potentially
subjected to mechanical pressure, such as compaction or trampling.
Burned, and to a lesser extent boiled, bones are particularly vulnerable
to destruction by trampling after discard (Roberts et al., 2002; Stiner
et al., 1995). Finally, post-depositional weathering (Behrensmeyer,
1978) and chemical breakdown (Linse, 1992) may occur, depending on
the length of exposure on the surface, percolation of ground water, and
the acidity of the soils.

Overall, we expect that mammal bones would be more fragmented
than those from fish or bird, given their value for a greater range of
purposes, including tool production, marrow extraction, grease or oil
production and use as a fuel additive (Fig. 2). And among mammals,
artiodactyl bones are more likely to be fragmented in the systemic
context than are pinniped and cetacean bones (Fig. 2). Artiodactyl long
bones and antler are preferred raw materials for many types of tools.
Artiodactyl long bones also offer valuable marrow, which is absent from
sea mammals. Additionally, Outram (1999) has argued that seal bones
are unlikely to be used for grease extraction, whereas artiodactyl bones
are known to provide grease (Binford, 1978; Church and Lyman, 2003;
see discussion in Section 5.4). In addition to all these cultural factors,

the inherent differences in the size of individuals from different animal
classes, and the size of the resulting skeletal elements, may affect
identifiability. In a summary of bird analyses from 24 Oregon coast
sites, Bovy et al. (in press) list NSP and NISP values; the overall
NSP:NISP value for all of these analyzed collections is 2.1, suggesting
that relatively high identifiability is typical for bird assemblages from
coastal shell middens.

4. Overview of Čḯxwicən faunal analysis

4.1. Methods & materials

The Čḯxwicən midden samples presented a large, complex analysis
involving four different taxonomic specialists (KMB, birds; MAE,
mammals; VLB, fish; SKC, invertebrates). Our study is focused on
samples derived from seven block excavations in Areas A and B (Fig. 3)
representing a range of different ages, contexts, and activity areas
(Reetz et al., 2006; see Butler et al., this issue b, and Campbell et al.,
this issue, for details). Field sampling was designed to allow integration
of all classes of faunal data (Reetz et al., 2006), and simple calculation
of matrix volume (following Stein, 1992). Matrix was excavated from
each uniquely defined deposit in each 1×1m unit into 10 L buckets,
which were water-screened through graded mesh 1″ (25.6 mm), 1/2″
(12.8 mm), and 1/4″ (6.4 mm). At least one bucket per stratum (per
1×1m unit), labeled ‘C’ (Complete), was also put through nested
screens down to 1/8″ (3.2 mm) mesh, which was also the only bucket
from which shell was retained (Kaehler and Lewarch, 2006). After ex-
cavation, faunal remains were sorted into four main animal groups
(fish, bird, mammal, shellfish) by lab personnel, and all materials were
curated by the Burke Museum of Natural History and Culture. Formal
artifacts recognized during the initial sorting were catalogued and cu-
rated separately from the midden samples (see Section 5.5).

There are four sample types from Čḯxwiən (Table 3). All analysts
examined both ‘C’ buckets, which included material from the 1/8″ and

Table 1
Comparison of mammal bone identifiability for sample of North Pacific archaeological sites (Number of Specimens [NSP]: Number of Identifiable Specimens [NISP]).
Includes ≥1/4″ mesh samples only. The Čḯxwicәn village site is indicated in bold.

Map # Site name (number; location) NSP NISPa NSP:NISP Comments Reference

1 Amaknak Bridge (49UNL50; Amaknak Island,
Alaska)

18,347 13,160 1.4 Crockford et al.,
2004

2 Igvak (49AFG016; Afognak Island, Alaska) 1980 697 2.8 Reportedly screened down to 1/8″, but size of faunal
remains consistent with 1/4″ screening

Etnier et al., 2016

3 Cape Addington Rockshelter (49CRG188;
Prince of Wales Island, Alaska)

1851 908 2.0 Moss, 2004

4 Coffman Cove (49PET067; Prince of Wales
Island, Alaska)

2193 315 7.0 Moss, 2016

5 Hesquiat Village (DiSo1; Vancouver Island,
British Columbia)

3990 2188 1.8 All temporal assemblages Calvert, 1980

6 Yaksis Cave (DiSo16; Vancouver Island,
British Columbia)

286 133 2.2 Calvert, 1980

7 Ts'ishaa (DfSi16; Vancouver Island, British
Columbia)

2995 1474 2.0 Frederick and
Crockford, 2005

8 Huu7ii (DfSh7; Vancouver Island, British
Columbia)

12,955 2828 4.6 2004 and 2006 sample; excludes column samples Frederick, 2012

9 Hoko River Rockshelter (45CA21; Olympic
Peninsula, Washington)

16,802 5129 3.3 “Antler detritus” counted as identifiable Wigen, 2005

10 English Camp (45SJ24; San Juan Island,
Washington)

4359 413 10.6 Op-A excavation Pegg, 1999

11 Watmough Bay (45SJ280; Lopez Island,
Washington)

1078 264 4.1 Data from 2004 excavation; conservative estimate
(unidentified mammal may include some bird)

Bovy, n.d.

12 Čḯxwicən (45CA523; Port Angeles,
Washington)

15,416 1399 11.0 Areas A4 & A5 (all bag types); value varies
depending on bag type (Table 5): range=2.9–20.0

Etnier, 2018

13 Minard (45GH15; Grays Harbor, Washington) 20,397 4882 4.2 Conservative estimate (unidentified mammal may
include some bird?)

Fancher, 2001

14 Burton Acres (45KI437; Vashon Island,
Washington)

1194 288 4.1 Conservative estimate (unidentified mammal may
include some bird)

Bovy, 2002

a NISP only includes things identified at least to Order (e.g., does not include ‘unidentified sea mammal’ or ‘unidentifiable terrestrial mammals’).
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larger mesh screen, and ‘CX’ buckets, which were screened down to
1/4″minimum mesh size, as well as relatively large remains recorded in
situ (‘E’ samples). Additional mammal and bird bones from ‘S’ buckets
were analyzed by Etnier and Bovy, respectively, in order to bolster the
overall sample size for those taxonomic classes (Table 3). These four
types of samples combined represent the total ‘population’ or ‘universe’
of bone fragments recovered from the site, while the C/CX bags are a
sample of this larger population. The totals shown in Table 4 reflect
only the C/CX samples assigned to a specific temporal analytical unit or
chronozone (hereafter, CZ, detailed in Campbell et al., this issue). Seven
CZs were defined for the research project area. The oldest, CZ 1, ranges
in age from 2150 to 1750 cal BP while the youngest, CZ 7, spans the
time period 300–150 cal BP.

In general, each specialist identified individual fragments to the
most specific taxon possible, although the protocols of each specialist
varied slightly (Bovy, 2018; Butler et al., 2018; Etnier, 2018). An
important aspect of our analysis was to document ‘unidentified’
fragments, to the extent possible given the size and nature of the
specimen(s) in question. A bone was considered ‘identifiable’ if it was
identified to at least taxonomic order. As is typical of many zooarch-
aeological analyses, the decision was made not to identify some
skeletal elements; for example, no attempt was made to identify bird
vertebrae, ribs, or phalanges (toes) beyond the class level. In this way,
we relied on two main counting units (as discussed above): NISP, for
specimens identified at least to order, and NSP, which joins NISP with
specimens which could not be identified below main animal type
(bird, mammal, fish, invertebrate). Etnier and Bovy assigned the
majority of unidentifiable specimens from the 1/8″ screens to a ‘non-
fish vertebrate’ category, due to the difficulty in distinguishing bird
from mammal in the fragments not identifiable to element. One
exception was bone chips and shavings (see Section 5.5), which were
consistently recognizable as being from mammal bones based on their
texture and bone structure. Most of the non-fish vertebrate specimens

represent fragments of larger specimens from larger-bodied animals
(e.g. alcids, anatids, artiodactyls, pinnipeds), as opposed to whole
elements from small-bodied animals, as was the case with much of the
1/8″ fish sample. The ∼17,000 ‘non-fish vertebrate’ remains (Table 4)
are not included in this paper's analyses.

Analysts recorded standard zooarchaeological data for each spe-
cimen, such as element, portion, and taphonomic signatures. The ta-
phonomic signatures recorded include presence and degree of burning,
evidence of carnivore or rodent gnawing, intentional (or accidental)
surface modification (i.e., percussion flake scars, chop marks, cut marks,
etc.), gastric pitting, and distinctive breakage patterns. During the course
of our analyses, we recognized that we were having difficulty clearly
distinguishing various types and degrees of thermal alteration using only
visual characteristics. We therefore restricted the term ‘burning’ only to
fragments that were clearly burned, charred, or calcined—i.e. were dark
brown to black to blue-ish white. We excluded bones that were uniformly
gray, with a characteristic sound quality reminiscent of porcelain, which
may have been subjected to indirect heating (Bennett, 1999). We also
excluded dark brown specimens that may have been stained brown by
the surrounding sediment. Thus, we believe that our coding of burning is
conservative, as are our estimates of rates of burning across bones from
different taxa. That said, in a reanalysis of random samples of fish re-
mains, Nims and Butler (2017) found up to 10% error in burning as-
sessments, indicating that at least for fish, subtle differences in burning
rates may not be meaningful. Since taphonomy was not the initial goal of
our study, we did not conduct specific studies relating to the physico-
chemical effects of boiling (e.g., Roberts et al., 2002), or burning
(Thompson et al., 2013), or more general analyses such as measure-
ments, assessments of fracture freshness, crushing or tear marks,
weathering stages, and presence of micro-inclusions (e.g., Heinrich,
2014; Morin and Soulier, 2017; Outram, 1999).

We used several different measures of fragmentation and identifia-
bility to evaluate a series of related hypotheses concerning the

Table 2
Overview of factors affecting mammal bone fragmentation and expectations at Čḯxwicən.

Possible factors for mammal bone
fragmentation

Archaeological expectations Selected references Expectation supported?

Post-depositional factors (may have occurred while site was still occupied or after abandonment)
Chemical breakdown Acidic soils negatively affect faunal preservation for all animal classes. Linse, 1992 No
Surface exposure (weathering) Solar and wind processes may cause bone fragmentation. Behrensmeyer, 1978 No
Carnivore gnawing Carnivore gnawing causes fragmentation (especially on epiphyses of

long bones).
Marean, 1991 No

Mechanical pressure (e.g.,
compaction, trampling)

Bones more broken on floors or activity areas across all animal classes. Lyman, 1994; Stahl and Zeidler, 1990 Yes

Post-depositional effects of
burning or boiling in systemic
context

Burned or boiled bones fragment more frequently than non-burned or
boiled bones when trampled within top 4 cm of surface.

Roberts et al., 2002; Stiner et al.,
1995

Yes

Behavioral/systemic context (the following explanations relate to intentional decisions made by site occupants)
Trash disposal (burning) Burning rates high for all food refuse (mammal, bird, fish). Yravedra and Uzquiano, 2013 No
Fuel use Mammal bones should be more frequently burned if used as fuel, and

exhibit different patterns of burning than bird and fish.
Théry-Parisot, 2002 Yes

Mammal bones should be found in contexts near hearths or burning
activity areas.

Costamagno et al., 2002 No

Dead/dry wood should be present, since bone fuel use increases
efficiency of deadwood fires.

Théry-Parisot, 2002 Yes

Bone marrow extraction Impact fractures are expected on artiodactyl elements that are high in
marrow.

Munro and Bar-Oz, 2005 No - obscured by later
processing?

Artiodactyl bones are more likely to be fragmented compared to canid
bones (less marrow), and also bird and pinniped bones (no marrow).

Lyman, 1991; Munro and Bar-Oz,
2005

Yes

Boiling bones: bone grease
rendering and soup/stew making

Bone fragments should be relatively small. Fragments up to 5 cm
(=2 in) are suitable for grease rendering, though smaller fragments
require less water and fuel for processing.

Church and Lyman, 2003; Janzen
et al., 2014; Morin and Soulier, 2017

Yes

Association with thermal features. Morin and Soulier, 2017 No
Anvils (for processing bone fragments) should be recovered. Morin and Soulier, 2017 2 recorded

Bone tool production Bone and antler tools should be abundant, especially in comparison to
lithic tools.

Yes

Bone debris from tool production and tools for bone working should be
present.

Yes
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taphonomic life histories of the various taxa included in our study. At a
most basic level, the identifiability of vertebrate skeletal remains—-
whether to a specific taxon or even to skeletal element—provides an
index of the fragmentation of that assemblage. Following Grayson
(1991) and Nagaoka (2005), we examine the ratio of NSP to NISP. This
can be thought of as ‘the number of bones examined to yield one
identified specimen,’ and will range in value from one to infinity. Low
NSP:NISP ratios indicate high identifiability, whereas high NSP:NISP
ratios indicate low identifiability. Note that values of zero are im-
possible due to the structure of the ratio. In Tables 4 and 5 we include
the inverse measure, NISP / NSP ∗ 100, which we label identification
rate. We also calculated the proportion of whole vs. broken skeletal
elements (% Whole), known as the extent of fragmentation (Lyman,
1994, 2008; Munro and Bar-Oz, 2005; Nagaoka, 2005; Nagaoka et al.,
2008; Wolverton, 2002), for elements from the appendicular skeleton
(minus the scapula and the pelvis). The intensity of fragmentation is
commonly evaluated through ratios of NISP to minimum number of
elements (MNE) or sizes of broken bones (Lyman, 1994). NISP to MNE
ratios were not calculated for Čḯxwicən due to the very low sample sizes
for individual skeletal elements of mammals. Instead, we calculate the

number of identified and unidentified fragments recovered in each of
the different mesh sizes (1″, 1/2″, 1/4″) as a proxy for fragment size.

4.2. Overview of bone fragmentation at Čḯxwicən

The initial examination of identifiability clearly shows that the mammal
bones from Čḯxwicən are less identifiable than the bird and the fish bones
(Table 4). For birds and fish from the ≥1/4″ size fraction, one specimen
was identified for every two specimens examined, indicating high levels of
identifiability. Mammals, on the other hand, had much lower identifiability,
requiring examination of 18 specimens to obtain a single identified spe-
cimen. This corresponds to identification rates of approximately 50% for
birds and fish, but only 5% for mammals. Fish identifiability is the same in
both the ≥1/4″ and ≥1/8″ size fractions, but the NSP:NISP ratios for
mammals and birds are harder to interpret for the smaller screen size be-
cause Bovy and Etnier assigned most specimens not identifiable to element
to the ‘non-fish vertebrate’ category (Table 4). For this reason, we focus on
those materials that are ≥1/4″ for all of our subsequent analyses.

Table 5 shows the differences in mammal identifiability by sample
type; here we focus only on material from Areas A4 and A5, which allows
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us to maximize the number of mammal bones included in the analysis, as
all of the samples (C/CX, S, E) were examined from these two areas. Note
that the specimens collected in situ (‘E’ bags) are much more identifiable
than those recovered in the screens (35% identifiable vs. 5–8%). This
makes sense given that these were typically larger fragments, which field
crewmembers observed and recorded during excavation. Nonetheless, the
in situ mammal remains are still much less identifiable than those of birds
recovered from the same contexts; 89% (304/343) of the bird bones from
‘E’ bags from A4 and A5 were identifiable to taxon.

5. Explaining fragmentation at Čḯxwicən: hypotheses and results

5.1. Post-depositional factors

Potential ‘post-depositional’ factors affecting mammal fragmenta-
tion include those that occurred after abandonment as well as while the
site was still actively occupied; some factors, such as carnivore gnawing
and mechanical pressure, might occur at both times (Fig. 2, Table 2). In
addition, the impact of post-depositional processes may have been ex-
acerbated by intentional human behaviors (burning or boiling bones)
prior to deposition.

If chemical processes or weathering were the primary cause of
mammal bone fragmentation at Čḯxwicən, we would expect the bird and
fish bones to be similarly affected, which is not the case. Qualitative
assessments indicate good overall preservation at the site, which is
typical of shell middens. Delicate bird and fish bones are present, such
as bird skull fragments and tracheal rings, and neural spines on herring
(Clupea pallasii) vertebrae. Soil pH measurements (n=36) obtained
following the 2004 field project range from 7.0–7.7, with an average of
7.5, and are relatively uniform throughout horizontal and vertical
space, indicating soils were neutral or moderately alkaline, rather than
acidic. As for weathering from surface exposure, only seven mammal
bones exhibited any attributes indicative of exposure such as cracking.

Carnivore gnawing is known to increase mammal bone fragmenta-
tion, especially of the epiphyses of long bones (Blumenschine, 1988;
Brain, 1981; Lyman, 1994; Marean, 1991; Weigelt, 1927). Coast Salish
peoples had domesticated dogs (Crockford, 1997); and dog is the

Fig. 3. Map of the Čḯxwicən village site, showing areas targeted for geo-zooarchaeological analysis, with chronozone (CZ) assignments and cultural activity indicated
(figure drafted by Kristina Dick).

Table 3
Summary of field sampling methods and types at Čḯxwicən, including bucket
samples included in current project.a

Sample code Description Fauna collected # of buckets
analyzed

C 10 L bucket, to 1/8″
mesh

All 457

CX 10 L bucket, to 1/4″
mesh

All 363

Sb 10 L bucket, to 1/4″
mesh

Mammal, bird, fish Mammal: 1863;
Bird: 401

E Recorded in situ All, typically larger
specimens

a Samples from excavation areas A1, A3, A4, A18, A23, A5, BX1/BX4.
b Additional S samples from A4 & A5 were analyzed for mammals because of

the relatively small numbers of specimens identified to taxon in the C/CX
buckets; bird remains from A4 (Units 17–20 only), A5 and A23 S buckets were
also studied.
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second most abundant mammalian taxon at Čḯxwicən after cervids
(Butler et al., this issue b). Evidence for carnivore gnawing and diges-
tive erosion is limited at Čḯxwicən (gnawing: birds, n= 11; mammals,
n= 82; gastric pitting: fish, n= 10; birds, n= 24; mammals, n= 21),
indicating carnivore action contributed little to fragmentation. Of
course it is possible that some bones were completely consumed by
dogs, a hypothesis impossible to test.

All else being equal, mechanical pressure, such as trampling or se-
diment compaction would also be expected to affect bone from all an-
imal types more or less uniformly, and would be more likely to occur on
house floors. If we compare the identifiability for occupation surfaces
(floors, pre-house activity areas) versus secondary refuse contexts (ex-
tramural deposits, fill) from House A4, we find that mammals are less
identifiable on occupation surfaces, consistent with the effects of
trampling in activity areas (Fig. 4). This pattern does not hold for bird
and fish, which have uniformly high identifiability in both contexts
(Fig. 5). Note that while there is some variation within the occupational
surface and secondary refuse categories, these overall trends are con-
sistent.

Why might mammal bones be more fragmented on occupational

surfaces than bird or fish? Both burning and boiling are known to
contribute to fragmentation. In experimental studies, Stiner et al.
(1995) found that burned bones were more likely to be fragmented due
to trampling than unburned bones; furthermore, bones that were sub-
jected to higher burning intensity were more highly fragmented and
less identifiable to element. Similar to burning, boiling as part of food
processing may contribute to fragmentation after deposition, because of
loss of mechanical strength. In boiling experiments, Roberts et al.
(2002) found decreased collagen content, and increased crystallization
and porosity in bovine rib bones boiled over prolonged periods of time
(> 9 h), which would likely reduce mechanical strength and accelerate
diagenesis.

In sum, post-depositional factors such as chemical breakdown,
surface weathering, and carnivore gnawing had negligible impacts on
fragmentation at Čḯxwicən. However, mechanical pressure does appear
to have been a factor contributing to mammal bone fragmentation.
Below we explore patterns of burning (Section 5.2) and boiling (Section
5.4) at Čḯxwicən to further assess whether these systemic processes may
have affected the bone condition at the site.

5.2. Intentional burning of fresh bone: trash disposal and fuel use

In several scenarios, fresh bone may have been intentionally
burned, which could result in increased fragmentation, either as a di-
rect result of the burning or through post-depositional trampling. In the
context of permanent long-term residential areas, these scenarios in-
clude general trash disposal and use as fuel or a fuel additive.

High degrees of burning in vertebrate assemblages may reflect in-
tentional burning for trash disposal, which might be done to make
living conditions more hygienic and/or deter scavengers (Yravedra and
Uzquiano, 2013). Although use of bone for fuel is rarely discussed for
North American contexts (but see Grayson, 1991; Morgan et al., 2012),

Table 4
Overview of bone identifiability at Čḯxwicən.a

≥1/4″ (C/CX buckets) ≥1/8″ (C buckets)
NSP NISP NSP:NISP ID rateb NSP NISP NSP:NISP ID rateb

Fish 13,545 6766 2.0 50.0 85,559 43,373 2.0 50.7
Bird 3261 1588 2.1 48.7 4203 1508 >2.8c 35.9
Mammal 4627 252 18.4 5.4 3417 231 >14.8c 6.8
Vertebrate (non-fish) 170 16,930

a Includes all samples assigned to Chronozone for areas A1, A4, A5, A18, A23, and BX1/BX4; analyzed volume for this comparison=433 10 L C buckets and 355
10 L CX buckets. See text for details on calculation of NSP and NISP.

b Identification rate=NISP / NSP ∗ 100.
c The≥1/8″ NSP:NISP values for birds and mammals are low because most fragments not identified to element were coded as ‘non-fish vertebrate’. See discussion

in text.

Table 5
Mammal identifiability by sample type for 1/4″ and larger.a

Sample type # of buckets
analyzed

NSP NISP NSP:NISP ID rate (NISP /
NSP ∗ 100)

C/CX 645 3933 197 20.0 5.0
S 1863 10,512 866 12.1 8.2
E (in situ) n/a 971 336 2.9 34.6
Total 2508 15,416 1399 11.0 9.1

a Includes Areas A4 & A5 only (100% of the mammal bones was examined
from those two areas). Bones from E bags were not recovered in the screens, but
tended to be fairly large (> 1/4″).
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the use of bone fuel has been posited for many Upper Paleolithic sites
(e.g., Beresford-Jones et al., 2010; Costamagno et al., 2002; Heizer,
1963; Théry-Parisot et al., 2002) and Middle Paleolithic sites of Europe
(e.g., Goldberg et al., 2012). Heizer (1963:188) also describes historic
accounts of people in northern latitudes using a combination of ceta-
cean oil and bone for fuel in place of wood. Experimental work has
shown that a wood and bone fuel mix has advantageous properties
compared to wood fires alone, including longer combustion times
(Théry-Parisot, 2002). Théry-Parisot (2002) conducted experiments to
determine the optimal fuel mix in terms of heat transfer and duration,
and found mixed bone-wood fires burn on average 33% longer than
fires fueled by wood alone. She found that bone fuel was particularly
effective at improving the longevity of fires using ‘deadwood’ (wood
already detached from the tree and in a state of decomposition).
Vaneeckhout et al. (2013) discovered that a combination of bone and
wood burns with lower temperature, but produces more light, which
may be especially useful in winter months in northern latitudes.

Archaeologists have assumed that mammal bones, especially the
grease-rich spongy epiphyses of long bones (e.g., Costamagno et al.,
2002; Morin, 2010; Théry-Parisot et al., 2002; Yravedra and Uzquiano,
2013), are more likely to be chosen as fuel than birds or fish. For ex-
ample, in their analysis of a Neandertal hearth at El Esquilleu cave,
Spain, Yravedra and Uzquiano (2013) found high proportions of
charred ibex (Capra pyrenaica) shafts (relative to epiphyses) and argued
occupants were burning for trash disposal rather than intentional fuel
use. Vaneeckhout et al. (2013) compared qualities of bones from moose
(Alces alces), brown bear (Ursus arctos), and phocid seals in terms of fire
temperature and duration; they found that fires using seal bones had
lower temperatures and bones were less fragmented (compared to the
moose and bear). They reasoned that seal bones were not as useful for
fuel because seals store fat under their skin, rather than in the bones,
unlike moose and bear bones, which contain fatty marrow. However, if
pinniped or seal bones were combined with oil from the animals (as in
the historic example noted by Heizer above), they may have been ef-
fective for fuel.

Distinguishing accidental burning (during cooking or after discard),
from intentional refuse burning or use of bone as fuel, is a challenging
task (Heizer, 1963:188). We suggest that if occupants of Čḯxwicən were
burning bones for trash disposal, or if this burning happened post-de-
positionally, all animal types would show a similar frequency of
burning; whereas if bones were burned for fuel use, the mammal bones
would be more frequently burned. Our expectation for trash disposal is
not met: mammal bone consistently shows a higher frequency of
burning than bird or fish bone (Fig. 6). Mammal bones are burned
51.4% of the time (on average) for occupation surfaces and 30.2% of
the time in secondary refuse contexts, compared to 32.8% and 23.3%
respectively for bird, and 7.2% and 4.9% for fish. The fact that burning
rates for mammals are much higher on occupation surfaces may ac-
count for the lower identifiability of mammal bones in these contexts
(Fig. 4; see Section 5.1), supporting the hypothesis that post-deposi-
tional mechanical pressure of burned bones contributed to the mammal
fragmentation. However, the relationships are more complex than this.
While frequency of burning appears to contribute to low identifiability
on the A4 house floors, this is not the case in all contexts at Čḯxwicən.
Fig. 7 plots mammal identifiability vs. burning rates for thirteen dif-
ferent spatial contexts and CZ pairings; there is no overall relationship
between burning and identifiability (R2= 0.02992; p= 0.57201).

If trash disposal is not the cause for the high rates2 of mammal
burning (and subsequent fragmentation), how does the bone fuel hy-
pothesis measure up? To test this hypothesis further, we consider

additional test implications (Table 2).3 First, we would expect mammal
bones to be preferentially selected over bird bones for use as a bone fuel
additive, due to the inherent differences in fat and grease content. We
explore more detailed comparisons of mammal and bird burning pat-
terns, to determine whether these two types of animals were treated
differently at the site. As with mammal, bird bones are also more
burned on occupation surfaces than secondary contexts (Fig. 6), but the
identifiability of bird bones is comparable in both cases (Fig. 5). If we
look at burning by screen size for mammals vs. birds, we again see a
difference. Burned unidentifiable mammal fragments dominate the
smaller screen sizes (Fig. 8), while burned and non-burned bird bones
are roughly equal in identifiability in all screen sizes (Fig. 9). The
overall burning rate for unidentified mammals is much higher (40%)
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2 In our experience, the burning rates for the Čḯxwicən mammals are high
compared to other shell midden sites; in contrast, non-shell midden sites may be
dominated by small fragments of burned or calcined bone due to preservation
issues (e.g., Etnier and Bovy, 2010; Prince, 2007; Seitsonen et al., 2017).

3While researchers have looked at the relative proportion of shafts vs. epi-
physes as an argument for or against bone fuel use (e.g. abundant shafts in-
dicate trash disposal rather than bone fuel use; Yravedra and Uzquiano, 2013),
we do not do so here, since the assemblage is so fragmented that the resulting
numbers would be quite small (for example, only 10 pinniped femora were
recovered from the entire assemblage). Also, the test is equivocal; if people are
choosing epiphyses to put in the fire, they may be more likely to fragment and
would be less identifiable and less abundant.
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than for artiodactyls (15%) and pinnipeds (9%), reinforcing the con-
clusion that burned specimens were more fragmented and less identi-
fiable. Patterns of bird burning vary in other ways as well. For example,
10% (n=81) of the bird humeri recovered are systematically burned
along the broken shaft (indicative of roasting), and in some areas of the
site, bird burning rates are much higher than for mammals (A3,
CZ5= 70% birds, 40% mammals; BX1/BX4, CZ4=63% birds, 34%
mammals). Overall, the patterns in burning of bird bone do not match
those of mammals, which points to different taphonomic life history
trajectories for the two classes of animals.

Second, if mammal bones were being used for either fuel or trash
disposal, we expect burned mammal bones to be found in contexts near
hearths or burning activity areas (Costamagno et al., 2002). To test this,
we compared the overall abundance and burning rates for selected
thermal features in A4 (Table 6). Only a small proportion of mammal
bones from A4 were recovered from thermal features (1.8%), which in
itself is problematic for the fuel hypothesis. In addition, burning rates did
not differ for mammal bone found in thermal features versus all other
contexts in A4 (χ2=1.55, p=0.213). Perhaps as part of routine hearth
maintenance, remains were emptied and deposited elsewhere on the site.

Finally, if the bone fuel hypothesis were correct, we would expect to
find evidence for the use of dead or dry wood at Čḯxwicən, since bone fuel
use increases the efficiency of deadwood fires. We have information on
409 charcoal samples, which were analyzed by Shaw (2018) in order to
find suitable AMS dating samples. Nearly half (49%; n=75) of the
samples that could be identified to at least genus were Douglas fir (Pseu-
dotsuga menziesii), which is a high-ranked fuel, well suited for high heat

activities like heating and cooking (Shaw, 2008, 2012). Other woods re-
presented at Čḯxwicən, in order of decreasing abundance, include: alder
(Alnus), spruce or larch (Picea/Larix), willow (Salix), elderberry (Sam-
bucus), oceanspray (Holodiscus), and twelve additional genera each
with<2% of total NISP. Although Čḯxwicən inhabitants appear to have
harvested firewood broadly from the trees and shrubs of the lush Pacific
Northwest Coast forest, bone fuel may still have been useful for increasing
fire efficiency. At Čḯxwicən, at least four charcoal specimens exhibiting
fungal hyphae4 are present in Area A4, suggesting that deadwood or
driftwood may have been used occasionally as fuel (Shaw, 2018).

The high frequency of burned mammal bone, the differences between
burning patterns for mammals and birds, and the presence of deadwood use
at the site, provide some support for the hypothesis that mammal bones
were intentionally burned for fuel. Secondarily, the burned bones appear to
have been fragmented further due to mechanical pressure after deposition.

5.3. Bone marrow extraction

The importance of artiodactyl bone marrow as a source of fat has long
been noted (e.g., Binford, 1978), stimulating an extensive literature on
bone fragmentation and the identification of marrow extraction in the
archaeological record (e.g., Blumenschine, 1988; Jones and Metcalfe,
1988; Lyman, 1994; Outram, 2001). Binford's initial work ranked skeletal
elements of Dall sheep (Ovis dalli) and caribou (Rangifer tarandus) based on
the efficiency with which marrow could be extracted, measured as ml of
marrow yield per minute of effort. The major limb elements (femur, tibia,
humerus, and the radio-cubitus [=fused radius+ulna]) consistently
ranked high in extractive efficiency; metapodials ranked intermediate; and
phalanges ranked low (Binford, 1978). Binford's informants told him that
phalanges, while they did contain some marrow, were only ever utilized
for marrow during the leanest of times (Binford, 1978). Initial attempts to
recognize bone marrow production relied on marrow utility indices
(Binford, 1978; Jones and Metcalfe, 1988); however, factors such as
transport costs and differential preservation posed analytical problems
(Wolverton, 2002). Given that relatively little fragmentation is needed to
extract marrow (versus extraction of grease), the extent of fragmentation
of individual marrow bearing bones, measured as % whole, has frequently
been used instead (Lyman, 1994, 2008; Munro and Bar-Oz, 2005;
Nagaoka, 2005; Todd and Rapson, 1988; Wolverton, 2002). For example,
Munro and Bar-Oz, 2005, tested for marrow exploitation at an Epipa-
laeolithic site in Israel, by comparing the % complete long bone shafts of
gazelle (marrow rich), with hares (less marrow) and partridges (no
marrow), and found significantly lower percentages of whole bones for
gazelle. They also compared the relative completeness of juvenile and
adult gazelle bones, with the assumption that adults will be preferentially
chosen for marrow extraction (since juvenile bones contain less marrow),
and found that the adult bones were more fragmented. Finally, percussion
marks or impact scars on limb bones are used to identify marrow ex-
traction (e.g., Blumenschine, 1988; Lyman, 1994).
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Table 6
Frequency of burned mammal bones in A4 thermal features and all other
contexts. All sample types included; ≥1/4″ mesh screen. There is no significant
difference between bones found in thermal features and other contexts
(χ2= 1.55, p=0.213).

Thermal features All other contexts
Burned Not burned Total Burned Not burned Total

NSP 116 180 296 5848 10,537 16,385
% Burned 39.2 35.7

4 Shaw did not systematically look for evidence of fungal hyphae in the as-
semblage, since this was not relevant to her goal of finding suitable radiocarbon
samples. Future analyses could be conducted at Čḯxwicən or other sites to
evaluate the presence of deadwood.
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To test for marrow extraction at Čḯxwicən, we compared the extent
of fragmentation of artiodactyl bones to animals with less marrow
(canids) and no marrow (pinnipeds, birds). Only six of the artiodactyl
bones could be securely identified to age class, so we could not compare
fragmentation values between adults and juveniles. Impact scars, which
would likely occur during the marrow extraction process, were sys-
tematically recorded during the analysis.

Table 7 shows the raw counts and % whole long bones for artiodactyls,
canids, pinnipeds, and birds, from the entire Čḯxwicən assemblage (all
areas and CZs). Artiodactyls are consistently more fragmented than canids,
pinnipeds and birds for every element. Consistent with Binford's marrow
index rankings, none of the major limb bones (femur, tibia, humerus, ra-
dius/ulna) of artiodactyls in the entire assemblage were complete; artio-
dactyl metapodial survivorship was low (5.5%), and survivorship of ar-
tiodactyl phalanges (32.7%) is consistent with only occasional marrow
extraction. Indeed, phalanges were the most complete element for all
animal types (Table 7). The range of values for % whole elements (ex-
cluding phalanges) is 20% (ulnae) to 44% (metapodials) for canids, 17%
(humeri) to 43% (metapodials) for pinnipeds, and 2% (humeri) to 14%
(tarsometatarsus) for birds. While these contrasts are striking and certainly
support the hypothesis that bone marrow extraction contributed to artio-
dactyl bone fragmentation, only one impact fracture was noted in the
mammal assemblage. We suggest that such fractures were destroyed as the
mammal bones were further processed (see Section 5.4).

5.4. Boiling bones: bone grease rendering and soup or stew making

Bone fragmentation could result from bone grease rendering, soup
production, or both. Ethnoarchaeology and cross-cultural ethnographic
comparisons (e.g., Binford, 1978; Vehik, 1977) have highlighted the
importance of bone grease as a “concentrated energy source” (Vehik,
1977:172) and the dietary benefits are often stressed, including use as a
base for soup, constituent of pemmican or suet cakes, or condiment.
Bone grease may also be used as a food preservative or candle fuel, as
an agent for waterproofing skins or canoes, tanning hides, or treating
bowstrings, and in soap production (Heinrich, 2014; Morin and Soulier,
2017; Outram, 2001; Prince, 2007; Vehik, 1977). The importance of fat
to Northwest Coast people is shown in Drucker's ethnography of the
Northern and Central Nootkan (Nuu-chah-nulth) First Nations people of
the west coast of Vancouver Island:

There was a tremendous emphasis on fats—oils and greases—in the
dietary patterns…Fat parts of salmon, fat meats, whale and seal blubber,
the oily skins of ducks and geese, even heavy, soggy deer tallow, were all
considered choice and delicious (though the last, deer tallow, was ad-
mitted to be a pretty low-grade delicacy, and was used extensively only
by the upriver Muchalat.)

(Drucker, 1951:62–63)

Support for the value of bone grease can be found at the well-preserved
Ozette site, 125 km to the west by sea from Čḯxwicən. Despite the lack of
ethnographic evidence for bone grease extraction for the Makah,

Huelsbeck (1994:282) describes ‘hack’ marks on whale vertebrae, which
he suggests indicate attempts to penetrate the oil-rich bones and obtain
chunks of bone for grease rendering. The possibility of bone grease ren-
dering at the site is even more interesting because, based on estimated
quantities of consumable whale oil, people living at Ozette likely had a
surplus of whale oil to trade to neighboring groups (Huelsbeck, 1994:297).

In his comparison of Medieval Norse and Paleo-Eskimo sites in
Greenland, Outram (1999) found that land mammal bone, including
domesticated livestock (cattle, sheep, goats) and caribou, were highly
fragmented compared to those of seals in both cultures, and concludes
the land mammal bones were processed for grease, while the seals were
not. Outram found no ethnographic examples of seal bone used for
grease rendering and provides two explanations for this difference
(Outram, 1999:115–16). First, he suggests that due to the low melting
point of seal oil it would not rise to the surface of hot water, which is
how bone grease is usually collected when rendered. Secondly, he
reasons that the glut of fat from blubber during the sealing season
would make bone grease rendering superfluous. Lyman et al. (1992)
and Nagaoka (2006) have also argued that the extraction of bone grease
or oil would be less likely for seals, given that so much grease is readily
available in the blubber. We question both of these premises. First, seal
oil has a specific gravity of about 0.93, and is non-soluble in water
(Andés, 1898); therefore it will float. Second, seal oil preserves well
(Stopp, 2002), so there may be incentive to store it for later use.
Therefore, the effort of extracting seal oil from bones may be worth-
while, even when there are fresh supplies of oil available.

Besides grease rendering, bone might also fragment as part of soup
production (Heinrich, 2014). Soup or stew making is similar to bone
grease rendering, but the grease is incorporated into the broth along
with other ingredients. In the Pacific Northwest, stone boiling (using
hot stones) is frequently mentioned as one of the main ways to cook
meat (Barnett, 1955:60; Curtis, 1913:57; Gunther, 1927:209; Haeberlin
and Gunther, 1930:23; Jenness, n.d.:31). Swan (1870:25), for example,
mentions that ducks were “thrown promiscuously into a kettle” and
boiled. Importantly, bone fragmentation or condition associated with
grease or soup making would not be easily distinguished.

Researchers have used experiments to test assumptions about the
costs and benefits of breaking bone into fragments to increase grease
production, as well as to develop taphonomic criteria for recognizing it
in the archaeological record. In cultural settings lacking vessels that
could be put directly on a fire, grease rendering typically involves the
use of hot stones placed into waterproof fiber or wooden baskets.5 This

Table 7
Extent of long bone fragmentation (% Whole) for artiodactyls, canids, pinnipeds, and birds.a

Element Artiodactyls Canids Pinnipeds Birds
Counts % Whole Counts % Whole Counts % Whole Counts % Whole

Femur 0 of 22 0.0 3 of 7 42.9 4 of 10 40.0 30 of 225 13.3
Humerus 0 of 9 0.0 4 of 11 36.4 1 of 6 16.7 13 of 739 1.8
Metapodial/tarsometatarsus 4 of 73 5.5 7 of 16 43.8 13 of 30 43.3 36 of 255 14.1
Phalanx 17 of 52 32.7 61 of 63 96.8 24 of 55 43.6 92 of 129 71.3
Radius 0 of 8 0.0 1 of 4 25.0 2 of 11 18.2 30 of 327 9.2
Tibia/tibiotarsus 0 of 26 0.0 3 of 7 42.9 1 of 4 25.0 14 of 432 3.2
Ulna 0 of 13 0.0 1 of 5 20.0 2 of 6 33.3 61 of 653 9.3

a % Whole includes any element that was approximately 90% complete or greater (e.g. contained both distal and proximal portions). Includes all sample types,
areas, and CZs; ≥1/4″ mesh screen.

5 Ethnoarchaeological work has indicated that, in some cases, bones might
need to be chopped to fit into cooking containers (e.g., Yellen, 1977:292). There
is little direct archaeological evidence of cooking containers in the Pacific
Northwest; presumably they were in the lineage of the baskets and bentwood
boxes used for cooking by stone boiling in historic times. The flexible con-
struction technology allowed for varying sizes of cooking containers and it is
unlikely the extreme mammal bone fragmentation at Čḯxwicən is due to con-
straints on container size alone.

K.M. Bovy et al. Journal of Archaeological Science: Reports 23 (2019) 1168–1186

1178



would heat the water to the boiling point, after which the grease could
be extracted from the vessel. Church and Lyman (2003) showed that for
deer bone, fragments smaller than 5 cm long did not yield more grease,
while Janzen et al. (2014) found that breaking bones into smaller
fragments (≤5 cm) reduced the amount of water and fuel needed for
grease production. While the amount of time needed to boil bone for
grease may vary by animal (Lupo and Schmitt, 1997) and size of bone
fragments (Janzen et al., 2014), Church and Lyman (2003) found that
80% of grease was released in the first 2–3 h of simmering (for frag-
ments ≤5 cm). In short, if the goal is to generate grease, people may
have broken up bones into fragments of various sizes, depending on
constraints on fuel or water. The empirical expectations for soup
making would be similar, although bone fragments may be larger and
used multiple times (Heinrich, 2014; Morin and Soulier, 2017).

Beyond measuring the size and weight of the fragments themselves,
scholars have sought signatures of bone grease, considering freshness of
breaks, location of chop marks (Heinrich, 2014; Outram, 1999) and
contextual evidence such as the presence of fire-cracked rock, and as-
sociation with hearths, although many such traits are equivocal. Several
scholars have noted that low rates of burning would be expected with
bone grease production (Gifford-Gonzalez, 1993; Heinrich, 2014; Morin
and Soulier, 2017; Vehik, 1977) but some bone could burn if close to a
fire either during the rendering process (Outram, 1999) or after discard.
Also, given that the epiphyseal ends are richer in grease, would one
expect to find more in the archaeological record when grease rendering
has occurred, or fewer because they were processed beyond recognition
(Prince, 2007:18)? In an attempt to find unambiguous signatures of
grease rendering, Morin and Soulier (2017) recently proposed intensive
analysis of morphological patterning, crushing and tear marks, and
micro-inclusions of hammerstone or anvil debris adhering to the bone
matrix.

Our expectations for either grease rendering or soup making at
Čḯxwicən are that the bone fragments should be smaller (≤5 cm or 2 in)
than breakage for bone marrow extraction alone. We examined the
percentages of bones retained in the 1″, 1/2″ and 1/4″ screens (and
those recorded in situ) to assess the scale of fragmentation at the site.
The vast majority (90%) of all mammal fragments were smaller than 1″
(Fig. 10). In addition, ∼17,000 ‘non-fish vertebrate’ fragments were
recovered in the 1/8″ screens from ‘C' samples (Table 4); minimally half
(but likely more) of these are mammal rather than bird. A comparison
of the screen size distribution by mammal type (Fig. 10) shows similar
fragmentation rates for both artiodactyls and pinnipeds; in both cases
41% of these identified bones were<1″ in size.

In addition, we might expect bones to be associated with thermal
features, and anvil stones, for processing bone fragments, should also be
present (Table 2). As discussed above (Section 5.2), relatively few
mammal bones were directly associated with thermal features in House
A4 (Table 6), though bone from grease rendering may have been dis-
carded elsewhere at the site. Two anvil stones were recovered from
House A4, which is consistent with bone breakage, but not enough to
test association.

In conclusion, we believe the high degree of fragmentation in the
Čḯxwicən mammal bone assemblage, for both terrestrial mammals and
pinnipeds, is consistent with bone grease rendering or soup making.
This finding differs from others (Lyman et al., 1992; Nagaoka, 2006;
Outram, 1999) who have assumed sea mammal bones would not be
selected for bone grease rendering. In addition, greater post-deposi-
tional attrition may have occurred as a result of boiling, although
boiling times may have been significantly shorter than the 9-h threshold
for diagenesis noted in experimental studies by Roberts et al. (2002; see
Section 5.1).

5.5. Bone tool production

Bone and antler tools were an extremely important part of the
technological inventory of Northwest Coast people. Čḯxwicən is no

exception; excavation finds6 included awls, spindle whorls, combs,
chisels, wedges, points and barbs for harpoons, herring rake tines, and
other fishing gear, which played important roles in basketry construc-
tion, personal adornment, weaving, wood working, and subsistence
pursuits. In locations where manufacture of these tools took place
through systematic reduction and shaping of various skeletal elements,
we would expect considerable bone fragmentation (Table 2). At
Čḯxwicən, catalogued artifacts and technological byproducts in the
midden samples demonstrate that bone and antler tools were not only
used, broken, and discarded, but were also manufactured there
(Table 8; and see discussion of bone tool production locus in A18 in
Campbell et al., this issue).

During analysis of faunal remains from midden samples, 663 spe-
cimens exhibiting modifications related, or likely related, to tool pro-
duction were encountered (Table 8). The first category, percussion
impacts, is included here because it could derive from the rough
shaping of bone fragments for tool production, but it could also derive
from marrow extraction (not mutually exclusive with the former), or
reducing bones for grease extraction or soup making (Heinrich, 2014).
The 48 bone flakes reflect hard hammer percussion; they show bulbs of
percussion and radial fissures analogous to lithic flakes. Another 11
specimens display the negative flake scars of percussion impact. The
reduction sequence byproducts include 472 bone chips. These were
removed with an edged tool such as an adze, and show distinctive curls
and step-fractures along the length of the curl analogous to wood chips
(Fig. 11). They are unlikely to result from any kind of processing other
than intentional shaping. Other modified specimens tabulated as re-
flecting varied reduction methods such as chopping, incising, snapping,
grinding and drilling, are stages in the process of producing finished
bone tools. A total of 41 finished tools and tool fragments were found in
the midden samples although the protocol during original laboratory
analysis following excavation was to remove these and catalog them
separately. Importantly, mammal bones are disproportionately re-
presented compared to birds in virtually all of the categories of mod-
ification and formal tools. Furthermore, within mammals, artiodactyls
are more commonly identified among the modified bones than are ce-
taceans and carnivores. The vast majority of the modified specimens
cannot be identified further than mammal (575) or vertebrate (20)
because reduction has eliminated diagnostic features.

Taxonomic identifications were also attempted for a selected sample
of catalogued artifacts, as shown in the final line in Table 8. Bird re-
present 9% of these catalogued artifacts, as opposed to only comprising
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Fig. 10. Screen size distribution (percent) for remains of pinnipeds, artiodactyls
and unidentifiable mammals for Areas A4 & A5. All sample types included.

6 No formal analysis of the vast artifact assemblage from Čḯxwicən has yet
been conducted (Butler et al., this issue a). The bone objects listed here were
pictured and/or discussed in excavation records.
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1% of the overall midden sample. Although some of the catalogued
specimens tended to be larger, there was little difference in the taxo-
nomic identification rate for catalogued mammal specimens (7/
59=12%) compared to those from the midden samples (62/
637=10%). Many of the unidentifiable mammal specimens are made
from the walls of dense, straight-grained long bone (consistent with
terrestrial mammals) and have been worked on all sides, obscuring
anatomical features. A wedge fragment, likely made from whalebone, is
the only formal tool identified as coming from marine mammal bone.

In order to obtain a more realistic assessment of how bone tool pro-
duction contributed to mammal bone fragmentation at the site, we com-
bine data from our faunal samples and the catalogued bone assemblage
(Table 9). Analysis of the entire assemblage of catalogued bone and antler
artifacts was outside the scope of our project, but Campbell and Etnier
examined all of those from 13 1×1m units in Area A4, assigning them to
functional categories and making taxonomic identification. For this se-
lected area we have a comparable sampling volume for all modified and

unmodified bones—those that were catalogued and those from the faunal
samples, from all water-screen buckets and all in situ samples.

Not surprisingly, the catalogued mammal bone artifact sample in-
cludes the majority of end products and some of the intermediate
products and debitage. Tools and tool fragments dominate (96%), while
these are rare in the faunal samples (4%; Table 9). Sixteen pieces of
debitage in the catalogued sample exhibit early stages of reduction such
as percussive fracture, adze marks, coarse striations, or longitudinal
sawing, with no evidence of secondary shaping or surface finishing.
Adding the 185 reduction sequence byproducts from the faunal samples
from the same excavated matrix, which includes a large number of bone
and antler chips or shavings (n= 157), radically changes our im-
pression of the types and intensity of manufacturing activity.

The combined modified bone assemblage can be directly compared
to the lithic assemblage derived from the same excavation units and
sample volumes (Sparaga, 2017) giving us a yardstick for the im-
portance of bone technology relative to stone technology. Bone tools
and manufacturing byproducts actually outnumber stone tools and
manufacturing byproducts (Table 9), demonstrating that bone tool
manufacture was not an incidental or minor activity at Čḯxwicən.

Although bone and antler is comparable in importance to stone as
raw material for manufacturing tools, only a small fraction of the
overall mammal bone sample can be identified as debitage or tools,
indicating that bone tool manufacturing accounts for only a minor
amount of the fragmentation observed in mammal bones. Further, site
occupants were selective in terms of which animals were preferred,
therefore, bone tool manufacture cannot account for the overall frag-
mentation of the assemblage. It seems unlikely that bone tool manu-
facturing was more intense at Čḯxwicən than other coastal sites, al-
though direct comparisons are difficult because bone manufacturing
byproducts are under-reported from many sites, and when they are,
constant-volume sampling is rarely, if ever, a part of that analysis
(Butler et al., this issue b).

5.6. Summary of mammal bone fragmentation at Čḯxwicən

In the previous sections we have demonstrated that the ‘life history’
of the mammal bones at Čḯxwicən was distinct from that of birds and

Table 8
Bone fragments with evidence for tool production observed during the Čḯxwicən zooarchaeological analysis by major taxonomic category. All sample types, areas,
CZs, and screen sizes included.

Bird Artiodactyl Cetacea/Carnivora Unid. mammala Vertebrate (non-fish) Total

NSP from faunal samplesb 9848 717 769 15,803 19,139 46,138
Percussion impactsc

Bone flake 1 47 48
Flaked/split 1 9 1 11

Reduction sequence byproducts
Bone chip/shavingd 11 1 455 5 472
Incised and snapped 1 3 1 5
Incised 5 3 8
Ground 2 7 1 31 2 43
Drilled 1 1
Chopped 2 19 13 34

Finished tools/tool fragmentse

Fabricators 4 2 3 9
Points 16 10 26
Harpoon gear 1 5 6

Total manufacturing from faunal samples 6 60 2 575 20 663
From sample of catalogued artifactsf 8 6 1 52 19 86

a Unidentified mammal includes 77 rodent and 5 shrew/mole specimens, none of which were modified.
b Specimen counts from Area A3 are included here; these were excluded from Table 4, since the fish bones from A3 were not analyzed.
c Percussion impacts could be from marrow extraction or tool production.
d Many of the bone chips/shavings were recovered in the 1/8″ screens (n= 115); the total number of bone chips/shavings would be greater if a larger sample of

the 1/8″ material had been analyzed.
e Finished tool categories are as follows: fabricators: awls, wedges, needles, ulna knife; points: unipoints, bipoints; and harpoon gear: barbed harpoon point,

composite toggling harpoon valve.
f Taxonomic identifications were attempted for 86 of the 133 catalogued artifacts from select units in Area A4 (Units 1–3, 5–6, 9–16). See Table 9.

5 mm 

Fig. 11. Bone chip/shaving from Čḯxwicən, a byproduct of bone tool produc-
tion. Photograph by Anthony Hofkamp. Courtesy of the Washington State Dept.
of Transportation, catalog number 10825.04.01.
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fish. While this is not necessarily surprising, given that mammal bones
may be expected to undergo greater processing (Fig. 2), the number of
processes affecting the mammal bone at the site is notable. Fig. 12
summarizes the possible factors affecting mammal bones at Čḯxwicən
through time, and gives our assessment of the importance of each.

From our review, we argue that both marrow extraction (for artio-
dactyls) and boiling for grease or soup (all mammals) were of major
importance at Čḯxwicən. There were very few complete artiodactyl
bones, both in an absolute sense and relative to pinnipeds and canids,
which supports the argument that these were broken for marrow. The
high degree of fragmentation for unidentifiable mammal fragments
(90%<1″ in size, excluding the 1/8″ sample), and similar percentages
(41%) of smaller (< 1″) fragments for both artiodactyls and pinnipeds,
suggests different kinds of mammals may have been boiled for grease
rendering or soup making. Future taphonomic studies, using more in-
tensive analysis methods (e.g., direct measurement, micro-inclusions,
crushing or tear marks), could be conducted to test this hypothesis
further.

In addition to these major factors, artiodactyl bones were also
chosen to produce tools such as awls and points, and one wedge was
made from a sea mammal bone. The high frequency of burning in the
mammal assemblage provides support for the possibility that a variety
of mammal bones were mixed with wood and used for fuel. The burning
also increased the likelihood of fragmentation due to mechanical
pressure, such as trampling, after deposition; while we acknowledge
this post-depositional effect, we believe it to be of modest importance in
causing fragmentation compared to the intentional actions of site oc-
cupants. Finally, intentional burning for trash disposal, carnivore
gnawing (before or after deposition), surface weathering, chemical
breakdown and indirect (post-depositional) heating are likely of neg-
ligible importance in structuring the Čḯxwicən mammal bone assem-
blage.

In sum, a large range of different factors, most notably marrow and
grease extraction, along with tool production, bone fuel use, and post-
depositional mechanical pressure, appear to have acted in concert to
produce the highly fragmented Čḯxwicən mammalian assemblage.

6. Human ecodynamics at Čḯxwicən

Now that we have described and attempted to identify the processes
that contributed to mammal bone fragmentation at Čḯxwicən, we ex-
plore the higher-level social and economic drivers at play. Why might
people have been using bone as fuel? Why were they rendering
mammal bone grease? To address these questions, we now expand our
analyses to add the temporal dimension to assess changes in bone
fragmentation and burning through time, and include comparisons of
different houses within the site to better understand culturally-

mediated behaviors. We consider the choices people made about pro-
cessing mammal carcasses in relation to changing environmental and
social conditions at the site.

6.1. Bone fuel use: why use bone fuel in a productive coastal forest?

Availability of firewood was a critical need for pre-industrial peo-
ples, and may have been an important factor, along with water and
defense, in the selection of locations for Northwest Coast village sites
(Heizer, 1963:189). Use of bone for fuel may not be surprising in si-
tuations where people are fuel limited (e.g., Grayson, 1991; Marquer
et al., 2010), but why might people living in a productive forest use
bone fuel? In her study of bone fuel use at the Abri Pataud rock shelter,
an Aurignacian site in southwestern France, Théry-Parisot (2002) de-
bunked the common misconception that bone is used for fuel only when
wood is scarce or unavailable.

The underlying assumption of the bone fuel literature is that an
efficient, productive fire is desirable (see Section 5.2), which may have
been especially important during the winter (for warmth or light) or
during climatic downturns. As mentioned above (Section 5.2), bone fuel
may have improved the longevity of deadwood fires (Théry-Parisot,
2002). Deadwood is a desirable fuel, since it already has low moisture
content, often comes in a manageable package size, and may im-
mediately be tossed on a fire. Scholars recognize that fuel collection
around a habitation site will preferentially target deadwood before
moving on to wood requiring seasoning (Théry-Parisot et al., 2002). In
addition to helping deadwood combust more slowly, bone fuel produces
high flames and rapid extinction of embers and, therefore, it is useful
for activities requiring radiation and convection, such as lighting,
cooking, drying, curing, and heating (Théry-Parisot, 2002). It is not
useful for activities requiring conduction, such as transforming raw
material.

Given this complexity, would we expect bone fuel use to have in-
creased through time at Čḯxwicən as the village became larger and/or
more sedentary and local availability of wood fuel decreased? Or might
we expect bone to have been more important as a fuel additive earlier
in the occupancy of the site, when deadwood was more plentiful? Either
argument could be made. Fig. 13 shows the percentage of burning of
mammal bones through time at the site, extending from CZ 1
(2150–1750 cal BP) through CZ 7 (300–150 cal BP). The percentage of
burned mammal bones generally increases through the occupation
(Cochran's linear trend, chi-square= 12.35, p < 0.001), although
burning rates peak in CZ 3 (40%) and CZ 5 (45%), and decline to 20%
in CZ 7 (the latest occupation).

Perhaps more telling than the trend through time is a comparison
between two households, as documented in the plankhouses re-
presented in Area A1 and Area A4. In comparing the two houses, we

Table 9
Comparison of bone and lithic technology from a comparable volume sample (Area A4, Units 1–3, 5–6, 9–16) at Čḯxwicən. Frequencies shown by tool and debitage
category and sample type (catalogued artifacts vs. midden samples). See Table 8 for finished tool categories.

Grouping Catalogued modified bonea From faunal samplesb Total modified bone Lithics

N (% total bone) N (% total bone) N N

Tools and tool fragments
Mobillary art: incised, painted stones 42
Fabricators 9 1 10 6
Specialized tools 75 3 78 56
Ground shaft fragments, unclassifiedc 25 25

Total tools and tool fragments 109 (96%) 4 (4%) 113 104
Reduction sequence byproductsd 16 (8%) 185 (92%) 201 185
Total manufacturing products 125 189 314 289

a Excludes 8 bird specimens.
b Includes all sample types, CZs, and screen sizes.
c The ground shaft fragments are portions of finished tools exhibiting complete shaping, fine striations and polish, but not complete enough to classify functionally.
d Bone flakes and impact fractures excluded.
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focus on the occupation during CZ 5 (1000–550 cal BP) and CZ 6
(550–300 cal BP) for two reasons. First, the occupation of Area A1 is
restricted almost entirely to these two CZs. Secondly, a local earthquake

event (‘Event 2’), one of four tectonic events documented at Čḯxwicən
(Campbell et al., this issue), occurred at 630–560 BP (Garrison-Laney,
2017). Earthquake ‘Event 2’ appears to have caused the collapse of
walls and the roof in House A4 (Campbell et al., this issue). Comparing
CZ 5 and CZ 6 allows us to explore potential impacts of this external
event.

Both houses would be equally affected by the availability of fuel
wood, in general, or deadwood, in particular.7 However, strategies of
bone fuel use may differ between households if bone was chosen for
fuel use for other reasons, such as lighting, drying, or curing. Fig. 14
shows that the mammal bones are much more frequently burned in
House A4 than House A1 in both CZ 5 (53% vs. 28%) and CZ 6 (48% vs.
28%). There is little difference before and after the ‘Event 2’ earth-
quake. The occupants in the A4 house may have added bone fuel to
their fires to produce a particular kind of fire needed for a given task,
such as drying or smoking fish. The burning could also be related to
ritual use, as mentioned in ethnographies of more northerly groups
(Prince, 2007).

Cultural Deposition 

Archaeological Deposits 

Systemic Context  
(Pre-depositional Factors) 

Archaeological Context 
(Post-depositional Factors) 

Chemical 
Breakdown 

Surface 
Weathering 

Mechanical Pressure 
affecting burned & boiled 

bone more 

 Marrow 
Extraction 
artiodactyls 

Grease/Oil 
Extraction 
all mammals Burn for 

Disposal 

Tool 
Production 
artiodactyls, 
cetaceans 

Processing/Cooking 

Use for Fuel 
all mammals 

Carnivore 
Gnawing 

Construction 
Material 
cetaceans 

 Indirect 
Heating  

0

Carnivore 
Gnawing 

0 Negligible importance 

1   Moderate importance 

2 Major importance  

2

1

1

1

2

0

00?

0

0

Tim
e 

Fig. 12. Relative importance of factors affecting mammal bone fragmentation at Čḯxwicən.
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Fig. 13. Burning rates and mammal bone identifiability (NSP:NISP) plotted by
midpoint of each CZ for Areas A4 & A5. All sample types included; ≥1/4″ mesh
screen. Regression lines have been included for visual reference only. Cochran's
Linear Trend for identifiability, χ2= 11.22, p= 0.001; Cochran's Linear Trend
for burning, χ2= 12.35, p < 0.001. (NSP values: CZ 1= 473; CZ 2= 117; CZ
3=359; CZ 4= 1494; CZ 5=5395; CZ 6= 6961; CZ 7=644).

7While we are not aware of any ethnographic reference for Northwest Coast
people controlling drift wood supply or forest stands for firewood supply, such
management is certainly plausible given the huge range of resources which
were carefully managed (e.g., Deur and Turner, 2005).
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6.2. Bone grease rendering: feast or famine?

Extreme bone fragmentation is frequently viewed as an indication of
efforts to extract maximum caloric value in situations of severe resource
stress (e.g., Outram, 1999, 2001, 2003, 2005) or even starvation (Ellis
et al., 2011; Heinrich, 2014), given the presumed high costs associated
with processing the grease (after Binford, 1978). However, the Pacific
Northwest Coast is well known for the abundance of available food, and
this rich environment is often viewed as a factor in the atypical de-
velopment of social complexity among these foraging peoples (e.g.,
Ames and Maschner, 1999; Matson and Coupland, 1995). In his study of
bone fragmentation in interior sites in British Columbia, Prince
(2007:21) questions the assumption that bone grease rendering must be
due to resource stress, arguing that bone grease may have been “valued
in its own right,” as the fats were essential for long term food pre-
servation and were a rare and socially valuable commodity. Rather than
seeing bone grease as a starvation food, Prince argues that the pro-
duction of bone grease may have occurred when preferred sources, such
as eulachon oil (from the fish Thaleichthys pacificus), were unavailable
via trade due to increased social tensions or territorial disputes.

Beyond the economic importance of bone grease, others have sug-
gested that extreme bone fragmentation and/or bone grease or oil
production may indicate feasting or ritual activity (Coupland, 2006;
Coupland et al., 2003; Hayden, 2004; Heizer, 1963; Prince, 2007).
Coupland (2006) found extreme mammal bone fragmentation and
burning, compared to fish and bird bone, in House O at the McNichol
Creek Site (Rupert Harbor, BC), which is believed through independent
contextual and physical evidence to have been the house of a chief.
House O contained more mammal bones than any other context at the
site, and was the only location with sea mammal bones, which he in-
terprets as prestige food. Coupland (2006:91) argued that this differ-
ence in the treatment of mammal bones in House O indicates these
bones were “intentionally returned to the fire after the meat had been
cooked and removed from the bone, a practice that may be associated
with ritual feasting.”

Citing ethnographic studies (e.g., Daly, 2004:112–113; Halpin and
Seguin, 1990:271; Ksan, 1980:49–50), Prince (2007:21) notes that

Grease in general, foods preserved in grease, and anything requiring
intensive labor to produce, were valued feast foods for the Gitksan…
Animal greases can also be considered symbols of wealth and power,
being used to lubricate holes during totem pole erection, to flare fires
during ritual performances, and to entice mythological tricksters to
perform services. [emphasis added]

If bone grease processing was related to resource stress at Čḯxwicən,
we might expect the need for bone grease rendering to increase as the
village became more sedentary and circumscribed through time, which
would affect all households at the site. Alternatively, if bone grease
rendering was a valued activity at Čḯxwicən, possibly even associated

with feasting or rituals, we may see differences between households.
Did one house intensify bone grease rendering more than another as a
strategy for increasing or perhaps demonstrating wealth? Did one house
have more feasts? We would also expect to find other contextual evi-
dence for ritual.

Fig. 13 shows the identifiability of mammal bones through time.
There is a significant trend (Cochran's linear trend, chi-square= 11.22,
p=0.001) towards decreased identifiability (and as we have argued,
greater fragmentation), which could be related to increased processing
for grease over time, supporting the resource stress hypothesis. Cursory
inspection of Fig. 13 suggests some correspondence between identifia-
bility and burning, such as the decline from CZ 3 to CZ 4, and increase
to CZ 5. However, the curves are not similar at other points in time (CZ
2, CZ 7), and the two are not correlated overall (spearman's
rho= 0.563, 0.50≥ p≥ 0.20). This analysis supports our previous
assertion (Section 5.2) that while burning influences identification rates
in some contexts, burning is not the major driver behind mammal bone
fragmentation at the site.

The spatial differences between the A1 and A4 houses at the site are
more striking than the trend through time (Fig. 15). The A4 mammal
bones are more fragmented than those in A1 in both time periods,
which may indicate that occupants of the A4 house engaged in more
bone grease rendering. As noted, the A4 mammal bones show higher
frequency of burning than A1 specimens (Fig. 14), thus given the house
floor context, some of the fragmentation in A4 could reflect post-de-
positional mechanical breakage. However, independent evidence sup-
ports the potential link between bone grease rendering and ritual use in
House A4. House A4 occupants were obtaining greater amounts of sa-
blefish (Anoplopoma fimbria), a known prestige item (Nims and Butler,
this issue), and large deposits of sea urchins (Strongylocentrotus sp.)
were also recovered in A4, which may have been used in feasts (Grier,
2012). Whatever the reasons for the different levels of mammal iden-
tifiability and burning between the houses, it appears that the house-
holds were acting independently and were resilient, with little change
following the ‘Event 2’ earthquake.

7. Summary & conclusions

While we were initially dismayed at the high degree of fragmenta-
tion and low identifiability of the Čḯxwicən mammal bone assemblage,
which made it more difficult to assess use of specific mammal taxa
through time and space (Butler et al., in press b), we now realize im-
portant insights may be gained from these small fragments. Mammal
bones are significantly more fragmented than birds and fish at Čḯxwicən.
Clearly these differences indicate that mammal bones were system-
atically treated differently than either bird bones or fish bones prior to
deposition into the midden deposits. Both terrestrial and marine
mammals were recovered at Čḯxwicən, and the assemblage is less
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Fig. 14. Comparison of mammal bone burning for floors in House A4 and
House A1 during CZ 5 (1000–550 cal BP) and CZ 6 (550–300 cal BP). Samples
included: C/CX only; ≥1/4″ mesh screen.
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Fig. 15. Comparison of mammal bone identifiability (NSP:NISP) for floors in
House A4 and House A1 during CZ 5 (1000–550 cal BP) and CZ 6
(550–300 cal BP). Samples included: C/CX only; ≥1/4″ mesh screen. (NSP
values for A4: CZ 5=845; CZ 6= 572; A1: CZ 5=246; CZ 6= 177).
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identifiable than all other sites in our comparative sample, especially
those sites dominated by sea mammals. Artiodactyl bones appear to
have been broken for marrow, grease rendering, and tool production.
Seal bones were somewhat less fragmented (more complete bones) than
artiodactyls, but are still frequent in smaller screen sizes, indicating
they were also chosen for grease rendering and/or stewing. Rather than
occurring as a response to food stress, the production of bone grease or
oil may have been socially valuable as a source of wealth or prestige.
Mammal remains in House A4 are consistently more highly fragmented
and burned than in House A1, suggesting occupants in House A4 were
using bone as an additive to wood fuel and/or processing the bones for
grease or oil, which could have been used for a variety of practical and
ritual purposes.

Our study is the first to explicitly highlight the possible role of bone
grease and bone fuel for indigenous peoples of the southern Northwest
Coast, and explore these strategies using a human ecodynamics per-
spective. We integrate multiple classes of animals in our analysis, which
is helpful for identifying patterns in mammal bone fragmentation. We
hope to see further taphonomic work to evaluate the role of bone fuel
and grease or oil in this region and other coastal areas. We urge others
to report and analyze smaller unidentifiable bone fragments, even from
sites with abundant well-preserved faunal remains (e.g., Outram,
2001). Determining the full extent of the spatial and temporal varia-
bility in how mammal bones were processed will be a crucial aspect of
determining why Čḯxwicən appears unique in this aspect. Future work is
needed to assess whether grease rendering or bone fuel use was oc-
curring at other sites in the region, and whether greater bone frag-
mentation is indeed typical of sites with more terrestrial mammals than
sea mammals.
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