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Abstract: In this paper it is shown that the bathtub-curve (BTC) based time-derivative of the failure
rate at the initial moment of time can be considered as a suitable criterion of whether burn-in testing
(BIT) should or does not have to be conducted. It is also shown that the above criterion is, in effect,
the variance of the random statistical failure rate (SFR) of the mass-produced components that the
product manufacturer received from numerous vendors, whose commitments to reliability were
unknown, and their random SFR might vary therefore in a very wide range, from zero to infinity.
A formula for the non-random SFR of a product comprised of mass-produced components with
random SFRs was derived, and a solution for the case of the normally distributed random SFR
was obtained.

Keywords: burn-in process; bathtub curve; infant mortality portion; failure rate; statistical failure rate

1. Introduction

Burn-in testing (BIT) [1–10] has for many years been an accepted practice for detecting and
eliminating early failures in newly fabricated electronic products prior to shipping the “healthy” ones
that survived BIT to customers. BIT is mandatory on most high-reliability procurement contracts,
such as for military and aerospace applications, but is also a must for automotive, medical, long-haul
telecommunication and other electronic materials, packages and systems, whose high operational
performance is paramount. BIT stimulates failures in defective materials and vulnerable structural
elements of the manufactured products by accelerating the stresses that will supposedly cause these
materials and elements to fail. BIT is usually conducted at the component level, because the cost
of testing and replacing parts is the lowest at this level. The products are tested by applying stress
extremes, usually, but not necessarily, of the expected operational stressors. It is believed that once a
sufficiently long BIT process is complete, no further early failures are likely to occur.

Depending on the anticipated operation conditions of the product and testing capabilities of a
particular manufacturer, BIT can be based on temperature cycling, elevated temperatures, voltage,
current, humidity, random vibrations, and so on, or, since the principle of superposition does not
work in the reliability engineering—on the appropriate combination of these stressors. The duration
of stressing depends on the product, the manufacturing technology and the reliability requirements,
with consideration of the consequences of possible failures. Elevated temperature (say, 125 ◦C for
168 h) or elevated stresses screening (say, twenty temperature cycles from −10 ◦C to 70 ◦C) are most
often used. For complex products, dynamic BIT might be employed. The thermal stress, caused by the
change in temperature, is combined in these tests with dynamic (shocks, random vibrations) loading.
Such a temperature-dynamic bias is thought to provide worst-case operating conditions [11,12].
For commercial applications, BIT, if any is conducted at all, does not last longer than one or two
days (24 or 48 h). BIT is a costly effort, and its application is therefore thoroughly planned and
carefully executed.
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It goes without saying that as a result of successfully applying BIT, early failures are avoided and
the infant mortality portion (IMP) of the bathtub-curve (BTC) (Figure 1) is eliminated at the expense
of an undesirable reduced yield caused by the BIT process. In addition, high BIT stresses might not
only eliminate “freaks”, but could cause permanent damage to the main population of the “healthy”
products, thereby reducing their lifetime. It is unclear, however, to what extent it happens indeed:
the highly accelerated life testing (HALT) [13], a “black box” that tries “to kill many birds with one
stone” and is at present the testing procedure of choice employed as a suitable BIT vehicle, is unable to
provide any information on that.
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It remains unclear what could possibly be done to develop an insight into what is actually
happening during and as a result of BIT and what could possibly be done to effectively eliminate
“freaks”, while shortening the testing time and not damaging the sound devices. In a mature
production, when HALT is relied upon to do the BIT job, it is not easy even to determine whether
there exists a decreasing failure rate. To determine the failure time for a very low percentage of the
production, one has to destroy a large number of devices, unless there are additional considerations of
what could be possibly done to enhance the merits of the BIT process and to minimize its shortcomings.
Thus, there is an obvious incentive to develop ways in which the BIT process could be quantified,
monitored and possibly optimized. Accordingly, in this analysis some important aspects of BIT are
addressed for an electronic product comprised of numerous mass-produced components. Our intent
is to shed some quantitative light on the BIT process. Particularly, we try to develop a suitable
and predictable criterion that would be able to answer the fundamental “to burn-in or not to
burn-in” question.

Two mutually complementing modeling studies have been carried out here: (1) the analysis of the
configuration of the IMP of a BTC of a more or less well established manufacturing technology; and (2)
the analysis of the role of the random statistical failure rate (SFR) of the mass-produced components
that the product of interest is comprised of. Particularly, as far as the second study is concerned,
we consider the effect that the random SFR of the mass-produced components might have on the
nonrandom initial SFR of the product. Although this paper does not offer a straightforward and
an ultimate answer to the “to burn-in or not to burn-in” question, nor to how to optimize the BIT
process, in terms of its cost and duration, the suggested physics-of-failure and statistics-of-failure
based criterion, and the calculated probabilities of non-failure for the given loading conditions and
time of testing provide, in our judgment, a useful step forward in advancing the state-of-the-art in
today’s BIT practice.
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BIT, being an HALT effort, is, in effect, a failure-oriented-accelerated-test (FOAT) [14–16] and,
as such, should be geared, to confirm the anticipated physics of failure and the expected failure
modes, to a physically meaningful accelerated test model. The application of the probabilistic
design for reliability (PDfR) approach [17,18] and its constituents, FOAT and multi-parametric
Boltzmann-Arrhenius-Zhurkov’s equation (BAZ) [19–21], are beyond the scope of this paper.
The PDfR/FOAT/BAZ concept is considered, however, as important future work. Let us briefly
elaborate on its substance.

If the well-known Arrhenius model [22] is employed, FOAT should be conducted to determine
the corresponding activation energies and other data that characterize the device reliability [23].
The desirable steady-state portion of the BTC occurs, as is known, at the end of the BIT process as a
result of the interaction of two major irreversible processes: the “favorable” SFR process, resulting in a
decreasing failure rate with time, and the “unfavorable” physics-of-failure-related process (PFR),
resulting in an increasing failure rate. The first process dominates at the IMP of the BTC and
is considered in this paper, and the second one—at its wear-out portion. These two processes
start to compensate for each other at the beginning of the low enough and acceptable level λ0 of
the steady-state BTC failure rate process. The SFR process can be predicted [24,25] for a product
comprised of mass-produced components, from sheer theoretical considerations. Assuming that the
physics-of-failure and statistics-of-failure processes are statistically independent, the failure rates of
the first process at the given moment of time can be obtained by simply deducting the predicted SFR
values from the experimentally obtained BTC ordinates. In our BIT analysis, a different application
of the Ref. [24,25] finding is employed, namely, to quantify, on the probabilistic basis, some more or
less well known considerations underlying the existing BIT practice, including the “to burn-in, or not
to burn-in” question. Application of the PDfR/FOAT/BAZ concept will be able, hopefully, not only
answer this question for the given manufacturing technology, but, most importantly, will be able to
establish the appropriate elevated stresses and their levels, and decide on the effective BIT duration
to minimize the number of devices that will be destroyed and the time of testing. The numerical
example in Appendix B gives an indication of what could be expected from the application of the
PDfR/FOAT/BAZ concept.

2. Analysis

2.1. Prediction Based on the Analytical Approximation of the Bathtub-Curve (BTC)

The typical BTC, the “reliability passport” of a mass-produced electronic product (Figure 1),
can be approximated by the following expressions [18]:

λ(t) =


λ0 + (λ1 − λ0)

(
1− t

t1

)n1
= λ0

[
1 +

(
λ1
λ0
− 1
)(

1− t
t1

)n1
]
, 0 ≤ t ≤ t1

λ0 + (λ2 − λ0)
(

t−t1
t2

)n2
= λ0

[
1 +

(
λ2
λ0
− 1
)(

t
t2
− t1

t2

)n2
]
, t1 ≤ t ≤ t1 + t2

(1)

Here λ(t) is time-dependent failure rate, λ0 is its steady-state minimum, λ1 is its initial (high) value at
the beginning of the IMP, t1 is the duration of this portion, λ2 is the final (actual or acceptable) value of
the failure rate at the end of the wear-out portion, t2 is the duration of this portion, and the exponents
n1 and n2 are expressed through the fullnesses β1 and β2 of the BTC infant-mortality and the wear-out
portions as n1,2 =

β1,2
1−β1,2

. These fullnesses are defined as the ratios of the areas below the BTC (i.e., the
areas between the BTC and the time axis) to the areas (λ1− λ0)t1 and (λ2− λ0)t2 of the corresponding
rectangulars. The exponents n1 and n2 change from zero to one, when the fullnesses β1 and β2 change
from zero to 0.5. The “to burn-in or not to burn-in” question can be tentatively answered based on
the derivative:

λ′(t) =
dλ(t)

dt
= −λ1 − λ0

t1
n1

(
1− t

t1

)n1−1
= −λ1 − λ0

t1

β1

1− β1

(
1− t

t1

) 2β1−1
1−β1

(2)
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calculated for the initial moment of time t = 0. This yields:

λ′(0) =
dλ(t)

dt
= −λ1 − λ0

t1

β1

1− β1
. (3)

If this derivative is zero or next-to-zero, this means that there is no IMP at all, so that no BIT is
needed to eliminate this portion, and “not to burn-in” is the answer to our basic question. This certainly
happens when the initial value λ1 of the BTC is not different from its steady-state λ0 value. What is
less obvious is that the same result takes place for β1

t1
= 0. This means that no more or less durable BIT

is needed in such a case, because there are not too many “freaks” in the population, and that these
“freaks” are characterized by very low probabilities of non-failure, so that the planned BIT process is
a next-to-instantaneous one. The maximum value of the fullness β1 is β1 = 0.5. This corresponds to
the case when the IMP of the BTC is a straight line connecting the initial, λ1, and the steady-state, λ0,
values of the BTC. In this case,

λ′(0) =
dλ(t)

dt
= −λ1 − λ0

t1
. (4)

The derivative (3)
dλ′(0)

dt
= −λ1 − λ0

t1

1

(1− β1)
2 (5)

with respect to the fullness β1 changes from the value expressed by the formula (4) to the value, which
is four times greater, when the fullness β1 changes from zero to 0.5. But how to establish the most likely
λ1 value and the required BIT time, even for the worst case scenario β1 = 0.5, so that the question
“to burn-in or not to burn-in?” could be answered with some certainty? To do that let us address two
additional and independent, methodologies: the one based on the use of the SFR [24,25] and, briefly,
also the one, based on the application of the BAZ constitutive equation [19–21].

2.2. Prediction Based on the Analysis of the SFR Process

In the simplest case of the uniformly distributed random failure rates λ, when the probability
density distribution function f (λ) is constant, the formula (A3) of the Appendix A yields:

λST(t) =

∞∫
0

λ exp(−λt)dλ

∞∫
0

exp(−λt)dλ

=
1
t

. (6)

In such a case, the probability of non-failure becomes time independent, that is, constant over the entire
operation range: P = exp[−λST(t)t] = e−1 = 0.3679. This result does seem to make physical sense.
Let us consider therefore a more realistic case, when the random failure rates λ of the components are
normally distributed:

f (λ) =
1√

2πD
exp

(
− (λ− λ)

2

2D

)
(7)

Here λ is the mean value of the random SFR λ and D is its variance. Introducing (7) into the formula
(A3) and using [26], the following expression for the non-random SFR of the product can be obtained:

λST(t) =

∞∫
0

λ exp
(
− (λ−λ)

2

2D − tλ
)

dλ

∞∫
0

exp
(
− (λ−λ)

2

2D − tλ
)

dλ

=
√

2Dϕ[τ(t)]. (8)
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The function
ϕ(τ) = −τ +

1
Φ(τ)

(9)

depends on the dimensionless “physical” (effective) time

τ = t

√
D
2
− s,s =

λ√
2D

, (10)

and so do the auxiliary function

Φ(τ) =
√

π exp(τ2)[1−Φ(τ)] ≈ 1
τ

[
1 +

∞
∑

k=1
(−1)k 1x3x...(2k−1)

2kτ2k

]
≈ 1

τ

(
1− 1

2τ2 +
3

4τ4 − 15
8τ6 +

105
16τ8 . . .

) (11)

and the probability integral (Laplace function)

Φ(τ) =
2√
π

τ∫
0

exp
(
−η2

)
dη (12)

The term s in formula (10) can be interpreted as a sort of a measure of the level of uncertainty of
the random SFR. The s value changes from infinity to zero, when the variance D changes from zero,
in the case of a non-random SFR, to infinity, in the case of an “ideally random” SFR. As is evident from
formula (10), the “physical” time τ of the SFR process depends not only on the “chronological” (actual)
time t, but also on the mean λ and variance D of the components’ random SFR. The rate of change

of the “physical” time τ with the change in the “chronological” time t is dτ
dt =

√
D
2 : the “physical”

time τ changes the faster the larger the standard deviation
√

D of the random SFR is. Considering this
relationship, the formula (8) yields:

dλST(t)
dt

= λ′ST(t) =
√

2D
dϕ[τ(t)]

dt
=
√

2D
dϕ

dτ

dτ

dt
= Dϕ′(τ) (13)

The “physical” time τ is zero, when the “chronological” time t is t = λ
D and changes from −∞ to ∞

when the variance D of the random SFR changes from zero to infinity. The function ϕ(τ) is tabulated
in Table 1. It changes from 3 to zero when the “physical” time τ changes from −3 to infinity, that
is, when the “chronological” time changes from zero to infinity. The function ϕ′(τ) in this table is
calculated numerically.

The expansion (11) can be used to calculate the auxiliary function Φ(τ) for large τ values,
exceeding, say, 2.5, and has been, in effect, employed, when computing the Table 1 data. The function
Φ(τ) changes from infinity to zero, when the “physical” time τ changes from −∞ to ∞. For the times
τ below −2.5, the function Φ(τ) is large, and the second term in (9) becomes small compared to the
first term. In this case the function ϕ(τ) coincides with the time τ itself, with an opposite sign though.
As evident from Table 1, the derivative dϕ(τ)

dτ can be put, at the initial moment of time, equal to −1.0,
and therefore,

λ′ST(0) = λ′1 = −D. (14)

This result explains the physical meaning of the initial failure rate λ1 of the BTC.
At the initial moment of time (t = 0) the formulas (10), (11) and (8) yield:

τ = −s,Φ(τ) =
√

π exp
(

s2
)
[1 + Φ(s)], λST(0) =

√
2DΨ(s), (15)
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where the function

Ψ(s) = s +
1√
π

exp(−s2)

1 + Φ(s)
(16)

is tabulated in Table 2. This function changes from 1√
π
= 0.5642 to infinity, when the factor s changes

from zero to infinity.

Table 1. The governing function ϕ(τ) of the effective time τ.

τ −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 −0.25 0 0.25

ϕ(τ) 3.0000 2.5005 2.0052 1.5302 1.1126 0.7890 0.6652 0.5642 0.4824

ϕ′(τ) −0.9990 −0.9906 −0.9500 −0.8352 −0.6472 −0.4952 −0.4040 −0.3272 −0.2644

τ 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

ϕ(τ) 0.4163 0.3194 0.2541 0.2080 0.1618 0.1456 0.1300 0.1166 0.1053

ϕ′(τ) −0.1938 −0.1306 −0.0922 −0.0924 −0.0324 −0.0312 −0.0268 −0.0226 −0.0190

τ 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0

ϕ(τ) 0.0958 0.0809 0.0699 0.0615 0.0549 0.0495 0.0451 0.0414 0.0391

ϕ′(τ) −0.0149 −0.0110 −0.0084 −0.0066 −0.0054 −0.0044 −0.0037 −0.0023 −0.0030

τ 15.0 20.0 30.0 50.0 100.0 200.0 500.0 1000.0 1500.0

ϕ(τ) 0.0332 0.0249 0.0166 0.0100 0.0050 0.0025 0.0010 0 0

ϕ′(τ) −0.0017 −0.0008 −0.0003 −0.0001 −2.5 × 10−5 −5.0 × 10−6 −2.0 × 10−6 0 0

Table 2. The initial statistical failure rate (SFR) vs. its standard deviation.

s 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Ψ(s) = λST(0)√
2D

0.5642 0.6021 0.6433 0.6881 0.7366 0.7890 0.8451 0.9033 0.9708

s 0.9 1.0 1.5 2.0 2.5 3.0 3.5 4.0 ∞

Ψ(s) = λST(0)√
2D

1.0397 1.1126 1.5302 2.0052 2.5005 3.0000 3.5000 4.0000 ∞

With the product’s initial SFR value λST = λ1 (the degradation failure rate λDG is obviously
zero at initial moment of time, so that the initial value λST of the non-random SFR coincides with
the initial value λ1 of the BTC), the last formula in (13) yields: λ1√

2D
= Ψ(s). When the ratio s = λ√

2D

increases from zero to infinity (see Table 2), the ratio λST(0)√
2D

= λ1√
2D

= Ψ(s) increases from 1√
π
= 0.5642

to infinity. The initial failure rate can be put equal to its mean value, if the ratio λ√
2D

exceeds 2.5.
This is usually indeed the case in an actual situation, since the accepted normal distribution, when
applied to a random variable that cannot be negative, should be characterized by a significant ratio of
its mean value to the standard deviation, so that the negative values of such a distribution, although
exist, are insignificant and do not contribute appreciably to the sought information.

The probability of non-failure,
P = exp[−λST(t)t] (17)

can be calculated as,
P = P(τ, s) = exp[−2ϕ(τ)(τ + s)] (18)

and is tabulated in Table 3 as the function of the “physical” time τ and the “safety factor” s.
From (8) we obtain:

dλST(t)
dt

= λ′ST(t) =
√

2D
dϕ[τ(t)]

dt
=
√

2D
dϕ

dτ

dτ

dt
=
√

2D

√
D
2

dϕ(τ)

dτ
= D

dϕ(τ)

dτ
. (19)

The derivative dϕ(τ)
dτ can be evaluated analytically or obtained numerically using Table 3 data.
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Table 3. Calculated probabilities P = P(τ, s) of non-failure as functions of the time τ and factor s.

τ −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 −0.25 0 0.25

ϕ(τ) 3.0000 2.5005 2.0052 1.5302 1.1126 0.7890 0.6652 0.5642 0.4824

s x x x x x x x x x

0 x x x x x x x 1.0000 0.7857
1 x x x x 1.0000 0.4543 0.3687 0.3236 0.2393
2 x x 1.0000 0.2165 0.1081 0.0938 0.0975 0.1047 0.1141
3 1.0000 0.0820 0.0181 0.0101 0.0117 0.0194 0.0258 0.0339 0.0435
4 2.4788 × 10−3 5.5226 × 10−4 3.2856 × 10−4 4.7557 × 10−4 1.2613 × 10−3 3.9938 × 10−3 6.8125 × 10−3 1.0959 × 10−2 0.0166
5 6.1442 × 10−6 3.7173 × 10−6 5.9555 × 10−6 2.2289 × 10−5 1.3638 × 10−4 8.2428 × 10−4 1.8010 × 10−3 3.5458 × 10−3 0.6313 × 10−2

6 1.5230 × 10−8 2.5022 × 10−8 1.0795 × 10−11 1.0447 × 10−6 1.4724 × 10−5 1.7012 × 10−4 4.7614 × 10−4 1.1472 × 10−3 2.4055 × 10−3

7 3.7751 × 10−11 1.6843 × 10−10 1.9567 × 10−9 4.8963 × 10−8 1.5909 × 10−6 3.5111 × 10−5 1.2588 × 10−4 3.7119 × 10−4 9.1664 × 10−4

8 9.3576 × 10−14 1.1337 × 10−12 3.5468 × 10−2 2.2948 × 10−9 1.7189 × 10−7 7.2464 × 10−6 3.3278 × 10−5 1.2010 × 10−4 5.6584 × 10−4

9 2.3195 × 10−16 7.6314 × 10−15 6.4289 × 10−13 1.0756 × 10−10 1.8572 × 10−8 1.4956 × 10−6 8.7979 × 10−6 3.8858 × 10−5 1.3310 × 10−4

10 5.7495 × 10−19 5.1369 × 10−17 1.165 × 10−14 5.041 × 10−12 2.0066 × 10−9 3.0867 × 10−7 1.2572 × 10−6 5.7495 × 10−5 5.3226 × 10−5

τ 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

ϕ(τ) 0.4163 0.3194 0.2541 0.2080 0.1618 0.1456 0.1300 0.1166 0.1053

s x x x x x x x x x

0 0.6595 0.5279 0.4666 0.4352 0.4453 0.4174 0.4025 0.3935 0.3876
1 0.2868 0.2787 0.2807 0.2871 0.3222 0.3120 0.3104 0.3116 0.3140
2 0.1247 0.1471 0.1689 0.1894 0.2331 0.2332 0.2393 0.2468 0.2544
3 5.4253 × 10−2 7.7677 × 10−2 0.1016 0.1249 0.1687 0.1743 0.1845 0.1955 0.2061
4 2.3595 × 10−2 4.1008 × 10−2 6.1109 × 10−2 8.2414 × 10−2 0.1220 0.1302 0.1423 0.1548 0.1669
5 1.0262 × 10−2 2.1649 × 10−2 3.6762 × 10−2 5.4367 × 10−2 8.8301 × 10−2 9.7335 × 10−2 0.1097 0.1226 0.1352
6 4.4632 × 10−3 1.1429 × 10−2 2.2115 × 10−2 3.5865 × 10−2 6.3890 × 10−2 7.2745 × 10−2 8.4585 × 10−2 9.7101 × 10−2 0.1096
7 1.9411 × 10−3 6.0337 × 10−3 1.3304 × 10−2 2.3659 × 10−2 4.6227 × 10−2 5.4367 × 10−2 6.5219 × 10−2 7.6904 × 10−2 8.8753 × 10−2

8 8.4422 × 10−4 3.1853 × 10−3 8.0033 × 10−3 1.5608 × 10−2 3.3447 × 10−2 4.0632 × 10−2 5.0287 × 10−2 6.0907 × 10−2 7.1898 × 10−2

9 3.6716 × 10−4 1.6816 × 10−3 4.8146 × 10−3 1.0296 × 10−2 2.4200 × 10−3 3.0367 × 10−2 3.8774 × 10−2 4.8238 × 10−2 5.8245 × 10−2

10 1.5969 × 10−4 8.8777 × 10−4 2.8964 × 10−3 6.7921 × 10−3 1.7510 × 10−2 2.2695 × 10−2 2.9897 × 10−2 3.8205 × 10−2 4.7184 × 10−2
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Table 3. Cont.

τ 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0

ϕ(τ) 0.0958 0.0809 0.0699 0.0615 0.0549 0.0495 0.0451 0.0414 0.0391

s x x x x x x x x x

0 0.3837 0.3788 0.3758 0.3738 0.3722 0.3716 0.3708 0.3702 0.3618
1 0.3168 0.3222 0.3268 0.3305 0.3335 0.3366 0.3388 0.3408 0.3346
2 0.2615 0.2741 0.2842 0.2923 0.2989 0.3048 0.3096 0.3137 0.3094
3 0.2159 0.2331 0.2471 0.2585 0.2678 0.2761 0.2829 0.2888 0.2862
4 0.1783 0.1983 0.2149 0.2286 0.2399 0.2501 0.2585 0.2659 0.2646
5 0.1472 0.1687 0.1868 0.2021 0.2150 0.2265 0.2362 0.2447 0.2447
6 0.1215 0.1435 0.1624 0.1787 0.1926 0.2052 0.2158 0.2253 0.2263
7 0.1003 0.1220 0.1413 0.1580 0.1726 0.1858 0.1972 0.2074 0.2093
8 8.2844 × 10−2 0.1038 0.1228 0.1397 0.1546 0.1683 0.1802 0.1909 0.1936
9 6.8399 × 10−2 8.8301 × 10−2 0.1424 0.1236 0.1386 0.1524 0.1646 0.1757 0.1790

10 5.6473 × 10−2 7.5110 × 10−2 9.2866 × 10−2 0.1093 0.1242 0.1646 0.1504 0.1618 0.1655
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3. Conclusions

The following conclusions could be drawn from the carried out analysis:

• Two mutually complementing modeling studies have been carried out: (1) the analysis of the
configuration of the IMP of the BTC, the reliability “passport” of an established semiconductor
technology; and (2) the analysis of the role of the random SFR of the mass-produced components
that the product of interest is comprised of.

• The first analysis has shown that the BTC-based time-derivative of the failure rate at the initial
moment of time can be considered as a suitable criterion of whether BIT should or does not have
to be conducted. If this derivative is small, no BIT might be needed, because the initial part of
the IMP is more-or-less parallel to the time axis, and this is an indication that there are no highly
unreliable items (“freaks”) in the lot and that the initial moment of time is, in effect, the start of
the steady-state BTC condition. In the opposite extreme case, when this derivative is significant,
BIT is needed, but could be made very short, because the “freaks” are so unreliable that even a
very short and weak BIT could successfully remove them.

• The second analysis has indicated that the above criterion is, in effect, the variance of the random
SFR of the mass-produced components that the product manufacturer received from numerous
vendors, whose commitments to reliability were unknown, and their random SFR might vary
therefore in a very wide range, from zero to infinity.

• A solution for the case of the normally distributed random SFR was obtained. Using this solution,
probabilities of non-failure as functions of time and the ratio of the mean value of the random
SFR of the mass-produced components to its standard deviation (in analysis of structures this
ratio is known as safety factor) were calculated. This adds useful information to the next-step
investigations and a more effective answer to our fundamental “question in question”.

• Although this paper does not offer a straightforward and an ultimate answer to this question,
the suggested physics-of-failure and statistics-of-failure based criterion, and the calculated
probabilities of non-failure for the given loading conditions and time of testing, provide a useful
step forward in advancing today’s BIT practice, which is based on the HALT, a “black box” that
has many merits, but does not quantify reliability, even on a deterministic basis.

• Future work should include experimental verification of the suggested “to burn-in or not to burn
in” criterion, as well as its acceptable values, which would enable to answer the “to burn-in
or not to burn-in” question. It should include also investigation of the effects of other possible
distributions of the random SFR, such as, for example, Rayleigh distribution.

Conflicts of Interest: The author declares no conflict of interest.

Acronyms

BAZ Boltzmann-Arrhenius-Zhurkov’s (equation)
BIT Burn-in Testing
BTC Bathtub Curve
DfR Design for Reliability
FOAT Failure Oriented Accelerated Testing
HALT Highly Accelerated Life Testing
IMP Infant Mortality Portion (of the BTC)
PDfR Probabilistic Design for Reliability
SFR Statistical Failure Rate
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Appendix A

SFR of a Product Comprised of Mass-Produced Components

Consider a typical situation when a product manufacturer receives the components for this
product from n independent and numerous vendors that produce components of different and typically
unknown reliability levels. The probability of non-failure of such a product can be sought, assuming
that the exponential law of reliability is applicable, as

P(t) =
n

∑
k=1

pk exp(−λkt). (A1)

Here pk is the component fraction received from the kth vendor, exp(−λkt) is the probability of
non-failure of the kth component, λk is its (random) failure rate, and t is time.The sum in this formula
can be substituted, for a large number n of mass-produced components, by the integral:

P(t) =
∞∫

0

exp(−λt)dF(λ) =
∞∫

0

exp(−λt)
dF(λ)

dλ
dλ =

∞∫
0

exp(−λt) f (λ)dλ, (A2)

where F(λ) is the probability distribution function and f (λ) = dF(λ)
dλ is the probability density

distribution function of the continuously distributed random failure rate λ of the mass-produced
components. The time-dependent non-random SFR λST(t) of the product can be determined for the

given moment t of time as the ratio λST(t) =
dNf (t)

dt
Ns(t)

of the current rate
dN f (t)

dt of the number N f (t) of
products that failed by the time t to the number Ns(t) of products that still remained sound by this
time. Substituting the number of the sound items with the probability P(t) of non-failure and the
number of the failed items—with the probability Q(t) = 1− P(t) of failure, the above formula can be
written as:

λST(t) =
d[1−P(t)]

dt
P(t)

= − 1
P(t)

dP(t)
dt

, (A3)

or, considering (A2), as

λST(t) =

∞∫
0

λ exp(−λt) f (λ)dλ

∞∫
0

exp(−λt) f (λ)dλ

. (A4)

Appendix B

Prediction Based on the Application of the BAZ Equation

The BAZ model [20,21] enables a simple, easy-to-use and physically meaningful solution to be
obtained for the evaluation of the probability of failure of a material or device after the given time in
operation at the given temperature and under the given stress. Using this model, the probability of
non-failure of the device subjected to an elevated temperature can be sought in the form:

P = exp
[
−γRR∗t exp

(
−U0

kT

)]
(A5)

Here U0 is the stress-free activation energy (material/device characteristic), T is the absolute
temperature, k = 8.6173× 10−5 eV/K is Boltzmann’s constant, t is time, R∗ is the critical value of
the monitored characteristic of degradation (electrical resistance, leakage current, etc.), and γR is
the sensitivity factor. The FOAT aimed at the evaluation of this factor and the stress-free activation
energy can be conducted using the following procedure. BIT should be conducted at two different
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elevated temperatures. Since the activation energy should remain the same at both temperature levels,
sensitivity factor γR could be found from the following formula:

γR = exp

( T2
T1

ln n2 − ln n1
T2
T1
− 1

)
,n1,2 =

− ln P1,2

R∗t1,2
(A6)

Let, for example, in accordance with the data accumulated during a product launch or lot release
is accumulated: the BIT at the temperature T1 = 125 ◦C = 398 K was conducted for t1 = 12 h, and
1.5% of the tested devices failed (P1 = 0.985). When the test was conducted for t2 = 24 h with another
group of the same devices at the temperature T2 = 150 ◦C = 423 K, 3.5% of the tested devices failed
(P2 = 0.885). The observed failure modes were mechanical failures of the solder joints, and the failures
corresponded to the increase in the electrical resistance to the level of R∗ = 450 Ω. Then the second
formulas in (A6) yields:

n1 =
− ln P1

R∗t1
=
− ln 0.985
450× 12

= 2.7988× 10−6 Ω−1h−1,

n2 =
− ln P2

R∗t2
=
− ln 0.885
450× 24

= 1.1312× 10−5 Ω−1h−1

and the first formula in (A6) results in the following value of the sensitivity factor γR :

γR = exp

( T2
T1

ln n2 − ln n1
T2
T1
− 1

)
= exp

(
1.062814 ln(1.1312× 10−5)− ln(2.7988× 10−6)

0.062814

)
= 51295.2 Ω−1h−1

The activation energy is therefore,

U0 = −kT1 ln
(

n1

γR

)
= −8.6173× 10−5 × 398 ln

(
2.7988× 10−6

51295.2

)
= 0.8105 eV,

or (to make sure that there was no calculation error),

U0 = −kT2 ln
(

n2

γR

)
= −8.6173× 10−5 × 423 ln

(
1.1312× 10−5

51295.2

)
= 0.8105 eV,

which makes physical sense. The SFR λST(t) at failure are, for the above probabilities of non-failure,

λST(t1) = −
ln P1

t1
= − ln 0.985

12
= 1.25947× 10−3 h−1

in the first step of BIT, and is

λST(t2) = −
ln P2

t2
= − ln 0.885

24
= 5.09032× 10−3 h−1

in the second step.
In an approximate analysis, when the times t1 and t2 are short, one could tentatively evaluate the

variance of the random SFR as

D ≈ λST(t2)− λST(t1)

t2 − t1
=

5.09032× 10−3 − 1.25947× 10−3

24− 12
= 3.1924× 10−4 h−2.

A more accurate prediction could be obtained using Table 3 data.
It is noteworthy that a similar approach could be applied with different failure modes, such as

short or open circuits, leakage current, charge accumulation, etc.
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