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The estimation of sinewave parameters has many practical applications in test and
data processing systems. Measuring the effective bits of an analog-to-digital converter
and linear circuit identification are some typical examples. If a sinewave’s frequency is
known, there is an established linear method to estimate the other parameters. But when
none of the parameters are known (which is usually the case in practical situations), the

estimation problem becomes more difficult.

Traditional approaches to this task applied an iterative, sinewave curve-fit algo-
rithm. Two problems with this technique are that convergence is often slow and not
always guaranteed and the results of different trials may be inconsistent due to trapping

at a local minimum.
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Recently, a non-iterative algorithm has been developed which computes all four
sinewave parameters directly. The algorithm combines a nonlinear technique and win-
dowing to compute the estimates. Although this method is faster and more consistent
than the curve-fit approach, one disadvantage is that the accuracy of some estimates tends

to deteriorate rapidly if the sinusoid is corrupted by a high level of noise distortion.

This study presents an improved algorithm to extract the four parameters of an
unknown sinusoid from a sampled data record even though the samples may be distorted
by a high level of noise. Given this record, the proposed method first computes the FFT
(Fast Fourier Transform) of the data. Analysis of the resulting frequency spectrum pro-
vides a rough estimate of the sinewave’s fundamental frequency. Next, a bandpass filter
designed around this frequency is used to eliminate much of the noise from the samples.
Applying the existing four-parameter estimation algorithm to the filtered data, yields a
more accurate frequency estimate. Finally, this new value, together with the original
(noisy) data record is input to the three-parameter estimation algorithm to determine the

remaining sinewave parameters.

Simulation results indicate this proposed (new) algorithm not only shows substantial
improvement in the accuracy of parameter estimates, but also produces consistent results

for higher levels of noise distortion than previous methods have achieved.
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CHAPTER 1
INTRODUCTION

SINEWAVE PARAMETER ESTIMATION

Estimating the parameters of a sinewave is a basic function in many test and data
processing systems. From an accurate knowledge of the values of these four parameters:
amplitude, dc offset, frequency, and phase angle, the original sinewave can be com-
pletely reconstructed. Because many signal processing tasks are carried out in the digital
domain to take advantage of the power and speed of digital computers, most of the
"waveforms" dealt with in practice are merely records of digitized data values. There-
fore, parameter estimation is often required to extract the actual waveform characteristics

from the available data record.

Circuit identification is one important application of parameter estimation. The goal
of this process is to identify the unique transfer function which correctly describes a
circuit’s performance. For "linear" circuits, this task is somewhat simplified because of a
special property they possess. A linear circuit can be completely characterized by input-
ting a sinewave and measuring the parameters of the output signal. However, if only a
record of samples is available for the output, the parameters must be "estimated." Any
differences between the known input sinewave and the measured output reflect the

circuit’s impact on the data and determine its unique transfer function.

Parameter estimation is also involved in measuring the effective bits of a waveform
digitizer or ADC (analog to digital converter). The number of effective bits is a figure of
merit which indicates how much an ADCs nonlinearity has impaired its usefulness at a

given frequency [1]. This value measures the average noise power introduced during the
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digitizing process and is used to determine the actual resolution of the ADC. A com-

monly used definition of effective bits is [4, 5]:

RMSE FullScale
=N — — Oy —_— 1.1
B =N-1082 ({3ea1 Noise? ~ °82 77 RmsE b

where B = the number of effective bits, N = bits of the digitizer, FullScale = the
digitizer’s full scale value and RMSE = root mean square error of the digitized signal. In
practice, one has only the digitized sinewave record (and not the original input signal) to
work with. Therefore, some type of parameter estimation algorithm is required. Once
this process is completed, the estimated sinewave is used (as if it were the actual
sinewave) in (1.1), to compute the effective bits of the digitizer. The accuracy of this
calculation depends on how closely the sinewave can be reconstructed from estimatés of

its four parameters.

WHY SINUSOIDS

This study focuses on the process of estimating the four parameters of a sinusoid:
amplitude, dc offset, frequency and phase angle. Sinewaves are emphasized because of
their importance in test and measurement systems. Signal processing applications com-
monly use sinusoids as their stimulus. This is due to several unique qualities these
waveforms possess. One primary factor is that sinewaves are relatively easy to generate
in practice at the frequencies of interest with adequate fidelity. Also, sinewaves have a
simple mathematical model which simplifies the algorithms used for data analysis.
Another advantage, is that many other signals can be broken into a sum of sinusoids and
worked with in terms of these simpler components. Finally, sinusoids are mathemati-
cally related to complex exponentials (phasors) which makes them important in fre-
quency domain analysis. For these reasons, parameter estimation is targeted toward

sinusoids for most practical applications.



DEGREE OF PRECISION

With the continual advances in electronic technology, the precision of digital pro-
cessing systems is steadily increasing. To be of any use in the previous applications
mentioned, the accuracy of the sine parameter estimation algorithm must also keep pace.
For example, in calculating the number of effective bits of an ADC, the goal is to deter-
mine the average noise power introduced by the converter. For this application, any error
resulting from the parameter estimation process must be considerably smaller than that
introduced by the converter in order not to distort the results. Considering that 12-bit
ADCs (with corresponding resolution down to 0.0002) are not uncommon, estimation

algorithms must have a high degree of precision.

DEGREE OF ROBUSTNESS

In addition to being very accurate, modern applications demand an estimation algo-
rithm that is able to perform reliably in the presence of distortion as well. Most of the
digital data available for analysis is acquired through some form of sampling. This pro-
cess inevitably introduces a degree of quantization error which distorts the original data.
Given this distorted version of the data as input, a parameter estimation algorithm must
be able to extract, as accurately as possible, the true parameters of the original analog

signal.

SCOPE OF STUDY

The primary purpose of this study is to develop an improved algorithm for sinewave
parameter estimation. In the course of this development, two previously derived algo-
rithms will be examined in some depth, based on the success of their approaches, to dis-
cover potential areas for improvement. Numerous simulations, to represent a range of

input conditions, will be used to characterize their performance. Any weakness revealed
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by the results of these tests will assist in forming a hypothesis for improvement. After
the proposed algorithm has been described, it will be tested with simulations identical to
those applied to the previous methods. The results will provide an empirical comparison
of estimation accuracy. The following chapter presents a more detailed description of

the actual parameter estimation problem.



CHAPTER II

THE PARAMETER ESTIMATION PROBLEM

A sinewave can be completely characterized by its four parameters: amplitude (A),
dc offset (D), frequency (f), and phase angle (0). Mathematically, it is usually

represented as a continuous function of time by:
s®)=A-sin@Qrft+06)+D (2.1)

However, in most practical parameter estimation problems, the original analog
waveform is neither accessible nor convenient for analysis. Instead, a record of digital
values, obtained by sampling and quantizing the continuous sinewave, is more com-

monly dealt with.
Sk =s(k/fs) = A - sin(k2nf/f; +0)+D, k=0,1,...,N-1 2.2)

where k = sequence index
f = fundamental frequency of the sinewave
f, = system sampling rate
N = number of data points in the record
This type of record represents the typical input to a parameter estimation algorithm.

The data it contains may be collected from a variety of signal processing sources -- one
of the most likely being some type of waveform digitizer, or ADC. Therefore, to gain a
better understanding of the data that the estimation algorithm will have to utilize, it is

useful to explore the basic characteristics of ADC operation.



IDEAL ADC OPERATION

A block diagram of the circuit for an ideal analog to digital converter (ADC) is

shown in Figure 1.

A/D Converter

Analog Discrete-Time Quanuzed Digital
Signal Signal Signal Signal

Figure 1. Block diagram of a basic ADC (analog-to-digital converter).

By standard definition, an analog signal is defined at every instant in time and can
assume an infinite number of values within any continuous range specified. Mathemati-
cally, such signals can be described by functions of a continuous variable (typically
"time"). A digital signal, by contrast, is defined only at discrete instants in time and can
assume only one of a finite set of discrete values. Digital signals are usually represented
by a sequence of binary values of finite word length. The purpose of analog to digital
conversion is to generate a sequence of binary values which adequately represents the
original analog input.

To accomplish this task, the analog input signal is first sampled at (ideally) uniform
time intervals. Sampling consists of monitoring the analog waveform at specified inter-
vals (tsample) and recording the value of the waveform at each instant. Then, the sampled
data is quantized. The "quantizer" takes the sampled values and maps them onto one of a
finite set of digital values to generate a sequence of output data points. The transfer func-

tion of a 3-bit ADC, shown in Figure 2, illustrates the ideal staircase-shaped performance
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characteristic. For an ideal ADC, connecting the mid-points of the staircase, should pro-
duce a straight line passing through the origin with a 45 degree angle. This requires both

a linear transfer characteristic and uniform transition levels (A).

~ 8
s 1g
E /
E % RN Ideal
S5 A/D
g < g 10F conversion
-U i —
5 8 101 é_
(%]
c 7 3 190F 7] transition 2
& <
é l 011 + ‘ \Nominal c%
3 8 quantized 3
'é _l_ 2_ 010 - value §
z 4 8 (+ +LSB) <
© 1 <
5 sOUFPTIa s 1| s 32 z
& () - ?::4,:?::2;:8*,‘4::8 >§
5 0 000 1 I 1 1 I 1 1 °

o 1 1 3 1 5 3 1 FS

8 4 8 2 8 4 8

Normalized analog input

Figure 2. Transfer characteristic of an ideal 3-bit ADC.

After the conversion process is completed, assuming a sampling rate of
fs (samples/sec) = 1/tsample and a record length of N data points, the resulting output sig-

nal will have a form similar to the sequence described by (2.2).

NON-IDEAL CHARACTERISTICS

Up to this point, the discussion has focused on the "ideal" analog-to-digital conver-

sion process (i.e. assuming a perfectly linear transfer characteristic and uniform digital
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transition levels or steps). Therefore, the output sequence generated is free of any distor-
tion except that which is inherent in the quantization process itself. However "practical”
ADC:s are subject to several types of errors that can distort the original input signal even
further. For a more realistic example of the type of data input to a parameter estimation

algorithm, it is necessary to look at some characteristics of practical ADCs.

Transfer characteristics of several practical ADCs are shown Figure 3. Each exhi-
bits a different type of error which causes distortion to the original data. As mentioned
previously, a straight line with a 45 degree angle passing through the origin should inter-
sect the mid-points of the staircase transfer function of a perfect ADC. Any deviation
from this ideal indicates the presence of some sort of error in the ADC. For example, if
the line does not pass through the origin, we say that the ADC has an "offset" error.
Offset error occurs when the digital signal does not match the analog signal by a fixed
offset value. If the angle of the line is not 45 degrees, then we say the ADC has a "gain"
error. Gain error occurs when the output reaches saturation either sooner or later than it
should. If the transfer function is not a straight line at all, then we say that the ADC has a
nonlinearity error. This type of error can occur if the quantizer levels are not uniformly

spaced, which means that all of the A’s are not equal.

QUANTIZATION ERROR

Even if none of the specific error types described above are present, the digital out-
put signal produced by the ADC is not a perfect representation of the analog input.
When an analog sample is converted to a digital word, a small amount of error is intro-
duced as the continuous input value is "quantized" or mapped onto one of a discrete set
of digital values. The distortion introduced by this process is called "quantization error"

or "quantization noise.” Assuming FS refers to the full scale (or maximum expected)
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Figure 3. Transfer characteristics of practical ADCs.

value of the input signal and n to the number of bits of the ADC, the amount of quantiza-

tion error (eq) will be in the range of + % Seg<-— —?— where A = —I;—f— If it is assumed

that the quantizer is both ideal and uniform (all of the A’s are equal) and that the input
signals are bounded by the valid input range of the quantizer, then all of the noise sources

can be eliminated except quantization noise.
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NOISE SOURCES

The most common method used in the analysis of distorting effects of an ADC is to
model these effects (such as quantization error) with an additive noise source. Figure 4

illustrates the basic model.

Quantizer
X (n) —————] Olx(n)] — xq(n)

Actual system

x(n) Xq(n) =x(n) + eq(n)

eq(”)
Mathematical model

Figure 4. Modeling distorting effects of a practical ADC.

This model can be described mathematically by the following equation:

y(n) = x(n) + e(n) (2.3)

The model reflects how each sample of the input sinewave is distorted by the analog-to-
digital conversion process. The error signal (e) can represent the effect of several practi-

cal transfer characteristics.

Since the purpose of this study is to determine an improved method for parameter

estimation and not to examine details of ADC behavior, the principle types of distortion
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introduced by ADCs will be represented by one of two broad categories -- linear or non-
linear. "Linear" includes the effects of quantization error, offset error, and gain error
(discussed earlier). "Nonlinear" represents both integral and differential nonlinearities,
such as those which occur when transition levels are not uniform. For modeling purposes
in this study, each of the two broad categories of distortion will be treated as a separate

type of additive noise source.

After accounting for these errors introduced by the process of analog-to-digital
conversion, the actual input data available to a sinewave parameter estimation algorithm

generally resembles either:
ylnl]= A-sin[2nfn+6]+D+ ey, [n] 24
when linear distortion (ey;,) is present, or
yln]= A-sin[2xnfn+0]+D+a, -sin((h2xnfn]+6;, [n]) 2.5)

for nonlinear error sources,
where h = harmonic frequency (a multiple of the sinewave’s fundamental frequency),

an = amplitude of the harmonic and 6}, = random phase angle of the harmonic.

After describing the estimation problem and clarifying the type of input data that is
available to work with, the next step is to examine some previously-developed methods
for extracting the sine parameters. Studying the existing methods can provide some
insight to the most successful techniques and their expected level of performance.
Because the sinewave has such a well-defined mathematical representation, traditional

approaches to the parameter estimation problem have employed a curve-fitting technique.



CHAPTER I

TRADITIONAL APPROACHES TO THE PROBLEM -- ITERATIVE ALGORITHMS

Traditional attempts at sinewave parameter estimation usually resorted to some
form of iterative algorithm. This technique was usually quite slow, due to its basic
"trial-and-error" approach. In addition, the errors which occurred could not be expressed

readily in closed form and therefore, were difficult to control.

CURVE FITTING

A typical example of these earlier estimation algorithms is the so-called "curve-fit"
method, described in [1]. This algorithm employs an iterative, "gradient search" tech-
nique to determine each of the sine parameters. The motivation behind this algorithm
was finding a means to characterize the dynamic performance of an ADC. "The result of
this [curve fit] test is a figure of merit called the number of effective bits for the ADC"
[1].

The basic curve-fit process consists of the following steps. First, a record of data is
selected for analysis (often collected from the output of an ADC). Then, a sinewave is
generated in software that is a best fit to the data record. The process of generating this
best-fit sinewave for comparison gives the method its "curve fit" title. The accuracy of

this key step governs the ultimate accuracy of the parameters calculated.

The basis for computing the best-fit sinewave is the formula for actual RMS (root
mean squared) error. This is simply the square root of the sum of the squared errors

between the measured data points and the fitted sinewave.
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The actual RMS error is calculated from:

E= Y [x — Acos(oty + P) - CI? 3.1)
k=1

where E is the error, xi and ty are data points, m is the total number of data points in the
record, and the fitted sinewave parameters are:

A - amplitude

o - frequency

C - offset

P - phase

Although the curve-fit equations are derived with cosines, the process is valid for all
sinusoids. Using this formula, the curve-fit algorithm attempts to find the best-fit

sinewave by minimizing the error E.

First, the partial derivative of "E" is taken with respect to each of the four sinewave
parameters. Then, all four of the derivatives are set equal to zero (which defines the
point of minimum error). Performing some substitutions and rearranging terms eventu-
ally yields two nonlinear equations. These are solved simultaneously by iteratively
adjusting the fit parameters (frequency, phase, gain, and offset), until a solution is
achieved within the specified tolerance. Any difference between the data record and the

best-fit sinewave is assumed to be error.

This approximation algorithm requires initial guesses for frequency and phase,
which are close to the actual solution values, to ensure convergence to the best-fit
sinewave. For the initial frequency estimate, the frequency of the generator output is typ-
ically used. The initial phase value is usually based on an examination of the data record

by a software routine [1].
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ADVANTAGES

The curve-fit algorithm will detect error components in the ADC such as harmonic
distortion, white noise, and aperture uncertainty [1]. Gain, offset, and phase errors do not
affect the results. Harmonic distortion is usually a nonlinear function of amplitude and
frequency. The amplitudes of harmonics or aliased harmonics present in the error residue
can be extracted with this technique by fitting the error with best-fit sinewaves of the

major harmonic frequencies.

DISADVANTAGES

The greatest pitfall of the curve-fit test is the potential for selecting an initial input
frequency that is a submultiple of the sample frequency. This could cause a false con-
vergence. Other disadvantages of this method range from slow convergence to complete
lack of convergence (when data is poor or computational resolution is inadequate). Also,
the initial guesses for frequency and phase required by this algorithm severely limit its

usefulness for sinewaves which are completely unknown.

A RECENT SOLUTION

A more recent approach to the problem of sinewave parameter estimation attempts
to overcome some of these difficulties with a completely different procedure [4]. By
combining a nonlinear method to determine sinewave frequency and phase angle, with a
windowing technique to determine amplitude and dc offset, the iterative process is
replaced by "closed form" equations. Before proceeding with a further description of this
non-iterative algorithm, the next chapter outlines the methodology that will be used

throughout this study to compare the performance of estimation algorithms.



CHAPTER IV

A METHODOLOGY TO COMPARE THE ALGORITHMS

Before proceeding to investigate some of the more recently developed algorithms
for sinewave parameter estimation, a means for comparing their performance must be
established. The means adopted for this study consist of software simulations and empir-
ical conclusions drawn from the results. This approach was found to be more suitable

than complex theoretical predictions for the following reasons:

1)  Although several of the existing algorithms have accompanying formulas for the
expected error, these equations are usually derived assuming pure sinewave inputs
(no distortion). For practical applications, where some distortion is inevitable, the

theoretical equations no longer characterize actual performance.

2)  With simulations, it is possible to model and test a broad range of input conditions.
These results offer a direct performance comparison, without the additional pro-

cess of deriving equations to match the responses.

A fair comparison requires a uniform test (or tests) which can be applied to each
algorithm and a consistent set of assumptions governing the process. The following dis-
cussion presents each of the key assumptions made for the purpose of this study and the

justification for each one.

THE TEST SINEWAVE

Since the goal of this study is improved sinewave parameter estimation, a pure
sinusoid is chosen as the basic test signal. Unit amplitude, zero DC offset and zero phase

angle were chosen for the analog sinewave parameters. These values were selected both
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to simplify the analysis, and to remain consistent with assumptions established for Jenq’s
frequency and phase estimation technique [2]. The fourth and final parameter, fre-
quency, is allowed to vary over a specified range of values. This range will be deter-

mined from constraints described in the next chapter.

Mathematically, the basic analog test signal is described by:
s®)=A-sin2nft+08)+D 4.1

where A = amplitude
D = dc offset
f = frequency

0 = phase angle

Figure 5 depicts this basic test signal.

x,(t)=A sin (2nFr+0)
A

T, =1/F

Asin8

Figure 5. Analog sinewave.
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SAMPLING

As discussed in Chapter II, the typical input to parameter estimation algorithms is a
record of digital values. Converting practical analog test signals into the necessary digi-
tal sequence involves sampling. To ensure a consistent performance comparison, the

input data (and thus the sampling process) must be the same for each algorithm.

There are two bounds to establish for this process: the "length" (in sample points) of
the data record, and the "rate" at which the data is recorded. In general, if it were possi-
ble to store an unlimited number of samples, the higher the sampling rate (more samples
per cycle), the better the digital representation will be. However, practical records are
limited to a finite length, so lower sampling rates (fewer samples per cycle) acquire data
over more cycles of the waveform. The resulting record will be a better average of the
entire signal and provide better parameter estimates. For this study, the length of the data
record is fixed at 1024 points to balance the advantages of a large record for better signal
representation, with a shorter length for faster data processing. Furthermore, since this
value is an even power of two (specifically 219y, it permits the use of the Fast Fourier
Transform (FFT) -- an efficient algorithm for computing the discrete Fourier transform of

the data.

The sampling rate chosen for the simulations is 1024 samples per second. Actually,
the "exact numerical" value of this rate is not as critical as its value "relative" to the fre-
quency of the analog waveform being sampled. For instance, a 1 Hz (Hertz) sinewave
sampled at 4 Hz, or a 1 GHz sinewave sampled at 4 GHz, has the same relative effect
(i.e. the same number of samples per cycle). The most important factor in choosing the
sampling rate is satisfying the well-known Nyquist Sampling Theorem. Briefly, this
theorem requires that an analog signal must be sampled at a rate of at least twice the
highest frequency component of the input signal to allow reconstruction of the original

signal from the discrete samples without aliasing. The judicious selection of the range of
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frequencies for the sinusoidal test signal will ensure that the chosen sampling rate (1024)

satisfies the Nyquist criteria.

NOISE MODELS

The previous sections established assumptions for the analog sinewave and its digi-
tal processing. However, practical signals usually suffer some distortion from this pro-
cess. For a realistic test of parameter estimation performance, this distortion must be
incorporated into the model for input sinewave. Chapter II described a common model
for the distortion (using an additive noise source) that will be adopted for this analysis
(see Figure 4 and equation (2.3)). In order to apply this additive noise model, the error
signal (e) must be defined for each type of distortion represented. The principle types of
distortion imposed on an input signal by a practical ADC can be divided roughly into two
categories -- linear and nonlinear. The next step is to determine what type of signal best

represents each general category.

Linear Noise

Beginning with linear distortion (such as quantization noise), a common model for
this type of error is uniformly distributed white noise [6, 7]. "White" implies a random
mix of frequencies is present in the signal (this assures "unbiased” distortion for a wide
range of test signal frequencies). Uniformly distributed means that the possible range of
noise levels is uniform -- centered about the origin with values constrained between + 1/2

of the mean amplitude chosen.

Nonlinear Noise

The second distortion category, "nonlinear," is often modeled with harmonics of the
input signal. For simplicity, the model in this study is based on the primary harmonics --

second and third. The basic harmonic parameters were selected as follows. "Zero" dc
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offset is chosen to be compatible with the input sinewaves. The harmonic "frequencies”
are relative to the fundamental frequency of the input test signal (2f, and 3fp). To avoid
biased data, harmonics are generated with random phase angles. The final harmonic
parameter, "amplitude,"” varies over a range of values. The following sections describe

how this range was selected.

Average Power

A realistic analysis of parameter estimation algorithms involves testing their perfor-
mance with practical input signals. Practical signals may contain linear and nonlinear
distortion. In this study, the effect of each type of distortion (on estimation accuracy) is
considered separately. To ensure a consistent performance comparison, roughly
equivalent levels of each type of distortion should be tested. The problem is determining
what is equivalent. Because linear distortion is represented by a random signal (white
noise), and nonlinear by deterministic signals (harmonics), equal amplitudes does not
imply equal distortion. Instead, the average signal power provides a common reference
for these incompatible types. In the statistical approach commonly adopted, average sig-

nal power refers to the mean-square power or variance.

The power of uniformly distributed white noise (representing linear distortion), is
calculated from this random signal’s Probability Density Function (PDF). Figure 6
shows the PDF for this signal.

By definition, the average power (or variance) of a uniform random variable equals
the integral of its PDF. The total area under the PDF equals one (shown in Figure 6). For
consistent derivations, let q, = A = the peak-to-peak noise amplitude, and e = error.
Then,

q./2 2
2
=fan e e = qi[%g} "h -
n

computes the power of the random noise signal.
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Figure 6. PDF for a uniform random variable.

The corresponding result for sinewaves can be derived as follows. Letting T = one
sinewave period, A; = sinewave amplitude and q; = peak-to-peak amplitude, the

sinewave power (variance) is given by:

P=— [ § (A sinapy? de= =S = = = = 43)

Finally, the signal-to-noise ratio (SNR) for the test sinewave signal combined with

uniformly distributed random noise is:

2
ds )
. P :
sm:M.:.i:L:lﬂ? (4.4)
noisepower P, g2 2 g2
12
Converting to decibels (dB):
SNRgyg = 10 log(SNR)
2
_ 3 9s
=10 log(z ——2-)

n

=10 log(%) +20 log(%)

= 1.760913 + 20 log(—:f) dB (4.5)
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"n_ 9 1

where the "q’s" can represent either peak, or peak-to-peak amplitude; as long as the

interpretation is consistent.

Next, an equivalent result will be derived for nonlinear distortion. Harmonics are

deterministic signals with the same characteristics as the test sinewave. This simplifiers
2

S

the SNR calculation. From equation (4.3) the power of a sinusoid is given by: Pg = 5

where A, = sinewave amplitude. Since a harmonic is another sinewave, its power can
A2

also be represented by: P, = ——21 where A, = harmonic amplitude. So, the SNR for

sinewave signals with nonlinear (harmonic) distortion is:

A? )
: P A
SNR = —Smepower _ s _ 2 _ ; (4.6)
harmonic power P, A} Af
2
or expressed in dB:
2
Ag Aq
SNRyp = 10 log(SNR) = 10 IOg(_;z") =20 log(X——) dB @4.7)
h h

Using equations (4.5) and (4.7) for comparison, the next step is to select a reason-

able range of linear distortion levels and compute equivalent harmonic levels to test.

Noise Levels

The objective of the simulations is to represent practical conditions for testing the
estimation algorithms. Therefore, levels of distortion in the input sinewave should be
similar to levels that could occur in actual test signals. Since ADCs commonly introduce
some distortion into practical signals, their effects will provide bounds for the simulated

noise range.
In the worst case (poorest resolution), an ideal one-bit ADC would have a maximum
quantization error equal to 1/2 of the input signal’s full scale amplitude (or SNR = 2.0).

At the opposite end of the scale, ADCs with greater resolution (more bits) would
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generate much smaller quantization errors (producing higher SNR). From these general
guidelines, the selected amplitude range for white noise (linear distortion) is: [0.05, 0.1,
0.2, 0.3, 0.4, 0.5]. Table I compares the amplitudes with their equivalent signal-to-noise

ratios computed from (4.5).

TABLE I
COMPARING SIGNAL STRENGTHS: SINE AND WHITE NOISE

SINE AMPLITUDE NOISE AMPLITUDE SIGNAL-TO- NOISE-TO-
(Constant) (Variable) NOISE RATIO SIGNAL RATIO
(SNR) (NSR)
PEAK PEAK-TO-PEAK | PEAK PEAK-TO-PEAK
(PK) ®-P) (PK) ®-P) AMPLITUDE  dB | AMPLITUDE  dB
1.0 2.0 0.05 0.1 20.00 27.78 0.05 2426
1.0 2.0 0.10 02 10.00 21.76 0.10 -18.24
1.0 20 0.20 04 5.00 15.74 0.20 -12.22
1.0 2.0 0.30 0.6 3.33 12.22 0.30 -8.70
1.0 2.0 0.40 0.8 2.50 9.72 0.40 -6.20
1.0 2.0 0.50 1.0 2.00 7.78 0.50 426
1.0 2.0 0.75 1.5 1.33 4.26 075 -0.74
1.0 2.0 1.00 20 1.00 176 1.00 1.76

Corresponding levels of nonlinear distortion were calculated by equating signal-to-
noise ratios (equations (4.5) and (4.7)) and determining the required harmonic amplitude.

The resulting range of nonlinear distortion levels is shown in Table II.

TABLE II

COMPARING SIGNAL STRENGTHS: SINE AND HARMONICS

SINE AMPLITUDE HARMONIC AMPLITUDE SIGNAL-TO- HARMONIC-TO-
(Constant) (Variable) HARMONIC RATIO SIGNAL RATIO
(SHR) (HSR)
PEAK PEAK-TO-PEAK | PEAK  PEAK-TO-PEAK
(PK) (P-P) (PK) (P-P) AMPLITUDE dB AMPLITUDE dB

1.0 20 0.05 0.1 20.00 26.02 0.05 -26.02
1.0 2.0 0.10 0.2 10.00 20.00 0.10 -20.00
1.0 2.0 0.20 0.4 5.00 13.98 0.20 -13.98
1.0 20 0.30 0.6 3.33 10.46 0.30 -10.46
1.0 2.0 0.40 0.8 2.50 7.96 0.40 -1.96
1.0 2.0 0.50 1.0 2.00 6.02 0.05 -6.02
1.0 2.0 0.75 1.5 1.33 2.50 0.75 -2.50
1.0 2.0 1.00 2.0 1.00 0.00 1.00 0.00
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At this point, some comments are in order regarding the simulation data.

Throughout the remaining text (in tables, graphs and discussion) the following

terms will be used interchangeably:

SNR (signal-to-noise ratio) and NSR (noise-to-signal ratio). These are merely
inverse ratios and although graphs may plot estimation errors versus increasing
noise levels (NSR), results are usually described in terms of SNR for familiarity.

SHR (signal-to-harmonic ratio) and HSR (harmonic-to-signal ratio). These terms
are the equivalent of SNR and NSR (and may be used interchangeably), but refer
specifically to nonlinear distortion. Results will be presented generically in terms
of SNR, but tables and figures may use SHR or HSR to distinguish nonlinear dis-

tortion.

The analysis of parameter estimation algorithms is based on their performance for
the levels of distortion described above. However, results of simulations with
noise levels as high as 2.0 or 3.0 peak-to-peak may be listed in later tables. These
additional simulations were only run to clarify performance trends. The levels are
unrealistic for practical signals and will not be incorporated in the final evalua-

tions.

EXPERIMENTAL PROCEDURE

Software

Simulations were performed using the MATLAB software package. MATLAB is a

general purpose tool for mathematics computation. In addition, it features several built-

in functions adapted specifically for circuit analysis and signal processing tasks.

MATLARB also allows users to create their own customized code for special applications
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not covered by the built-in functions. Custom code was written to implement each of the

parameter estimation algorithms studied.

Trials

The majority of simulations in this study represent "sensitivities" (or the effect of
changing only one variable on the algorithm’s performance). In these tests, as one of the
input parameters is varied incrementally through a range of values, the results of the
algorithm being tested, are recorded for each increment. Due to the random component
of the noise distortion which is present in most practical signals, several simulations (or
"trials") using the same range of input conditions, are required to obtain representative
results. Taking the "average" of the outcomes helps to "cancel out" the effects of random
noise. Determining an adequate number of trials to accomplish this, is influenced by two
conflicting requirements. There should be enough trials to obtain a representative range
of values, but not so many that computation time for the necessary iterations becomes
prohibitive. With this tradeoff in mind, five trials per experiment was selected as a rea-

sonable number.

Error Analysis

Once the simulations are completed, the accuracy of parameter estimation algo-
rithms is evaluated empirically by comparing how closely the estimated parameters
approximate the actual analog values. Any differences represent errors. For perfor-
mance comparisons, a consistent method must be determined for calculating this estima-

tion "error."

There are several standard definitions to choose from, but a basic one, sufficient for

this study, is relative error. Given an estimated quantity (e) determined from simula-
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tions, and an actual value (a) which is assumed to be "known," the relative error of the

estimated value compared to the actual value is:

€—a

ERrgL = 4.8)
which can also be expressed as a percentage:
e—a
EqreL = Ergr. X 100 = X 100 (4.9)

There are two exceptions to this chosen reference which arise in the course of this
study. In some instances, the actual value (a) is equal to "zero" (such as the test
sinewave’s dc offset or phase angle). For these special cases, applying the formula for
relative error results in an illegal division by zero. Instead, the equation for absolute
error (Epgps =€ —a) is used for comparisons. The other special case occurs when the
actual value (a) is equal to "one" (such as the test sinewave’s amplitude). Here, the rela-

tive error formula reduces to the equation for absolute error by default since the divisor is

" "

one.

SUMMARY

Now that the key assumptions and the simulation process have been defined, we
have the means to gather data to compare the performance of various parameter estima-
tion algorithms. This analysis begins with an algorithm recently developed by Jenq [4],

which is a non-iterative technique for parameter estimation.



CHAPTER V

THE FOUR-PARAMETER ALGORITHM

A different approach to the sinewave parameter estimation problem, developed by
Jenq [4], overcomes several of the disadvantages of traditional curve-fit methods. It suc-
cessfully combines two separate techniques for partial parameter estimation into a com-
plete four-parameter sinewave estimator. One component of this method is a high per-
formance frequency and phase estimator based on a weighted least squares method [2].
However, the uniqueness of this method lies in the process of applying a window to the
digitized data preparatory to estimating the amplitude and dc offset. The combination of
this windowing technique with the results of the previous frequency and phase estimator
produces a method capable of estimating all four parameters of an unknown sinusoid.

The following sections describe how this algorithm was derived. This description is
presented in the following order. First, an intuitive explanation of the process and the
logic behind it. Then, a more rigorous mathematical derivation is presented. This expla-

nation is a summary; the full description is contained in [4].

ESTIMATING AMPLITUDE AND DC OFFSET

Intuitive
Since the four-parameter algorithm is, by definition, a method for estimating all of
the parameters of an unknown sinewave, it is assumed that the only data available to

work with is a record of samples obtained from the analog test signal. Given only this



27

input, the most straightforward parameter to compute is the sinusoid’s "dc offset" (or
average value). A rough estimate could be obtained by summing the values of all the
data points in the record and dividing this sum by the total number of samples in the
record. The four-parameter algorithm modifies this basic procedure by first windowing

the data record for increased accuracy. The next section will detail this process.

The process for estimating a sinewave’s "amplitude" follows similar reasoning. The
first step is to subtract the previously-estimatcd dc offset from each windowed sample in
the data record. The result is a new record with dc offset adjusted to zero. The square
root of the sum of the squares of these values is computed to determine the data’s aver-
age magnitude independent of the sign of the samples. This completes the first phase of

the four-parameter estimation algorithm.

Derivation

From an intuitive understanding of the process used by the four-parameter algo-
rithm, a more rigorous derivation can be developed. The initial input to the algorithm is

typically a digitized data record of the form:
S =5 =sk/fs) =A - sin (kK2rf/f; +0)+D, k=0,1,..,N-1 (5.1)

This record consists of a sequence of data points obtained from sampling and quantizing

the original test sinewave:
s(t) = A - sin(2rft+06) + D (5.2)
at the rate of fg; samples per second.

Next, a window sequence is defined by sampling the four-term Blackman-Harris

window:
\%Y ={wk , k=0,1,..., N—l},
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where wy is computed by the following equation:

wy =0.35875 — 0.48829 cos (k2r/N) + 0.14128 cos (k4n/N) —
0.01168 cos (k6n/N), k=0,..,N-1 (5.3)
The windowing process is what distinguishes this algorithm from other four-
parameter estimators. For a better understanding of this step, it would be instructive to

pause temporarily from the derivation and explore the advantages of windowing.

If the input data record contained an infinite number of sinewave samples, it would
be relatively straightforward theoretically to determine the amplitude and dc offset from
the Fourier transform of the data. Figure 7 shows how the value of these parameters
could be measured directly since all of the spectral energy is located at a single frequency

(or bin).

amplirude
component

/

de oteset
(\_(S’m p%cnent

0 2 f

Figure 7. Frequency spectrum of a typical input sinewave.

However, the actual data available is contained in a finite record of fixed length.
Applying the Fast Fourier Transformer (FFT) to this data will compute its frequency

spectrum. However, there are some complexities involved in working with a limited
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amount of data. In computing the FFT (or any discrete Fourier transform), the samples
are assumed to be periodic, which produces a periodic frequency spectrum. The n sam-
ples input to the FFT can be thought of as an infinite sequence of samples to which a rec-
tangular window has been applied -- resulting in a truncated data record. However, this

windowing has some adverse effects on the frequency spectrum of the input data.

One of these effects is due to the shape of the window’s main lobe. It is called
"spectral smearing" because a spectrum that would normally be an impulse located at a
specific frequency, will have its power spread or "smeared" across the surrounding bins
after windowing. This results in a loss of resolution in the frequency spectrum. The
extent of the smearing is proportional to the width of the window’s main lobe. the other
effect, called "spectral leakage,” is due to the properties of the window’s sidelobes.
Spectral leakage occurs when frequency components of the input signal do not fall
exactly on one of the bin frequencies of the FFT. When that happens, the spectral energy
of those components will leak out to the surrounding bins, distorting their true magni-

tudes.

Clearly, windowing affects the input data, and working with a finite record of sam-

ples introduces rectangular window characteristics -- wide main lobe and large sidelobes

(see Figure 8).

However, these inevitable negative effects can be offset somewhat by the proper
choice of a window function to apply before estimating the sinewave’s parameters. With
this choice, spectral smearing can be confined to to a narrow range of bins and spectral
leakage can be limited to distant bins. There are many windows available to choose
from, each with slightly different properties. Figure 9 shows the time domain and Figure

10, the frequency domain characteristics for a variety of common window functions.
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Figure 8. Frequency domain characteristics of the rectangular window.
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Figure 9. Time domain characteristics of several common windows.

From the available functions, the Blackman-Harris window was chosen for a some
of its unique properties. Figure 11 depicts its magnitude spectrum [4]. First, it is evident
from the figure that the window has a clearly defined main lobe confined between the fre-
quency bins O to 4. This limits spectral smearing of an impulse to a width of nine bins
(the original bin with smearing of +4 bins around it). Secondly, this window is
designed for very small sidelobes which do not exceed -92 dB after the fifth bin. This

reduces spectral leakage by 92 dB within 5 bins from an impulse. So, the Blackman-
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Harris window achieves a good compromise between the slight loss of resolution for fre-

quency components occurring exactly at bins and excellent reduction of spectral leakage

for all other components.
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Figure 11. Magnitude spectrum of the Blackman-Harris window.

What this means in terms of improvement to the parameter estimates is illustrated in
Figure 12. As this figure shows, when the condition that the data record (S) contains
more than 4 cycles of the sinewave is met, the frequency component (impulse) represent-
ing the sinewave’s amplitude falls outside the main lobe of the Blackman-Harris window.
This reduces the spectral leakage from this component by 92 dB, insuring minimal dis-
tortion to the dc offset component after windowing. Consequently, the true value of the

sinewave’s dc offset will be determined more accurately. The amplitude estimate will be

similarly improved.
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Figure 12. Windowing the sinewave spectrum.

Returning to the derivation, applying the Blackman-Harris window (wy) to the data
record (si) yields the dc offset estimator (13):
N-1

Y Wk Sk
D=X=% (5.4)

N-1
2 Wk
k=0

and the equation for the amplitude estimator (—A) follows:

 N-1 _ e
> wi(sx —D)?
A=|2 20— (5.5)
2 Wk
k=0 ]

ESTIMATING FREQUENCY AND PHASE ANGLE

With estimates for amplitude and dc offset calculated, the remaining two sinewave

parameters (frequency and phase) must be determined to complete the algorithm.
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Intuitive
A method known as "phase unwrapping" is used to extract the frequency and phase
parameters from the sinewave data record. This process will be described in greater
detail in the following section, but the result is a sequence of phase values computed
from the sample points. These phase angles (in radians) can be plotted versus the sample
points in an ever-increasing plot like Figure 13. This figure shows that the frequency of
the sinusoid (or "rate of change" of the phase angle graph) is estimated by calculating the
derivative (slope) of the linear plot. The point where this graph intercepts the vertical

axis provides an estimate of the sinewave’s phase.

UNWRAPPED PHASE
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Figure 13. Estimating frequency and phase.
Derivation

To express the "phase unwrapping" process mathematically, some additional
sequences must be defined. Starting with the original data sequence (s ), subtracting the

estimated value for dc offset and dividing by the estimated amplitude, yields a new
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sequence (5 ) defined by:

. _(x-D)

Sk k=0,1,..,N-1 (5.6)
A

with dc offset adjusted to zero and amplitude normalized to unity.

The next step is to "unwrap" the phase of the sequence just created. The results of
this process provide the data necessary for estimating the sinewave’s frequency and
phase angle. In order to accomplish this critical step, it is first necessary to understand
exactly what is meant by the term "unwrapping." The term is illustrative of the effect of
computing the angular argument of each sinusoid sample, plotting these angles succes-
sively around the unit circle, and then "unwrapping" this wound string of values to form a

linear graph. Figure 14 illustrates this concept.

UNIT CIRCLE UNWRAPRPED PHASE
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Figure 14. Phase Unwrapping.
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Since the digitized sequence (5;) represents a sinusoid, the value of each data point

in the sequence is the sine of some angle (0). To "unwrap" the phase angles from this
sequence requires reversing the computation to determine the associated angle, or

arcsine, of the data.

Because a sinewave s(t) is a periodic function, it is characterized by the following

property:
s(t+ 1) =s(t)

where 7 is the fundamental period of the sinewave. This property describes how the sine
function repeats the same sequence of values at intervals separated by one period (7).
Attempting to extract the phase angles from the data record by computing the arcsine of

each sample directly, results in a periodic sequence of angles constrained between
[——72t— < sin”! (0) < % ]. Values within this range are known as the "principal" values of

the arcsine. However, the four-parameter algorithm’s formulas are based on the "abso-

lute" value of arcsine (which ranges over the unit circle [0, 2x]).

To determine the absolute arcsine of a sample (and not merely the principal value)
requires two separate equations depending on which portion of the sinewave cycle the
sample was taken from. As Figure 15 illustrates, each cycle of a sinewave can be
roughly divided into two regions -- one of increasing (or positive) slope, and the other of

decreasing (negative) slope.

Within the region of positive slope, the principal value of the arcsine equals the
absolute value. However, within the region of negative slope, the principal value must
be subtracted from 7 to obtain the correct angle. Table III shows the need for this correc-

tion.



37

PRINCIPAL.

INCREASING DECREASING
Slepe Slepe
Figure 15. Regions of a sinewave cycle.
TABLE III
PHASE UNWRAPPING
FUNCTION VALUES
( 0 in radians)
FUNCTION
Positive Slope Negative Slope
(82=6p) (0.=m-6,) YY)
= i D2 2 M2 g2
y = sin (0) 1 > 021 2O > 1 cee
O, = sin™1 ) o
Principal Value —575 —f— 0 —Z’— 12[- % 0 —f - cee
-7 T
- < <
(5 <8 <)
0, = sin~l(y)
Absolute Value :21 —_Zﬂ— 0 71:— —725— —341 54—“ —321 YY)
0 <6, <2n
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In order to apply the appropriate arcsine formula, the next task is to detect which

region of the sinewave, each sample was taken from. In the software simulations, this is

accomplished with three pointers into the data record:

e x[n-1] - the previous sample
° x [n] - the current sample
° X [n+1] - the next sample

where n is an index into the record. Advancing through the record, the relative positions
of these three points (measured by the sine amplitude of the particular samples) identify

the region of the sinewave and correspondingly, which arcsine formula to apply.

After the phase unwrapping process is complete, the resulting angles (in radians) are
plotted; starting with the first value and adding successive values to the cumulative total

in an ever-increasing function. Figure 16 shows the result.
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Figure 16. Plot of unwrapped phase angles.
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This entire "unwrapping" process can be summed up mathematically by the condi-

tional sequence: x, = sin~! (§k), k=0,1,...,N — 1, subject to the monotonic condition.

Defining two further sequences:
u=1-G)% k=0,1,.,N-1

t =k/f;, k=0,1,.. ,.N-1
completes the terms necessary for the following summations.

Sum U =Xy

Sum UT =X ugty
Sum UTT =X uy ty ty
Sum UX =X upxy

Sum UTX =X uy ty xy
and A=Sum U - Sum UTT - Sum UT . Sum UT

Finally, the formulas for estimating frequency and phase are expressed by:

Sum U - Sum UTX — Sum UT - Sum UX—I

1
A J 5.7
]

f=—
2n

~ Sum UX - Sum UTT - Sum UT - Sum UTX
0= (5.8)
A |
The estimation formulas derived in [4] for amplitude (5.5), dc offset (5.4), fre-

quency (5.7), and phase angle (5.8) combine to form the complete four-parameter estima-

tion algorithm.
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SIMULATIONS

Now that the basic procedure for the four-parameter algorithm has been described,
this section is devoted to characterizing its performance through a series of software
simulations. The results of these simulations will be used to identify potential areas for
improving the algorithm. The following sensitivities:

e Performance with respect to increasing levels of "linear" distortion.
e Performance with respect to increasing levels of "nonlinear" distortion.
were investigated to characterize the algorithm’s performance with input signals com-

monly encountered in practical applications.

In setting up the simulations, the general assumptions established in Chapter IV
(Methodology) will be applied. However, that chapter deferred the selection of a specific
range of frequencies for the sinusoidal test signal. Before proceeding further, this selec-

tion must be made.

Since the sampling rate is already established (1024 points per second), the upper
bound for the frequency range is limited by the Nyquist criteria. To satisfy the criteria

fsampl
with the given sampling rate, the maximum sinusoid frequency must not exceed =

or 512 Hz (Hertz). To comply with this restriction, 200 Hz was selected as the
sinewave’s upper frequency bound. At the opposite end of the scale, the lower bound for
the range of test frequencies is determined by the Blackman-Harris windowing function.
It is a property of the Blackman-Harris window that if the data record (S) contains more
than four complete cycles of the input sinewave, dc offset estimates will have negligible
error (AD < |A|x 107+%) [4]. Applying the same restriction will achieve the minimum

error for the amplitude estimator (normalized error AA/A < 10723) [4]. To satisfy this
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requirement, the lowest allowable frequency for the test sinewave is:

1024 samples 1 record 4 cyclespin.
second 1024 samples record

= 4 cycles per second (Hertz).

Choosing 5 Hz as the minimum frequency will remain within this lower limit imposed by
windowing. After selecting these upper and lower limits, the range of simulation fre-

quencies chosen for the test sinewave becomes [200, 100, 50, 25, 10 and 5] Hz.

LINEAR SIMULATIONS

Initial simulations were made to test the algorithm’s "linear" sensitivity -- the accu-
racy of parameter estimates when the input sinewave is distorted by varying levels of
uniformly distributed white noise). This type of distortion represents the inevitable

quantization errors. The following process is repeated for each sequence of simulations.

Given a user-defined time interval (¢ = [0, 1.024] seconds), MATLAB is used to
generate a sinewave sequence with unit amplitude, zero dc offset, zero phase angle, and
variable frequency selected from the established range: [200, 100, 50, 25, 10, 5]. Using
the same time interval, MATLAB also generates a sequence of uniformly distributed ran-
dom noise values with zero mean and a peak-to-peak amplitude from the range: [0.1, 0.2,
0.4, 0.6, 0.8, 1.0]. Combining these two sequences models the effect of processing a

sinewave with a practical ADC. Figure 17 shows the stages in creating this model.

Next, this noisy sinewave is input to the four-parameter algorithm and the resulting
estimates are recorded and averaged. Estimation errors are calculated from these aver-
ages. Then, a new (higher amplitude) random noise sequence is generated and the esti-
mates repeated. This process continues until all combinations of sine frequencies and

noise levels have been tested.
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Figure 17. Modeling linear distortion in the test sinewave.
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LINEAR RESULTS

In this and all successive discussion of simulation results, distortion levels will be
stated in terms of the standard reference, SNR (signal-to-noise ratio). Figures and graphs
however, are plotted with respect to the inverse relation NSR (noise-to-signal ratio) to

emphasize errors increasing with distortion.

Beginning with amplitude estimates, average errors using the four-parameter algo-
rithm were on the order of 1072. Table A.I shows the range of amplitude estimation
errors for the various input combinations tested. As expected, estimation errors increase
with higher noise levels (Figure A.1), but show no recognizable trend with respect to

sampling rate.

DC offset estimates follow similar trends, but are more accurate than amplitude esti-
mates overall. Average errors are on the order of 107 for noise levels below 10 dB
SNR. At higher levels of distortion, errors increase up to a factor of 10. Table A.II lists
the exact values. Figure A.2 shows the relation between dc offset estimation errors and

noise levels. There is no definite relation between these errors and sampling rates.

The accuracy of sinewave frequency estimates follows two distinct trends. Errors
increase not only with the level of noise distortion in the test sinewave (Figure A.3), but
also with the applied sampling rate (Figure A.4. The latter trend reveals the principle
weakness of the four-parameter algorithm -- a sudden breakdown in frequency estimates.
At low noise levels (below 12 dB SNR) and relatively coarse sampling rates (Iess than 40
samples per cycle), the error of frequency estimates remains at a respectable level of
1073 (or 0.1%). As noise levels rise (with fixed sampling rate), estimation errors rise by

as much as two factors of 10. However, the degradation is even more dramatic for
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increasing sampling rates (referred to as finer sampling). As sampling rates rise above 40
samples per cycle, errors rise sharply to values on the order of 10! or more. Table A.III

lists the range of average errors measured.

Following the same trends, phase estimates decline in accuracy for both high noise
levels and sampling rates. At low noise levels (below 12 dB SNR) and sampling rates
below 40 samples per cycle, average errors are on the order of 10~!. Higher noise levels
increase the error by approximately one factor of 10 (Figure A.5). However, for the com-
bined increase of distortion and sampling rate, errors grow up to the order of 10> (Figure

A.6). Table A.IV lists the average errors.

NONLINEAR SIMULATIONS

These simulations test the four-parameter algorithm’s performance when the input
sinewave is corrupted by nonlinear distortion (modeled by harmonics). This scenario
represents the effect of using a practical ADC, with differential or integral nonlinearities,
to generate the test signal. The basic procedure used for these simulations is the same as
described under the "Linear Simulations" section. The only difference is the additive
noise model. To model nonlinear distortion, a MATLAB-generated harmonic sequence
is added to the original sinewave sequence before applying the estimation algorithm.
Figure 18 shows the stages to create this model. Both second and third harmonics of the
original sine were tested. For consistency, all harmonics shared common parameters:

zero dc offset, random phase and variable peak-to-peak amplitude.
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NONLINEAR RESULTS

Errors in estimating sinewave amplitude in the presence of nonlinear distortion,
show one consistent trend. As Figure A.7 reveals, estimation errors increase solely with
the level of nonlinear distortion present in the input signal regardless of the sinewave or
harmonic frequency tested. The average error magnitude is on the order of 1072, Table

A.V lists all of the simulation averages.

Estimates of the sinewave’s dc offset are extremely accurate (errors on the order of
10714) throughout the range of input signals tested. Table A.VI lists these error values.
Figure A.8 reveals a general trend of slight error increases with rising noise levels. The
erratic nature of the relation is due primarily to imprecision in measuring such small

differences (10™'* or below) rather than inconsistency in computing the estimates.

Frequency estimates once again reveal the four-parameter algorithm’s weakness.
Table A.VII shows average estimation errors on the order of 10’3 for harmonic levels
below 10.5 dB SNR. As harmonic levels rise, average errors increase by a factor of 10.
In Figure A.9, errors that jump rapidly to 100% near the end of the simulation range, do
not represent a complete breakdown of the algorithm. Actually, that is the point where
the magnitude of the distortion exceeds half the strength of the input test signal and thus
becomes the dominant signal to the estimation algorithm. The large error occurs,
because the algorithm is now estimating the frequency of the "harmonic" rather than the
original sinewave. This magnitude of nonlinear distortion is unrealistic in practical situa-

tions, but simulation results were plotted to confirm dominant trends.

Phase estimates also deteriorate at high distortion levels. Errors on the order of
107! (for distortion levels below 10.5 dB SNR), climb to the order of 10° as distortion

rises. The effect is accelerated for higher frequency input sinewaves. Table A.VIII lists
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average errors for phase estimates. Figures A.10 illustrates performance trends.

CONCLUSIONS

The results of simulations reveal that the four-parameter algorithm provides quite
accurate estimates under most conditions. Its major weakness is the rapid breakdown of
the frequency estimator for certain input conditions. The critical conditions are:

- very high sampling rates relative to the sinewave frequency

- high levels of noise distortion present in the input sinewave
Problems resulting from the first condition can be avoided by careful selection of the
sampling rate. To correct the second condition, one possibility is to eliminate some of
the distortion present in the input before proceeding with the estimates. This idea will

serve as the fundamental hypothesis for developing an improved estimation algorithm.

However, before investing a lot of effort to reduce distortion, it seems prudent to
determine whether this plan will yield measurable improvement. Fortunately, another
algorithm has been developed which can provide some idea. Chapter VI explores the

performance of this "three-parameter algorithm."



CHAPTER VI

THE THREE-PARAMETER ALGORITHM

The Three-Parameter (or Known Frequency) Sine-Wave Curvefit Algorithm is a
well-documented technique for estimating three sinewave parameters (amplitude, dc
offset and phase) assuming the sinewave frequency is known and input to the algorithm
[3]. This method’s performance will indicate how much accuracy can be expected for
the remaining estimates when the frequency is as accurate as possible (i.e. "known pre-
cisely"). This method has some important advantages. First, it yields a "closed form"
solution for sinewave curve fitting in cases where the frequency of the recorded data is
known. Second, unlike the four-parameter algorithm, it is a "linear” technique (i.e. esti-
mates are computed entirely with linear functions such as "sums") which increases its
accuracy. The performance of this algorithm will justify whether or not it is worthwhile
to pursue improving the frequency estimate of the four-parameter method. In addition,
the results of this algorithm will establish a benchmark against which the accuracy of the

proposed (new) algorithm can be compared.

The following section presents a brief derivation of the three-parameter algorithm.

A complete description is given in [3].

THE PROCESS

The input to the three-parameter algorithm consists of a data record containing M

samples of an input sinusoid measured at times t,. The solution to the curve-fit problem
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is assumed to have the form [3]:

y'n = A cos (mt,) + B sin (wt,) + C (6.1)

where @ = known angular input frequency and t, = sample times.

Although the method was derived with cosines, the algorithm is valid for all
sinusoids. The variables A, B, and C are used to solve for the three unknown parameters
of the sinusoid (amplitude, phase angle and dc offset). From the sampled data record and
the assumed closed-form solution, the total residual error of the measured data relative to
the best-fit sine is given by:

M M
£=Y [yn—Xal* =Y [ys — Acos(at,) — Bsin(wt,) — C)? (6.2)

n=1 n=1

To minimize this total error, the partial derivatives are taken with respect to each
unknown variable (A, B, and C). Then, each of the partial derivatives is set equal to zero
and the three equations are solved simultaneously for the variables of interest (A, B, and

C). The results are given below:

A
A=N (6.3)
D
where
M M M M
ZYnan—yzan ZYnﬁn"yEBn
A n=1 n=1 _ n=l n=1
N="M _M M M
Zaan_Bzan ZBn_BZBn
n=1 n=1 n=1 n=1
M ) = M M _
Yog-oaY o,  Yop-aYy By
AD'— n=1 n=1 _ n=1 n=1
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and
BN
B=— 6.4
Bp (6.4)
where
M M M M
ZYnan_yzan Zyan_YZBn
B _n=l n=1 _n=1 n=1
N=™M , - M M _M
Yor-ayo, Yo,B-aYp,
n=1 n=1 n=1 n=1
M _ M M ) - M
Zanﬁn—ﬁzan ZBn_BZBn
B _n=l n=1 n=1 n=1
D="Mm , - M ™ _ M
Zan_azan Eanﬁn_aZBn
n=1 n=1 n=1 n=1
and
C=y-Aa-Bp (6.5)

where the component terms are defined by:

o, = cos(Mt,)
By = sin(wt,)
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Substituting the variables into the curve-fit equation assumed earlier, yields the

solution in the form:
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y'n = Acos(wt,) + Bsin(wt,) + C (6.6)
Finally, the equations:

Acos = (A% +B?)1/2
B
6 =tan"! (-—
S,

will convert the solution into the more familiar form of amplitude, phase, and dc offset:

Yo = A cos (wt, +0)+C 6.7)

ALGORITHM PERFORMANCE

The Experiments

The key sensitivities used to analyze the three-parameter algorithm’s performance

arc:

e The algorithm’s accuracy for increasing levels of white noise distortion in the input

sinewave.

e The algorithm’s accuracy for incremental variations in the input frequency.

Results of the first sensitivity will reveal the accuracy of a "linear” estimation algorithm.
If the results are favorable (i.e. low estimation errors), the results of the second sensi-
tivity will determine how accurate the input frequency needs to be to utilize this algo-
rithm. This algorithm was not tested for input sinewaves with nonlinear (or harmonic)
distortion. The dominant effect of harmonic distortion is to corrupt the frequency of the
original sinewave. Since, the original sinewave’s frequency is an input to the algorithm,

this test would be trivial.
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Sensitivity to Linear Distortion

The first sensitivity was tested by adding varying levels of white noise (to simulate
quantization error from a practical ADC) to each sinusoidal test signal. To ensure a con-
sistent comparison, the tests are identical to those described for the four-parameter algo-

rithm (see Chapter V -- Linear Simulations).

Linear Results

The three-parameter algorithm yields consistent estimates even with increasing lev-
els of noise distortion in the input sinewave. Errors in amplitude estimates remained on
the order of 10~ for SNR down to 8 dB. Table B.I shows the ran ge of amplitude estima-
tion errors for all noise levels and sampling rate combinations tested. Figure B.1 plots
these errors with respect to increasing noise levels. Although there is no clear trend with
respect to sampling rate, estimation errors increase gradually with increased sinewave

distortion.

DC offset estimates with the three-parameter algorithm also show consistent accu-
racy. Once again, errors remain on the order of 107> for most input conditions (see Table
B.II). Furthermore, the maximum error for dc offset estimates is only half the error mag-
nitude of amplitude estimates. The errors grow as distortion increases (Figure B.2), but

vary independent of sampling rates.
There are no frequency estimates to evaluate because this parameter is input to the
algorithm.

Finally, phase estimates follow trends similar to the other parameters -- errors
increasing with noise distortion (Figure B.3), and relatively independent of sampling

rates. Average errors remain on the order of 107>, Table B.III lists all of the phase esti-
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mation errors from simulations.

Sensitivity to Input Frequency Variation

To test the algorithm’s sensitivity with respect to variations in the input frequency,
the initial input value is not critical. Only the relative variations about this value are
important. However, to ensure a representative characterization, variations about two
separate sinewave frequencies were tested -- one (50 Hz) from the lower end and one
(200 Hz) from the upper end of the designated range of test frequencies. Various incre-
ments of these values were added or subtracted and the result used as the input frequency
for the three-parameter algorithm. These increments ranged in factors of 10 from
+ 0.00001 to £ 0.1 of the original frequency. Table IV shows how these increments

translate into actual frequency inputs.

TABLE IV

INCREMENTAL FREQUENCY VARIATIONS

Original Frequency
200 Hz 50 Hz
Incremental || Actual Input | Actual Input

Variation f1 fr
+0.00001 200.002 50.0005
+0.0001 200.02 50.005
+0.001 200.2 50.05
+0.01 202.0 50.5
+0.1 220.0 55
-0.00001 199.998 49.9995
-0.0001 199.98 49.995
-0.001 199.8 49.95
-0.01 198 49.5
-0.1 180 45
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Each frequency input was tested with two levels of linear distortion (8 dB and 2 dB

SNR). This avoids biasing the results with one particular noise level.

Results

Tables B.IV, B.V and B.VI list the results of sensitivities to input frequency for
amplitude, dc offset and phase estimates respectively. In these tables, the first column
shows the incremental frequency variation tested. The remaining columns are grouped
into two sets -- the first shows results of variations about an original sine frequency of 50
Hz and the second, 200 Hz. Within each group, the first column lists the actual fre-
quency input to the three-parameter algorithm. The second and third columns show the
error of the particular parameter estimate assuming fixed SNR of 8 and 2 dB respec-

tively.

The results of these sensitivities show some decrease in accuracy (or increase in
estimation errors) for increasing variations about the input frequency. However, these
error differences are generally quite small (less than 1%). This indicates that the three-
parameter algorithm’s performance is not extremely sensitive to small variations in the
input frequency. What it means for this study is that the frequency estimate from the
four-parameter algorithm needs improvement, but the three-parameter algorithm can

tolerate some inaccuracy and still yield reliable estimates.

CONCLUSIONS

The accuracy of parameter estimates using a "linear” estimation technique (such as
the three-parameter algorithm) is more consistent than "nonlinear" methods manage to

achieve. However, to take advantage of this linearity, the frequency of the test sinewave
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must be input to the algorithm -- hence, it must be known in advance. For an unknown
sinusoid, it is not always possible to determine its exact frequency. However, after inves-
tigating the three-parameter algorithm’s sensitivity to variations in the input frequency, it
appears that the input frequency can vary significantly from the signal’s actual value
without serious degradation of the other three estimates. Based on this analysis, it seems
worthwhile to proceed with improving the four-parameter algorithm’s frequency esti-
mate. The improved estimate will become the required input to the three-parameter algo-
rithm to take advantage of its consistent accuracy. The following chapter presents the
development of an improved four-parameter estimation algorithm which incorporates

linear estimation formulas.



CHAPTER VII

THE PROPOSED ALGORITHM

Chapter V revealed that the basic weakness inherent to the four-parameter algorithm
is the breakdown of frequency estimates under low sampling rates and/or high noise lev-
els. Chapter VI demonstrated that more consistent parameter estimates could be obtained
with a linear technique such as the three-parameter algorithm. The disadvantage of this
method is that it requires the frequency of the test sinewave as an input. In typical test
situations with unknown sinewaves as input, this is one of the parameters we are trying to

find.

Previous simulations in this study have revealed basic characteristics of some exist-
ing techniques for parameter estimation. Armed with this information, one way to
develop an improved algorithm is to build on their best features. It would be especially
beneficial to utilize the linearity of the three-parameter algorithm by finding a way to
provide the initial frequency input. Since the existing four-parameter algorithm can esti-
mate the frequency of an unknown sinusoid, this estimate could serve as the required
input. The proposed method adopts this approach. Therefore, the first step is to improve

the four-parameter algorithm’s frequency estimate.

FILTER DESIGN AND APPLICATION

With the four-parameter method, the distorting effects of additive noise (found in

practical test signals) degraded the accuracy of the frequency estimate. One way to
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improve this estimate is to eliminate some of the distortion by filtering. Then, the four-
parameter algorithm can be applied to the filtered signal to obtain a better frequency esti-

mate.

The rype of filter needed for this purpose can be determined by taking a look at the
characteristics of the signal we want to preserve. Figure 19 shows the frequency spec-
trum of a sinusoid. Although only one is shown, the symmetrical spectrum consists of
two impulses centered at the sinewave’s fundamental frequency (fp); one on the positive
and the other on the negative axis. Since negative frequencies have no physical meaning,
it is common practice to plot only the positive half of the spectrum. This is the desired

spectrum to preserve by filtering.
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Figure 19. Frequency spectrum of the basic test sinewave.

Figure 20 shows the characteristics of some typical frequency selective filters.

Based on the shape of the sinewave spectrum, a bandpass filter seems most appropriate.
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Figure 20. Characteristics of some common frequency selective filters.

A bandpass filter is designed to pass all frequency components of the input signal within
a certain range (the passband), and eliminate all frequency components outside of this
range. This type of filter will preserve the narrow band of frequencies surrounding the

sinewave impulses while eliminating any extraneous frequency components (due to

noise) around them.

In order to design a bandpass filter, some basic parameters must be chosen. First, a
value must be selected for the center of the passband, so the shape of the bandpass filter

can be designed around this central point. Given only the data record for the original
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noisy signal, there is a way to obtain a rough estimate of the sinewave’s fundamental fre-

quency. Applying the Fast Fourier Transform (FFT) to the noisy data, yields a spectrum

similar to Figure 21.
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Although the spectrum has many components due to noise distortion, the impulse

representing the sinewave is distinct. The location of this impulse provides a rough ini-

tial frequency estimate for bandpass filter design.

To keep design computations to a minimum, a basic Butterworth bandpass filter was

chosen and simulated with MATLAB. The next step is to select values for the filter’s

order, bandwidth, and cutoff frequencies. In the following sections, the effect of each

parameter will be considered individually.

The filter’s order basically determines its shape in the frequency domain (the sharp-
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ness of its cutoff). Figures 22 and 23 show Butterworth bandpass filters of different ord-
ers which were generated with MATLAB. These figures illustrate how lower-order

filters lose the desirable sharp cutoff.
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However, using MATLAB required a compromise in the ideal filter shape. With
this software, the time required to generate a higher order filter of the desired length,
(number of points), soon became prohibitively long for the iterative simulations required.

Since the main goal is to improve the four-algorithm’s frequency estimate and not
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optimal filter design, a fourth order filter was chosen as a reasonable compromise. This
value is high enough to ensure an adequate cutoff, yet low enough to generate rapidly

with MATLAB.

Next, the bandwidth of the filter must be chosen. There are two main factors to con-
sider in this choice. Narrow bandwidths, have the advantage that more of the distorting
frequency components are outside of the passband, and therefore eliminated. However,
since frequency and time are inverse quantities, a narrow frequency domain response has
the disadvantage of causing a longer transient response in the time domain. The filtering
process imposes these transients onto the original sinewave. Eliminating this interfer-
ence requires truncating the transient samples from the data. Since a filter is applied to
reduce distortion, the process itself shouldn’t introduce unwanted components. The best
compromise is to design the bandwidth as narrow as possible, without producing exces-
sive time domain transients. In MATLAB, all filter design functions operate with "nor-
malized frequencies" so that the system sampling rate is not required as an additional
input argument. With this convention, frequencies in Hertz are normalized to half the

fsample

sampling frequency (divide by ——-2——). For consistency throughout the remaining dis-

cussion, all filter parameters are assumed to be normalized (unit-less) values.

After experimenting with several bandwidth/truncation combinations, a normalized
bandwidth of 20 was selected ( £ 10 about the sinewave’s fundamental frequency). Fig-
ures 24, 25 and 26 compare the frequency and time domain responses for a fourth order
bandpass filter with a variety of bandwidths (from £ 0.001 to = 100). The selected width
ensures that the impulses in the sinewave spectrum will fall within the filter’s passband,
even if the central frequency estimate (from the FFT) is slightly off. Figure 27 shows the

magnitude and impulse response of the final filter design.
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Eliminating filtering transients generated with the chosen bandwidth requires trun-
cating roughly 100 sample points from each end of the filtered waveform to avoid cor-
rupting the data. However, over 80% of the original data is preserved, with much less
distortion present. Figure 28 compares the frequency spectrums of: the original (noisy)
test sinewave, the signal after filtering, and after truncating filter transients. Filtering
eliminates unwanted frequency components due to distortion and truncation eliminates

any remaining sidelobes to produce the final smooth spectrum.

THE PROCESS

After designing the bandpass filter, the next step is to apply it to eliminate some dis-
tortion from the original test signal. Using the filtered signal as input to the four-

parameter estimation algorithm, yields an improved estimate of the original sinewave’s
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frequency. This value, together with the original (noisy) data record, are input to the
three-parameter algorithm and values for the three remaining sinewave parameters

(amplitude, dc offset, and phase), are computed.

This completes the description of the proposed algorithm. Figure 29 illustrates the
process with a flowchart. The following section documents the results of simulations

with this method.

SIMULATIONS

To compare the performance of the proposed algorithm with Jenq’s existing four-
parameter method, the previous sensitivities were repeated with the new method.
e Performance with respect to increasing levels of "linear" distortion
e Performance with respect to increasing levels of "nonlinear" distortion
Chapter V discussed how these simulations were performed and presented the results for
the four-parameter algorithm. The following sections present corresponding results for

the proposed method. Chapter VIII will compare their performance.

Linear Simulations

The first sensitivity was tested by applying the proposed algorithm to sinewaves
with varying levels of uniformly distributed random noise added (to represent linear dis-
tortion). There is one difference between these simulations and those testing the four-
parameter algorithm. Due to the filtering step in the proposed algorithm, input sinewaves
with frequencies of either 10 or 5 Hz were not tested. The chosen bandpass filter design
(bandwidth = 20) is too wide to filter sinewaves with these fundamental frequencies.
Adequate data is provided by the other simulations to characterize the proposed

algorithm’s performance without testing sinewaves of these particular frequencies.
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Furthermore, altering the filter design for these two cases would result in larger time-

domain transients and inconsistent comparisons with results of previously filtered

waveforms.

Linear Results

Amplitude estimates with the proposed algorithm remain fairly consistent over the
range of noise level/sampling rate combinations tested. Average errors were on the order
of 1073, Table C.I lists the resulting errors from each simulation. Estimation errors
increase gradually with rising noise levels (Figure C.1), but show no distinct trend with
respect to varying sampling rates (Figure C.2).

DC offset estimates show even greater precision. Errors remain on the order of 1073
or lower throughout the simulations (Table C.II). Estimation errors vary independently of
sampling rates (Figure C.4) and increase even more gradually than those of amplitude

estimates, as noise levels rise (Figure C.3).

Frequency estimates obtained with the proposed algorithm show significant
improvement from using a linear technique. Average estimation errors remained on the
order of 1073, increasing only gradually for either increased sampling rates (Figures C.6)

or noise levels (Figure C.5). Table C.III lists average error values.

Phase estimates still show some inconsistency in performance. Average errors
(Table C.IV) ranged from magnitudes of 107! to 10° and showed rather erratic trends
with respect to increasing sampling rates (Figure C.8) or noise levels (Figure C.7). This
behavior for the proposed algorithm could be expected since trends are similar to those

observed for the three-parameter method.
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Nonlinear Simulations

Next, the proposed algorithm is applied to sinewaves with varying levels of second
or third harmonics added. - The added harmonics represent nonlinear distortion (or non-
linear error) often present in practical test signals generated by an ADC. This will test

the proposed method’s sensitivity to nonlinear distortion present in the input test signal.

Nonlinear Results

Amplitude estimates for sinewaves with nonlinear distortion were very accurate,
with average errors between 1077 and 107. Table C.V shows the complete listing of
simulation results. Errors remained fairly consistent until harmonic levels exceeded
about 5 dB SNR, then gradually increased. Amplitude estimates decreased in accuracy
with lower frequency input sinewaves. Reducing the frequency by one quarter of the
previous value increased average errors by a factor of 10. Figure C.9 plots the results of

each simulation.

DC offset estimates show similar accuracy. Average errors gradually rise from 107
(for harmonic levels of 20 dB SNR or less) to 10~ (above 20 dB). Table C.VI lists these
values. Errors show a definite increase with harmonic levels, but no distinct trends with

respect to input sinewave frequencies (Figure C.IO);

Frequency estimates are affected by both harmonic levels and test signal frequen-
cies. Average errors are on the order of 1072 for an input sine frequency of 25 Hz, 107
for 100 Hz frequency, and 10~ for 400 Hz. Table C.VII shows these values. Frequency
estimations errors increase gradually with higher levels of nonlinear distortion in the

input sinewave. Figure C.11 graphs the simulation results.
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Phase estimates remain fairly consistent, with errors on the order of 1073 (Table
C.VIII). Errors increase slightly with higher harmonic levels, but have no apparent rela-

tion to the frequency of the input sine. Figure C.12 plots these results.

In most cases, distortion from the second harmonic causes slightly larger estimation
errors in cases where: the second harmonic amplitude is large, or the frequency of the

input sinewave is high.

CONCLUSIONS

The proposed algorithm attempfs to combine the best features of the existing three
and four-parameter methods with an additional filtering step to develop an improved
technique for estimating all four parameters of an unknown digitized sinewave. The
result is an algorithm which produces consistent estimates even for sinewaves corrupted
by linear or nonlinear types of distortion. With the proposed method, estimation errors
are quite low (suitable for effective bits measurement) and do not exhibit the extreme

sensitivity to system sampling rate that the existing four-parameter method does.



CHAPTER VIII

COMPARISON OF ALGORITHMS

Each of the three preceding chapters focused on the performance of a specific algo-
rithm for sinewave parameter estimation. After gathering data from many simulations
and averaging the results, it is possible to compare the performance of the previous and
proposed four-parameter algorithms empirically. This chapter presents a quantitative

comparison with particular emphasis on the following issues:

(1) The improvement in performance of the proposed algorithm over the previous

four-parameter method.

(2) How closely the accuracy of the proposed algorithm approaches the reference

performance of the three-parameter algorithm.

This comparison is organized as follows. First, the performance of the existing and
proposed four-parameter algorithms will be compared for input sinewaves corrupted by
linear distortion (to evaluate issues (1) and (2)). Then, the same analysis will be repeated

with nonlinear distortion present in the input sinewaves (to further evaluate issue (1)).

LINEAR DISTORTION

As described in Chapter IV (Methodology), each algorithm was simulated using an
input sinewave with varying levels of uniformly distributed white noise added. The
added distortion represents quantization errors which are inevitably introduced into the

original sinusoid during the process of generating a digital data record.
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COMPARISONS

The proposed algorithm performed consistently better than the existing four-
parameter method for sinewave amplitude estimates. Figure 30 shows that errors are
lower with the proposed method at all noise levels. On average, errors are reduced by a
full factor of 10 from the previous method. This accuracy approaches the three-
parameter algorithm’s performance (which represents the maximum expected from

improved frequency estimates).

For estimates of dc offset, the proposed algorithm again displays lower errors
overall. Figure 31 illustrates this comparison. In this case, the improvement is on the
order of 0.01 and average errors are nearly at the level achieved by the three-parameter
method. In fact, for noise levels below 12 dB SNR, estimates with the proposed method

are slightly more accurate (differences on the order of 1073).

Frequency estimates exhibit mixed results. As Figure 32 shows, the existing four-
parameter algorithm shows greater accuracy (lower errors) for distortion levels below
about 6 dB SNR. However, there is a crossover around that point, and as distortion lev-
els increase, the existing algorithm begins to break down while the proposed method’s

errors remain consistently lower (differences up to 104).

Figure 33 compares phase estimation errors for all of the algorithms. Again the
results are mixed. At low distortion levels, the existing four-parameter method exhibits
lower errors. However, this algorithm eventually breaks down as noise levels exceed 4
dB, while the proposed method maintains its initial accuracy (an improvement up to two

factors of 10 over the existing method).
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NONLINEAR DISTORTION

In addition to analyzing each algorithm’s performance in the presence of linear dis-
tortion, similar tests were also run assuming the test signals were corrupted by various
levels of nonlinear distortion (represented by harmonics of the input sinewave). These
simulations model the second major type of distortion that may occur to signals pro-
cessed by practical ADCs. Because the principal distorting effect of harmonics comes
from their frequency component, this type of distortion is not a meaningful test to charac-
terize the performance of the three-parameter algorithm -- since the signal’s true fre-
quency is an input to the algorithm. Therefore, in the following discussion, only results

from the four-parameter and proposed algorithms will be compared.

COMPARISONS

Beginning with amplitude estimates, the proposed algorithm exhibits lower errors at
every noise level tested. Figure 34 illustrates this comparison. Average errors with the
proposed method are on the order of 1077 t0 1073; an improvement up to four factors of

10 over the existing four-parameter algorithm.

For dc offset estimates, the existing four-parameter algorithm maintains an edge
over the proposed method. As Figure 35 reveals, the existing algorithm produces lower
errors at all noise levels tested, but both algorithms exhibit relatively low errors overall
(magnitudes of 107 for the proposed method and 107! for the existing). The difference
is caused by the filtering stage in the proposed method. Since the existing four-
parameter algorithm does not impose filter transfer functions on the input signal, and har-
monics with zero dc offset offer no corruption, extremely accurate dc offset estimates are

achieved.
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Frequency estimates follow a pattern similar to results from linear sensitivities. For
nonlinear distortion below about 6 dB SNR, Figure 36 reveals that the existing and pro-
posed four-parameter algorithms have similar accuracy (the maximum error difference
being 0.0004 or less). At higher distortion levels (above 6 dB SNR), estimates with the
existing four-parameter method deteriorate rapidly. The proposed algorithm does not

break down at these levels and errors are on the order of 10~ to 107 lower.

The proposed method’s phase performance shows improvement over the existing
four-parameter algorithm at all distortion levels (see Figure 37). Phase estimation errors
from the proposed algorithm are consistently lower (on average by 1073) than those from

the existing method.

WRAPPING UP

This chapter was devoted to a relatively detailed "quantitative" comparison of the
various algorithms’ accuracy. The following chapter "qualitatively" summarizes this

study’s basic findings and suggests some topics for future research in this area.
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CHAPTER IX

CONCLUSIONS

This study’s main objective was to develop an improved algorithm for sinewave
parameter estimation. The general process starts with a finite record of digitized data
(obtained by sampling an unknown sinewave) and determines from it, the four parame-
ters of the original analog signal -- amplitude, dc offset, frequency and phase angle. To
accomplish this for the ideal case (where the input signal is a pure sinewave) is not easy,
but the problem becomes even more complicated for practical applications in a noisy

environment.

The sampling process (used to acquire the data record), is usually performed by an
ADC. This device can introduce several types of distortion (errors) into the input signal
depending on the way its transfer function deviates from the ideal 45 degree linear
characteristic. The various types of distortion which may be present in the output of the
ADC may be roughly divided into two categories (linear and nonlinear), and represented
by an additive noise source. A good parameter estimation algorithm should produce

accurate results even when the sinewave being analyzed suffers from some distortion.

Several approaches to the parameter estimation problem have been developed.
Traditional methods used an iterative sinewave curve-fit process. These algorithms
required accurate initial guesses to ensure convergence. A more recent approach applies
a non-iterative, nonlinear technique which is quite accurate for low noise levels and rela-

tively coarse (low) sampling rates. However, this method’s estimates of sinewave fre-
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quency (and associated phase angle) deteriorate rapidly in the presence of high distortion
levels and/or sampling rates. An existing linear algorithm for parameter estimation
avoids this problem, but requires advance knowledge of the sinewave’s frequency for
one of its inputs. The proposed algorithm attempts to combine the best features of the
latter two techniques into a full four-parameter estimator. The new method is non-
iterative, which eliminates difficulties in convergence and maintains a more consistent

level of accuracy for increasing distortion in the input sinewave.

The proposed algorithm’s process can be summarized as follows. The initial input
is a finite record of digitized data obtained by sampling a practical sinewave (typically
generated by an ADC). After this processing, the original data may be corrupted by \}ari-
ous levels of linear or nonlinear distortion. Next, the discrete Fourier transform of the
data is computed (via the FFT), which yields a rough estimate of the original sinewave’s
fundamental frequency. This value is used as the center of the passband for designing a
Butterworth bandpass filter. Then, the noisy data is bandpass filtered to eliminate some
of the distortion. The four-parameter algorithm is applied to the filtered data and yields
an improved estimate of the sinewave’s frequency. Finally, this value, together with the
original data record, are input to the three-parameter algorithm which computes the

remaining sinewave parameters.

SUMMARY OF RESULTS

For sinewaves distorted with linear noise, the proposed algorithm’s performance
shows consistent improvement over the existing four-parameter method. Amplitude and
dc offset estimates from the proposed algorithm exhibit lower errors at all noise levels.

Frequency and phase estimates with the proposed algorithm are as accurate as the exist-
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ing four-parameter method at low levels of distortion, and show significant improvement
at higher levels.

When the sinewave distortion is nonlinear, the proposed algorithm continues to
yield improved results. Amplitude and phase estimates are more accurate than the previ-
ous method at all distortion levels. While both algorithms provide adequate dc offset esti-
mates, the existing four-parameter algorithm is more accurate. This is not surprising,
since the filtering process involved in the proposed algorithm introduces distorting com-
ponents into the sinewave which are not imposed by the nonlinear method. Frequency
estimates with the proposed algorithm show distinct improvement over the existing

method for increasing levels of distortion.

These results verify the improvement achieved by the proposed method over the
existing four-parameter estimator. For several parameters, the estimation errors are
lower with the proposed method at every noise level tested. For others, the improvement
becomes evident at higher levels of distortion where the proposed method displays more
consistent estimation accuracy. For input combinations where the existing estimation
algorithm displayed a sudden breakdown in accuracy, the proposed algorithm not only
produced reliable estimates over a broader range of test inputs, but also achieved a more

gradual decline in accuracy at the limits of its useful range.

From these simulation results, it is possible to determine whether the proposed
method’s performance is adequate for real test situations. For practical applications, such
as testing the effective bits of an ADC, the principal source of noise distortion comes
from the digitizer. As a general rule, the output quality of an ADC (expressed as a
signal-to-noise ratio) increases by approximately 6 dB for each additional bit of resolu-

tion. According to this rough guide, the resolution expected from an ADC can vary from
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a minimum of 6 dB (for é 1-bit ADC), to 72 dB or better (for ADCs with 12 or more
bits). Typical estimation errors from the proposed algorithm remain on the order of
10'3 (or 60 dB SNR) throughout the range of distortion levels tested (30 to 0 dB SNR).
This degree of accuracy (similar to a 10-bit ADC), sﬁggests that the new technique can
be applied to test a range of practical ADCs by ensuring that estimation errors will not

mask the digitizer’s inherent performance characteristics.

TOPICS FOR FURTHER STUDY

The proposed algorithm attempts to improve parameter estimates by utilizing linear
computations (avoiding the inaccuracies of nonlinear methods). In order to do this,
bandpass filtering is used to improve the frequency estimate of the four-parameter algo-
rithm to provide an input to the linear three-parameter method. Although this approach
proved quite successful, there are some additional possibilities for improvement which

were not investigated in this study.

) Enhancing the phase unwrapping process to use more pointers into the sampled
data (possibly 5 instead of 3). This would help identify more precisely which por-
tion of the sinewave cycle the data point is from, to ensure the correct arcsine for-
mula is applied for unwrapping. Using more points to specify location would also
decrease the chance of errors from trapping at a local extreme point (introduced by

the noise). This could reduce estimation errors resulting from high sampling rates.

° Experimenting with different filter types to find the optimal combination of filter

type, order, and bandwidth for the most effective elimination of distortion.

. Completely characterizing the method proposed in this study (i.e. more trials to

test each sensitivity) and possibly improving its performance when high levels of
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nonlinear distortion (harmonics) are present in the input test signal.
° Determining an effective method to handle statistical "outliers,” or data points
which fall outside the normal range of input values for the estimation algorithm.
In practical situations, noise sources are not as well-controlled as assumed for the
simulations. Individual samples with an unusually high level of noise could

severely distort the estimates unless handled appropriately by the algorithm.

° Deriving closed form statistical equations to predict the estimation errors (for each

parameter) from the proposed algorithm.

Each of these items could furnish topics for further study in the area of sinewave parame-

ter estimation.
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APPENDIX A

FOUR-PARAMETER ALGORITHM PERFORMANCE



TABLE A1

AMPLITUDE ESTIMATION ERRORS : LINEAR DISTORTION

NOISE NOISE SAMF/CYC
Fi—-Fl NSR-dE S.1Z 10,24 20.48 40.9& 10Z2.4
200 100 SO 295 10
0.1 -24q.,x 0.00167% 0.001865 0.00Z27& 0.001370 O.001989
0.2 -18. 0.003023 0.006278 Q.00578% 0.004875% O.002927
G.4 =12.22 0.0100Z27 0.013174 0.01T436 0.012705 O, 010967
.6 =8.70 0.037&454 0.028283 0.0344448 0.018956 0.0IT7585
0.8 =&.20 0.058057 00050906 0.061417 0. 060568 O.046817
1.0 —4.246 0.089497 0.092479 0,072409 0.076829 O.0655L5

1.5 =0.74 0,168717 0.179512 0.172894 0.1650%& 0.197578
2.0 1.76 0.284071 0.290741 ©O.258931 0.282813 0.795897

TABLE A.Il

DC OFFSET ESTIMATION ERRORS : LINEAR DISTORTION

NCOICE NOISE SAMF/CYC
Fr-Fk NSR~dE .12 10,24 20.48 40,96 102.4
200 100 S0 25 10
0.1 =24.26 1.22E-0F 1.35E-03 1.83E-03 B.49E-04 1.,28E-0Z
0.2 =18.24 0.003187 0.003179 0.002879 0.002439 O.00Z047%
Q.4 —-12,22 0.005789 0.004916 0.00315& 0. 006214 O, 00IQ2S
0.6 -B8.70 0.005981 0.005245 0.004155 0.009061 0.009999
0.8 =6.20 0,.006965 0.01274 0,006797 0.009458 0.011007
O ~4.26 0.008B8Z 0.016121 0.009514 0.009720 0, 016&690
1.5 —0.74 0.012971 0,017133 0.017224 0.0180469 O.020827
2.0 1.76 0.01752%2 0.017484 0.026976 0.0268446 O.03Z139

204.¢

0.002425
O, O &1
O.015357
0. 025260
0.051409
0.098452

0. 168204
0.287548

204.8

o

8. 048E-04
Q, 001601
Q, QOLT6E
0.008031
O.009=74
G, 0147285
0.0237528

0. 028275
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TABLE A.III

FREQUENCY ESTIMATION ERRORS : LINEAR DISTORTION

NOISE NOISE SAMF/CYC
FL—-Fk NER-dE S 10.24 Z20.48 40,956 102.4 Z204.8

200 100 S0 25 10 ]
0.1 —24.26 D.000258 0.000577 0.001280 0,.00Z2100 ¢.01019Z 0.341787

0.2 -18.24 n.uoo“un G.001078 0.004248 O.011432 O,.9566693 19,28833

0.4 —1Z.2% O. O.001360 O.004716& O. u:?é. . 26522 122038

0.4 -8.70 0. nul‘ 0. 002965 0.0125586 2. 1880 104.0710 211,8960
0.8 —&.20 0.0026 0. 006046 O.094688 ”4 207 121.0387 312.2141
1.0 —4.25 0.009027 O0,011213 24 8968 180.44460 440,.2042
1.5 =C0.74 G.O0S9ZE8 0.018252 10.75154 L1073 7RG T7EE2
2.0 1.76 1.49 71202 Z8.43784 I.1292 1048.981

TABLE A.IV

PHASE ESTIMATION ERRORS : LINEAR DISTORTION

NOICE NOISE SAMF/CYC
Fl—-F NSR-dE o 10,24 20.48 40,94
z 100 S0 25
Q.1 —-24.26 0.098377 0.12474% 0.14619046 O 1“1944
0.2 —18.24 0.172661 0,187510 O.IZ995460

Q.4 =12.22 0.228545 0.445847 O.44679% 1.

204.8

2. 352660
149.5141
é 417197 Z84.26%96

O.& =-8.70 0.544429 0.488016 37. 129.4184 453.27&6
0.8 —46.20 1.289828 0.813523 1.100384 128.6215 255.5338 S08.363
1.0 ~4.26 2.225773 1.418073 109. 1053 361.0451 Z08.6359 S59Z.9817
1.5 —0.74 Z.93I8592 87.46211 271.225 I9Z IQT.0224 593.9628
2.0 1.76 172.9296 Z72.9335 402.7372 S18.6275 S25.5458 621.6347



TABLE AV
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AMPLITUDE ESTIMATION ERRORS : NONLINEAR DISTORTION

HARMONIC HARMONIC

Fl-fFk

HSR-dE

s 25
th = &0

282
446859
Q. 422400
0. 5597486
LS}
L 7SE585
L 197534
670169

FS = o=
) 25
fh ]

TABLE A.VI

FRECGUENCY
FS

100

200

oA
ot iad

Q.L26782

Q. 7SLLDE

FE = 400 F
fh = 200 f
Q, 009270 O

(9]

1245. 452

411.46644

AL O o I P |

S = 400
h = 1200
. 117547

DC OFFSET ESTIMATION ERRORS : NONLINEAR DISTORTION

HARMORN
Fk—Fl

Ic

HARMOGNIC
HER-dR

=26.02
—20.00
-17.98
-10.44
-7.96
—-6.02
=2.50

Q.00

FS = 25
fh = S50

G. 002933
0.005440
0, 009440
Q.012320
0.014040
0.016720
100.1110
92.9982

FS 25

fh 75

0. 000880
Q. 002680
0.008400
Q. 018400
0.027420
0.032040
O.041040
0.0448760

FS = 100
fh = 200
0. ¢ 3110
0.000190
0 1280

0.000450
Q. 000710
0O.001020
99.9992
?9.99837

FREGQUENC
FE = 100
fh = Z00

QL. 0000S0
O.000170
Q. QOOZZC
Q. 000520

ktrle

0. 000680
Q. 000200
O.Q01700

Q.002100

Y
FS = 400
fh = 800

QL. 000000
Q. 000025
0.957925
15.261032
29.91667
I6.56061
47.8949%

46,1467

FS = 400
fh = 1200

24, 00470
55.99994
S6.00029
S6.00010
S6.00010



TABLE A.VII

FREQUENCY ESTIMATION ERRORS : NONLINEAR DISTORTION

HARMONIC
Fl—Fl

0.1
0.2
0.4
0.&
0.8
1.6
1.5

2.0

HARMONIC
Fl—Fk

HARMONIC
HSR-dE

—-2&6.02
—20.00
-1Z.9

-10.44
-7.9&
—-6.02
-2, 850

Q.00

HARMONIC
HSR~dE

—26.02
~20.,00
-1Z%.98
-10.44
-7.96
—-5.02
—-2.30

0. 00

~e
L

Jm

= 50
.0BE-14
.S7E~-14
25E-14
25E-14
64E-14
-0O9E-14
S.34E-14
S.15E-14

TR ONE -+

FS = 25
fh = 50

0.001249
0.004988
0.019804
0.044071
0.077033
0.1180324
0. 250000
0.41421

Ao
Lt

FS

fh = 75
9.2E-15

2.17E-14
Z.0SE-14
6.05E-14
1.06E~1%
S5.95E-14
7.08E-14
4.82E-14

FREQUENCY
FSs 100
fh 200
1.17E-14
5.93E-15
1.14E-14
1.82E-14
1.9SE-14
1.88E-14
1.56E-14

FS 100
fh Z00
8.91E-15

2E-14
1.71E-14
1.876~-14
1.55E~-14
?.6ZE-1S
2E-14

el
Fan

Fs 400
fh 800
4.37E-15
4.22E-1S
S.99E-15
6.53E-15
S.24E-15
7.43E-15

€.99E-15

1.25E-14 1.81E-14 B.99E-15

TABLE A.VIII

FS = 25
th = 75

Q.001249
Q.004988
0.019804
0.04407=1
0.0770:
0.118034
Q. 250000

0.4147214

FS 100
fh 200
0.001249
0.0049388
0.019804
0.044071
0.077¢

Q. 25(:) (:)(:) Q
0.414214

FS = 100
fh = 200

0.001249
0.004988
0.019804
0.044071

. 0.0770%%

0.1180%4
Q. 250000
0.414214

FS = 400
fh 800
0.001249
. 004988
0.019804
Q. 0440731
O,.0770
0.1180Z4
0. 250000

0.414214

FS = 409
fh = 1200

I.27E-1S
4.29E~-15S
I.1E-15
8.47E-15S
5.98E~15
S.8B4E-15
1£-14

.2E-1S

PHASE ESTIMATION ERRORS : NONLINEAR DISTORTION

FS = 400
fh = 1200

0.001249
0.004938
0.019804
0.0440731
Q.0770:
0.1180Z=4
Q. 250000
0.414214
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AMPLITUDE PERFORMANCE (4—PAR)

A=1, DC=0, PHASE=0

AMPLITUDE ERROR
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Figure A.1. Plot of amplitude estimation errors for increasing linear distortion.
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A=1, DC=0, PHASE=0
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Figure A.2. Plot of dc offset estimation errors for increasing linear distortion.
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FREQUENCY PERFORMANCE (4—PAR)
A=1, DC=0, PHASE=0
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Figure A.3. Plot of frequency estimation errors for increasing linear distortion.
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FPEQUENCY PERFORMANCE (4—PAR)
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Figure A.4. Plot of frequency estimation errors for increasing sampling rate:
(a) low and (b) higher noise levels.
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PHASE ERROR
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Figure A.5. Plot of phase estimation errors for increasing linear distortion.
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Figure A.6. Plot of amplitude estimation errors for increasing nonlinear distortion.
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Figure A.8. Plot of frequency estimation errors for increasing nonlinear distortion.
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Figure A.9. Plot of phase estimation errors for increasing nonlinear distortion.
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THREE-PARAMETER ALGORITHM PERFORMANCE
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TABLE B.I
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AMPLITUDE ESTIMATION ERRORS : LINEAR DISTORTION

Fh-F

NOIGE
Fh—Fi

[ |
0,2
0.4
0. &
0.8

—

1.5
.0

NOISE
NSR-dE

-24.25

-18.74

~0.74
1.76

S.12

200
0.001142
Q.001226
O, 004170
O.002800
G.007318
0.0101ZS
0.016%74
0.01839

10,24
100
0.00125
0.002566
0.004984
0.006129
O.006019
0.012248
0.018500
0. 027004

SAMF/CYC
20.48

o0

Q. 00091
OD.001704
0,004298
0.005458
0.006941
0.008476
0. 013670

0.0242273

TABLE B.II

40,94
25
Q.001147%
0.00245
0.002824
0.00894%
0.007941
0.01328S
0.017019
0.03477S

102.4

10
0.001267=
O.001721
0.00%2478
0.Q06487
0.004782
Q.007015
0.019140
0.009Z7&

204.8

=
.

0.001282
G.0018%7
O, 005220
0.004628
0.009915
0.01152

0.024558

0.018417

DC OFFSET ESTIMATION ERRORS : LINEAR DISTORTION

RN OIS S B

Q.

(%)

0.4
O, &
=4

1

-
<

NOISE
NER-dE

~24.26
-18.24
-12.22

-8.70

S.1z

200
0.000762
0.0018734
0.002608
0.004251
0.006796
0. 008007%
0.009915
0.011424

10.24
100
0.000979
0.001740
0.002917
0.001825
0.006944
0.,007141
0.0144688
0.0117=4

SAMF/CYC
20,48
S0
Q. 000304
0.001524
0.0032922
0.001822
Q. 006940
0.0071327
0. 00455
0011730

TABLE B.III

40.9&

~e
P

Q.00 (:)868
0,002458
0.001697
0. 006545
0.00398%
0.0089s7
0.013202%
0.016620

102.4

1G

Q. 0007173

0,001427

0. 002780
Q.

O, 003123

0.004860

G.01070Z

0.015514

PHASE ESTIMATION ERRORS : LINEAR DISTORTION

NOISE
NER-dE

-24.26
-18.24
~-12.22
-8.70
~4, 2
-4,286
0.7

1.7&

W]

S.12

200
0.000674
0.002867%
0,004707
O, 004201
G.004497
0.006721
0.010191

Q.020383

10.24
100
0,001044
0.001517
Q.0056095
0.007330
Q. 008974
0.012888
0.0184%94

0.023245

SAMF/CYC
20.48

S0
Q.000705
0.001411
0. 003323

25
(@]

Is)
0.010747
0.0076805

0.0132648

40.96

Ao
P

Q.0008486%
0.00153

0,003

59
0.012991
0.024115

102.4

10
0.001262
0.002758

2 0.00574=

0. 008409
0.014509
0. 00585

0.014669
0.010699

04,8
S
Q. 0005R7
0.000441
0.0018687
0,003928
zgoe
Q. CO2E80
0. 008801
0.014564

204.8

=

Q. 000440
0.003248
0. 003833
0. 006336
0.006844
0.012781
0.0132888

0. 035851




104

TABLE B.IV

SENSITIVITY OF AMPLITUDE ESTIMATES TO INPUT FREQUENCY VARIATION

FREQUENCY )
CHANGE ACTUAL FS = Z00O FS = Z00 ACTUAL FS = &0 FS = 50
N=0.5% p-pN=1.0 p-p N=0.5 p-pN=1.0 p-p
+VE
1E-0S 200.0020 0.003Z717 0.010476 S0. 0005 0,.0053735 0.0121
0.0001 200.0200 0.00426% C.005725 50,0030 0,.004582 0,010811
0,001 DO, 2000 0,003510 06,0154648 50,0500 6,004425 0.009560
0.01 Z0OZ.0000 0O.0054G7 0.01288% SO.5000 0,003560 0.0076=1
0.1 220.0000 0,003412 0,0095086 55. 0000 O, 00588685 0,010692
- \Yl E
—-1E-0S 199.9980 0.0028%98 G.013544 49,9995 G.004249 0.015492
=-0.0001 1992.9800 O.00Z6&1 0.014457 49,9950 0,007703 0.0120¢8
~0.001 199.8000 0,0074546 0,01062 49.9500 0,002415 0,01382
—-0.01 198.0000 O,00&6573 0.008792 49,5000 O,D0ZS03 0,00903%
~0.1 180.0000 O,005109 0.010429 45,0000 O,0056288 0,0120146

TABLE B.V

SENSITIVITY OF DC OFFSET ESTIMATES TO INPUT FREQUENCY VARIATION

FREQUENCY
CHANGE ACTUAL FE = 200 FS = 200 ACTUAL FS = 50 FS = 50
N=0.5 p-pN=1.0 p-p N=0.5 p-pN=1.0 p-p
+VE
1E-03 200.0020 0. 005327 S0.0005 0, 004903 0. 005865

0. 0001
Q.001

ZOO. 0200

200, 2000

0.008971
0.00497

S0. 0050
S0, 0500

0.001519
0.004335

Q. 009805

0.01 202.0000 0.004901 0,010907 S50.5000 0.003I577 0.008656
0.1 220.0000 0.001521 0. 004226 55.0000 0,002937 0,007137

-VE
-1E-0S 199.9980 O. O047=ZI8 0. 006953 49,9995 O.003569 0.012798
—0.0001 1992.9800 0, 00ZSL8 0, OOSOS 47.9950 0.006149 G, 005865

=0.001 199.8000 0,002932 0, 009804 49,9500 0,005454 O.012296
—0.01 198.0000 0,006151 0.00Z0ZT 49,5000 G.O002504 0O.004274
—0.1 180G.0000 O.002117 G, 008693 45,0000 0,004482 0.0109
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TABLE B.VI
SENSITIVITY OF PHASE ESTIMATES TO INPUT FREQUENCY VARIATIONS

FREQUENCY
CHANGE  ACTUAL  FS = 200 FS = 200 ACTUAL  FS = S0 FS = 50
N=0.5 p-gN=1.0 p-p N=0.S p-pN=1.0 p-p
+VE

1E-05 0.004612 0,009990 S0.000% O0,0048152 0.004814
Q. 0001 0. 003241 C,004542 SO.0050 0,007454 O.008744
0.0061 G.007928 0.005752 SO.0S00 0.00T517 0.004254
0.01 O, 00ZZ57 0.010413 S0.S000 0.0044679 0.011582
Q.1 O, QOZSSE 0.009045 55,0000 Q.0045348 O0.CQ10470

-VE

—1E~05 199.9980 0. 003587 0.0153I29 49.9923 0,005 G, 00899
=0.0001 199.9800 0.001294 O.013773 49,9950 0.004574 O, OCLIOE
—0.001 199.8000 O.004889 0,008571 49,9500 0.007428 0,01098

=0.01 198.0000 O,004447 0.013553 49,5000 0,.006763 0. 009978

=0.1 180.0000 0.00595 G.012921 45,0000 O, 002571 0.0104462
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AMPLITUDE ERROR

AMPLITUDE PERFORMANCE (3—PAR)
A=1, DC=0, PHASE=0

0.0 :

5 =

: F= . ™
0.03 - : 200 Hz (5.12/~)

: —p—

§ F=100 Hz (10.24/~)
0.025 ; e

F=50 Hz (20.48/~)
0.02 " 7 AN -

F=25 Hz (40.96 /~)
0.015 : > '

F=10 Hz (102.4/~)
0.01 = A —A—

% F=5 Hz (204.8/~)
0.005

0 :

i 3 : ;
-25 =20 -15 -—10 -5 0
NOISE /SIGNAL RATIO (dB)

th

Figure B.1. Plot of amplitude estimation errors for increasing linear distortion.
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DC OFFSET ERROR

DC

OFFSET PERFORMANCE

0 07

(S—PAR)I
_A=1. DC=0, PHASE=D

0.016

0.014

()
o
N

o
o
o
(2]

0.004

0.002 A

——
F=200 Hz (5.12/w~)
—f—
F=100 Hz (10.24/~)
—¥—
F=50 Hz (20.48/~)
——
F=25 Hz (40.96/~)
._*_
F=10 Hz (102.4/~)
—ah—
F= 5 Hz-(204.8/~)

NOISE /SIGNAL RATIO (dB)

Figure B.2. Plot of dc offset estimation errors for increasing linear distortion.
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PHASE ERROR

PHASE PERFORMANCE (3 —PAR)
A=1, DC=0, PHASE=D

0.04
~
0.035 F=200 Hz { 5.12/~)
——
0.03 F= 50 Hz { 20.48/~)
—=—
0.025 F= 25 Hz ( 40.96 /~)
0.02 F= 10 Hz (102.4/~ )
e : : : / -
0.015 g - F= 5 Hz (204.8/~ )
: : : '/ \,[k : 4
0.01 o Xéy /%
A 73
0+ r — T : :
-25 =20 -15 -10 -5 0 5

NOISE /SIGNAL RATIO {dB)

Figure B.3. Plot of phase estimation errors for increasing linear distortion.



APPENDIX C

PROPOSED (NEW) ALGORITHM PERFORMANCE



AMPLITUDE ESTIMATION ERRORS : LINEAR DISTORTION

NOISE

Flk-Fk

DC OFFSET ESTIMATION ERRORS : LINEAR DISTORTION

NOISE
FL-Fk

0.1

0.2
0.4
O.&
0.8
1.0

1.5

A
P

0.1
0.2
.4
0. &
0.8
1.0
1.3

2.0

NOISE
NER-dE

=24, 26
-18.24
—-12.22
=8.70

=&, 20

-4.26

-0.74

1.76

NCOISE
NSR-dE

-24.26
-18.24

-12.22

-8.70
-6.20
-4.26
-0.74

1.76

TABLE C.1

5.12

200
0.001852
0.002672S
Q. 004027
0.0059%4
0.006887
0D.009401
0.01447¢&
O.0GI0058

10,24
100
O.001093
0.002074
Q. i:':(:)4046
G, 008769
0.0104731
0.010972
0.018461

O, 0203786

TABLE C.II

S.12

200
Z.0SE-04
0.001671
0.004271
Q. 002Z220=
Q. 00525
Q.007616
0.00819%

0.024258

10.24
100
7.62E-04
0.000882
0,004126
0.004525
0. 006095
0.007618
0.0144694
0. 006081

SAMF/CYC
20.48

SO
0.001075
0, 0017320
0. 008%79
0, 007202
0, 0099072
Q.012789

0.023755

SAMF/CYC
20.48

S0
?.81E-04
0.001735
0.,00285%5
0.003519
0.004270
0.00983E9
0.009908
0.01636

40,96

25
Q,.001048
0.002578
Q. 003175
O, 006854
0.010212
0.010488
OrO1211S

0.0228467

40,96

25
Z.03ZE-04
QO.001793
Q.002132
0.004277
0.005052
0.005562
0.005842
0.009722

110



FREQUENCY ESTIMATION ERRORS : LINEAR DISTORTION

NOISE
Fi—PFPk

0.
0.
Q.
Q.
Q.
1.
1.

-

1
2
4
&
e
Q

(@)

NOISE
NER—-dE

-24.26
-18.24
-12.22
-8.70
—&. 20
4,26
-0.74

1.7&6

TABLE C.III

.12
200

YOZT7S7

Q.

O
]

Q. 0038
0.00Z9354
O. 00409
Q.005859
Q.00592%

Q,008074

10.24
100

0. 000805
0.000814
0.003284
O, 005084
0, 006204
0.007748
0.012398
0. 0204667

TABLE C.IV

SAMF/CYC
20.48

S0

0. 002385
0.002894
0.004192
0.006948
0. 0GO8ISA
0.010718
0.026887

0. 027305

40.,.9&

25

0, 009562
0.0121867
0.017837
0.0284272
Q. 028675
0.0867389
0.074778

PHASE ESTIMATION ERRORS : LINEAR DISTORTION

NOISE
Flk—Fk

0.1

QO
0.4
O, &
o.g
1.0

1.5

P

2.0

NOISE
NSER-dE

-18.24

—12.027

-8.70
—6.20
~-4.26
~0.74

1.74

2011737
. 115572
114840
3.109703
2.498787
Z2.423510
Z.083767

16,24
100
0.5629871
1.257482
2.511933
1.884759
1.880914
1.879471
1.84z85
1.895717

SAMF/CYC
20.48

S0
0.631905
1.885958
2.3913090
0.&329282
1.269318
1.884199
1.8461251
1.272621

40.9&
0.008227
0.626940
1.885946%
1.259761
0.651838
1.8786%4
0.675416

1.277250

111
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TABLE C.V

AMPLITUDE ESTIMATION ERRORS : NONLINEAR DISTORTION

HARMONIC HARMONIC

Flk—=F HER-dE 25 FS = 100 F& = 100 Fg =
75 fh = 200 fh = 0O fh =
[ —Z8. 02 ZE-0S 1.60E-0& 1.6BE-08 9.85E-1 7
0.2 —20.00 .3 L.O7E-0S 1.47E-06 1.62E-04 1.0TE-0& 8
0.4 -13.98 Z. _;._-E—U T SLZ0E-0S 1.1SE-0& 1.44E-06& 1.1SE-04& 8,67
0.6 -10.46 1.97E-0Q5 Z.463E-05 7.3SE-07 1.1qE 06 1.22E-0& 7.44E-07
0.8 -7.96 2 E-0S 2Z.40E-0S B.S1E-07 L2EE-06 1.40E-0& 2. 94E-07
1.0 =6.02 2.09E-0S 1.6BE-05 1.26E-04 1 4OE-06 1,.54E-04 8B.S4E--G7
1.5 ~2.50 4.48E-0S 1.81E-05 1.62E-0& 7.69E-07 1.&8E-0&6 7.03E-07
.0 Q.00 7.70E-05 Z,34E-05 4.Z0E-0& 2.44E-05 1.97E-G& 7.24E-07

TABLE C.VI

DC OFFSET ESTIMATION ERRORS : NONLINEAR DISTORTION

HARMONIC HARMOMIC ' FREQUENCY
Fl—FL HSR-dE  FS = 2§ FS = 25 FS = 100 FS = 100 FS = 400 FS = 400
fh = S0 fh = 75 +h = 200 fh = 300 fh = 800 fh = 1200

G.1 €.02 Z.71E-05 Z.71E-05 3. 18E-05 3. 1BE-05 Z.B8&E-05 2.86E-0S
0.2 6.I5E-05 7.41E-0S 7.41E-05 6.87E-0% &.3ISE-0S 4.3I5E-05
G4 1.48E-04 1.27E-04 1.27E-04 1.23E-04 1.1SE-04 1.1SE-G4
Q.6 1.90E-04 1.72E-04 1.72E-04 1.53E-04 2.22E-04 1.72E-04
0.8 ~7.96 2.29E-04 Z.S4E-04 2.30E-04 1.99E~04 Z.S4E-04 2.54E--04
1.0 =6.02 2.87E-04 Z.84E-04 2.3IO0E Z.31E-04 2.86E-04 2,.84E-04
1.5 =2 50 4.76E-04 4, Z0E-04 5.,UE—H4 Z.01E-04 4.31E-04 Z.99E-04
2.0 0.00 S.73E-04 4.59E-04 S.94E-04 S,55E-04 S.S1E-04 4.31E-04



TABLE C.VII
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FREQUENCY ESTIMATION ERRORS : NONLINEAR DISTORTION

HARMONIC
Fl—Fk

Q.4

HARMONIC
Fl—-Fk

0.1
0.2
0.4
O.h
0.8
1.0
1.5
2.0

HARMONIC
HER-dE
—2&6.02
—-20.00
—-1Z.98
—10.44
—7.%4
-6.02
-2.50

O, 00

HARMONIC
HER~-dE

G, 00

S = 25
fh = S0

1.00E-0Z
1.04E-02
1 OSE-Q2

ITE—U”
)E-—(_)f._‘
1.31E-02
1.45~-02

FG = 28
fh = 50

. 007884
0L D024
0.00811Z
Q.OD?DZS
LOO675

.H1U69’
0. 012047

[
fh
1.
1.
1.
1
1

= 20 S = 100
= 75 +h = 200
)UE—H“ S.0G1E-04

-02 S.09E-04

04E—U

L OSE~-02
LDEE-0Z
1.08E-02

1.13E-02

1.18E-02

S.15E-04

.87E-04
.97E-04
87E-04

JE B

TABLE C.VIII

e
pagal)

= 75

0.03786“

Q.
0.
Q.

Q)

[

\_J -

DO794L9
OOR2FO
008444
GO8547
a0e8ReE
QOR177

009291

FS = 100
fh = 200

O, 001800
0.0015282
Q001727
0,001648
O.001452

0.001858 0.

G.0014672
O.001&674

FREQUENCY
FE = 100
fh = 200
4,.97E-04
S.02E-04
S.07E-04
S5.08E-04
S.13E-04
S.I7E-04
S.60E-04
3Q.9984

FS = 400

S = 400
800 fh

F
fho = fh = 1200
7 1Z3E-0S 7.29E-05S
7.08E-0% 7.37E-05
&.FFE-08 V. 63E-0OS

1

7

o

S

L. 62E-0% 1, 72E-04
&.E81E-08 7.96E~05
LH.71E-0S 8. 32E-05
4., S5E-05 25

-
2. 8000

—05

4000

A
Ll

PHASE ESTIMATION ERRORS : NONLINEAR DISTORTION

FRECQUENCY
FS = 160
tfh = 320G
0. 0015879 . OO

Q,.001457 O, \_l(_!(_)B,N.Q
O. 001517 O, 000747
Q. 001632
G.001745
001895
0,.001742
Q. 012800

S = 400
h = 1200
OUUEBL

0.001190
O, 000780
G, Q00
* O, nule““
0. 446251
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AMPLITUDE PERFORMANCE (NEW)

A=1., DC=0, PHASE=0

0.035 T
F=200 Hz (5.12/~
0.03 —.— ( /)
F=100 Hz (10.24 /~)
o 0.025- —¥—
% F=50 Hz (20.48/~)
W 0.02 A ==
§ F=25 Hz (40.96 /~)
E 0.015
o
>
R

20

; i i
-15  -10 -5 0 5
NOISE /SIGNAL RATIO {dB)

Figure C.1. Plot of amplitude estimation errors for increasing linear distortion.
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! AMPLITUDE PERFORMANCE (NEW)
f A=1, DC=0, PHASE=0

INOiSE= -24.26 dB
!+
INosE= —18.24 a8
=
NOSE= -12.22
| — =
NOSE= - 8.70 B

"

i

i ?__ :

’{ 0.001 — e : -
| 5 10 15 20 25 30 35 40 45
i SAMPLES /CYCLE

(@)

- AMPLITUDE PERFORMANCE (NEW)

! A=1, D2C=0. PHASz=0 i
4 0.038 T - .t
: ‘ R Ll
i : ‘ I |NOISE= - 4.26 48| ,
i 5.03 % : : : L — P
) : S | NosE= - 0.7¢ B ]
’ P : [ | i ! {]
i, § 223 : — CONDISE= 176 dB | ]
i E i T e i L ———— [’
| : T : |
IR |
1K E K /‘ i i
- L |
D 3ooisg . ., f
! : T i i
! —- . '

! - : i i

0.01 g~ Trm—— i N— I

i i ! i i
i i : i I
i 0.605 e | |
I 5 10 15 20 25 30 35 40 45 i
| SAMPLEZ/CYCL !
i !
i i

(b)

Figure C.2. Plot of amplitude estimation errors for increasing sampling rate:
(a) low and (b) higher noise levels.
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DC OFFSET PERFORMANCE (NEW)

A=1, DC=0, PHASE=0

0.02 :
0.02
~ :
2 :
& 0.015
- :
Ld .
0 :
L :
S 0.01 7 :
Q :
e s
0.005
0 : ; i i RN
-25 =20 -15 -10 -5 0 5

NOISE /SIGNAL RATIO (dB)

F=200 Hz (5.12/~)
-
F=100 Hz (10.24/~)
-
F=50 Hz (20.48/~)
-
F=25 Hz (40.96/~)

Figure C.3. Plot of dc offset estimation errors for increasing linear distortion.
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DC OFFSET PERFORMANCE (NEW)

| A=1. DC=0, PHASE=D |
; 2.01 ! A\\ l+

B 0.009 A = 2 S | = —24.25 4B

po .68 AN INOISE= —18.24 dB
Lox 50T l—x—

i3 OISE= -12.22 d8
R g f_a_

. zoses ¥ P it Med INOISES - 870 8
I *_ N \,*’__,,_—/f : _a ! w_,‘_

| B39.0047 < INOISE= - 6.2C 48 | ¢

; :_‘\ annzd d '+ :
- MH_ i INOSE= - 426 4B '

©oasc2 i i S i
! 5 1c 15 20 25 30 35 :C 45 i
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Figure C.4. Plot of dc offset estimation errors for increasing sampling rate:
(a) low and (b) higher noise levels.
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Figure C.5. Plot of frequency estimation errors for increasing linear distortion.
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Figure C.6. Plot of frequency estimation errors for increasing sampling rate:
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Figure C.7. Plot of phase estimation errors for increasing linear distortion.
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Figure C.9. Plot of amplitude estimation errors for increasing nonlinear distortion.
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Figure C.11. Plot of frequency estimation errors for increasing nonlinear distortion.
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Figure C.12. Plot of phase estimation errors for increasing nonlinear distortion.
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