
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

4-8-1994

Performance Evaluation Tools for Interconnection Performance Evaluation Tools for Interconnection

Network Design Network Design

Anna Kolinska
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Kolinska, Anna, "Performance Evaluation Tools for Interconnection Network Design" (1994). Dissertations
and Theses. Paper 4764.
https://doi.org/10.15760/etd.6648

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4764&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4764&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://doi.org/10.15760/etd.6648
mailto:pdxscholar@pdx.edu

THESIS APPROVAL

The abstract and thesis of Anna Kolinska for the Master of Science in Electrical and Computer

Engineering were presented April 8, 1994, and accepted by the thesis committee and the

department.

COMMITTEE APPROVALS:
ichael A. Driscoll, chair.,..'--

/

W. Robert Daasch

JingkeLi /
Representative of the Office of Graduate Studies

DEPARTMENT APPROVAL:
Rolf Schaumann, Chair
Department of Electrical Engineering

ACCEPTED FOR PORTLAND STATE UNIVERSITY BY THE LIBRARY

b on r ;J(£??L /99-?
(/'

ABSTRACT

An abstract of the thesis of Anna Kolinska for the Master of Science in Electrical and Computer

Engineering presented April 08, 1994.

Title: Perfonnance Evaluation Tools for Interconnection Network Design.

A methodology is proposed for designing perfonnance optimized computer systems. The

methodology uses software tools created for perfonnance monitoring and evaluation of parallel

programs, replacing actual hardware with a simulator modeling the hardware under develop

ment. We claim that a software environment can help hardware designers to make decisions on

the architectural design level. A simulator executes real programs and provides access to per

fonnance monitors from user's code. The perfonnance monitoring system collects data traces

when running the simulator and the perfonnance analysis module extracts perfonnance data of

interest, that are later displayed with visualization tools. Key features of our methodology are

"plug and play" simulation and modeling hardware/software interaction during the process of

hardware design. The ability to use different simulators gives the user flexibility to configure

the system for the required functionality, accuracy and simulation perfonnance. Evaluation of

hardware perfonnance based on results obtained by modeling hardware/software interaction is

crucial for designing perfonnance optimized computer systems.

We have developed a software system, based on our design methodology, for perfonnance

evaluation of multicomputer interconnection networks. The system, called the Parsim Common

Environment (PCE), consists of an instrumented network simulator that executes assembly lan

guage instructions, and perfonnance analysis and visualization modules. Using PCE we have

2

investigated a specific network design example. The system helped us spot performance prob

lems, explain why they happened and find the ways to solve them. The obtained results agreed

with observations presented in the literature, hence validating our design methodology and the

correctness of the software perfonnance evaluation system for hardware designs.

Using software tools a designer can easily check different design options and evaluate the

obtained performance results without the ovemead of building expensive prototypes. With our

system, data analysis that required 10 man-hours to complete manually took just a couple of

seconds on a Sparc-4 workstation. Without experimentation with the simulator and the perfor

mance evaluation environment one might build an expensive hardware prototype, expecting

improved perfonnance, and then be disappointed with poorer results than expected. Our tools

help designers spot and solve perf onnance problems at early stages of the hardware design pro

cess.

PERFORMANCE EVALUATION TOOLS FOR INTERCONNECTION

NETWORK DESIGN

by

ANNA KOLINSKA

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

ELECTRICAL AND CO:MPUTER ENGINEERING

Portland State University
1994

ACKNOWLEOOE:NIENTS

I would like to express my heartfelt thanks to Dr. Mike Driscoll, my advisor and friend,

for his patience, continual guidance and intellectual support. His help and encouragement

directly contributed to my successful graduate work at Portland State University. I am grateful

for the tremendous amount of time that he spent guiding me in my studies and research, for his

invaluable ideas and for revising and proofreading my thesis. The experience of studying and

working with him is precious and unforgettable.

I would also like to thank Dr. Robert Daasch and Dr. Jingke Li for serving on my commit-

tee and for their constructive comments and suggestions about the thesis.

I owe my grateful thanks to faculty and staff of Department of Electrical Engineering for

their kindness and helpful attitude.

Finally, my special thanks goes to my family. To my husband, for his friendship, encour-

agement and support during my years at PSU. For his patience when trying to understand the

intricacies of my graduate work. To my brother and his wife, without whom it would not be

possible for me to study at Portland State University. I am grateful to them for giving me a

great start, spiritual and financial support, and all other help when I needed it most. I would like

to give my special thanks and gratitude to my parents for all their love and commitment

throughout the years. I am thankful to them for teaching me the most important values: love

and appreciation of people and science.

Portland, Oregon
April 1994

Anna Kolinska

TABLE OF CONTENTS

PAGE

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . vii

LIST OF FIGtJRES . ix

CHAPfER

I IN'IRODUCTION . 1

Motivation for a New Hardware Design Methodology 3

Developing High Perlonnance Systems. 5

Thesis Overview. 7

II PERFORMANCE EVALUATION SYSTEMS........ 9

Software Perfonnance Optimization . 9

Example Perlonnance Evaluation Environments. 13

Hardware Perfonnance Optimization. 13

III OVERVIEW OF PARALLEL HARDWARE 16

Multiprocessors . 17

Multicomputers . 18

Interconnection Network Design. 21

Topology of the Network. 21

Routing Algorithm . 23

Fl.ow Control. 25

Router Design Examples. 27

IV PARSIM COMMON ENVIRONMENT. 29

Metllodology. 29

History.. 31

PARSIM.. 33

Preprocessor. 35

Creating and Instrumenting Application Programs 38

Simulation Environment . 39

Data Analysis. 39

Visualization of Perfonnance Data. 41

Graphical User Interface. 41

Data Storage - Directory Structure. 43

Comments on tlle Structure of Perfonnance Evaluation Tools. . . 45

V NETWORK DESIGN EXAMPLE. 47

Introduction. 47

Application Programs. 49

Network Configuration. 49

Network Performance with Low Contention 50

Sending Messages................................. 51

Message Pattern 1
Message Pattern 2
Message Pattern 3

Receiving Messages. 57

Message Pattern 4

Summary of Observations for Low Contention. 58

Network Performance in Presence of High Contention. 60

Node Execution Time . 62

v

Summary of Observations about Node Execution Time. . . . 67

Message Latency . 67

Summary of Observations about Message Latency. 72

Network Activities. 75

Sending Messages
Receiving Messages

Summary of Observations . 79

VI CONCLUSION. 81

Limitations and Future Work. 84

REFERENCES . 86

APPENDIX. 90

vi

LIST OF TABLES

TABLE PAGE

I Analytical Calculation of Message Latency for no Contention

Network 51

II Timing for 3 Message Multicast for 16 Node Mesh Network

witll 1 PE Channel 52

III Timing for 3 Message Multicast for 16 Node Mesh Network

witll 2 PE Channels 53

IV Timing for 3 Message Multicast for 16 Node Mesh Network

witll 1 PE Channel (reverse order) 54

V Timing for 3 Message Multicast for 16 Node Mesh Network

with 2 PE Channels (reverse order). 54

VI Timing for 2 Message Multicast for 16 Node Mesh Network

with 1 PE Channel. 55

VII Timing for 2 Message Multicast for 16 Node Mesh Network

with 2 PE Channels....................................... 55

VIII Timing for Receiving 4 Messages in the same Destination

for 16 Node Mesh Network with 1 PE Channel. 57

IX Timing for Receiving 4 Messages in the same Destination

for 16 Node Mesh Network with 2 PE Channels................. 58

LIST OF FIGURES

FIGURE PAGE

1. The steps leading to perfonnance................................ 10

2. Perfonnance instrumented computer . 11

3. An overview of concurrent processing systems..................... 16

4. Hardware model of concurrent processing systems. 17

5. Multicomputer nodes in the mesh topology........................ 19

6. Distributed memory interconnection network topologies 22

7. Latency of store-and-forward routing versus wormhole routing........ 24

8. Flow control methods for resolving a collision between two packets

requesting the same outgoing channel . 26

9. The structure of a Mesh Routing Otip. 28

10. Block diagram of the Parsim Common Environment 31

11. A node in Parsim simulator, for mesh configuration 34

12. Program preparation for Parsim. 39

13. Graphical user interface forPCE................................ 41

14. Plotting results with PCE . 43

15. Directory structure generated by PCE............................ 44

16. Perfonnance evaluation environment, opportunities to reuse

existing code. 46

17. The model of a multicomputer node. 48

18. 16 node mesh configuration (4x4)... 50

19. Message receive in 16 node mesh with 2 PE channels 57

ix

20. Average message latency for varying number of PE channels

when receiving four messages 59

21. Pseudocode description ofN-body problem 61

22. Average execution time for varying number of PE channels

(scaled computation time) 62

23. Average execution time for varying number of PE channels

(fixed computation time) 64

24. Detail of Figure 22 for 2x2 mesh and varying number

of PE channels ... 65

25. Detail of Figure 22 for 4x4 mesh and varying number

of PE channels ... 65

26. Detail of Figure 22 for 8x8 mesh and varying number

of PE channels ... 66

27. Detail of Figure 23 for 8x8 mesh and varying number

of PE channels ... 66

28. Average message latency for varying number of PE channels 68

29. Message latency for 16 node mesh network with 1 PE channel. 69

30. Distribution of message latency for 16 node mesh network

witll 1 PE channel 69

31. Message latency for 16 node mesh network with 2 PE channels 70

32. Distribution of message latency for 16 node mesh network

wi tll 2 PE channels 71

33. Message latency for 16 node mesh network with 4 PE channels 71

34. Distribution of message latency for 16 node mesh network

witl14 PE channels 72

x

35. Message latency for 16 node mesh network with I PE channel

with no contention...................................... 73

36. 4x4 mesh network with 1 PE channel with no contention:

latency and execution time. 74

37. Message latency for 16 node mesh network with 2 PE channels

with no contention . 74

38. Message latency for 16 node mesh network with 4 PE channels

with no contention 75

39. Send activity in 16 node mesh network with 1 PE channel. 76

40. Routes allocated for first message generated in a broadcast session 77

41. Send activity in 16 node mesh network with 8 PE channels 77

42. Receive activity in 16 node mesh network with 1 PE channel 78

43. Receive activity in 16 node mesh network with 8 PE channels 79

CHAPTER I

INTRODUCTION

In this thesis we propose a methodology for designing performance optimized computer

systems. Our approach is based on the software tools used for performance monitoring and eval

uation of parallel programs. We add perfonnance monitors to a simulator modeling a hardware

design. We can collect data traces by running perfonnance instrumented application programs.

With analysis and visualization tools we can examine data traces with respect to different archi

tectural choices, and tune the hardware design accordingly.

Based on our methodology we have created a prototype performance evaluation system

intended for hardware designers developing multicomputer interconnection networks. To prove

that performance problems in hardware designs can be solved using software development tools,

we have used our system to solve a specific network design problem. We have performed a set

of experiments to investigate how many PE channels should connect a processor to a router in

each node in a mesh network to obtain the best perfonnance. Our assumption was that the

neighboring nodes are connected by one network channel, which is a common practice in build

ing multicomputer systems [l, 2]. Because each node in a mesh network has two to four neigh

boring nodes, we expected that adding up to four PE channels would significantly improve per

fonnance of the network.

After examining the problem, it turned out that our intuition was misleading. The number

of PE channels is not the most significant factor determining network performance. The most

important factor is the efficiency of algorithms used to generate communication patterns in the

network. Our evaluation tools helped us to set up performance experiments and analyze their

results, leading to a solution of the design problem. Hence we have validated our design

2

methodology.

A generic software system using perfonnance evaluation methods for designing computer

systems is intended to help engineers to make decisions at the architectural design level. A key

component of such a system is a simulator. It is used to model hardware under development.

As with the real computer system, application programs are used as the input to the simulator.

A designer interested in system behavior during program execution needs to obtain perfonnance

data from the simulator. To provide a way to look into the behavior of a given system, a simula

tor needs to be instrumented with perfonnance monitors. The infonnation should be accessible

on the application level to enable collecting data traces of interest for further analysis. To use

the perfonnance monitoring capabilities of a simulator, application programs need to contain

perfonnance monitoring code. That code would pick up the values of specific simulator probes

during program execution and decide how to compute and output perfonnance data traces. The

code development stage can be supported by a perfonnance instrumentation system for applica

tion programs. Using such a system, insertion of performance monitoring code into the pro

grams can be automated, thus relieving the designer from the tedium of manually customizing

the code for every perfonnance experiment. Data traces collected during the simulation run

need to be analyzed to obtain the perfonnance infonnation. With a perfonnance analysis sys

tem the designer can filter the perfonnance data from collected traces and apply specific func

tions to them. The final, analyzed set of data may be presented using visualization tools.

Parsim Common Environment (PCE) is an implementation of such a generic perfonnance

evaluation software system intended for hardware designers developing multicomputer intercon

nection networks. It contains a network simulator, performance instrumentation system, and

perfonnance analysis and visualization tools. Using PCE it is easy to measure the performance

of a given network configuration while executing one or more programs and observe generated

traffic patterns. With the instrumentation system, the user is given the flexibility of defining

3

events and measurement points to be monitored. The visualization tools let the designer thor

oughly analyze and understand the collected data traces, and make conscious decisions about

the hardware to be built before more substantial commitments are made. Our methodology is

not restricted to multicomputer network design. With our approach one can solve many perfor

mance problems in computer architecture design.

MOTIVATION FOR A NEW HARDWARE DESIGN :METHODOLOGY

A lot of effort has been put into the development of tools that allow tracing execution of

parallel programs and monitoring utilization of processors, for further improvement of program

perfonnance. However, programs cannot perfonn any better than the underlying hardware.

Hence perfonnance optimization has to be tackled in both the areas of hardware and software

design. This is especially true for parallel computers. Perfonnance of a computer can be

enhanced at five stages [l]:

1. machine design,

2. algorithm design,

3. data structuring,

4. compiling stage,

5. fine tuning.

The machine design stage is the most important part in the process of enhancing computer

perfonnance. The goal is to optimize the architecture and operating system to yield high

resource utilization and maximum perfonnance. Once all design decisions are made and the

machine is built, it is no longer possible to alter the behavior of hardware. This stage is very

laborious and many tests and prototypes are required to decide on optimal hardware configura

tion.

4

Many scientific computer systems have been developed in the last three decades. Design

ers have been taking advantage of changes in electronic technology. They have worked on mak

ing both CPU's and computer peripherals faster. Clock cycle time of the processors and mem

ory access time have been shortened, and cacheing and pipelining techniques have been intro

duced, to name a few of the enhancements. However, the advances in uniprocessor systems are

nearing their limits. New improvements do not change the perfonnance significantly, they only

raise costs. Concurrent processing has become a step beyond the technological limits that have

been reached by uniprocessor systems.

It is very hard to estimate the perfonnance of a parallel design. With uniprocessor systems

the design process was incremental. New solutions were based on the previous designs, and it

was relatively easy to make good predictions of the performance of a newly developed system.

When improving a uniprocessor system, many design choices are implied when analyzing simi

lar machines. One can estimate the perfonnance gain in the modified design. The situation is

much different with the parallel machines. Every design is unique and therefore estimates can

not be made through comparison with similar architectures, because they do not exist Good

predictions of the performance of innovative architectures are impossible, since the changes in

the designs are revolutionary, and do not constitute mere improvements of existing solutions.

However, engineers are not totally helpless in the process of hardware development. Pre

dictions of behavior and performance can be made based on the results of simulations of the

hardware. Even though developing a simulator is quite expensive - it takes a lot of time to

model hardware in the right way, it is usually worth the effort [3]. Generally, simulators are

very flexible. Design parameters can be easily varied, leading to good solutions. One disadvan

tage of simulators is that they provide only a good approximation (at best) of the hardware

behavior. Simulation results may prove to be inaccurate for machine as constructed. Other dis

advantages are that simulators are usually very slow and that their results are hard to interpret.

5

The next four stages of perfonnance improvement mentioned above are in the area of soft

ware. At the stages of algorithm design and data structuring, programs have to be matched to

the target hardware. At the compiling stage application code should be optimized not only for

concurrency and vectorization, but also for scalar operations. The fine tuning stage closes the

loop of software development. At this stage program perfonnance is monitored and analyzed.

Based on the obtained results programmers can verify their programs, and redesign them start

ing over from the algorithm or data structuring stage.

In a parallel computer, a single CPU has been replaced by many processors, each of which

could execute different sets of instructions in parallel. CPUs have to cooperate to get the task

done. To use parallel machines effectively, appropriate software tools have to be provided.

Operating systems for new machines have been created along with specifications of the parallel

languages and compilers. Later advances brought integrated environments for software devel

opment like parallel debuggers, profilers, and perfonnance instrumentation and visualization

tools, all of which help programmers immensely in development of software.

DEVELOPING HIGH PERFORMANCE SYSTEMS

To illustrate the differences in the process of enhancing the perfonnance of parallel com

puter systems which are experienced by different specialists, consider the cases of software and

hardware engineers.

A software engineer working on parallel applications has been aided by integrated environments

for program development and performance tuning. An example of such an integrated system is

The Pablo Performance Analysis Environment developed at the University of lliinois [4]. Each

of the design stages is supported with appropriate tools. First, debuggers help to develop logi

cally correct programs. They play an important role helping designers on the algorithm design

stage. Once written, code can be run and analyzed to detect loops and other potential paral

lelism in the program structure. This data structuring stage is supported by compiler

6

preprocessors that insert monitoring probes into application programs. Using such probes,

information about execution times of various regions of code can be obtained, as well as the

number of occurrences of specific events. Further vectorization of the program is achieved at

the compiling stage. The designer cannot greatly impact the perfonnance of this stage, but

depends on the functionality of the compiler.

At the fine tuning stage the designer is aided by various run-time monitors, showing uti

lization of processors during execution of the program. Moreover, post-processing perfonnance

analysis modules can analyze collected data traces. Perfonnance visualization tools let users

view the collected data as graphs and pictures easily understandable by humans. All of these

tools help users develop programs that are optimized with respect to execution time and also uti

lization of processors in the multiprocessor system. Through several iterations the process con

verges to the optimal solution Different versions of programs can be easily compared and the

best one can be chosen as the final product. The integrated environments for parallel program

ming make the job of software engineers much easier and less stressful than it used to be when

the only available tools were compilers. Nowadays, moving through the design loop is fast and

not very troublesome.

On the other hand, looking at the job of a hardware designer who works in the area of par

allel computing, it does not seem as easy as that of the software engineers. It is true that there

are a number of systems developed for monitoring the perfonnance of hardware. These are usu

ally hybrid systems - a mixture of hardware and software monitors. Such systems are valuable

in understanding and interpreting the behavior of parallel systems. However, they play an

important role only at the end of the design process. Therefore, any revisions of the design are

very expensive, and actually engineers can only guess what parameters to change to obtain a

better perfonnance of their system. Comparisons between designs may be perfonned only after

several prototypes have been created. As described, the hardware development process is very

7

time consuming and expensive. Usually only a couple of options are checked. Therefore it is

highly possible that the obtained architecture is not optimal. And since software cannot perfonn

any better than the hardware, optimization on the hardware level is crucial.

Simulators make hardware development a little easier, because they help predict the

impact of parameter changes on design behavior. Once a simulator is available many tests can

be perfonned before choosing the final, and hopefully optimal, configuration. However, a simu

lator itself is not a sufficient tool to make the hardware engineer effective. Simulator results are

large sets of data traces that are very hard to interpret. Any data analyzers that have been devel

oped are application dependent and cannot be ported to other simulators. Generally, the only

tools available for hardware development are low level circuit simulators. On the architectural

design level engineers are still forced to investigate different configurations of hardware without

the help of good tools.

We believe that the same set of tools that help software engineers to develop perfonnance

optimized code will also be useful for hardware designers to create perfonnance optimized

computers. An integrated perfonnance evaluation system with the simulator used in place of a

computer will help hardware engineers to spot perfonnance problems in the developed systems

and speed up the design process.

THESIS OVERVIEW

In this chapter we introduced a methodology for perfonnance evaluation of hardware

designs. We presented an overview of experiments perfonned to solve a specific design prob

lem using software perfonnance evaluation tools of our creation. The tools are intended for

hardware designers developing multicomputer interconnection networks.

We also presented the steps leading to perfonnance optimized systems and underlined

why achieving good hardware perfonnance is crucial. We described the tools that support

8

engineers in the process of optimizing parallel software and also that of parallel hardware. We

showed how the methodology that we used for development of parallel hardware fills the need

for designing performance optimized systems.

In the remainder of this thesis we validate our claim that the software tools can be used for

performance evaluation of hardware designs and can help develop performance optimized com

puter systems by using the tools to solve an example problem and evaluating how helpful they

were in the design process. First we present background needed to understand the design prob

lem.

Chapter II describes software and hardware performance optimization techniques. We

present several existing systems for performance evaluation of parallel software and hardware.

In Chapter III we concentrate on designing parallel hardware, focusing on multicomputer

interconnection networks. We introduce the nomenclature that will be used to discuss the sys

tem that we created for monitoring performance of interconnection networks. Definitions of

performance of parallel computer systems are also provided.

Chapter IV describes in detail the methodology for designing performance optimized

computer systems. We present the PARSIM Common Environment (PCE) - a software perfor

mance evaluation system intended to support engineers in hardware development process of

multicomputer interconnection networks.

An example network design problem, its analysis and solution using PCE are shown in

ChapterV.

Chapter VI concludes the thesis with the discussion of the design process using PCE. We

discuss the limitations of the system and future work to improve the efficiency of hardware

design process.

CHAPTER II

PERFORMANCE EVALUATION SYSTEMS

Perfonnance and cost are the two most important factors that determine if a new computer

is a marketing success. These factors heavily impact each other, and most designers analyze

them together. The cost/perfonnance ratio is the basic point of interest for both customers and

designers.

However, while designing commercial systems the upper cost boundary has to be set

beforehand, and cannot be exceeded. This guarantees that the product that is intended for the

predefined range of customers will be within the parameters of the targeted portion of the mar

ket. Also, new perfonnance options are not implemented if they raise the cost/perfonnance

ratio of the final product. Thus, we will focus on perfonnance of parallel systems. In this chap

ter we will describe existing systems for perfonnance evaluation of parallel software and hard

ware.

Perfonnance depends on the degree of utilization of the parallelism in hardware as well as

in software. Figure 1 shows the steps leading to the overall perfonnance of the concurrent sys

tem. Both areas are very important: hardware, because programs cannot run any faster than

hardware lets them to, and software, because even the highest computational power may be

wasted if the software is inefficient.

Software Perfonnance Optimization.

Software perfonnance has become the area of interest for the growing population of users

of parallel systems [6]. Historically, not many perfonnance monitoring systems were available,

because vendors considered perfonnance tools a luxury. The tools were expensive to develop,

SOFIWARE
PARALLELISM

Physical Phenomenon

t
(Scirtist)

Mathematical Model

.~
(Numencal Analyst)

Algltlim

t
(Software Engineer)

t Program

(Comp~ing System)

I
+ . nstructions

(Program Execution)

+. Ti Execut10n 1me
(Metric)

PERF~RMANCE

HARDWARE
PARALLELISM

System Requirements

(An:ltect)

System Lhitecture
t

(Hardware Engineer)

Architecture Implementation

Figure 1. The steps leading to perfonnance (5).

10

and not needed to sell parallel machines. Good tools appeared only if the machine succeeded.

Today, when many diverse machines are becoming available, competition on the market is much

stronger. Perfonnance tools are needed for marketing, and are necessary for a machine to

become a success (6). This is why a lot of effort is dedicated to building environments for soft-

ware development and optimiz~tion.

Traditionally, users of uniprocessor systems were aided by debuggers, to spot the logical

errors in their code, and profilers, to analyze the perfonnance of specified parts of the program.

These tools were usually sufficient to satisfy the requirements of software engineers.

Parallel software development, on the other hand, is more difficult. None of the tools used

for uniprocessor systems could help software designers. Parallel debuggers and perfonnance

11

monitoring systems have to be much more complex to effectively aid parallel programmers.

Software engineers need to understand details of the architecture and behavior of parallel

machine, to be able to interpret the results and improve program performance.

A generic perfonnance evaluation system consists of a performance instrumented com

puter and a perfonnance analysis and visualization system. Such a performance instrumented

computer is shown in Figure 2.

*user instrumentation
*compiler instrumentation

*counting, timing, tracing
libraries

Computer System

. .

: :

: :

Perffunance/Measurement Sys.ferr{
r:·- - - - ::-<- - - - - - - - - - ,.. /
I : I :
I / I ;
I :· I :·
I .: I ;
I / I f
I : I:
I/ 1!

~---------------~

*run-time system instrumentation

*operating system instrumentation

*hardware monitoring

*run-time data collection

I .,.

Figure 2. Perfonnance instrumented computer [6].

Results

Performance

Results

The measurement system is usually hardware based or a hybrid (software and hardware),

and provides infonnation on processor utilization, time stamps, link utilization, message length,

type, send and receive events, and more. Instrumented code defines events for observation,

what action needs to be taken upon their detection and what data traces are to be collected.

Results obtained from the program run are further analyzed and presented with perfor-

mance analysis and visualization tools. Such tools use a set of advanced graphical displays to

12

present gathered data. Examples of such displays are: two-dimensional line and scatter plots,

two-dimensional surface and contour plots, three-dimensional line plots, analog and digital dials

and meters, PIE charts, event graphs and execution graphs [6]. The new teclmiques for data pre

sentation, still very immature, are data animation and sonification.

Integrated environments for perfonnance evaluation help users to detennine the perfor

mance of a given program and to improve it. To do so, a set of experiments has to be per

fonned.

A typical perfonnance experiment consists of three phases [6]:

- specification,

- instrumentation and data collection,

- data reduction and presentation.

In the specification phase the user needs to decide what kind of infonnation is significant

to understand the program behavior, and how it relates to overall performance. Once the prob

lem is stated, code needs to be instrumented. The data collection phase poses problems because

of the huge volume of data generated during the experiment. One needs to carefully estimate

the volume of data to be generated, to fit it successfully within the available resources (disk

space).

To enhance understanding, the collected data traces need to be further reduced, and

viewed using available displays. A wide variety of presentation teclmiques lets the user get an

insight into locating perfonnance problems and leads to proper conclusions.

" ... visualization has become a poweiful, almost indispensable mechanism for the

scientific user. Interactive visualization combines computer graphics and imaging

with user inteifaces to aid understanding of complex computation. As a tool, visu

alization provides a time-efficient method for testing and debugging ideas as well

as a gauge for peif ormance." [7]

13

Example Perfonnance Evaluation Environments.

The IPSC/2 supercomputer is aided by a set of perfonnance tools [8]. HYPERMON is a

hardware-assisted monitoring system. A modified GNU C compiler is used for software instru

mentation with command line options enabling generation of instrumented code. The data anal

ysis and visualization system contains a user interface, a set of generic data analysis filters, a set

of stainers (filter-display interfaces), and a set of display views.

The Pablo Perfonnance Analysis Environment [4, 6] is a toolkit consisting of perfonnance

data instrumentation tool and a perfonnance data analysis and presentation tool. Instrumenta

tion allows for graphical event specification, source code instrumentation and portable data cap

ture. The presentation tool consists of graphical programming modules, data transfonnation

modules, self-defining data fonnat, dynamic graphics and sonification.

Pablo is a portable system. It is intended for use with any monitoring system that supplies

the data fonnat used by Pablo. Currently, the data capture library supports the Intel iPSC/2,

iPSC860, Thinking Machines CM-5, Intel Paragon and uniprocessor Unix systems [6]. Many

other perfonnance evaluation tools have been described in [6, 7, 9, 10] but the two described

above are typical.

Hardware Perfonnance Optimization.

"Despite continued technical advances, parallel system design remains ad hoc, an

art form practiced by small cadre of experienced, highly valued designers. No

known, general purpose methods can predict the peiformance of a proposed system

design." [8]

It is true that parallel hardware perfonnance issues are important to a small number of sci

entists and designers developing concurrent systems. The quote might lead one to think that the

perfonnance of concurrent systems is only a matter of luck. Is the situation really so dramatic?

14

There are several approaches to estimate the performance of a parallel machine [11]:

• conduct a mathematical analysis which yields explicit perfonnance expressions,

• conduct a mathematical analysis which yields an algorithmic or numerical evalua

tion procedure,

• write and run a simulation,

• build the system and then measure its perfonnance.

All of the above methods are widely used, and designers base their decisions on the obtained

results.

However, all the methods are far from perfect. The systems to be modeled are usually

very complex, hence mathematical descriptions are not exact, and yield approximations. Per

fonning simulations is usually sufficient, if the design problem is well defined. Simple display

methods can be used to present collected data. To explore more sophisticated problems, such as

impact of different hardware configurations on system perfonnance, simulation alone is not a

good solution. Usually huge volumes of data are generated. Evaluation of collected traces is a

very time consuming and difficult process. To make the data analysis easier additional software

tools have to be provided. Measuring perfonnance of the real machine has one significant draw

back: it is difficult to make changes in the architecture to optimize perfonnance.

According to Bradley [5], proper performance evaluation should lead to the desired under

standing ofperfonnance using the following steps:

1. Design - What perfonnance are we trying to measure and how do we measure it? Creation

of experiments and methodologies for testing a perfonnance hypothesis.

2. Observation - What happened in the experiment? Execution of the experiment, recording

measurements, traces.

3. Analysis - What caused the behavior observed during the perfonnance experiment?

15

4. Synthesis - How can we improve the perfmmance? Providing feedback to hardware and

software designers regarding new opportunities for higher performance.

We propose a software-based approach to hardware performance evaluation that satisfies

the above criteria. Our methodology is based on existing performance optimization environ

ments for parallel program development. Figure 2 applies to the system we have created, how

ever we have replaced a real parallel machine with a simulator. We have also added some func

tionality to the user's code in that the user can configure the parallel hardware for exploration at

the beginning of a program.

A simulator has built-in monitoring capabilities. We obtain an instrumented program by

running a preprocessor that inserts monitoring code into a given application. Performance

traces are collected during the simulation run. Later, they are analyzed and displayed using a

simple perfonnance visualization system. A comparison between different architectures can be

easily made by providing a set of different configuration variables to be altered during the simu

lation. Simulation is repeated and data can be analyzed, displayed and compared. In Chapter V

we will show how to solve a specific design problem using our system.

CHAPfERIII

OVERVIEW OF PARALLEL HARDWARE

To understand the workings of our software environment for perfonnance evaluation of

interconnection networks, in this chapter we introduce key concepts of parallel systems, inter-

connection network design, and definitions of perfonnance measures.

The tasks of a parallel program have to be mapped to many processors. Processors of the

system, also referred to as nodes, have to perfonn the tasks simultaneously to gain computa-

tional speed. Many software applications, in particular those solving scientific and engineering

problems, have inherent parallelism that can be exploited to improve the perfonnance of those

applications. A basic concurrent processing system is shown in Figure 3.

Process

User's program
(parallel language)

Task partition
and assignment

-fut"efi>rocess
Communication

Process

r-------- --------,
Links

Switch Switch

I
I
I
I
I
I
I

1 Interconnection networlc 1

L---J
Figure 3. An oveiview of concurrent processing systems [12).

17

A user's program is partitioned into several processes that are assigned to individual pro

cessors. Interprocess communication is perfonned through an interconnection netwolk. To

exploit program parallelism efficiently, a distributed system must be designed to considerably

reduce the communication overhead between the processors [13]. A general model of a parallel

hardware system is shown in Figure 4.

Pl P2 000 000 Pn

INTERCONNECTION NETWORK

000 000

Figure 4. Hardware model of concurrent processing systems [12].

We can divide parallel computer systems into two categories: multiprocessors and multi

computers. The level at which interactions between the processors occur is the main difference

between the two architectures.

Multiprocessors.

In a multiprocessor system all the processors must be able to directly share the main mem

ory. All the processors address a common main memory space. From a programmer's perspec

tive, code development for shared memory systems is easy, in fact it is almost the same as for

uniprocessor systems. This is due to using common address space by multiprocessors. An

example of a commercial shared memory architecture are Aexible Corporation's Flex/32 and

Encore Computer's Multimax, introduced during 1980s [12]. Typically, in addition to main

memory, each processor in a shared memory architecture uses a cache as a local memory.

Although caches speed the execution of the programs, they introduce cache coherency

18

problems. Maintaining cache coherency for a large number of processors becomes impractical,

because of the time needed to access memory elements that are not local to a given processor.

Hence, these systems are not easily scalable.

The Stanford Dash multiprocessor [14] is a shared memory architecture that attempts to

provide cache coherence without compromising scalability. The Dash system improves scala

bility by providing directory structures for maintaining cache coherency. These structures

relieve the processing nodes from broadcasting every memory request to all processor caches, as

the more common snoopy protocols would do.

In Dash the main memory is physically distributed among the nodes (clusters). Each clus

ter contains a small number of high-perfonnance processors and a portion of the shared mem

ory. Nodes are connected through an interconnection network. Access to the data blocks that

reside in the remote memory is provided by passing messages over the network.

Hence the Dash architecture lays somewhere between multiprocessors and multicomput

ers. It provides the ease of use of the first and the scalability of the second.

Multicomputers.

In message-passing architectures, nodes share data by explicitly passing messages through

the network. Processing nodes, consisting of an autonomous processor, local memory and a

routing element, are connected via an interconnection network (Figure 5). The way routers are

connected to each other is called the network topology.

Multicomputers have been developed primarily to provide scalable systems that will

accommodate a significant increase in processors, and will satisfy the perfonnance requirements

of large scientific applications, characterized by local data references.

The scaling dilemma is solved because the processor and memory are physically localized

in a node, and interprocess communication takes place less frequently than memory accesses.

19

r------------------,
Processor Processor

Memory Memory

1 MULTICOMPU1ER I Route1I • I Router
I
1 NODE
I

L--------------1---J

Processor Processor

Memory Memory

Route Router

Figure 5. Multicomputer nodes in the mesh topology.

Thus, message passing networks are usually the choice for building massively parallel comput-

ers (consisting of thousands of nodes).

Design decisions are greatly influenced by the overall system cost. The goal is to maxi-

mize performance while minimizing cost to achieve the best cost/perfonnance ratio. The cost of

multicomputers is dominated by memory elements and interconnection network complexity

(length of wires and router logic) [15, 16].

Conventionally, parallel computers have been built by replicating workst.ation-sized units,

increasing processors and memory proportionally. In this approach, the cost of the machine is

proportional to the number of nodes used. To obtain the best cost/perfonnance ratio, Dally [17]

proposes adding more processors to the network, while keeping the amount of memory con

stant. This way, perfonnance of the machine is dramatically increased with little impact on its

cost.

20

The MIT I-Machine is a multicomputer that is built using this approach. Each node of the

network consists of a 32-bit processor, a floating point unit, a communication controller and a

512k bit RAM on a single chip. Having an on chip memory leads to fast communication with

memory (reading a row of memory takes just one cycle) [18]. The I-Machine is often referred

to as a fine grain machine, because of a little amount of memory per one processing node.

The I-Machine also supports the fine-grain programming model. Fine-grain programs

consist of many short tasks as opposed to the coarse-grain approach, where programs consist of

a few long tasks. Fine-grain programs usually produce much more communication traffic than

coarse-grain programs. Hence, one must be very careful while designing a network to support

fine-grain computation model.

Much research has been done to find an efficient network mechanism for communication

between processors. The interconnection network plays a central role in detennining the overall

performance of multicomputer system; all other components depend on its perfonnance.

Latency, throughput and utilization are the most common measures characterizing network per

fonnance.

Latency is the time from when the first bit of a message leaves the sending node to when

the last bit of the message arrives at the receiving node. Latency of a message, TL' is defined as

the sum of the latency due to the network and the latency due to the processing node [15]:

TL = T net + T node

Throughput is the rate of message delivery (bits/s) when the network is fully loaded [17]. The

goal is to minimize message latency while maximizing throughput. A measure of network uti

lization is link utilization, defined as fraction of time the links are occupied by messages.

An interconnection network consists of routers and wires. Wires are the physical medium

connecting the routers and through which the messages are being sent Routers are the network

components that are responsible for routing the messages from source to destination They also

21

allocate network resources and perfonn flow control of messages in the network. Routers usu

ally contain some amount of memory to buffer messages when needed, and control logic to per

fonn switching in the direction dictated by the routing and flow control algorithms.

Since an interconnection network is a key component in the concurrent system, we will

focus on its different design choices and highlight their significance.

INTERCONNECTION NETWORK DESIGN

An interconnection network is characterized by its topology, routing, and flow control.

The topology of a network is the way the nodes are arranged and connected to each other. Rout

ing specifies how messages choose a path between source and destination nodes. A flow control

strategy allocates channel and buffer resources to a packet while it is traveling through the net

work. It also resolves the conflicts between packets competing for the same network channels.

Topology of the Network.

There are many ways to connect nodes together. The most popular are shown in Figure 6.

Mesh, torus and hypercube are special cases of k-ary n-cubes. Some other topologies used are:

chordal ring and cube-connected cycles [16]. The network topology is usually characterized by

its diameter, mean intemode distance, and bisection width. Diameter of the network is the max

imum shortest path between any two nodes [1]. The mean intemode distance is the expected

number of hops a "typical" message needs to reach its destination [16]. The bisection width of a

network is the minimum number of wires that need to be cut to divide the network into two

equal halves [15].

The bisection width is a measure of the wire density of the network, and helps to estimate

its cost The diameter of the network directly relates to the message latency. Early message

passing computers, e.g. the Cosmic Cube, iPSC, nCube [l], were connected by a hypercube net

work to achieve better perf onnance (low network diameter).

(a) (b)

lb
(c) (d)

Figure 6. Distributed memory interconnection networlc topologies:
(a) ring; (b) mesh; (c) tree; (d) hypercube [19].

22

However, the hypercube has proven to be inefficient (expensive) for machines with a large

number of processors, due to the increased bisection width. Mesh and torus architectures have

become a better alternative, even though they have higher networlc diameter for the same num-

ber of nodes. The latency introduced by additional channels to traverse could be ignored when

employing efficient routing techniques like wonnhole routing. Meshes are easy to map to the

three physical dimensions, making efficient use of available wires. On the contrary, higher

dimensional networks like hypercubes, needed additional wires to allow mapping to the 3-D

plane.

The benefit gained from the low network diameter is illustrated by a comparison of two

topologies of the same bisection width: a hypercube (high dimensional networlc, low diameter),

and a mesh (low dimensional networlc, high diameter). The mesh has higher bandwidth per

channel, since it requires less channels in the networlc. The distance between nodes is not an

23

issue when efficient routing mechanisms are used (wonnhole, virtual cut-through). Examples of

mesh or torus architectures are CM-2 and Intel Paragon [l].

Routing Algorithm.

Most multicomputer networks use the packet-switched transport mechanism, in which

each message is divided into fixed-size packets that are routed separately through the network.

Because packets are relatively small, they do not require a significant buffering space in each

routing component. However, ovemead is introduced for reassembling a message at the destina

tion from the packets that may have arrived out of order [16]. Each packet consists of a number

of flow control digits, or flits. A flit is the smallest unit of infonnation that a channel can accept

or refuse [15]. Only the head flit of a packet contains the routing and sequencing infonnation.

The end of a packet is marked in the tail flit of a packet.

Three basic schemes of routing messages are used in the multicomputer systems: store

and-forward, virtual cut-through and wonnhole routing. With store-and-forward routing each

packet is buffered in the intermediate nodes before it is passed to the destination node. On the

other hand, with wormhole routing message flits are passed to the destination node as soon as

they arrive at a node, and packets are blocked in place when required resources are

unavailable [20]. Virtual cut-through is a method that is a combination of store-and-forward

and wormhole routing. When resources are available, it passes message through the intennedi

ate node immediately. When the head of a message is blocked, the packet is buffered in the

intennediate node, partially freeing network resources. The message advances through the net

work once resources become available [21].

Virtual cut-through and store-and-forward are expensive: they require sufficient buffer

space in each node to store a packet. Wormhole routing does not require buff er space to hold an

entire packet, hence it is a cost effective alternative to virtual cut-through with comparable per

fonnance.

24

Figure 7 shows the latency of a message with store-and-forward routing and wormhole

routing for a packet sent from node No to N 2 via node Ni [15]. With store-and-forward routing

the message is entirely transmitted from node N 0 to node N1t then from Ni to N 2• On the other

hand, with wonnhole routing a flit is forwarded to the next node as soon as it arrives at the inter-

mediate node.

No

N1

N1

No

N1

N1

D
(

T1
L/V{

Tsp

II I II I

II I II f1v
I I I I I I

Time

D
I I II I I I I II j

Figure 7. Latency of store-and-forward routing (top) versus wonnhole routing (bottom) [15].

With store-and-forward routing, the latency is given by:

L
TsF =Tc(w xD)

and with wonnhole routing the latency is given by:

where:

Tc - channel transmission time,

L - message length in bits,

W - channel width in bits,

L
T WH = Tc (- + D) w

25

D - number of channels the message must traverse (distance) [18].

Most existing concurrent computers use store-and-foiward routing. An example of the

computer that uses wonnhole routing is the Intel Paragon. Wormhole routing is an efficient

mechanism to improve network perfonnance.

Flow Control.

The ftow control protocol of a network detennines how resources (buffers and channel

bandwidth) are allocated and how packet collisions over resources are resolved [20]. The ftow

control strategy allocates router buffers and channel bandwidth to ftits. The allocation must be

done for an entire packe~ since it is the smallest unit of infonnation containing the routing

infonnation.

Figure 8 shows four ways to resolve a collision between two packets competing over a sin

gle channel. Only one message can be allocated to the outgoing channel at a time. The other

message may be:

- blocked and buffered in an intennediate node (virtual cut-through, Figure 8a),

- blocked in place (wonnhole routing, Figure 8b),

- discarded (retransmission of message is needed, Figure Sc),

- detoured (adaptive routing, Figure Sd).

The messages can take either detenninistic routes or adaptive routes. In a detenninistic

method, the routing path does not depend on network condition, but is completely detennined

by the source and destination addresses. In adaptive routing, the path may depend on network

condition and messages may be misrouted (sent through longer route to avoid the collision and

its consequences) to avoid congested regions of the network. For every message to successfully

reach the destination a deadlock-free algorithm is required. (A deadlock of a network is a con

dition when no messages can advance toward its destination because the queues of the message

system are full [22].)

26

Packet 1 Control Packet 1

Packet2

Packet2

(a) Buffering in virtual cut-through routing (b) blocking flow control

Packet 1 Packet 1

Packet 2
Packet2

(c) Discard and retransmission (d) Detour after being blocked

Figure 8. Flow control methods for resolving a collision between two packets requesting the
same outgoing channel (packet 1 being allocated the channel and packet 2 being denied) [l].

The most popular deadlock-free deterministic routing algorithm is dimension-order rout-

ing, which is used in most existing k-ary n-cube message passing machines [22]. In this

method, the message is routed in decreasing order of dimension. Example adaptive routing

schemes are planar-adaptive routing [23] and chaotic routing [24].

A mechanism that improves the network performance when collisions are resolved by

message blocking is virtual channel flow control [20]. A virtual channel is a logical link

between two nodes. It is formed by a buff er in the source node, a physical link between source

and destination, and a buffer in the receiving node [1]. Instead of allocating a single deep buffer

27

for storing blocked messages in the router, several smaller buffers are provided for each physical

channel in the network. A physical channel is time-shared by all the virtual channels. Using vir

tual channels, blocked packets may be passed by other packets, going in different directions.

This way the throughput of the network is increased.

Router Design Examples.

The Torus Routing Chip (TRC) [2] perfomls deadlock-free, cut-through routing in k-ary

n-cube interconnection networks, using virtual channels. Each TRC routes packets in two

dimensions. Torus Routing Chips are cascadable to construct networks of dimension greater

than two [2]. A flit in the TRC is a byte. The TRC has two unidirectional channels (X and Y),

each consisting of 8 data lines and 4 control lines. The TRC routes packets using dimension

order routing first in the X direction, then in the Y direction. Each channel is associated with

two buffers (one per each virtual channel). One buffer is dedicated to communication with the

local node. A 5x5 crossbar switch is used to establish the connection between input and output

channels. The Torus Routing Chip has been used in the design of I-Machine Network. The J

Machine is an experimental supercomputer used for research at MIT [18].

The Mesh Routing Chip (MRC) [25] uses dimension-order, wormhole routing. The router

has 5 input and 5 output ports (Figure 9). Routers are connected through a pair of unidirectional

channels. One pair is dedicated to connection between a node and a router. Each output chan

nel has a buffer associated with it A 5x5 crossbar switch is used to establish a connection

between input and output channels [25]. The Mesh Routing Chip has been used in network

design for the Intel Paragon commercial supercomputer.

The background provided in this chapter was intended to introduce the reader to the con

cepts used in our Perfonnance Evaluation Environment for Multicomputer Interconnection Net

works presented in the following chapter.

(West)

(North)

(South)

To or from the
local node

(East)

Legends:

IC: Input Controller

FB: Flit Buffer

Figure 9. The structure of a Mesh Routing Chip [1].

28

CHAPTER IV

PARSIM COMMON ENVIRONMENT

Methodology.

The methodology that we propose for designing performance optimized computer systems

is based on software tools for perfonnance monitoring and evaluation of parallel programs. We

use a software environment to evaluate perfonnance of hardware designs. A heart of such a sys

tem is a simulator modeling a hardware design under development. A simulator executes

assembly language instructions, and provides access to performance monitors from user's code.

Upon detection of events specified by the user appropriate data traces are collected during the

simulation run. After the simulation data records are reduced and analyzed using perfonnance

analysis module. The analyzed data can then be visualized with a set of graphical displays.

Key features of our methodology are "plug and play" simulation and modeling hard

ware/software interaction during the process of hardware design. A perfonnance evaluation

system can be used to solve many design problems with different simulators, as long as the for

mat of collected data remains the same. A preprocessor must be customized to support lan

guage semantics required by a chosen simulator, or a compiler has to be provided. The simula

tors that can be used in the performance evaluation system must provide the ability to execute

code. The ability to use different simulators with the performance evaluation system gives the

user flexibility to configure the system for required functionality, accuracy and simulation per

formance. User code serves as a base for evaluation of hardware. Program performance gives a

designer information about the efficiency of modeled hardware. Hardware behavior can be

monitored with respect to different types of application programs.

30

Investigation of interaction between hardware and software on a hardware design stage is

not a common approach. Most existing hardware models interface with user on a level of bus

transactions, specifying what kind of access is to take place (data/code read/write). Data traces

of such kind are hard to obtain from real applications. Therefore, observation of the impact of

real software applications on a hardware design is impossible. The simulation approach that we

use in our methodology supports program execution on a higher, instruction level instead of the

level of bus transactions in a computer system. This kind of simulation approach for perfor

mance evaluation is an overlooked area relative to literature.

We have created a prototype perfonnance measurement environment for designing multi

computer interconnection networks. The system, called the Parsim Common Environment

(PCE), consists of an instrumented network simulator, a perfonnance instrumentation system

for application programs, and performance analysis and visualization modules. A block dia

gram of PCE is shown in Figure 10. All parts of the system are integrated into a graphical user

interface.

To conduct a perfonnance experiment the user first needs to prepare an application pro

gram to be executed by the simulator. The program must be annotated with the perfonnance

measurement points for specific events to be monitored during the simulation. The preprocessor

converts the annotations into perfonnance monitoring code. Then the compiler translates the

program into assembly language code. The simulator executes a program and outputs data into

a file. Collected data traces are then analyzed with respect to the monitored events and specified

functions are performed on the data traces. Analyzed data are presented using visual displays.

Parsim simulator is intended to model small and medium size interconnection networks

(up to a thousand nodes). Simulations of larger networks is very time consuming. To predict

perfonnance of large networks (massively parallel processors - thousands of nodes) one would

need to replace Parsim with a less detailed simulator that would require less computation time.

r------------

PROGRAM
PREPARATION

r------------
1
I
I
I

: DATA

: COLLECTION
L-----------r------------

DATA
PROCESSING

-----r----annotate
applicati

------------,
on program

Preprocessor
(pre)

instrume1 nted
.on program

0
applicatic

Compiler
(cpl)

assembl)
------ ------------ ------

II

Simulator
(psim)

data traci
------ ------------ ------

Data analysis
(analyze)

analyzed
, traces

Visualization
(plot_create)

graphic a
I

I
code 1 ____________ ..J

------------,
I
I
I
I
I
I
I

S I ____________ ..J

------------,

presentation .
·------• __ of .data ____________ ..J

Figure 10. Block diagram of the Parsim Common Environment

31

One would also need to be careful when selecting perfonnance data for collection. Since large

simulations tend to produce huge volumes of data it is necessary to reduce trace records to a

representative set beforehand, so that the storage capacity is not exceeded during the simulation

run.

History

PCE is the result of over two years of work by a number of people at Portland State Uni-

versity and is still in progress.

32

The simulator itself was designed and written by B.J. Porcella using the C programming

language and an object-oriented approach. At this point the author of this manuscript joined the

project The initial tests and validation experiments were carried out by Anna Kolinska and

Pradeep Rhagavendra. Simple test programs and later on more sophisticated application pro

grams stressing the network communication load have been written in assembly language. The

amount of work needed to develop these programs has led to the specification of a high level

structured language supporting message passing paradigm, and the development of a compiler.

The compiler was designed and written by BJ. Porcella using the C programming language. It

made the development of application programs relatively easy.

Subsequently we decided to create a perfonnance monitoring and visualization environ

ment for our simulator. Anna Kolinska designed and implemented the preprocessor instrument

ing application programs. She wrote it in the C++ programming language using object-oriented

approach. Anna also developed the prototype command line perfonnance analysis and visual

ization system. This system was initially written as a set of C-shell, awk and sed scripts. The

visualization of analyzed data was implemented using the gnuplot utility. In the current perfor

mance analysis modules functions written in awk language have been replaced by code written

in the C++ programming language.

Anna Kolinska also designed the graphical user interface and supervised Doug Huang,

who implemented it using Tel and Tk programming system for developing windowing

applications [26]. Anna supervised work on the PCE interface and tested its functionality, struc

ture and consistency on each stage.

The Parsim Common Environment is still under development Recently we decided to

add new features to the simulator. Work is being done to support torus connections and virtual

channels. Preprocessor implementation has been finalized, we do not predict any changes in the

near future. In the data analysis module we plan to add more statistical functions to evaluate

33

collected data traces.

The graphical user interface is the area of intensive work for last several months, and is

still in the early stages of development Basic functionality is available now, but there still

remains a lot of wmk to do to make the interface flexible. We plan to provide a separate analy

sis menu to access data traces from previous simulations and perform their analysis at a later

time. Currently data analysis is tied to the simulation so that collected data have to be immedi

ately analyzed. Recently, we have incmporated a plot window into our environment. It sup

ports a very simple set of display features now, and more functionality will be added in the near

future. Using the plot window we can generate two-dimensional displays. In the future we plan

to add more sophisticated display methods such as 3-dimensional graphs and performance

meters.

PARS IM.

PARSIM is a network simulator for message passing architectures. It has been developed

at Portland State University by Porcella et al (27]. It supports the k-ary n-cube family of net

work topologies. A single node in the mesh network simulated by Parsim is presented in Figure

11. The current router design is based on the Mesh Routing Chip. The network uses the

packet-switched transport mechanism. The routing is detenninistic: dimension-order, wonnhole

routing. There are two unidirectional channels in each direction (network channels). There is a

buffer associated with each input channel. The buffer is a FIFO queue (first in first out). PE

(processor) and a router are connected by a specified number of channels (so called PE chan

nels).

The user may set:

• router delay - a delay associated with network channel buffers;

• PE channel delay - a delay associated with the input buffer from PE to the router,

PE

PE channels

FIFO's

I'] - =t- - - - -:_-:.-:. ~ ~ $... _.,,-' , ~~ ,,

,, ,, ,,

...... : ... ",""
~

\
\
\
\

_.-

\
.l

_ , - , - - NET channels

Figure 11. A node in Parsim simulator, for mesh configuration.

• operating system overhead - time that processor needs to issue a message;

• number of channels between a PE and a router;

• size of FIFO buffers;

• message length;

• network configuration.

34

Input to the simulator is the application program in the PMS format [27] (a low level

assembly language supporting the message passing paradigm). In the application program the

user configures the network using predefined configuration strings. To relieve the user from the

difficulties of programming in a low level language, a structured language has also been defined.

The compiler translates files from the structured language into assembly language. The simula

tor supports a SPMD model of programming: Single Program over Multiple Data streams. In

this model each node executes the same program, but with different data sets. A node may be

excluded from executing selected parts of the program by conditional statements. For program

development a simple debugger is provided.

The simulator contains several monitoring features. At any given time in the program user

may access registers keeping performance data.

35

Such registers are:

• timer - keeps time in each node;

• rec_lat - keeps the latency of the most recently received message at each node;

• nbr_nodes - keeps a number of nodes configured in the network;

• my _node - keeps the identification number of a given node.

Preprocessor.

The preprocessor plays a significant role in Parsim Common Environment. It is capable of

inserting perfonnance monitoring code into application programs. Since we estimate the perfor

mance of a given network configuration by measuring perfonnance of application programs,

preprocessor capabilities need to include collecting perfonnance data for specified regions of

code. Such data might be the time needed to execute a given instruction or subroutine, the num

ber of times the subroutine has been called, or the value of specified variable at any given time.

To support such monitoring capabilities we have defined six event primitives that may be

used for program instrumentation. The user annotates a program with flags indicating the

beginning and end of a given event, and the type of infonnation to be collected. The flags are

used to mark a region of code in which perfonnance monitoring will take place. We will refer

to the part of code marked by the flags as the "monitored code".

The six available event primitives are [28, 29]:

1. duration - time that is needed to execute monitored code,

2. difference - difference between values of a specified register (variable) at the end

and at the beginning of the monitored code,

3. accumulator - the value of a specified register is added to the accumulator each time

an instruction changing value of that register is executed within the monitored code,

36

4. counter - count of the number of times the monitored code is executed, or count of

the number of times a specified instruction has been executed, or count of the num

ber of times a specified register has changed its value in the monitored code,

5. value - the value of a given register as a function of time,

6. user defined - actions to be taken upon detection of a given event are defined by the

user in the fonn of a macro. A monitored event may be the execution of a given

instruction or the change of a value of a specified register.

The user needs to indicate the start and end of a chosen event in the application program.

The preprocessor copies code from the input to the output file inserting monitoring code in the

specified parts of the program. The simulator treats annotations as comments if the preproces

sor is not executed on the annotated program before starting simulations. Generally monitoring

flags are of the following format:

!c <EVENT_TYPE> <START/STOP> <EVENT_NAME> <REGISTER> comment_field

where:

!c - indicates a monitoring flag.

EVENT_ TYPE - is a type of event to be monitored, and may be one of the following: DU,

DI, AC, CO, VA, MA indicating duration, difference, accumulator, counter,

value, or user defined, respectively.

START/STOP - START indicates start of the monitored event, STOP indicates end of the

monitored event.

EVENT _NAME - name of the monitored event: a string defined by the user.

REGISTER - register value to be collected during the event.

comment_field - user comments (optional).

The Appendix contains example programs with inserted monitoring flags.

37

Trace records generated during simulation are of the following format:

<EVENT_ID> <MY_NODE> <REG_ VALUE>

where:

EVENT_ID

MY_NODE

REG_ VALUE

- indicates the type of event and its number (maps to the name of the moni

tored event) for which the data trace record has been collected;

- which node of the system the data trace belongs to;

- value of the register that has been monitored.

With duration events, a time stamp is collected at the beginning of the event (when the

start flag is detected) and at the end of the event (upon detection of the stop flag). The data anal

ysis module is responsible for extraction of the duration of each event from the data traces (dif

ference between the value of timer at the end and at the start of event).

For difference events a value of a register specified in the REGISTER field is collected

every time the program approaches start or stop flag. When timer is specified as a register value

to be collected, duration and difference types of event are equivalent. The difference between

the values is obtained during the analysis of data traces. Any register value may be collected.

With accumulator events, the user may keep track of the incremental changes of a speci

fied register in the specified code block (marked by the start and stop flags of AC event). Each

time the register value changes in the specified region of code it is added to the accumulator.

The final value of the accumulator is output at the end of the program. If timer is specified as

the register to be accumulated, its value is simply moved to the accumulator, instead of incre

menting it. This is because timer register is incremental in nature. One data trace is output from

each node at the end of program for accumulator type of event

Counter event allows the user to keep track of the number of times a specified event has

occurred in the region of code marked by the start and stop flags. The events counted may be:

38

• number of times a specified register has changed its value (if the REGISTER field contains a

valid register),

• number of times a specified instruction has been executed (if REGISTER field contains a

valid instruction),

• number of times a specified region of code has been executed (if REGISTER field is empty).

The final value of the counter is output at the end of the program.

With user defined events we need to provide descriptions of actions to be taken upon

detection of a specific event during program execution. These actions are defined in a macro

incorporated at the end of the application program. Macros give a flexible way to create sophis

ticated performance measures. Detailed information about user defined events is available in

[29].

There are two default events available via a command line option from the preprocessor.

These are:

- default execution time - execution time of a given program;

- default latency - average message latency in a program.

Data traces for these events are output to the file once in each node at the end of a program.

When used, monitoring flags are automatically inserted into the program, and then replaced by

corresponding monitoring code.

Creating and Instrumenting Application Programs

An application program has to go through several preparation steps before it can be

executed by the simulator as shown in Figure 12. The user is responsible for writing a program

and annotating it with performance monitoring flags. The preprocessor inserts monitoring code

into the program. Then the program is compiled into the assembly code acceptable by the simu

lator.

USER

edit, write program

.cpl

---------, __ ~o.!.".P~I'.. _____ - - - - - - I -run-plipfoCCsSor : r
I

.cpl

translate code to pms format

, 1 .pms
1 L------------------&------------------J

SIMULATOR

Figure 12. Program preparation for Parsim.

Simulation Environment

code in cpl
format

instrumented code
in cpl format

assembly language
code

39

The simulation environment is described by the setup file <pro-

gram_.file>.alter.<setup _file>. The file contains parameters and the configuration of the net

work. One of the parameters may be varied to indicate that a set of simulations is to be per-

formed. Data analysis may be made with respect to the varied parameter. If none of the param-

eters is varied, a single simulation is performed.

Data Analysis.

Data analysis modules extract the data traces for a specified event from a data file created

during simulation. The user chooses a function to apply to traces characterizing a given event.

The function is applied to the data and the result is stored in the fonn required by the visualiza-

tion module. Each event type has a set of functions associated with it The chosen function and

the type of simulation experiment (single simulation or a set of simulations with a varied param-

eter) determine the nwnber of data files created.

40

Supported functions are:

• f max' f avg' f min' f accumulated:

The data for a given event are evaluated and maximum, average, minimum or accumulated

value of the traces is collected in the output file. If a single simulation is perfonned, the

functions output just one value. If a set of simulations is performed (with varied parameter)

the collected data are the function of a varied parameter of a simulation.

• f max(proc_num), !avg(proc_num), f min(proc_num):

For a single simulation the analyzed data are a function of a processor number in the net

work. The output of the analysis is collected in a single file. For a set of simulations a set of

output files is created, one file for each instance of a varied parameter of simulation. Data

collected in each file are a function of a processor number in the network.

• fmax(ev_num), favg(ev_num), fmm(ev_num):

The argument of these functions is the occurrence number of a specified event. For example,

if the program executes a given part of program in a loop, we can easily obtain the data spe

cific to each loop iteration by using the above functions (with the assumption that we set a

monitoring probe inside a loop). If we perfonn a set of simulations with a varied parameter,

a set of data files is generated. For a single simulation experiment we obtain one output file.

• value(time)

The function is available for events of type value and for user defined events. The data gath

ered in the output file are just the recorded values of a given register as a function of simula

tion time. A separate data file is created for every processor in the network. For a single

simulation experiment we obtain as many files as there are nodes in the network. If a set of

simulations with varied parameter is performed, we obtain a set of output files for every vari

able of simulation.

Detailed description of data analysis stage is provided in [30].

41

Visualization of Perfonnance Data.

Data traces obtained from the analysis stage are gathered in a directory (./PLOT}, which

is a subdirectory of the simulation directory (the one in which the application program is

stored). The experiments that generated the files are listed in the file: ./PLOf/PLOT_INFO.

The file name and the PLITT _INFO file give the user all the information about the contents of

the other files. We do not force any specific display configuration for a given event or function

chosen. Instead, the user is given the complete flexibility to configure displays generated during

simulation and analysis deciding what files or file sets are shown together in one plot window.

The user selects data files to be displayed from a file browser of graphical user interface.

Graphical User Interface.

All parts of the Parsim Common Enviromnent are integrated in the graphical user inter-

face. The main window of PCE is shown in Figure 13.

-
~~ PCE
File Compile Simulate Plot

Parslm Common Environment I
pee>

~ -
r~ - ~ Simulate

Simulate Measure
Run Cancel Mode ,....

SENDS Application program: Configuration of the network:
LATENCY _REC

dumb K-Ary I 2 I AFT_REC
BEF_REC Save setup In: N-Cube I 2 I
DEFAULT_REC_MSG set1 Simulation variables: DEFAULT_LATENCY
DEFAULT_EX_TIME VARY system overhead I 11

Measure router delay I 4 I
None fHo size I 4 I

OK Cancel BACKGROUND I of PE channels I 11
I

+Show result after simulation message length 11s 1
I

I

Figure 13. Graphical User Interface for PCE.

42

In PCE an editor is available for code development and instrumentation. The user can invoke

the editor from the File menu option of PCE (Figure 13). The Compile option performs inser

tion of monitoring code and translation to the simulator input fonnat. However, the user does

not need to separately compile programs before running the simulator, because compilation is

always perfonned at the start of the simulation. The compile option is available for debugging

putp0ses, and is useful for code instrumentation. After compilation the user may view an

instrumented program (with the extension .pre) to check its correctness.

The Simulate window (opened in Figure 13) allows the user to specify the topology and

design parameters of the network. The user needs to set the design variables.of the network and

its configuration in the Simulate window. The variables set in the interface are stored in the

setup file *alter*, that is read by the scripts perfonning the simulations. Values given in the

application file are overwritten by the values specified in the user interface. A VARY option

gives the flexibility to specify a set of experiments to be performed. A BACKGROUND option

is provided for simulations of large networks, which are usually very time consuming.

The user may specify which event traces to analyze from the Measure menu in the simula

tion window (Simulate Measure window in Figure 13). Analysis will be perfonned right after

the simulation run finishes. The event browser from the Simulate Measure window shows

events that can be analyzed. The names directly correspond to the event names given by the

user to monitoring flags in the application program.

The data files that are obtained after finishing the analysis stage are ready for visualiza

tion. Menu option PLOT opens a file browser, from which user can select files to display. An

example PLOT window with simple results of simulation is shown in Figure 14. Our system

provides two-dimensional displays of performance data. The graphical window can be written

into a specified postscript file.

.!J plot

You can sweep out a box to zoom In by clicking with the left
button and dragging the pointer. To restore the original view.
simply cllck on the middle button. Clip right button will get
screen dump In postscript format.

Hit the II button to access file

I

QI

=· I

I

Event DEFAULT_EX_TIME File: dumb set1

1 z I

proc_num

OCH_1

Figure 14. Plotting results with PCE.

Data Storage - Directory Structure

43

Every simulation experiment or set of experiments generates a directory structure in which

data traces are kept An example directory structure is shown in Figure 15. The names of files

the user specifies in the simulation window are used to generate the name of the directory. If a

single experiment is perfonned, and the application file name is dumb, and the name of a config-

ured setup for simulation is called setl, then the directory containing data traces for this simula-

tion will be called: dumb.ONE.set]. Similarly, when VARY option is chosen, the directory will

be named: dumb. VAR .setl. We will refer to these directories as the trace directories.

On the same level as the trace directory, there is an instrumented application file,

dumb.pre, a list of events monitored during simulation, dumb.event_info, a configuration setup

file generated by the simulation window, dumb.alter.set], and an assembly language input file to

the simulator, dumb.pms.

dumb.ONE.sett

Ldumb
dumb.alter.sett

dumb
dumb.alter.sett
dumb.alter.set2

dumb.pre

dumb.pms
dumb.event_info

dumb.V AR.set2

Ldumb

dum b.alter.set2
dumb.event_info dumb.event_info
d~ b.out.duration_f_avg_proc_num dum b,:.o;iLVar:O~Z

HEADER ... dumb.out_ var.1.Z
plots -

I

I
I

I ~/-
I

dumb.out_ var.userdef_f_avg
L HEADER ,'

I

plots 1
1

~
Figure 15. Directory structure generated by PCE.

PLOI'S

L PLITT INFO

I
I

-
,'symbolic links

44

Underneath the trace directory there are data traces collected during simulation and subdi-

rectories for each event analysis. Each subdirectory contains a file HEADER with information

about the data analysis performed, and a plot subdirectory containing analyzed data traces. All

data traces are stored in compressed fonn to save disk space. Since the data files prepared for

visualization are not easily accessible (are stored deep in the directory structure), we provide an

additional subdirectory PLOT underneath the trace directory. The PWT directory contains

links to all the analyzed data traces. It also contains the file PWT _INFO that describes the

experiments in which data files have been generated. The directory PWT is accessed from the

PCE.

45

COMMENTS ON THE STRUCTURE OF PERFORMANCE EVALUATION TOOLS

PCE is a prototype perfonnance evaluation tool for hardware design. Although it provides

only basic functionality (visualization displays are still in the development stage), it has already

helped us solve a number of problems. An example problem for network design is discussed in

ChapterV.

A generic performance evaluation tool for designing hardware consists of a part that is

strictly dependent on the design and a part that is independent. Simulator and perfonnance

instrumentation depend on a design, and need to be developed for a hardware design of interest.

Therefore, our simulator may be replaced by any simulator of specific hardware. However, such

a simulator must provide perfonnance data of interest We solved the problem of accessibility of

perfonnance data by providing additional registers to keep the required infonnation. Applica

tion programs need to be instrumented with perfonnance monitoring code. Depending on the

language semantics the measurement flags need to be translated to a specific fonnat. Also

events of interest may differ depending on the design problem. To provide flexibility of defining

the actions to be taken upon detection of a given event, we provided a user defined event option

in our instrumentation tool.

Data analysis and visualization are usually independent on the design problem. To pro

vide data analysis and visualization tools we may either develop our own tools or use tools that

are already available. The last option sounds very promising, since it does not involve any pro

gramming overhead. However, to be able to use existing tools, we must provide data traces that

will have the fonnat acceptable by a chosen tool. Hence a simulator must be able to generate

such a data fonnat. The user may also decide to provide data analysis tools and reuse only visu

alization tools. This approach still gives the flexibility of having various display options avail

able, while perfonning required analysis, that may not be available in existing tools. Figure 16

shows the parts of performance evaluation environment, dividing it to the design dependent and

design independent part.

r--------------------------, r-------------------------,
I I REUSED CODE I

Performance
strumented cod Simulation

I I I
I I I

I , : J ~I n~t~ ~Mlv~i~ 1-J Visualization I :
I
I

------~-----------J

I

I Data analysis l :
1 NEW DESIGN DEPENDENT CODE 1

L---~---------------------------------------~ format

Figure 16. Perlonnance evaluation envirorunent, opportunities to reuse existing code.

46

The problem that may discourage a software engineer from developing perfonnance evaluation

environment, may be the fact that there exists no standard format for data traces for the tools

that are available [31]. Hence, once the visualization envirorunent is chosen, it cannot be

replaced by any other tool without modifying all other components of the system. A thorough

examination of software packages needs to be done before selecting a specific tool.

We have developed all the parts of perfonnance evaluation environment primarily to have

a unifonn tool for development of interconnection networks. Also, we underestimated the

amount of work involved in development of visualization tools. That is why for future work we

plan to develop a system that could use sophisticated visualization methods, reusing already

existing software packages.

CHAPTERV

NETWORK DESIGN EXAMPLE

Introduction.

In a popular model of an interconnection network, each routing element contains a set of

channels for communication between nodes, as well as for processor-router communication

within a node. Usually, channels are unidirectional: there is one channel ingoing to the router,

and one outgoing from the router in each direction.

There are two sources of delay in the network:

• router delay - a message is blocked in the router waiting for the switching element

to establish appropriate connection between input and output channels;

• network contention - a message is blocked in the router due to a message transfer

on the output channel.

Each input channel to the router has a FIFO buffer associated with it When blocked, a message

is fully or partially stored in the FIFO buffer depending on the message and buffer sizes.

We refer to the channels between a processing element and a router within a node as PE

channels. The channels between neighboring nodes are called net channels. The process of

sending messages by the PEs is also referred to as generating messages. The simulation model

of a multicomputer node is presented in Figure 17.

When a processing element generates a message, it proceeds through the PE channel and

is temporarily stored in the PE buffer waiting for the connection with the output channel. A

processor cannot generate a new message until the previous message leaves the PE buffer and

proceeds towards its destination.

,,
,, ,, ,,

,,

PE channels

,,

PE

,,
,, ,, ,,

,,

FIFO's

I ·1 - =t - - - - - - -:. ~ ~ • ~ _ ... _ --:.,,,~?
,, ,,,, ... ,. ,.

--

,,",",.
<,~/

\
\
\
\
\
.l

_ - - - - - NET channels

Figure 17. The model of a multicomputer node.

48

Hence, it seems reasonable to provide multiple PE channels to better utilize the intercon-

nection network. While one message is blocked in the PE channel because the output channel

in dimension X is busy, for example, another message can be generated and successfully pro-

ceed in dimension Y. This way messages would be able to reach their destinations earlier, and

the overall execution time of a program would be shortened, thus improving system perfor-

mance. Having as many PE channels connecting the router and processor as there are dimen-

sions in the network makes intuitive sense.

In the following example we will examine the behavior of a mesh-connected network for

different numbers of PE channels. We will observe the message traffic, trying to find the num-

ber of PE channels that gives the best performance of our application programs.

We have selected application programs that generate specific message traffic in the net-

work. First we examine performance for a simple low contention case. Then we stress the net-

work with a heavy message traffic, examining performance for high contention conditions.

49

Application Programs.

We have investigated the problem with two sets of application programs:

1. A simple program, in which one node sends a message to several destinations (multicast).

In this example the network is almost empty and there is no contention when the network

with one PE channel is used. For multiple PE channels low contention is created in the net

work. This shows the performance of the network under low traffic conditions for different

numbers of PE channels.

2. An application program solving the N-body problem. In this example a lot of traffic is gen

erated in the network in a short period of time, causing significant contention. This shows

the performance of the network for heavy traffic, and contention for different numbers of

PE channels.

Network Configuration.

Experiments have been performed for different sizes of the interconnection network con

figured as a mesh. Parameters of the network were set as follows:

system overhead= 1 (time the processor needs to generate a message);

FIFO buffer = 4

router delay = 4

message length = 16

(size of FIFO buffers);

(time needed for the router to establish connection between input and out

put channels);

We have chosen a very small system overllead time to expose the time that messages spend in

the network. Messages are short, as in the fine-grain programming model. All buffers in the

routers are of the same size to reduce router cost. Router delay is set to the minimum time

required for the chosen size of FIFO buffers. A FIFO can keep flits of only one message at any

50

given time and one unit of time is needed to advance a message flit by one position in the FIFO.

NETWORK PERFORMANCE WITH LOW CONTENTION

For this set of experiments we analyze a 16 node mesh network (4x4) as shown in Figure

18, with varying number of PE channels.

Figure 18. 16 node Mesh configuration (4x4).

In the experiments, specified nodes send several messages, and the destination nodes receive

them. We analyze the timing of each message by showing the times when the head of a mes

sage and the tail of a message reach certain points in their routes toward the destination. The

word message refers to a single packet.

The receive time of a message and message latency are two basic performance metrics that

we extract from data traces collected during the simulation of the application programs. The

receive time of a message is defined as the time at which the tail flit of the message reaches its

destination. Message latency is defined as the time that it takes for a message to get from its

source to its destination. In other words, it is the time calculated from the moment when the

first flit of a message is generated in the source PE until the last flit is consumed by the destina

tion PE. Both perfonnance measures depend on several factors:

• message length,

51

• distance between source and destination,

• delay of router buffers (PE and network),

• operating system overhead,

• network contention.

Network contention is a significant factor in the timing of the messages. If there is no

contention in the network, the following equation is valid [32]:

latency= os_overhead +number _of _FIFO's_to_wait x router _delay+ message_length

number _of _FIFO's_to_wait =distance+ 1

Table I shows the analytical calculation of message latency for specified distances between the

source and the destination.

Distance
1
2
3

TABLE I

ANALYTICAL CALCULATION OF MESSAGE LATENCY
FOR NO CONTENTION NETWORK

Router Delay OS Overhead Message Length
4 1 16
4 1 16
4 1 16

Latency
25
29
33

Message pattern 1 presented below shows that the experimental results match the expected ana-

lytical results (Table II).

Sending Messages.

Message Pattern 1

Consider the detailed timing for messages generated by node 0 to nodes l, 2 and 3 as

shown in Table II. In Table II the following symbols have been used:

MSGi - message sent to node i,

H - head flit of a message,

T - tail flit of a message,

I - time when the message was generated,

Rec. time - receive time of a message.

52

Node i - time spent in the buffer of node i, caused by router delay (time spent in the FIFO

because of blocking is not indicated),

Ch. i - j - time when the network channel between node i and j was busy because of message

transfer.

I

MSGl H 0
T

MSG2
H 22
T

MSG3
H 44
T

TABLE II

TIMING FOR 3 :MESSAGE MULTICAST FOR 16 NODE
:MESH NETWORK WITH 1 PE CHANNEL.

NodeO Ch. 0-1 Node 1 Ch. 1-2 Node2 Ch. 2-3 Node3 Latency
1-5

5-25
5-9

25
17-21 21-25
23-27

27-47
27-31

31-51
31-35

29
39-43 43-47 47-51
45-49

49-69
49-53

53-73
53-57

57-77
57-61

33 61-65 65-69 69-73 73-77

Rec. time

25

51

77

The message is generated by the source PE at the time indicated in column I and is con-

sumed by the destination node at time when the tail of a message finishes its route (after waiting

in the router buffer in the destination node).

A channel between a source and a destination node is free when the input buffer of a desti-

nation node is empty. Looking at the utilization of the channel between node 0 and 1 we notice

the time periods when the channel is busy (including the time needed to clear the input buffer in

node 1). The timing is:

5-25

27-47

49- 69

53

Therefore, from Table II we see that two ticks were actually wasted between sends of subse-

quent messages.

Let's now consider the impact of the number of PE channels on network perfonnance.

Table III shows the timing for messages sent through the 16 node mesh network with two PE

channels.

I

MSGl H 0
T

MSG2 H 0
T

MSG3
H 22
T

TABLE III

TIMING FOR 3 :MESSAGE MULTICAST FOR 16 NODE
:MESH NETWORK WITH 2 PE CHANNELS

NodeO Ch. 0-1 Node 1 Ch. 1-2 Node2 Ch. 2-3 Node3 Latency
1-5 5-25 5-9 25 17-21 21-25
1-5 26-46 26-30 30-50 30-34

50 38-42 42-46 46-50
23-27 47-67 47-51 51-71 51-55

55-75 55-59
53 59-63 63-67 67-71 71-75

Rec. time

25

50

75

Referring to the two channel example (Table III) we see that the additional channel created con-

tention in the network, since message two was blocked in the router buffer by message one.

Message two could not proceed through the channel until message one reached its destination,

thus gaining additional latency. Message three however, could be generated right after message

one left the input buffer, thus being- ready to proceed immediately when the channel was freed.

This way the operating system overhead time has been overlapped with the time the message

had to wait for a free channel, while in the one PE channel model, operating system overhead is

added to the total time needed to traverse the network. Hence we gained two ticks of overall

receive time, due to the operating system overhead.

In our experiments we have set the operating system overhead to be very small, consider-

ing only the message latency that is due to the routing scheme. In real systems, operating sys-

tern overhead is much higher than message latency [33], and the benefit that we can get from

overlapping operating system overhead is very important when optimizing system perfonnance.

54

In the two PE example messages generated by the processor of node 0 keep waiting in the

PE buffers ready to start traversal whenever the network channel becomes idle. However, the

messages experience additional delay, because they are generated much earlier than they would

be in the one PE model. The wait time in the buffers adds to the overall message latency.

Message Pattern 2

Let's now change the order of sending messages through the network and examine the

impact of routing algorithm on network perfonnance. In the modified algorithm node 0 sends

the messages in the reverse order, to node 3 first, then to node 2 and node 1. Analysis for one

and two PE channel model is given in tables IV and V.

I

MSG3
H 0
T

MSG2
H 22
T

MSGl
H 43
T

I

MSG3 H 0
T

MSG2 H 0
T

MSGl
H 22
T

TABLE IV

TIMING FOR 3 MESSAGE MULTICAST FOR 16 NODE MESH
NETWORK WITH 1 PE CHANNEL (REVERSE ORDER)

NodeO Ch. 0-1 Node 1 Ch. 1-2 Node2 Ch. 2-3 Node3 Latency
1-5

5-25
5-9

9-29
9-13

13-33
13-17

33 17-21 21-25 25-29 29-33
23-27

27-47
27-31

31-51
31-35

29
39-43 43-47 47-51
44-48

48-68
48-52

25
60-64 64-68

TABLEV

TIMING FOR 3 MESSAGE MULTICAST FOR 16 NODE MESH
NETWORK WITH 2 PE CHANNELS (REVERSE ORDER)

NodeO Ch. 0-1 Node 1 Ch. 1-2 Node2 Ch. 2-3 Node3 Latency
1-5

5-25
5-9

9-29
9-13

13-33
13-17

33 17-21 21-25 25-29 29-33
1-5

26-46
26-30

30-50
30-34

50 38-42 42-46 46-50
23-27

47-67
47-51

45
59-63 63-67

Rec. time

33

51

68

Rec. time

33

50

67

55

As in Message Pattern 1 the receive times of messages are similar for one and two PE

channel configurations. However, comparing data for the same number of PE channels in Mes-

sage Pattern 1 and 2 we obtain much lower receive times in Message Pattern 2. This is due to

the modified routing algorithm:

68 ticks (Table IV), versus 77 ticks (Table II),

67 ticks (Table V), versus 75 ticks (Table III).

From tables 11-V we observe that the routing algorithm can be improved by sending messages to

the furthest destinations first.

Message Pattern 3

Let's now consider the case where messages are sent in different directions: to node 1 and

4. The timing analysis for one and two PE channel models is presented in Tables VI and VII.

I

MSGl
H 0
T

MSG4
H 22
T

I

MSGl
H 0
T

MSG4
H 0
T

TABLE VI

TIMING FOR 2 MESSAGE MULTICAST FOR 16 NODE
MESH NETWORK WITH 1 PE CHANNEL

NodeO Ch. 0-1 Node 1 Ch. 1-4 Node4 Latency
1-5

5-25
5-9

25
17-21 21-25
23-27

27-47 27-31
25

39-43 43-47

TABLE VII

TIMING FOR 2 MESSAGE MULTICAST FOR 16 NODE
MESH NETWORK WITH 2 PE CHANNELS

NodeO Ch. 0-1 Node 1 Ch. 1-4 Node4 Latency
1-5

5-25
5-9

25
17-21 21-25

1-5
5-25

5-9
25

17-21 21-25

Rec. time

25

47

Rec. time

25

25

From the data shown in the Tables VI and VII we notice that the latency of messages for the two

56

experiments was the same, but the receive time for one PE channel model was much higher.

From Tables II-VII we observe:

• With the proper message distribution, we can improve receive time by having as many as

four PE channels for each router.

• Inefficient multicast algorithm causes, that we waste added resources.

We could improve multicast algorithm by:

• sending in different dimensions first,

• sending to the furthest nodes first.

To optimize program perfonnance we should use both improvements.

From the Message Patterns 1-3 we see that with additional PE channels latency of mes

sages was higher, but there was a good chance to improve receive time with the proper message

distribution. Therefore, latency alone is not a good performance measure. With the multiple PE

channels, latency does not reflect the actual contention level of the network channels. By

adding PE channels to the router we cause, that messages that would not be normally generated

until the channels get freed, now get generated early and wait in FIFO queue, ready to start their

routes whenever channels become available.

The benefit of having the multiple PE channels is the fact that the operating system over

head occurs while the network channels are busy, and messages cannot proceed. Therefore, the

operating system overhead of one message is overlapped with the time when another message

uses the channel effectively. Once the traveling message leaves the channel, the message just

generated can start its way through the channel without a delay.

57

Receiving Messages.

Message Pattern 4

To analyze network behavior from the point of view of receiving messages in the destina-

tion nodes for different number of PE channels consider the following situation: in a 16 node

mesh, node 5 receives 4 messages, 1 from each direction: from node 1, 4, 6 and 9 (Figure 19).

Timings for 1and2 PE channels are showed in tables VII and vm.

MSG4

MSGl

MSG6

MSG9

PE5
9 to 5

6 to 5
4 to 5

1to5

Figure 19. Message receive in 16 node mesh with 2 PE channels (node 5).

TABLE VIII

TIMING FOR RECEIVING 4 MESSAGES IN THE SAME DESTINATION
FOR 16 NODE MESH NETWORK WITH 1 PE CHANNEL

I Source Ch. Node5 Latency Rec. time
H 0 1-5

5-25
5-9

25 25 T 17-21 21-25
H 0 1-5

22-42
22-26

42 42 T 34-38 38-42
H 0 1-5

39-59
39-43

59 59 T 51-55 55-59
H 0 1-5

46-66
46-50

76 76 T 58-62 62-76

MSGl

MSG4

MSG6

MSG9

TABLE IX

TIMING FOR RECEIVING 4 MESSAGES IN THE SAME DESTINATION
FOR 16 NODE MESH NETWORK WITH 2 PE CHANNELS

58

I Source Ch. Node5 PE Channel Latency Rec. time
H 0 1-5 5-25 5-9 0 25 25
T 17-21 21-25
H 0 1-5 5-25 5-9 1 25 25
T 17-21 21-25
H 0 1-5 22-42 22-26 0 42 42
T 34-38 38-42
H 0 1-5 22-42 22-26 1 42 42
T 34-38 38-42

From the tables we see that the latency of every message is equal to its receive time.

When the number of PE channels increases, more messages can be accepted by the processor at

the same time, thus improving petformance. For two PE channels, two messages can be

accepted by a processor at the same time, decreasing the receive time from 76 to 42 ticks. Simi-

larly, for four PE channels node 5 would receive all the messages at time 25, with latency 25. If

we have more than four PE channels in the network, only four of them can do useful work.

Others just waste the resources, since there are only four network channels available. Average

message latency as a function of the number of PE channels in the network is presented in Fig-

ure 20.

Summary of Observations for Low Contention.

• From the point of view of inserting messages into the network, adding PE channels causes

higher latency. That happens because of the router-network bottleneck. With multiple PE

channels more messages are generated in a short period of time. The messages wait in the

PE buffers for appropriate network connections. Once the connections are granted messages

can immediately proceed towards the destinations. Therefore, messages can leave the source

nodes earlier than they would in the one PE channel network. However, they also spend

f_avg
55

50

45

40

35

30

25
I

Event DEFAULT_LATENCY File: dumb CH_ VAR

1.5 2 2.5 3
Number of PE Channels

4x4 +-

3.5 4

Figure 20. Average message latency for varying number of PE channels
when receiving four messages.

59

more time in the source node PE buffers because they are generated earlier and have to com-

pete for network channels not only with messages from neighboring nodes, but also with

messages generated by the local PE. Because messages are generated earlier than they

would be with the one PE channel network, they can start and finish their routes earlier, thus

improving network performance. Hence, latency is not a good measure for comparing per-

formance of networks with multiple PE channels. It only reflects the level of contention in

the network. A more accurate measure of network performance is the latency calculated

from the moment when the first flit of a message leaves the source node's router until the last

flit is consumed by the destination PE. However, such a measure is not supported by the

simulator. Therefore, we will continue to use our initial definition of message latency to

observe contention for different network configurations.

• From the point of view of receiving messages by the nodes, adding PE channels shortens

latency and receive time.

60

• The dominant factor determining network performance is the algorithm for distributing mes

sages through the network. To optimize performance, messages should be sent in different

dimensions. Messages that have the longest distance to traverse should be sent first

NETWORK PERFORMANCE IN PRESENCE OF HIGH CONTENTION

For this set of experiments we analyze 4, 16 and 64 node mesh networks. The application

program used the gravitational N-body problem [34, 35]. In this program each processor of a

network is modeling one "star" in the galaxy. Each star needs to calculate its location and

velocity based on the information about location of all other stars at each time step. Hence,

each processor sends a broadcast message to all other processors to distribute the infonnation

about star's location in the galaxy. Then it waits for messages from all other processors. After

receiving the required messages, each node computes a new position of its star in the galaxy.

Finally, the result of computation is broadcast, thus repeating the cycle.

The N-body application has been chosen for performance analysis of the mesh network

because of its parallel computational model. All processors are equally utilized in the network.

The amount of traffic that is generated in each iteration of the program causes quick network

congestion. There are 10 iterations of the broadcast-receive cycle in the program. In each itera

tion there are (N - 1) x N messages injected into the network, where N is the number of nodes

in a given network configuration.

The activities in the network are the following: in the first iteration all nodes start broad

casting messages at the same time. After the send activity is finished, each node starts receiving

the messages. When all the messages of a current iteration have been received, the computation

of a new star location is performed (a PMS wait statement is used for modeling the computation

time). Computation time is the same for every node in the network. After the computation

period, a new iteration begins with broadcasting messages again. The time that it takes to

execute one iteration of a program is different for each node, hence broadcast phases after the

61

first are not synchronized in all the nodes. The computation time is used to remove the mes-

sages of previous iterations from the network, starting a new iteration with an almost empty net-

work.

The communication model is based on a "dumb" broadcast algorithm, where nodes need

to generate as many messages as the number of destinations to be serviced. No copying in the

router takes place. The routing of messages is in dimension-order. The messages are dis-

tributed in a fixed order, first to node 0, then nodes 1, 2, ... , and N-1, where N is the size of the

network. A pseudocode description of the program solving the N-body problem is shown in

Figure 21.

configure_ network();

set_ wait_ time();

for (i=O; i < 10; i++) {

}

II Broadcast message

msg_counter = 0;

while (msg_counter < nbr _nodes) {

}

if (msg_counter != my_node) {
destination = msg_counter;
send (type, destination, length);
msg_counter ++;

}

II Receive messages

msg_counter = 0;

while (msg_counter < nbr_nodes) {
receive (type, source, length);
msg_counter ++;

}

wait(time); II wait models computation

Figure 21. Pseudocode description of N-body problem.

62

Node Execution Time.

We define node execution time as the time needed to execute an application program by

each node of the network. It is the same as the receive time of the last message received in a

program by a given node. For the first set of experiments, the computation time of each node

(modeled with wait statement) was scaled with the size of the network. The idea of scaling the

computation time was to completely clear the network from the messages sent in the previous

iterations of the program before starting new iteration. Therefore, for 2x2 mesh we set compu-

tation time to 256 ticks, for 4x4 mesh to 1024 ticks, and for 8x8 mesh to 4096 ticks. In the

experiment we varied the nwnber of PE channels in the network: I, 2, 4, 6 and 8. The program

was instrumented with default monitoring options: execution time and latency. Execution time

was collected in each node, and then the average for a given network was calculated.

Figure 22 shows the average execution time of a program for varied number of PE chan-

nels.

f_avg Event DEFAULT_EX_TIME File: dumb2x2 CH_ VAR
100000 c6 ____ e - - = - -1- - - = ¥ - - - - -1- - - - - m - - - - -1- - '

90000

80000

70000

60000

50000

40000

30000

20000

10000

2x2, 256 ticks +-
4x4, 1024 ticks + · ·
8x8, 4096 ticks -a- -

··········+······················+·····················+·····················

o--~--~~----------------------------~
1 2 3 4 5 6 7 8

Number of PE Channels

Figure 22. Average execution time for varying number of PE channels (scaled computation time).

From the figure we notice that the program executed much faster for smaller networks. There

are several reasons for that

63

1. Execution time depends on a number of messages generated by the program, which is given

by the equation:

nu_msgs = (n - 1) x n x I

where:

nu_msgs - number of messages created,

n - number of nodes in the network,

I - number of iterations.

According to the above equation, for 2x2 mesh there were 120 messages generated, for 4x4

mesh - 2400 messages, and for 8x8 mesh - 40320.

2. Size of the network: it takes more time to travel longer distances.

3. Computation time: its value is set proportionally to the network size.

We will show that for fixed computation time for all network sizes, the execution time is

still scaled with the network size due to 1. and 2. above. Figure 23 shows the execution time of

the program for fixed computation time of 256 ticks. This control experiment has been per

fonned to check if scaling computation time reduces contention in the network between itera

tions. From Figures 22 and 23 we see that the execution time obtained for the 8x8 mesh with

4096 ticks of computation time is approximately equal to the execution time obtained for the

8x8 mesh with computation time set to 256 ticks plus the additional time spent in the computa

tion phase ((4096 - 256) x 10). Therefore, we abort scaling computation time with network

size in further experiments. Thus, we reduce the overhead of preparing different versions of

application program for each network size for the simulations.

From Figures 22 and 23 we could reason that execution time does not depend on the num

ber of PE channels in the network. This is not exactly the case, because the differences are not

visible on a large scale. Figures 24, 25 and 26 show the curves from Figure 22 on separate

graphs. From the figures we see that execution time for a given number of PEs does depend on

f_avg Event DEFAULT_EX_TIME File: dumb 2x2
70000--~~...-~~--~~--~~--~~-.-~~--~~--

60000

50000

40000

30000

20000

10000

2x2, 256 ticks +-
.e ·C"X< - &::- - - -_ - - - a - - - - - - - - - - e - - - - - - - - - -"tx4, 2.Ju tic~ · + · ·
8x8, 256 ticks -e- -

··········+·····················+·····················+·····················

0---------------------------------------1 2 3 4 5 6 7 8
Number of PE Charmels

64

Figure 23. Average execution time for varying number of PE channels (fixed computation time).

the number of PE channels.

Figure 24 shows average execution time for 4 node mesh configuration, measured for 1, 2,

4 and 6 PE channels in the network. From the figure we see, that the best possible execution

time is achieved for 4 and 6 charmels. After minimizing the number of pins in the router chip,

the optimal configuration would be the one with four PE channels. We reduced execution time

by about 10% compared to the worst case (1 PE channel).

Figure 25 shows average execution time for the 16 node mesh configuration. For this net-

work, the best number of PE channels is two. For more PE channels, execution time is larger. It

is an illustration of the impact of the routing algorithm on the execution time. In the case of our

program, we pay more for bad routing while the messages are sent than we gain when receiving

messages by the nodes. Adding PE channels into the network actually worsens the perfonnance

of the program. For the best case (two PE channels) execution time is about 3% less than the

worst case.

f avg t
1

I
- 3400 .. I I ?Y? ?'ih 1

Event DEFAULT_EX_TIME File: dumb2x2 CH_ VAR

--~. _ _.:.:ricks +-
3350

3300

3250

3200

3150

3100

3050---------------------------------------~
1 2 3 4 5 6

Number of PE Channels

Figure 24. Detail of Figure 22 for 2x2 mesh and varying number of PE channels.

f_avg Event DEFAULT_EX_TIME File: dumb4x4 CH_ VAR
16050 4 I I I I I I I
16000
15950
15900
15850
15800
15750
15700
15650
15600
15550

4x4, 1024 ticks +-

15500-----------------_._ ____ _,_ ____ -'-----L------'
1 2 3 4 5 6 7 8

Number of PE Channels

Figure 25. detail of Figure 22 for4x4 mesh and varying number of PE channels.

65

Figure 26 shows average execution time for 8x8 mesh network. For this configuration, the

best number of PE channels is one. Let's analyze the behavior of a program for the 8x8 mesh.

The computation time was equal 4096 ticks. For comparison, a similar experiment has been

66

perfonned for computation time set to 256 ticks (Figure 27).

f_avg Event DEFAULT_EX_TIME File: dumb8x8 CH_ VAR
99500--

8x8, 4096 ticks
99000

98500

98000

97500

97000

96500'---
1 2 3 4 5 6 7 8

Number of PE Channels

Figure 26. Detail of Figure 22 for 8x8 mesh and varying number of PE channels.

f_avg Event DEFAULT _EX_Tll\.1E File: dumb 8x8
61000...-----..--

60500

60000

59500

59000

58500--
1 2 3 4 5 6 7 8

Number of PE Channels

Figure 27. Detail of Figure 23 for 8x8 mesh and varying number of PE channels.

67

From Figures 26 and 27 we see that the local minimum moved from 6 PE channels (Fig

ure 26) to 4 PE channels (Figure 27). This behavior may be explained by the changed message

traffic caused by shortened computation time. Times at which messages arrived to the routers as

well as times the messages were forwarded towards their destinations have changed. Also,

some nodes already started sending messages in next iteration while others were still receiving

messages from the previous iteration.

Summary of Observations about Node Execution Time

• Execution time is proportional to the number of messages generated by the program.

• Execution time is proportional to the size of the network (messages travel longer distances).

• From the perfonned experiments it is not clear how many PE channels should be used to

obtain the minimum execution time. Network performance is very sensitive to the message

traffic due to the inefficient algorithm for routing messages.

Message Latency.

Message latency is defined as the time period starting when a message has been generated

by the source node, and ending when the last flit of a message arrives at the destination node.

For this set of experiments the latency has been collected for each message. Also the average

message latency in each node has been collected using the default latency option of the instru

mentation preprocessor. Average message latency is calculated by summing the latencies of all

messages and dividing by the total number of messages in the network. Measurements of

latency have been perfonned for fixed computation time (256 ticks). Figure 28 shows the aver

age message latency for 4, 16 and 64 node mesh network.

Latency grows with the size of the network (messages have to travel longer distances).

Also latency grows with the number of PE channels in the network (messages have to wait

f_avg Event DEFAULT _LATENCY File: dumb 2x2
500 I I I I I I I I

2x2 +--...
4~,.+~-

450

400

350

300

250

200

15or ,,,a'
100 _.,'

,,' ,'

,,a'
,,

.,.'
a''

............. +······················+····

_, ... 1fx8 -a--

5~ r r... I ~ I ~ I j
2 3 4 5 6 7 8

Number of PE Channels

Figure 28. Average message latency for varying number of PE channels.

68

longer in the FIFO queues for this pattern of message traffic). Figures 29, 31 and 33 show the

latency of every message in the 16 node mesh network (1 point corresponds to I message). The

corresponding frequency distributions for message latency are presented in Figures 30, 32 and

34. Figure 29 shows the latencies for a network with one PE channel. The x-axis shows the

time at which a message was delivered to the destination, and the y-axis shows the latency of

that message. By subtracting the latency from the time at which message was received, we can

obtain the time at which the message was generated.

The density of points which have low latency (about 50 ticks) suggests that most messages

were received with similar delay. The x-axis values of points presented in the graph indicate the

times when the network nodes were actively receiving messages. In this experiment periods of

network inactivity indicate the end of receive activity and start of a new iteration of the program.

The messages are always cleared from the network before subsequent iterations start.

The data from Figure 29 have been transfonned into the frequency distribution graph,

shown in Figure 30. From Figure 30 we see that: 25% of messages had latency less than 32

Value
600

500

400

~ 0 300 0

8
200

100

0
0

Event LATENCY _REC File: dumb 4x4 CH 1

0 $

A.la·:
t 0

1~2~3~4~5~6~7~8~9~
Time

Figure 29. Message latency for 16 node mesh network with 1 PE channel.

Number of Msgs Distribution of message latency File: dumb 4x4
350--~~--~~--~~--~~------,.--~--,.-------,

0

300 0

0

250 ~o
200

150
0

100

CHl o

50 Ai I I 01 ~ht,000 4 0 I I

0 100 200 300 400 500 600 700
Latency

Figure 30. Distribution of message latency for 16 node mesh network with 1 PE channel.

69

ticks, 50% of messages had latency less than 37 ticks, and 75% of messages had latency less

than 48 ticks. The average message latency was 44 ticks. We will show how these data change

for different number of PE channels in the network.

70

Figure 31 shows the latencies for 16 node mesh with two PE channels. Comparing with

Figure 29, we notice that points are spread more unifonnly along the y-axis. That means, that

more messages had greater latency for two channels. However, not all the messages are

removed from the network before the start of new iterations. Some messages still travel towards

the destination nodes after other nodes already have finished computation phase starting a new

broadcast phase. Analyzing the distribution function (Figure 32) we see that: 25% of messages

had latency less than 40 ticks, 50% of messages had latency less than 55 ticks, and 75% of mes-

sages had latency less than 82 ticks. The average message latency was 66 ticks.

Value Event LATENCY _REC File: dumb 4x4 CH 2
600

500 l 0

400
8

300 I- ¢

i ¢

¢

- «->
200

100

o~~..._~-'-~--Lo..~_._~~~~"----"-----'---~

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time

Figure 31. Message latency for 16 node mesh network with 2 PE channels.

Similar graphs have been collected for the network with 4 PE channels. Referring to the

message latency graph (Figure 33), we see that network is not idle between iterations. The iter-

ations overlapped, due to the small computation time of 256 ticks. The network does not have

time to remove all the messages before new messages are created. Also latencies of messages

are greater than in the networks with one and two PE channels (Figure 29 and 31). That is natu-

ral, since messages wait longer in the buffers, ready for their turn to take over the channels.

Nwnber of Msgs Distribution of message latency File: dumb 4x4
350--~~-------------.-~~--r-~~-,-~~--.~~--,

300

250

200

150

100

50

CH2 <>

<>

<>

O'«k'ANI llR•*olo ool ol I I
0 100 200 300 400 500 600 700

Latency

Figure 32. Distribution of message latency for 16 node mesh network with 2 PE channels.

Value
600

500 ~ _!
400

300

200

100

0
0

<>

Event LATENCY _REC File: dumb 4x4 CH 4

• <> • <>
<1>

•
<1>

1~2~3~4~5~6~7~8~9~
Time

Figure 33. Message latency for 16 node mesh network with 4 PE channels.

71

From the distribution function (Figure 34) we see that: 25% of messages had latency less than

45 ticks, 50% of messages had latency less than 92 ticks, and 75% of messages had latency less

than 152 ticks. The average message latency was 113 ticks.

Number of Msgs Distribution of message latency File: dumb 4x4
350------------------,r------,r-------ir--------ir--------.

300

250

200

150

100

50

0
0

<>

<>

100

CH4 <>

200 300 400 500 600 700
Latency

Figure 34. Distribution of message latency for 16 node mesh network with 4 PE channels.

Summary of Observations about Message Latency.

72

From the analysis of the perfonned experiments we observe that for networks with several

PE channels:

• The maximum latency is higher,

• A greater percentage of messages have higher latency. For example, the 50% point on the

distribution graph is moving to the right on the x-axis for more PE channels, indicating that

the latency of the message that is in the 50th percentile is higher.

• Higher network contention causes message latency to grow. Network contention is a func-

tion of the number of PE channels, since more messages can be injected into the network in

a shorter time, causing messages to be blocked for the longer period of time.

To better understand latency as a measure of network perfonnance we perfonned a simpli-

fied experiment in which the network is empty. For this experiment, we used a 16 node mesh

network, varying the number of PE channels. We sent just one broadcast message from node 0.

73

As before, the algorithm starts sending messages to node l, then 2, ... 15. Similarly to the previ-

ous figures, we show the message latency versus time when the message is received. Figure 35

shows the latency for the network with one PE channel.

Value Event LATENCY _REC File: dumb4x4 CH_l
45-----.---.....----,----.-----,----r---..,,.---,

40
() ()

() () ()

35
() () () ()

30
() () ()

25
0 50 100 150 200 250 300 350 400

Time

Figure 35. Message latency for 16 node mesh network with 1 PE channel with no contention.

Figure 36 shows the latencies and execution times mapped to the specific nodes of the net-

work. We notice that latency values correspond directly to the distance the message has to

travel. We have six different levels of latency values, which is equal to the diameter of the net-

work. This simple correspondence of latency to distance is no longer the case for the increased

number of PE channels.

Figures 37 and 38 show the message latencies for a 4x4 mesh network with 2 and 4 PE

channels respectively. For the case when the number of PE channels is greater than one, the

number of different latency values is no longer equal to the diameter of the network. Instead,

there are as many levels of similar latency values as the number of PE channels per node.

74

LATENCY

i
45

LATENCY ___. 25 29 33

Figure 36. 4x4 mesh network with 1 PE channel with no contention: latency and execution time.

Value
65

60

55

50

45

40

35

30

25
0

Event LATENCY _REC File: dumb4x4 CH_2

¢

50

¢ <>

¢ ¢

() ()

() ()

100 150
Time

200

¢ <>

()

250 300

Figure 37. Message latency for 16 node mesh network with 2 PE channels with no contention.

75

Value Event LATENCY _REC File: dumb4x4 CH_ 4

llQ t I I I I I O

loo <> <>
<> <>

90 <>

so r <>
I <> <> <>

70

60

50 ~ <> 40

w <> <>
<>

20
0 50 100 150 200 250 300

Time

Figure 38. Message latency for 16 node mesh network with 4 PE channels with no contention

Network Activities.

To illustrate the network activities in the N-body application program, two configurations

have been chosen: the 4x4 mesh network with one PE channel and eight PE channels. The eight

PE channel configuration has been chosen to obtain maximum network contention, and there-

fore better contrast with the network where the message traffic is constrained by a limited num-

ber of PE channels. The computation time is fixed and set to 256 ticks.

In the following experiments, a time stamp has been collected in each node, when the

message was generated (send instruction), and also when the message was received (before and

after each receive instruction).

Sending Messages.

Figure 39 shows how much time each processor needs to send a broadcast message in

each iteration for the network with one PE channel. Each point on a graph corresponds to a

message sent in the broadcast phase. Similarly to the latency graphs, we notice ten activity

76

periods: ten iterations of the program. The time between each send period is dedicated to

receiving messages, and computation in each node.

Node Number Event SENDS File: dumb 4x4 CH 1

16---
0.- «.- ~--- ~..- ~--- 00..

14 ~<1119 ~ ~ ¢()19 ~ 00.. ~ ~ ~ ~
........ ~ ~ ... em> ...

12
... o... <.-&~<.- ...

10~~.-> --.......................... s--. ... -- -- -- -
... -.c> <-. -- --~--~ --6._. __ -- --......................... 4-- -- .. -- ... --
... ...0.-0 --

2 -.» 4m8C> -- I

1000 2000 3000 9000

Figure 39. Send activity in 16 node mesh network with 1 PE channel.

Looking at the message generation pattern for the first iteration, we notice that at some

nodes there is a significant delay before the second message gets created. The first message ere-

ated is dedicated to node 0, and according to the dimension-order routing algorithm, it has to

travel through dimension X first, and then through dimension Y. Since the mesh is asymmetric,

a message generated by node 15 has to travel all the way through X dimension (3 hops), and

then do the same for Y (another 3 hops). However, the same route has already been taken by

messages generated by nodes 14, 13 and 12. Thus the message from node 15 has to wait until

all messages going through its route free the required channels. Moreover, since all nodes start

sending to node 0 first, messages going from nodes 4, 5, 6 and 7 also compete for the channel

between nodes 0 and 4. Similarly, messages going from nodes 8, 9, 10 and 11 compete for

channels between nodes 8 and 0 (Figure 40). The delay is visible for the nodes that are situated

on the boundary of the network. In subsequent iterations the drawback of the bad routing

algorithm is visible only for nodes 14 and 15 but actually occurs for other boundary nodes.

Figure 40. Routes allocated for first message generated in a broadcast phase
(destination - node 0).

77

Figure 41 shows the send activity in the 16 node mesh network with eight PE channels.

The first eight messages are generated at the same time, and have to compete for the network

channels. When a message leaves the buff er, a new one is created and takes its place in the PE

buffers.

Node Number Event SENDS File: dumb 4x4 CH 8

16~ I I <. eo •••• ~ •• -· 90
14 - GI> ca> - GI> - ----- - - -- -- -12 Mill> ~ eco eoo e<» 900 e:» ... 900 41® ~ ~ ..
10• .. - ---- ---• • • • • • • • s•- eoo •«>

•<> o• •• 6 .. -· -• • • • • -• • • • • • • • • 4M O<» .. 000 • 000 ~ 2: - - • • • • • • • • • • • • • • 0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time

Figure 41. Send activity in 16 node mesh network with 8 PE channels.

78

Generally, send activity takes less time for eight PE channels than for one PE channel. We

can also notice how the network asynunetry impacts the send activity. For nodes that are

located on network boundaries, specifically nodes: 0, 4, 8, 12, 3, 7, 11 and 15 there are delays in

message generation, caused by increased contention in that region of the network.

Receiving Messages.

To monitor receive activity in the network, time stamps have been collected for the start of

the activity (when the node starts looking for the message) until the end of the activity (when

the last flit of the message gets into the node). For the one PE channel network (Figure 42), the

receive period in each iteration is short compared to the send period in this configuration. This

is due to the fact that nodes start looking for messages to be received after they are done with

broadcasting. In the meantime most of the messages have already arrived at their destinations.

Node Number Event BEF _REC File: dumb 4x4 CH 1
16

14 L • () • <> <I> () <I> () ~ ()

• • <> <I> <> <I> <> • () • • • • • • • • • • • 12 ~ • <It - - • - • - - -<> <> 0 • 0 • 0 • G> • 10 ~ <> <> • 0 • • 0 • • • <> - • • • • • • - • 8 ~ • - - <D • - • .. Ga> 4D
<> () 0 • • • () • G> • 6 ~ <> • () • <> <> • <D • • <> - 0 • • .. • • - -4 '- • - - - - <JI) - (lO ~ -<> <> 0 • • <JI) <JI) <l) ¢0 ~

2 I- <> • 0 • <JI) • ¢0 • ¢@ GO
<> <II> <JI) Ge> <O ()@ ¢@ (')O 41@ ~

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time

Figure 42. Receive activity in 16 node mesh network with 1 PE channel.

In contrary, for the eight PE channels mesh configuration, receive periods are much longer

(Figure 43). This is due to the fact that send activity is much shorter for this network, and

79

messages are still on their way when nodes start looking for them. To shorten the execution

time of the program, one might change the application program so that nodes are always ready

to receive messages. When the message arrives at its destination, it would be immediately con-

sumed. This way send activity would be overlapped with receive activity, and thus the overall

execution time would be shorter. Also the latency of the messages would be shorter, because

they would not be blocked at the destination.

Node Number Event BEF _REC File: dumb 4x4 CH 8
16

I I I . I I . - <Jll) - ® <It) • ~ ¢0 <If> L I

14 ~,.. ~~
~--~()el>--()19~~---.>

12 I- GOC> - ---- 00 - <It> 0)

0 (0 - 48() <a> <a> • - - -101-.. <m> <>.- ~
.. ¢09 ... <-. ~

8 I- GO <Jll) ® ~ ® ® ¢0 - - <l»
Q) ~ <Ill> ~ -.. ~ .. • 6 J.... • oaoe .- eoe e11e> eeoe .. OtlD09 cm>

49@ 4l8E> 909 <ml> ... ~
4 1-eo ~ ~ ~ ~ G> ~ o 9)» <»

.ao o ~ <» <IXW> ~ om <X> O«>
2 ~ .,. <m0 e¢e ~ eoe 4lltO -. .-> ~
~ 490() eem> 9DQ.> 9Ge9 ... --~ ~

0 1 ee r• : _. nae ~ • tu E 1 • 1• Im ee' a•a~ 1

0 I 000 2000 3000 4000 5000 6000 7000 8000 9000
Time

Figure 43. Receive activity in 16 node mesh network with 8 PE channels.

Summary of Observations.

While investigating the best number of PE channels for mesh interconnection network, we

found out that perfonnance of the network depends not only on the number of PE channels

used, but also on the algorithm for distributing messages over the network. The algorithm

according to which the messages are generated has far greater impact on network perfonnance

than the number of PE channels. To make effective use of more PE channels one should first fix

the perfonnance problems caused by an inefficient message generation scheme. Specifically,

80

for broadcast algorithms, messages should be sent to furthest destinations first Also, the mes

sages should be sent in different directions to make good use of the network charmels. After

improving the perfonnance of the program with respect to the message generation pattern, one

would see the benefits obtained by adding multiple PE channels.

Similar observations about the impact of the routing algorithms on perfonnance of a

hypercube network with different numbers of PE channels have been made by Johnson and

Ho [36]. In [36] specific algorithms have been developed for networks with multiple PE chan

nels to take the advantage of additional available hardware resources. These observations agree

with the experimental results that we obtained when solving the network. design problem. This

validates our design methodology and correctness of the Parsim Common Environment

CHAPTER VI

CONCLUSION

In this thesis we have developed and evaluated a methodology for performance evaluation

of multicomputer system designs. Our methodology is based on simulation. A simulator is

used to model the behavior of the computer system under development. We prepare application

programs that contain performance monitoring code and execute them using the simulator. Data

traces collected during the simulation are then analyzed and presented using visualization tools.

Key features of our methodology are "plug and play" simulation and allowing for hard

ware/software interaction during the hardware design process. We can easily use different sim

ulators with our perfonnance evaluation system to balance functionality, accuracy and perfor

mance of the simulator. The simulator executes user code, which makes it possible to experi

ment with different hardware configurations to check the impact of chosen hardware parameters

on software efficiency.

We have built a software perfonnance evaluation environment for multicomputer intercon

nection network design. Our tool, called PCE (Parsim Common Environment), contains a pre

processor for instrumenting application programs with performance monitoring code, a network

simulator, and analysis and visualization modules.

Using PCE, we have investigated a specific network design example. With the support of

PCE we found the problems that the hardware engineer would encounter when designing multi

computer interconnection networks. We also found ways to improve network perfonnance.

Therefore our software system proved to be useful during the hardware design process. It

helped us to spot the performance problems, to explain why they happened, and to find the ways

82

to solve them.

Moreover, using our tools made perfonnance evaluation easy. To set up perfonnance

experiments we annotated the application programs with flags indicating the perfonnance mea

surements to be made. A preprocessor converted the annotations into perfonnance monitoring

code. From the graphical user interface we were able to set simulation parameters. We did not

need to manually alter the variables in the programs. The simulation environment could per

fonn a set of experiments automatically varying the chosen design parameter. We could set up

the perfonnance analysis environment before the simulation run by specifying what functions

should be applied to data collected for a specific monitored event. The simulation and analysis

of data could be perfonned in the background, since for bigger network configurations they

were very time consuming. After perfonning data analysis, the results were presented in a

graphical fonn. We could observe communication patterns in the network, that would be very

hard to present without software analysis and visualization tools. Additional analysis of data

could be perfonned on collected traces when a more thorough explanation of results was

required.

The tools saved us many hours of confusion and frustration that we would have to spend

trying to interpret the collected data for every experiment. Since we had our share of tedious

manual evaluation of data before the development of the system we appreciate even more its

benefits: flexibility, convenience, and time savings. In the preparation phase of perfonnance

instrumented application programs we gain the flexibility and convenience when using our

tools. The preprocessor perfonns insertion of perfonnance monitoring code into the programs

based on annotations made by the user. Parameters and configuration of the network can be

altered from the graphical user interface, without modifying the program before every simula

tion run. Prior to the development of PCE, manual changes of simulation variables with addi

tions of monitoring code were required in application programs for each experiment.

83

At the analysis stage we also gain flexibility of use, but most importantly we gain a signifi

cant amount of time when analyzing data. To illustrate the time saving benefits, let's compare

several examples of experiments perfonned with and without using our perfonnance evaluation

system. Before the tools were developed, we had to perf onn several validation experiments of

the simulator model. One of the experiments involved processing 25 kbytes of data. The traces

were a collection of receive times and latencies of every message generated by the algorithm

solving the N-body problem (three iterations). Trying to sort and present data for every proces

sor in one representative configuration of 16 node network took about 16 man-hours of work.

Also, analysis of larger networks without computer support would be impossible. For compari

son, the examples presented in Chapter V of this thesis involved similar analysis of data for 5

sets of simulation parameters for 16 node interconnection network for 10 iterations of N-body

algorithm. The size of processed data traces was 900 kbytes and the analysis of this volume of

data was made in three minutes of computation time. The analysis was perfonned in a mul

tiuser environment on a Sparc-4 workstation.

In another validation experiment for the simulator we analyzed 64 node mesh and hyper

cube network topologies. In each node we collected the execution times of every iteration of the

N-body algorithm and then calculated the average execution time for each loop. The analysis

took us about 10 man-hours and involved 20 kbytes of data. Using PCE such analysis takes a

couple of seconds.

Using software tools for perfonnance evaluation of parallel systems is not a new idea.

Many similar perfonnance monitoring systems already exist. They are built on real, perfor

mance-instrumented parallel computers. However, these systems are intended for perfonnance

tuning of parallel software applications. Replacing the parallel computer with the simulator

gives us the flexibility to evaluate a set of computer architectures supported by the simulator.

Using our approach, computer designers can make architectural decisions before they start

84

building prototypes.

Simulation as a base for estimating computer perfonnance has been a common practice,

since mathematical models are usually too inaccurate to be effectively used. Setting up a per

formance experiment involves the preparation of an application program (or a set of programs)

in such a way that speci fie events are detected during a program run and perfonnance data of

interest can be collected. With a graphical user interface we can define a set of experiments to

perfonn and monitor program performance for different values of specified architectural vari

ables. Users of our system are released from customizing the application for perfonnance mea

surements for every event of interest.

In multicomputer systems, where huge volumes of perfonnance data are usually gener

ated, it is impossible to perfonn analysis of the obtained sets of numbers without computer sup

port. We have provided a set of functions that can be executed on a collection of data to extract

the information of interest. The final, analyzed set of data can be presented using graphical dis

plays.

LIMITATIONS AND FUTURE WORK

The factor that always plays an important role when designing any system is time. It lim

ited us to having only a small set of perfonnance visualization tools, specifically two

dimensional displays. We believe that having more sophisticated graphical presentation fonns

would benefit us by giving us an insight into many design problems.

However, developing graphical tools is very time consuming, and usually hardware

designers stick with simple sets of tools that are commonly available. Preparing data traces that

would match the format needed for existing perfonnance visualization tools would provide an

alternative to the commonly used two-dimensional displays. A simulator, if designed with that

goal in mind, would be able to interface with complex visualization system.

85

However, the problem that arises is the lack of standards for perfonnance data traces. This

means that every visualization system requires data in a different fonn. Therefore, one must

decide beforehand what visualization system to use. Based on this decision the user would

develop a simulator to provide data traces in the required fonnat.

We started development of our perfonnance monitoring system after the simulator had

already been written. This involved the decision of creating our own visualization tools, which

turned out to be very time consuming to develop and thus limited us to simple display forms. In

our future work we will alter the simulator to provide data traces acceptable by the performance

visualization tool of our choice, and evaluate the benefits of displaying data using various pre

sentation techniques.

REFERENCES

[1] K. Hwang, Advanced Computer Architecture: Parallelism, Scalability, Programmability,

McGraw-Hill, Inc., New York, New York, 1993.

[2] W. J. Dally and C. L. Seitz, "The Torus Routing Chip," Distributed Computing, vol. l, pp.

187-196, Springer-Verlag, 1986.

[3] J. A. Payne, Introduction to Simulation: Programming Techniques and Methods of Analy

sis, McGraw-Hill Book Company, New York, New York, 1982.

[4] D. A. Reed et al., The Pablo Performance Analysis Environment, Technical Report,

Department of Computer Science, University of Illinois, Urbana, Illinois, 1992.

[5] D. K. Bradley and J. L. Larson, "A Parallelism-Based Analytic Approach to Perfonnance

Evaluation Using Application Programs," Proceedings of the IEEE, vol. 81, no. 8, pp.

1126-1135, August 1993.

[6] A. D. Malony and D. A. Reed, Performance Analysis Tools and Techniques for High Per

formance Parallel Computers, Supercomputing '93, Tutorial, Portland, Oregon, 1993.

[7] M. Simmons and R. Koskela, Performance Instrumentation and Visualization, ACM Press,

New York, New York, 1990.

[8] A. D. Malony, D. A. Reed, and D. C. Rudolph, "Integrating Performance Data Collection,

Analysis, and Visualization," in Performance Instrumentation and Visualization, ed. M.

Simmons and R. Koskela, ACM Press, New York, New York, 1990.

[9] M. Simmons and R. Koskela, Instrumentation for Future Parallel Computing Systems,

ACM Press, New York, New York, 1989.

[10] A. Gottlieb, K. Hwang, and S. Sahni, "Special Issue on Tools and Methods for

87

Visualization of Parallel Systems and Computations," Journal of Parallel and Distributed

Computing, vol. 18, no. 2, Academic Press, Inc., San Diego, California, June 1993.

[11] L. Kleinrock, "On the Modeling and Analysis of Computer Networks," Proceedings of

the IEEE, vol. 81, no.8, pp. 1179-1190, August 1993.

[12} T. Feng, "A Survey of Interco1U1ection Networks," IEEE Computer, pp. 5-18, December

1981.

[13] L. N. Bhuyan, Y. Quing, and D. P. Agrawal, "Perfonnance of Multiprocessor Interconnec

tion Networks," IEEE Computer, pp. 5-16, February 1989.

[14] D. Lenoski, J. Laudon, and K. Gharachorloo, "The Stanford Dash Multiprocessor," IEEE

Computer, vol. 25, no. 3, pp. 63-79, March 1992.

[15] W. J. Dally, "Performance Analysis of k-ary n-cube Interconnection Networks," IEEE

Transactions on Computers, vol. 39, no. 6, pp. 775-785, June 1990.

[16] D. A. Reed and R. Fujimoto, Multicomputer Networks: Message Based Parallel Process

ing, The MIT Press, Cambridge, Masachusets, 1987.

[17] W. J. Dally, "A Universal Parallel Computer Architecture," New Generation Computing,

vol. 11, pp. 227-246, 1993.

[18] W. J. Dally, "Fine-Grain Message-Passing Concurrent Computers," 3rd Conference on

Hypercube Concurrent Computers and Applications, Proceedings, pp. 2-12, 1988.

[19] R. Duncan, "A Survey of Parallel Computer Architectures," IEEE Computer, pp. 5-16,

February, 1990.

[20] W. J. Dally, "Virtual Channel Flow Control," IEEE Transactions on Parallel and Dis

tributed Systems, vol. 3, no. 2, pp. 194-204, March 1992.

[21] J. H. Kim and A. A. Chien, Evaluation of Wormhole Routed Networks under Hybrid

Traffic Loads, Submitted for publication, Department of Computer Science, Urbana,

88

lliinois, 1992.

[22] W. J. Dally and C. L. Seitz, "Deadlock-Free Message Routing in Multiprocessor Intercon

nection Networks," IEEE Transactions on Computers, vol. C-36, no~ 5, pp. 547-553, May

1992.

[23] A. A. Chien and J. H. Kim, "Planar-Adaptive Routing: Low cost Adaptive Networks for

Multiprocessors," 19th Annual International Symposium on Computer Architecture, Pro

ceedings, pp. 268-277, 1992.

[24] K. Bolding, Chaotic Routing - Design and Implementation of an Adaptive Multicomputer

Network Router, University of Washington PHD Thesis, 1993.

[25] R. Traylor and D. Dunning, Routing Chip Set for Intel Paragon Parallel Supercomputer,

Seminar at Portland State University, Portland, Oregon, 1993.

[26] J. K. Ousterhout, An Introduction To Tel and Tk, Copyright 1993 Addison-Wesley Pub

lishing Company, Inc., Draft on Internet: sprite.berkeley.edu via public FfP, 1992.

[27] B. J. Porcella, Parsim Users Manual, Technical Report #PSU-EE-93-010, Department of

Electrical Engineering, Portland State University, Portland, Oregon, 1993.

(28] A. M. Kolinska, Performance Monitoring System for Parsim Simulator, Technical Report

#PSU-EE-93-020, Department of Electrical Engineering, Portland State University, Port

land, Oregon, 1993.

[29] A. M. Kolinska, User Defined Events in the Measurement System for Parsim Simulator,

Technical Report #PSU-EE-93-030, Department of Electrical Engineering, Portland State

University, Portland, Oregon, 1993.

[30] A. M. Kolinska, A Report on Performance Monitoring System for Parsim Simulator -

Command Line Prototyping Tool, Technical Report #PSU-EE-93-040, Department of

Electrical Engineering, Portland State University, Portland, Oregon, 1993.

89

[31] A. D. Malony and K. Nichols, "Standards Working Group Summary," in Performance

Instrumentation and Visualization, ed. M. Simmons and R. Koskela, ACM Press, New

York, New York, 1990.

[32] A. M. Kolinska, Parsim Simulations in Presence of no Contention for Mesh Topology,

Technical Report #PSU-EE-93-050, Department of Electrical Engineering, Portland State

University, Portland, Oregon, 1993.

[33] D. K. Bradley, B. A. Nazief, D. C. Grunwald, and D. A. Reed, "Picasso: An Experiment

in Hypercube Operating System Design," 3rd Conference on Hypercube Concurrent Com

puters and Applications, Proceedings, pp. 364-373, 1988.

[34] C. L. Seitz, "The Cosmic Cube," Communications of ACM, vol. 28, no. 1, pp. 22-33, Jan

uary 1985.

[35] A. L. Couch, "Locating Performance Problems in Masively Parallel Executions," Pro

ceedings of the IEEE, vol. 81, no. 8, pp. 1116-1125, August 1993.

[36] S. L. Johnsson and C. T. Ho, Optimum Broadcasting and Personalized Communication in

Hypercubes, Technical Report #YALEU/DCS/fR-610, Department of Computer Science,

Yale University, December 1987.

APPENDIX

The following are the application programs used to generate data for the Network Design

Example in Chapter V. Files with extension .cpl are the programs with inserted perfonnance

monitoring flags. Files with extension .pre are the perfonnance instrumented programs obtained

by running the preprocessor on the application programs with extension .cpl. (Some comments

have been altered later to indicate the right names of the files and their purpose).

NETWORK PERFORMANCE WITH LOW CONTENTION

Exam_gle 1.

dumb_ex I .cpl

c CONFIG_DT 0 Ox00000220
c CONFIG_DT 1 Ox00002090
c CONFIG_DT 2 Ox00010448
c CONFIG_DT 3 Oxlbfa2949
c CONFIG_DT 4 Ox2df02948
c LINK_NODE 1
c LINK_ROUTER 1
c CFG_WORM_CH 4 4 4
c CFG_NET 2 4 1
c OS_OVHD 1

************************ example 1 **************************

This file is used to generate data for tables I and II.
Node 0 sends a message to nodes 1, 2 and 3
in 4x4 mesh network.

define max m
define dest e
LOAD a 1
LOAD c @MSG

dumb_exl.cpl ************************

destination node
message type
message length, passed from GUI

91

LOAD max 4

! ----------------------- MULTICAST SESSION ---------------------

LOAD dest 0

!c MA START send_macro

IF rny_node EQ zero
WHILE dest NE max
DO

only node 0 sends messages
send to node 1, 2, 3

ENDO
ENDWHILE

END IF

IF dest NE my_node
send a dest c

END IF

INC dest

!c MA STOP send_macro

! ----------------------- RECEIVE SESSION -----------------------

!c MA START rec_rnacro

IF my_node GT zero
IF my_node LT max

rec_type a g c

END IF
END IF

!c MA STOP rec_macro

HALT

nodes l, 2, 3 receive
one message

----------------------- DEFINITIONS OF USER'S MACROS ----------

send_macro records time when sending messages:
BEF_SEND - indicates start of a send process

AFT_SEND - indicates an end of a send process

M send_macro
M
M before_instr:
M instr send:
M output BEF_SEND my_node
M after_instr:

!M instr send:
!M output AFT_SEND my_node
!M
!M end

rec_macro records time when receiving messages,
and their latencies:

92

BEF_REC - time at which a node is ready to receive
a message

AFT_REC - indicates an end of a receive process
LATENCY_REC - latency of a received message,

and time when it arrived

!M rec_macro
!M
!M before_instr: instr rec_type:
!M output BEF_REC my_node
!M after_instr:
!M instr rec_type:
!M output AFT_REC my_node
!M output LATENCY_REC rec_lat
!M
!M end

dumb_exl .pre

c CONFIG_DT 0 Ox00000220
c CONFIG_DT 1 Ox00002090
c CONFIG_DT 2 Ox00010448
c CONFIG_DT 3 Oxlbfa2949
c CONFIG_DT 4 Ox2df02948
c LINK_NODE 1
c LINK_ROUTER 1
c CFG_WORM_CH 4 4 4
c CFG_NET 2 4 1
c OS_OVHD 1

DEFINE counterO z
LOAD counterO 0
DEFINE accumO y
LOAD accumO 0

! DU START DEFAULT_EX_TIME
OUT BO my_node timer

AC START DEFAULT_LATENCY REC_LAT

CO START DEFAULT_REC_MSG ALL_REC_INSTR

93

************************ example 1 **************************

This file is used to generate data for tables I and II.
Node 0 sends a message to nodes 1, 2 and 3
in 4x4 mesh network.
Performance monitoring code is inserted into the program.

*********************** dumb_exl.pre ************************

define max m
define dest e
LOAD a 1
LOAD c @MSG
LOAD max 4

LOAD dest 0

destination node
message type
message length, passed from GUI

MULTICAST SESSION ---------------------

94

MA START send_macro

IF my_node EQ zero
WHILE dest NE max
DO

only node 0 sends messages
send to node 1, 2, 3

IF dest NE my_node
OUT U3 my_node my_node
OUT S3 my_node TIMER

OUT U4 my_node my_node
OUT S4 my_node TIMER

ENDIF

ENDO
ENDWHILE

END IF

INC dest

MA STOP send_macro

send a dest c

----------------------- RECEIVE SESSION -----------------------

MA START rec_macro

IF my_node GT zero
IF my_node LT max

OUT UO my_node my_node
OUT so my_node TIMER
INC counterO

OUT Ul my_node my_node
OUT Sl my_node TIMER
OUT U2 my_node rec_lat
OUT S2 my_node TIMER

rec_type a g c

ADD accumO accumO REC_LAT

END IF
END IF

MA STOP rec_macro

CO STOP DEFAULT_REC_MSG ALL_REC_INSTR

nodes 1, 2, 3 receive
one message

! AC STOP DEFAULT_LATENCY REC_LAT

OUT EO my_node timer
! DU STOP DEFAULT_EX_TIME

IF counterO GT zero

END IF

HALT

DIV fa accumO counterO
OUT AO my_node fa

95

----------------------- DEFINITIONS OF USER'S MACROS ----------

send_macro records time when sending messages:
BEF_SEND - indicates start of a send process
AFT_SEND - indicates an end of a send process

!M send_macro
!M
!M
!M
!M
!M
!M
!M
!M

before_instr:
instr send:

output BEF_SEND my_node
after_instr:

instr send:
output AFT_SEND my_node

!M end

rec_macro records time when receiving messages,
and their latencies:

BEF_REC - time at which a node is ready to receive
a message

AFT_REC - indicates an end of a receive process
LATENCY_REC - latency of a received message,

!M rec_macro
!M

and time when it arrived

!M before_instr: instr rec_type:
!M output BEF_REC my_node
!M after_instr:

!M
!M
!M
!M

instr rec_type:
output AFT_REC my_node
output LATENCY_REC rec_lat

!M end

Example 2.

dumb_ex2.cpl

c CONFIG_DT 0 Ox00000220
c CONFIG_DT 1 Ox00002090
c CONFIG_DT 2 Ox00010448
c CONFIG_DT 3 Oxlbfa2949
c CONFIG_DT 4 Ox2df02948
c LINK_NODE 1
c LINK_ROUTER 1
c CFG_WORM_CH 4 4 4
c CFG_NET 2 4 1
c OS_OVHD 1

************************* example 2 *************************

This file is used to generate data for tables III and IV.
Node 0 sends a message to nodes 3, 2 and 1
in 4x4 mesh network.

************************* dumb_ex2.cpl **********************

define max rn
define dest d
LOAD a 1
LOAD c @MSG
LOAD max 4

destination node
message type
message length, passed from GUI

96

------------------------- MULTICAST SESSION ------------------

LOAD dest 3

97

!c MA START send_macro

IF my_node EQ zero only node 0 sends messages

WHILE dest NE my_node send to node 3, 2 and 1
DO

send a dest c

DEC dest

ENDO
ENDWHILE

END IF

!c MA STOP send_macro

------------------------- RECEIVE SESSION --------------------

!c MA START rec_macro

IF my_node GT zero
IF my_node LT max

rec_type a g c

END IF
END IF

!c MA STOP rec_macro

HALT

nodes 1, 2 and 3
receive one message

----------------------- DEFINITIONS OF USER'S MACROS ----------

send_macro records time when sending messages:
BEF_SEND - indicates start of a send process
AFT_SEND - indicates an end of a send process

!M send_macro
!M
!M before_instr:
!M instr send:

!M output BEF_SEND my_node
!M after_instr:
!M
!M
!M
!M end

instr send:
output AFT_SEND my_node

rec_macro records time when receiving messages,
and their latencies:

98

BEF_REC - time at which a node is ready to receive
a message

AFT_REC - indicat·es an end of a receive process
LATENCY_REC - latency of a received message,

!M rec_macro
!M

and time when it arrived

!M before_instr: instr rec_type:
!M output BEF_REC rny_node
!M after_instr:
!M
!M
!M
!M
!M end

instr rec_type:
output AFT_REC my_node
output LATENCY_REC rec_lat

Example 3.

dumb_ex3.cpl

c CONFIG_DT 0 Ox00000220
c CONFIG_DT 1 Ox00002090
c CONFIG_DT 2 Ox00010448
c CONFIG_DT 3 Oxlbfa2949
c CONFIG_DT 4 Ox2df02948
c LINK_NODE 1
c LINK_ROUTER 1
c CFG_WORM_CH 4 4 4
c CFG_NET 2 4 2
c OS_OVHD 1

99

************************* example 3 *************************

This file is used to generate data for tables v and VI.
Node 0 sends a message to nodes 1 and 4 in 4x4 mesh network.

************************* dumb_ex3.cpl **********************

define destl d
define dest2 e
LOAD a 1
LOAD c @MSG

message type
message length, passed from GUI

------------------------- MULTICAST SESSION ------------------

LOAD destl 1
LOAD dest2 4

!c MA START send_rnacro

IF my_node EQ zero

send a destl c
send a dest2 c

END IF

!c MA STOP send_macro

node 1
node 4

only node 0 sends messages

send to node 1
send to node 4

100

------------------------- RECEIVE SESSION --------------------

!c MA START rec_macro

IF rny_node EQ destl node 1 receives a message

rec_type a g c

END IF

IF rny_node EQ dest2 node 2 receives a message

rec_type a g c

END IF

!c MA STOP rec_macro

HALT

----------------------- DEFINITIONS OF USER'S MACROS ----------

send_macro records time when sending messages:
BEF_SEND - indicates start of a send process
AFT_SEND - indicates an end of a send process

!M send_macro
!M
!M before_instr:
!M instr send:
!M output BEF_SEND my_node
!M after_instr:
!M instr send:
!M output AFT_SEND my_node
!M
!M end

rec_macro records time when receiving messages,
and their latencies:

BEF_REC - time at which a node is ready to receive
a message

AFT_REC - indicates an end of a receive process

LATENCY_REC - latency of a received message,
and time when it arrived

!M rec_macro
!M
!M before_instr: instr rec_type:
!M output BEF_REC my_node
!M after_instr:
!M instr rec_type:
!M output AFT_REC my_node
!M output LATENCY_REC rec_lat
!M
!M end

Example4.

dumb_ex4.cpl

c CONFIG_DT 0 Ox00000220
c CONFIG_DT 1 Ox00002090
c CONFIG_DT 2 Ox00010448
c CONFIG_DT 3 Oxlbfa2949
c CONFIG_DT 4 Ox2df02948
c LINK_NODE 1
c LINK_ROUTER 1
c CFG_WORM_CH 4 4 4
c CFG_NET 2 4 1
c OS_OVHD 1

101

************************* example 4 *************************

This file is used to generate data for tables VII and VIII.
Nodes 1, 4, 6 and 9 send a message to node O
in 4x4 mesh network.

************************* dumb_ex4.cpl **********************

define S_F Q
define sourcel z
define source2 y
define source3 x
define source4 u
define dest d

LOAD a 1
LOAD c @MSG

LOAD sourcel 4
LOAD source2 1
LOAD source3 6
LOAD source4 9

LOAD dest 5
LOAD S_F 0

102

MULTICAST SESSION ------------------

IF my_node EQ sourcel
LOAD S_F 1

END IF

IF my_node EQ source2
LOAD S_F 1

END IF

IF my_node EQ source3
LOAD S_F 1

END IF

IF my_node EQ source4
LOAD S_F 1

END IF

IF S_F EQ a
send a dest c

END IF

S_F flag indicates a send
action

nodes 1, 4, 6 and 9 send
a message

------------------------- RECEIVE SESSION --------------------

LOAD f 4 1 counter of messages

!c MA START rec_macro

IF my_node EQ dest
WHILE f NE zero
DO

node 5 receives messages

rec_type a g c
DEC f

END IF

END DO
ENDWHILE

103

!c MA STOP rec_macro

halt

----------------------- DEFINITIONS OF USER'S MACROS ----------

rec_macro records time when receiving messages,
and their latencies:

BEF_REC - time at which a node is ready to receive
a message

AFT_REC - indicates an end of a receive process
LATENCY_REC - latency of a received message,

and time when it arrived

!M rec_macro
!M
!M before_instr: instr rec_type:
!M output BEF_REC my_node
!M after_instr:
!M instr rec_type:
!M output AFT_REC my_node
!M output LATENCY_REC rec_lat
!M
!M end

NETWORK PERFORMANCE IN PRESENCE OF HIGH CONTENTION

one_broadcast.cpl

c CONFIG_DT 0 Ox00000220
c CONFIG_DT 1 Ox00002090
c CONFIG_DT 2 Ox00010448
c CONFIG_DT 3 Oxlbfa2949
c CONFIG_DT 4 Ox2df02948
c LINK_NODE 1
c LINK_ROUTER 1
c CFG_WORM_CH 4 4 4
c CFG_NET 2 2 2
c OS_OVHD 1

104

This file is used to generate data for figures 35 and 36.
Node 0 sends one broadcast message to all other nodes
in 4x4 mesh network.

define dest e

LOAD a 1
LOAD c @MSG
LOAD d 256

LOAD dest 0

!c MA start send_macro

IF my_node EQ zero

one_broadcast.cpl *****************

message type
message length, passed from GUI
wait time

BROADCAST SESSION ------------------

only node 0 sends messages

WHILE dest NE nbr_nodes
DO

send to all nodes

ENDO

IF dest NE my_node
send a dest c

END IF

INC dest

105

ENDWHILE

END IF

!c MA stop send_macro

! ------------------------- RECEIVE SESSION --------------------

!c MA start rec_macro

IF my_node NE zero
rec_type a g c

END IF

all nodes except node 0
receive a message

!c MA stop rec_macro

halt

----------------------- DEFINITIONS OF USER'S MACROS ----------

send_macro records time when sending messages:
BEF_SEND - indicates start of a send process
AFT_SEND - indicates an end of a send process

!M send_macro
!M
!M before_instr:
!M instr send:
!M output BEF_SEND my_node
!M after_instr:
!M
!M
!M

instr send:
output AFT_SEND my_node

!M end

rec_macro records time when receiving messages,
and their latencies:

BEF_REC - time at which a node is ready to receive
a message

AFT_REC - indicates an end of a receive process

LATENCY_REC - latency of a received message,
and time when it arrived

!M rec_macro
!M
!M before_instr: instr rec_type:
!M output BEF_REC my_node
!M after_instr:
!M
!M
!M
!M

instr rec_type:

!M end

n-body.cpl

output AFT_REC my_node
output LATENCY_REC rec_lat

c CONFIG_DT 0 Ox00000220
c CONFIG_DT 1 Ox00002090
c CONFIG_DT 2 Ox00010448
c CONFIG_DT 3 Oxlbfa2949
c CONFIG_DT 4 Ox2df02948
c LINK_NODE 1
c LINK_ROUTER 1
c CFG_WORM_CH 4 4 4
c CFG_NET 2 2 2
c OS_OVHD 1

106

************************* N-BODY PROBLEM ********************

Each node sends a broadcast message and then receives
messages from other nodes.
The process of sending and receiving messages is repeated
in a loop.

************************* n-body.cpl ************************

LOAD a 1
LOAD b 10
LOAD c @MSG
LOAD d 256

message type, counter of iterations
number of iterations
message length, passed from GUI
wait time

WHILE a LE b loop control
DO

107

------------------------- BROADCAST SESSION -------------------

LOAD e 0

!c MA start send_macro

WHILE e NE nbr_nodes
DO

ENDO
ENDWHILE

IF e NE my_node
send a e c

END IF

INC e

!c MA stop send_macro

send to all nodes
except the source

------------------------- RECEIVE SESSION ---------------------

LOAD e 0
MOVE f nbr_nodes
DEC f

!c MA start rec_macro

WHILE e NE f
DO

END DO
ENDWHILE

rec_type a g m

INC e

!c MA stop rec_macro

WAIT

receive from all nodes
except the destination

wait d wait statement models computation time

------------------------ END OF ITERATION ---------------------

END DO
ENDWHILE

INC a

halt

108

----------------------- DEFINITIONS OF USER'S MACROS ----------

send_macro records time when sending messages:
BEF_SEND - indicates start of a send process
AFT_SEND - indicates an end of a send process

!M send_macro
'M
M before_instr:
M instr send:
M output BEF_SEND my_node
M after_instr:
M instr send:
M output AFT_SEND my_node

!M
!M end

rec_macro records time when receiving messages,
and their latencies:

BEF_REC - time at which a node is ready to receive
a message

AFT_REC - indicates an end of a receive process
LATENCY_REC - latency of a received message,

and time when it arrived

!M rec_macro
!M
!M before_instr: instr rec_type:
!M output BEF_REC my_node
!M after_instr:
!M
!M
!M
!M
!M end

instr rec_type:
output AFT_REC my_node
output LATENCY_REC rec_lat

n-body.pre

c CONFIG_DT 0 Ox00000220
c CONFIG_DT 1 Ox00002090
c CONFIG_DT 2 Ox00010448
c CONFIG_DT 3 Oxlbfa2949
c CONFIG_DT 4 Ox2df02948
c LINK_NODE 1
c LINK_ROUTER 1
c CFG_WORM_CH 4 4 4
c CFG_NET 2 2 2
c OS_OVHD 1

DEFINE counterO Z
LOAD counterO 0
DEFINE accumO y
LOAD accumO 0

! DU START DEFAULT_EX_TIME
OUT BO my_node timer

AC START DEFAULT_LATENCY REC_LAT

CO START DEFAULT_REC_MSG ALL_REC_INSTR

109

************************* N-BODY PROBLEM ********************

Each node sends a broadcast message and then receives
messages from other nodes.
The process of sending and receiving messages is repeated
in a loop.
Performance monitoring code is inserted into the program.

************************* n-body.pre ************************

LOAD a 1
LOAD b 10
LOAD c @MSG
LOAD d 256

message type, counter of iterations
number of iterations
message length, passed from GUI
wait time

WHILE a LE b loop control
DO

------------------------- BROADCAST SESSION -------------------

LOAD e 0

I

MA START send_macro

WHILE e NE nbr_nodes
DO

IF e NE my_node
OUT U3 my_node my_node
OUT S3 my_node TIMER

OUT U4 my_node my_node
OUT S4 my_node TIMER

ENDO
ENDWHILE

END IF

INC e

MA STOP send_macro

send a e c

110

send to all nodes

except the source

------------------------- RECEIVE SESSION ---------------------

LOAD e 0
MOVE f nbr_nodes
DEC f

MA START rec_macro

WHILE e NE f
DO

OUT UO my_node my_node
OUT so my_node TIMER
INC counterO

rec_type a g m
OUT Ul my_node my_node
OUT Sl my_node TIMER
OUT U2 my_node rec_lat
OUT S2 my_node TIMER
ADD accurnO accumO REC_LAT

END DO
ENDWHILE

INC e

MA STOP rec_macro

WAIT

receive from all nodes

except the destination

wait d wait statement models computation time

111

------------------------ END OF ITERATION ---------------------

INC a

END DO
ENDWHILE

CO STOP DEFAULT_REC_MSG ALL_REC_INSTR

AC STOP DEFAULT_LATENCY REC_LAT

OUT EO my_node timer
! DU STOP DEFAULT_EX_TIME

IF counterO GT zero
DIV fa accurnO counterO
OUT AO rny_node fa

END IF

HALT

----------------------- DEFINITIONS OF USER'S MACROS ----------

send_macro records time when sending messages:
BEF_SEND - indicates start of a send process
AFT_SEND - indicates an end of a send process

!M send_macro
!M
!M
!M
!M
!M
!M
!M
!M

before_instr:
instr send:

output BEF_SEND my_node
after_instr:

instr send:
output AFT_SEND my_node

!M end

rec_macro records time when receiving messages,
and their latencies:

BEF_REC - time at which a node is ready to receive

a message
AFT_REC indicates an end of a receive process
LATENCY_REC - latency of a received message,

and time when it arrived

!M rec_macro
!M
!M before_instr: instr rec_type:
!M output BEF_REC my_node
!M after_instr:
!M
!M
!M
!M
!M end

instr rec_type:
output AFT_REC my_node
output LATENCY_REC rec_lat

112

	Performance Evaluation Tools for Interconnection Network Design
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1552340288.pdf.nFl8N

