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Abstract-- We demonstrate the use of Reconstructability 
Analysis to reduce the number of input variables for a neural 
network.  Using the heart disease dataset we reduce the 
number of independent variables from 13 to two, with limited 
loss of accuracy compared with those of NNs using the full 
variable set.  We also demonstrate that rule lookup tables 
obtained directly from the data for the RA models are almost 
as effective as NNs trained on model variables. This updated 
version corrects certain data errors in the original. 

Index Terms— reconstructability analysis, artificial neural 
networks, information theory, OCCAM. 

I. INTRODUCTION 
An on-going problem when developing classifier 

systems is how to determine which features are worth 
paying attention to.  The default approach, to include all 
variables and let the classifier sort them out, leads to 
computational intractability and to situations where related 
variables may end up fighting over what part of the 
variance each gets to explain.  If the number of inputs can 
be reduced, either through domain knowledge or with the 
use of auxiliary tools, the likelihood of good performance 
is increased. 

 
This paper uses a method called Reconstructability 

Analysis (RA) to reduce the number of variables used in 
an industry-standard classification problem.  In this paper, 
RA is utilized to develop models which are simpler, i.e., 
have fewer variables, than the original problem, yet still 
capture most of the predictive information in the data.  We 
then use these simpler models to analyze training and 
testing datasets for an artificial neural net, as well as to 
construct lookup tables specifying rules derived from the 
models.  Related work on feature selection by RA methods 
has been reported by Lendaris, Shannon, and Zwick [11], 
Chambless and Scarborough [4], and Shannon and Zwick 
[12]. 

 
The rest of the paper is in five parts.  In Section II, we 

provide a brief introduction to reconstructability analysis.  
In Section III, we describe the heart disease dataset.  
Section IV contains the procedures we used to build our 
training and testing datasets, while Section V presents our 
results for both the neural nets and the lookup tables.  We 
finish with a discussion of the results in Section VI. 

II. RECONSTRUCTABILITY ANALYSIS 
Reconstructability analysis (RA) derives from Ashby 

[1], and was developed by Broekstra, Cavallo, Cellier, 
Conant, Jones, Klir, Krippendorff, and others; an extensive 
bibliography is available in [8], and a compact summary of 
RA may be found in [15][17].  RA resembles log-linear 
(LL) methods [2][9], used widely in the social sciences, 
and where RA and LL methodologies overlap they are 
equivalent [9][10].  In RA [7], a probability or frequency 
distribution or a set-theoretic relation is decomposed 
(compressed, simplified) into component distributions or 
relations.  The most common application is the 
decomposition of frequency distributions, where RA does 
statistical analysis.   

 
RA can model problems both where “independent 

variables” (inputs) and “dependent variables” (outputs) are 
distinguished (directed systems) and where this distinction 
is not made (neutral systems).  In the present case, we have 
a directed system, with up to 13 independent variables A-
M as inputs, and a single dependent variable, Z as the 
output.  The goal, in our analysis, is to find some subset of 
the inputs that provides an acceptable level of prediction of 
the output.  Since the information contained in a model is 
not the same as the classification rate, nor even a 
covariance measure, it is possible to obtain high 
classification rates with models that provide only limited 
information. 

 
Consider a frequency distribution f(A, B, C, Z) for a 

directed system, where A, B, and C are inputs and Z is an 
output.  RA decomposes such distributions into models 
consisting of sets of projections, for example into 
f1(A,B,C), f2(A,B,Z) and f3(B,C,Z), written as the cyclic 
model ABC:ABZ:BCZ.  Taken together, these three 
projections, two of which predict the output from the 
inputs, constitute a model of the data that is less complex 
(has fewer degrees of freedom) than the data.  By 
maximum-entropy (uncertainty) composition of these 
projections, the model yields a calculated trivariate 
ABCZABC:ABZ:BCZ distribution (the subscripts show the 
model used), which may differ from the observed ABCZ 
data.   Such a model may be used for prediction, and may 
be assessed by its %Uncertainty Reduction, 100. [H(Z) - 
Hm(Z|ABC) ] / H(Z), where H is Shannon entropy, and 



 

Hm(Z|ABC) is the conditional entropy of  the output, 
knowing the inputs, for model m. 

 
A simpler class of RA models involves only a single 

“predicting component” (a component including the 
output), and these models have no loops.  For example, 
ABC:ABZ says that Z is predicted by A and B.  Models of 
this sort select a subset of inputs as predictors from the full 
set of inputs specified by the first component.  It is such 
models that are used in this paper for variable reduction 
(feature selection).  The more complex, multiple-
predicting-component models can also be used to predict 
the output, as discussed briefly at the end of Section V, or 
to prestructure a neural net with less than full connectivity 
([5] and papers cited therein). 

 
Calculations for this paper were made using the RA 

software programs developed at Portland State University, 
now integrated into the package OCCAM (for the principle 
of parsimony and as an acronym for “Organizational 
Complexity Computation And Modeling”).  The earliest of 
these programs was developed by Zwick and Hosseini [6]; 
a list of recent RA papers of the PSU group is given in 
[14][16]. 

III. HEART DISEASE DATASET 
The University of California at Irvine maintains a 

repository of machine learning databases, including a 
collection of data used for predicting the presence or 
absence of heart disease.  The dataset we used is a cleaned 
version of the UCI Cleveland heart disease dataset, 
obtained from the University of Porto, in Portugal.   

A. Description  
The dataset has 270 records, with 13 independent 

variables (a subset of the original 75 variables) and one 
dependent variable.  The 13 independent variables include 
5 continuous variables (A,D,E,H,J), one ordered variable 
(K), one integer (L), three binaries (B,F,I), and three multi-
value nominal (E,C,M).  The dependent variable originally 
coded for five levels of disease, including no disease.  In 
keeping with standard practice, the processed dataset we 
used simply reports the presence or absence of heart 
disease. 

 
Looking ahead to the key variables found using RA, 

variable C represents four levels of chest pain, variable L 
represents the number of major blood vessels colored by 
fluoroscopy (up to three), and variable M represents three 
classes of heart defects detected in a thallium imaging test. 

B. Data Extraction 
In preliminary work with and research on the dataset, 

we noticed there was a wide range of success in the 
application of different tools [3][13].  A priori we 

attributed that to the use of different partitionings of the 
dataset, as well as to variations in the quality of the tools.  
To control for this, we partitioned the 270-record dataset 
into five different training/testing sets on an 80/20 basis, 
with 216 records in the first, and 54 in the second.  We did 
this by assigning each record randomly to either the 
training or testing sets, with probabilities 0.8/0.2, dropping 
any dataset that was not partitioned 216/54, and repeating 
the process until we had five datasets that matched our 
requirements. The majority class of the training sets was 
disease absent, and a naïve predictor using this would have 
a 50.6% success rate in classifying the test data. 

IV. PROCEDURE 
The first step in reconstructability analysis is to bin any 

continuous variables in the dataset.  There are five such 
variables, and they were each binned into four bins of 
approximately equal frequency.  Next, each of the five 
dataset extracts, with binned variables, was processed by 
the OCCAM software.    Table I shows the best three of 
the two-input models for each experimental dataset.  The 
best model for the whole 270-record dataset is CMZ; 
however two other models, LMZ and CLZ score 
consistently better in the 216-record training set extracts.  
The second column under each experiment shows the 
uncertainty reduction of the associated model. The 
cardinalities of the models we will thus consider, namely 
CMZ, LMZ, and CLZ, are 24, 24, and 32, respectively.  

 
TABLE I. 

THE THREE HIGHEST-SCORING MODELS FROM EACH OF 
FIVE PARTITIONINGS OF THE DATASET. 

 
Experiment Model Uncertainty 

Reduction 
LMZ 39.1% 
CMZ 35.2% 1 
JMZ 34.4% 

   
LMZ 34.8% 
KLZ 33.8% 2 
CKZ 32.4% 

   
LMZ 41.8% 
CMZ 41.3% 3 
CLZ 38.1% 

   
CLZ 40.7% 
CMZ 38.0% 4 
CJZ 37.7% 

   
CLZ 37.6% 
CMZ 37.5% 5 
LMZ 37.4% 

Note that in experiment 2, the CMZ model did not 
make the top three. 

 



 

The five datasets were reduced to just the variables in 
the high scoring models.  Generically, we shall refer to 
these as the primary models, to differentiate them from the 
CMZ model, known to be best on the full dataset.  The 
variables associated with the primary models were used (a) 
to create rule sets for lookup tables and (b) for training and 
testing datasets for the neural networks.  The same 54-
record testing sets were used to test the classification 
abilities of each of the approaches. 

The rule sets were constructed by counting the instances 
of each outcome (1 or 0) in the output variable for a given 
set of values in the input variables and assigning a rule 
based on the majority of the outcomes.  Table II shows the 
process and resulting rule set for the CMZ model, using 
Experiment 1 data.  In the training dataset for CMZ there 
were nine instances where C  = 1 and M = 0.  In seven of 
those instances, the value of Z was 0 (no disease) and in 
two, the value of Z was 1 (disease present).  The rule 
therefore assigns all future (testing) instances of C = 1, M 
= 0 to the no disease category.  Since the majority of the 
training set showed Z = 0, any instance of a tie (C = 3, M = 
2, for example) was assigned to the no disease class, as 
was any input variable combination that was empty in the 
training set.  (We did not attempt to use proximity to other 
input states to break ties or resolve sampling zeroes in the 
training set.) 

 
TABLE II.   

RULE SET FOR MODEL CMZ,  
BASED ON EXPERIMENT 1 DATA. 

 
C M RULE Z0 Z1 SCORE 

1 0 0 7 2 7 
1 1 0 2 0 2 
1 2 0 1 1 1 
2 0 0 25 1 25 
2 1 0 1 1 1 
2 2 0 3 3 3 
3 0 0 41 5 41 
3 1 1 0 1 1 
3 2 0 9 9 9 
4 0 0 24 17 24 
4 1 1 3 4 4 
4 2 1 6 50 50 

Columns C and M show the different values 
possible for those variables.  Columns Z0 and Z1 
count the number of outcomes for that CM 
combination.  If Z0 is higher, then the Rule for that 
combination of input values is set to zero.  If there 
is a tie, then the Rule defaults to zero.  The Score 
column counts how many of the Z-values each 
particular rule correctly captures. The total score 
for CMZ was 168 and since the sample size is 216, 
the % correct of this rule set is 77.8%. 
 

For the NN version of the dataset, the original 
(unbinned) variables were normalized so their values all 
lay between one and zero.  The NN used (Figure 1.) had 

two input nodes, three hidden nodes, one bias node, and 
one output node.  The hidden and output nodes used a log-
sigmoid transfer function with continuous outputs that 
range from 0 to 1.  The input nodes connected only to the 
hidden layer. 
 

FIGURE 1. NEURAL NET STRUCTURE. 
The inputs are either chest pain and thallium 
imaging results (CM),  chest pain and fluoroscopy 
results (CL), or fluoroscopy results and thallium 
results (LM). 

 
During training, the errors were computed based on the 
continuous outputs.  For testing purposes, since the object 
was classification, the output was forced to 1 (if >= 0.5) or 
to 0 (if < 0.5).  The NNs were trained for ten complete 
216-record training events broken into 16 record epochs. 
Learning rate was 0.8 and momentum was 0.6 throughout 
the process.  For each training set, the NN was initialized 
100 times and the results saved and averaged. 

One of the purposes of reducing the number of variables 
is to be able to lessen the computational load on the NN.  
Dropping from thirteen inputs (and 225 weights) to two 
inputs (and 13 weights) provided a roughly six fold 
improvement in training time, from three minutes to thirty 
seconds on an 800MHz Pentium. 

 

V. RESULTS 
The results are shown in Table III and IV.  

Classification performance of a set of model-based NNs is 
shown in Table III, in the sense of percentage of test 
records correctly classified.  Three NNs were used for each 
experimental dataset: one based on the two input variables 
(CM) identified in the known-best model, one based on the 
two input variables (LM or CL) found in the best-available 
(primary) model, and one based on all 13 input variables 
(full). The results shown in Table III show that for a given 
NN architecture and training regime the full 13-input NN 
provides the best classification accuracy, 81.6%, an 
increase of 31% from the naïve predictor mentioned at the 
end of Section III.  Reducing the number of inputs from 13 
to two diminishes predictive accuracy by 6.4% to 75.2%, 
an increase of 24.6% over naïve prediction. This means 

Bias 
Node

Input 
1

Input 
2

Bias 
Node

Input 
1

Input 
2



 

that 79% of the information available to the NN is 
available in the two best inputs.  

In paired t-Tests, displayed in Table V, ahead, the 
improved results for the full NN model were statistically 
significant at a 0.01 level.  The performance of the primary 
model NNs were not significantly different (at the 0.10 
level) from NNs based on the known best model.  

 
TABLE III. 

NN-BASED CLASSIFICATION PERFORMANCE OF OCCAM-
DERIVED MODELS. 

 
EXPERIMENT PRIMARY 

MODEL 
CMZ 
NN 

PRIMARY NN FULL 
NN 

 
1 LMZ 75.5% 74.7% 83.0%
2 LMZ 82.3% 82.5% 85.1%
3 LMZ 69.1% 71.5% 76.5%
4 CLZ 75.2% 72.1% 81.5%
5 CLZ 77.5%  78.2%  81.7% 
Mean  75.9%  75.2%   81.6%
Std Dev  4.75%  4.6%  3.2%  

Performance on the 54-record testing sets by the 
neural nets.  Primary models were the ones with 
the highest RA information score on the five 
training extracts of the data; CMZ was the best 
model on the full data. The Full NN used all 13 
variables as inputs. 

 
Looking now at the performance of the rulesets, 

obtained directly from the data for the variables selected 
by RA (Table IV) the best-model ruleset  did only slightly 
better than the primary model rulesets; this difference was  
significant at a 0.10 level (Table V).  For the primary 
models, the difference between the NN results, 75.2 ± 
4.6%, and the ruleset results, 72.2 ± 5.4%, was also small  

 
TABLE IV. 

RULE-BASED CLASSIFICATION PERFORMANCE OF OCCAM-
DERIVED MODELS. 

 
EXPERIMENT PRIMARY 

MODEL 
CMZ 
RULES 

PRIMARY 
RULES 

 
1 LMZ 77.8% 74.1% 
2 LMZ 81.5% 79.6% 
3 LMZ 70.4% 70.4% 
4 CLZ 68.5% 64.8% 
5 CLZ 72.2%   72.2%  
Mean  74.1%   72.2%  
Std Dev  5.1%       5.4%    

Performance of the rule-lookup tables of the 
primary models and of the known-best CMZ model 
on the 54-record testing sets.   
 

but significant at a 0.005 level.  The differences between 
the  two-input NN results and those of the best-model 
(CMZ) ruleset were not statistically significant. 

The performance of all the tools varied considerably 
across the different experimental datasets, with standard 
deviations ranging from 3.2 to 5.4 percentage points.  This 
supports our contention that experiments with a single 
partitioning of a small dataset such as the heart disease 
data cannot be trusted to give an accurate portrayal of a 
classification tool’s effectiveness.   

 
TABLE V.  

RESULTS OF T-TEST ON THE DIFFERENT  
CLASSIFICATION TOOLS. 

 
 CMZ 

MODEL 
RULES 

PRIMARY 
MODEL 
RULES 

CMZ 
MODEL 

NN 

PRIMARY 
MODEL   

NN 
PRIMARY 
MODEL 
RULES 

 

0.09     

CMZ  
MODEL 

NN  
 

0.36  0.14     

PRIMARY 
MODEL   

NN 
 

0.32  0.05   0.90   

Full NN 0.01  0.01   0.004  0.012       
Comparisons of NN and rulesets are discussed in 
the text.  Table entries are t-Test p-values and 
represent probability there is no significant 
performance difference between the classifiers 
represented on the two axes. 

 
Lastly, it should be noted that because RA is used in this 

paper to select subsets of  IV predictors for NNs, only the 
simplest RA models are used, namely models without 
loops.  However, past experience with RA models strongly 
suggests that rulesets derived from models with loops can 
have greater predictive power. We have examined this 
possibility by considering rulesets from the model 
CZ:JZ:LZ:MZ, which in terms of degrees of freedom is 
simpler than CLZ and as simple as LMZ and CMZ. This 
model achieves a 73.0 ± 7.7 %correct on the five 
experiments, which is not statistically distinguishable from 
the 75.2 ± 4.6 %correct score of the primary NNs. The 
examination of such loop-containing RA models is still 
underway, and will be more fully reported in a later 
communication. In this paper we are more concerned with 
using RA to simplify NNs rather than finding maximally 
predictive RA models. 

VI. DISCUSSION 
We have shown that applying the simplest form of 
reconstructability analysis (using loopless single-
predicting-component models) will allow us to reduce the 
number of variables in a standard problem to a small 
subset of the original, and that this reduction allows the 
creation of simple NN architectures that have most of the 
predictive power of maximally complex NNs.  Since a 



 

simpler NN that can learn the training set is, in theory, 
more likely to generalize well compared to a more 
complex NN of equal performance, it is to be preferred.  
Moreover, we also find that predicting the output with a 
simple and completely transparent look-up table obtained 
directly from the data performs almost as well as NNs 
trained on the same data subsets.  Why the primary NNs 
did better than the primary rules may involve the small 
sample sizes of the training sets and/or the NN use of 
metric information. For example variable L is a 
quantitative variable, C is an ordinal  variable, and M 
could perhaps be ordinal if two of its values were swapped.  
The NN may make use of some of this information, not 
exploitable by a rule table. These possibilities are under 
investigation.  Whether the NN advantage would hold as 
well for larger datasets also remains to be studied. 
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