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Technique for the evaluation of double excitation of atoms by fast charged particles 

Jack C. Straton 
Department of Physics, California State University, Fresno, California 93740-0037 

J. H. McGuire 
Department of Physics, Tulane University, New Orleans, Louisiana 70118 

Zheng Chen 
Department of Physics, Kansas State University, Manhattan, Kansas 66506 

(Received 21February1992) 

A technique for evaluating cross sections for two-electron excitation in collisions of atoms with fast 
particles of charge ZP is presented. The atomic wave function is approximated by a sum of pair products 
of one-electron wave functions, with the coefficients chosen by diagonalizing the fully correlated two­
electron Hamiltonian. Thus spatial correlation is included in both the asymptotic and scattering regions 
by using these configuration-interaction (Cl) wave functions for initial, intermediate, and final states. 
Use of CI wave function also allows the first-order contributions to be expressed in closed, analytical 
form. Both the energy-conserving and energy-nonconserving parts of the second-order amplitude are 
evaluated. The former (a correlated generalization of the independent-electron approximation) is analyt­
ical and the latter is a one-dimensional integral. In helium it is found that the double-excitation cross 
sections are sensitive to the sign of the projectile charge, but that the energy region where this sensitivity 
is of the same order as for double ionization is 0.1 to 0.5 Me V /amu, whereas the latter has peak charge 
sensitivity at 1.5 MeV /amu. Comparison is made with some experimental results. 

PACS number(s): 34.50.Fa 

I. INTRODUCTION 

Describing reactions involving more than one electron 
requires information about the dynamics of few-electron 
phenomena, i.e., information required to describe how 
relatively complex many-body systems change. Since 
cross sections for two-electron transitions involve com­
paratively simple few-electron processes, various studies 
of two-electron transition cross sections have been under­
taken [ 1-10, 12, 13 ]. In this paper we present a theoreti­
cal technique for calculating cross sections that is applic­
able to such multielectron processes, and thus may be 
used to comprehensively probe the dynamics of mul­
tielectron effects at reduced computational cost. Here we 
detail one method that has been used [l] to describe and 
evaluate cross sections for two-electron transitions in 
atoms which interact with fast bare projectiles of charge 
ZP. This method uses a Born expansion in the projectile 
interaction strength zp and incorporates all terms in the 
electron-electron interaction. The leading term in ZP is 
reduced to a closed analytic form. The second-order 
term is expressed as a one-dimensional energy integral 
over a product of two off-energy-shell first-order ampli­
tudes, and so on. The technique is illustrated here for 
double excitation of helium. 

Within the last decade, observations of double ioniza­
tion in helium by protons [2], electrons [3], positrons [4], 
and antiprotons [5] have led to various calculations and 
interpretations [6). In particular, the ratio of double- to 
single-ionization cross sections for helium is larger by a 
factor of 2 for positively charged projectiles than it is for 
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negatively charged projectiles in the energy region 
around 1.5 MeV /amu. Pedersen and Folkmann [9] and 
Fuelling et al. [10] have observed a difference of this or­
der for excitation-ionization of helium by proton and 
electron projectiles at 1 to 4 MeV /amu. Also, a non-Z} 
dependence of the double excitation of helium has been 
reported by Pedersen and H velplund [ 11] and by Giese 
et al. [ 13 ]. The charge sensitivity of atomic scattering 
cross sections has been a useful probe of the underlying 
physics since the observations in 1956 by Barkas, Birn­
baum, and Smith [14] of Z} effects in single ionization 
and excitation by positive and negative pion projectiles. 

The first calculations of two-electron transition cross 
sections were done by Reading and Ford [7] using the 
forced impulse method (FIM), in which the system in­
teracts in a series of sudden impulses with the projectile, 
evolving with a fully correlated propagator between im­
pulses. A second-order FIM calculation, as used by 
Reading and Ford, is similar to our method, although 
different expansions for correlated electronic wave func­
tions may be used. More recently, a variety of authors 
have used close-coupling calculations [15-17] to evaluate 
cross sections for double excitation. Here different num­
bers of iterations in the projectile interaction may be used 
and correlated wave functions may be employed. Recent­
ly, Ishihara [18] has used the technique of many-body 
perturbation theory (MBPT) to evaluate cross sections. 
The MBPT approach truncates expansions in both the 
projectile interaction and the electron correlation interac­
tion. Bachan et al. [19] have developed calculations 
through first order in ZP and all orders in the correlation 
interaction. Both calculations of Ishihara and Bachau 
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et al. include interference of the double-excitation reso­
nance with the single-ionization background which is 
omitted in the other calculations of double excitation. 

II. FIRST-ORDER TERM 

The probability amplitude for transition from an initial 
state Ii ) to a final state ( f I may be written as (8, 12] 

(1) 

where Tis the time-ordering operator [20], and Vis the 
interaction between the projectile and the j electrons in 
the atom, namely, 

V( ) ~ ;n01V ( ) -;H0t 
t=~e ite (2) 

j 

with 

_ zp zp 
vpl-- IR(t)-r-1 +R. 

J 

(3) 

The second term in (3) is required to cancel the monopole 
term in ZP/IR(t)-ril that would otherwise lead to a 
divergent term in (9) as m goes to zero. Physically we 
have paired each target electron with a proton in the tar­
get nucleus so that all long-range Coulomb phases (which 
for neutral targets are entirely absent in our formulation) 
are carried by the internuclear terms [21]. The Born ex­
pansion of the amplitude is then given by 

(4) 

where a j?> = ( f Ii ) , which will be zero for the problems 
under consideration. For helium, the first-order ampli­
tude is 

For the initial and final states, it is shown herein that 

approximate two-electron wave functions consisting of a 
weighted product of one-electron wave functions, with 
the coefficients chosen by diagonalizing the fully correlat­
ed two-electron Hamiltonian, facilitate the reduction of 
amplitudes to the minimal number of dimensions requir­
ing numerical integration (0 and I for first- and second­
order amplitudes, respectively). This is because the 
difficult electron-electron interaction integrals are 
sequestered from (may be calculated in a separate com­
puter code from) the scattering amplitude integrals. The 
contribution of these electron correlation terms is includ­
ed within the numerical weighting factors C µv of the 
one-electron pair-product terms in the configuration­
interaction (Cl) wave functions. In the case of helium, 
these are 

=0.099161 Is) I Is )-0.1251 I ls) l2s) 

-0.0230l2sl2s) +0.0251 l2p) l2p) 

and (for the 2s 2 1S final state) 

(fl= l: CP1P2 (/311 (/321 
PpP2 

=o. 8796( 2s I< 2s I +0.4756( 2pl < 2p I 

(6) 

(7) 

Here (nil ( nl' I are coupled to a well-defined angular 
momentum (e.g., 1S). In finding the CI wave functions, 
one has the freedom to choose the effective charge on the 
target nucleus. The choice Zetr=A.= I. 76 minimized the 
ground-state energy (1 % error) and nearly minimizes the 
excited-state energies. To avoid orthogonality problems, 
this value was used for both the initial and final states. 
The wave functions for the 2p 21s•, 2s2p 1P 0 , and 2p 21D• 
final states are given in Appendix A. 

Use of (6) and (7) gives for the fully correlated two­
electron amplitude (5) 

a i~~. ls2 (m) = -i [ 2C2s2 cls2 A };~Is (m) ( 2s ')...'I IsA. > +v2.c2s2C1s2s [A };~ls(m) ( 2s ')...' l2s A>+ A };~2s(m )( 2s A.' I Is A>] 

+2C2s2 c2s2 A };~s (m )( 2s A.' l2sA. > + +c2p2 c2p2 [A };~,210(<.tJ )( 2pA.' l2pA. > +2A M.211 (m )( 2pA.' l2pA. >JI ' 

(8) 

consisting of a weighted sum of pair products of one­
electron scattering amplitudes, 

A'-;~ , (m)= J 00 dt e;"'1(n'l'm'A.' I -ZP 
n Im ,nlm -oo IR(t)-rl 

+ ~ l•lm+ 
(9) 

and (angular plus radial) overlap integrals 
( n 'I'm 'A.'lnlmA.). The parameters A.=Z1 /a 0 and 
A.'= z; I a0 allow for a change in screening between initial 
and final states, respectively. 

Without correlation (if only C Is Is *O) the first-order 
term is zero, which implies that there would be no quan­
tum interference leading to a z} dependence in the cross 
section. The transition amplitudes to the other three final 
states are given in Appendix A. 

For a straight-line projectile trajectory, a typical one­
electron transition amplitude is [22] 
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}..}.. _ co iwt 3 }..* P I -z 
A 2s,1s(w)- J_codte J d ru25 (r) IR(tl-rl 

+ zp ju}.. (r) 
R Is 

-ZP v'2A.4B 
-~-2-K2(BA), (10) 

vPA 
where A =[(w/v)2+(3A/2)2 ] 112, A.=Z1 /a 0 , w=E1 -E;, 
vP is the projectile velocity, B is the impact parameter, 
and K 2 is a modified Bessel function of the second kind. 
The full set of one-electron transition amplitudes of the 
n = 1,2 manifold is given in Appendix B. Straton has de­
rived [23) an analytic form for the general one-electron 
state-to-state transition amplitude (9). Thus the first­
order amplitude for double excitation (multiple excitation 

for many-electron atoms) may be given in closed analytic 
form to arbitrary precision simply by adding in more CI 
terms. 

For final states such as double ionization, satisfying 
three-body Coulomb boundary conditions, one may use 
one-electron pseudostates [24) instead of the hydrogenic 
states and, again, introduce the electronic correlation in 
the CI weighting coefficients. Because one-electron pseu­
dostates have the same analytic form as hydrogenic orbit­
als, application of comprehensive reduction techniques 
[23) will again yield an analytic first-order amplitude to 
arbitrary precision. One may instead use Coulomb-wave 
states written as a one-dimensional integral of an imagi­
nary exponential that may also be integrated using 
Straton's technique [25), yielding amplitudes of the 
present form, but integrated over an additional dimension 
for each such state. 

III. SECOND-ORDER TERM 

The second-order amplitude is 

(11) 

where Tis the time-ordering operator. If one were to neglect all correlations and set T= 1, then (11) would reduce to 
the independent-electron approximation [26). 

The asymptotic states are correlated because of (6) and (7), and one may likewise put correlation into the scattering 
region (scattering propagator) by inserting a complete set of correlated (Cl) intermediate states: 

(12) 

Even with this propagator, (1 l) is still not in a form that will allow integrations akin to (9). But if the time-ordered 
intermediate-state propagator is replaced by its integral i:epresentation [27), 

T -iE (t-t') -iE (t-t') 
-e • =0(t -t')e • 
2 

. -iO(t-t') 

=-z J"" d!l-e __ _ 
21T -co !l-En+i71 

(13) 

this casts all time dependence into the fl exponential, giving time integrals of the same form as for the first-order ampli­
tude. Thus the exact second-order amplitude may be reduced to 
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i I 00 do --P 
21T -oo D.-E n 

(14) 

where i,n extends over the bound and continuum intermediate states and A13a(E) is the one-electron transition matrix 
element (9). Here terms quadratic in V1 or V2 are omitted because they correspond to third- or (higher-) order ampli­
tudes in the sense that they go to zero when the electron-electron interaction is removed. That is, we retain only the 
V1 V2 and V2 V1 contributions in (11). The amplitudes for all four final states are given explicitly in Appendix C. 

The closure approximation may be used at this point to remove the infinite sum over intermediate states. This is 
done by approximating En for each of the intermediate states In) by a common average energy E. Then the propaga­
tor over intermediate states, i.e., (13), becomes independent of n and one may apply the closure relation ~n In) ( n I= I 
when substituting (12) and (13) into (11). The second-order amplitude using the closure approximation then becomes 

(2)- - [(-i)2 J..'J.. - ')..'}.. - J..'J.. - J..'J.. -
a1; - _l: cf3 .. f32 _l: ca .. a2 -2-[A131,a1(E1-ElA132,a2(E-E;)+A132'a2(E1-ElA13 .. a•(E-E;)] 

{31'{32 al' al 

i I 00 do n J..'J.. --2 p --_[A13 a (E1-D.)A13 a (0-E;) 
1T - 00 0 - E I' I 2• 2 

)..'J.. )..'J.. l + A13 a (E1-D.)A13 a (0-E; )] 
2' 2 l' I 

(15) 

This closure approximation avoids the infinite sum 
over intermediate states, In). We note the principal­
value part of ( 15) may be shown algebraically to be zero 
at E=(E;+E1 )!2 for A.=t..'. 

The first group of terms in the exact second-order am­
plitude of (14) are known analytical functions. The 
second group consists of a principle-value integral of the 
first group. This principal-value term is nonzero when 
the energy variable 0 differs from the energy En of the 
intermediate state, corresponding to energy nonconserv­
ing contributions about En. If these principal-value con­
tributions are ignored one obtains the results of Stotler­
foht [28] where the imaginary terms are not present. As 
with second-order calculations of the Thomas peak [29] 
the real and imaginary parts of the present second-order 
amplitude obey a dispersion relation. It is possible that 
the principle-value integral may be evaluated analytically 
using Hilbert transforms [30] of Meijer's generalized hy­
pergeometric functions. In any case, that one may 
reduce the second-order amplitude to an analytic part 

plus a one-dimension integral shows the utility of CI 
wave functions and of the integrodifferential transform 
developed to evaluate the one-electron amplitudes in gen­
eral [23]. 

The exact transition amplitude through second order 
may thus be expressed [1] as 

(16) 

where c 1 is the first-order contribution, c2 is the 
principal-value second-order contribution from (14), and 
c2 is the real part of the second-order contribution of 
(14). Hence, the cross section is 

a= I la l 2d 2B=CjZJ-2C12z;+c~z:+c~z:. (17) 

Then the difference of cross sections for excitation by 
protons and antiprotons is 

a(-)-a(+)=4C12Zi. (18) 

Thus, any z; contribution to the experimentally mea-
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sured cross section is evidence of both time ordering ( C2 ) 

and its consequent energy nonconserving contributions, 
and spatial correlation ( C 1 ). 

IV. RESULTS 

The second-order amplitude (15) for double excitation 
of helium was evaluated in the closure approximation. It 
is conventional [31] to choose the "average energy" E at 
the ionization threshold. In the present case there are 
two such thresholds at 24.5876 and 79.0059 eV above the 
helium ground state. We choose our "average energy" to 
be midway between these two at 51. 7965 e V above the 
helium ground state. This choice has an advantage of ly­
ing well below the series of doubly excited ~ates begin­
ning at 57.87 eV above the ground state. As E was varied 
from 20.616 to 79.0059 eV our cross sections generally 
varied by less than about 10%, except, of course, at 
E=E1 where resonances occur in (15) and cross section~ 
increase by up to a factor of 5. The choice of E 
= 51. 7965 e V used for the cross sections presented in this 
paper is further supported by noting that singly ionized 
states within this energy region play a major role in the 
experimental observations [13] so their contributions to 
intermediate states are well established. Even with the 
closure approximation, our present results go two steps 
beyond an independent-electron approximation through 
the inclusion of correlation and time ordering. 

Figure 1 shows the present results plotted for proton 
and antiproton impact excitation of helium into the 
2p 2 1 De final state as a function of projectile energy. Also 
shown is the experimental measurement of Giese et al. 
[13] and the close-coupling calculations of Fritsch and 
Lin [15] for protons and electrons at 1.5 MeV /amu. 
Even though the first- and second-order (or IEA) cross 
sections are of equivalent magnitude over the entire ener-

10 

First order in Zp-"' 

10 20 

Projectile Energy (MeV/omu) 

FIG. 1. Excitation of helium into the 2p 2 1 D • final state. The 
solid curve is the second-order theory for proton impact and the 
dash-dotted curve is for antiprotons. The dashed curve is the 
independent-electron approximation and the dotted curve is the 
first-order result. The data points for proton and electron im­
pact are from Giese et al. (Ref. [13]) and the other two points at 
1.5 MeV /amu are the close-coupling calculation of Fritsch and 
Lin (Ref. [15J). 

gy range from 0.1 to 2 MeV /amu, the interference be­
tween the two is only of order 10%, as seen by the p -p 
differences. In contrast, the close-coupling calculation 
[15] gave a difference of a factor of 2 between cross sec­
tions for protons and antiprotons. The error bars on the 
experimental data are large enough that one can draw no 
conclusions in support of either prediction. As for the 
magnitude of the results, the present calculation lies just 
below the data and lies higher than the result of Fritsch 
and Lin by a factor of 2 (3) for protons (antiprotons). 

Figure 2 shows the cross sections for excitation into 
the 2s2p 1P 0 final state. In addition to the data displayed 
in Fig. l, Fig. 2 includes the experimental result of Peder­
sen and Hvelplund [11] at 1.84 MeV /amu. Although 
these data are the sum of their 2s 2p 1 P 0 and 2p 2 1 De cross 
sections, comparison with the present calculation is ap­
propriate since the cross section for the latter final state is 
negligible compared to the former in the present theory. 
Again, the charge-sign effects in the experiments are 
masked by the error bars. In this case both the present 
calculation and that of Fritsch and Lin give a p - p 
difference of only order 10% at 1.5 MeV /amu. However, 
in the projectile impact energy region from 0.1 to 0.5 
MeV /amu the present results give factor of 2 differences. 
This also holds true for excitation into the 2p 2 1Se final 
state (not shown). 

The present cross section for 2s2p 1P 0 excitation lies 
higher than the calculation of Fritsch and Lin, which is 
larger than the experimental result of Giese et al. In 
Fig. 2 it is clear that the present cross section is almost 
exclusively first order near 1.5 MeV /amu. Fritsch and 
Lin note that their result is also dominated by the first­
order matrix element [see their Eq. (7)]. Thus it is some­
what surprising that these two first-order calculations 
disagree and that they disagree with the data. For heli­
um, disagreement with experiment may be because of in­
terference of the doubly excited state that we evaluate 
with the single-ionization background that we do not in­
clude at this stage of our calculation. Also, since the 

"'E 
u 
~ 
'o = 
b 01 

0.0 

\ p• 
\ ,.,,,,. p-

\ \ 
I '· 
\ --·-·-·-:-:::.~:.:-:-:-. ·=···-··-·- - - --- -
. \ CFirst order in ZP 

I 
\ 
' ' ',~IEA 

',,'-,,, 

1.0 

p~ : 

,- t 
.. ( 

Projectile Energy (MeV/omu) 

.-l 

.-""{ 

2.0 

FIG. 2. Excitation of helium into the 2s2p 1P 0 final state. 
The curves are as in Fig. 1 with the addition of the observation 
of the sum of excitations into the 2p 21D' and 2s2p 1P 0 states at 
1.84 MeV /amu by Pedersen and Hvelplund (Ref. [11]). 



46 TECHNIQUE FOR THE EVALUATION OF DOUBLE ... 5519 
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\ .\ 
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' ' ·, 
' '· FL 
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',~!EA 
·············· .. > ...... 

First order in zp]-'<::<-~·~- .~1 _ 
--:: r-------

LO 20 

Projectile Energy (MeV/amu) 

FIG. 3. Excitation of helium into the 2s 2 1s• final state. The 
curves are as in Fig. 1. Winter's calculation (Ref. [17]) (not 
shown) lies slightly above the data at 1.5 Me V. 

present first-order calculation is "exact" only to the de­
gree that the initial and final wave functions accurately 
represent the helium atom, truncation of the series (6) 
and (7) is a possible source of error. 

Alternatively, our result may lie higher because in us­
ing z.tf= I. 76 as the effective charge for the doubly excit­
ed states (to keep the initial and final states orthogonal), 
we have included some portion of the continuum. The 
exact eigenstates of the Hamiltonian can be constructed 
as a linear combination of doubly excited states and the 
continuum states, in which the former are embedded. To 
calculate the wave function of the doubly excited part, 
one needs to project this Hamiltonian onto the bound 
states [32). A general practice [33) is to use a basis set 
constructed of two one-electron eigenstates excluding all 
the states with one-electron energies below the doubly ex­
cited states. In our case, we could simply use z.tf=2 and 
choose the basis set ln 1 l pn 212LM) such that npn 2 > 1. 
Either case indicates that experimental determinations of 
the 2s2p 1P 0 excitation cross sections may provide a sen­
sitive measure of the quality of approximate two-electron 
wave functions. 

Figure 3 shows the cross section for excitation into the 
2s 2 I Se final state. Jn this case the independent-electron 
approximation, which contains only the ls 2 term in the 
initial-state wave function, and thus is uncorrelated, and 
contains no time-ordering effects, best represents the 

for the m = 1 sublevel and 

data. This is likely to be a fortuitous canceling of effects. 
The result of Winter [17), who uses some continuum in­
termediate contributions, lies close to the observed results 
[13). 

V. CONCLUSION 

We have presented a technique for evaluating cross 
sections for double excitation of atoms by fast particles of 
charge ZP. The amplitude first order in ZP has been 
given in analytic form and may be made as exact as 
desired. The second-order amplitude contains an analyt­
ic energy-conserving term (correlated generalization of 
the IEA) and an energy-nonconserving (time-ordered) 
term that interferes with the first-order term. The 
energy-nonconserving term in the second-order ampli­
tude is given by a one-dimensional integral over inter­
mediate energies. This method may by applied to 
ionization-excitation and double ionization if appropriate 
pseudostates are used to describe continuum wave func­
tions. This technique significantly reduces the computer 
costs of multielectron calculations. In actual calculations 
for double excitation of helium, ignoring background 
continuum states, differences in the cross sections for im­
pact excitation by protons versus antiprotons have been 
found to be of order 10% at 1.5 MeV /amu. 
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APPENDIX A 

The CI wave function used for the 2p 2 ts• final state is 

(2p 21s•\=0.8796(2pl(2pl-0.4756(2s\(2sl, (Al) 

for the 2s 2p 1 P 0 final state is 

( 2s2p 1P 0 1=1.0( 2s I ( 2pl , 

and for the 2p 2 1 D • final state is 

(2p 21n·1=1.0(2pl(2pl. 

(A2) 

(A3) 

The first-order amplitude for excitation into the 2p 2 1S' 
final state is identical to that for the 2s 2 ts• except for the 
interchange of CI coefficients. The first-order amplitude 
for excitation into the 2s2p t P 0 final states is 

(A4) 
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a ~!iw. 1.2({t)) = -iC2s2p { ~ c1.2A};~, 1 .({t) )( 2sA.'i IsA.) + :2. c2.2 A };~, 2• ({t) )( 2s A.' l2sA.) 

+ C ls2s [A};~ 1s ({t) )( 2sA.' l2s A)+ A};~ 2s<{t) )( 2s A.' I IsA.)] 
' ' 

+ :6 C2P2(- l)A }~~210({t))( 2pl2p) } . (AS) 

For the m = -1 sublevel, the amplitude is the negative of 
(A4). 

The first-order amplitude for excitation into the 
2p 2 1 De final state is 

(I) - . 2 - ').''). ) 
a2p21De M=2,ls2({t))- -1 V3 c2p2C2p2 A2ll,21-1 ({t) 

x (2pA.'l2pA.) (A6) 

for the m = 2 sub level, 

(!) ( )_.2v'2- An ( ) 
a2p21De M=l,ls2 {t) -1 v'3 C2p2C2p2 211,210 {t) 

X (2pA.'\2pA.) (A7) 

for the m = 1 sublevel, and 

(1) _ .2v'2 -
a 2P21De M=O,ls2({t))- -1-3-c2P2C2P2 

').''). ').''). 
X [A 211,211 ({t) )- A 210,210<{t))] 

X(2pA.'J2pA.) (AS) 

for them =O sublevel. For them = -1 sublevel, the am­
plitude is the negative of (A7). For them= -2 sublevel, 
the amplitude equals (A6). 

APPENDIXB 

The general one-electron state-to-state transition am­
plitude has been given by Straton [23] in closed analytic 
form. To accomplish this, Straton developed [34] an 
integrodifferential transform to replace the Fourier trans­
form, because the latter becomes extremely awkward for 
integrating excited states since it results in a "final" ex­
pression containing derivatives of parameters rather than 

simple analytic functions. However, in individual cases 
these derivatives may be evaluated to obtain analytic 
functions. This was done for each of the following ampli­
tudes to verify their accuracy. 

The amplitudes for transitions from the ground state 
into the n =2 and 3 for Z 1 =1 were first calculated by 
Van Den Bos and De Heer [22] and then Hopkins, 
Brenn, and Whittemore [35] scaled those results for 
higher values of the target charge Z 1 • McAbee [36] cal­
culated the 2p~ls transition amplitude in a case where 
there is a change of screening between initial and final 
states. McGuire et al. [37] found the 2p~2s amplitudes. 

The following amplitudes are for completely general 
charges, allowing for a change of screening between ini­
tial and final states, through the initial- and final-state pa­
rameters A.=Z1 /a 0 and A.'=z; /a 0 , respectively. As not­
ed by Straton [23], the amplitudes calculated by Van Den 
Bos and De Heer [22] contain an error in phase, arising 
from their use of the erroneous phase in the momentum­
space hydrogenic wave function derived by Podolsky 
and Pauling [38]. The phase is given correctly in the 
following. In all expressions An'n =(a2 +r~·n )112, 
Yn•n=A.'/n'+A.ln, a=(t)/VP' (t)=E1 -E;, vP is the pro­
jectile velocity, B is the impact parameter, and K v is a 
modified Bessel function of the second kind. 

The one-electron transition n = 1 amplitude is 

J..'J.. - 16(A.'A.)J12zpze [ 
A1s,1s({t))- 3 -Ko(BAu) 

Y11Vp 

The one-electron transition In', n J = ! I, 2 j mixed mani­
fold amplitudes are 

(B2) 

(B3) 
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and 

}.."). -- ).'}.. 
A211,1s(w)- A21-l,ls(w) 

=A ~~~ 11 I21--+12 J (w) 

- ).).' - - A ls,21-1{21--+12j(w) 

The one-electron transition { n ', n J = { 2, 2 J manifold amplitudes are, where A = A 22 and y = y 22, 

Al.'t.. (w)= P e - 2(3A.'A.y-2y 3 )+ A.A.y B +(3A.'A.y-4y 3)~ K (BA ) (A.'A.l312z z { [ , 1 2 2 41 
2s,2s y6vp A 4 4 A 2 0 22 

- [(3A.'A.y-2y3)1'..1!_+ A.'A.y7 
[ 8~ + B: l +(3A.'A.y-4y 3 ) By: 1K 1(BA 22 )}, 

A 4 A A 2A 

/..'/.. - ).).' A 210,2s ( w )- A 2s,210( w) 

=i 6 P ea 2(A.'-4A.)K0 (Ba)- (A.'-4A.) 2+~ -~ K 0 (BA 22 ) 
A.'s12A.312z z { [ [ 4 2 ] 6 21 

r up 4A A 

- ).).' 
- A 2s,211 (w) 

- ).).' - - A 2s,21-I (w) 

A.'s12A.312z z 
= p e 

v2y6vP 

/..'/.. - }..'}.. 
A211,211 (wl-A21-1,21-1 (w) 

- [(A.'-4A.) [p_t+_L!!__ 1-~ [ 8B + B3 l 1K (BA ) } A 2 A 3 4 A 5 A 3 I 22 ' 

{2(A.'-4A.)aK1(Ba)- [(A.'-4A.)y2B- A.:~~6 1K0(BA 22 ) 

- [(A.'-4A.) [2A + B2r4 ]- A.B2r6 ]K (BA ) } 
4A 2A 3 1 22 ' 

{-[l4y2- 3B2y4 + 3y6B2 +~-12A21K (BA ) 
2 4 A 2 A 4 o 22 

- [ 4y4B - B3y6 + 3y6B + 2ysB +~-6B 2A ]K (BA ) } 
A 4 A 2 A 3 As 4 A 3 r ' 22 , 

= (A.'A.) 512zpze {-[-4y 2+1-y4B 2+6A 2]K (BA )-[3r2AB-il+~]K (BA )} r 1 v p 4 a 22 2 A 8 A 1 22 , 

and, since the following depend only on the product A.'A., 

/..'}.. - J...'J... A 211,210(W )- - A 21-1,210(W) 

- J...'f.. - A 210,211 (w) 

- J...'J... - -A 210,21-1 (w) 

3v2(A.'A.J512Z z = -i p e 

r?vp 

Xa {1)a)K1(Ba)- ry2B+ y 6B: jK0 (BA 22 )- r2A + Y4B 2 + y 6B: ]K1(BA 22 )} l 24A l 4A 12A 
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(B4) 

(BS) 

(B6) 

(B7) 

(B8) 

(B9) 

(BIO) 
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and 

(Bii) 

The relations 

A~;pm',nlm((J)B )=(-1 im'+m A?;f:_m,n'l'-m'((J)B) 

=( -1 im'+m[ A~;p_m',nl-m(-(J)B )]* =[ A:-i';;.,n',l'm'(-(J)B )]* (B12) 

have been used to find the amplitudes with permuted parameters. In (9) we have set Ze = - 1. 

APPENDIXC 

The real parts of the second-order amplitudes are 

J...'J... J...'J... J...'J... J...'J... } -2 A 211,21-1 ((J)1) A 211,21-1 ((J)2) +A 210,210 ((J)1) A 210,210((1)2)] , (Cl) 

<2l _ - 11-{ J...'J... J...'J... C1sis J...'J... J...'J... J...'J... J...'J... Re[ a 2s,211; 1s2 ]- - C2s2p 2 C 15 2Ais,1s ((J)l) A 211, Is ((J)2) + v'2 [A 2s, 1s ((J)1) A 211,2s ( (J)2) + A 2s,2s ((J)1) A 211, 1s ((J)2)] 

J..'J.. J..'J.. + C 25 2 A 2s,2s (w1) A 211,2s (w2) 

c 2p2 J..'J.. J..'J.. J..'J.. J..'J.. + v'J [ - A 2s,211 (w1) A 211,211 ((J)2 )- A is,210( W1) A 211,210((1)2) 

(C2) 
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(2) - - V2 { ')..").. }..'}.. c ls2s }..'}.. }..'}.. }..'}.. ) ')..'').. ( ) ] 
Re[a2s,210; Js2 ]- -c2s2p 2 cls2A2s,1s<w1)A210, 1s(W2)+ v2 [A 2s, 1s<w1)A210,is(W2)+ A 2s,2s(Wi A 210, Is Wz 

')..'').. }..'}.. + C2,2 A is,is(w1) A 210,2s(w2> 

C~2 n n n n + v3 [ - A is,211 (w1)A211,210<w2)- A 2s,210(w1)A210,210<w2) 

}..'}.. }..'').. } 
-A2,,211<w1)A211,210<w2)] • (C3) 

(2) - - { }..'}.. ')..'}.. Re[a 2P21D.,M = 2, 15 2 ]- -C2P2 C 15 2 A 211, 15 (<01) A 211 , 1s(w2) 

• r,:;. ')..'').. }..'}.. ')..'').. + v 2C ls2s A 211, 1.<w1) A 21J,2s ( W2) + c2.2 A 211,2s (w1) A 211,2sl..'1.. (w2) 

c2p2 1..·1.. 1..·1.. }..'}.. 1..·1.. ) + v3 [2 A 211,21-1 (w1) A 211,211 (w2 )- A 211,210< W1) A 211,210 (w2)] , (C4) 

(2) - - • r,:;. { ')..'}.. }..'}.. 
Re[ a 2p21D.,M=l, ls2 ]- -C2p2 v 2 C ls2A211,1s<w1)A210, is(w2) 

c~ n n n n + v2 [A 211, ts (w1) A 210,2s<w2) +A 211,2s (w1) A 210, ls (w2)] 

')..'}.. ')..'').. + C2,2 A 211,is (w1) A 210,2s (w2) 

c2p2 1..·1.. }..'}.. 1..·1.. 1..·J.. + v'3 [A 211,21-1 (w1) A 211,210 (w2)- A 211,210 (w1) A 210,210 <w2) 

}..'}.. ')..'}.. } 
-A211,211<w1)A211,210<w2)] ' (C5) 

and 

(C6) 

For the M = -1 sublevel, the am~litudes are the negatives of (C2) and (CS). For the M = -2 sublevel, the amplitude 
equals (C4). The amplitude for 2p 1s• is given by (Cl), but with the CI coefficients interchanged as in (7) vs (Al). 

The imaginary parts of the amplitudes are given by 

[ (2) 1 _ 1 I "° d n [ (2 ) 1 Im a (E1,En,E;) - 1Tp _
00 

0.-E Re a E1,0.,E;) . 
n 

[1] J. H. McGuire and Jack C. Straton, Phys. Rev. A 43, 5184 
(1991). 

[2] J. Puckett and D. W. Martin, Phys. Rev. A 1, 1432 (1970); 
H. Knudsen, L. H. Andersen, P. Hvelplund, G. Astner, H. 
Cederquist, H. Danared, L. Liljeby, and K. G. Rensfelt, J. 

(C7) 

Phys. B 17, 3545 (1984); M. B. Shah and H. B. Gilbody, 
ibid. 18, 899 (1985). 

[3] B. Adamczyk, A. J. Boerboom, B. L. Schram, and J. Ki­
temaler, J. Chem. Phys. 44, 4640 (1966); B. L. Schram, A. 
J. Boerboom, and J. Kitemaler, Physica 32, 185 (1966); P. 



5524 JACK C. STRATON, J. H. McGUIRE, AND ZHENG CHEN 46 

Nagy, A. Skutlartz, and V. Schmidt, J. Phys. B 13, 1249 
(1980); K. Stephan, H. Helm, and T. D. Mark, J. Chem. 
Phys. 73, 3763 (1980). 

[4] M. Charlton, L. H. Andersen, L. Brun-Nielsen, B. I. 
Deutch, P. Hvelplund, F. M. Jacobsen, H. Knudsen, G. 
Lariccha, M. R. Paulsen, and J. 0. Pedersen, J. Phys. B 
21, L545 (1988). 

[5] L. H. Andersen, P. Hvelplund, H. Knudsen, S. P. Moller, 
J. 0. P. Pedersen, E. Uggerhoj, M. Elsner, and E. Moren­
zoni, Phys. Rev. Lett. 62, 1731 (1989); L. H. Andersen, P. 
Hvelplund, H. Knudsen, S. P. Moller, A.H. Sorensen, K. 
Elsner, K. G. Rensfeld and E. Uggerhoj, Phys. Rev. 36, 
3612 (1987). 

[6] J. H. McGuire, Phys. Rev. Lett. 49, 1153 (1982); R. L. 
Becker (private communication); J. H. McGuire and J. 
Burgdorfer, Phys. Rev. A 36, 4089 (1987); L. Vegh, ibid. 
37, 992 (1988); R. E. Olson, ibid. 36, 1519 (1987). 

[7] J. F. Reading and A. L. Ford, Phys. Rev. Lett. 58, 543 
(1987); J. Phys. B 20, 3747 (1987); A. L. Ford and J. F. 
Reading, J. Phys. B 21, L685 (1988). 

[8] J. H. McGuire, Adv. At. Mo!. Opt. Phys. 29, 217 (1991). 
[9] J. 0. P. Pedersen and F. Folkmann, J. Phys. B 23, 441 

(1990). 
[10] S. Fiilling, R. Bruch, E. A. Rauscher, P. A. Neill, E. 

Trabert, P.H. Heckmann, and J. H. McGuire, Phys. Rev. 
Lett. 68, 3152 (1992). 

[11] J. 0. P. Pedersen and P. Hvelplund, Phys. Rev. Lett. 62, 
2373 (1989). 

[12] J. H. McGuire, Phys. Rev. A 36, 1114 (1987). 
[13] J. P. Giese, M. Shultz, J. K. Swensen, H. Schoene, M. 

Beahenn, S. L. Varghese, C.R. Vane, P. F. Dittner, S. M. 
Shafroth, and S. Datz. Phys. Rev. A 42, 1231 (1990). 

[14] W. H. Barkas, W. Birnbaum, and F. H. Smith, Phys. Rev. 
101, 778 (1956). 

[15] W. Fritsch and C. D. Lin, Phys. Rev. A 41, 4776 (1990). 
[16] M. Matsuzawa (private communication). 
[17] T. G. Winter, Phys. Rev. A 43, 4727 (1991), and (private 

communication). 
[18] T. Ishihara (private communication). 
[19] H. Bachau, M. Barhi, F. Martin, and A. Salin, J. Phys. B 

24, 2015 (1991). 
[20] C. J. Joachain, Quantum Collision Theory (North-Holland, 

New York, 1983), Sec. 13.4; M. L. Goldberger and K. M. 
Watson, Collision Theory, (Wiley, New York, 1964), p. 49. 

[21] J. H. McGuire and 0. L. Weaver, Phys. Rev. A 34, 2473 
(1986). 

[22] J. Van Den Bos and F. J. DeHeer, Physica 34, 333 (1967). 
[23] J.C. Straton, Phys. Rev. A 43, 1381 (1991). 

[24] R. Damburg and E. Karule, Proc. Phys. Soc. 90, 637 
(1967); P. G. Burke, D. F. Gallaher, and S. Geltman, J. 
Phys. B 2, 1142 (1969); K. L. Bell and A. E. Kingston, J. 
Phys. B 4, 162 (1971); P. G. Burke and J. F. B. Mitchell, 
ibid. 1, 665 (1974); W. C. Fon, K. A. Berrington, P. G. 
Burke, and A. E. Kingston, ibid. 14, 1041 (1981); W. L. 
van Wyngaarden and H. R. J. Walters, ibid. 19, 929 
(1986); C. K. Au and R. J. Drachman, Phys. Rev. A 37, 
1115 (1988); A. K. Bhatia and R. J. Drachman (unpub­
lished). 

[25] J.C. Straton, Phys. Rev. A 42, 307 (1990). 
[26] M. Gryzinski, Phys. Rev. 138, A336 (1965); J. H. Hans­

teen and 0. P. Mosebekk, Phys. Rev. Lett. 29, 1961 (1972); 
J. H. McGuire and 0. L. Weaver, Phys. Rev. A 16, 41 
(1977); J. F. Reading and A. L. Ford, ibid. 21, 124 (1980); 
A. L. Ford, J. F. Reading, and R. L. Becker, J. Phys. B 12, 
2905 (1979); R. L. Becker, A. L. Ford, and J. F. Reading, 
ibid. 13, 4059 (1980); R. L. Becker, A. L. Ford, and J. F. 
Reading, Phys. Rev. A 23, 510 (1981); V. A. Sidorovitch, 
V. S. Nikolaev, and J. H. McGuire, ibid. 31, 2193 (1985); 
V. A. Sidorovitch and V. S. Nikolaev, J. Phys. B 16, 3743 
(1983); V. A. Sidorovitch, ibid. 14, 4085 (1981). 

[27] J. M. Ziman, Elements of Advanced Quantum Theory 
(Cambridge University Press, New York, 1969), pp. 81 and 
109. 

[28] N. Stolterfoht, Phys. Ser. 42, 192 (1990), and (private com­
munication). 

[29] J. H. McGuire and 0. L. Weaver, J. Phys. B 17, L583 
(1984). 

[30] A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tri­
comi, Table of Integral Transforms (McGraw-Hill, New 
York, 1954), Chap. XV. 

[31] Reviewed in H. M. Hartley and H. R. J. Walters, J. Phys. 
B 20, 1983 (1987). 

[32] The projection operator is of the form P =P 1 + P2 -P1P2 , 

where P 1 is the one-electron projection operator 
P 1 = l:, I nlm ) ( nlm I, with I nlm ) the eigenfunction of the 
one-electron Hamiltonian T- 2/r. 

[33] L. Lipsky, R. Anaia, and M. J. Conneely, At. Data Nucl. 
Data Tables 20, 127 (1977); T. F. O'Malley and S. Geh­
man, Phys. Rev. A 137, 1344 (1965). 

[34] J.C. Straton, Phys. Rev. A 41, 71 (1990). 
[35] F. Hopkins, R. Brenn, and A. R. Whittemore, Phys. Rev. 

A 13, 74 (1976). 
[36] T. L. McAbee, Nucl. Instrum. Methods 214, 89 (1983). 
[37] J. H. McGuire, D. J. Land, J. G. Brennan, and G. Basbas, 

Phys. Rev. A 19, 2180 (1979). 
[38] B. Podolsky and L. Pauling, Phys. Rev. 34, 109 (1929). 


	Portland State University
	PDXScholar
	11-1-1992

	A Technique For The Evaluation Of Double Excitation Of Atoms By Fast Protons And Antiprotons
	Jack C. Straton
	James H. McGuire
	Zheng Chen
	Let us know how access to this document benefits you.
	Citation Details


	tmp.1533060919.pdf.GA9g0

