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ARTICLE

Patterns and drivers of recent disturbances across
the temperate forest biome
Andreas Sommerfeld 1, Cornelius Senf 1,2, Brian Buma 3, Anthony W. D’Amato 4,

Tiphaine Després 5,6, Ignacio Díaz-Hormazábal7, Shawn Fraver8, Lee E. Frelich 9, Álvaro G. Gutiérrez 7,

Sarah J. Hart10, Brian J. Harvey11, Hong S. He12, Tomáš Hlásny5, Andrés Holz 13, Thomas Kitzberger14,

Dominik Kulakowski 15, David Lindenmayer 16, Akira S. Mori17, Jörg Müller18,19, Juan Paritsis 14,

George L. W. Perry 20, Scott L. Stephens21, Miroslav Svoboda5, Monica G. Turner 22, Thomas T. Veblen23 &

Rupert Seidl 1

Increasing evidence indicates that forest disturbances are changing in response to global

change, yet local variability in disturbance remains high. We quantified this considerable

variability and analyzed whether recent disturbance episodes around the globe were con-

sistently driven by climate, and if human influence modulates patterns of forest disturbance.

We combined remote sensing data on recent (2001–2014) disturbances with in-depth local

information for 50 protected landscapes and their surroundings across the temperate biome.

Disturbance patterns are highly variable, and shaped by variation in disturbance agents and

traits of prevailing tree species. However, high disturbance activity is consistently linked to

warmer and drier than average conditions across the globe. Disturbances in protected areas

are smaller and more complex in shape compared to their surroundings affected by human

land use. This signal disappears in areas with high recent natural disturbance activity,

underlining the potential of climate-mediated disturbance to transform forest landscapes.
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Natural disturbances are an essential component of forest
ecosystems1. Yet, forest disturbance regimes are changing
in response to global climate change2. Hotter and pro-

longed droughts3, exceptional bark beetle outbreaks4, and mega-
fires5 have been increasingly reported in recent years, and are
impacting forest ecosystems across all forested continents2.
Changes in disturbance dynamics can have substantial impacts on
ecosystem services provided by forests, e.g., climate regulation6,7,
provisioning of drinking water8,9, and protection from natural
hazards10, as well as affect conservation of biological diversity11.
Quantifying disturbance patterns (i.e., the size, shape, and pre-
valence of disturbances in forest landscapes) and understanding
their drivers is thus a key challenge for ecological research.

While the potential drivers of the ongoing disturbance change
are global, the responses to these drivers vary considerably at the
local scale. Insights from well-studied systems such as Yellowstone
National Park in North America1, the Bohemian Forest ecosystem
in Europe12, and the O’Shannassy water catchment in Australia13

have provided important insights into the complex interactions
between climate variability, disturbances, and forest development.
While an in-depth understanding of disturbance dynamics exists
for a growing number of landscapes (i.e., contiguous land areas of
roughly between 103 and 106 ha) around the globe, their responses
to global drivers have not consistently been compared to date.
Questions such as whether recent bark beetle outbreaks in North
America differ from those in Europe with regard to their climate
sensitivity, or whether recent fires in Australia created similar
patterns as those in the Americas remain largely unexplored.
Comparing the variation in disturbance patterns and their rela-
tionship to climate variability among landscapes at subcontinental
to global scales14,15 has the potential to elucidate whether recent
disturbance episodes were consistently driven by climate across
continents, or whether climate sensitivities differ between systems.
Furthermore, such a comparison can shed light on how regional-
to continental-scale drivers such as climate variability interact with

local factors such as the topographic template of a landscape16 and
the influence of human land use17. A better understanding of
global disturbance patterns and their multi-scale drivers is also
crucial for improving the representation of disturbances in global
vegetation models18,19, and can have important implications for
policy decision making, e.g., in the context of climate change
mitigation20,21.

New opportunities for global forest disturbance research arise
from recent advances in remote sensing. Increasingly available
remotely sensed datasets on forest disturbance22 offer high spatial
resolution and are globally consistent, enabling large-scale com-
parative efforts. However, while the global mapping of forest
disturbances is now feasible23,24, attributing disturbance agents
from remote sensing data and distinguishing between natural and
anthropogenic disturbances remains challenging25. Furthermore,
ecological context information such as the prevailing tree species
composition cannot usually be gleaned from space, underlining
the importance of terrestrial information and local ecosystem
understanding for a meaningful interpretation of remotely sensed
disturbance information. Integrating remote sensing analyses
with in-depth knowledge on selected ecosystems across the globe
can provide new insights by combining the consistent synoptic
view of satellite analysis with the expertise and insights gained
from decades of local forest disturbance research.

Our objective was to analyze patterns and drivers of recent
disturbances across temperate forests at the global scale. We
compiled a global network of 50 protected forest landscapes each
with > 2000 ha contiguous forest area (Fig. 1) for which in-depth
local systems knowledge exists. We jointly analyzed severe canopy
disturbances (i.e., complete mortality of all trees taller 5 m within
a 30 m grid cell) in these landscapes using Landsat-derived dis-
turbance maps for 2001–201424. Focusing our network of land-
scapes on protected areas and their surroundings allowed us to
isolate patterns of natural disturbances (inside protected areas)
from those of areas where natural and human disturbances
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Fig. 1 A network of 50 protected landscapes to understand global patterns and drivers of temperate forest disturbances. a The geographic location of the
landscapes, and b their location in climate space. The area of the temperate biome is indicated in green47. See Supplementary Table 1 for more detailed
information on the individual landscapes. Note that the climatic envelope of the biome (green dots in b) is based on a sample of 10,000 4500m×4500m
grid cells throughout the biome
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interact (outside protected areas). We concentrated our analysis
on a single biome as we were particularly interested in within-
biome variation in disturbance patterns and drivers, rather than
the comparatively well-studied between-biome differences. We
selected temperate forests as the target of our study as they are
affected by a wide variety of disturbance agents, frequently con-
tain both angiosperm and gymnosperm species (i.e., high trait
variability), and are represented in both the northern and
southern hemisphere, spanning an extensive gradient in envir-
onmental conditions.

We hypothesized that differences in disturbance agents and
tree species are the main determinants of among-landscape var-
iation in disturbance patterns across the globe (H1). Specifically,
we expected that areas predominately affected by fire as well as
landscapes dominated by tree species with high general suscept-
ibility (i.e., traits such as high maximum tree height and low
wood density) are most affected by disturbances. Our alternative
hypothesis was that spatial proximity of landscapes is a good
indicator of similarities in disturbance patterns, with global dif-
ferences in disturbances mainly explained by geographical loca-
tion (e.g., on different continents or hemispheres). To test these
hypotheses, we calculated four disturbance indicators, whereof
two are landscape-level metrics (percent of landscape disturbed
2001–2014, edge density) and two are patch-level metrics (area-
weighted mean patch size, area-weighted mean perimeter-area-
ratio), and used cluster analysis to identify patterns among
landscapes indicating differences in recent disturbance activity
(with disturbance activity jointly referring to the prevalence, size,
and shape of disturbances as characterized by our four focal
indicators). Furthermore, we hypothesized that the patterns of
natural disturbances (i.e., those observed in protected areas with
only minimal direct human influence) differ from the combined
natural and human disturbances outside protected areas (H2).
We expected disturbances in protected areas to be generally
smaller and more complex in shape (i.e., higher perimeter-area-
ratio) compared to those outside of protected areas. This
hypothesis is based on the insights that disturbances outside
protected areas are the result of both natural and human dis-
turbances (which can amplify each other, e.g., when strong winds
uproot edge trees of freshly created clear-cuts), and that
management-related biotic homogenization has the potential to
increase forest susceptibility to disturbances relative to natural
ecosystem development26–28. The alternative hypothesis was that
high recent levels of natural disturbance activity supersede the
signal of human land use, with similar disturbance patterns inside
and outside protected areas. Finally, based on local and regional
studies highlighting the importance of climate variability29 and
landscape structure30 for disturbance dynamics, we tested for a
consistent global relationship among climate variability, relative

topographic complexity, and the spatio-temporal dynamics of
forest disturbances. If recent disturbance episodes are responding
consistently to climatic and topographic drivers, we would expect
to find a non-random signal in a regression analysis across our set
of globally distributed landscapes (H3). Alternatively, if responses
vary among landscapes and cancel each other out at the global
scale, the regression coefficients for these drivers would not differ
significantly from zero.

Results
Patterns of recent natural disturbances. Disturbance dynamics
between 2001 and 2014 varied strongly across the temperate
forest biome. Unsupervised cluster analysis identified three dis-
tinct groups of landscapes based on their recent disturbance
dynamics (Table 1; Supplementary Figure 1), which we in the
following refer to as low, moderate, and high disturbance activity
clusters. Each cluster comprises a group of landscapes of similar
characteristics with regard to the size and shape of disturbance
patches, the percentage of a landscape disturbed during the study
period, and the average amount of edges created by these dis-
turbances (Supplementary Figure 2). Approximately one-third of
the landscapes studied (representing 19.9% of the forest area) fell
within the low disturbance activity cluster. This group was
characterized by small and complex disturbance patches
(Table 1), with disturbances on average affecting only 0.31% of
the landscape’s forest area between 2001 and 2014. Examples of
landscapes with low disturbance activity are the Te Paparahi
Conservation Area (New Zealand), Shiretoko (Japan), Feng Lin
(China), Five Ponds (USA), Hainich (Germany), and Hornopirén
(Chile). The majority of the landscapes (23 landscapes, repre-
senting 30.6% of the forest area studied) fell within the moderate
disturbance activity cluster. This group was characterized by a
roughly 30 times larger area-weighted mean patch size than the
landscapes in the low disturbance activity cluster (Table 1).
Disturbance patches in the moderate cluster were less complex
(i.e., had a lower area-weighted mean perimeter-area-ratio) but
affected a larger forest area (on average 4.61% of the landscape)
between 2001 and 2014. Examples of landscapes in this group are
the Bavarian Forest (Germany), Baxter State Park (USA), Los
Alerces (Argentina), and Nelson Lakes National Park (New
Zealand). Although only 9 of the 50 landscapes analyzed fell
within the high disturbance activity cluster, they accounted for
49.5% of the total forest area under study. Area-weighted mean
patch size was two orders of magnitude larger than in the
moderate disturbance activity cluster, and disturbance patches
were considerably less complex (Table 1). On average, almost one
quarter of the landscape’s forested area was affected by dis-
turbances between 2001 and 2014 in the high disturbance activity
cluster, resulting in the highest edge density among all three

Table 1 Characteristics of disturbance clusters

Cluster Low Moderate High

Number of landscapes 18 23 9
Total forest area [ha] 788,986 1,216,364 1,965,572
Mean annual temperature [°C] 6.5 (5.6–7.5) 5.3 (4.4–6.2) 3.7 (2.8–4.6)
Mean annual precipitation [mm] 1393 (1241–1544) 1222 (1071–1374) 1197 (1046–1349)
Mean percent of forest area disturbed 2001–2014
[%]

0.31 (0.13–0.48) 4.61 (0.44–8.79) 21.50 (13.86–29.18)

Edge density [m/ha] 2.87 (1.24–4.50) 21.69 (2.80–40.58) 43.22 (25.53–60.91)
Area-weighted mean patch size [ha] 0.66 (0.46–0.85) 24.22 (6.96–41.47) 4451.04 (365.24–8536.84)
Area-weighted mean perimeter-area-ratio [m/ha] 960.09 (905.26–1014.92) 617.28 (560.74–673.82) 215.31 (150.15–280.74)

Characteristics of three global clusters of disturbance activity, determined based on satellite-derived disturbance metrics using Gaussian finite mixture models. Values in parentheses indicate the 95%
confidence interval
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clusters. Examples for landscapes in this group are Yellowstone
(USA), Puyehue (Chile), and O’Shannassy (Australia).

The clustering based on the four landscape metrics considered
here did not reveal strong geographical patterns (Supplementary
Figure 3a). Landscapes from at least three continents were present
in each cluster, and all three disturbance activity clusters were
represented in both the southern and northern hemispheres.
Furthermore, no clear pattern emerged when comparing the
clusters in climate space (Supplementary Figure 3b), although a
tendency of cooler landscapes experiencing higher disturbance
activity could be detected (Table 1).

Disturbance activity clusters were associated with different
major disturbance agents and tree genera (Fig. 2a, b, Supple-
mentary Figure 4). Agents differed significantly among dis-
turbance activity clusters (χ2= 37.64, p < 0.01). Landscapes in the
low disturbance activity cluster were frequently affected by
multiple disturbance agents, with windthrow being the most
prevalent agent. Major bark beetle outbreaks were largely absent

from this group of landscapes. In landscapes experiencing
moderate disturbance activity in 2001–2014, fire and bark beetle
outbreaks were more prevalent compared to the low cluster. High
disturbance activity was predominately associated with wildfire,
with bark beetle outbreaks and drought also being important
agents in highly disturbed landscapes.

Dominant tree genera (i.e., the genera with the highest
proportion of basal area) differed among disturbance activity
clusters (χ2= 69.09, p < 0.001). Low disturbance activity land-
scapes were largely dominated by broadleaved trees from the
genera Nothofagus, Fagus, and Acer, i.e., species that have a
relatively low maximum attainable height but higher wood
density (Fig. 2c). The moderate disturbance activity cluster was
characterized by both broadleaved and coniferous tree species, yet
their average trait characteristics largely resembled those of the
low disturbance activity landscapes. High disturbance activity
landscapes in the northern hemisphere were dominated by the
genera Picea, Abies, Pseudotsuga, and Pinus, which are
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characterized by a higher maximum attainable tree height and
lower wood density (see Supplementary Table 2 for test statistics
on trait differences between clusters). Conversely, the high
disturbance activity landscapes located in the southern hemi-
sphere were mainly characterized by Nothofagus. The share of the
single most dominant tree species on the overall species
composition did not differ between landscapes in the low and
moderate clusters. In high disturbance activity landscapes,
however, the most important tree species was less dominant
compared to landscapes in low and moderate clusters (Fig. 2c).

Disturbance differences inside and outside protected areas.
Disturbance patches inside protected areas—almost exclusively
influenced by natural disturbance agents (but see Supplementary
Table 6)—were smaller and more complex than disturbance
patches in surrounding areas affected by both human and natural
disturbances in the low and moderate disturbance activity clusters
(Fig. 3, Supplementary Table 3). For landscapes with high dis-
turbance activity, however, the distribution of patch sizes and
perimeter-area-ratios did not differ significantly between pro-
tected areas and their surroundings. Hence, there is a higher
similarity between disturbances in protected and unprotected
systems in areas that experienced high disturbance activity
recently. Furthermore, patch size and patch complexity differed
more strongly among disturbance activity clusters in protected
systems compared to unprotected systems.

Drivers of spatio-temporal disturbance dynamics. Inter-annual
climate variability was an important driver of temporal dis-
turbance dynamics in all three disturbance activity clusters. The
full model (including both temperature/precipitation anomalies
and topographic complexity as predictors) was more strongly
supported by the data than the spatial-only model (including only
topographic complexity) and the Null model (likelihood-ratio
tests; all p-values < 0.01; see Supplementary Table 4). However,
the direction and strength of effects, as well as the lag time of
climate effects, varied among clusters (Supplementary Figure 5;
Fig. 4). A 2-year and 3-year lag was most strongly supported by
the data for the low and moderate disturbance activity clusters,
respectively. Conversely, climate variability had an immediate
influence on disturbances (i.e., zero lag) in the high disturbance
activity cluster (Supplementary Figure 5). For landscapes with low
disturbance activity, we found a significant but moderately

negative effect of temperature anomaly (GLMM; β=−0.20, std.
error= 0.07, p= 0.01; see Supplementary Table 4). That is,
warmer than average temperatures decreased the probability of
disturbance in the following years (Fig. 4a). This effect of tem-
perature was independent of variation in precipitation. Pre-
cipitation anomalies had a significant positive direct effect on
disturbance probability (GLMM; β=−0.33, std. error= 0.07, p <
0.01; Supplementary Table 4), with wetter conditions increasing
disturbance probability in the low disturbance activity cluster
(Fig. 4a). Conversely, for landscapes in the high disturbance
activity cluster, we found a significant positive effect of tem-
perature (GLMM; β= 0.59, std. error= 0.01, p < 0.01; Supple-
mentary Table 4), with a higher disturbance probability in years
with above average temperature (Fig. 4c). This effect was further
modulated by precipitation, and was strongly amplified if warm
years coincided with drier than average conditions (GLMM; β=
−0.43, std. error < 0.01, p < 0.01; Supplementary Table 4). While
landscapes in the moderate disturbance activity cluster showed an
overall negative effect of temperature on disturbance probability
(GLMM; β=−0.30, std. error= 0.02, p < 0.01; Supplementary
Table 4), the effect was also significantly influenced by pre-
cipitation (GLMM; β=−0.17, std. error= 0.03, p < 0.01; Sup-
plementary Table 4). In addition, disturbance probability
increased following years with above average temperature and
below average precipitation (Fig. 4b).

Relative topographic complexity significantly affected spatial
disturbance patterns, with different effects across disturbance
activity clusters (Supplementary Table 4). In the predominately
wind-influenced low disturbance activity landscapes, disturbance
probability increased by ~7.5% with an increase in topographic
complexity by one standard deviation (GLMM; β= 0.30, std.
error= 0.04, p < 0.01; Supplementary Table 4). In contrast,
disturbance probability decreased by ~1.25% (GLMM; β=
−0.05, std. error= 0.01, p < 0.01; Supplementary Table 4) and
2.5% (GLMM; β=−0.10, std. error < 0.01, p < 0.01; Supplemen-
tary Table 4) with the same amount of change in topographic
complexity in the mainly beetle-driven and fire-driven landscapes
of the moderate and high disturbance activity clusters.

Discussion
We present a quantitative analysis of recent disturbance dynamics
across the temperate forest biome. Variation in recent forest
disturbance activity across the globe was considerable, spanning a
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large gradient of patch sizes and landscape area affected by dis-
turbance. Our results highlight that while extensive disturbances
such as massive bark beetle outbreaks or severe large-scale fires
have garnered considerable attention from researchers and the
public recently, many temperate forests are dominated by small-
scale disturbance events. This finding underscores the importance
of a consistent quantification and analysis of disturbance
dynamics across systems. The main disturbance agent affecting a
system was more indicative of within-biome variation in dis-
turbance activity than geographical proximity of landscapes or
their location on the same continent or hemisphere (H1). Spe-
cifically, wind was an important agent responsible for small-scale
disturbances in temperate forests31. Wildfires and bark beetle
outbreaks, on the other hand, were the two most prominent
agents associated with large and severe disturbances in recent
years. However, the fact that both wind and wildfires occurred in
all three clusters of disturbance activity highlights the consider-
able within-biome variability even within disturbance regimes
characterized by the same agent.

Tree species composition was related to global differences in
recent disturbances, with Northern Hemisphere temperate forests
dominated by conifers experiencing elevated disturbance activity.
This pattern can partly be explained by the general life-history
strategy of conifers and their extensive coevolution with dis-
turbances32, as many conifers are well adapted to either tolerate
disturbances or swiftly recolonize disturbed areas. An unexpected
finding was that the dominance of the single most prevalent tree
species was lower in landscapes with high disturbance activity
compared to those with low and moderate disturbance activity.
This contrasts with previous suggestions that disturbance risk
increases if landscapes are dominated by a small number of tree
species33. However, disturbances themselves can have a positive
effect on tree species diversity34,35. Consequently, higher evenness
in systems strongly affected by disturbances—as found here—
could be a consequence of disturbances, rather than being cau-
sally related to them.

In large parts of the temperate forest biome, human dis-
turbances dominate the landscape. Consequently, the disturbance
patterns of unprotected systems differed from the natural
disturbance regime observed in protected areas. In the majority
of human-dominated landscapes outside protected areas, dis-
turbance patches were larger and less complex than in protected

areas, supporting our expectation (H2). In landscapes affected by
large-scale disturbances, however, the patterns in protected areas
and their surroundings were similar. This suggests that large
natural disturbances can override the effect of human land use
and dominate landscape patterns in forest ecosystems. As these
events have been found to be particularly climate sensitive
(Fig. 4c), future conditions could produce more coarse-grained
landscape patterns (i.e., landscapes characterized by larger patch
sizes) in temperate forests36.

An important caveat associated with our analysis is that we
could not consider vegetation structure and disturbance history as
potential covariates in our analyses, resulting from the lack of a
globally consistent data set on these variables. It therefore remains
unclear whether the differences between protected and unpro-
tected areas arise from a higher disturbance susceptibility of the
latter systems, or whether they reflect management activities such
as clearcutting in areas outside protected landscapes. Disturbance
history and ecological legacies can exert an important influence
on current disturbance activity37,38. This is important as most of
our study landscapes have been protected only for a few decades,
and legacies from former land use might still persist. Further-
more, although our 50 protected landscapes cover the climatic
envelope of temperate forests well (Fig. 1b), they are not neces-
sarily representative of the full range of ecological conditions of
the entire temperate forest biome. Selecting areas with a long
history of forest dynamics research enabled us to consistently
compare patterns and responses across locally well-researched
systems, but might also be a source of bias that should be con-
sidered in interpreting our results. The finding of similar dis-
turbance patterns inside and outside of protected areas in the
high disturbance activity cluster may, for instance, partly result
from the generally remote location of these particular landscapes,
with limited human activity in their surroundings. Future ana-
lyses explicitly contrasting disturbances inside and outside pro-
tected areas could help to better understand the effect of human
activity on disturbances, and quantify the impact of anthro-
pogenically altered disturbance regimes on biodiversity25,39.
Furthermore, we here focused on severe canopy disturbances with
complete canopy mortality of all trees taller 5 m within a 30 × 30
m grid cell24. Consequently, low severity disturbances and
understory tree mortality were not considered, potentially leading
to an underestimation of forest disturbance activity. However, the
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severe canopy disturbances examined here are generally well
represented by the data set used: For example, Buma and Bar-
rett40 found an overall agreement of 91% when comparing the
global disturbance data set used here to high-resolution imagery
in southern Alaska. Furthermore, Borelli et al.41 determined an
overall accuracy of 81% in an independent evaluation of the data
across Europe. We are thus confident that the data set used here
is able to capture the variability in severe canopy disturbances
across the temperate forest biome.

A remaining limitation of our analysis is the relatively short
duration of our study period. The currently available disturbance
time series from satellite data remain too short to characterize
disturbance regimes1 satisfactorily, and preclude the assessment of
temporal trends in disturbance7,42. Consequently, we focused only
on the effect of inter-annual climate variability rather than on long-
term trends, using temperature and precipitation anomalies as
predictors. Future work should also consider the effect of climatic
extremes and intra-annual climate patterns for refining our
understanding of climate—disturbance relationships29. In addition,
process-based simulation modeling43 could be employed to obtain
a more dynamic and long-term perspective on global disturbance
regimes and their responses to a changing climate.

Here we provide evidence that high recent disturbance activity
in temperate forest ecosystems across the globe was strongly
related to the joint occurrence of warmer and drier than average
climate conditions (H3). These global scale findings are in general
agreement with local studies4,14,42,44,45, particularly considering
that our high disturbance activity cluster was dominated by
wildfires, bark beetle outbreaks, and drought. Our results there-
fore suggest that a warming climate could facilitate large-scale
disturbances in temperate forest ecosystems in the future2,46. Our
findings also show that climate sensitivity can, to some degree, be
buffered by heterogeneous topography, which impedes the spread
of disturbances and/ or increases the complexity of disturbed
patches25. Interestingly, our analysis suggests that both the effect
of climate and the effect of topography reversed for landscapes
characterized by low disturbance activity, compared to those with
high disturbance activity. For the former, which are pre-
dominately driven by wind disturbance, cooler and wetter con-
ditions as well as higher relative topographic complexity
increased disturbance probability31, which is consistent with
decreased tree anchorage (soil wetness) and increased wind sus-
ceptibility (exposed ridges, funnel effects) under such conditions.
However, the signals detected for low disturbance activity areas
were generally weak, underlining the highly stochastic nature of
small-scale mortality events in forest ecosystems.

We conclude by emphasizing the importance of protected areas
for understanding changes in forest landscapes in the absence of
direct human influences. Furthermore, our work highlights the
importance of consistent global information for characterizing
patterns and identifying drivers of important ecological processes
such as disturbances. Quantitative baselines acknowledging the
substantial spatio-temporal variability in ecosystems are needed to
identify, monitor, and attribute changes in ecological processes.
The analyses presented here are an important step towards such an
improved quantitative characterization of forest disturbances at the
global scale, combining large-scale remote sensing data with eco-
logical context information from local experts. An improved
quantitative characterization of forest disturbances at the global
scale can, for instance, inform the development and application of
global vegetation models, which largely ignore the impacts of
disturbances to date, or only consider a highly simplified repre-
sentation of disturbance processes18,19. An improved consideration
of disturbance processes in future projections is important as our
results highlight the considerable sensitivity of disturbances to the
ongoing changes in the climate system. We conclude that the

resilience and adaptive capacity of ecosystems to disturbances
remain important priorities of forest research and management.

Methods
A biome-wide network of protected forest landscapes. We compiled a network
of study landscapes distributed throughout the temperate forest biome as defined
by Olson et al.47. (see also Fig. 1). Selection criteria were that the landscapes are
protected (i.e., IUCN Cat. I and Cat. II), and have a minimum of 2000 ha of
contiguous forest area. Studying protected areas allowed us to largely control for
anthropogenic disturbances and focus our main analyses on natural disturbances.
We analyzed 50 landscapes distributed across 16 countries on five continents,
representing a forest area of 3.9 Mill. ha (median landscape size: 30,889 ha; see
Supplementary Table 1 for details). The study landscapes cover a wide climatic
gradient of the temperate forest biome, with mean annual temperatures ranging
from −0.3 °C to 14.8 °C, and mean annual precipitation sums between 517 mm
and 2315 mm (Supplementary Table 1 and Fig. 1b).

Disturbance data and landscape pattern analysis. We acquired forest cover and
annual disturbance maps (2001–2014) from Hansen et al.24 (Version 1.2) at 30 m
spatial resolution. A disturbance was defined as a severe canopy disturbance,
meaning the complete mortality of all trees taller 5 m within a pixel24. Only dis-
turbance events that occurred between 2001 and 2014 were considered. To char-
acterize disturbance patterns, we calculated two landscape-level metrics and two
patch-level metrics for each study landscape, using an eight-neighbor rule for
defining adjacency and considering disturbances throughout the entire study
period. The landscape-level metrics were: (i) percent of landscape disturbed
2001–2014, and (ii) edge density of all disturbed patches within the forest area of a
landscape; with the patch-level metrics being (iii) area-weighted mean patch size,
and (iv) area-weighted mean perimeter-area-ratio. To identify differences and
similarities in recent disturbance patterns across the temperate forest biome, we
used Gaussian finite mixture models, as implemented in the R package mclust48

(version 5.4). Gaussian finite mixture models are an approach for unsupervised
clustering, used here to identify groups of landscapes with similar disturbance
patterns. The optimal number of cluster centers was determined by maximizing the
Bayesian Information Criteria (BIC). Robust statistics for characterizing each
cluster were derived by using parametric bootstrapping (9999 replications). Sub-
sequently, the clusters were characterized with regard to their main disturbance
agents and tree genera (i.e., the two most important agents and genera for a
landscape during the period 2001–2014; see below for details). To describe
potential functional differences between the clusters, we included plant traits in our
analysis. After an initial screening and analysis of multicollinearity, we focused on
two complementary plant traits corresponding to disturbance resistance and sus-
ceptibility, i.e., maximum potential tree height and mean wood density, extracted
from the TRY database49. Plant height directly increases susceptibility to wind
disturbance and is also a proxy for biomass accumulation potential, which is
related to fuel load in the context of disturbances by wildfire. Wood density is
positively correlated with the ability of trees to resist physical forces such as wind
and drought. For each landscape, weighted trait means based on tree species shares
were calculated. Differences in agents and tree genera among clusters were tested
using approximate Pearson χ2 tests of homogeneity with 9999 permutations. Dif-
ferences in traits among clusters were tested using two-tailed pairwise approximate
Kruskal–Wallis tests with 9999 permutations, applying false discovery rate cor-
rection. All test procedures were used as implemented in the coin50 package
(version 1.2-1) in R51.

Expert-based information on local ecological context. Remote sensing provides
a consistent estimate of disturbances across the biome, yet the ecological context of
these disturbances, such as the dominant disturbance agents and the tree species
affected, cannot be inferred from space. We thus consulted local experts for all 50
landscapes, collecting ecological context information via a questionnaire (see
Supplementary Table 5). The questionnaire included four questions, two of which
were multiple choice questions with the opportunity to add additional answers.
They focused on determining the dominant tree species, the main disturbance
agents affecting a landscape between 2001 and 2014, and the impact of dis-
turbances on particular tree species. Values of tree species dominance in a given
landscape were estimated as basal area shares. Local experts were identified via
their publication record on the topic of forest dynamics for the selected areas. All
consulted experts also contributed to the analysis and interpretation of the data,
and are identified individually in Supplementary Table 1.

Difference inside and outside protected areas. After focusing on natural dis-
turbance dynamics in protected areas in the previous analysis steps, we asked how
protected areas differed from the disturbance dynamics in the unprotected systems
surrounding our study landscapes. To compare spatial disturbance patterns inside
vs. outside protected areas, we extracted all forest disturbances in a buffer sur-
rounding the protected landscapes. The buffer size was selected proportional to the
landscape size, and was set to the diagonal of the minimum bounding rectangle of
each study landscape. We compared area-weighted mean patch size and area-
weighted mean perimeter-area-ratio between strata (i.e., inside vs. outside
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protected areas) using boxplots, and tested differences using two-tailed approx-
imate Kruskal–Wallis tests with 9999 permutations.

Drivers of spatio-temporal disturbance dynamics. We used generalized linear
mixed effects models52 (GLMMs) to test the influence of relative topographic
complexity and climatic variability on spatial and temporal disturbance dynamics.
Analyses were run separately for each disturbance activity cluster, modeling the
annual probability of disturbance at the pixel level. As response variable we used
annual binary disturbance maps indicating whether a pixel was disturbed in a given
year or not. Consequently, the GLMMs were specified with a binomial error dis-
tribution and a logit link-function. As measure of topographic complexity we used
the topographic ruggedness index53 (TRI), which was calculated from a 30m
digital elevation model obtained from the Shuttle Radar Topographic Mission
(SRTM). We calculated the TRI using a window size of 7 × 7 pixels, depicting the
topographic complexity within a radius of ~100 m around a focal pixel. TRI values
were subsequently scaled to zero mean and a standard deviation of one for each
landscape, with negative values indicating a lower than average relative topographic
complexity, and positive values indicating a higher than average relative topo-
graphic complexity. As a measure of climate variability we obtained time series of
mean annual temperature and annual precipitation sum from FetchClimate54,
which are based on daily climate data from the NCEP/NCAR Reanalysis 1 data-
base. We calculated climate anomalies by scaling the time series to zero mean and a
standard deviation of one for each landscape, with negative values indicating
colder/ dryer than average years, and positive values indicating hotter/ wetter than
average years. As previous studies suggest variable lag times between climate
anomalies and disturbance signals determined from remote sensing12,16, we tested
variable lags ranging from 0 years (i.e., relating the climate anomaly of the current
year to the disturbance in the current year) to 3 years (i.e., relating the climate
anomaly 3 years prior to the disturbance in the current year). The lag best sup-
ported by the data within each cluster was identified using Akaike’s Information
Criterion (AIC)16,55. Furthermore, we allowed for an interaction term between
precipitation and temperature to account for potential modulating effects between
these two variables56. Using GLMMs enabled us to incorporate factors on different
hierarchical levels into a combined modeling framework. In particular, TRI values
were available at the pixel level, but remain constant across years. In contrast, the
temperature and precipitation anomalies varied among years, but did not differ
spatially in a study landscape. Hence, we used relative topographic complexity to
explain the spatial variation in disturbance probability, while climate variability was
related to temporal variation of disturbances in our model. In addition, the GLMM
framework allowed us to account for random variation in the model intercept
among study landscapes within a cluster. As sample sizes were very large (several
millions of 30 m pixels), we randomly sampled 10% of the pixels per landscape. As
disturbances were rare in many landscapes, we employed a case-control sampling
design57, that is we randomly down-sampled the absence class (no disturbance) to
approximately the same size of the presence class (disturbance). This design has the
advantage that model estimates are unbiased (with the exception of the intercept),
and the intercept can easily be corrected using the known true proportion of
disturbance presence/absence in the population. Finally, we compared three can-
didate models per cluster: a full model containing predictors of spatial (TRI) and
temporal (precipitation and temperature anomalies as well as their interaction)
variation, a model containing TRI only (spatial-only model), and a null model
(containing only an intercept while maintaining the random effects structure of the
GLMMs). Model comparison was done using the AIC and log- likelihood tests. For
the model most strongly supported by the data we created response curves by
drawing 9999 random simulation from the model (i.e., accounting for parameter
and model uncertainty), as suggested by Gelman and Hill58. All models and cal-
culations were implemented using the lme4 package59 (version 1.1-14) in R.

Data availability
Data on forest disturbances were derived from the global forest change data set24,
available at https://earthenginepartners.appspot.com/science-2013-global-forest.
Data on tree species traits were derived from the plant trait database TRY49,
available at https://www.try-db.org/TryWeb/Home.php (doi: 10.17871/TRY.3).
Landscape-level data on ecological context variables was derived by means of a
questionnaire (see Supplementary Table 5), and is published in full in
Supplementary Table 1.
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