Portland State University PDXScholar

Ideals, Big Varieties, and Dynamic Networks

Ian H. Dinwoodie
Portland State University, ihd@pdx.edu

Let us know how access to this document benefits you.

Follow this and additional works at: https://pdxscholar.library.pdx.edu/mth_fac
Part of the Discrete Mathematics and Combinatorics Commons, and the Dynamical Systems Commons

Citation Details

Dinwoodie, Ian H., "Ideals, Big Varieties, and Dynamic Networks" (2018). Mathematics and Statistics Faculty Publications and Presentations. 211.
https://pdxscholar.library.pdx.edu/mth_fac/211

IDEALS, BIG VARIETIES, AND DYNAMIC NETWORKS

IAN H DINWOODIE

SEPTEMBER 2018

Abstract

The advantage of using algebraic geometry over enumeration for describing sets related to attractors in large dynamic networks from biology is advocated. Examples illustrate the gains.

Biological applications of dynamical systems can be in discrete spaces like $\{0,1\}^{5}$, where " 1 " may code for "on" or "high" or "cancer cell terminated" and " 0 " may code for "off" or "low" or "cancer cell still going fine." Then the subset

$$
* * * 01:=\{00001,00101,01001,01101,10001,10101,11001,11101\}
$$

can be enumerated easily, and the rule for membership is clear: $x_{4}=0, x_{5}=1$.
Nowadays, some dynamic networks on $S:=\{0,1\}^{d}$ (called Boolean networks) are fitted or "learned" or modeled with large d, d being the number of molecules or proteins or variables, using data and combined knowledge from experimentation and literature. The data involved for fitting may be Big Data, a term for large data sets often gathered mechanically ([21]), and the fitting procedures may include machine learning methods that can give complex models. One example is in [9], where a dynamical model of 15 nodes after variable selection was fitted with machine and statistical learning methods to data from motion sensors (see [13], [15], [22] for background on the data).

There are computational advantages in describing sets of interest as varieties - sets of roots of multivariate polynomials. Each coordinate gets an indeterminate, so for the set $* * * 01$ above we could describe it as the roots to two polynomials

$$
\left\langle s_{4}, s_{5}-1\right\rangle
$$

in a ring of polynomials $\mathbb{C}\left[s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right]$. This set of two polynomials is the ideal for the variety $* * * 01$. For large problems such as the $d=58$ node example of Section 4, it is useful to use finite field coefficients to speed computations. So with field coefficients in characteristic 2 , simply $\{0,1\}$ with mod 2 operations, we have the polynomial ring $F_{2}\left[s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right]$. The elements of $* * * 01$ are the simultaneous roots of

$$
\left\langle s_{4}, s_{5}+1\right\rangle
$$

The entire state space $\{0,1\}^{d}$ has size 2^{d}, yet it can be described as the roots of only d polynomials, the logarithm of its cardinality:

$$
\left\langle s_{1}^{2}+s_{1}, \ldots, s_{d}^{2}+s_{d}\right\rangle
$$

So useful subsets of a big state space S can sometimes be studied more efficiently with the polynomials that vanish on the subset, rather than by enumeration.

Traditional logical models for dynamics were small and conceptual ([30]), but dynamical models on discrete state spaces have become larger as more data has helped fit and verify more complex interactions (see [18], [19], [26], [27], [28], [32]). Commutative
algebra - the algebra of multivariate polynomials - has become one tool for doing calculations (see [24]). The methods and foundations for using commutative algebra are in [5], whose title this article plays on, and [16]. Software implementations include CoCoA [1], Macaulay2 [12] and Singular [7]. The essential operations for our applications are elimination and primary decomposition.

The new example here is an exact calculation on the network of 58 nodes as described in [33], which first appeared in [32].

1. Boolean Networks.

The traditional Boolean network with values in $\{0,1\}$ at each node is exemplified by the lac operon network formulated in [14] and described in [24]. In logical notation the dynamics are

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}, x_{3}\right)=!u_{1} \&\left(x_{3} \mid u_{2}\right) \\
& f_{2}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \\
& f_{3}\left(x_{1}, x_{2}, x_{3}\right)=!u_{1} \&\left(\left(x_{2} \& u_{2}\right) \mid\left(x_{3} \&!x_{2}\right)\right)
\end{aligned}
$$

where $u_{1}, u_{2} \in\{0,1\}$ are fixed parameters for control that can be set at 0 or 1 , "!" means "not" and "|" means "or." Coding Boolean functions as polynomials is a standard procedure, with early foundations in [2], [34]. In practice it can usually be done easily without applying general theory.

A control problem for the lac operon is to find values of u_{1}, u_{2} that lead to steady state (fixed point) $x_{1} x_{2} x_{3}=111$ (which means the operon is "on"). The problem has a geometric interpretation as follows. Expand the dynamics to $F:\{0,1\}^{5} \rightarrow\{0,1\}^{5}$ with $F=\left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right)$ where $f_{4}=u_{1}$ and $f_{5}=u_{2}$ fix u_{1} and u_{2} respectively. Now we are looking for subsets of the form $* * * u_{1} u_{2}$ inside the basin of attraction of steady state $111 u_{1} u_{2}$, where " $*$ " is a wild card place holder and u_{1}, u_{2} can be any values. Such a subset will have the property that setting u_{1}, u_{2} at the specified values will drive the system to $\left(1,1,1, u_{1}, u_{2}\right)$ regardless of the initial values of x_{1}, x_{2}, x_{3}. The map F has four steady states, including one useful one 11101. The basin of attraction of this steady state is all eight points $* * * 01$, so any initial values for $x_{1} x_{2} x_{3}$ with $u_{1}=0, u_{2}=1$ will lead to the "on" steady state. This is a small version of the general control problem for large networks in biology like our main example in Section 4.

Standard software for Boolean networks identifies basins of attraction by complete enumeration, and will solve this problem easily. However, in standard software the number of nodes or coordinate values is limited (typically to around 30 for basin analysis), their values must be $0-1$, and the output as a list of elements does not explain what conditions imply membership. For large problems, a geometric approach can be better for computations and for comprehension.

2. Basins of Attraction.

A Boolean network with d coordinates or nodes has a state space $\{0,1\}^{d}$, a d-fold product of logical or off/on or low/high symbols 0 and 1 . Let $F=\left(f_{1}, \ldots, f_{d}\right)$ be an update function on $\{0,1\}^{d}$, where $f_{j}:\{0,1\}^{d} \rightarrow\{0,1\}$ is the rule for node j. This map is deterministic, called the synchronous update. For a state \mathbf{x}, define the limiting set

$$
A_{\mathbf{x}}=\cap_{k=1}^{\infty} \cup_{n=k}^{\infty}\left\{F^{n}(\mathbf{x})\right\}
$$

where F^{n} is the n-fold composition of F. The resulting sets, as \mathbf{x} varies in the state space $\{0,1\}^{d}$, are the limiting sets or attractor sets of the system. These are fixed points or cycles.

Let B_{A} be the usual deterministic basin of attraction for an attractor A, the points that eventually hit A :

$$
B_{A}:=\cup_{k=1}^{\infty}\left\{\mathbf{x}: F^{k}(\mathbf{x}) \in A\right\}=\lim _{k \rightarrow \infty} F^{-k}(A)
$$

The main control problem is to find simple conditions for membership of an initial state in the attractor basin B_{A}, as in the lac operon opening example where membership in $B_{\{11101\}}$ was determined by simple conditions $u_{1}=0, u_{2}=1$. These membership rules give the set $* * * 01$ which we call a cylinder set, from the probability terminology for product spaces where a few of the coordinates are restricted and others are free.

But biological applications need a randomized version of the map F ([4], [25], [32]), since the timing of the coordinate maps may not be synchronized perfectly in the real world. One type of asynchronous updates, the one we use, proceeds by choosing a node or coordinate j with the uniform probability distribution, then changing current state \mathbf{x} to \mathbf{x}^{\prime} like:

$$
\mathbf{x}=\left(x_{1}, \ldots, x_{j-1}, x_{j}, x_{j+1}, \ldots, x_{d}\right) \rightarrow\left(x_{1}, \ldots, x_{j-1}, f_{j}(\mathbf{x}), x_{j+1}, \ldots, x_{d}\right)=\mathbf{x}^{\prime}
$$

The resulting process $\mathbf{x}_{0}, X_{1}, X_{2}, X_{3}, \ldots$ is a Markov chain in state space $\{0,1\}^{d}$, starting at nonrandom initial configuration \mathbf{x}_{0} and with random variables X_{n} for random states or configurations. The probability that X_{n} is in a set S will be written:

$$
P_{\mathbf{x}_{0}}\left(X_{n} \in S\right)
$$

The process has a probability transition matrix of size $2^{d} \times 2^{d}$. A 60 node example would be impossible to study with the transition matrix because of its size. Control methods that use a transition matrix ([17]) are not realistic for large Boolean networks.

Define the single coordinate updates on a state $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right)$ by

$$
F_{j}(\mathbf{x})=\left(x_{1}, \ldots, x_{j-1}, f_{j}(\mathbf{x}), x_{j+1}, \ldots, x_{d}\right), j=1,2, \ldots, d
$$

Now with $B_{0}=B_{A}, F_{j}^{-1}$ the inverse of F_{j}, and B^{c} the complement of a set B, define the exclusive asynchronous basin of the attractor A by

$$
\begin{aligned}
B_{i} & =B_{i-1} \backslash \cup_{j=1}^{d} F_{j}^{-1}\left(B_{i-1}^{c}\right), i=1,2,3, \ldots \\
B_{e x, A} & :=\lim _{i \rightarrow \infty} B_{i} .
\end{aligned}
$$

Probabilistically, this can be described as

$$
B_{e x, A}=\left\{\mathbf{x}: P_{\mathbf{x}}\left(X_{n} \in B_{A}, n=0,1,2,3, \ldots\right)=1\right\} .
$$

In words, the points in $B_{e x, A}$ are the states that can never leave the basin of attraction B_{A} over time under perturbations in the form of asynchronous updates.

The exclusive asynchronous basin $B_{e x, A}$ gives a robust basin for the purpose of targeting useful attractors, and the control problem is characterizing membership in $B_{e x, A}$ with settings on a few nodes.

3. Polynomial Dynamics for Basin Ideals.

An effective way to compute basins of attraction for large networks uses commutative algebra on dynamics written as polynomials, and basins are represented first with their ideals. Then the associated primes of the ideal of the basin lead to simple cylinder sets (sometimes an associated prime will give more than one cylinder), and these give simple conditions for basin membership and clear control strategies by setting values on nodes that appear in the cylinder sets. Although the notion of exclusive asynchronous basin involves
randomization, the polynomial calculations for basins are exact. This differs from methods based on computer simulation of randomized dynamics.

Now we describe an algorithm for finding B_{A}, using finite field coefficients for speed and memory efficiency. Let A be an attractor of interest, with basin of attraction B_{A}. We will use twice as many indeterminates as the number of coordinates d. Define the ring of polynomials $R:=F_{2}\left[s_{1}, \ldots, s_{d}, t_{1}, \ldots, t_{d}\right]=F_{2}[\mathbf{s}, \mathbf{t}]$, and define ideals

$$
\begin{aligned}
I_{01} & =\left\langle s_{1}^{2}+s_{1}, \ldots, s_{d}^{2}+s_{d}, t_{1}^{2}+t_{1}, \ldots, t_{d}^{2}+t_{d}\right\rangle \\
F_{s t} & =\left\langle f_{1}(\mathbf{s})-t_{1}, f_{2}(\mathbf{s})-t_{2}, \ldots, f_{d}(\mathbf{s})-t_{d}\right\rangle \\
F_{t s} & =\left\langle f_{1}(\mathbf{t})-s_{1}, f_{2}(\mathbf{t})-s_{2}, \ldots, f_{d}(\mathbf{t})-s_{d}\right\rangle \\
I_{A} & =\cap_{\mathbf{x} \in A}\left\langle t_{1}-x_{1}, \ldots, t_{d}-x_{d}\right\rangle .
\end{aligned}
$$

Define the ideal I_{1} by

$$
I_{1}=\left(F_{s t}+I_{A}+I_{01}\right) \cap F_{2}[\mathbf{s}],
$$

and define recursively a sequence of ideals $I_{2}, I_{3}, I_{4}, \ldots$ by

$$
\begin{aligned}
J & =\left(F_{t s}+I_{i}+I_{01}\right) \cap F_{2}[\mathbf{t}] \\
I_{i+1} & =\left(F_{s t}+J+I_{01}\right) \cap F_{2}[\mathbf{s}], \quad i=1,2,3, \ldots
\end{aligned}
$$

Stop the iteration when $I_{i} \subset I_{i+1}$, an ideal containment condition that shows the reverse containment of varieties $\mathbf{V}\left(I_{i+1}\right) \subset \mathbf{V}\left(I_{i}\right)$ - when this happens the basin computation has reached its fixed "point" or fixed and final set. Note that this terminating condition can be established using the division algorithm on polynomials, the varieties themselves need not be examined. This comes from the "ideal membership" property of a Groebner basis - membership can be determined by reducing a polynomial using a Groebner basis ([5]). This is a place where algebraic geometry helps with big varieties.

Theorem 1. At a positive integer i^{\star} where $I_{i^{\star}}=I_{i^{\star}+1}$, the variety for $I_{i^{\star}}$ is the basin B_{A}.
Proof. We sketch the ideas in a proof. The first elimination step

$$
I_{1}=\left(F_{s t}+I_{A}+I_{01}\right) \cap F_{2}[\mathbf{s}]
$$

gives the polynomials in s indeterminates on the set of points in $\{0,1\}^{d}$ that hit A in one step, $F^{-1}(A)$. Seidenberg's Lemma ([16]) shows that the ideal is radical. Adding in the state space set I_{01} guarantees no unwanted points are included after elimination (that is, there are no extra unwanted roots of the polynomials in s that actually do not map under $F_{s t}$ to points in I_{A}), by the Extension Theorem ([5]). The Extension Theorem requires a small extension to F_{2} coefficients (not an algebraically closed field) but adding the I_{01} ideal makes it valid ([8]).

Then I_{i} is the ideal for points $\left\{\mathbf{x} \in\{0,1\}^{d}: F^{2 i-1}(\mathbf{x}) \in A\right\}$, the $(2 i-1)^{s t}$ inverse image. When the inverse images become fixed, the set is fixed at the basin of attraction.

A similar algorithm can compute the exclusive asynchronous basin $B_{e x, A}$. It is also based on elimination, and terminates when an ideal containment condition is satisfied.

4. Example.

A 60-node Boolean model for leukemia was formulated in [32], and a version was studied in [25] and [33]. The model is given in Tables 1 and 2 on 58 nodes, two receptors that play no role in Apoptosis being removed. Apoptosis is an outcome where the cancer cell is terminated, and its onset is coded with a node Apoptosis hitting value 1. The goal is
to find out how to make that happen by setting values on other nodes that may be subject to intervention or control.

The model has 7 attractors, which are all cycles of length 4. Three of them have Apoptosis fixed at 1 , so these are the ones to study first. Only one has a nonempty exclusive asynchronous basin of attraction, and it is the 4 -cycle below, with the Apoptosis coordinate 48 underlined:
$\{00111011101111110110010111010111101110111011000 \underline{1} 0010101010$
$01111011101111110110010111010111101110111011000 \underline{1} 0010101010$
$11111011101111110110010111010111101110111011000 \underline{1} 0010101010$
$10111011101111110110010111010111101110111011000 \underline{1} 0010101010\}$.

The exclusive asynchronous basin is given by the union of two cylinders, found with the associated primes of its ideal. The membership conditions are

$$
\begin{aligned}
& \mathrm{S} 1 \mathrm{P}^{52}=0, \text { Ceramide }^{39}=1, \mathrm{sFas}^{38}=0, \mathrm{Fas}^{37}=1, \mathrm{FasT}^{36}=1, \mathrm{FaSL}^{35}=1, \mathrm{TBET}^{26}=1, \mathrm{IL}^{2} \mathrm{RB}^{19}=1, \mathrm{IL}^{2} \mathrm{RBT}^{18}=1 \text {, } \\
& \mathrm{NFKB}^{14}=1, \mathrm{PI}^{13}{ }^{13}=1, \mathrm{ERK}^{12}=1, \mathrm{MEK}^{11}=1, \mathrm{GAP}^{10}=0, \text { RAS }^{9}=1, \mathrm{GRB}^{7}=1 \\
& \mathrm{~S}_{1}{ }^{52}=0, \text { Ceramide }^{39}=1, \mathrm{sFas}^{38}=0, \mathrm{Fas}^{37}=1, \mathrm{FaST}^{36}=1, \mathrm{FaSL}^{35}=1, \mathrm{NFKB}^{14}=1, \mathrm{PI}^{13}{ }^{13}=1, \mathrm{PDGFR}^{3}=1 .
\end{aligned}
$$

in addition to the fixed values 101010 on the last 6 signaling nodes 53-58 specified in Table 2.

In the wild card notation, they can be written:

$1-12$	$13-25$	$26-34$	$35-52$
$* * * * * * 1 * 1011$	$11 * * * 11 * * * * * *$	$1 * * * * * * * *$	$11101 * * * * * * * * * * * 0$
$* * 1 * * * * * * * * *$	$11 * * * * * * * * * * *$	$* * * * * * * * *$	$11101 * * * * * * * * * * * 0$

So the two cylinder sets above specify the nodes and their initial settings to guarantee a robust evolution towards Apoptosis.

The size of the asynchronous exclusive basin is easy, from inclusion-exclusion: $2^{58-22}+$ $2^{58-15}-2^{58-23}=8,830,452,760,576$. Yet finding and describing the basin did not require enumeration.

There are two out of seven attractors that cycle in the Apoptosis value, and both have empty exclusive asynchronous basins. (Any appearance of Apoptosis in the original model [32] would shut the cell down totally, so such cycles do not appear in that model.)

5. Generalized State Spaces.

It is not uncommon for network nodes to have values more general than $\{0,1\}$, and the algebraic methods generalize easily. The only changes to the Boolean methodology are to get the transition functions in polynomial form, and to write the state space of the system as the roots of an ideal.

The "ABC" dynamic model for flowering of the plant species Arabidopsis thaliana is explained in [29] and transition functions are given in Table 3.

Consider the following indicator polynomials:

$$
\begin{aligned}
l_{i} & =\left(x_{i}^{2}-3 x_{i}+2\right) / 2 \\
m_{i} & =-x_{i}^{2}+2 x_{i} \\
h_{i} & =\left(x_{i}^{2}-x_{i}\right) / 2, i=1,2,3 .
\end{aligned}
$$

	nodes 1-29	logical rule		
1	CTLA4	TCR		
2	TCR	Stimuli \& ! CTLA4		
3	PDGFR	S1P \| PDGF		
4	FYN	TCR \| IL2RB		
5	LCK	CD45 \| ((TCR	IL2RB) \& ! ZAP70)	
6	ZAP70	LCK \& !FYN		
7	GRB2	IL2RB \| ZAP70		
8	PLCG1	GRB2 \| PDGFR		
9	RAS	(GRB2 \| PLCG1) \& !GAP		
10	GAP	(RAS \| (PDGFR \& GAP)) \& ! (IL15	IL2)	
11	MEK	RAS		
12	ERK	MEK \& PI3K		
13	PI3K	PDGFR \| RAS		
14	NFKB	(TPL2 \| PI3K)	(FLIP \& TRADD \& IAP)	
15	NFAT	PI3K		
16	RANTES	NFKB		
17	IL2	(NFKB \| STAT3 \| NFAT) \& !TBET		
18	IL2RBT	ERK \& TBET		
19	IL2RB	IL2RBT \& (IL2 \| IL15)		
20	IL2RAT	IL2 \& (STAT3 \| NFKB)		
21	IL2RA	IL2 \& IL2RAT \& ! IL2RA		
22	JAK	(IL2RA \\| IL2RB \| RANTES \| IFNG) \& ! SOCS \| CD45)		
23	SOCS	JAK \& ! (IL2 \| IL15)		
24	STAT3	JAK		
25	P27	STAT3		
26	TBET	JAK \| TBET		
27	CREB	ERK \& IFNG		
28	IFNGT	TBET \| STAT3	NFAT	
29	IFNG	((IL2 \| IL15	Stimuli) \& IFNGT) \& ! (SMAD	P2)

TABLE 1. Boolean model of T-LGL dynamics from [33].

	nodes 30-58	logical rule		
30	P2	(IFNG \mid P2) \& !Stimuli2		
31	GZMB	(CREB \& IFNG) \| TBET		
32	TPL2	TAX \| (PI3K \& TNF)		
33	TNF	NFKB		
34	TRADD	TNF \& !(IAP \| A20)		
35	FasL	STAT3 \mid NFKB \mid NFAT \mid ERK		
36	FasT	NFKB		
37	Fas	FasT \& FasL \& !sFas		
38	sFas	FasT \& S1P		
39	Ceramide	Fas \& !S1P		
40	DISC	FasT \& ((Fas \& IL2) \| Ceramide	(Fas \& !FLIP))	
41	Caspase	(((TRADD \|GZMB) \& BID) \& !IAP)	DISC	
42	FLIP	(NFKB \| (CREB \& IFNG)) \& !DISC		
43	A20	NFKB		
44	BID	(Caspase \| GZMB) \& !(BclxL	MCL1)	
45	IAP	NFKB \& !BID		
46	BclxL	(NFKB \| STAT3) \& !(BID	GZMB	DISC)
47	MCL1	(IL2RB \& STAT3 \& NFKB \& PI3K) \& !DISC		
48	Apoptosis	Caspase		
49	GPCR	S1P		
50	SMAD	GPCR		
51	SPHK1	PDGFR		
52	S1P	SPHK1 \& !Ceramide		
53	Stimuli	1		
54	Stimuli2	0		
55	PDGF	1		
56	CD45	0		
57	IL15	1		
58	TAX	0		

TABLE 2. Boolean model of T-LGL dynamics from [33].

One can check that for $\mathbf{x} \in\{0,1,2\}^{3}, l_{i}(\mathbf{x})=I_{\{0\}}\left(x_{i}\right)$, where $I_{A}(x)$ is the usual indicator function notation for the set A with value 1 on the set and 0 off the set. That is, l_{i} serves

a b c	$f_{1} f_{2} f_{3}$
000	000
001	001
002	011
010	101
011	002
012	012
100	100
101	000
102	010
110	200
111	000
112	010
200	110
201	010
202	010
210	210
211	010
212	010

Table 3. Table of update functions $F=\left(f_{1}, f_{2}, f_{3}\right)$ from Table 2 of [29].
as an indicator function of the low value 0 for variable i. Similarly, m_{i} and h_{i} are indicator functions for medium and high values on the domain S. These functions are ternary analogs of " x_{i} " which works as an indicator function $I_{\{1\}}\left(x_{i}\right)$ in the $0-1$ valued Boolean case.

We can represent f_{1} from Table 3 in polynomial form as

$$
f_{1}=2 \cdot\left(m_{1} \cdot m_{2} \cdot l_{3}+h_{1} \cdot m_{2} \cdot l_{3}\right)+1 \cdot\left(l_{1} \cdot m_{2} \cdot l_{3}+m_{1} \cdot l_{2} \cdot l_{3}+h_{1} \cdot l_{2} \cdot l_{3}\right)
$$

and similarly for f_{2}, f_{3}. The use of polynomial indicator functions for defining subsets of domains is developed in [23] for similar applications in experimental design. The 3-level state space is the variety of the radical ideal

$$
I_{012}=\left\langle s_{1}^{3}-3 s_{1}^{2}+2 s_{1}, s_{2}^{3}-3 s_{2}^{2}+2 s_{2}, \ldots, s_{d}^{3}-3 s_{d}^{2}+2 s_{d}\right\rangle
$$

in the ring $\mathbb{C}\left[s_{1}, \ldots, s_{d}\right]$.
In the polynomial framework, one can quickly compute big biology examples with node values in $\{0,1,2\}$ like the 13-node flowering example of [3] (and further clarified in [10]). We have also done the four-level cancer example in [11].

In conclusion, sets related to attractors in discrete dynamics can be big and yet still have manageable ideals. Checking containment of sets can be done with the ideals. Probabilistic dynamics can be done with ideals. Sets can be represented efficiently and intuitively by means of associated prime ideals. And general node values beyond $\{0,1\}$ are not a problem.

6. AcKNOWLEDGMENT.

This work was supported by NIH grant 5P30AG024978-14 under an ORCATECH Roybal Center for Translational Research on Aging PILOT subaward through Portland State University.

REFERENCES

[1] Abbott, J., and Bigatti, A. M. (2014) CoCoALib: a C++ library for doing Computations in Commutative Algebra. Available at http://cocoa.dima.unige.it/cocoalib.
[2] Bell, E. (1927) Arithmetic of Logic. Trans Amer Math Soc 29, 597-611.
[3] Chaos, A., Aldana, M., Espinosa-Soto, C., Ponce de León, B. G., Arroyo, A. G., and Alvarez-Buylla, E. R. (2006) From genes to flower patterns and evolution: dynamic models of gene regulatory networks. J Plant Growth Regul 25, 278-289.
[4] Chaves, M., Albert, R., and Sontag, E. D. (2005) Robustness and fragility of Boolean models for genetic regulatory networks. Jour Theoret Biol 235, 431-449.
[5] Cox, D., Little, J., and O'Shea, D. (1997) Ideals, Varieties, and Algorithms 2nd Edition. Springer, New York.
[6] D'Ari, R., and Thomas, R. Biological Feedback. CRC Press, Boca Raton (1990).
[7] Decker, W., Greuel, G.-M., Pfister, G., and Schönemann, H. (2016) Singular 4-0-3 - A computer algebra system for polynomial computations. Available at http://www.singular.uni-kl.de.
[8] Dinwoodie, I. H. (2014) Conditional tests on basins of attraction with finite fields. Methodology and Computing in Applied Probability, 14, 161-168.
[9] Dinwoodie, I. H. (2016) Computational methods for asynchronous basins. Discrete and Continuous Dynamical Systems B, 21, 3391-3405.
[10] Espinosa-Soto, C., Padilla-Longoria, P., and Alvarez-Buylla, E. R. (2004) A gene regulatory network model for cell-fate determination during Arabidopsis thaliana development that is robust and recovers experimental gene expression profiles. The Plant Cell 16, 2923-2939.
[11] Flobak, Å., Baudot, A., Remy, E., Thommesen, L., Thieffry, D., Kuiper, M., Lægreid, A. (2015) Discovery of Drug Synergies in Gastric Cancer Cells Predicted by Logical Modeling. PLoS Comput Biol 28, e1004426.
[12] Grayson, D. R., and Stillman, M. E. (2014) Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.
[13] Hayes, T. L., Riley, T., Pavel, M., and Kaye, J. A. (2010) Estimation of rest-activity patterns using motion sensors. Conf Proc IEEE Eng Med Biol Soc, vol. 2010, pp. 2147-2150.
[14] Jacob, F., and Monod, J. (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3, 318356.
[15] Kaye, J. A., Maxwell, S. A., Mattek, N., Hayes, T. L., Dodge, H., Pavel, M., Jimison, H. B., Wild, K., Boise, L., and Zitzelberger, T. A., Intelligent systems for assessing aging changes: home-based, unobtrusive, and continuous assessment of ageing. The Journals of Gerontology, Series B: Psychological Sc iences and Social Sciences, 66B(S1) (2011), i180-i190.
[16] Kreuzer, M., and Robbiano, L. (2000) Computational Commutative Algebra I. Springer, New York.
[17] Li, H., and Wang, Y. (2013) Output feedback stabilization control design for Boolean control networks. Automatica 49, 3641-3645.
[18] Mendoza, L. (2006) A network model for the control of the differentiation process in Th cells. BioSystems 84, 101-114.
[19] Morris, M. K., Saez-Rodriguez, J., Sorger, P. K., and Lauffenburger, D. A. (2010) Logic-Based Models for the Analysis of Cell Signaling Networks. Biochemistry 49, 3216-3224.
[20] Müssel, C., Hopfensitz, M., and Kestler, H. A. BoolNet - an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics, 26 (2010), 1378-1380.
[21] Patterson, D. (2011). Computer Scientists May Have What It Takes to Help Cure Cancer. The New York Times, December 52011.
[22] Petersen, J., Austin, D., Kaye, J., Pavel, M., and Hayes, T., Unobtrusive in-home detection of time spent out-of-home with applications to loneliness and physical activity, IEEE Journal of Biomedical and Health Informatics, 18 (2014), 1590-1596.
[23] Pistone, G., and Rogantin, M. P. (2008) Indicator function and different codings for fractional factorial designs. J Stat Plan Inference 138, 787-802.
[24] Robeva, R., and Hodge, T. (2013) Mathematical Concepts and Methods in Modern Biology: Using Modern Discrete Models. Academic Press, San Diego.
[25] Saadatpour, A., Wang, R-S., Liao, A., Liu, X., Loughran, T. P., Albert, I., and Albert, R. (2011) Dynamical and Structural Analysis of a T Cell Survival Network Identifies Novel Candidate Therapeutic Targets for Large Granula Lymphocyte Leukemia. PLoS Comp Biol 7, e1002267.
[26] Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D. A., and Nolan, G. P. (2005) Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Science 308, 523-529.
[27] Saez-Rodriquez, J., Alexopoulos, L. G., Zhang, M., Morris, M., Lauffenburger, D. A., and Sorger, P. K. (2011) Comparing Signaling Networks between Normal and Transformed Hepatocytes Using Discrete Logical Models. Cancer Res 71, 5400-5411.
[28] Schlatter, R., Schmich, K., Vizcarra, I. A., Scheurich, P., Sauter, T., Borner, C., Ederer, M., Merfort, I., and Sawodny, O. (2009) ON/OFF and Beyond - A Boolean Model of Apoptosis. PLoS Comp Biol 5, e1000595.
[29] Thieffry, D. and Thomas, R. (1998) Qualitative analysis of gene networks. Pac Symp Biocomput 1998, 77-88.
[30] Thomas, R. (1973) Boolean formalization of genetic control circuits. J Theor Biol 42, 563-585.
[31] Thomas, R. (1991) Regulatory networks seen as asynchronous automata: a logical description. J Theor Biol 153, 1-23.
[32] Zhang, R., Shah, M.V., Yang., J., Nyland, S. B., Liu, X., Yun, J.K., Albert, R., and Loughran, T. P. (2008) Network model of survival signaling in large granular lymphocyte leukemia. Proc Natl Acad Sci USA 105, 16308-16313.
[33] Zañudo , J. G. T., and Albert, R. (2015) Cell Fate Reprogramming by Control of Intracellular Network Dynamics. PLoS Comput Biol 11: e1004193.
[34] Zhegalkin, I. I. (1927) On the technique of calculating propositions in symbolic logic. Matematicheskii Sbornik 43, 9-28.

