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IDEALS, BIG VARIETIES, AND DYNAMIC NETWORKS

IAN H DINWOODIE

SEPTEMBER 2018

ABSTRACT. The advantage of using algebraic geometry over enumeration for describing

sets related to attractors in large dynamic networks from biology is advocated. Examples

illustrate the gains.

Biological applications of dynamical systems can be in discrete spaces like {0, 1}5,

where “1” may code for “on” or “high” or ”cancer cell terminated” and “0” may code for

“off” or “low” or “cancer cell still going fine.” Then the subset

∗ ∗ ∗ 01 := {00001, 00101, 01001, 01101, 10001, 10101, 11001, 11101}

can be enumerated easily, and the rule for membership is clear: x4 = 0, x5 = 1.

Nowadays, some dynamic networks on S := {0, 1}d (called Boolean networks) are

fitted or “learned” or modeled with large d, d being the number of molecules or proteins

or variables, using data and combined knowledge from experimentation and literature.

The data involved for fitting may be Big Data, a term for large data sets often gathered

mechanically ([21]), and the fitting procedures may include machine learning methods

that can give complex models. One example is in [9], where a dynamical model of 15

nodes after variable selection was fitted with machine and statistical learning methods to

data from motion sensors (see [13], [15], [22] for background on the data).

There are computational advantages in describing sets of interest as varieties – sets of

roots of multivariate polynomials. Each coordinate gets an indeterminate, so for the set

∗ ∗ ∗ 01 above we could describe it as the roots to two polynomials

〈s4, s5 − 1〉

in a ring of polynomials C[s1, s2, s3, s4, s5]. This set of two polynomials is the ideal for

the variety ∗ ∗ ∗ 01. For large problems such as the d = 58 node example of Section 4,

it is useful to use finite field coefficients to speed computations. So with field coefficients

in characteristic 2, simply {0, 1} with mod 2 operations, we have the polynomial ring

F2[s1, s2, s3, s4, s5]. The elements of ∗ ∗ ∗ 01 are the simultaneous roots of

〈s4, s5 + 1〉.

The entire state space {0, 1}d has size 2d, yet it can be described as the roots of only d
polynomials, the logarithm of its cardinality:

〈s21 + s1, . . . , s
2
d + sd〉.

So useful subsets of a big state space S can sometimes be studied more efficiently with the

polynomials that vanish on the subset, rather than by enumeration.

Traditional logical models for dynamics were small and conceptual ([30]), but dynam-

ical models on discrete state spaces have become larger as more data has helped fit and

verify more complex interactions (see [18], [19], [26], [27], [28], [32]). Commutative
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algebra – the algebra of multivariate polynomials – has become one tool for doing cal-

culations (see [24]). The methods and foundations for using commutative algebra are in

[5], whose title this article plays on, and [16]. Software implementations include CoCoA

[1], Macaulay2 [12] and Singular [7]. The essential operations for our applications are

elimination and primary decomposition.

The new example here is an exact calculation on the network of 58 nodes as described

in [33], which first appeared in [32].

1. BOOLEAN NETWORKS.

The traditional Boolean network with values in {0, 1} at each node is exemplified by

the lac operon network formulated in [14] and described in [24]. In logical notation the

dynamics are

f1(x1, x2, x3) =!u1 & (x3 | u2)

f2(x1, x2, x3) = x1

f3(x1, x2, x3) =!u1 & ((x2&u2) | (x3&!x2))

where u1, u2 ∈ {0, 1} are fixed parameters for control that can be set at 0 or 1, “!” means

“not” and “|” means “or.” Coding Boolean functions as polynomials is a standard proce-

dure, with early foundations in [2], [34]. In practice it can usually be done easily without

applying general theory.

A control problem for the lac operon is to find values of u1, u2 that lead to steady

state (fixed point) x1x2x3 = 111 (which means the operon is “on”). The problem has a

geometric interpretation as follows. Expand the dynamics to F : {0, 1}5 → {0, 1}5 with

F = (f1, f2, f3, f4, f5) where f4 = u1 and f5 = u2 fix u1 and u2 respectively. Now

we are looking for subsets of the form ∗ ∗ ∗u1u2 inside the basin of attraction of steady

state 111u1u2, where “∗” is a wild card place holder and u1, u2 can be any values. Such a

subset will have the property that setting u1, u2 at the specified values will drive the system

to (1, 1, 1, u1, u2) regardless of the initial values of x1, x2, x3. The map F has four steady

states, including one useful one 11101. The basin of attraction of this steady state is all

eight points ∗ ∗ ∗ 01, so any initial values for x1x2x3 with u1 = 0, u2 = 1 will lead to the

“on” steady state. This is a small version of the general control problem for large networks

in biology like our main example in Section 4.

Standard software for Boolean networks identifies basins of attraction by complete enu-

meration, and will solve this problem easily. However, in standard software the number of

nodes or coordinate values is limited (typically to around 30 for basin analysis), their val-

ues must be 0-1, and the output as a list of elements does not explain what conditions imply

membership. For large problems, a geometric approach can be better for computations and

for comprehension.

2. BASINS OF ATTRACTION.

A Boolean network with d coordinates or nodes has a state space {0, 1}d, a d-fold

product of logical or off/on or low/high symbols 0 and 1. Let F = (f1, . . . , fd) be an

update function on {0, 1}d, where fj : {0, 1}d → {0, 1} is the rule for node j. This map

is deterministic, called the synchronous update. For a state x, define the limiting set

Ax = ∩∞
k=1 ∪

∞
n=k {Fn(x)}

where Fn is the n-fold composition of F . The resulting sets, as x varies in the state space

{0, 1}d, are the limiting sets or attractor sets of the system. These are fixed points or cycles.
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Let BA be the usual deterministic basin of attraction for an attractor A, the points that

eventually hit A:

BA := ∪∞
k=1{x : F k(x) ∈ A} = lim

k→∞
F−k(A).

The main control problem is to find simple conditions for membership of an initial state

in the attractor basin BA, as in the lac operon opening example where membership in

B{11101} was determined by simple conditions u1 = 0, u2 = 1. These membership rules

give the set ∗ ∗ ∗ 01 which we call a cylinder set, from the probability terminology for

product spaces where a few of the coordinates are restricted and others are free.

But biological applications need a randomized version of the map F ([4], [25], [32]),

since the timing of the coordinate maps may not be synchronized perfectly in the real

world. One type of asynchronous updates, the one we use, proceeds by choosing a node or

coordinate j with the uniform probability distribution, then changing current state x to x
′

like:

x = (x1, . . . , xj−1, xj , xj+1, . . . , xd) → (x1, . . . , xj−1, fj(x), xj+1, . . . , xd) = x
′.

The resulting process x0, X1, X2, X3, . . . is a Markov chain in state space {0, 1}d, starting

at nonrandom initial configuration x0 and with random variables Xn for random states or

configurations. The probability that Xn is in a set S will be written:

Px0
(Xn ∈ S).

The process has a probability transition matrix of size 2d × 2d. A 60 node example would

be impossible to study with the transition matrix because of its size. Control methods that

use a transition matrix ([17]) are not realistic for large Boolean networks.

Define the single coordinate updates on a state x = (x1, . . . , xd) by

Fj(x) = (x1, . . . , xj−1, fj(x), xj+1, . . . , xd), j = 1, 2, . . . , d.

Now with B0 = BA, F−1

j the inverse of Fj , and Bc the complement of a set B, define the

exclusive asynchronous basin of the attractor A by

Bi = Bi−1 \ ∪
d
j=1F

−1

j (Bc
i−1), i = 1, 2, 3, . . .

Bex,A := lim
i→∞

Bi.

Probabilistically, this can be described as

Bex,A = {x : Px(Xn ∈ BA, n = 0, 1, 2, 3, . . .) = 1}.

In words, the points in Bex,A are the states that can never leave the basin of attraction BA

over time under perturbations in the form of asynchronous updates.

The exclusive asynchronous basin Bex,A gives a robust basin for the purpose of target-

ing useful attractors, and the control problem is characterizing membership in Bex,A with

settings on a few nodes.

3. POLYNOMIAL DYNAMICS FOR BASIN IDEALS.

An effective way to compute basins of attraction for large networks uses commutative

algebra on dynamics written as polynomials, and basins are represented first with their

ideals. Then the associated primes of the ideal of the basin lead to simple cylinder sets

(sometimes an associated prime will give more than one cylinder), and these give simple

conditions for basin membership and clear control strategies by setting values on nodes that

appear in the cylinder sets. Although the notion of exclusive asynchronous basin involves
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randomization, the polynomial calculations for basins are exact. This differs from methods

based on computer simulation of randomized dynamics.

Now we describe an algorithm for finding BA, using finite field coefficients for speed

and memory efficiency. Let A be an attractor of interest, with basin of attraction BA. We

will use twice as many indeterminates as the number of coordinates d. Define the ring of

polynomials R := F2[s1, . . . , sd, t1, . . . , td] = F2[s, t], and define ideals

I01 = 〈s21 + s1, . . . , s
2
d + sd, t

2
1 + t1, . . . , t

2
d + td〉

Fst = 〈f1(s)− t1, f2(s)− t2, . . . , fd(s)− td〉

Fts = 〈f1(t)− s1, f2(t)− s2, . . . , fd(t)− sd〉

IA = ∩x∈A〈t1 − x1, . . . , td − xd〉.

Define the ideal I1 by

I1 = (Fst + IA + I01) ∩ F2[s],

and define recursively a sequence of ideals I2, I3, I4, . . . by

J = (Fts + Ii + I01) ∩ F2[t]

Ii+1 = (Fst + J + I01) ∩ F2[s], i = 1, 2, 3, . . .

Stop the iteration when Ii ⊂ Ii+1, an ideal containment condition that shows the reverse

containment of varieties V(Ii+1) ⊂ V(Ii) – when this happens the basin computation has

reached its fixed “point” or fixed and final set. Note that this terminating condition can

be established using the division algorithm on polynomials, the varieties themselves need

not be examined. This comes from the “ideal membership” property of a Groebner basis

– membership can be determined by reducing a polynomial using a Groebner basis ([5]).

This is a place where algebraic geometry helps with big varieties.

Theorem 1. At a positive integer i⋆ where Ii⋆ = Ii⋆+1, the variety for Ii⋆ is the basin BA.

Proof. We sketch the ideas in a proof. The first elimination step

I1 = (Fst + IA + I01) ∩ F2[s]

gives the polynomials in s indeterminates on the set of points in {0, 1}d that hit A in one

step, F−1(A). Seidenberg’s Lemma ([16]) shows that the ideal is radical. Adding in the

state space set I01 guarantees no unwanted points are included after elimination (that is,

there are no extra unwanted roots of the polynomials in s that actually do not map under

Fst to points in IA), by the Extension Theorem ([5]). The Extension Theorem requires

a small extension to F2 coefficients (not an algebraically closed field) but adding the I01
ideal makes it valid ([8]).

Then Ii is the ideal for points {x ∈ {0, 1}d : F 2i−1(x) ∈ A}, the (2i − 1)st inverse

image. When the inverse images become fixed, the set is fixed at the basin of attraction. �

A similar algorithm can compute the exclusive asynchronous basin Bex,A. It is also

based on elimination, and terminates when an ideal containment condition is satisfied.

4. EXAMPLE.

A 60-node Boolean model for leukemia was formulated in [32], and a version was

studied in [25] and [33]. The model is given in Tables 1 and 2 on 58 nodes, two receptors

that play no role in Apoptosis being removed. Apoptosis is an outcome where the cancer

cell is terminated, and its onset is coded with a node Apoptosis hitting value 1. The goal is
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to find out how to make that happen by setting values on other nodes that may be subject

to intervention or control.

The model has 7 attractors, which are all cycles of length 4. Three of them have Apop-

tosis fixed at 1, so these are the ones to study first. Only one has a nonempty exclusive

asynchronous basin of attraction, and it is the 4-cycle below, with the Apoptosis coordi-

nate 48 underlined:

{0011101110111111011001011101011110111011101100010010101010,

0111101110111111011001011101011110111011101100010010101010,

1111101110111111011001011101011110111011101100010010101010,

1011101110111111011001011101011110111011101100010010101010}.

The exclusive asynchronous basin is given by the union of two cylinders, found with

the associated primes of its ideal. The membership conditions are

S1P52=0, Ceramide39=1, sFas38=0, Fas37=1, FasT36=1, FasL35=1, TBET26=1, IL2RB19=1, IL2RBT18=1,

NFKB14=1, PI3K13=1, ERK12=1, MEK11=1, GAP10=0, RAS9=1, GRB27=1

S1P52=0, Ceramide39=1, sFas38=0, Fas37=1, FasT36=1, FasL35=1, NFKB14=1, PI3K13=1, PDGFR3=1.

in addition to the fixed values 101010 on the last 6 signaling nodes 53-58 specified in Table

2.

In the wild card notation, they can be written:

1-12 13-25 26-34 35-52
* * * * * * 1 * 1 0 1 1 1 1 * * * 1 1 * * * * * * 1 * * * * * * * * 1 1 1 0 1 * * * * * * * * * * * 0
* * 1 * * * * * * * * * 1 1 * * * * * * * * * * * * * * * * * * * * 1 1 1 0 1 * * * * * * * * * * * 0

So the two cylinder sets above specify the nodes and their initial settings to guarantee a

robust evolution towards Apoptosis.

The size of the asynchronous exclusive basin is easy, from inclusion-exclusion: 258−22+
258−15 − 258−23 = 8, 830, 452, 760, 576. Yet finding and describing the basin did not re-

quire enumeration.

There are two out of seven attractors that cycle in the Apoptosis value, and both have

empty exclusive asynchronous basins. (Any appearance of Apoptosis in the original model

[32] would shut the cell down totally, so such cycles do not appear in that model.)

5. GENERALIZED STATE SPACES.

It is not uncommon for network nodes to have values more general than {0, 1}, and the

algebraic methods generalize easily. The only changes to the Boolean methodology are to

get the transition functions in polynomial form, and to write the state space of the system

as the roots of an ideal.

The “ABC” dynamic model for flowering of the plant species Arabidopsis thaliana is

explained in [29] and transition functions are given in Table 3.

Consider the following indicator polynomials:

li = (x2
i − 3xi + 2)/2

mi = −x2
i + 2xi

hi = (x2
i − xi)/2, i = 1, 2, 3.
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nodes 1-29 logical rule
1 CTLA4 TCR
2 TCR Stimuli & !CTLA4
3 PDGFR S1P | PDGF
4 FYN TCR | IL2RB
5 LCK CD45 | ((TCR | IL2RB) & !ZAP70)
6 ZAP70 LCK & !FYN
7 GRB2 IL2RB | ZAP70
8 PLCG1 GRB2 | PDGFR
9 RAS (GRB2 | PLCG1) & !GAP

10 GAP (RAS | (PDGFR & GAP)) & !(IL15 | IL2)
11 MEK RAS
12 ERK MEK & PI3K
13 PI3K PDGFR | RAS
14 NFKB (TPL2 | PI3K) | (FLIP & TRADD & IAP)
15 NFAT PI3K
16 RANTES NFKB
17 IL2 (NFKB | STAT3 | NFAT) & !TBET
18 IL2RBT ERK & TBET
19 IL2RB IL2RBT & (IL2 | IL15)
20 IL2RAT IL2 & (STAT3 | NFKB)
21 IL2RA IL2 & IL2RAT & !IL2RA
22 JAK (IL2RA | IL2RB | RANTES | IFNG) & !(SOCS | CD45)
23 SOCS JAK & !(IL2 | IL15)
24 STAT3 JAK
25 P27 STAT3
26 TBET JAK | TBET
27 CREB ERK & IFNG
28 IFNGT TBET | STAT3 | NFAT
29 IFNG ((IL2 | IL15 | Stimuli) & IFNGT) & !(SMAD | P2)

TABLE 1. Boolean model of T-LGL dynamics from [33].

nodes 30-58 logical rule
30 P2 (IFNG | P2) & !Stimuli2
31 GZMB (CREB & IFNG) | TBET
32 TPL2 TAX | (PI3K & TNF)
33 TNF NFKB
34 TRADD TNF & !(IAP | A20)
35 FasL STAT3 | NFKB | NFAT | ERK
36 FasT NFKB
37 Fas FasT & FasL & !sFas
38 sFas FasT & S1P
39 Ceramide Fas & !S1P
40 DISC FasT & ((Fas & IL2) | Ceramide | (Fas & !FLIP))
41 Caspase (((TRADD | GZMB) & BID) & !IAP) | DISC
42 FLIP (NFKB | (CREB & IFNG)) & !DISC
43 A20 NFKB
44 BID (Caspase | GZMB) & !(BclxL | MCL1)
45 IAP NFKB & !BID
46 BclxL (NFKB | STAT3) & !(BID | GZMB | DISC)
47 MCL1 (IL2RB & STAT3 & NFKB & PI3K) & !DISC
48 Apoptosis Caspase
49 GPCR S1P
50 SMAD GPCR
51 SPHK1 PDGFR
52 S1P SPHK1 & !Ceramide
53 Stimuli 1
54 Stimuli2 0
55 PDGF 1
56 CD45 0
57 IL15 1
58 TAX 0

TABLE 2. Boolean model of T-LGL dynamics from [33].

One can check that for x ∈ {0, 1, 2}3, li(x) = I{0}(xi), where IA(x) is the usual indicator

function notation for the set A with value 1 on the set and 0 off the set. That is, li serves
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a b c f1 f2 f3
0 0 0 0 0 0

0 0 1 0 0 1

0 0 2 0 1 1

0 1 0 1 0 1

0 1 1 0 0 2

0 1 2 0 1 2

1 0 0 1 0 0

1 0 1 0 0 0

1 0 2 0 1 0

1 1 0 2 0 0

1 1 1 0 0 0

1 1 2 0 1 0

2 0 0 1 1 0

2 0 1 0 1 0

2 0 2 0 1 0

2 1 0 2 1 0

2 1 1 0 1 0

2 1 2 0 1 0

TABLE 3. Table of update functions F = (f1, f2, f3) from Table 2 of [29].

as an indicator function of the low value 0 for variable i. Similarly, mi and hi are indi-

cator functions for medium and high values on the domain S. These functions are ternary

analogs of “xi” which works as an indicator function I{1}(xi) in the 0-1 valued Boolean

case.

We can represent f1 from Table 3 in polynomial form as

f1 = 2 · (m1 ·m2 · l3 + h1 ·m2 · l3) + 1 · (l1 ·m2 · l3 +m1 · l2 · l3 + h1 · l2 · l3)

and similarly for f2, f3. The use of polynomial indicator functions for defining subsets of

domains is developed in [23] for similar applications in experimental design. The 3-level

state space is the variety of the radical ideal

I012 = 〈s31 − 3s21 + 2s1, s
3
2 − 3s22 + 2s2, . . . , s

3
d − 3s2d + 2sd〉

in the ring C[s1, . . . , sd].
In the polynomial framework, one can quickly compute big biology examples with node

values in {0, 1, 2} like the 13-node flowering example of [3] (and further clarified in [10]).

We have also done the four-level cancer example in [11].

In conclusion, sets related to attractors in discrete dynamics can be big and yet still have

manageable ideals. Checking containment of sets can be done with the ideals. Probabilis-

tic dynamics can be done with ideals. Sets can be represented efficiently and intuitively

by means of associated prime ideals. And general node values beyond {0, 1} are not a

problem.
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