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On the girth and diameter of generalized Johnson graphs

Louis Anthony Agong1, Carmen Amarra1,
John S. Caughman2,∗, Ari J. Herman2, Taiyo S. Terada2

1Institute of Mathematics, University of the Philippines Diliman, Philippines
2Dept. of Mathematics & Statistics, Portland State University, Portland, OR, USA

Abstract

Let v > k > i be non-negative integers. The generalized Johnson graph, J(v, k, i), is the
graph whose vertices are the k-subsets of a v-set, where vertices A and B are adjacent whenever
|A ∩ B| = i. In this article, we derive general formulas for the girth and diameter of J(v, k, i).
Additionally, we provide a formula for the distance between any two vertices A and B in terms
of the cardinality of their intersection.
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1. Introduction

Let v > k > i be non-negative integers. The generalized Johnson graph, X = J(v, k, i), is the
graph whose vertices are the k-subsets of a v-set, where vertices A and B are adjacent whenever
|A ∩B| = i. Generalized Johnson graphs were introduced by Chen and Lih in [2]. Special cases
include the Kneser graphs J(v, k, 0), the odd graphs J(2k+1, k, 0), and the Johnson graphs J(v, k, k−
1). The Johnson graph J(v, k, k − 1) is well known to have diameter min{k, v − k}, and formulas
for the distance and diameter of Kneser graphs were proved in [5].

Generalized Johnson graphs have also been studied under the name uniform subset graphs, and
a result in [3] offers a general formula for the diameter of J(v, k, i). However, that formula gives
incorrect values when i > 2

3k, an important case that includes the Johnson graphs. In this paper
we extend (and, in places, correct) those expressions for the diameter of generalized Johnson graphs
and we additionally provide a formula for the girth.

Note that it is possible to extend the definition of X = J(v, k, i) to include v ≥ k ≥ i. However,
X is an empty graph when k = i or v = k. If v = 2k and i = 0, then X is isomorphic to
the disjoint union of copies of K2. Furthermore, by taking complements, the graphs J(v, k, i) and
J(v, v − k, v − 2k + i) are easily seen to be isomorphic (see [4, p.11]). For the remainder of this
article, we will be concerned with generalized Johnson graphs that are connected, so we make the
following global definition.

Definition 1.1. Assume v > k > i are nonnegative integers, and let X = J(v, k, i) denote the
corresponding generalized Johnson graph. To avoid trivialities, further assume that v ≥ 2k, and
that (v, k, i) 6= (2k, k, 0).

2. Girth

In this section we derive an expression for the girth g(X) of a generalized Johnson graph, X. We
begin with a lemma that characterizes when two vertices have a common neighbor.

Lemma 2.1. With reference to Definition 1.1, let A and B be vertices and let x = |A ∩ B|. Then
A and B have a common neighbor if and only if x ≥ max{−v + 3k − 2i, 2i− k}.

Proof. Vertices A and B have a common neighbor C if and only if there exists a nonnegative
integer s, such that every region in the following diagram (Figure 1) has nonnegative size.

∗Corresponding author: caughman@pdx.edu. AMS 2010 Subject Classification: 05C12
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Figure 1: Diagram for proof of Lemma 2.1

By simplifying the resulting inequalities, we find that A and B have a common neighbor if and only
if there exists s ∈ Z, such that

max{0, i+ x− k, 2i− k} ≤ s ≤ min{x, i, v − 3k + 2i+ x}.

Such an integer s exists if and only if the expression on the left-hand side above does not exceed
the expression on the right-hand side. Under our global assumptions, this is equivalent to x ≥
max{−v + 3k − 2i, 2i− k}. �

Lemma 2.2. With reference to Definition 1.1, the girth g(X) = 3 if and only if v ≥ 3(k − i).

Proof. The graph X contains a 3-cycle if and only if there exist adjacent vertices A and B that
have a common neighbor. By Lemma 2.1, this occurs if and only if i ≥ max{−v + 3k − 2i, 2i− k}.
Since i ≥ 2i− k holds in all J(v, k, i) graphs, this condition is equivalent to v ≥ 3(k − i). �

A sufficient condition for the girth to be at most 4 is the existence of a 4-cycle.

Lemma 2.3. With reference to Definition 1.1, if (v, k, i) 6= (2k + 1, k, 0) then g(X) ≤ 4.

Proof. We proceed in two cases.
Case 1: i ≥ 2 or v > 2k + 1. In this case we get that v ≥ 2k − i + 2. So we can find

disjoint sets, A1, A2, A3, A4, and B1, B2, and C such that |A1| = |A2| = |A3| = |A4| = 1, and
|B1| = |B2| = k − i− 1, and |C| = i. Then

A1 ∪B1 ∪ C, A2 ∪B2 ∪ C, A3 ∪B1 ∪ C, A4 ∪B2 ∪ C

is a 4-cycle in X.
Case 2: i = 1. In this case, since v ≥ 2k, we can find disjoint sets A1, A2, A3, A4 and B1, B2

such that |A1| = |A2| = |A3| = |A4| = 1 and |B1| = |B2| = k − 2. Then

A1 ∪A2 ∪B1, A2 ∪A3 ∪B2, A3 ∪A4 ∪B1, A4 ∪A1 ∪B2

is a 4-cycle in X. �

Combining the above lemmas, we obtain a general expression for the girth.

Theorem 2.4. With reference to Definition 1.1, the girth of X is given by

g(X) =


3 if v ≥ 3(k − i);
4 if v < 3(k − i) and (v, k, i) 6= (2k + 1, k, 0);
5 if (v, k, i) = (5, 2, 0);
6 if (v, k, i) = (2k + 1, k, 0) and k > 2.
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Proof. The first two cases follow from Lemmas 2.2 and 2.3. The remaining cases are odd graphs,
for which the girth is well-known. (See, for example, [1, p.58].) �

3. Distance

In this section we derive a general expression for the distance between two vertices in terms of
their intersection.

Lemma 3.1. With reference to Definition 1.1, let A and B be vertices and let x = |A∩B|. Suppose
x < i. If x < −v + 3k − 2i, then

dist(A,B) = 3.

Proof. Since x < i, dist(A,B) ≥ 2. By Lemma 2.1, dist(A,B) > 2. Let A′ ⊆ A \ B, such that
|A′| = i−x. Let B′ ⊆ B \A, such that |B′| = k− i. Let C = A∩B, and let D = C ∪A′ ∪B′. Then
|D| = x+(i−x)+(k−i) = k, and |A∩D| = x+(i−x) = i, so D is a vertex adjacent to A. Note that
|D∩B| = k− i+x ≥ −v+3k−2i. Also, since x < −v+3k−2i, we have 2i−k < −(v−2k)−x ≤ 0,
so |D ∩B| ≥ 2i− k. Hence by Lemma 2.1, dist(D,B) ≤ 2. Hence dist(A,B) = 3. �

Together with the previous lemma, the next result characterizes the distance between vertices
whose intersection is less than i.

Lemma 3.2. With reference to Definition 1.1, let A and B be vertices and let x = |A∩B|. Suppose
x < i. If x ≥ −v + 3k − 2i, then

dist(A,B) =

⌈
k − x
k − i

⌉
.

Proof. We proceed in two cases.
Case 1: x ≥ 2i− k. Since x < i, we know dist(A,B) ≥ 2. Since x ≥ 2i− k, Lemma 2.1 implies

that dist(A,B) = 2. Note that the above inequalities imply k − i < k − x ≤ 2(k − i). Hence
dk−xk−i e = 2.

Case 2: x < 2i − k. In this case, k − x > 2(k − i). Therefore, there exist positive integers q,m
such that k− x = (q+ 1)(k− i) +m with 0 < m ≤ k− i. Let C = A∩B. Then we can write A and
B as disjoint unions

A = A1 ∪ · · · ∪Aq+2 ∪ C and B = B1 ∪ · · · ∪Bq+2 ∪ C,

where |Aj | = |Bj | = k − i for j ∈ {1, . . . , q + 1} and |Aq+2| = |Bq+2| = m. Define

Xj = (B1 ∪ · · · ∪Bj) ∪ (Aj+1 ∪ · · · ∪Aq+2) ∪ C

for each j ∈ {1, . . . , q}. Then A,X1, . . . , Xq is a path of length q. Note that |Xq∩B| = x+q(k− i) =
i − m, so 2i − k ≤ |Xq ∩ B| < i and therefore Case 1 applies. Thus, dist(Xq, B) = 2 and so
dist(A,B) ≤ q + 2 = dk−xk−i e. On the other hand, since adjacent vertices differ by k − i elements,

dist(A,B) ≥ dk−xk−i e. �

We now address the case where the intersection between A and B is greater than i. The following
lemma adapts Lemmas 1 and 2 in [6] to generalized Johnson graphs.

Lemma 3.3. With reference to Definition 1.1, let A and B be vertices and let x = |A∩B|. Suppose
x > i and assume there is an AB-path of length d.

(i) If d = 2p, then

p ≥
⌈

k − x
v − 2k + 2i

⌉
.
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(ii) If d = 2p+ 1, then

p ≥
⌈

x− i
v − 2k + 2i

⌉
.

Proof. For brevity, let ∆ = v − 2k + 2i. If d = 0, then A = B so, x = k and p = 0 ≥ dk−x∆ e. If

d = 1, then x = i, so p = 0 ≥ dx−i∆ e. If d = 2, then by Lemma 2.1, x ≥ −v + 3k − 2i, which implies

k − x ≤ ∆. Hence, p = 1 ≥ dk−x∆ e. Assume d ≥ 3 and that the claim holds for all paths of length
less than d. We proceed in two cases.

Case 1: d = 2p. We can find a vertex C such that dist(A,C) = 2(p− 1) and dist(C,B) = 2. By
the inductive hypothesis, k− |A∩C| ≤ (p− 1)∆ and k− |C ∩B| ≤ ∆. Therefore, k− x = |A \B| ≤
|A \ C|+ |C \B| = (k − |A ∩ C|) + (k − |C ∩B|) ≤ p∆. Hence p ≥ dk−x∆ e.

Case 2: d = 2p + 1. We can find a vertex C adjacent to B and such that dist(A,C) = 2p. By
the inductive hypothesis, |A \C| ≤ p∆. Therefore, x− i = |A∩B| − i ≤ |A \C|+ |B ∩C| − i ≤ p∆.
Hence p ≥ dx−i∆ e. �

The previous lemma implies a lower bound on the distance. The next result will show that this
bound is sharp.

Lemma 3.4. With reference to Definition 1.1, let A and B be vertices and let x = |A∩B|. Suppose
x > i. Then

dist(A,B) = min

{
2

⌈
k − x

v − 2k + 2i

⌉
, 2

⌈
x− i

v − 2k + 2i

⌉
+ 1

}
.

Proof. For brevity, let ∆ = v − 2k + 2i. When x = k the result is trivial, so assume x < k. Let
C = A ∩B and D = A ∪B; it follows that |C| = x and |D| = v − 2k + x. There exist non-negative
integers q,m such that k− x = q∆ +m, with 0 < m ≤ ∆. We can write A and B as disjoint unions
A = C ∪ {a1, . . . , ak−x} and B = C ∪ {b1, . . . , bk−x}. If q = 0, then k − x = m ≤ ∆, which implies
x ≥ −v + 3k − 2i. Since x > i, we also have x > 2i − k. Hence, by Lemma 2.1, dist(A,B) = 2 as
needed. Now, assume q ≥ 1. For j ∈ {1, . . . , q}, let

Aj = {a1, . . . , a(j−1)∆+i} and A′j = {aj∆+1, . . . , ak−x},

Bj = {b1, . . . , bj∆} and B′j = {bj∆−i+1, . . . , bk−x},

and define
X2j−1 = D ∪Aj ∪B′j and X2j = C ∪Bj ∪A′j .

Then A,X1, . . . , X2q is a path of length 2q. Note that |X2q ∩B| = k −m ≥ k −∆ = −v + 3k − 2i.
Also, since m ≤ k − x, we have |X2q ∩ B| = k −m ≥ x > i ≥ 2i − k. Hence dist(X2q, B) = 2, by
Lemma 2.1. Thus, there is an AB-path of length 2(q + 1) = 2d(k − x)/∆e from A to B.

Now, let D′ ⊆ D, C ′ ⊆ C be such that |D′| = |C ′| = x − i. Let A′ = (B \ C ′) ∪ D′. Then
A′ is a vertex adjacent to A. Further, |A′ ∩ B| = k − x + i > i. By applying the previous

argument to A′ and B, there is an A′B-path of length 2dk−(k−x+i)
∆ e = 2dx−i∆ e. By Lemma 3.3,

dist(A,B) = min{2d k−x
v−2k+2ie, 2d

x−i
v−2k+2ie+ 1}. �

From the above results, we obtain a general formula for the distance between two vertices.

Theorem 3.5. With reference to Definition 1.1, let A and B be vertices and let x = |A∩B|. Then

dist(A,B) =


3 if x < min{i,−v + 3k − 2i};
dk−xk−i e if − v + 3k − 2i ≤ x < i;

min{2d k−x
v−2k+2ie, 2d

x−i
v−2k+2ie+ 1} if x ≥ i.
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Proof. Apply Lemmas 3.1, 3.2, and 3.4. Note that when x = i, we have dist(A,B) = 1 =
min{2d k−x

v−2k+2ie, 2d
x−i

v−2k+2ie+ 1}. �

4. Diameter

In this section, we will use Theorem 3.5 to derive a general expression for the diameter of
generalized Johnson graphs. The following lemma determines the maximum value of the expression
in Lemma 3.4.

Lemma 4.1. Assume k > i+ 1 and let f(x) = min
{

2
⌈

k−x
v−2k+2i

⌉
, 2
⌈

x−i
v−2k+2i

⌉
+ 1
}

. Then

max
x∈I

f(x) =

⌈
k − i− 1

v − 2k + 2i

⌉
+ 1,

where I = {i+ 1, . . . , k}.

Proof. For brevity, let ∆ = v − 2k + 2i and let x ∈ I. There exist ε ∈ {0, 1} and non-negative
integers q,m such that k−i−1 = (2q+ε)∆+m and 0 < m ≤ ∆. We prove maxx∈I f(x) = 2q+ε+2.

Let x0 = (q + ε)∆ + i. If x > x0, then 2dk−x∆ e ≤ 2dk−(x0+1)
∆ e = 2(q + 1) ≤ 2q + ε+ 2. If x ≤ x0,

then 2dx−i∆ e+ 1 ≤ 2dx0−i
∆ e+ 1 = 2(q + ε) + 1 ≤ 2q + ε+ 2. Hence, f(x) ≤ 2q + ε+ 2.

Let x1 = q∆ + i + 1 + ε(m − 1) ∈ I. It follows that dk−x1

∆ e = q + ε + 1 and dx1−i
∆ e = q + 1.

Therefore, f(x1) = min{2(q+ ε+ 1), 2q+ 3} = 2q+ ε+ 2. It follows that maxx∈I f(x) = 2q+ ε+ 2.
�

We now present our main result, which extends and corrects that in [3].

Theorem 4.2. With reference to Definition 1.1, we have

diam(X) =


d k−i−1
v−2k+2ie+ 1 if v < 3(k − i)− 1 or i = 0;

3 if 3(k − i)− 1 ≤ v < 3k − 2i and i 6= 0;
d k
k−ie if v ≥ 3k − 2i and i 6= 0.

Proof. We will use the distance expression from Theorem 3.5. We proceed in three cases.
Case 1 : v < 3(k − i)− 1 or i = 0. If i = 0, the result is proved in [5]. Assume v < 3(k − i)− 1.

In this case d k−i−1
v−2k+2ie + 1 ≥ 3. Also, 2k ≤ v < 3(k − i), so d k

k−ie ≤ d
3
2e = 2. Hence, d k

k−ie ≤ 3 ≤
d k−i−1
v−2k+2ie + 1. Since 0 ≤ i < k < v < 3(k − i) − 1 by Definition 1.1, it follows that k > i + 1. By

Lemma 4.1, there exist vertices A and B such that dist(A,B) = d k−i−1
v−2k+2ie+ 1. From Theorem 3.5,

it follows that diam(X) = d k−i−1
v−2k+2ie+ 1

Case 2 : 3(k − i) − 1 ≤ v < 3k − 2i and i 6= 0. Since v ≥ 3(k − i), we have d k−i−1
v−2k+2ie + 1 ≤ 2.

Since 2k ≤ v < 3k − 2i, we have d k
k−ie ≤ 2. By Theorem 3.5, if A and B are disjoint vertices,

dist(A,B) = 3; hence diam(X) = 3.
Case 3 : v ≥ 3k − 2i and i 6= 0. In this case d k−i−1

v−2k+2ie + 1 ≤ 2. Since v ≥ 3k − 2i, we have

−v + 3k − 2i ≤ 0, so the first case in Theorem 3.5 does not occur. Since i 6= 0, we have d k
k−ie ≥ 2.

If A and B are disjoint vertices, dist(A,B) = d k
k−ie, by Theorem 3.5. Hence diam(X) = d k

k−ie. �
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