Portland State University PDXScholar

On the Girth and Diameter of Generalized Johnson Graphs

Louis Anthony Agong
University of the Philippines
Carmen Amarra
University of the Philippines
John Caughman
Portland State University, caughman@pdx.edu
Ari J. Herman
Portland State University
Taiyo S. Terada
Portland State University

Let us know how access to this document benefits you.

Follow this and additional works at: https://pdxscholar.library.pdx.edu/mth_fac
Part of the Set Theory Commons

Citation Details

Agong, Louis Anthony; Amarra, Carmen; Caughman, John; Herman, Ari J.; and Terada, Taiyo S., "On the Girth and Diameter of Generalized Johnson Graphs" (2018). Mathematics and Statistics Faculty Publications and Presentations. 201.
https://pdxscholar.library.pdx.edu/mth_fac/201

On the girth and diameter of generalized Johnson graphs

Louis Anthony Agong ${ }^{1}$, Carmen Amarra ${ }^{1}$, John S. Caughman ${ }^{2, *}$, Ari J. Herman ${ }^{2}$, Taiyo S. Terada ${ }^{2}$
${ }^{1}$ Institute of Mathematics, University of the Philippines Diliman, Philippines
${ }^{2}$ Dept. of Mathematics \& Statistics, Portland State University, Portland, OR, USA

Abstract

Let $v>k>i$ be non-negative integers. The generalized Johnson graph, $J(v, k, i)$, is the graph whose vertices are the k-subsets of a v-set, where vertices A and B are adjacent whenever $|A \cap B|=i$. In this article, we derive general formulas for the girth and diameter of $J(v, k, i)$. Additionally, we provide a formula for the distance between any two vertices A and B in terms of the cardinality of their intersection.

Keywords: girth; diameter; generalized Johnson graphs; uniform subset graphs

1. Introduction

Let $v>k>i$ be non-negative integers. The generalized Johnson graph, $X=J(v, k, i)$, is the graph whose vertices are the k-subsets of a v-set, where vertices A and B are adjacent whenever $|A \cap B|=i$. Generalized Johnson graphs were introduced by Chen and Lih in [2]. Special cases include the Kneser graphs $J(v, k, 0)$, the odd graphs $J(2 k+1, k, 0)$, and the Johnson graphs $J(v, k, k-$ 1). The Johnson graph $J(v, k, k-1)$ is well known to have diameter $\min \{k, v-k\}$, and formulas for the distance and diameter of Kneser graphs were proved in [5].

Generalized Johnson graphs have also been studied under the name uniform subset graphs, and a result in [3] offers a general formula for the diameter of $J(v, k, i)$. However, that formula gives incorrect values when $i>\frac{2}{3} k$, an important case that includes the Johnson graphs. In this paper we extend (and, in places, correct) those expressions for the diameter of generalized Johnson graphs and we additionally provide a formula for the girth.

Note that it is possible to extend the definition of $X=J(v, k, i)$ to include $v \geq k \geq i$. However, X is an empty graph when $k=i$ or $v=k$. If $v=2 k$ and $i=0$, then X is isomorphic to the disjoint union of copies of K_{2}. Furthermore, by taking complements, the graphs $J(v, k, i)$ and $J(v, v-k, v-2 k+i)$ are easily seen to be isomorphic (see [4, p.11]). For the remainder of this article, we will be concerned with generalized Johnson graphs that are connected, so we make the following global definition.

Definition 1.1. Assume $v>k>i$ are nonnegative integers, and let $X=J(v, k, i)$ denote the corresponding generalized Johnson graph. To avoid trivialities, further assume that $v \geq 2 k$, and that $(v, k, i) \neq(2 k, k, 0)$.

2. Girth

In this section we derive an expression for the girth $g(X)$ of a generalized Johnson graph, X. We begin with a lemma that characterizes when two vertices have a common neighbor.
Lemma 2.1. With reference to Definition 1.1, let A and B be vertices and let $x=|A \cap B|$. Then A and B have a common neighbor if and only if $x \geq \max \{-v+3 k-2 i, 2 i-k\}$.
Proof. Vertices A and B have a common neighbor C if and only if there exists a nonnegative integer s, such that every region in the following diagram (Figure 1) has nonnegative size.

[^0]AMS 2010 Subject Classification: 05C12

Figure 1: Diagram for proof of Lemma 2.1

By simplifying the resulting inequalities, we find that A and B have a common neighbor if and only if there exists $s \in \mathbb{Z}$, such that

$$
\max \{0, i+x-k, 2 i-k\} \leq s \leq \min \{x, i, v-3 k+2 i+x\}
$$

Such an integer s exists if and only if the expression on the left-hand side above does not exceed the expression on the right-hand side. Under our global assumptions, this is equivalent to $x \geq$ $\max \{-v+3 k-2 i, 2 i-k\}$.

Lemma 2.2. With reference to Definition 1.1, the girth $g(X)=3$ if and only if $v \geq 3(k-i)$.
Proof. The graph X contains a 3 -cycle if and only if there exist adjacent vertices A and B that have a common neighbor. By Lemma 2.1, this occurs if and only if $i \geq \max \{-v+3 k-2 i, 2 i-k\}$. Since $i \geq 2 i-k$ holds in all $J(v, k, i)$ graphs, this condition is equivalent to $v \geq 3(k-i)$.

A sufficient condition for the girth to be at most 4 is the existence of a 4-cycle.
Lemma 2.3. With reference to Definition 1.1, if $(v, k, i) \neq(2 k+1, k, 0)$ then $g(X) \leq 4$.
Proof. We proceed in two cases.
Case 1: $i \geq 2$ or $v>2 k+1$. In this case we get that $v \geq 2 k-i+2$. So we can find disjoint sets, $A_{1}, A_{2}, A_{3}, A_{4}$, and B_{1}, B_{2}, and C such that $\left|A_{1}\right|=\left|A_{2}\right|=\left|A_{3}\right|=\left|A_{4}\right|=1$, and $\left|B_{1}\right|=\left|B_{2}\right|=k-i-1$, and $|C|=i$. Then

$$
A_{1} \cup B_{1} \cup C, \quad A_{2} \cup B_{2} \cup C, \quad A_{3} \cup B_{1} \cup C, \quad A_{4} \cup B_{2} \cup C
$$

is a 4-cycle in X .
Case 2: $i=1$. In this case, since $v \geq 2 k$, we can find disjoint sets $A_{1}, A_{2}, A_{3}, A_{4}$ and B_{1}, B_{2} such that $\left|A_{1}\right|=\left|A_{2}\right|=\left|A_{3}\right|=\left|A_{4}\right|=1$ and $\left|B_{1}\right|=\left|B_{2}\right|=k-2$. Then

$$
A_{1} \cup A_{2} \cup B_{1}, \quad A_{2} \cup A_{3} \cup B_{2}, \quad A_{3} \cup A_{4} \cup B_{1}, \quad A_{4} \cup A_{1} \cup B_{2}
$$

is a 4-cycle in X.
Combining the above lemmas, we obtain a general expression for the girth.
Theorem 2.4. With reference to Definition 1.1, the girth of X is given by

$$
g(X)= \begin{cases}3 & \text { if } v \geq 3(k-i) \\ 4 & \text { if } v<3(k-i) \text { and }(v, k, i) \neq(2 k+1, k, 0) \\ 5 & \text { if }(v, k, i)=(5,2,0) \\ 6 & \text { if }(v, k, i)=(2 k+1, k, 0) \text { and } k>2\end{cases}
$$

Proof. The first two cases follow from Lemmas 2.2 and 2.3. The remaining cases are odd graphs, for which the girth is well-known. (See, for example, [1, p.58].)

3. Distance

In this section we derive a general expression for the distance between two vertices in terms of their intersection.

Lemma 3.1. With reference to Definition 1.1, let A and B be vertices and let $x=|A \cap B|$. Suppose $x<i$. If $x<-v+3 k-2 i$, then

$$
\operatorname{dist}(A, B)=3
$$

Proof. Since $x<i$, $\operatorname{dist}(A, B) \geq 2$. By Lemma 2.1, $\operatorname{dist}(A, B)>2$. Let $A^{\prime} \subseteq A \backslash B$, such that $\left|A^{\prime}\right|=i-x$. Let $B^{\prime} \subseteq B \backslash A$, such that $\left|B^{\prime}\right|=k-i$. Let $C=A \cap B$, and let $D=C \cup A^{\prime} \cup B^{\prime}$. Then $|D|=x+(i-x)+(k-i)=k$, and $|A \cap D|=x+(i-x)=i$, so D is a vertex adjacent to A. Note that $|D \cap B|=k-i+x \geq-v+3 k-2 i$. Also, since $x<-v+3 k-2 i$, we have $2 i-k<-(v-2 k)-x \leq 0$, so $|D \cap B| \geq 2 i-k$. Hence by Lemma 2.1, $\operatorname{dist}(D, B) \leq 2$. Hence $\operatorname{dist}(A, B)=3$.

Together with the previous lemma, the next result characterizes the distance between vertices whose intersection is less than i.
Lemma 3.2. With reference to Definition 1.1, let A and B be vertices and let $x=|A \cap B|$. Suppose $x<i$. If $x \geq-v+3 k-2 i$, then

$$
\operatorname{dist}(A, B)=\left\lceil\frac{k-x}{k-i}\right\rceil
$$

Proof. We proceed in two cases.
Case 1: $x \geq 2 i-k$. Since $x<i$, we know $\operatorname{dist}(A, B) \geq 2$. Since $x \geq 2 i-k$, Lemma 2.1 implies that $\operatorname{dist}(A, B)=2$. Note that the above inequalities imply $k-i<k-x \leq 2(k-i)$. Hence $\left\lceil\frac{k-x}{k-i}\right\rceil=2$.

Case 2: $x<2 i-k$. In this case, $k-x>2(k-i)$. Therefore, there exist positive integers q, m such that $k-x=(q+1)(k-i)+m$ with $0<m \leq k-i$. Let $C=A \cap B$. Then we can write A and B as disjoint unions

$$
A=A_{1} \cup \cdots \cup A_{q+2} \cup C \quad \text { and } \quad B=B_{1} \cup \cdots \cup B_{q+2} \cup C
$$

where $\left|A_{j}\right|=\left|B_{j}\right|=k-i$ for $j \in\{1, \ldots, q+1\}$ and $\left|A_{q+2}\right|=\left|B_{q+2}\right|=m$. Define

$$
X_{j}=\left(B_{1} \cup \cdots \cup B_{j}\right) \cup\left(A_{j+1} \cup \cdots \cup A_{q+2}\right) \cup C
$$

for each $j \in\{1, \ldots, q\}$. Then A, X_{1}, \ldots, X_{q} is a path of length q. Note that $\left|X_{q} \cap B\right|=x+q(k-i)=$ $i-m$, so $2 i-k \leq\left|X_{q} \cap B\right|<i$ and therefore Case 1 applies. Thus, $\operatorname{dist}\left(X_{q}, B\right)=2$ and so $\operatorname{dist}(A, B) \leq q+2=\left\lceil\frac{k-x}{k-i}\right\rceil$. On the other hand, since adjacent vertices differ by $k-i$ elements, $\operatorname{dist}(A, B) \geq\left\lceil\frac{k-x}{k-i}\right\rceil$.

We now address the case where the intersection between A and B is greater than i. The following lemma adapts Lemmas 1 and 2 in [6] to generalized Johnson graphs.
Lemma 3.3. With reference to Definition 1.1, let A and B be vertices and let $x=|A \cap B|$. Suppose $x>i$ and assume there is an $A B$-path of length d.
(i) If $d=2 p$, then

$$
p \geq\left\lceil\frac{k-x}{v-2 k+2 i}\right\rceil
$$

(ii) If $d=2 p+1$, then

$$
p \geq\left\lceil\frac{x-i}{v-2 k+2 i}\right\rceil
$$

Proof. For brevity, let $\Delta=v-2 k+2 i$. If $d=0$, then $A=B$ so, $x=k$ and $p=0 \geq\left\lceil\frac{k-x}{\Delta}\right\rceil$. If $d=1$, then $x=i$, so $p=0 \geq\left\lceil\frac{x-i}{\Delta}\right\rceil$. If $d=2$, then by Lemma $2.1, x \geq-v+3 k-2 i$, which implies $k-x \leq \Delta$. Hence, $p=1 \geq\left\lceil\frac{k-x}{\Delta}\right\rceil$. Assume $d \geq 3$ and that the claim holds for all paths of length less than d. We proceed in two cases.

Case 1: $d=2 p$. We can find a vertex C such that $\operatorname{dist}(A, C)=2(p-1)$ and $\operatorname{dist}(C, B)=2$. By the inductive hypothesis, $k-|A \cap C| \leq(p-1) \Delta$ and $k-|C \cap B| \leq \Delta$. Therefore, $k-x=|A \backslash B| \leq$ $|A \backslash C|+|C \backslash B|=(k-|A \cap C|)+(k-|C \cap B|) \leq p \Delta$. Hence $p \geq\left\lceil\frac{k-x}{\Delta}\right\rceil$.

Case 2: $d=2 p+1$. We can find a vertex C adjacent to B and such that $\operatorname{dist}(A, C)=2 p$. By the inductive hypothesis, $|A \backslash C| \leq p \Delta$. Therefore, $x-i=|A \cap B|-i \leq|A \backslash C|+|B \cap C|-i \leq p \Delta$. Hence $p \geq\left\lceil\frac{x-i}{\Delta}\right\rceil$.

The previous lemma implies a lower bound on the distance. The next result will show that this bound is sharp.
Lemma 3.4. With reference to Definition 1.1, let A and B be vertices and let $x=|A \cap B|$. Suppose $x>i$. Then

$$
\operatorname{dist}(A, B)=\min \left\{2\left\lceil\frac{k-x}{v-2 k+2 i}\right\rceil, 2\left\lceil\frac{x-i}{v-2 k+2 i}\right\rceil+1\right\}
$$

Proof. For brevity, let $\Delta=v-2 k+2 i$. When $x=k$ the result is trivial, so assume $x<k$. Let $C=A \cap B$ and $D=\overline{A \cup B}$; it follows that $|C|=x$ and $|D|=v-2 k+x$. There exist non-negative integers q, m such that $k-x=q \Delta+m$, with $0<m \leq \Delta$. We can write A and B as disjoint unions $A=C \cup\left\{a_{1}, \ldots, a_{k-x}\right\}$ and $B=C \cup\left\{b_{1}, \ldots, b_{k-x}\right\}$. If $q=0$, then $k-x=m \leq \Delta$, which implies $x \geq-v+3 k-2 i$. Since $x>i$, we also have $x>2 i-k$. Hence, by Lemma 2.1, $\operatorname{dist}(A, B)=2$ as needed. Now, assume $q \geq 1$. For $j \in\{1, \ldots, q\}$, let

$$
\begin{gathered}
A_{j}=\left\{a_{1}, \ldots, a_{(j-1) \Delta+i}\right\} \quad \text { and } \quad A_{j}^{\prime}=\left\{a_{j \Delta+1}, \ldots, a_{k-x}\right\}, \\
B_{j}=\left\{b_{1}, \ldots, b_{j \Delta}\right\} \quad \text { and } \quad B_{j}^{\prime}=\left\{b_{j \Delta-i+1}, \ldots, b_{k-x}\right\},
\end{gathered}
$$

and define

$$
X_{2 j-1}=D \cup A_{j} \cup B_{j}^{\prime} \quad \text { and } \quad X_{2 j}=C \cup B_{j} \cup A_{j}^{\prime} .
$$

Then $A, X_{1}, \ldots, X_{2 q}$ is a path of length $2 q$. Note that $\left|X_{2 q} \cap B\right|=k-m \geq k-\Delta=-v+3 k-2 i$. Also, since $m \leq k-x$, we have $\left|X_{2 q} \cap B\right|=k-m \geq x>i \geq 2 i-k$. Hence $\operatorname{dist}\left(X_{2 q}, B\right)=2$, by Lemma 2.1. Thus, there is an AB-path of length $2(q+1)=2\lceil(k-x) / \Delta\rceil$ from A to B.

Now, let $D^{\prime} \subseteq D, C^{\prime} \subseteq C$ be such that $\left|D^{\prime}\right|=\left|C^{\prime}\right|=x-i$. Let $A^{\prime}=\left(B \backslash C^{\prime}\right) \cup D^{\prime}$. Then A^{\prime} is a vertex adjacent to A. Further, $\left|A^{\prime} \cap B\right|=k-x+i>i$. By applying the previous argument to A^{\prime} and B, there is an $A^{\prime} B$-path of length $2\left\lceil\frac{k-(k-x+i)}{\Delta}\right\rceil=2\left\lceil\frac{x-i}{\Delta}\right\rceil$. By Lemma 3.3, $\operatorname{dist}(A, B)=\min \left\{2\left\lceil\frac{k-x}{v-2 k+2 i}\right\rceil, 2\left\lceil\frac{x-i}{v-2 k+2 i}\right\rceil+1\right\}$.

From the above results, we obtain a general formula for the distance between two vertices.
Theorem 3.5. With reference to Definition 1.1, let A and B be vertices and let $x=|A \cap B|$. Then

$$
\operatorname{dist}(A, B)= \begin{cases}3 & \text { if } x<\min \{i,-v+3 k-2 i\} \\ \left\lceil\frac{k-x}{k-i}\right\rceil & \text { if }-v+3 k-2 i \leq x<i \\ \min \left\{2\left\lceil\frac{k-x}{v-2 k+2 i}\right\rceil, 2\left\lceil\frac{x-i}{v-2 k+2 i}\right\rceil+1\right\} & \text { if } x \geq i\end{cases}
$$

Proof. Apply Lemmas 3.1, 3.2, and 3.4. Note that when $x=i$, we have $\operatorname{dist}(A, B)=1=$ $\min \left\{2\left\lceil\frac{k-x}{v-2 k+2 i}\right\rceil, 2\left\lceil\frac{x-i}{v-2 k+2 i}\right\rceil+1\right\}$.

4. Diameter

In this section, we will use Theorem 3.5 to derive a general expression for the diameter of generalized Johnson graphs. The following lemma determines the maximum value of the expression in Lemma 3.4.
Lemma 4.1. Assume $k>i+1$ and let $f(x)=\min \left\{2\left\lceil\frac{k-x}{v-2 k+2 i}\right\rceil, 2\left\lceil\frac{x-i}{v-2 k+2 i}\right\rceil+1\right\}$. Then

$$
\max _{x \in \mathcal{I}} f(x)=\left\lceil\frac{k-i-1}{v-2 k+2 i}\right\rceil+1
$$

where $\mathcal{I}=\{i+1, \ldots, k\}$.
Proof. For brevity, let $\Delta=v-2 k+2 i$ and let $x \in \mathcal{I}$. There exist $\epsilon \in\{0,1\}$ and non-negative integers q, m such that $k-i-1=(2 q+\epsilon) \Delta+m$ and $0<m \leq \Delta$. We prove $\max _{x \in \mathcal{I}} f(x)=2 q+\epsilon+2$.

Let $x_{0}=(q+\epsilon) \Delta+i$. If $x>x_{0}$, then $2\left\lceil\frac{k-x}{\Delta}\right\rceil \leq 2\left\lceil\frac{k-\left(x_{0}+1\right)}{\Delta}\right\rceil=2(q+1) \leq 2 q+\epsilon+2$. If $x \leq x_{0}$, then $2\left\lceil\frac{x-i}{\Delta}\right\rceil+1 \leq 2\left\lceil\frac{x_{0}-i}{\Delta}\right\rceil+1=2(q+\epsilon)+1 \leq 2 q+\epsilon+2$. Hence, $f(x) \leq 2 q+\epsilon+2$.

Let $x_{1}=q \Delta+i+1+\epsilon(m-1) \in \mathcal{I}$. It follows that $\left\lceil\frac{k-x_{1}}{\Delta}\right\rceil=q+\epsilon+1$ and $\left\lceil\frac{x_{1}-i}{\Delta}\right\rceil=q+1$. Therefore, $f\left(x_{1}\right)=\min \{2(q+\epsilon+1), 2 q+3\}=2 q+\epsilon+2$. It follows that $\max _{x \in \mathcal{I}} f(x)=2 q+\epsilon+2$.

We now present our main result, which extends and corrects that in [3].
Theorem 4.2. With reference to Definition 1.1, we have

$$
\operatorname{diam}(X)= \begin{cases}\left\lceil\frac{k-i-1}{v-2 k+2 i}\right\rceil+1 & \text { if } v<3(k-i)-1 \text { or } i=0 \\ 3 & \text { if } 3(k-i)-1 \leq v<3 k-2 i \text { and } i \neq 0 \\ \left\lceil\frac{k}{k-i}\right\rceil & \text { if } v \geq 3 k-2 i \text { and } i \neq 0\end{cases}
$$

Proof. We will use the distance expression from Theorem 3.5. We proceed in three cases.
Case 1: $v<3(k-i)-1$ or $i=0$. If $i=0$, the result is proved in [5]. Assume $v<3(k-i)-1$. In this case $\left\lceil\frac{k-i-1}{v-2 k+2 i}\right\rceil+1 \geq 3$. Also, $2 k \leq v<3(k-i)$, so $\left\lceil\frac{k}{k-i}\right\rceil \leq\left\lceil\frac{3}{2}\right\rceil=2$. Hence, $\left\lceil\frac{k}{k-i}\right\rceil \leq 3 \leq$ $\left\lceil\frac{k-i-1}{v-2 k+2 i}\right\rceil+1$. Since $0 \leq i<k<v<3(k-i)-1$ by Definition 1.1, it follows that $k>i+1$. By Lemma 4.1, there exist vertices A and B such that $\operatorname{dist}(A, B)=\left\lceil\frac{k-i-1}{v-2 k+2 i}\right\rceil+1$. From Theorem 3.5, it follows that $\operatorname{diam}(X)=\left\lceil\frac{k-i-1}{v-2 k+2 i}\right\rceil+1$

Case 2: $3(k-i)-1 \leq v<3 k-2 i$ and $i \neq 0$. Since $v \geq 3(k-i)$, we have $\left\lceil\frac{k-i-1}{v-2 k+2 i}\right\rceil+1 \leq 2$. Since $2 k \leq v<3 k-2 i$, we have $\left\lceil\frac{k}{k-i}\right\rceil \leq 2$. By Theorem 3.5, if A and B are disjoint vertices, $\operatorname{dist}(A, B)=3$; hence $\operatorname{diam}(X)=3$.

Case 3: $v \geq 3 k-2 i$ and $i \neq 0$. In this case $\left\lceil\frac{k-i-1}{v-2 k+2 i}\right\rceil+1 \leq 2$. Since $v \geq 3 k-2 i$, we have $-v+3 k-2 i \leq 0$, so the first case in Theorem 3.5 does not occur. Since $i \neq 0$, we have $\left\lceil\frac{k}{k-i}\right\rceil \geq 2$. If A and B are disjoint vertices, $\operatorname{dist}(A, B)=\left\lceil\frac{k}{k-i}\right\rceil$, by Theorem 3.5. Hence $\operatorname{diam}(X)=\left\lceil\frac{k}{k-i}\right\rceil$.

References

[1] N. Biggs. Algebraic Graph Theory. Cambridge University Press, Cambridge, 1974.
[2] Bor-Liang Chen and Ko-Wei Lih. Hamiltonian uniform subset graphs. Journal of Combinatorial Theory B, 42:257-263, 1987.
[3] Yongzhu Chen and Weifan Wang. Diameters of uniform subset graphs. Discrete Mathematics, 308:6645-6649, 2008.
[4] C. D. Godsil and G. Royle. Algebraic Graph Theory. Springer-Verlag, New York, 2001.
[5] Mario Valencia-Pabon and Juan-Carlos Vera. On the diameter of Kneser graphs. Discrete Mathematics., 305:383-385, 2005.
[6] Yingqian Wang Yongzhu Chen. On the diameter of generalized Kneser graphs. Discrete Mathematics, 308:4276-4279, 2008.

[^0]: *Corresponding author: caughman@pdx.edu.

