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Abstract 

 

Intelligence tools have been developed and applied widely in many different areas 

in engineering, business and management. Many commercialized tools for business 

intelligence are available in the market.  However, no practically useful tools for 

technology intelligence are available at this time, and very little academic research in 

technology intelligence methods has been conducted to date.  

Patent databases are the most important data source for technology intelligence 

tools, but patents inherently contain unstructured data. Consequently, extracting text 

data from patent databases, converting that data to meaningful information and 

generating useful knowledge from this information become complex tasks. These tasks 

are currently being performed very ineffectively, inefficiently and unreliably by human 

experts. This deficiency is particularly vexing in product planning, where awareness of 

market needs and technological capabilities is critical for identifying opportunities for 

new products and services. Total nescience of the text of patents, as well as inadequate, 

unreliable and untimely knowledge derived from these patents, may consequently 

result in missed opportunities that could lead to severe competitive disadvantage and 

potentially catastrophic loss of revenue.  

The research performed in this dissertation tries to correct the abovementioned 

deficiency with an approach called patent mining. The research is conducted at Finex, an 

iron casting company that produces traditional kitchen skillets. To ‘mine’ pertinent 
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patents, experts in new product development at Finex modeled one ontology for the 

required product features and another for the attributes of requisite metallurgical 

enabling technologies from which new product opportunities for skillets are identified 

by applying natural language processing, information retrieval, and machine learning 

(classification) to the text of patents in the USPTO database.  

Three main scenarios are examined in my research. Regular classification (RC) 

relies on keywords that are extracted directly from a group of USPTO patents. 

Ontological classification (OC) relies on keywords that result from an ontology 

developed by Finex experts, which is evaluated and improved by a panel of external 

experts. Ontological semantic classification (OSC) uses these ontological keywords and 

their synonyms, which are extracted from the WordNet database. For each scenario, I 

evaluate the performance of three classifiers: k-Nearest Neighbor (k-NN), random 

forest, and Support Vector Machine (SVM).   

My research shows that OSC is the best scenario and SVM is the best classifier for 

identifying product planning opportunities, because this combination yields the highest 

score in metrics that are generally used to measure classification performance in 

machine learning (e.g., ROC-AUC and F–score). My method also significantly 

outperforms current practice, because I demonstrate in an experiment that neither the 

experts at Finex nor the panel of external experts are able to search for and judge 

relevant patents with any degree of effectiveness, efficiency or reliability.  
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This dissertation provides the rudiments of a theoretical foundation for patent 

mining, which has yielded a machine learning method that is deployed successfully in a 

new product planning setting (Finex). Further development of this method could make a 

significant contribution to management practice by identifying opportunities for new 

product development that have been missed by the approaches that have been 

deployed to date.   
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Chapter 1: Introduction 

1.1. Research Problem 

1.1.1. Technology Intelligence 

Success in new product development (NPD) is driven by simultaneously 

“maximizing the fit with customer needs and minimizing the time to market” (Schilling & 

Hill, 1998). The firm has to develop product lines on a timescale that is in alignment with 

the product lines’ market windows, and it has to do so cost effectively (Hull, 2004). For 

this purpose, it has to develop some technologies internally and combine them with 

technologies that it procures externally (R. G. Cooper, 1979)(R. Cooper, 1987). 

Technologies that yield critical capabilities tend to be developed internally, whereas 

complementary, less critical technologies are procured less expensively through the 

open market (Prahalad & Hamel, 2006).  

An increased awareness of which technologies are available externally allows a 

firm to combine and integrate these technologies more effectively with each other and 

with those that it has developed internally (Droge, Jayaram, & Vickery, 2004), thereby 

enhancing its chances to develop a better product line (Zhao, Huo, Selen, & Yeung, 

2011). A heightened awareness of external technologies can also serve as a guidepost 

for new R&D projects (Enkel, Gassmann, & Chesbrough, 2009). Decision makers within 

the firm, which tend to be engineers and managers that are involved in the NPD 

process, may be able to specify an R&D project that fills a particular gap in the 

development of a new product line more precisely, if they become aware of many 
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available, accessible and obtainable complementary technologies (Kogut & Zander, 

1992). (These engineers or managers may be a part a variety of different departments 

such as marketing, finance, manufacturing, supply chain, (Lawrence & Lorsch, 1967).) 

Due to the need to minimize time to market, this awareness needs to be raised during 

the product planning phase of the NPD process, when most opportunities for matching 

available technologies to market demand are identified (Urban, Hauser, & Dholakia, 

1987). 

In order to enhance their awareness of externally available, accessible and 

obtainable technologies, product development organizations apply information 

technologies that scan and monitor the environment of their firm (Brenner, 1996). This 

approach, called business intelligence consists three main components: market 

intelligence, competitive intelligence, and technology intelligence, which respectively 

gather information about customers, competitors and technological opportunities (Kerr, 

Mortara, Phaal, & Probert, 2006). Technology intelligence is the focus of this 

dissertation. It extracts and analyzes information from multiple sources such as 

websites, patent databases and citation indexes. It also incorporates human intelligence 

that is obtained from experts (Veugelers, Bury, & Viaene, 2010). (See Figure 1) 

One of the key aspects of technology intelligence is extracting actionable 

knowledge from patent data, which serve as a reliable source for tracking technological 

changes in many industries (Shih, Liu, & Hsu, 2010). Patent data have been available in 

electronic format in the United State Patent and Trademark Office (USPTO) since 1976, 
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enabling academicians to develop university-internal tools for patent analysis with 

which they conduct research in technology intelligence (Brockhoff, 1991; Porter, 2005; 

Yoon, 2008). However, patent analysis does not provide a complete solution for 

technology intelligence. Some innovations are not patentable; others are not patented 

even though they could be (Archibugi & Planta, 1996). In addition, the patent records 

vary significantly from industry to industry. For instance, telecommunications, 

information technology, pharmaceuticals, biotechnology, chemicals, and automotive are 

among the most patent-intensive industries (Economics and statistics administration, 

2012) (Breitzman & Thomas, 2002). So it is not surprising that Microsoft, HP, AT&T, and 

Intel are among the recent top ten patent holders among US companies (Intellectual 

Property Owners Accosiation, 2013).   

A patent is inherently designed to protect the rights of its inventors. Thus a 

patent must explicitly mention the technologies that underlie the inventions in textual 

and visual form. This makes patents a good source of textual and visual information 

about a particular technology.  Scanning a patent database will therefore provide 

textual and visual information about a variety of technologies, giving product planners a 

better overview of the set of complementary technologies that are potentially available.  

For patent databases to be helpful in decision making, the information that they 

provide must be accurate, presented in a comprehensible format and delivered in a 

timely manner. This can only be done if the users of patent databases have access to 

capabilities in keyword extraction, pattern recognition and pattern analysis. These 



 

4 

crucial aspects of modern text mining have thus become an integral component of 

decision making, both at the strategic and tactical levels (Bose, 2009).   

 

Figure 1- The role of technology intelligence in the success of NPD 

Figure 1 summarizes the arguments made in this section. It shows that an 

awareness of externally available technologies drives the two most critical success 

factors of NPD, which are maximizing the fit with customer needs and minimizing time 

to market (Schilling & Hill, 1998). Technology Intelligence is an approach that provides 

this awareness by analyzing external sources of information such as websites, patent 

databases, conference papers and articles in academic journals. Patent analysis is a 

particularly useful aspect of technology intelligence, because patent databases are 

reliable sources for tracking technological changes in many industries and because 

patent data are freely available in electronic format. 
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After extensive marketing analysis, market needs tend to manifest themselves in 

a set of required product features that make a product attractive to the consumer 

(Souder, 1988). For successful product planning to take place, this set of features has to 

be matched up against a set of technologies that could enable the features in the 

product (Souder, 1988).  The question is, how can this best be done efficiently, 

effectively and comprehensively through technology intelligence and, more specifically, 

through patent analysis?    

 

Figure 2- Known approaches to patent analysis 

1.1.2. Patent Analysis 

Figure 2 shows that patents have four main components: metadata, body text, 

drawings and citations. Metadata provides general information of including title, 

assignee, patent number, abstract, etc. The body text presents the technical 

information, including the background of the invention, a brief summary of the 

invention, a brief description of upcoming drawings, a detailed description of the 

invention, and a claim set. The drawings provide a visual representation of the key 

components of the inventions. Finally, the citations refer to prior art. 
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Figure 2 illustrates that each of the known approaches to patent analysis focuses 

on a main component of the patent. Bibliometric analysis looks at metadata. Methods 

that analyze the main body (or text) of the patent are commonly referred to as patent 

mining. Image processing techniques find commonalities between drawings “to verify 

the originality of an invention” (Hanbury, Bhatti, Lupu, & Mörzinger, 2011). Finally, 

citation analysis identifies the relations between patents by applying network analysis 

and cluster analysis to the patent’s list of references (or citations).  

Historically, patent analysis has consisted of capturing metadata, which provides 

an analysis of the relationships between individuals, organizations and institutions that 

comprise an industry or a national/regional innovation system (M Acosta & Coronado, 

2003; Melin & Danell, 2000; Naoki Shibata, Kajikawa, & Sakata, 2010). In addition, 

patent analysis uses citation indexes to identify early and emerging technologies 

(Karvonen & Kässi, 2013; N. Shibata, Kajikawa, Takeda, Sakata, & Matsushima, 2009; 

Naoki Shibata, Kajikawa, & Sakata, 2011), to quantify the impact of a particular 

technology (C Lee, Cho, Seol, & Park, 2012; Madani & Zwick, 2017) and to characterize 

how knowledge flows, i.e. how technology diffuses through organizations and socio-

technical systems (Chang, Lai, & Chang, 2009; Montobbio & Sterzi, 2011; Tijssen, 2001). 

However, patent analysis that is based on metadata and citations exclusively is highly 

longitudinal; it does not provide current information (B. Yoon & Park, 2004). For 

example, a patent that has been granted most likely documents an invention that is at 

least five years old (G Cascini, Russo, & Zini, 2007). Citation analysis consequently does 
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not allow organizations to respond to rapid shifts in the environment in a timely 

manner.  

1.1.3. Patent Mining 

Fortunately, recent advances in text mining have enabled scholars to extract 

textual information from the content of a patent, not just from its metadata and its 

citations (Tseng, Lin, & Lin, 2007) (Russo, 2011). This approach, known as patent mining, 

allows researchers to obtain technical information from patents, which has greatly 

improved the accuracy of patent analysis (B. Yoon & Park, 2004) (Tseng et al., 2007) 

(Fattori, Pedrazzi, & Turra, 2003). As a result, patent mining has become very popular 

since its advent in the late 1990s, and the number of academic publications pertaining 

to patent mining has been growing exponentially since 2005 (Madani, 2014). Patent 

mining has been used for different applications such as strategic technology planning (H. 

Park, Kim, Choi, & Yoon, 2013), technology monitoring (Gerken, 2012), technology 

roadmapping (S. Choi, Kim, Yoon, Kim, & Lee, 2013), technology trend analysis (S. Choi, 

Yoon, Kim, & Kim, 2011; Changyong Lee, Jeon, & Park, 2011a; J. Yoon, Choi, & Kim, 

2011) and technology acquisition (Jeon, Lee, & Park, 2011).  

Current approaches to patent mining consist of broad searches that track the 

changes of a specific technology (J. Choi & Hwang, 2014b; Changyong Lee, Jeon, & Park, 

2011b; Changyong Lee, Park, Kim, & Park, 2011; Ruffaldi, Sani, & Bergamasco, 2010; 

Scopel, GREGOLIN, & FARIA, 2013; J. Yoon, Choi, & Kim, 2010) or try to find 

opportunities within a specific industry (S. Lee, Yoon, Lee, & Park, 2009; Thorleuchter & 
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Van den Poel, 2014). These practices are not well suited for market-pull approaches to 

new product development planning, which tend to derive the features of a product 

from data that pertains to a specific market. Instead, the ideal method of patent mining 

for new product development planning would identify technological opportunities, i.e. 

matching patented technologies that can be incorporated into products to meet 

specifically identified, desirable product features.  

Unfortunately, an approach to patent mining that matches available patented 

technologies to product features has not been developed to date. As a consequence, 

patent mining still relies noticeably on experts to identify and manage the right 

keywords (Russo & Montecchi, 2011), despite all the advances in text mining. These 

experts are generally expensive, and there may even be a shortage of experts in specific 

knowledge domains. Furthermore, different experts may introduce their respective 

biases into the search process, which could lead to faulty or ambiguous conclusions.  

1.1.4. Ontological Semantic Analysis 

Ontological semantic analysis (Nirenburg & Raskin, 2004), an approach that 

integrates ontology design with semantic analysis, reduces reliance on experts and 

makes patent mining more objective. In ontology design, the nature of a concept is 

represented as a hierarchical structure of terms (Chandrasekaran, Josephson, & 

Benjamins, 1999; Gavrilova, Farzan, & Brusilovsky, 2005). Semantic analysis allows 

searching for all synonyms of these terms (M. L. Murphy, 2003). In ontological semantic 

analysis, ontology design and semantic analysis are executed in sequence.  
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Ontological semantic analysis has been applied successfully in identifying patent 

infringement (H. Park, Yoon, & Kim, 2012) and developing a product design process 

(A.J.C. Trappey, Trappey, Wu, Liaw, & Zhang, 2013). However, significant challenges to 

broadly based implementation of this approach remain. For example, it has been 

observed (Russo, 2014) that two inventors may express the same concept at different 

levels of detail and that inventors with different backgrounds may use different 

expressions or different syntax to explain the same concept. Furthermore, an inventor 

may choose to patent some aspects of his/her invention but keep others as a trade 

secret. He/she can then withhold critical information from or purposely introduce 

ambiguous language into the disclosure and the claim. In all cases, keyword searches on 

the same topic may yield different results (Russo, 2014). A researcher who is looking 

into the database may thus miss crucial patent information by applying an incomplete 

or incorrect set of keywords.   

An incomplete set of patent data could result in very adverse consequences for a 

firm that engages in new product development (Quinn, 2017).  First and foremost, the 

firm may not pursue the fastest and most effective approach to developing its product, 

thereby missing the product’s market window. It may also invest in developing the 

wrong technology, not acquire the best technology or not develop the optimal strategic 

alliances. Alternatively, the firm may develop technology that already exists, which 

would lead to a wasteful duplication of effort. Even worse, the firm could be sued 

because it may have inadvertently encroached on someone else’s intellectual property. 

Finally, patent information may hide the potentially best approach to addressing 
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product features. For example, a firm may decide to develop a product without a very 

important function, simply because the firm is unaware that the technology for doing so 

is available at the time.  

A novel approach to patent mining that is faster, more concrete and accurate 

would reduce all these risks and thus substantially benefit the new product 

development efforts of many firms. It would provide firms with a timely and accurate 

source of patent information that is organized by functionality. A firm that has access to 

a patent mining toolkit that has all these capabilities will therefore come much closer to 

developing the right product for the right market segment at the right time at a much 

lower cost.  Novel approaches to patent mining consequently constitute an area of 

research that is worth pursuing. 

A review of the literature on patent mining and its applications in NPD (Section 

2.3 and 2.4) reveals the primary research gap that has motivated this dissertation: No 

significant patent mining research that matches required product features with enabling 

technologies has been conducted to date. Therefore, no currently available patent 

mining method can identify opportunities for new product planning.  

1.2. Purpose of Dissertation Research  

The purpose of this dissertation is to close the primary research gap. This entails 

developing a patent mining method, which makes R&D engineers and managers who 

are involved in NPD planning more aware of external technologies that generate 

opportunities for their specific NPD effort. To achieve the stated purpose of this 
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dissertation, I will conduct an exploratory empirical study that analyzes keywords 

extracted from U.S. patents, which are provided electronically by United States Patent 

and Trademark Office (USPTO). Figure 3 indicates that the USPTO is one of the two 

largest patent databases in the world. It has been growing steadily and exponentially 

since 1990 (USPTO, 2015). Over 615,243 patents were filed within 2014, suggesting that 

the USPTO comprises a very rich source of technological knowledge.  According to a 

USPTO report (“General Patent Statistics Reports,” 2016), 46% to 50% of patents filed 

between 2001 and 2014 belong to foreign applicants.  This shows that many companies, 

governments and individuals from across the world file their inventions in the USPTO to 

protect their intellectual property when they want to introduce their products to the 

highly important US market.  

The method to be developed will search the USPTO database for patents that pertain to 

specific technologies. These technologies potentially enable product features that the 

product needs to exhibit, in order to meet market needs. The essential management 

question being addressed in this research is: How can R&D engineers/managers that are 

engaged in product planning find patents that will provide new technological 

opportunities? To be of use to practicing engineers and managers, these patents must 

be found within a timeframe that allows NPD teams to effectively exploit the markets 

for the products they are developing.  
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Figure 3- Trend of patent publication in five major international offices 

 

1.3. Gaps in the Literature, Research Questions and Hypotheses 

The following steps are required to close the primary research gap. First, you 

need to generate a conceptual model of the enabling technologies and product features 

under consideration.  This is typically achieved by using ontologies. Second, you need to 

look for all possible keywords that address the conceptual model and its synonyms. This 

mandates a semantic analysis of the keywords generated by the ontologies. Finally, you 

need to determine whether a patent is related to these conceptual models or not. This 

is achieved by deploying a classification algorithm. The literature review in chapter 2 

indicates that none of these steps have been attempted to date. Each of these steps 

consequently constitutes a sub-gap of the primary research gap, which will be 

addressed in this dissertation.  

Ultimately the goal of the patent mining method to be developed in this 

dissertation is accurate classification, which the use of ontologies and semantic analysis 
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may assist. For this purpose, I consider a baseline scenario in which patents are 

classified without ontologies or semantic analysis. I call this regular classification. I also 

define the term ontological classification as an approach where classification utilizes 

keywords that are generated by ontologies. I define the term ontological semantic 

classification as an approach where classification relies on ontological semantic 

analysis—it utilizes keywords that are generated by ontologies, as well as their 

synonyms, which are generated by semantic analysis.  

Under these circumstances, the following research questions must be asked.  

Research Question 1 (RQ1): Does applying ontologies to model product 

feature(s) and technological attribute(s) (ontological classification) lead to a better 

patent classification than the baseline scenario?  

Research Question 2 (RQ2): Does applying ontological semantic analysis to 

model product feature(s) and technological attribute(s) lead to a better patent 

classification than the baseline scenario? 

Research Question 3 (RQ3): Does applying ontological semantic analysis to 

model product feature(s) and technological attribute(s) lead to a better patent 

classification than applying ontologies without semantic analysis (ontological 

classification)? 

The application of ontologies in text mining has had positive impact on text 

clustering and classification (Bloehdorn, Cimiano, & Hotho, 2006)(Jing, Zhou, Ng, & 

Huang, 2006). Also, it is reported that semantic analysis has had positive impact on the 

performance of different text mining applications such as sentiment analysis (Nasukawa 
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& Yi, 2003), intellectual property management (W. M. Wang & Cheung, 2011a), patent 

matching between international classification systems (Y.-L. Chen & Chiu, 2013), and 

technology monitoring (Gerken, 2012). 

Given the potential impact of ontologies and semantic analysis in text mining, 

the following hypotheses respectively address the research questions:  

- Hypothesis 1 (HP1): Applying ontologies to model product feature(s) and 

technological attribute(s) improves the performance of patent classification over the 

baseline scenario. 

- Hypothesis 2 (HP2): Applying ontological semantic analysis to model product 

feature(s) and technological attribute(s) improves the performance of patent 

classification over the baseline scenario. 

- Hypothesis 3 (HP3): Applying ontological semantic analysis to model product 

feature(s) and technological attribute(s) improves the performance of patent 

classification over the scenario where only ontologies are applied. 
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Figure 4- Management question, research objective, research gaps, research questions and hypotheses 
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Figure 4 outlines the line of reasoning that underlies my proposed dissertation 

research. It begins with the management question from which the research objective is 

derived. The literature review in chapter 2 reveals the primary research gap, which I 

decompose into two critical sub-gaps. The sub-gaps give rise to the dissertation’s 

research questions. The hypotheses respectively follow the research questions.  

1.4 Research Scope 

The exploratory empirical study proposed for my dissertation focuses on patent 

mining and its application to the product planning process within new product 

development. The later stages of new product development including design, 

production, and post-production are beyond the scope of this dissertation, since many 

studies in regard to the application of patent mining for design activities in NPD process 

have been conducted (section 2.4.2, (Fu, Murphy, et al., 2013; Fu, Chan, Schunn, Cagan, 

& Kotovsky, 2013a, 2013b; Yan Liang & Liu, 2013; Yan Liang, Liu, Kwong, & Lee, 2012; 

Yanhong Liang & Tan, 2007; Yanhong Liang, Tan, & Ma, 2008; J. Murphy, Fu, Otto, Yang, 

et al., 2014; A.J.C. Trappey et al., 2013; P.-A. Verhaegen, D’hondt, Vandevenne, Dewulf, 

& Duflou, 2011; Paul-Armand Verhaegen, D’hondt, Vandevenne, Dewulf, & Duflou, 

2011)) and patent mining is not applicable in production and post-production activities 

(section 2.4.2). The research will also not cover patent metadata and patent citations 

because information pertaining to product features and attributes of technologies is 

contained in the main body of the patent text.  Finally, the proposed study analyzes 

keywords extracted from U.S. patents, which are provided electronically by United 
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States Patent and Trademark Office (USPTO). The research will not consider patents that 

are not published electronically.  

1.5 Overview of Research Method—Ontological Semantic Classification  

Figure 5 highlights my research method—ontological semantic classification 

(OSC). In this approach, natural language processing converts every patent extracted 

from the USPTO database into a set of keywords. Information retrieval subsequently 

filters out keywords that are common and keeps keywords that are likely to possess 

high discriminatory power.  In parallel, ontological semantic analysis of data generated 

through interviews with experts generates keywords that are synonyms of the 

ontologies of interest. The final classification step identifies patents that possess the 

desired enabling technologies and those that meet prescribed product features. 

Technological opportunities are discerned by comparing those two sets of classified 

patents.  

 

Figure 5- Overview of Ontological Semantic Classification 

Separate ontological semantic classifications will be performed on the same 

patent data set to identify enabling technologies and product features. Patents that are 
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identified in both categories are treated as an opportunity for NPD planning. Applying 

semantic analysis allows me to consider all possible synonyms for the keywords coming 

from the ontologies. Applying an appropriate classification method permits me to 

quickly model the pattern of keywords which address the ontologies. Three 

classification methods will be evaluated: k-Nearest Neighbor (kNN), Support Vector 

Machine (SVM) and random forest (Tan, Steinbach, & Kumar, 2006). The output 

variables of the three classifiers will act as performance criteria. To assess the 

performance of the classifiers, three measures are often utilized based on a confusion 

matrix, which is utilized to define the precision, recall and F measures (Tan et al., 2006, 

p. 297).  

Scenario Ontology 
Semantic 
analysis 

Classification 

Related 
Hypothesis 

HP1 HP2 HP3 

I (baseline)       
II       
III        

Table 1- The three Scenarios of the Research 

To assess the performance of ontological semantic classification, I will examine 

the impact of ontology and semantic analysis in the classification process. To do so, 

three scenarios, shown in Table 1, are considered. In scenario I, the baseline scenario, 

the patent would be classified without the application of ontology or semantics. In 

scenario II, the patents will be classified only by considering the vocabulary presented in 

the ontology. In scenario III, the patents will be classified by considering the synonyms 

of the vocabulary presented in the ontology. In each scenario, three classifiers including 
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k-NN, SVM, and random forest will be applied to see how each performs in that 

scenario. Addressing the research questions and testing the hypotheses from section 1.3 

consists of comparing the results of the three scenarios to each other. To examine the 

hypotheses introduced in Figure 4, the scenarios are pairwise compared.  

The study is conducted at Finex, an iron casing company located in Portland, 

Oregon, which produces traditional iron kitchen skillets. Experts from that company 

design two ontologies (one for product features and one for enabling technologies), 

which serve as a basis for ontological classification and ontological semantic 

classification. The ontologies are validated by a panel of outside experts, which consists 

of two professors in materials science, two PhD students in materials science, and two 

industry professionals in related industries. Cross-validation occurs in an iterative 

process, in which the parameters of the classifiers are tuned to identify the best 

classifier. 
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CHAPTER 2: LITERATURE REVIEW 

2.1. Introduction 

The management question that motivates this dissertation is: “How can R&D 

engineers/managers that are engaged in product planning find patents that will provide 

new technological opportunities?”  

In the review of the academic literature that follows, I look at the prior research 

that has been done, and based on this prior research I identify gaps in knowledge that 

warrant further scientific study.  From these gaps, I shall generate research questions 

for my dissertation.  The major contributions of this dissertation will close the gaps in 

knowledge that I identify in this chapter, and address the research questions that they 

generate.   

As an introduction to this discussion, I briefly review (in section 2.2) the field of 

text mining and its constituent disciplines, upon which the field of patent mining 

depends. The following issues, which are addressed in section 2.3 and 2.4, are of 

particular interest to practicing technology managers:   

1. What are the most recent patent mining methods and their capabilities in 

patent analysis?  (Section 2.3) 

2. What are the potential gaps in the application of patent mining in NPD 

process? (Section 2.4) 

I discuss the abovementioned issues in sections 2.3 and 2.4, respectively, 

identifying the literature streams in which these issues are debated.  
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2.2. Text Mining – A Brief Overview  

Text mining is a variation of data mining that tries to identify valid, novel, 

potentially useful, and ultimately understandable hidden patterns in large textual 

databases (Hotho, Nürnberger, & Paaß, 2005). Text mining is an interdisciplinary field 

which is built upon natural language processing (NLP), information retrieval (IR), and 

machine learning (ML), which are all deeply rooted in statistics (Gupta & Lehal, 2009). 

Natural language processing supplies materials (keywords); information retrieval 

extracts information from the keywords; machine learning recognizes and studies the 

pattern of keywords based on the information provided by information retrieval (see 

Figure 6). These three fields of study are briefly introduced in this section. 

Natural Language 
Processing 

 Information 
Retrieval 

 Machine 
Learning 

 

 Keywords   information  patterns 

Figure 6- Text mining components 

 

2.2.1. Natural Language Processing 

Natural language processing (NLP) is an area of computer science that explores 

how computers can understand and analyze natural language text or speech 

(Chowdhury, 2005). The main applications of NLP in text mining are information 

extraction, topic tracking, summarization, categorization, clustering, concept linkage, 

information visualization, and question answering (Gupta & Lehal, 2009). NLP consists of 

the following steps (Nadkarni, Ohno-Machado, & Chapman, 2011), which are executed 

in the sequential order shown in Figure 7: 
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- tokenization: breaks a stream of text to and identifies individual tokens (words, 

punctuations). Common words, called stop words (e.g., ‘is’, ’at’, ‘which’), are 

filtered out to improve the performance of NLP.  

- stemming (morphology decomposition): reduces words to their roots. For 

example, "argue", "argued", "argues", "arguing", and "argument" are reduced 

to the stem "argu”. 

- Part-of-Speech (POS): classifies and tags words to lexical categories such as 

nouns, pronouns, adjectives, verbs, adverbs, etc. 

-  parsing: converts a sentence into a tree whose nodes hold POS tags, but the 

rest of the tree would tell how the words are exactly joined together to make a 

sentence. 

 

Figure 7- General steps of natural (text) language processing (NLP) (Nadkarni et al., 2011) 

 

2.2.2. Information Retrieval 

Information Retrieval (IR) is the area of study which deals with the 

representation of, storage of, organization of, and access to information of textual 

sources such as electronic documents and Web pages (Baeza Yates & Ribeiro-Neto, 

Tokenization Stemming 
Part-of-
Speech 

Parsing 
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1999). The process of IR, shown in Figure 8, contains three main sub-processes: 1) 

representing the content of the document; 2) representing the user’s information need; 

and 3) comparing of the two representations (Hiemstra, 2009). Most IR systems assign a 

numeric score to every document and rank them by this score. The three most common 

research topics in IR are the vector space model, the probabilistic models, and the 

inference network model (Singhal, 2001). In the vector space model (VSM) (Salton, 

Wong, & Yang., 1975), a document is represented by a vector of terms which are 

typically words and phrases. The VSM model measures the similarity between the query 

vector and the document vector by applying the cosine of the angle between the two 

vectors. In the probabilistic models, documents are ranked by decreasing probability of 

relevance to a particular query (Salton & Michael, 1986). Many probabilistic models 

have been proposed, each based on a different probability estimation technique 

(Singhal, 2001). In inference network models, there are two main components: a 

document network and a query network (Turtle & Croft, 1991). The document network 

represents the document collection, and the query network represents the user’s 

information need. The nodes of document network and of the query network are linked 

by representation concepts and query concepts. 
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Figure 8- Information retrieval process (Hiemstra, 2009) 

2.2.2.1. Information Retrieval Evaluation 

Information retrieval systems are developed to serve users, so it is very 

important to observe and evaluate how users behave and how information retrieval 

systems perform. Most of the early user studies recognized that the knowledge of the 

subject matter and the level of general search experience are the main success factors in 

information retrieval experiments (Harman, 2011), and human error is the main factor 

in search failures (Lancaster, 1968).  

During information retrieval experiment, data collection contains logging time 

spent for different tasks (e.g. query design, document opening, document judgment, 

etc.) and facts (like number of keywords and queries used by each participant or 

completion time) (Petrelli, 2008). In addition to the quantitative data mentioned before, 

data collection can contain users’ opinions which are qualitatively analyzed through a 

questionnaire or an interview (Petrelli, 2008).  
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Efficiency, effectiveness, and user satisfaction are main measures which are 

studied in information retrieval experiments (Petrelli, 2008). Efficiency is measured 

often based upon time spent for an information retrieval experiment (Dunlop, 2000). 

Effectiveness is measured based on the average of precision and of recall. Users’ 

relevance judgement is, also, another source to measure effectiveness (Dunlop, 2000).  

Query formulation is often considered as the main success factor in information 

retrieval experiment (Petrelli, 2008). Query formulation not only depends on the 

experience and the knowledge of a user, but also it is affected by user interfaces 

provided in an information retrieval system (Petrelli, 2008). To assess the success of a 

user in query formulation, the number of queries used, the number of different terms 

used, and the average length of queries can be considered as efficiency indicators 

(Belkin et al., 2003).  

The criteria introduced in this section will be applied to evaluate a patent 

retrieval experiment which is called patent search and is introduced in section 3.4.3. The 

Patent search is designed in order to 1) collect patents judged by experts, and 2) 

evaluate the performance of experts in patent retrieval. The criteria are customized and 

introduced in section 4.2. 

2.2.3. Machine Learning 

Machine learning (ML) is a paradigm to construct and study of algorithms, in 

order to learn automatically without human intervention. The goal is to do in the future 

based on what has been experienced in the past. For example, data mining is a type of 

machine learning where patterns are discovered within large volumes of data (“big 
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data”) (Zhang & Tsai, 2003). Machine learning methods are grouped to three main 

categories: 1) supervised, 2) unsupervised and 3) semi-supervised (Mohri, 

Rostamizadeh, & Talwalkar, 2012) (see Figure 9).  

Supervised ML methods, including regression and classification, use training data 

with specific labels. For example, ‘spam’ versus ‘not spam’ are labels used for spam 

email filtering. The training process continues until the model achieves a desired level of 

accuracy with respect to the training data. Classification methods assign a category to 

each item. For example, a document can be classified to different categories such as 

politics, business, sport, etc. Regression predicts a real value for each item. Prediction of 

stock values or variations in economic variables are examples of regression applications 

(Mohri et al., 2012).  

The only known unsupervised ML method is clustering, in which data are 

grouped after patterns are recognized. A clustering algorithm prepares a deductive 

structure1 in the input data, which, unlike supervised methods, does not have any label. 

Clustering is often utilized to analyze large data sets to reduce redundancy or organize 

data by similarity. One of the main applications of clustering is dimensionality reduction 

where many random variables are reduced to fewer. Document frequency, mean TF-IDF 

(term frequency-inverse document frequency), term frequency variance are the most 

common dimension reduction techniques used for text clustering (Tang, Shepherd, 

Milios, & Heywood, 2005). These techniques are categorized as feature selection 

                                                        
1 The deductive structure is a system of thought in which conclusions are justified by means of previously 
assumed or proved statements.  
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methods, which select a subset of relevant features from a dataset by removing 

irrelevant or redundant features (L. Liu, Kang, Yu, & Wang, 2005). The second group of 

dimensional reduction methods is feature extraction or feature transformation, which 

transform the data in a high-dimensional space to a space of fewer dimensions (Tang et 

al., 2005). Principal Component Analysis (PCA) and Latent Semantic Analysis (LSA) are 

examples of feature extraction methods, which are widely used to cluster text 

documents (Shafiei et al., 2007). 

 

Figure 9- Machine Learning Methods (Mohri et al., 2012) 

 

Semi-supervised ML methods classify large amounts of unlabeled data, under 

specific assumptions, by applying a training algorithm to a small set of labeled data. 

Classification occurs by binning the unlabeled data according to the outcome of the 

training process (Zhu, 2005). Speech recognition, Webpage classification, and genome 

sequencing are the samples of semi-supervised ML applications (Chapelle, Schölkopf, & 

Zien, 2006, p. 4).  



 

28 

2.3. Patent Retrieval 

Identifying patents for ideation and innovation is one of the most common 

application of patent retrieval (Bonino, Ciaramella, & Corno, 2010). The main emphasis 

in most of this kind of tasks is to find all relevant patents, particularly when missing 

relevant patents is unacceptable (Joho, Azzopardi, & Vanderbauwhede, 2010). As a 

result, professional patent searchers, like product planners, prefer more functionality in 

patent search in comparison to occasional users who often require an easy to use 

interface and simpler commands (Bonino et al., 2010). Specially, after the emergence of 

the internet, professional users’ needs have significantly been changed in patent search 

(Newton, 2000). While fast response time is among of users’ top expectations 

(McDonald-Maier, 2009), professional users, like product planners, have to deploy 

iterative search strategies to ensure they have found as many as of the relevant patents 

as possible (Bonino et al., 2010)(Atkinson & H., 2008). Joho et al did a patent search 

survey and reported that a typical search task takes 12 hours to complete and ranges 

from a minimum of 3 hours to a maximum of 40 hours (Joho et al., 2010). Also, they 

reported that such a search task includes roughly 15 queries and a judgment on 100 

patents, with each query taking 5 minutes to formulate, while each document takes 5 

minutes to judge (Joho et al., 2010). 

2.3.1. Patent Retrieval Methods 

Query formulation is the key component in every patent retrieval method. 

Therefore, several methods are developed in order to select, remove, or add keywords 

in query design. The main patent retrieval methods: 1) keyword-based methods, 2) 
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semantic-based methods, and 3) interactive methods (Fafalios & Tzitzikas, 2017). In 

keyword-based methods, a patent searcher uses keywords that match exactly a target 

corpus.  The weakness of keyword-based method is that they cannot catch patents with 

similar ideas, but different vocabulary. In semantic-based methods, a patent researcher 

expands queries so that he/she can find relevant patents to the meaning that he/she is 

looking for. Because neither keyword-based methods nor semantic-based methods 

show satisfactory performance, interactive methods are proposed (Fafalios & Tzitzikas, 

2017). In interactive methods, a patent searcher interactively designs queries with 

reasonable efforts.  

Keyword based methods are developed based on three factors:  

1) Targeted Data: In this approach, to expand or reduce queries, relevant terms 

are selected based on their position in the body of a patent such as title, 

abstract, first sentence of the claims, and description (Braschler, Harman, 

Pianta, & CLEF., 2010; Magdy, Leveling, & Jones, 2010; Mahdabi, Keikha, 

Gerani, Landoni, & Crestani, 2011; Verberne & D’hondt, 2010).  

2) Term selection/removing approaches: There are two main approaches in 

query design: 1) position based approaches, and 2) pattern based 

approaches. In position based approaches, scholars develop queries from 

different sections of patents. Mahdabi et al. reported that they observed 

better patent retrieval performance when they constructed their queries 

based on terms in the description section (Mahdabi, Keikha, Gerani, Landoni, 

& Crestani, 2011). In pattern based approaches,  
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3) Terms weight calculation: In addition to frequency-based weighting 

approaches like calculating tf-idf, some authors developed position-based 

weighting methods (Magdy, Leveling, & Jones, 2010). They manually 

assigned different weights to terms according to their positions in a patent.  

 

Semantic based methods are developed as a remedy for the ineffectiveness of 

keyword based methods. Magdy reported that 12% of the relevant documents don’t  

have common words according to the subject of the research (Magdy et al., 2010). 

Keyword based methods are ineffective due to vocabulary mismatch between the query 

and the relevant patents. Semantic based methods are categorized to dictionary based 

methods, and corpus based methods (Fafalios & Tzitzikas, 2017). In dictionary based 

methods, queries are expanded based on terms with similar meaning extracted either 

from existing generic lexical databases like WordNet or technical databases, or 

databases generated from patent-related data such as examiner’s query log. In corpus 

based methods, semantically related terms are extracted from a corpus and used for 

query design.  

Interactive methods are developed to increase the performance of patent 

search activities. Different approaches are applied to interact with and analyze the 

results of a patent search. The approaches include analyzing classification codes (e.g. 

IPC, CPC), keyword clustering, semantic enrichment, and others (Fafalios & Tzitzikas, 

2017).  
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2.4. Patent Mining Evolution 

Due to advances in natural language processing, text mining methods and tools 

have become increasingly available in many different research areas where scholars try 

to extract useful information and textual patterns from technical documents, 

particularly patents. This includes technology management. Applying text mining 

methods to technical documents is named ‘tech mining’ or ‘technology mining’, and for 

patent analysis purposes, it is named ‘patent mining’. Porter, as one of the pioneers in 

technology mining, has defined ‘tech mining’ in his book (Porter & Cunningham, 2005, p. 

19) as follows: “the application of text mining tools to science and technology 

information, informed by understanding of technological innovation processes.” 

Therefore, tech mining has two significant characteristics: 1) using ‘text mining tools’, 2) 

applying these tools to ‘technology management’.  

The evolution of patent mining is not precisely understood, because the field has 

changed so rapidly over the past two decades (Madani & Weber, 2016). For example, it 

is not clear how scholars are applying methodologies discussed in section 2.3 to expand 

this research area. Few papers have been published in the field of patent mining; thus, 

the evolution of the field to its current state of the art is not completely understood. 

Abbas et al. (Abbas, Zhang, & Khan, 2014) have reviewed 22 published articles that 

pertain to patent analysis, and they have provided a general taxonomy of techniques 

that can be deployed in the field. Also, in an editorial note (Chiavetta & Porter, 2013), 

Porter and Chiavetta investigated six papers published in the proceedings of the first 

Global Tech Mining (GTM) Conference. They report four main analytics tools which are 
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bibliometrics, data mining, network analysis and cluster analysis. In addition, they reveal 

eight application areas including emerging technologies and technology dynamics (trend 

analyses); technology forecasting, roadmapping and foresight; R&D management; 

engineering industries; science and technology (S&T) indicators; evolutionary 

economics; technology assessment and impact analysis; as well as science, technology 

and innovation policy studies. These two articles are based upon expert judgments 

about the very few papers that have been written in an attempt to explain the evolution 

of patent mining. 

In an attempt to generate a comprehensive literature review, I have deployed a 

systematic methodology to investigate the majority of patent mining papers that have 

been published to date. This approach consists of three steps. First, I use bibliometric 

analysis to recognize the main papers, authors, universities, and journals. I subsequently 

apply cluster analysis on a keyword network that is extracted from the abstracts of the 

papers (Madani & Weber, 2016). Finally, CiteSpace (C. Chen, 2014), a free Java 

application for visualizing and analyzing citations and contents in scientific literature, is 

applied as the main analysis tool to identify and visualize emerging trends. CiteSpace 

has been developed by Chaomei Chen, whose research is ‘information visualization’ (C. 

Chen, 2004, 2006; C. Chen, Zhang, & Vogeley, 2009). CiteSpace enables me to identify 

co-citation clusters and trace what research trends have developed (C. Chen et al., 

2009). The main techniques implemented in the software are spectral clustering and 

feature selection algorithms (C. Chen et al., 2009). Visualization of the results is the 

main characteristic of CiteSpace, which helps more analysts make sense of trends and 
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evolutionary patterns (C. Chen, 2006). Information visualization in this software goes 

beyond merely visualizing graphical displays—it deploys cognitive, social, and 

collaborative activities to discover more effectively unstructured data (C. Chen, 2004). 

More information about the methodology applied in this research and the results of 

bibliometric analysis are available in my third independent study report (Madani & 

Weber, 2016). The results of the keyword network analysis are explained in the 

following separate sub-sections named 1) patent analysis evolution and 2) patent 

mining evolution. 

2.4.1. The Evolution of Patent Analysis  

 

To reveal the evolution of patent analysis methodologies, published articles are 

mapped with respect to the mean value of the publishing year of each cluster. The map, 

which is displayed in Figure 10, shows there are three main stages in this evolution. In 

the first stage, ‘bibliometric analysis’ and ‘citation analysis’ are the basic methods used 

by researchers to discover patterns and gaps in technologies. Different types of patent 

data are bibliometrically analyzed to examine different purposes particularly for 

national (Melin & Danell, 2000) or regional studies (Manuel Acosta, Coronado, & 

Angeles Martinez, 2012) (Montobbio & Sterzi, 2011) (Coronado & Acosta, 2005). For 

instance, ‘forward patent citation’ is used to examine the quality of university 

technology across European regions (Manuel Acosta et al., 2012), or, in another study, 

citations and co-inventors are represented as channels of knowledge flows from G-5 

countries to Latin American countries (Montobbio & Sterzi, 2011). 



 

34 

Figure 10- Map of the evolution of patent analysis methodologies (Madani & Weber, 2016) 

 

In stage 2, clusters 7, 9, 12, and clusters 6, 8, 10, and 5 represent how patent 

analysis has evolved by applying cluster analysis and network analysis to provide more 

complicated analysis. Cluster analysis groups patents into similar categories whereas 

network analysis studies the structure of patent networks or citations networks.  

Cluster analysis helps focus on more specific groups or classes of patents 

recognized in network analysis. This helps researchers conduct technology trend 

analysis and technology forecasting more efficiently.  

Reviewing the key phrases of clusters 7, 9, and 12 suggests that the majority of 

the researchers utilize keywords extracted from patents to cluster patents based on 
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their content. For instance, Trappey and colleagues clustered key phrases to group 

patents defining key innovations (C. V. Trappey, Trappey, & Wu, 2010), and to forecast 

RFID technologies (C. V. Trappey, Wu, Taghaboni-Dutta, & Trappey, 2011). In other 

research, Jun et al applied a matrix map and the K-medoids clustering method for 

vacant technology forecasting (Jun, Park, & Jang, 2012). In addition to keywords, 

citations are another facet of patents used for cluster analysis. For instance, Lee et al 

applied network analysis and cluster analysis on patent citations to explore technology 

evolution in electrical conducting polymer nanocomposite (P.-C. Lee, Su, & Wu, 2010a).  

Reviewing the key phrases of clusters 6, 8, 10, and 5 suggests that network 

analysis has enabled scholars to discover the relation between patents and to interpret 

the content of patents more deeply and efficiently. In the majority of this type of 

research, patent citation is the most commonly deployed aspect of network analysis. It 

is often referred to as patent citation network analysis.  

Patent citation network analysis is applied for different reasons. For instance, it 

is applied to analyze technology trends (P.-C. Lee, Su, & Wu, 2010b) (P.-C. Lee, Su, & Wu, 

2010a) (J. Yoon et al., 2011), to detect emerging knowledge domains (Naoki Shibata, 

Kajikawa, Takeda, & Matsushima, 2008) (Kajikawa, Yoshikawa, Takeda, & Matsushima, 

2008), to characterize the structure of research in a field of study (Kajikawa & Takeda, 

2008), to explore technology diffusion (Chang et al., 2009), and to analyze other issues 

in the technology management field including technology identification (Shin & Park, 

2007) and technology transfer (Y. Park & Lee, 2012). In addition to citations, other 
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aspects of patents are used for network analysis. For instance, ‘co-inventors network’ is 

used to explore knowledge spillover in Latin America (Montobbio & Sterzi, 2011), or a 

‘research grants network’ is utilized to analyze interdisciplinary research relationships 

(Yang, Park, & Heo, 2010).  

In the third stage, where patent mining has emerged, reviewing key phrases of 

clusters 2, 3, 5 and 11 in Figure 10 discloses that text mining has enabled researchers to 

gain access to technical information in the patents’ content sections by extracting 

keywords and by extracting the latent knowledge contained in patents through the 

application of complementary methodologies, i.e. semantic analysis and ontology-based 

approaches.  

Since patent mining is the focal point of this section, stage three is scrutinized 

and discussed independently in section 2.4.2. 

2.4.2. The Evolution of Patent Mining  

In the third wave of the evolution of patent analysis, scholars noticed that just 

relying on and analyzing citations and the other bibliographic aspects is not enough. 

There is a huge amount of knowledge and information in patent content section that 

had not been considered in prior analyses (G Cascini et al., 2007). As text mining 

methods progressed, scholars began developing content-based approaches (H. Park et 

al., 2013) by applying text mining methods to extract knowledge and information from 

patent content (Porter & Cunningham, 2005). This movement, known as ‘patent 

mining’, is progressing as scholars struggle to create synergies from applying text mining 
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methods and other analytical methods such as network analysis and cluster analysis in 

conjunction, in order to develop more efficient patent mining methods. Reviewing 

clusters 2, 3, 5 and 11 in Figure 10 reveals how patent mining methods have been 

developed and applied over recent years. Figure 11 illustrates how patent mining has 

evolved over the last two decades, which will be discussed in detail in the next sections.  

 

Figure 11- Patent mining evolution (Madani & Weber, 2016) 

 

2.4.2.1. Information Retrieval 

There are two ways to extract text content more accurately and more efficiently: 

1) applying lexical approaches and 2) applying corpus approaches.2 In a lexical approach, 

natural language processing capabilities including syntax tagging, word stemming, and 

stop-word elimination allow us to distinguish words in sentences based on their 

syntactic features. Since lexical approaches recognize semantic patterns, they can mine 

                                                        
2 Basically, there are three main approaches to extract keywords from texts: 1) corpus approach, 2) lexical 
approach, and 3) statistical approach. In the corpus approach, it is often required to have a dictionary or 
predefined corpora developed by subject matter experts (SME’s). In the lexical approach, natural 
language processing (NLP) is utilized to find out semantic relations among the keywords since it assumes 
the relation between keywords and semantic context of documents determines important keywords. In 
statistical approach deems term frequency is a proxy of the importance of a keyword. Inverse Document 
Frequency (TF-IDF) method is one of the first developed and broadly applied statistical method (A. J. C. 

Trappey et al., 2009). 
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patents more accurately and determine important keywords. Therefore, in comparison 

to traditional methods like TF-IDF, the scholars don’t lose synonyms or polysemy and 

thereby extract all important keywords. In the corpus approach, experts provide a 

predefined collection of main concepts addressing the text content. These collections 

are made in either unstructured forms like dictionaries or in structured forms such as 

ontologies or morphologies. These collections create a more efficient keyword 

extraction and content analysis in later stages of analysis.  

Natural language processing (NLP) is able to recognize ‘lexical’ and ‘semantic’ 

relation between words. This capability enables the scholars to follow two different 

strategies for pattern recognition: 1) semantic analysis, and 2) ontology-based analysis. 

In semantic analysis, important keywords and their relationships, and semantic patterns 

are recognized. In other words, semantic patterns are recognized based on the meaning 

of words and their roles in a sentence. The Subject-Action-Object (SAO) approach and its 

peer approach, the property-function approach, are two semantic analytical approaches 

developed to extract textual patterns for purposes of patent analysis. A SAO structure is 

composed of Subject (noun phrase), Action (verb phrase), and Object (noun phrase) that 

can be extracted by using natural language processing (NLP) of textual patent 

information (Gaetano Cascini, Fantechi, & Spinicci, 2004). For example, a sample SAO 

structure such as ‘fire ignites oil’ comprises the subject (‘fire’), the action (‘ignite’), and 

the object (‘oil’). Similarly, in the property-function approach, the property is an 

adjective describing a specific character of a product and the function is a verb referring 

to an action of the product (J. Yoon & Kim, 2012). Numerous studies can be fulfilled by 



 

39 

applying SAO or property-function approaches for different purposes such as technology 

roadmapping (S. Choi et al., 2013), technology trend identification (S. Choi et al., 2011) 

(J. Yoon et al., 2011), technology monitoring (Gerken, 2012), and strategic planning (H. 

Park et al., 2013). Regardless of SAO and property-function approaches, some scholars 

try to find syntactic patterns by applying heuristic algorithms. For instance, Wang and 

Cheung (W. M. Wang & Cheung, 2011b) have developed a method containing heuristics 

rules to detect simple syntactic patterns. This method enables users to search for 

patents related to a potentially new invention and to provide the relationship and 

patterns among a group of patents.  

In ontology-based analysis, the concepts of patent content are modeled based 

on their properties, relationships, constraints and behavior (Noy & McGuinness, 2001). 

Therefore, to extract terms used for the same concept (Bermudez-Edo, Noguera, 

Hurtado-Torres, Hurtado, & Garrido, 2013), it is required to deploy NLP methods. 

Ontology-based analysis provides a framework for interacting with application systems, 

improving the communication model between humans and machines (Weng & Chang, 

2008), and providing information with a knowledge domain (P.-C. Lee, Su, & Chan, 

2010). Amy Trappey et al (A. J. C. Trappey, Trappey, & Wu, 2009) examined the 

performance of an ontology-based approach combined with TF-IDF approach in terms of 

compression ratio,3 retention ratio,4 and classification accuracy of the summarization 

results. The authors figured out the ontology based approach doesn’t provide significant 

                                                        
3
 The compression ratio indicates the text reduction from the original document to the compressed 

summary. 
4 The retention ration indicates how much the information of the original document is available in the 
summarized document. 
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improvement in the compression ratio, but it does produce an 11% improvement for 

the retention ratio and a 14% improvement for the classification accuracy. In another 

research, Amy Trappey et al (Amy J. C. Trappey, Trappey, Chiang, & Huang, 2013) have 

developed a knowledge management approach and applied an ontology-based artificial 

neural network (ANN) to search and classify patent corpora. They combined term 

frequencies and the concept probabilities of key phrases as the ANN inputs. They 

produced significant improvement in classification accuracy.   

2.4.2.2. Pattern recognition and analysis 

After given keywords have been extracted and keyword vectors have been 

prepared, it is time to process keyword vector elements to provide information. In doing 

so, network analysis and cluster analysis are the two main methodologies that are 

applied. To process keyword vectors, it is necessary to take these steps: 1) calculate a 

similarity function and preparing a similarity matrix, 2) transform the similarity matrix 

into an adjacency matrix by applying a cut-off threshold value, 3) applying basic network 

analysis measures, and 4) applying cluster analysis algorithms.  

In pattern analysis, it is not necessary to do all four of these steps. Some scholars 

only apply similarity calculations (step 1) to do an analysis. For instance, Jeon and 

colleagues (Jeon et al., 2011) only applied similarity calculations to search potential 

partners for collaboration purposes in open innovation, or Chen et al (Y.-L. Chen & Chiu, 

2013) applied similarities for cross-language patent matching. Some scholars apply only 

basic network analysis, steps 1 to 3. For instance, Choi et al (S. Choi et al., 2013) applied 
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basic network analysis measures to develop roadmaps. And finally, in the most 

advanced analysis, some scholars apply all of the four steps to create a cluster analysis. 

For example, Yoon and Kim (J. Yoon & Kim, 2011) applied a clustering method, k nearest 

neighbors (k-NNs), in their methodology to identify technological opportunities in the 

network.  

2.4.2.2.1. Network analysis 

Network analysis allows researchers to create a set of connected nodes with 

shared properties and to analyze them based on their network structure and their 

relationships. There are three types of networks applicable in patent mining: 1) patents-

based networks, 2) keyword-based networks, and 3) concept-based networks. The 

nodes of the networks are patents, keywords, and concepts, respectively, and the 

relationships are created based on how similar the nodes are. In keyword-based 

networks, keywords are actors that are connected to a network and their relationships 

are specified, if a word-pair has been repeated in an extracted sentence or in a semantic 

pattern. Building a patent-based network requires two steps: 1) determine the similarity 

between the patents based upon their keyword vectors, and 2) convert the similarities 

to 0 or 1 by applying a pre-determined cut-off value. There are different approaches to 

determining similarity: 1) syntactical and 2) semantic. In a syntactical approach, a 

network is built based on the role of an extracted keyword in their related sentences. 

For instance, Choi et al (S. Choi et al., 2013) created a keyword-based network, named 

Product-Function-Technology (PFT) map, based on the SAO approach. They used 

network analysis to show how products and technologies are related to functions in 
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order to develop a roadmap. Also, they utilized degree analysis to determine the 

technological trend, and used centrality measure to illustrate how a core function 

changes over time. Similarly, Choi et el applied this approach to technology trend 

identification (S. Choi et al., 2011)(J. Yoon et al., 2011). It is worth explaining that Choi et 

al didn’t use a cut-off value in their research in order to obtain all possible keywords in 

the network. In a semantic approach, semantic similarity between patents is computed 

based on the similarity of the pairs of words. Tokenizing, stemming, tagging, and 

determining synonyms are the main steps to figuring out the words (J. Yoon & Kim, 

2011). As mentioned above, the similarity matrix is converted to an adjacency matrix by 

applying a cut-off value to produce the relationships in the network. However, a cut-off 

value is a task-based and case-dependent variable; Lee et al (P.-C. Lee, Su, & Chan, 2010) 

suggested an empirical method to optimize the cut-off threshold value of similarity. In 

concept-based networks, concepts are extracted based on an ontology created by 

domain experts. Like patent-based networks, it is necessary to extract keywords 

addressing the concepts and to apply a similarity measurement in order to develop 

relationships. For instance, Amy Trappey et al (A. J. C. Trappey et al., 2009) used a 

combined ontology based and TF-IDF concept clustering approach to extract, cluster, 

and integrate the content of a patent to derive a summary and a cluster tree diagram of 

key terms. 

2.4.2.2.2. Cluster analysis 

Given similarity values, cluster analysis is the best methodology to figure out 

groups of patents, keywords, or concepts that are similar to each other but different 
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from others in other groups. Cluster analysis contains various algorithms with 

significantly different views of what makes a cluster and how to efficiently catch a 

cluster. Over recent years, the scholars have tried to apply different clustering methods 

for various purposes in patent mining. For example, ‘k-mean algorithm’ for patent 

summarization (A. J. C. Trappey et al., 2009) (Amy J. C. Trappey & Trappey, 2008), ‘Naive 

Bayesian algorithm’ for patent mapping (W. M. Wang & Cheung, 2011a), ‘Formal 

Concept Analysis’ (FCA) for technology monitoring (Changyong Lee, Jeon, et al., 2011a), 

‘community structure analysis’ for technology prediction (Naoki Shibata et al., 2008) (J. 

Choi & Hwang, 2014a), ‘Multi-Dimensional Scaling’ (MDS) for patent mapping (J. Yoon & 

Kim, 2011), etc.  

2.4.3. Summary of Patent Mining Literature 

Patent analysis has evolved over three main stages, as shown in Table 2. In the 

first stage, bibliometric analysis and citation analysis were the main methods applied for 

patent analysis. By applying network analysis and cluster analysis, more advanced 

bibliometric analysis and citation analysis emerged in the second stage. By 

advancements in natural language processing and text mining tools, patent mining 

methods are disclosed in the third stage.  

Stage 1 Stage 2 Stage 3 

Bibliometric Analysis & 

Citation Analysis 

More advanced bibliometric 
analysis and citation analysis 
by applying network analysis 
and cluster analysis 

Emerging patent mining 
methods 

Table 2- Main stages of patent analysis 
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Network analysis and cluster analysis are still the main analysis methods in 

patent mining, as shown in Figure 11. This suggests the researchers intend to analyze 

the relation between patents by applying network analysis, and they intend to cluster 

specific groups of information by applying clustering analysis. As shown in Figure 11, 

network analysis and cluster analysis have been applied in technology management 

areas such as technology mapping, technology monitoring, etc., while there are some 

other areas such as technology acquisition, and new product planning that they need to 

identify specific technologies. Classification is the method that can remedy this need, as 

shown in Table 3. Therefore, I will apply classification methods in my research to 

identify pre-determined enabling technologies and product features for NPD planning 

purpose. 

Type of Analysis Network Analysis Cluster Analysis Classification 

Purpose of analysis Relation analysis Grouping/clustering Identification 

Table 3- The purpose of three main analysis methods (network analysis, cluster analysis, and 
classification)  

2.5. Application of Patent Mining in NPD Process 

This section reviews the most common general NPD processes, citing several 

prestigious sources. The intent is to identify a consensus of what the main stages of the 

NPD process actually are (section 2.5.1). I subsequently discuss how patent mining 

research has been applied in each of these stages (section 2.5.2), which reveals 

potential gaps in the academic literature that pertain to applications of patent mining to 

the NPD process. 
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2.5.1. A review on NPD process 

To review NPD process models, three prestigious sources are chosen and 

discussed in this section (Urban et al., 1987) (Ulrich & Eppinger, 2011) (Pahl, Beitz, 

Feldhusen, & Grote, 2007). Basically, NPD process activities can be classified into four 

main activities which are planning, design, production, and post-production. As 

illustrated in Table 4, Urban et al (Urban et al., 1987) have mainly concentrated on the 

planning aspects of NPD process, and they didn’t get involved in ‘design, ‘production‘, 

and ‘post-production’ activities. Ulrich and Eppinger (Ulrich & Eppinger, 2011) have 

considered design and production, in addition to planning. Pahl et al (Pahl et al., 2007) 

have extended the NPD process and taken some ‘post-production’ activities such as 

recycling and energy recovery into consideration.  

Source Planning Design Production Post-production 

(Urban et 
al., 1987) 

 Opportunity 
identification 

 Consumer 
management 

 Models of 
consumers 

----- ----- ----- 

(Ulrich & 
Eppinger, 

2011) 

Planning  Concept 
development 

 System level 
Design 

 Detail design 

 Testing and 
refinement 

 Production 
ramp-up 
 

----- 

(Pahl et 
al., 2007) 

Product planning 
/task setting 

Design/ 
development 

Production/ 
assembly/ test 

 Marketing/ 
consulting/ sales 

 Use/ 
consumption/ 
maintenance 

 Energy recovery 

 Recycling 

Table 4- The NPD processes comparison 



 

46 

2.5.1.1. NPD Process by Urban et al. 

Urban, et al. (Urban, Hauser, & Dholakia, 1987) suggest a five-stage product 

development process, which is shown in Figure 12. The product design process consists 

of two sub-processes, one managerial and one consumer. The managerial sub-process 

identifies the main categories of managerial decisions. The consumer sub-process 

illustrates how a company goes into the market to design the product. The main steps 

are described in turn. 

- Opportunity identification is an effort that integrates technological opportunities 

and market demand.  Customer needs and user solutions are the most important 

sources of ideas. Therefore, recognizing new technologies is a main function since 

it helps to find new opportunities to meet customer needs.  In addition to internal 

sources such as R&D, engineering, production, and marketing, external sources 

including patents are very important to yield new ideas. To generate good 

technology-based ideas, companies should build their new product strategy 

based on both customer needs and technological advances.  

- Consumer management: Emphasis in the beginning is the understanding of the 

consumers. Quantitative measurements are applied to clear consumers’ behavior 

and insight to the market. Qualitative researches are employed to answer specific 

questions via surveys.  

- Models of consumers: The models diagnose the market based on the awareness 

perception, preference, segmentation, availability, and choice factors. They 

provide the features of the product and direct the design process. Perception 

models explain what consumers consider to perceive the product, and preference 
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models illuminate how they evaluate the perceived dimensions. Segmentation 

determines the best strategy for allocating product(s) to different group of 

consumers. Choice models determine external events that impact consumers’ 

purchase or use. The four models help managers understand the consumers. 

- Prediction of market behavior: The four models of consumer response are 

combined to predict market behavior.  

 

Figure 12- product design process (Urban et al., 1987, p. 26) 

 

2.5.1.2. NPD Process by Ulrich and Eppinger 

Ulrich and Eppinger introduce a generic product development process which is like a 

funnel that starts with a set of alternative product concepts and then narrows and 

specifies specifications of the product. The stages are shown in Figure 13 and described 

below: 
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1- Planning: Planning starts with ‘opportunity identification’ guided by corporate 

strategy and includes assessment of technology developments and market goals. 

The main output of this phase is the ‘project mission statement’, which specifies 

the target market, business goals, key assumptions, and constraints.  

Figure 13- The product development process (Ulrich & Eppinger, 2011, p. 9) 

2- Concept development: After identifying the needs of the target markets, several 

alternative product concepts are generated and evaluated to select one or more 

concepts for further development. The concept is a description of the form, 

function, and features of the product, and it is usually supported by more 

competitive and economic analysis.  

3- System level design:  The product architecture and its sub-systems and 

components are defined and preliminarily designed. The main outputs are a 

geometric layout, a functional specification of each sub-system, and a 

preliminary flow process diagram. 

4- Detail design: All detailed technical aspects including specifications, materials, 

tolerances, standards, tooling, etc. are specified. 

5- Testing and refinement: In order to examine the reliability and performance of 

the product, several prototypes are produced and tested from manufacturing 

and customer point of views. 
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6- Production ramp-up: To train the workforce and to solve the remaining 

manufacturing problems, products are manufactured and evaluated carefully. 

This phase gradually transits to ongoing production.  

2.5.1.3. NPD Process by Pahl et al. 

Pahl et al. mention a general new product development process which is called 

‘life cycle of a product’ (see Figure 14). In contrast to the other NPD processes under 

study, the authors consider environmental and recycling phases. This explains why these 

authors apply the term ‘life cycle’ to the NPD process. Nonetheless, the process, like 

many others, contains general phases including product planning, design, production, 

marketing, and use/maintenance. Since my research relates to product planning, I will 

explain this phase in more detail.   

The product planning process consists of a sequence of steps (Pahl et al., 2007, 

Chapter 3). In the first step, analyzing the situation, several aspects are considered and 

verified. The aspects are product life cycle, product-market matrix, company’s 

competence, status of technology, and future developments. In life cycle analysis, 

product diversification is the focal point of decisions.  It can lead to phased development 

and the sale of different products. The product-market matrix helps understand the 

status of existing products from the company and from competitors in the various 

markets. In company’s competence assessment, the current market position is 

compared with competitors based on factors such as turnover, market share, market 

situation, etc. To determine the status of technology, the products of the company, 

related technologies, concepts, and products are reviewed in the literature and patents, 
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and competitors’ products. Future developments are estimated based on knowledge of 

future projects, expected customer behavior, technical trends, environmental 

requirements, and the results of fundamental research. 

 

Figure 14. Life cycle of a product (Pahl et al., 2007, p. 3) 

 

In the second step, formulating search strategies, product planners reduce the 

number of search fields according the following criteria: customer needs, market trends 

and company aims. To identify strategic opportunities, different business strategies are 

adoptable. Introducing new products into the current markets or opening new markets 
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with existing products are samples of business strategies that can be implied from a 

portfolio matrix. A promising gap determining the research field must be found by 

taking into account the company’s goal, strength and market. To identify needs trends, 

customer behavior changes such as social developments, environmental awareness, 

transport problems, etc. should be conceived. Need-strength matrix is a tool commonly 

used to prepare the search of field proposal. Potential functions to carry degree of 

future client requirements are estimated. This analysis can result to R&D projects regard 

to new and future development components, assemblies, and products. At the end, 

goals and strength of the company must prioritize and select search fields.  

In the third step, finding product ideas, the preferred search fields are explored 

for ideas by applying search methods such as brain storming, discursive methods, and 

exploring patents, which is one of conventional methods for information gathering to 

have access to state-of-the-art information. Depending on the degree of novelty, 

different product design strategies such as new product functions, new embodiments, 

and rearrangements can be employed.  

In the fourth step, selecting product ideas, the generated ideas are subjected to 

a selection procedure whose criteria are linked to company’s goals, company strength, 

market and other sources. High turnover, large market share, and functional advantages 

for the customers are the least criteria should be used at this step.  

In the fifth step, defining products, the promising ideas are detailed more 

elaborately to characterize the requirements of the ideas. After elaboration, product 
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ideas are evaluated again. Eventually, product proposals are prepared including 

preliminary requirements.  

In the sixth step, clarify and elaborate, list of requirements are completed by 

considering external, internal, and structure requirements. Requirements related to 

disposal, recycling, and environmental impacts are more important in this step.  

2.5.2. Patent Mining in NPD literature 

To recognize current patent mining research applied in new product 

development, I looked at three main databases--IEEE, Web of Science (WOS), and 

Compendex5. After removing irrelevant and duplicated articles, 24 articles were 

identified and categorized into 9 groups based on their application (see Table 5). The 

papers are discussed based on their applications in main NPD activities introduced in 

Table 4. Patent mining cannot be applied in production and post-production activities, 

so only are planning and design activities considered. 

As shown in Table 5, the papers are categorized into 10 groups based on their 

application of text mining. Table 6 also denotes the relationship between the papers 

and the main activities of the NPD process—technical, planning and design. Technical 

papers are papers that discuss the technical aspects of text mining rather than their 

applications in new product development. Therefore, only the papers pertaining to 

planning and design are discussed in the next sections. 

 

                                                        
5 - The used query is: (("patent mining" or ("text mining" and "patent")) and ("product development" or 
"product design")) 
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Patent Classification  (Hong, Hua, & Hong, 2013)(J. Wang, Lu, & Loh, 
2011)(Z. Li, Tate, Lane, & Adams, 2012) 

  

Patent Mining 
(technical)  

(Xu, 2009)(Bonaccorsi Andrea, 2007)   

Patent 
Summarization 

(Amy J.C. Trappey, Trappey, & Wu, 2009)(A. 
Trappey, Trappey, & S. Kao, 2006) 

  

Design by Analogy (Paul-Armand Verhaegen et al., 2011)(J. Murphy, 
Fu, Otto, Yang, et al., 2014)(Fu, Murphy, et al., 
2013)(Fu, Chan, et al., 2013a)(Fu, Chan, et al., 
2013b)  

  

Design Rationale (Yan Liang et al., 2012)(Yan Liang & Liu, 2013)   

TRIZ (Yanhong Liang & Tan, 2007)(Yanhong Liang et al., 
2008)(Yan Liang & Liu, 2013)(Yanhong Liang & Tan, 
2007)(A.J.C. Trappey et al., 2013)(P.-A. Verhaegen et 
al., 2011) 

  

Roadmapping (S. Lee et al., 2006)   

Technical parameter 
identification 

(G. Cascini & Zini, 2011)   

Technology 
Identification 

(Y.-R. Li, Tong, Hong, & Wang, 2006)   

Tools Review (Russo, 2011)(Lelescu et al., 2014)   

Table 5- Patent mining applications in new product development 

 

2.5.1.1. Application of Patent Mining in the Design Stage 

As illustrated in Table 5, the papers, which apply patent mining in the design 

stage, are classified into five specific subjects. Regarding to the similarity between the 

subjects, they can be classified into two main groups: 1) design methods and 2) special 

applications. Design methods include design by analogy, design by rationale, and TRIZ. 
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The second group discusses the special applications of patent mining in the design 

stage—a technical parameter identification and tools review.  

2.5.2.1.1. Design Methods: Design-by-Analogy 

Design by analogy is defined as “an ideation or problem-solving method based 

on analogies between products” (Paul-Armand Verhaegen et al., 2011). Design-by-

analogy develops a set of ideas based on similar relationships from solutions to 

analogous problems (Fu, Murphy, et al., 2013). Design-by-Analogy (DbA) is an area that 

enables designers to identify and develop examples of related cases and scenarios, and 

connected experiences to solve a specific design problem (Moreno et al., 2014) (Linsey, 

Laux, Clauss, Wood, & Markman, 2007). Different analogical sources are applied in 

developing different DbA methods, such as answering direct questions to explore 

analogical categories in Synectics6, looking for analogies in natural phenomena, 

developing analogous solutions from abstractions of functional models, and exploring 

analogous domains through semantic mapping (Moreno et al., 2014). Analogical search 

approaches and search engines are developed to identify potential analogies in digital 

sources like patent databases. Applying DbA can enhance the ability of automatic 

extraction analogies and systematic identification candidate products from patents, so 

the authors of the papers, shown in Table 5, have tried to develop DbA methods to 

facilitate analogies identification.  

Verhaegen et al. have developed a method to extract product characteristics, 

called Product Aspects (PA), as a way to automatically and systematically identify 

                                                        
6
 Synectics is a creative problem solving method that stimulates thought processes of which the subject may be 

unaware (Gordon, 1961). 
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candidate products for design-by-analogy (Paul-Armand Verhaegen et al., 2011). The 

method is based on the analysis of the occurrence of words from specific WordNet 

categories. The TF-IDF is used to weigh the occurrence matrix, Principle Component 

Analysis (PCA) is deployed as the main method for dimensionality reduction, and 

VariMax is applied as a complementary method to make the result more interpretable. 

The Principle Components (PCs) gained by VariMax are called Product Aspects (PAs); 

they are ordered based on literal similarity and similarity under focus. By ordering PCs 

via literal similarity and plotting two products against literal similarity and similarity 

under focus, design-by-analogy candidates can be selected.  

A group of scholars and practitioners have developed another DbA method and 

published the results in two papers (J. Murphy, Fu, Otto, Jensen, et al., 2014)(Fu, 

Murphy, et al., 2013). Their methodology is based on a five-step process which is 

developed based on the Vector Space Model as the basis of the analogy search method 

(Salton & Michael, 1986). In this method, a function vocabulary is created by indexing 

the extracted function via Zipf’s law (Zipf, 1949) and subsequently a document vector is 

generated. The document vector is evaluated by applying TF-IDF and cosine similarity. 

Also, each document vector is normalized by patent functional content measure (fcm) to 

simplify the cosine similarity calculation. To rank the relevancy between patent vector 

and query vector, fcm and cos   are linearly combined into a total relevancy score 

measure. The query is built by selecting primary and secondary functions, which address 

high level functionality from the functional model of the design problem. After the 

query completion, the metrics including cosine similarity, fcm, and total relevancy score 
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are calculated. The top results are extracted and clustered by primary patent 

classification.  

 

Figure 15. Vector Space Model Process (Fu, Murphy, et al., 2013)(J. Murphy, Fu, Otto, Jensen, et al., 2014) 

 

Fu et al. have evaluated the strengths and weaknesses of another algorithm (Fu, 

Cagan, Kotovsky, & Wood, 2013) and published the result in two papers (Fu, Chan, et al., 

2013a) (Fu, Chan, et al., 2013b). This method is developed to organize the space of 

possible analogies based on structural forms in patent space.  The algorithm discovers 

the best fitting-form for a given set of data from a space of 8 possible forms including 

partition, order, chain, ring, tree, hierarchy, grid, and cylinder. It instantiates the best 

form among the selected forms, which is called a structure. The computational 

methodology has three steps. First, a set of full-text patents are preprocessed by Latent 

Semantic Analysis (LSA). The result of the first step, similarity matrix shows the semantic 

pairwise relation between patents by assigning a numeric value between 0 and 1. In the 

second step, the similarity matrix is processed by a hierarchical Bayesian algorithm to 

discover structural form of the data. At the last step, LSA is used again to generate labels 

to describe the clusters of patents in the best structure.  

2.5.2.1.2. Design Methods: Design Rationale 

Many computerized systems have been developed since 1960s to assist 

engineers to model, design, and represent their ideas. Among such systems, Design 
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Rationale (DR) refers to decisions made over design process, and the reasons behind the 

decisions (Jarczyk, Loffler, & Shipmann, 1992). “Design rationale includes all the 

background knowledge such as deliberating, reasoning, trade-off and decision-making in 

the design process of an artifact–information that can be valuable, even critical, to 

various people who deal with the artifact” (Regli, Hu, Atwood, & Sun, 2014, p. 209). To 

represent the reasons and the decisions, different representation approaches are 

developed to facilitate reasoning or communication (J. Lee & Lai, 1991). Some scholars 

of Hong Kong polytechnic University have developed a DR representation model named 

ISAL (issue, solution, and aircraft layer) (Y. Liu, Liang, Kwong, & Lee, 2010). As the 

pioneers of DR application in patent analysis for new product development purposes, 

they have published two papers (Yan Liang et al., 2012) (Yan Liang & Liu, 2013), which 

are briefly explained below. 

ISAL (Y. Liu et al., 2010) is a computational model in which consist of three layers 

including issue layer, solution layer, and artifact layer to represent DR, as shown in 

Figure 16. The issue layer refers to the reasons behind the design such as needs, 

problems and limitations of prior designs, or opportunities to develop a new product. 

The design solution layer describes thoughts, ideas, possible approaches and 

mechanisms used to address the reasons. The aircraft layer points to the main 

components and properties of the product, which can be a physical product like a 

printer or a soft product like codes of a software program.  
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In order to discover DR from design documents, Liang et al. (Yan Liang et al., 

2012) have developed three algorithms for each layer of ISAL to 1) extract artifact 

information, 2) generate a summary of the issue, and 3) generate solution and reason 

pairs. For the issue layer, they have defined a semantic sentence graph to model 

sentence relationships through language patterns like terms and phrases that convey 

meaning. Based on this graph, they have improved the algorithm to extract issue 

sentences and to discover solution-reason sentences in the solution layer. For artifact 

information extraction, they have proposed two term relations, the positional term 

relation and the mutual term relation. These relations extend their document profile 

model to score the candidate terms and suggest terms with higher scores as artifact 

components. Finally, the authors have conducted some experimental studies to test the 

performance of the proposed algorithms using patents.  
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Figure 16- The ISAL-based framework of DR discovery, retrieval and management (Yan Liang et al., 2012) 

 

Liang et al. have applied ISAL for another rationale-based patent analysis to analyze 

technical foci of corporations (Yan Liang & Liu, 2013). The proposed approach includes 

four stages: 1) pre-processing, 2) artifact feature connection measurement, 3) key 

feature grouping stage, and 4) patent categorization.  In the first stage, the DR 

information of each patent is discovered and transformed into semantic form, via the 

ISAL model, in three layers, which are issue, solution, and aircraft. In the second stage, 

the relationship between invention features, attributes, and artifacts is measured based 

on a feature association-based approach. Highly connected features are clustered to 

categorize design foci from a corporation perspective. Each of the feature groups 
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denotes a probable focus of design or a set of inventions that have been published 

previously. In the last stage, patents are assigned to classes based on their categories of 

invention. The patent grouping process facilitates investigating design issues and 

technology that has been designed or proposed for similar design foci. 

 

 

 

 

Figure 17- The feature association-based method for the analysis of design focus (Yan Liang & Liu, 2013) 

  

2.5.2.1.3. Design Methods: TRIZ 

Theory of Inventive Problem Solving, TRIZ, is a philosophy, a method, and a 

problem-solving and analysis toolbox to generate innovative solutions (Mann, 2001). 

TRIZ is a systematic approach that helps to construct a problem definition and problem-

solving process, works for any situation, and is effective across a broad spectrum of 

fields and problems types (Mann, 2001). TRIZ requires a mapping of a specific problem 

to an abstract problem; then the users can obtain abstract solutions and back to a 

specific solution (P.-A. Verhaegen, D’Hondt, Vandevenne, & Dewulf, 2010).  After 

reviewing thousands of patents, Altshuller, the father of TRIZ, and his colleagues found 

only a limited number of inventive principles are used to solve or eliminate 



 

61 

contradictions. They categorized the inventive principles into several retrieval forms 

including a contradiction table, 39 engineering parameters, 40 incentive principles, and 

76 standard solutions (Yanhong & Runhua, 2007) (Yanhong Liang et al., 2008).  

A product design problem can be considered as one or several contradictions 

and inventive principles (Yanhong & Runhua, 2007). According to TRIZ, to solve a design 

contradiction in product development, the product is developed by referring to the 

analogous inventions even among dissimilar problems. Since patents are a rich source of 

technological information for TRIZ applications, very few scholars have developed 

automatic tools to extract contradictions and inventive principles from patents to assist 

innovators to solve a design problem.  

 

Figure 18- The TRIZ process (P.-A. Verhaegen et al., 2010) 

 

Patent databases are important technical sources for product development for 

which knowledge and information to inspire designers and engineers exists. Some 

scholars started applying TRIZ and developing automatic tools to assist innovators in 

acquiring useful information from patents (Yanhong & Runhua, 2007).  
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Yanhong and Runhua have tried to develop a text mining technique which can be 

used by TRIZ users. Their objective is, basically, to classify patents according to 

contradictions and inventive principles. In their first publication, they claim that they 

have applied clustering algorithm and a multi-naïve Bayes algorithm, after applying text 

mining and indexing patents to keywords (Yanhong & Runhua, 2007). In their second 

report (Yanhong Liang et al., 2008), they claim that they have utilized semantic analysis 

by WordNet, followed by Latent Semantic Analysis (LSA) to reduce the dimensionality of 

the data set. At the end, the patents are classified into contradictions and inventive 

principles using text software.7 Unfortunately, the authors have neither explained how 

the algorithms work, nor have they presented any empirical evidence or case study.  

Verhaegen et al (Paul-Armand Verhaegen et al., 2011) have developed a method 

to extract product characteristics called Product Aspects (PA) to identify candidate 

products for design-by-analogy. They believe that there is a link between TRIZ and 

Design-by-Analogy. Design-by-Analogy enables a designer to find another product with 

similar functions. Similarly, TRIZ enables a designer to find solution (product 

characteristics or functionality) based on a specific problem. Therefore, there is 

similarity between their methodology, and this methodology, which is illustrated in 

Figure 19. Both methodologies address the product aspect as the pivot point to cluster 

products characteristics mentioned in patents. In the TRIZ context, PAs facilitate 

identifying specific products to supplement the abstracted solution in TRIZ tools. 

                                                        
7 Waikato environment for knowledge analysis (WEKA) developed by the University of Waikato, New 
Zealand.  
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Figure 19- Methodology flowchart (P.-A. Verhaegen et al., 2010) 

 

2.5.1.2. Application of Patent Mining in the Planning Stage 

Only two of the papers mentioned in the previous section are applicable to 

planning in new product development. In the first paper (S. Lee et al., 2006), the authors 

have applied data mining and co-word analysis to develop a three-layer roadmap. In the 

second paper (Y.-R. Li et al., 2006), the authors propose a heuristic method for patent 

search to discover new opportunities. 

In the first paper (S. Lee et al., 2006), the authors offer a keyword-based proves 

for technology roadmapping, which consists of three successive stages: 1) data 

elicitation, 2) data transformation, and 3) mapping. At the first stage, core keywords are 

identified, and then, in the second stage, a co-word matrix is constructed by measuring 

co-occurrence frequency of the keywords. The matrix is converted to a co-efficient 

matrix to show co-relation among the keywords. In the last stage, the keywords are 
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mapped into two dimensions by applying the Multi-Dimensional Scaling (MDS) method 

on the co-efficient matrix. The result is a keyword network where keywords are 

connected based on their similarity. Also, it is worth explaining that ‘roadmap’ in this 

research is a three-layer map including product layer, technology layer, and R&D layer. 

The layers are respectively represented by a ‘keyword portfolio map’, a ‘keyword 

relation map’, and a ‘keyword evolution map’.  

In the second paper (Y.-R. Li et al., 2006), the authors claim that they have 

provided a novel tactic for discovering new opportunities. They have applied text mining 

to extract keywords from patents to figure out heterogeneity between technologies and 

firms. To filter out highly anomalous (‘significant rare’) keywords that only humans can 

recognize, the authors have developed two indexes: the entropy of the technology and 

the entropy of the firm. At the end, they have combined ‘significant rare’ keywords to a 

knowledge map, where the keywords present the potential opportunities. Also, they 

claim that this method helps researchers track knowledge spillover between different 

firms. This information can provide the chance to discover opportunities during the 

process of new product development. 

The methods developed in these papers are potentially applicable in the 

planning stage. The keyword-based roadmap, Figure 20, reveals potential keywords in 

different period times. The keyword-based roadmap, the main output of the first paper 

(S. Lee et al., 2006), almost shows the evolution of keywords in product, technology, and 

R&D layers, and experts should interpret the evolution over period times for each of the 
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attributes. The knowledge map, the main output of the second paper (Y.-R. Li et al., 

2006), provides specific keywords in a patent system where researchers can track the 

sequence of ideas and decision makers can find more opportunities to get licensing in 

early stage of new product development. In summary, both methods claim that they can 

be applied in the NPD planning stage, but the methods do not have a cohesive relation 

with a specific NPD planning method.  

  

 

Figure 20- Keyword-based technology roadmap (Product and technology layers) (S. Lee et al., 2006) 

2.5.3. Summary of Section  

The new product development process contains four general activities: planning, 

design, production, and post-production. Patent mining is inherently applicable only in 

planning and design activities. The literature shows that to date the main focus of the 

researchers has been to apply patent mining and clustering for specific design 
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approaches, which are TRIZ and Design-by-Analogy. Also, no significant paper pertaining 

to patent mining applications for NPD planning has been published to date. 

There is a significant difference between NPD design and NPD planning activities 

that leads us to apply different analysis methods. In NPD design approaches including 

TRIZ and DbA, the researchers intend to extract the features of the related patents and 

group the extracted features. In NPD planning, the decision makers need to identify 

specific technologies. These differences lead to apply clustering for design purposes and 

to apply classification methods for planning. It is the reason why I will apply 

classification methods to cover the gap in NPD planning. 

 Design (TRIZ, DbA) NPD Planning 

Purpose Features extraction Feature identification 

Analysis Method Clustering Classification 

Table 6 - Different purposes and analysis methods in NPD design and planning activities 

2.6. Chapter Summary 

Section 2.2 serves as a general introduction to text mining. It mentions how text 

mining researchers can mine keywords from textual sources by applying natural 

language processing, extract information by deploying information retrieval, and learn 

to recognize patterns of the keywords by applying machine learning methods.  

Section 2.3 introduces patent retrieval applications and methods. That section 

described how interactive patent retrieval improves the performance of keyword-based 

methods and methods based on semantics. The research proposed in this dissertation is 

an interactive patent retrieval method, which is built based upon both keywords and 
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keyword semantics. The main difference between the proposed approach and currently 

deployed methods is that in the proposed approach queries are not the focal point of 

improving the performance of patent retrieval. Instead, classifiers act like queries. 

Classifiers are trained based on patents that human experts have judged either as 

relevant or irrelevant. Classifiers subsequently identify all relevant and irrelevant 

patents in a corpus. This distinction constitutes the primary contribution of the 

proposed research. 

Section 2.4 discusses how patent analysis methods have evolved in the three 

stages shown in Figure 10. In the first stage, the researchers started analyzing metadata 

and citations. These analyses are called bibliometric analysis and citation analysis, 

respectively. In stage 2, the researchers started applying more sophisticated analyses, 

which are cluster analysis and network analysis, on metadata or citations. Patent mining 

appeared in the third stage due to the emergence of text mining methods, which allow 

researchers to extract technical information from the main body of patents. Researchers 

also utilized complementary methodologies including ontology-based approaches and 

semantic analysis to enhance the performance of their analysis. Section 2.4 also shows 

that statistical, lexical and corpus approaches are utilized to develop different 

information retrieval methods to extract information from patent contents. In addition, 

section 2.3 illustrates how network analysis and cluster analysis are applied to recognize 

the patterns of extracted information. Interestingly, no application of classification is 

recognized in the evolution of patent mining. Applying classification allows patent 
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miners to have more accurately access to patent contents, which advances the state of 

the art of patent mining. 

In section 2.5, I look at applications of patent mining in the NPD process. In 

section 2.5.1, I review three prestigious sources in the NPD literature, which recognize 

that the general stages in the NPD process are planning, design, production, and post-

production (see Table 2-1). Section 2.4.2 shows how patent mining can be applied to 

support each of these NPD stages (see Table 2-2). It turns out that patent mining is very 

applicable for design purposes. However, when it comes to applying patent mining to 

the planning stage of the NPD process to support opportunity identification, a huge gap 

in the literature has been identified--there is no significant patent mining research to 

match product features with enabling technologies.  

My dissertation research intends to answer the management question “How can 

R&D engineers/managers that are engaged in product planning find patents that will 

provide new technological opportunities?” The literature review in this chapter has 

been performed to identify the gaps in the literature that pertain to this question. After 

stating this primary gap and decomposing it into sub-gaps, I pose the research questions 

that address these sub-gaps. My dissertation research will consist of answering these 

research questions, all of which have been stated in section 1.3.   
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CHAPTER 3: RESEARCH DESIGN AND RESEARCH METHODS 

In this chapter, I introduce my research in detail. First, I describe a theoretical 

framework for the proposed research. I subsequently explain my research design; the 

variables and measures; the data collection procedure; issues related to validity and 

reliability; and my approach to data analysis.  

3.1. Theoretical Framework 

R&D engineers and managers are interested in patents as a rich technical source 

where they can extract the technical information to apply in many purposes like new 

product development planning. In this research, I have developed a method to extract 

required information, product feature and enabling technologies, from patents and 

identify available opportunities in USPTO patents based on how much the patents 

address the required information. To do so, I  apply Natural Language Processing (NLP), 

Information Retrieval, and Machine Learning methods. In addition, to be able to address 

‘product feature’ and ‘enabling technologies’, I apply ontological semantic analysis to 

enhance the effectiveness of this opportunity identification method.  The theoretical 

framework for this endeavor is described below and illustrated in Figure 21.  

Classification is deployed in my research to recognize specific concepts in 

patents. The concepts are product feature and enabling technologies. Keywords are the 

best representative of the concepts. In my research, there are three types of keywords: 

1) regular keywords, 2) ontological keywords, and 3) ontological semantic keywords. 
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Regular keywords are generated through ‘regular text extraction’, i.e. without designing 

an ontology. Ontological keywords are keywords derived from designing an ontology 

that is based on interviews with experts. Ontological semantic keywords contain 

ontological keywords and their synonyms, which are extracted from the WordNet lexical 

database. 

Figure 21 implies that ontological semantic keywords are a better representation 

of the concepts than ontological keywords are. If hypothesis 2 is confirmed, then the 

classifiers have a better performance with ontological semantic keywords than with 

regular keywords. If hypothesis 3 is confirmed, then the classifiers have a better 

performance with ontological semantic keywords than with ontological keywords. 

Similarly, ontological keywords are a better representation of the concepts than regular 

keywords are. That is, the classifiers have a better performance with ontological 

keywords than with regular keywords (hypothesis 1).  

 
Figure 21- Theoretical framework 
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3.2. Research Setting and Unit of Analysis 

To provide the setting of the research, an iron casing company producing 

traditional skillets is chosen. The name of the company is Finex; it is located on Portland 

(Oregon). The core technology of Finex is iron casting. Finex is chosen for the research 

because: 

- Finex regularly surveys its market, so they know the needs of their customers in 

the market. 

- Finex’s experts have the required expertise in marketing, and iron casting 

(material science), so they are able to develop the ontologies of product features 

and enabling technologies, and participate in the patent search that is conducted 

as part of my dissertation research. 

- There are thousands of iron-casting technologies in the USPTO database, so 

patents are a good source for identifying opportunities for product planning in 

Finex. 

The US patents that potentially address ‘product features’ and ‘enabling 

technologies’ comprise the study’s unit of analysis. To extract those patents from USPTO 

database that pertain to my unit of analysis, I use Cooperative Patent Classification 

(CPC), a patent classification system jointly developed by the European Patent Office 

and the USPTO that identifies the subject of patents. Finex experts select the CPC codes 

that pertain to their ‘product features’ and ‘enabling technologies’. One patent often 

has several CPC codes.  
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3.3. Research Design 

Finex acts as a case for testing the theoretical framework from section 3.1 under 

a variety of circumstances, which are depicted in Figure 22. Analysis of the method 

under development occurs along three dimensions: data set, classification scenarios and 

classifiers. Identifying technological opportunities depends upon two data sets that 

illustrate the basic concepts of new product development: one pertains to product 

features; the other pertains to attributes of enabling technologies that the product 

developers would consider integrating into their products. The two data sets are 

matched in three classification scenarios— I) regular classification, II) ontological 

classification and III) ontological semantic classification—which are described in section 

1.3. These scenarios respectively require the following types of keywords as inputs for 

classification: 1) regular keywords that are recognized by NLP and information retrieval, 

2) ontological keywords, and 3) ontological keywords and their synonyms.  Three 

classifiers are benchmarked for performance in each scenario: k-NN, SVM and random 

forest. Going through both data sets, all three scenarios, and three classifiers yield a 

total of 18 instances under which the method to be developed in this dissertation is 

evaluated.  
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Figure 22- The combination of concepts, keywords, and classifiers.   

All instances discussed above have gone through the same sequence of data 

collection and analysis activities. First, I supply human experts with a set of patent 

classes from the Cooperative Patent Classification system of patent classification. These 

experts identify patent classes that are of consequence to the product features and 

technical attributes for the product that they are trying to develop. I subsequently 

extract from the USPTO all patents related to the CPC classes that the experts have 

identified. Then, I apply Natural Language Processing to extract all words from the 

extracted patents and remove stop words (such as ‘is’, ‘the’, ‘at’ and ‘which’) and I call 

this set of words raw keywords. Next, I apply information retrieval to eliminate 

keywords deemed relatively unimportant according to the term frequency-inverse 

document frequency (TF-IDF) ranking. Information retrieval yields a reduced set of 

keywords and how often the keyword occurs in each patent (the term frequency 

number). Patents are subsequently classified according to whether they are related to 

specific product features or enabling technologies. The classifier assigns a ‘1’ for 

relevant patents and a ‘0’ for irrelevant patents.  Different classifiers have different 

classification criteria. Opportunities are identified from resulting classifications of 
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product features and enabling technologies. Finally, the identified opportunities are 

authenticated by one expert. 

3.3.1 Two Data Sets: Product Features and Enabling technologies  

Product features and enabling technologies are the two key factors for 

opportunity identification (Ulrich & Eppinger, 2011). The respective data sets that 

pertain to these factors both reside within the patent database. Information pertaining 

to product features and enabling technologies may even exist within the same patent. 

Experts that work in the company that is developing a product have to identify what the 

product features and enabling technologies are. Their collective understanding of 

product features of and enabling technologies of the product under development 

determines the scope and boundaries of the two data sets.   

The current state of the art in patent mining does not delineate between 

product features and enabling technologies because it does not recognize the collective 

understanding of the developers. Developing ontologies that represent the collective 

understanding of the product developers could therefore enhance their ability to 

identify technological opportunities by making a clear distinction between the data sets 

for product features and enabling technologies.  

3.3.2 Three Scenarios: RC, OC and OSC  

Figure 23, Figure 24, and Figure 25 respectively detail the three scenarios under 

investigation: regular classification (RC), ontological classification (OC) and ontological 

semantic classification (OSC). All three consist of a data collection step, which involves 

elicitation of information from human experts and extraction of text from a patent 
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database, and a data analysis step in which patents are classified as to whether they 

address product feature or enabling technologies. The difference between the scenarios 

consists of the depth of involvement of the human experts and the types of data for 

classification that result therefrom.  

 
Figure 23- Research framework (scenario I or regular classification (RC))  

In RC (Figure 23), the human experts identify section and the subordinate class 

of the USPTO to which their perceptions of the features for the product under 

development and attributes of the enabling technologies under consideration for 

incorporation apply. All patents within the USPTO that are contained the identified 

patent class are considered potentially relevant from the point of view of identifying 

technological opportunities for the product under development. They are consequently 

extracted from the USPTO. Natural language processing generates a set of raw 

keywords from the extracted patents. Information retrieval subsequently identifies the 

frequency numbers of the raw keywords, calculates the TF-IDF measure, and used the 

TF-IDF measure to remove the less important keywords. Finally, machine learning 

classifies the patents based on a pattern of frequency numbers of regular keywords.    
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Figure 24- Research framework (scenario II—ontological classification) 

OC (Figure 24) and OSC (Figure 25) proceed analogously. In OC and OSC, I engage 

with the human experts in an interview. I design an ontology that reflects their 

perceptions of product features and another that reflects their perception of enabling 

technologies. These ontologies yield ontological keywords for each data set. Information 

retrieval still identifies the frequency numbers of the raw keywords, calculates the TF-

IDF measure. The TF’s of raw keywords are used to remove the less important 

keywords, according to determining cut-off value based on the Zipf curve. However, I 

subsequently select the keywords that appear in the output of information retrieval 

AND on the list of ontological keywords for subsequent classification by machine 

learning.   
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Figure 25- Research framework (scenario III—ontological semantic classification) 

In OSC, I use the WordNet lexical database (Miller, 1995) to generate the 

synonyms of the ontological keywords. I select the keywords that appear in the output 

of information retrieval AND on the list of ontological keywords for subsequent 

classification by machine learning.  I ALSO select the keywords that appear in the output 

of information retrieval AND on the list of synonyms of ontological keywords for 

subsequent classification by machine learning.  

3.3.3 Classifiers  

Three classifiers—k-NN, SVM and random forest—are selected to benchmark 

their performance in classification. k-NN is chosen because it is able to compare the 

similarity of documents. SVM is selected because SVM has yielded a substantial 

improvement of classification accuracy in many text classification studies (Joachims, 

1998) (Sebastiani, 2002). SVM’s main advantage is that SVM is not affected by the 

number of features encountered in the training data set (Kotsiantis, Zaharakis, & 
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Pintelas, 2007). Random forest is selected because it tends to generate accurate 

classifications when sample sizes are small (Tan et al., 2006, p. 278).  

3.3.3.1. k-nearest neighborhood  

The k-nearest Neighbor classifier is an instance-based learning algorithm method 

where the similarities between a document and the k-nearest neighbors of training data 

set are computed to determine the class of the document according to the similarities 

(Baharudin, Lee, & Khan, 2010). The training set is mapped into feature space while the 

feature space is partitioned into regions based on the classes of the training set, shown 

in Figure 26. A document is assigned to a class if it is the most frequent class among the 

k nearest training data. Nearest-neighbor methods have a tendency to work well when 

the class borders are somewhat complex; If class boundaries are nearly linear, other 

classification methods may perform better (Sutton, 2012).  

 

 

Figure 26- k-nearest neighbor (Baharudin et al., 2010) 
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In this research, TF-IDF weighting scheme and cosine similarity function are used 

instead of Euclidean distance to measure the similarity between two document vectors 

(Salton & Michael, 1986). Qian et al (Qian, Sural, Gu, & Pramanik, 2004) have 

theoretically and experimentally shown that Euclidean distance and cosine angel 

distance are similar when applied to high dimensional NN queries. 

Given two documents D1 and D2, their corresponding weighted feature vectors 

are W1 and W2. The similarity between documents D1 and D2 is computed as shown 

below (Salton & Buckley, 1988): 
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where d1i and d2i are the components of vectors D1 and D2 and i=1…,n. 

3.3.3.2. Support Vector Machine  

The main principle of Support Vector Machine (SVM) is to determine the best 

separator (hyperplane) of different classes in the search space where the data set is also 

linearly separable (Aggarwal & Zhai, 2012). For example, as illustrated in Figure 27, there 

are infinite hyperplanes whose training error is zero, but there is no guarantee that they 

have equal generalization error on the test data set (Tan et al., 2006, p. 258). Each 

decision boundary, like B1 is associated with a pair of hyperplanes like b11 and b12, which 

are obtained by moving a parallel hyperplane away from the decision boundary until it 

touches the closest circle(s) or square(s). The distance between the two hyperplanes is 
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called the margin of the classifier.  Decision boundaries with large margins tend to have 

better generalization error than those with small margins (Tan et al., 2006, p. 258).  

  

 

 
Figure 27- Possible decision boundaries for a linearly separable data set (Tan et al., 2006, p. 258) 

 

The decision boundary of a linear SVM classifier can be written in this form: 

w.x + b = 0 

The parameters w and b can be rescaled so that the two parallel hyperplanes, bi1 

and bi2, can be formed as below: 

bi1:  w.x + b   1 if yi = 1; 

bi2: w.x + b   -1 if yi = -1. 

The conditions impose the requirements, that all training instances from class 

y=1 must be located on or above the hyperplane w.x +b=1 while those instances from 
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class y=-1 must be located on or below the hyperplane w.x+b=-1. Both equations can be 

summarized in this form: 

 yi (w.x + b)    

Let’s consider x is a data point located on bi1 and bi2. The margin d can be 

computed by subtracting the second equation from the first equation. 

W . (x2 – x1) = 2 

‖ ‖   d = 2 

   d = 
 

‖ ‖ 
 

Maximizing the margin is equivalent to minimize the following function: 

‖ ‖ 

  
 

In the training phase, the parameters w and b must be determined so that the 

abovementioned function is minimized and following two conditions are met: 

   
 

‖ ‖ 

  
 

Subject to:                     yi (w.x + b)   ,    i = 1,2,…, N 

 

The objective function is quadratic and the constraints are linear, so the model is 

in form of convex multiplier method that can be solved by using the standard Lagrange 

multiplier method8. 

                                                        
8 For more details, refer to (Tan et al., 2006, pp. 262–264) 
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3.3.3.2.a. Kernel function selection 

Sometimes data sets, such as the one shown in Figure 28-a, have nonlinear 

boundaries. If they are linearly transformed, the result cause to high variance as shown 

in Figure 28-b, but if a convenient nonlinear function is used, the data are transformed 

with low variance as shown in Figure 28-c.  

Kernels are transformation functions that allow process input data to a right 

space. A kernel measures the similarity between two instances in the transformed space 

using the original attribute set (Tan et al., 2006, p. 273).  

 

(a) (b) (c) 
 

Figure 28- Transformed data from the original space to the transformed space by kernel function (James, G., Witten, 
D., Hastie, T., Tibshirani, 2013) 

The radial basis function (RBF) kernel, also known as the Gaussian kernel, is a 

popular kernel function used in none-linear Support Vector Machine classification. 

Therefore, both the RBF kernel and the linear kernel will be considered in the cross-

validation introduced in section 3.7.2., to discover which performs better. 

3.3.3.3. Random Forest 

In random forest classification, each decision tree uses a random vector that is 

generated from a fixed probability distribution. N input features are selected to split 

each node of the decision tree from these selected N features rather examining all the 
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available features. This may help the bias present in the resulting tree. Random forest is 

an ensemble method that is based on decision tree classifiers. As shown in Figure 29, 

random forest combines the predictions of multiple decision trees, where each tree is 

generated based on the values of an independent set of random vectors (Tan et al., 

2006, p. 290). Random vectors are created from a fixed probability distribution.  

 

Figure 29. Random forest (Tan et al., 2006, p. 292) 

3.3.4. Research Activities 

Figure 30 illustrates the research activities that are conducted as part of this 

dissertation. Finex’s experts, a panel of external experts, a machine (a laptop and the 

main server of PSU), and the researcher (me) are the main players in the research 

process. Each performs a distinct set of activities. 

3.3.4.1. Finex Activities  

As shown in Figure 30, the research started with multiple meetings at Finex to 

determine the product features (PF) and the enabling technologies (ET). The meetings 

for the product features and for the enabling technologies were held separately. We 
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discuss product features (PF) first. Once the product features are established, we 

proceed to work on the enabling technologies.  

 
Figure 30- Research Activities 

After determining the product features and the enabling technologies, Finex’s 

experts design the ontologies for the PF and ET. The ontologies are revised multiple 

times until a consensus of satisfaction is achieved. Then, Finex’s experts proceed with 

the patent search in the USPTO, in order to find US patents relevant to the ontologies. 

Again, the patent search sessions for PF and ET are conducted separately. In this 

endeavor, the Finex experts learn new keywords for PF and ET. The Finex experts 

expand the ontologies to improve the accuracy of their model.   
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3.3.4.2. Expert Panel Activities 

In addition to Finex experts, expert E1, a panel of experts participated in the 

research for two purposes: 1) patent search (explained in section 3.4.3.), 2) ontology 

evaluation (explained in section 3.7.1.), and opportunity authentication.  

 

Expert ID Degree Experience Job 

E1 Bsc <10 years Product Engineer 

E2 PhD >10 years Professor 

E3 PhD >10 years Professor 

E4 Msc >10 years Product Engineer Manager 

E5 PhD <10 years Product Engineer 

E6 Msc <10 years PhD student 

E7 Msc <10 years PhD student 

Table 7- Profiles of the members of the expert panel 

 

To select the members of the expert panel, two criteria are considered: 1) 

academic knowledge in materials science, and 2) professional experience in casting or 

foundry. More details about the expert panel and their performances are available in 

section 4.2. The general profiles of the participants in the panel members are shown in 

Table 7. Two are professors, two are PhD students, and two are professionals with a 

background in materials science.  

 

3.3.4.3. Machine Activities 

Machine activities consist of patent extraction, natural language processing 

(keyword extraction), information retrieval, and classification. The result of patent 
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extraction is explained in section 4.3, and the results of information retrieval and 

classification are explained in sections 5.1 and 5.2. 

3.3.4.4. Researcher Activities 

The researcher plays three main roles. Firstly, the researcher plans the meetings 

with the experts. Then he observes the performance of the experts and gathers the 

required data. Secondly, the researcher provides all required modules for patent 

extraction, natural language processing, information retrieval, and classification. All 

modules are programmed in the Python environment. Thirdly, the researcher analyzes 

the results of the classifications and the results of the patent search. The researcher 

concludes which of the classifiers are the best and most appropriate for opportunity 

identification. Also, he compares the performance of the human experts to the 

performance of the machines in the patent classification.  

3.4. Data Collection 

The main activities of the data collection procedure are interviews that serve as 

the basis for designing ontologies; patent extraction from database; and keyword 

extraction by Natural Language Processing (NLP). The details of each of these activities 

are explained in the following sub-sections of this section. 

 
3.4.1 Interviews 

In this research, I conduct semi-structured interviews with experts who design 

the ontologies of product features and enabling technologies. I steer the interviews, but 

the experts generate the information based on their own expertise and knowledge. I 
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meet twice with each expert. There are two sets of meetings to design the ontology of 

the product feature and of the enabling technologies. Each set contains at least two 

meetings. In the first meeting, the expert and I talk and discuss about what a product 

feature or enabling technologies is. Then, the expert creates a draft of the ontology for 

the product features or the enabling technologies. The expert performs a patent search 

about the ontology in the second interview. He/she revises the ontology in the next 

sessions based on his/her learning during the patent search. The details of each step are 

given below. They follow the procedure outlined by Jetter (Jetter, 2006). 

1- Identification of experts: Experts are people who possess substantially more 

experience than average in a narrow field of expertise (Jetter 2006, p. 69). 

These experts are usually relatively easy to identify within their organizations 

because of their outstanding reputations (Jetter 2006, p. 69). I have a contact 

person in Finex under study. He identifies the experts for me. I subsequently 

ask the contact person to introduce me to the experts in marketing, R&D, 

product design and engineering, and other related expertise in the 

organization that is required for me to design the ontology that represents 

the collective expertise of these experts.   

2- Activation and capture of knowledge: As mentioned above, the product 

features and the enabling technologies that pertain to the product under 

development are assumed to be understood by the experts within the 

company. To start knowledge elicitation session, I ask the expert to talk a 

little about the product features and the enabling technologies. To stimulate 
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his knowledge, I obtain as much documented knowledge as possible from the 

company about the product to be developed. I use this documented 

knowledge as an ‘icebreaker’ to activate the interviewee, who subsequently 

volunteer information concerning product features and enabling 

technologies that pertain to the product. After activation, I focus the 

interview around specific questions about the product features and enabling 

technologies. The subjects of the questions about enabling technologies are 

type of technology, functionality, main components and parts, design 

features, materials and the manufacturing process. The subject of questions 

about product features are about application, shape, ergonomic attributes, 

material, functions, etc. Then, I ask the interviewee to write down his/her 

answers.  

3- Knowledge interpretation and Documentation: In this step, the experts 

design the ontologies based on the procedure offered by Gavrilova et al. 

(Gavrilova et al., 2005). After the first round of the interview sessions, the 

expert has a textual description of product features and enabling 

technologies. The expert provides a glossary of the keywords, and then 

tentatively designs the high level of hierarchies of the product features or the 

enabling technologies. In the second round of sessions, the expert applies 

the ontology in a patent search to experience how the ontology can 

effectively address the ontology. He comes up with some points to modify 

the ontology. The expert finalizes the ontology by eliminating redundancies, 
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extraneous synonyms, and contradictions. More details of ontology design 

are presented in section 3.4.2.  

3.4.2 Ontology Design 

As mentioned before, the purpose of this research is to find those opportunities 

in USPTO patents which address two specific concepts: 1) product features, and 2) 

enabling technologies. Ontology is applied to address these two concepts in my 

research.  

There is a general agreement about the main components of an ontology. They 

are instances, classes, attributes, relationships, and hierarchical structure (Maglia, 

2006).  Instances, also called individuals, are the most basic component of ontology. 

Instances represent actual, concrete objects (e.g., animals, bones, cars, etc.) Ontology 

does not require the inclusion of instances, but a main purpose of ontology is to provide 

a means of classifying individuals, even if those instances are not explicitly part of the 

ontology. Classes, also called concepts, represent abstract groups, sets, or collection of 

objects. Attributes, also called properties, represent features, characteristics, or 

parameters that objects can have and share. Objects are described by assigning 

attributes to them. Relationships represent ways that objects interact with one another. 

The most common form of relation is ‘is_a’. Hierarchical structure is inherently the form 

of a classification system defined by relationships between classes. Most commonly 

used forms of relation in hierarchical structures are is_a and part_of. The ontology of 

the C programming language is illustrated in Figure 31 as an example of ontology.  
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Figure 31- An example of ontology (Gavrilova et al., 2005) 

 

All methodologies for designing ontologies contain the following general steps 

(Gavrilova et al., 2005):  

- Glossary development: gathering relevant information to select and describe all 

essential objects and concepts the domain. 

- Laddering: defining and visually representing the high level of hierarchies among 

the concepts. 

- Disintegration: hierarchically structuring the detailed concepts via a top-down 

strategy. 

- Refinement: updating the visual structure by excluding the excessiveness 

(eliminating redundancies), synonymy, and contradictions. 

 

3.4.3. Patent Search 

The patent search is designed to observe and assess the performance of the 

experts versus of the classifiers in the RC, OC, and OSC scenarios. In addition, the search 

behavior of the members is studied to be able interpret their search performance. More 
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details are available in sections 5.2.1 and 5.2.2. The main activities of the patent search 

experiment are: 

1. introduction to the case 

2. introduction to Google patent search engine 

3. patent search 

 search behavior observation 

 search result observation 

An ontology evaluation follows the patent search.  

 

 
Figure 32- Case introduction page 
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Figure 33- A snap shot of Google patent search engine 

 

The researcher engages in one-on-one interviews with each panel member. At the 

beginning of the patent search session, the Finex case is introduced to each individual 

expert on the panel via the page shown in Figure 32. The ontologies of the product 

features (light weight product) and the enabling technologies (thin wall iron casting) are 

introduced to the experts as well. Then, about five minutes are spent with the panel 

member, so that he/she could practice operating the Google patent search engine 

(www.patents.google.com). Some search tips are taught to the experts, so that they 

have enough skills to do a patent search efficiently on the Web site. Once the experts 

have acquired the requisite knowledge and skills, they start doing patent searches on 

their own. Two types of information are collected during the patent search:  

- experts’ search results including appropriate query numbers, patent 

numbers, relevant/irrelevant patents 

http://www.patents.google.com/
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- experts’ search behavior including appropriate query numbers, keywords 

used in each query, starting and ending time of each query 

 

3.4.4. Patent Extraction 

To find, extract, and collect patents from USPTO patents database as the main 

source of this study, there are two approaches: 1) keyword-based approach, and 2) 

classification-based approach.  In the first, keyword-based approach, the researcher 

either enters keywords into the USPTO Web site (“USPTO Database, Boolean Search,” 

2016) directly or introduces a more complicated query into the advanced-search Web 

page (“USPTO Database, Advanced Search,” 2016). The query is built from keywords, 

Boolean operators, wildcard symbols, punctuation and special characters (Search Help, 

2016). The search result is displayed as hyperlinks and the researcher can navigate them 

by clicking on the links. The researcher can save and download the Web pages of the 

patents one by one. If the researcher comes up with a large number of patents, (s)he 

faces three difficulties: 1) this process is long and time-consuming, 2) the downloaded 

data are unstructured and the researcher has to spend more time to structure the data 

in a database to be able to analyze them, and 3) (s)he may miss some patents due to 

inaccuracy or limitation of the keyword selection. 

In the second, classification-based approach, the researcher chooses one of the 

available classification systems: either CPC or USPC9. In these classification systems, 

patents are hierarchically classified in terms of their technical features. Therefore, 

                                                        
9 United States Patent Classification 
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patent researchers can search patents by using the codes (classification symbols) rather 

than keywords. In this approach, the researcher comes up with broader results, i.e. 

more patents in the sample. The researcher consequently loses some accuracy because 

he/she doesn’t use keywords. Still, he/she suffers from the time-consuming 

downloading and structuring patents that characterize the keyword-based approach.  

In this study, I collect my data in the classification-based approach by applying 

Cooperative Classification System (CPC). I look for those components of the CPC that 

address the two main concepts of my research: ‘product features’ and ‘enabling 

technologies’. Once I follow these steps to extract the patents: 

- Selecting CPC sections and their classes with the participation of experts as 

described in section 3.5.1. 

- Extracting all patents under the selected CPC classes, i.e. downloading the 

patents and collecting them in a text file.  

3.4.5. Natural Language Processing 

Natural language processing (NLP) extracts all words from patents. Therefore, a 

patent is indexed according to a long list of keywords. The main steps of NLP are 

tokenization, stemming, Part-of Speech (POS), and parsing, which have already been 

explained in section 2.2.1. In this research, I only use the tokenization and stemming 

steps; I do not use the POS and parsing steps because I have constructed my research 

based on the relation between the keywords and ontologies, rather than the role of 

keywords in their sentences.  



 

95 

Before starting using the keyword lists, they still need to be purified. There are 

many keywords such as ‘the’, ‘as’, ‘is’, ‘the’, and ‘which’ that they are too frequented in 

the sentences and they lead to poor index terms (Fox, 1989). This type of keywords, 

called stop words, are not important for information retrieval purposes, so NLP methods 

apply a list of stop words to remove them from keyword lists (Wilbur & Sirotkin, 1992). 

A list of stop words is suggested for general texts in (Fox, 1989). In my research, I treat 

stop words as a control variable. 

3.4.6. Semantic Analysis 

Semantic analysis stands on two pillars: 1) the meaning of a word (lexical 

semantic analysis), and 2) the grammatical role of a word in a sentence such as verb, 

subject, object, etc. (formal semantic analysis) (Vikner & Jensen, 2002). Formal semantic 

analysis is used for applications like automatic translation, where the knowing the 

grammatical role of words is crucial.  In my research, I apply lexical semantic analysis 

because classification in my research relies on the frequency numbers of keywords 

rather than their roles in a sentence. I use WordNet as the source of synonyms, as it is 

the most widely used lexical database for English semantic analysis.  

Scenario III in my research, Ontological Semantic Classification, requires a list of 

synonyms for each keyword that results from the ontology (see also section 3.3.2).  

Therefore, I have two sets of lists of synonyms: one set will represent the ‘product 

features’ ontology and the other represent the ‘enabling technologies’ ontology. These 

synonyms are ‘stemmed’ (see section 2.2.1) by borrowing functions from natural 
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language processing, because I need stemmed synonyms lists to calculate similarity 

between the ontology vectors and the keyword vectors. 

  

3.5. Data Analysis 

Data analysis occurs automatically. It consists of two steps: information retrieval 

and classification which is a type of machine learning method. Data analysis is the same 

for all scenarios (Regular Classification (RC), Ontological Classification (OC), and 

Ontological Sematic Classification (OSC)) except for the keywords that are classified in 

these scenarios. Raw keywords enter the information retrieval system in all three 

scenarios, and regular keywords comprise the output of information retrieval. 

Information retrieval also puts out information pertaining to the regular keywords, such 

as frequency numbers and TF-IDF. In RC, regular keywords are classified according to 

patterns that emerge from the three classifiers that are deployed (k-NN, SVM, Random 

forest, see section 3.3.3). OC and OSC do not use the regular keywords; keywords in 

these scenarios are provided by ontology, plus, in the case of OSC, the synonyms of 

these ontologies. Information retrieval only provides the frequency numbers and TF-IDF. 

The outputs of machine learning, and thus the output of data analysis, are the 

classifications of patents and the performance measures associated with these 

classifications.  

 

3.5.1 Information Retrieval 

To remove highly unimportant keywords, a cut-off value is applied. The cut-off 

value is empirically determined according to the frequency numbers of the keywords in 
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the corpus. Applying cut-off value reduces the number of keywords, and the 

computations, consequently. In addition to applying the cut-off value, a term weighting 

scheme is deployed to lessen the impact of less important keywords. The term 

weighting in this research is based on the frequency of occurrence within a document 

(Luhn, 1958). Among different term weighting schemes developed, term frequency with 

inverse document frequency and length normalization have obtained the best recall and 

precision (Salton & Buckley, 1988).  

3.5.1.1. Cut-off value  

Keywords have different weight in describing an individual document. Some 

keywords are very determinant and important and some keywords are unimportant. To 

remove unimportant terms from the keywords list, it is necessary to apply a cut-off 

threshold value which is more introduced in section 3.6.3 as a moderator variable. Cut-

off value is an empirically determined threshold value to discriminate between 

important and unimportant keywords in information retrieval. However, the cut-off 

value is identified empirically, Zipf’s law (Zipf, 1949) (sometimes called the Power Law) 

can help to determine the cut-off value more systematically. Zipf law is an empirical law 

that shows many types of data including word frequency can be approximated by 

Zipfian distribution. Figure 34 illustrates some twelve reputed phenomena that follow 

Zipf’s law (Newman, 2005).  Based on Zipf’s law, the frequency of a word is inversely 

proportional to its statistical rank (Newman, 2005). Similarly, term frequencies in 

patents follow Zipf’s law. Murphy et al (J. Murphy, Fu, Otto, Jensen, et al., 2014) show 
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how the frequency of term in 61,000 patents follow the cumulative distribution of Zipf’s 

law.  

 
Figure 34- Cumulative distributions or “rank/frequency plots” of twelve quantities reputed to follow power laws 
(Newman, 2005) 

3.5.1.2. TF-IDF 

Term Frequency – Inverse Document Frequency (TF-IDF) is the most often used 

term weighting approach (Timonen, 2013). TF-IDF weights a given term based on how 

well the term describes an individual document within a corpus (Lott, 2012). TF-IDF 

positively weights a term for the term frequency which is the number of times that the 

term occurred within a specific document, and inversely weights the terms for the 

document frequency which is the number of documents which comprise the term (Lott, 

2012). The document frequency inversely impacts the weigh in order to diminish the 
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importance of highly frequented terms since this type of terms cannot describe an 

individual document within a corpus. The following formula is applied to calculate TF-

IDF: 

     
           

 
   

 

√∑     
 

 

 

where wi,j is the weight for term i in document j, N is the number of documents in the 

corpus, tfi,j is the term frequency of term i in document j and dfi  is the document 

frequency of term i in the corpus. As it is shown in the formula, wij’s are normalized by 

the Euclidean distance of tfij’s. 

 

3.5.2. Classification 

In classification or supervised machine learning, briefly introduced in section 

2.2.3, researchers investigate algorithms to produce general hypothesis which are 

reasoned from externally supplied instances, an example shown in Figure 35, in order to 

predict future instances (Kotsiantis, 2007). The goal of classification is “to build a concise 

model of the distribution of class labels in terms of predictor features” (Kotsiantis, 2007). 

The classifiers assign class labels to the testing data set where the values of the 

predictor features are known, but the value of the class label is unknown (Han, Kamber, 

& Pei, 2011).  
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Figure 35- Example of training data set (Kotsiantis, 2007) 

Classification, like other machine learning methods, inductively learns a set of 

rules from instances which are examples in a training set. In another word, classification 

algorithms create classifiers (models) that can be used to generalize from new instances 

(Kotsiantis, 2007).  

3.5.2.1. k-fold Cross Validation 

k-fold Cross validation is a process used to study the generalizability of 

classification. In k-fold cross-validation, the data set is partitioned into k equal-sized 

segments (Tan et al., 2006, p. 187). Over each run, one of the segments is chosen for 

testing while the rest are used for training (Tan et al., 2006, p. 187). This procedure is 

repeated k times so that each segment is used for testing exactly once. The total error is 

found by summing up the errors for all k runs (Tan et al., 2006, p. 187). A sample of a 5-

fold cross validation is shown in Figure 36. The cross validation will be iterated 100 times 

by shuffling the data set to avoid overfitting. To study the performance of the three 

classifiers, the average of the performance measures, introduced in section 3.5.5., are 

calculated after 100 iterations.  
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Figure 36- A sample of a 5-fold cross validation 

3.6. Variables and Measures 

The variables to be used in the proposed study are divided into five categories: 

independent variables, moderating variables, mediating variables, control variables and 

dependent variables. Researchers study to predict or explain the variations of 

dependent variables, while they change the independent variables.  Moderating 

variables influence or moderate the relation between two or more other variables and 

thus produce an interaction effect. That means the relationship between two variables 

depends on the value of the moderator. The moderator either strengthens or weakens 

the relationship between the predictor and outcome (Peyrot, 1996). Mediating 

variables explain all or part of the relationship between two variables and provide a 

causal link between them (Peyrot, 1996). Control variables are extraneous variables 

that an investigator does not wish to examine in a study. Thus the investigator controls 

this variable. For example, controlling for gender means examining the original 
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relationship (say between family functioning and diabetes control) separately among 

male and female (Peyrot, 1996).  

Figure 37 illustrates the relationships between all variables in the research in this 

dissertation. Each variable is described in the following subsections.   

3.6.1. Independent Variables 

Independent variables come out of the interviews with experts. For all scenarios, 

independent variables include the patent classes of the CPC that pertain to the product 

under development, both from the point of views of product features and enabling 

technologies. In OC and OSC, ontological keywords also constitute input variables. Both 

input variables are expressed as lists.   
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Figure 37- Research framework with variables
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3.6.2. Mediating Variables. 

Figure 37 shows that different components of the research process are 

associated with different mediating variables. In this section, mediating variables are 

introduced based on where they are created in the research process. 

3.6.2.1 Mediating Variables Pertaining to Data Collection 

- Relevant patents: the list of patents extracted from the CPC classes selected by 

experts.  

- Raw Keywords: a list of words extracted from the relevant patents during natural 

language processing.  

- Synonyms of ontological keywords: a set of lists of keywords that is extracted 

from WordNet for the purpose of Ontological Semantic Classification (OSC, 

Scenario III). Every list contains a list of synonyms for each of ontological 

keyword.  

3.6.2.2 Mediating Variables Pertaining to Information Retrieval 

These variables are listed below: 

- Term weight (TF-IDF): a measure to determine the importance of a regular 

keyword in all relevant patents. It weights a given term based on how well the 

term describes an individual document within a corpus (Lott, 2012).   

- Regular Keywords. Information retrieval takes a list of raw keywords and filters 

out unimportant words. It discriminates according the cut-off value of TF-IDF. The 

list of remaining keywords, which are deemed important, is known as the list of 
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regular keywords.  It is particularly important in Regular Classification (RC, 

Scenario I).  

- Frequency numbers of ontological keywords: a vector that represents the 

frequency of occurrence of ontological keywords in relevant patents. Every 

dimension of the vector denotes the frequency occurrence of ontological 

keywords in a particular patent. This variable is particularly important in OC 

(Scenario II) and OSC (Scenario III).  

- Synonyms of ontological keywords: a set of vectors of synonyms of ontological 

keywords that are extracted from WordNet. Each ontological keyword may have 

zero or more synonyms. Each vector of synonyms is associated with one and only 

one ontological keyword.  

- Frequency numbers of synonyms: a vector that represents the frequency of 

occurrence of synonyms of ontological keywords in relevant patents. Every 

dimension of the vector denotes the frequency of occurrence of synonyms of 

ontological keywords in a particular patent. This variable is particularly important 

in OSC (Scenario III). 

3.6.2.3 Mediating Variables Pertaining to Classification 

The following mediating variables pertain to classification. They are specific to 

particular classification schemes (kNN, SVM or random forest).  

- Similarity coefficient (kNN): Given two relevant patents P1 and P2, their 

corresponding weighted feature vectors are W1 and W2. The similarity between 

patents P1 and P2 is computed as below (Salton & Buckley, 1988): 
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where d1i and d2i are the frequency numbers of regular keywords in P1 and P2 

and i=1…,n and n is the number of regular keywords. 

- Maximum margin (SVM): The main principle of Support Vector Machine (SVM) is 

to determine the best separator (hyperplane) of different classes in the search 

space where the data set is also linearly separable (Aggarwal & Zhai, 2012). The 

distance between the two hyperplanes is called the margin of the classifier. 

Maximum margin refers to the maximum distance between the two hyperplanes. 

- Maximum margin (random forest): Random forest is an ensemble methods 

specifically developed based on decision trees classifiers. The strength of a set of 

classifiers is the average of the classifier’s margin which is determined as below 

(Tan et al., 2006, p. 291): 

margin, M(X,Y)  = P( ̅   )  -         ̅     

 

where  ̅  is the predicted class of X according to a classifier built from some 

random vector  . 

- Testing Error (kNN, SVM and random forest): the rate of classification errors 

committed on a training data set. 
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-  Generalization error (kNN, SVM and random forest): the expected error rate that 

the classifier yields when it is applied to the test data set (Tan et al., 2006, p. 

172).  

3.6.3. Moderating Variables  

Moderating variables either pertain to information retrieval or classification. The 

variable ‘cut-off value’ is associated with information retrieval. All other variables are 

associated with classification. All moderating variables associated with classification also 

influence the relationship between the list of regular keywords and the performance 

measure of the classifier (recall, precision and F-score).  

- Cut-off value: an empirically determined threshold value that discriminates 

between important and unimportant keywords in information retrieval based on 

TF-IDF. The cutoff-value affects the relationship between raw keywords and 

regular keywords and the number of regular keywords that are retrieved.  

- Size of training set: the number of patents provided by experts for training the 

classifier. The size of training set moderates the relationship regular, ontological 

or ontological semantic keywords (depending on scenario) on the one hand, and 

the performance measures (recall, precision and f-score) on the other hand.  

- Size of test set: the number of patents provided by experts for testing the 

performance of the classifier. The size of training set moderates the relationship 

regular, ontological or ontological semantic keywords (depending on scenario) on 
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the one hand, and the performance measures (recall, precision and f-score) on 

the other hand. 

- Number of folds: the number of subsets of the patents provided by experts in 

cross validation. The size of training set moderates the relationship regular, 

ontological or ontological semantic keywords (depending on scenario) on the one 

hand and the performance measures (recall, precision and f-score) on the other 

hand. 

- Number of nearest neighbors (kNN): the number of nearest patents to be 

compared to a particular patent for the purpose of classification. (The patents will 

have sets of regular keywords deemed the most similar by the kNN algorithm.) 

The number of nearest neighbors moderates the relationship between the 

similarity coefficient and the class of patents.  

- Kernel function (SVM): a similarity function that the domain expert provides to a 

machine learning algorithm. It determines the similarity between two sets of 

keywords in the training set. The first set of keywords is contained in patents that 

have been classified as related to a specific concept like product features or 

enabling technologies (‘1’). The second set of keywords is contained in patents 

that have been classified as unrelated to a specific concept like product features 

or enabling technologies (‘0’). The kernel function moderates the relationship 

between the maximum margin and the class of patents.  
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- Size of selected feature (random forest): the number of keywords (may be 

randomly chosen) used to generate decision trees. The size of selected feature 

moderates the relationship between maximum margin and the class of patents. 

3.6.4 Control Variable: Stop Words 

Keywords are the feature of the data set (patents) in my research. The only 

features (or keywords), which are controlled in my research, are stop words. Stop words 

are keywords such as ‘the’, ‘as’, ‘is’, ‘the’, and ‘which’. They occur in the sentences very 

frequently, and they lead to poor index terms (Fox, 1989). Stop words are not important 

for information retrieval purposes, so I will apply a list of stop words to remove them 

from keyword lists during natural language processing. A list of stop words is suggested 

for general texts in (Fox, 1989).  

3.6.5. Dependent Variable 

The output of the patent classification comprises the dependent variable in this 

research. It is a binary variable. Every patent is binned in to one of two possible classes 

of patents (CoPs): patents that are related to a specific concept (CoP=1) or patents that 

are not (CoP=0).  

Recall, precision and the F-Score constitute a set of metrics that in conjunction 

determine the quality of a classifier. (They are analogous to the R2 in a multiple 

regression.) They are based on the number of true positives (TPs), false positives (FPs), 

true negatives (TNs) and false negatives (FNs) that the classifier generates. 

Classifications can either yield true positives, false positives, true negatives or false 

negatives.  
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- Recall (r) or sensitivity:  

  r = 
  

     
 

- Specifity (s): 

  s = 
  

     
 

- Precision (p):  

 p = 
  

     
 

- Accuracy (A):   

                         A = 
     

           
 

 

- The F-score represents a harmonic mean between recall and precision: 

F = 
    

   
    or    F = 

  
 

 
 

 

 

 

- ROC AUC: is the area under a receiver operating characteristic curve, i.e. ROC 

curve, which is created by plotting the true positive rate (TPR) against the false positive 

rate (FPR). 

TPR = 
  

     
       FPR = 

  

     
 

 



 

111 

 
Figure 38- ROC curves for two different classifiers (Tan et al., 2006) 

 

Figure 38 shows a sample ROC curve. A perfect classification model should be 

fitted to the upper left corner as much as possible. In theory, the best ROC AUC is 1. The 

main diagonal represents random guessing (chance) (Tan et al., 2006).  

3.7. Validity and Reliability 

In order to have viable research, it is important to show the validity and the 

reliability of the research design. “Validity refers to the extent to which a test measures 

what we actually wish to measure. Reliability has to do with the accuracy and precision 

of a measurement procedure.” (Thorndike & Hagen, 1986, p. 162). In other words, does 

a measurement (i.e. test, survey, observation, etc.) truly measure what it is intended to 

measure? The criteria that determine the validity of a research design are content 
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validity, criterion-related validity, and construct validity (Kothari, 2004, p. 74) which are 

respectively discussed in sections 3.7.1, 3.7.2 and 3.7.3. Reliability has to do with the 

accuracy and precision of a measurement procedure (Thorndike & Hagen, 1986). It 

refers to the consistency of a measurement, i.e., a reliable measurement must yield the 

same results if it is repeated. Reliability is described in section 3.7.4.  

3.7.1. Content Validity 

Content validity measures the extent to which the questions provide adequate 

cover of the topic under study. Its determination is primarily judgmental and intuitive. It 

can be determined by using a panel of persons who shall judge how well the measuring 

instrument meets the standards, but there is no numerical way to express it (Kothari, 

2004).  

The content of my research consists of patents that address specific concepts, 

which are enabling technologies and product features determined by experts. Applying 

the ontologies of the concepts help more adequately cover the patents without 

considering all patents filed in the USPTO database. Therefore, having validated 

ontologies is a key to provide a valid content for the research. To validate the 

ontologies, experts outside of Finex validate the ontologies of enabling technologies and 

product features.  

In order to validate the ontologies designed by Finex’s experts, a semi-structured 

questionnaire (Appendix A) is designed based on seven criteria shown in Table 8. The 

questionnaire filled out by the external expert panel. They evaluated the ontologies 
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after they did the patent search designed based on the Finex case. The patent search is 

explained in section 3.4.3. 

Term Definition 

Accuracy The criterion for determining is the asserted knowledge in the 
ontology agrees with the expert’s knowledge about the domain. A 
higher accuracy will typically results from correct definitions and 
descriptions of classes, properties, and individuals. 

Adaptability Measures the ease of use of an ontology in different contexts possibly by 
allowing it to be extend and specialized monotonically, i.e. without the need 
to remove axioms 

Clarity Clarity Measures how effectively the ontology communicates the intended 

meaning of the defined terms. 

Cohesion From an ontology point of view, cohesion refers to the relatedness of 

elements in ontologies. It is intended to measure modularity. An ontology 
would have high cohesion if its classes are strongly related therefore, high 
cohesion is a desirable property. 

Completeness Measures if the domain of interest is appropriately covered. All questions the 
ontology should be able to answer can be answered. 

Conciseness Intended to reflect if the ontology defines irrelevant elements with regards 

to the domain to be covered or redundant representations of the semantics. 

Consistency Describes that the ontology does not include or allow for any contradictions. 
Table 8- Criteria used for ontology evaluation (Hlomani & Stacey, 2014) 

 

3.7.2. Criterion-Related Validity 

A criterion is a measure used to determine the accuracy of a decision. The 

validity of a criterion is a measure of how well a variable or a set of variables predicts 

what it intended to measure and to approximate the truthfulness of the results (K. R. 

Murphy & Davidshofer, 2005). Criterion-related validity actually refers to (i) concurrent 

validity, and (ii) predictive validity (Kothari, 2004, p. 74). Concurrent validity refers to the 

usefulness of a test in closely relating to other measures of known validity. Predictive 

validity refers to the usefulness of a test in predicting some future performance. In my 
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research, I validate the patent extraction (information retrieval) and the classifiers 

(classification methods) separately. 

In patent extraction, I applied CPC classes, selected and validated by experts, to 

extract a set of patents that address enabling technologies or product features. Also, I 

randomly select 100 patents—50 patents for the training set and 50 for the test set. The 

panel of external experts also determines whether each of the 100 patents is related to 

product features or enabling technologies. Therefore, I validate training and test data 

sets for classification. 

In classification methods, performance measures including recall, precision and 

F-score, are applied to assess the performance of the classifiers in terms of how they 

accurately identify true positive and negative instances in the training data set 

(concurrent validation), and how they accurately predict test data set (predictive 

validation).  

Criterion validity in the dissertation research extends beyond concurrent and 

predictive validation. I also determined whether any of the approaches examined in this 

research performed as well as, or perhaps better than, current approaches, which rely 

exclusively on human judgement. To do so, I asked the panel experts to try to identify 

technological opportunities by considering the enabling technologies and product 

features that they have provided in the interview.  I compared the technological 

opportunities identified by my three scenarios to those identified by the panel experts. 
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This determines whether any of the approaches studied in my research will perform as 

well as or better than current approaches to identify the technological opportunities. 

3.7.3. Construct Validity 

A construct is an initial concept, notion, question or hypothesis that determine 

which data is to be gathered and how it is to be gathered (Golafshani, 2003). A construct 

is an attribute, proficiency, ability, or skill that happens in the human brain and is 

defined by established theories (Dean Brown, 2000). Construct validity has traditionally 

been defined as the experimental demonstration that a test is measuring the construct 

it claims to be measuring (Kothari, 2004, p. 74). Such an experiment could take the form 

of a differential-groups study, wherein the performances on the test are compared for 

two groups: one that has the construct and one that does not have the construct. If the 

group with the construct performs better than the group without the construct, that 

result is said to provide evidence of the construct validity of the test (Dean Brown, 

2000).  

According to my hypotheses mentioned in section 1.3, I will study the 

performance of the application of two constructs which are ontology and semantics 

analysis. In order to validate the performance of these two constructs, I will examine the 

performance of the classifiers (kNN, SVM, and random forest), with the presence of the 

constructs in scenarios II and III, and, with the absence of them in scenario I, to see how 

their presence will improve the performance of the classifiers based on measures such 

as recall, precision, and F-score measures. 
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3.7.4. Reliability 

Reliability is defined as the extent to which results are consistent over time and 

the extent to which the constitute an accurate representation of the total population 

under study (Golafshani, 2003). Reliability is the consistency and repeatability of the 

measurement. The main measurement of my research is the performance of the 

classifiers, for which recall, precision and the F-Score act as reliability measures, which 

have been mentioned in section 3.4.5. The ROC-Curve (Tan, et al., 2006) has also been 

used as reliability measure for classification methods.  They require me to keep track of 

the true positives, the false positives, the true negatives and the false negatives for all 

classifications.   

3.8. Opportunity Identification  

The performances of the three classifiers under study (kNN, SVM, random forest) 

is tested for two data sets (product features and enabling technologies), and three 

classification scenarios (RC, OC and OSC).  The performances are measured by sensitivity 

(recall), specificity, recall, accuracy and F-score measures, and the reliability of the 

classifiers is determined by the area under the curve of Receiver Operating Character 

(AUC ROC) curve to decide which classifier can classify the patents more effectively.   

Classifier  

Scenario I (RC) Scenario II (OC) Scenario III (OSC) 
Sensiti

vity 
… 

F-
score 

Sensitivity … F-score Sensitivity … F-score 

k-NN 
                  

SVM 
                  

random 
forest 

                  

Table 9- Sample table to compare the performance of the classifiers under the three states 
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A sample table for recording these results for a specific data set is shown in 

Table 9. Four of these tables are created: one for each combination of data set (product 

features or technological attribute). I use the ROC AUC and F-Score as a metric for 

opportunity identification for each combination of data set, because they constitute a 

composite score of the other measures. I identify the best classifier in each of the 

scenarios (RC, OC, and OSC) that yields the highest ROC-AUC and F-score. After choosing 

the best classifier for classifying the patents for the product features and for the 

enabling technologies, machine classifies the patents separately for the product 

features and for the enabling technologies and I have two lists of patents classified. The 

intersection of the two lists represented the technological opportunities for the Finex 

case.  
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CHAPTER 4: RESULTS OF DATA COLLECTION 

4.1. Results of Ontology Design  

As mentioned previously, experts from Finex designed two ontologies: one for 

product features and another for enabling technologies. These are described in this 

section. 

4.1.1. Ontology of the Product Features 

As explained previously, Finex’s customers complained about the heaviness of 

the skillets.  Accordingly, the product features are represented by ‘light weight product’.  

As shown in Figure 39, the ‘light-weight product’ refers to a product that: 

- is made of cast iron which is thermally conductive. 

- is a cookware device (e.g. pot, pan, plate, skillet, and griddle),  

- or is a part or a components used in car (e.g. brake rotor, brake drum, brake 

disk, and engine block)  

- and has a surface, or wall, or side which is thin or lightweight. 

One might question why car parts and components are considered in the 

ontology. The reason is that car manufacturers encounter similar problems when they 

try to reduce the weight of iron cast parts and components that are used in a brake or 

an engine. In the process, they have generated many solutions to these problems. 

Therefore, considering this group of patents can increase the chances of finding 

opportunities relevant to weight reduction in many kinds of iron cast objects in other 

industries, including the manufacture of skillets.  
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Figure 39- The ontology of the product features developed by Finex experts  

 

4.1.2. Ontology of the Enabling Technologies 

Finex experts believe mold shrinkage is the key factor for weight reduction, and 

five casting methods are considered as candidate technologies for weight reduction 

through mold shrinkage. The five methods are gravity casting, pressure casting, die 

casting, vacuum casting, and powder metallurgy. The concept of mold shrinkage, as well 

as the five methods of achieving it, is reflected in the ontology of thin wall iron casting 

shown in Figure 40. This ontology has been revised multiple times during ontology 

design sessions, and, as discussed in Section 4.1.2 and in Chapter 6, during ontology 

evaluations made by experts outside of Finex. 
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Figure 40- The ontology of enabling technologies (thin wall iron casting) developed by Finex experts 

 

4.1.3. Ontology Evaluation 

As explained in section 3.8.1., I designed a semi-structured questionnaire 

(Appendix A) to through which the members of the expert panel validated the 

ontologies generated by Finex. The questionnaire is built based on seven criteria 

including accuracy, adaptability, clarity, cohesion, completeness, conciseness, and 

consistency, which are defined in Table 8 (Hlomani & Stacey, 2014). 
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As shown in Figure 41, the panel experts agree or strongly agree that the 

ontology of thin wall iron casting is accurate based upon the seven criteria, except for 

one item pertaining to completeness. The external experts made minor modifications to 

the ontology of thin wall iron casting due to this evaluation.   

 
Figure 41- results of thin wall casting ontology evaluation 

For the product features ontology (a light weight product), there is a consensus 

that this ontology is strongly accurate. All of the external experts respond with ‘strongly 

agree’ to all seven criteria. 

4.2. Patent Search 

In this section, patent search behavior and patent search performance are 

presented. For this purpose, a group of measures are described, and are applied to the 
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data gathered from the patent searches. The relationship between the performance 

measures and search behavior measures will be discussed in section 6.1. 

4.2.1. Experts’ Performance in Patent Search 

Table 10 shows the basic data of the patent search experiment performed by 

Finex and six other experts. The participants spent between 40 and 60 minutes in one 

session; expert E1 spent 150 minutes in two sessions. The participants found a different 

number of patents within a range of 13 to 60. Some participants may have judged one 

patent at least two times. Such a patent is called a duplicate. Also, they may have judged 

one patent two times, but with opposite results (relevant and irrelevant). Such a patent 

is called a contradiction. The net number of patents is calculated by deducting the 

number of duplicates and contradictions from the number of patents judged. 

Data E1 E2 E3 E4 E5 E6 E7 
Spent time (min) 150 50 40 60 43 53 60 

Number of patents judged 25 38 14 60 13 15 19 

Net number of patents  24 33 14 46 13 15 18 

Number of duplicates 1 5 0 14 0 0 1 

Number of contradictions 0 2 0 0 0 0 0 

Number of relevant patents 8 13 12 5 8 8 13 

Number of irrelevant patents 16 23 2 41 5 7 5 

Table 10- Basic data of the performance of the experts in the patent search 

4.2.1.1. Reliability 

The reliability of a research instrument concerns the extent to which the 

instrument yields the same results on repeated trials (Golafshani, 2003). According to 

the definition of reliability, this concept is generalized to the patent search experiment. 

We expect that, when two experts use similar keywords for a similar case, they should 
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come up with similar results. This means the two experts should find similar relevant or 

irrelevant patents. Therefore, in order to evaluate the reliability of a patent search, I 

extend the concept of reliability in the patent search as below: 

                            

                                                                      

                                                       

             
                                                              

                                                                
 

To calculate the similarity measures mentioned in the reliability definition, the 

Jaccard index (Niwattanakul, Singthongchai, Naenudorn, & Wanapu, 2013) is used. The 

Jaccard index compares similarity between two sets A and B as shown below.  

       
     

     
 

In the numerator of the reliability equation, A and B denote the respective sets of 

patents judged by two different experts (a and b), regardless of the results of the 

judgments (relevancy or irrelevancy). In the denominator of the reliability equation, A 

and B denote the respective sets of keywords applied by two different experts (a and b). 

It should be stressed that the reliability measure is a ratio, not a probability function. 

The similarity indexes between the patent searches are calculated based on the 

keywords used and based on the relevant patents found. The similarity indexes are 

shown in Table 11 and Table 12. 
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 Table 11- Similarity indexes between the patent searches based on keywords used  

 

 
Table 12- Similarity indexes between the patent searches based on the relevant patents found  

 

In order to calculate the reliability measure, the average of the similarity indexes 

shown in Table 11 and Table 12 are utilized. The result of calculating the reliability 

measure is shown in Figure 42. 

Experts E1 E2 E3 E4 E5 E6 E7

E1 -- 10% 5% 11% 14% 15% 12%

E2 10% -- 19% 29% 16% 35% 31%

E3 5% 19% -- 21% 10% 17% 24%

E4 11% 29% 21% -- 13% 23% 24%

E5 14% 16% 10% 13% -- 17% 28%

E6 15% 35% 17% 23% 17% -- 30%

E7 12% 31% 24% 24% 28% 30% --

Ave. of similarity based onkeywords used11% 23% 16% 20% 16% 23% 25%

Expert E1 E2 E3 E4 E5 E6 E7

E1 -- 0.0% 0.0% 1.4% 0.0% 2.6% 0.0%

E2 0.0% -- 9.5% 8.3% 0.0% 2.2% 0.0%

E3 0.0% 9.5% -- 1.7% 0.0% 0.0% 0.0%

E4 1.4% 8.3% 1.7% -- 1.7% 3.4% 0.0%

E5 0.0% 0.0% 0.0% 1.7% -- 0.0% 3.3%

E6 2.6% 2.2% 0.0% 3.4% 0.0% -- 0.0%

E7 0.0% 0.0% 0.0% 0.0% 3.3% 0.0% --

Ave. of similarity based on relevant patents found0.68% 3.34% 1.87% 2.77% 0.84% 1.37% 0.56%
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Figure 42- Reliabilities measured of the patent searches 

 

4.2.1.2. Efficiency 

Efficiency means how well resources are expended in a process (Machado & 

Davim, 2017). In a patent search, time is the main resource used to find relevant 

patents. Therefore, efficiency is defined in this research as below: 

            
                                                   

                         
 

 

 As shown in Figure 43, the expert E2 and the expert E3 (the professors in the 

expert panel) have higher efficiency than the others, and the efficiency of expert E1 is 

the lowest.  
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Figure 43- Efficiencies of the patent searches 

 

4.2.1.3. Effectiveness 

The concept of effectiveness refers to the degree of achieving possible objectives. 

Since there is no standard for the effectiveness of a patent search, the best performance 

in finding relevant patents among the experts is considered the base objective. The 

effectiveness of patent searches can be determined relative to that base objective. 

Therefore, the definition of effectiveness is given as follows: 

               
                                                   

                                           
  

 

The effectiveness of the patent searches conducted by the experts is shown in 

Figure 44. The expert E3 has the best performance in finding relevant patents. E5, E6, 

and E7 have a moderate effectiveness, and the rest have weak effectiveness.  
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Figure 44- Relative effectiveness of the patent searches 

 

4.2.2. Experts’ Search Behavior 

The raw data for the search behavior of all experts are shown in Table 13. The 

experts exhibit different behavior in terms of spent time, number of queries, total 

number of keywords, and total number of distinct keywords. Distinct keywords refer to 

all keywords used in the queries without considering their repetition.  

 

 

Data E1 E2 E3 E4 E5 E6 E7 

Spent time (min) 150 50 40 60 43 53 60 

Number of  Queries 12 16 18 13 12 12 14 
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number of  keywords  40 76 88 45 145 83 106 

number of distinct keywords  19 15 22 12 22 20 20 
Table 13- Basic data of the experts’ search behaviors 

An analysis of the search behavior of experts should help explain the experts’ 

search results. This analysis will be discussed in detail in section 6.1. It is based upon, 

three different measures from above: the time spent, the keywords used, and the 

queries designed in the patent searches. The measures are keyword diversity, query 

complexity, and search speed.  

4.2.2.1. Keyword Diversity 

The keyword diversity measure is defined as follows: 

                   
                                                   

                                          
 

 

This measure illustrates the variety of ways through which experts utilize their 

knowledge to use keywords in query design.  In other words, this measure compares the 

innovativeness of the different experts in query design. As shown in Figure 45, all 

experts, except E1, use distinct keywords from 15% to 25%, whereas E1 uses 47.5% 

distinct keywords in their patent search. This result illustrates how E1 develops his 

queries by applying more diversified knowledge (keywords), meaning he is more 

innovative than the other experts.  
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Figure 45- Keyword diversity in the patent searches 

 

 

4.2.2.2. Query Complexity 

The experts have different behaviors in the patent searches in terms of using the 

number of keywords in each query. To address this behavior, query complexity is 

defined as below: 

                  
                                          

                                           
 

This measure shows how complex queries are designed. The more keywords used 

in a query, the more complex the query is. 

As shown in Figure 46, experts E1, E2, E3, and E4 have used 3 to 5 keywords per 

query. On the other hand, experts E5, E6, and E7 have used 7 to 12 keywords per query. 
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The first group includes experts E1E2, E3, and E4, and the second group includes experts 

E5, E6, and E7. This difference between the two groups shows that the more 

experienced experts used less complex queries. 

 

 
Figure 46- Query Complexity 

 

 

4.2.2.3. Search Speed 

Human experts constitute an expensive resource, so their time spent in a patent 

search should be considered in the study of the behavior of the experts in the patent 

searches. To do so, speed search is defined as below: 
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As shown in Figure 47, the experts had different speed in patent search. Expert E1 

has the lowest speed.  If expert E1 would want to judge 100 patents, he would have to 

spend almost 10 hours.  

 

 
Figure 47- Search Speed in the patent searches 

 

4.2.2.4. Error 

Humans may make errors in activities like patent search quite frequently. The 

experts have demonstrated two different errors in the patent search. The may have 

reviewed a patent at least two time, called ‘duplicate’, and they may have judged a 

patent oppositely relevant and irrelevant in two independent judgements, called 

contradictions.   
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The error of the experts is calculated as below: 

      
                                                                  

                                           
 

 

According to Table 10 and the definition of error, the measured errors of the 

experts in patent searches are shown in Figure 48. The error of four of the experts is 

between 4% and 23%.  Three panel members made no errors.  

 
Figure 48- Error in the patent searches 

 

4.3. Patent Extraction 

As described in section 3.4.3., CPC classification is used to extract patents from 

the USPTO database, which are potentially relevant to ontologies. According to the two 

ontologies, two CPC sub-classes are chosen: sub-classes ‘ALLOYS’ (C22C) and ‘CASTING 
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OF METALS’ (B22D). All C22C and B22D patents issued between 1/1/1991 and 1/1/2017 

are downloaded from USPTO Website. The total number of downloaded patents is 

19,525. 

4.4. Natural Language Processing (NLP) 

The 19,525 downloaded patents are processed by natural language processing 

and converted to a huge set of keywords. After filtering out the 728 stop words listed in 

Appendix B, 65,922 keywords are obtained.  The keywords are stemmed by a snowball 

algorithm.10 Finally, the term frequency numbers of the stemmed keywords are 

calculated in each patent and the frequency numbers are stored in a matrix in an Excel 

file. 

4.5. Semantic Analysis 

Three types of keywords are created in this research. First, raw keywords are 

extracted directly from patents downloaded from C22C and B22D sub-classes. The 

number of raw keywords is 65,922. Therefore, the matrix of term frequency of raw 

keywords has 19,525 rows (patents) and 65,922 columns (raw keywords). The second 

type of keywords is ontological keywords, which are extracted directly from the 

ontologies. The ontology of ‘light weight product’ has 27 ontological keywords, and the 

ontology of ‘thin wall iron casting’ has 98 ontological keywords. The ontological 

keywords are shown in Figure 39 and Figure 40. The third type of keywords is semantic 

ontological keywords, which consist of ontological keywords and their synonyms, which 

                                                        
10 Snowball is a small string processing language designed for creating stemming algorithms for use in 
Information Retrieval. 
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are extracted from the WordNet database. The ontological keywords pertaining to the 

product features ontology ‘light weight product’ yielded 63 keywords that are 

synonyms. The ontological keywords pertaining to the ontology for the enabling 

technologies called ‘thin wall iron casting’ yielded 76 keywords that are synonyms. 

These semantic ontological keywords of the product features and of the enabling 

technologies are shown in Table 14 and Table 15, respectively. The synonyms that do 

not exist in the patents are not reflected in Table 14 and Table 15. 
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ontological 
keywords 

Synonyms 
ontological 
keywords 

Synonyms 
ontological 
keywords 

Synonyms 

light 

lighter 

device 

gadget 

conductive 

conduct 

lightest equipment transmit 

lighten tool transfer 

Reduce implement convey 

reduction instrument dissipate 

lessen means Iron ferrous 

lesser article pan griddle 

decrease apparatus pot -- 

lightweight 
plate 

dish part -- 

weight 

heaviness platter 
component 

element 

weightiness skillet frypan piece 

heft 
surface 

face 
car 

automobile 

mass top machine 

cookware 

utensil 

wall 

side brake -- 

kitchen rim rotor -- 

cook bowl drum -- 

kitchenware 
side 

edge disk -- 

cast 

mold rim engine -- 

mould 

thin 

slim block -- 

pour slender   

cook 

make narrow   

food thinwall     

fix 

thermal 
  

warmth     

ready thermic     

prepare caloric     

frying sautéing  heat     
Table 14- Ontological keywords of ‘light weight product’ and their synonyms 
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Ontological 
Keywords 

Synony
ms 

Ontologic
al 

Keywords 
Synonyms 

Ontological 
Keywords 

Synonyms 
Ontological 
Keywords 

Syno
nym
s 

shrink 

reduce 

size 

large punch slug spherical -- 

contract big gray grey steel -- 

shrivel measure die stamp superheat -- 

molten 
melt extent quench chill temperature -- 

liquefied scale 

temper 

tough thick -- 

cavity 
hole circumference elasticity thin -- 

pit perimeter snap tool -- 

cool 

chill 

melt 

smelt 
anneal 

normal type -- 

cold liquidify harden undercool -- 

frigid thaw argon -- uniaxial -- 

refrigera
te fuse blade -- volume -- 

freeze dissolve castiron -- wall -- 

frost 

powder 

particle ceramic --   

solidify 

solid fine cip --   

consolid
ate dust diecast --   

crystalliz
e talc/talcum eject --   

pressure press metal alloy element --   

vacuum 

vacant 

compact 

compress flask --   

empty dense furnace --   

blank condense gravity --   

hollow squeeze hip --   

liquid 

liquidify 
sinter fuse 

hydraulic --   

fluid hydrostat --   

viscous 

heat 

hot iron ferrous   

pour 

spill warmth isostatic --     

shed warm mold/mould --     

transfus
e atmosphe

re 
ambiance near --     

effuse ambience net --     

decant cast foundry nitrogen --     

rate 

pace crucible pot pump --     

speed 

mix 

blend sand --     

velocity intermix shape --     

insulate 

heatpro
of intermingle slag --     

insulant combine       

Table 15- Ontological keywords of ‘thin wall iron casting and their synonyms 
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4.6. Summary 

This chapter has described how the data of this research are collected. The data 

include three components, which are 1) two ontologies, 2) two sets of patents judged by 

the Finex and panel experts, and 3) patents extracted from the USPTO database 

according to CPC classes selected by the Finex experts. 

Two ontologies are designed by Finex experts to address the concepts of the 

product features and enabling technologies. These ontologies are designed in an ad-hoc 

process. They are reviewed and redesigned to characterize the concepts of product 

features and enabling technologies. These ontologies are validated an expert panel. 

(The panel also modified the ontology for enabling technologies. This activity is 

discussed in Chapter 6.) 

A total of four sets of judged patents are formed in two different patent search 

experiments. The first experiment is conducted by Finex; the second by a panel of 

outside experts.  Each group of experts classified the patents either as relevant or as 

irrelevant with respect to product features or the enabling technologies. The four sets of 

patents are used for training the machine learning classifiers. 

The extracted patents form the corpus of this research. Thus, they constitute the 

main material for this research. The opportunities are supposed to be identified from 

the extracted patents.  
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CHAPTER 5: RESULTS OF DATA ANALYSIS  

In this chapter, the main results of data analysis are presented. The results are 

organized in the order in which the main activities of data analysis, which are 

information retrieval and classification, transpired. 

5.1. Information Retrieval 

As mentioned in section 3.7.1.2., Term Frequency – Inverse Document Frequency 

(TF-IDF) is chosen as a measure for information retrieval because it is the most often 

used term-weighting approach (Timonen, 2013). TF-IDF weights a given term based on 

how well the term describes an individual document within a corpus (Lott, 2012). 

There are five TF-IDF matrices in this research. The first TF-IDF matrix contains 

the TF-IDF of regular keywords with 19,525 rows and 65,382 columns. Each of the 

ontologies has two TF-IDF matrices: one for ontological keywords, and one for 

ontological semantic keywords. The dimensions of the TF-IDF matrices are shown in 

Table 16.  

TF-IDF 
matrix 

Keyword type 
Number 
of rows 

Number 
of 

columns 

Ontology 

Light weight 
product 

Thin wall 
iron casting  

#1 regular 19,525 65,382   

#2 ontological 19,525 30   

#3 ontological semantic 19,525 72   

#4 ontological 19,525 70   

#5 ontological semantic 19,525 141   

Table 16- The information of the five TF-IDF matrices 
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5.5.1. Cut-off value 

Zipf law is an empirical law that shows many types of data including word 

frequency can be approximated by Zipfian distribution (Zipf, 1949). The cut-off value is 

an empirically determined threshold value that discriminates between important and 

unimportant keywords. Figure 49 shows the Zipf curve drawn based on the term 

frequency of 65,922 keywords in the corpus, which is the collection of patents 

downloaded from C22C and B22D sub-classes. There are a small number of keywords 

whose frequency is greater than 100,000.  After reviewing the keywords and their 

frequencies, 20,000 is considered as the appropriate cut-off value for this case because 

this number is located in the middle of the area of generic terms as shown in Figure 49. 

Besides, a threshold of 20,000 keywords means that keywords whose average frequency 

number in the corpus is less than one will be removed. Remember, there are almost 

20,000 patents (19,525 patents) in the corpus. Given the cut-off value, 540 keywords, 

less than 0.8% of the keywords, are removed. Since the curve of term frequencies of the 

keywords is too close to both axes in Figure 49, the logarithmic curve of the term 

frequencies is drawn as well. The logarithmic scale is shown in the second vertical axis in 

the right side of Figure 49.  
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Figure 49- Zipf curve drawn based on the term frequency of all keywords in the corpus  

 

5.2. Classification 

As promised in chapter 3, K-NN, SVM, and random forest classifiers are applied 

to classify the three keyword types—regular keywords, ontological keywords, and 

ontological semantic keywords—for each of the two ontologies. These three types of 

classification are called regular classification (RC), ontological classification (OC), and 

ontological semantic classification (OSC). Therefore, the results of six classifications are 

presented in this section.  

Cut-off= 20,000 
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5.2.1 Training set and test set preparation 

To train the classifiers and then examine their performance, it is required to 

provide two data sets: training set and test set. These sets are the results of the patent 

search by Finex experts. The patent search is performed in multiple sessions, and the 

experts have judged the patents as either relevant or irrelevant to the related ontology. 

Relevant patents are assigned ‘1’, and irrelevant patents are assigned ‘0’.  The 

information of classified patents by Finex experts is shown in Table 17. 

 

Ontology 
Number of relevant 

patents 
Number of 

irrelevant patents 
Total number 

of data set 

Thin wall iron casting 
(Enabling technologies) 

17 36 53 

Light weight product 
(product features) 

29 63 92 

Table 17- The data sets used for training and testing (classified patents by experts) 

 

The training and test sets are created by setting the number of folds to 5 in the 

cross-validation process. For example, 53 classified patents of the technological 

attribute ontology are divided into five folds. Then, four folds (80% of the data) are 

considered for training the classifiers and one fold (20% of the data) is kept for testing 

the performance of the classifiers.  

5.2.2 Cross Validation settings 

The performance of the classifiers depends on: 

o the combination of training folds (training sets); 

o the combination of data in the training folds (training sets). 
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To avoid any random error, the cross validation process is repeated 100 times 

by: 

o randomly shuffling the data sets before creating the folds; 

o  randomly shuffling the folds for each iteration of the cross validation. 

The performance measures including specificity, sensitivity (recall), ROC AUC, 

accuracy, and precision are calculated based on the average number of 

measures in each iteration. The measures are defined in Table 18. 

Measure Definition Formula 

 Sensitivity 
(recall) 

the proportion of positives that are 
correctly identified 

(TP)/(TP+FN) 

Specifity 
the proportion of negatives that are 
correctly identified 

(TN)/(TN+FP) 

ROC AUC 

the area under the receiving operating 
characteristics (ROC) curve which 
created by plotting sensitivity against 
specificity 

N/A 

Accuracy 
the proportion of true results (both true 
positives and true negatives) among the 
total number of cases examined 

(TP+TN)/(TP+TN+FP+FN) 

Precision 
the proportion of true positives among 
the total number of positives 
determined by classifier 

(TP)/(TP+FP) 

F-score 

harmonic mean of recall and precision. A 
high value of F-measure ensures that 
both precision and recall are reasonably 
high. 

2x(precision x recall)/ 
(precision + recall) 

Table 18- The definitions of the performance measures 

1- The number of irrelevant patents is almost two times greater than the 

number of relevant patents. This means the data sets in the research are 

inherently imbalanced. In this situation, if someone randomly select patents 

and classifies them as ‘0’ or ‘1’, this random classifier (let’s call it ‘chance’) 
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may perform well and yield effective performance measures. Therefore, a 

chance classifier is considered as the baseline in each iteration, and all 

performance measures are calculated for the baseline (chance), as well as for 

k-NN, SVN and random forest. The baseline allows for comparing the 

performance of the classifiers with respect to chance.  

2- The following parameters are tuned in the cross validation process: 

- Number of neighbors (between 3 and 9) for k-NN classifier 

- Number of trees (between 4 and 19)  for random forest classifier 

- C (include, 1E-9, 1e-7,1e-5, 1e-3, .01, .1, , 10, 20, 50, and 100) and gamma 

(include 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1) parameters as well 

as the type of kernel (include RBF and linear) for SVM classifier. 

5.2.3 Product Features Classification  

In this section, k-NN, random forest, and SVM classifiers are applied to classify 

the data set provided for the product features. The data set contain 92 patents for the 

product features, which are judged by the experts as 29 relevant patents and 63 

irrelevant patents.  

 

5.2.3.1. Regular Classification 

As shown in Table 19, the k-NN classifier with n=9 has the best performance, 

according to ROC AUC measure which is 0.78. However, k-NN with n=8 has a 

performance that is very close; its precision and accuracy measures are even a little 
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better. Nonetheless, k-NN with n=9 is considered the best because of its overall 

performance, according to ROC AUC and F-score.  

Random forest couldn’t show any impressive performance on regular keywords. 

ROC AUC varies between 0.51 and 0.53, and the F-score is too low in all classifications 

(see Table 20). 

 

Number of 
Neighbors 

Ave. of 
Sensitivity 

Ave. of 
Specificity 

Ave. of 
ROC AUC 

Ave. of 
Accuracy 

Ave. of 
Precision 

Ave. 
of 
 F-
score 

n=3 0.59 0.83 0.71 0.77 0.69 0.52 

n=4 0.55 0.91 0.73 0.83 0.74 0.56 

n=5 0.6 0.85 0.73 0.8 0.68 0.55 

n=6 0.55 0.93 0.74 0.85 0.78 0.59 

n=7 0.6 0.9 0.75 0.83 0.71 0.59 

n=8 0.58 0.96 0.77 0.87 0.82 0.64 

n=9 0.63 0.93 0.78 0.86 0.78 0.65 
Table 19- k-NN performance: regular classification for the product features 

 

As expected, SVM shows a good performance in regular classification.  As shown 

in Table 21, among all classifications made base on combinations of C and gamma 

parameters and RBF and linear kernels, SVM with C= 10, Gamma=0.1, and kernel= 'rbf' 

has the best performance. ROC AUC is reasonably high (0.78), and F-score is not very 

low (0.64). More details about the performances of the SVM classifiers in regular 

classification of the product features are available in Table  and Table  in Appendix C. 
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Numbe
r of 

Trees 

Average of 
Sensitivity 

Average of 
Specificity 

Average 
of ROC 

AUC 

Average of 
Accuracy 

Average of 
Precision 

Average 
of F-
score 

4 0.07 0.97 0.52 0.76 0.51 0.09 

5 0.13 0.93 0.53 0.75 0.52 0.16 

6 0.05 0.98 0.51 0.77 0.45 0.07 

7 0.10 0.95 0.53 0.76 0.49 0.12 

8 0.04 0.98 0.51 0.77 0.44 0.06 

9 0.08 0.97 0.52 0.77 0.47 0.10 

10 0.03 0.99 0.51 0.77 0.43 0.04 

11 0.06 0.98 0.52 0.77 0.46 0.08 

12 0.03 0.99 0.51 0.77 0.43 0.04 

13 0.05 0.98 0.52 0.77 0.45 0.06 

14 0.03 0.99 0.51 0.77 0.45 0.04 

15 0.04 0.99 0.52 0.77 0.44 0.06 

16 0.03 0.99 0.51 0.78 0.45 0.04 

17 0.04 0.99 0.51 0.78 0.44 0.05 

18 0.02 1.00 0.51 0.77 0.43 0.02 

19 0.03 0.99 0.51 0.77 0.45 0.04 

Table 20- Random forest performance: regular classification for the product features 

 

SVM Parameters Ave. of 
Sensiti

vity 

Ave. of 

Specificity 

Ave. of 

ROC AUC 

Ave. of 

Accuracy 

Ave. of 

Precision 

Ave. of 

F-score 
C Gamma 

Kernel 

10 0.1 RBF 0.66 0.91 0.78 0.85 0.77 0.64 
Table 21- SVM classifier performance: regular classification for the product features 

By comparing the best performance of the classifiers in Table 22, it is observed 

that SVM is the best classifier for regular classification for the product features.  

However, k-NN exhibits very close performance in terms of ROC AUC and F-score, by 

comparing sensitivity (recall). Recall is more important than precision to Finex, because 

Finex wants to identify as many opportunities as possible. Thus, SVM is picked as the 

best classifier. The sensitivity of SVM is 0.66, while the sensitivity of k-NN is 0.58. Also, it 
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is worth mentioning that regular classification for the product features is not very 

sensitive to ‘chance’. The performance of all classifiers is better than chance.  

 

Classifier Sensitivity Specifity ROC AUC Accuracy Precision F-score 

Chance 0.01 0.69 0.35 0.54 0.38 0.01 

KNN(n=9) 0.58 0.96 0.77 0.87 0.82 0.64 

RF (n=15) 0.04 0.99 0.52 0.77 0.44 0.06 

SVM (('C=', 10, 
'gamma=0.1', 
'kernel=', 'rbf')) 

0.66 0.91 0.78 0.85 0.77 0.64 

Table 22- The best performance of the classifiers in regular classification for the product features 

5.2.3.2. Ontological Classification 

In this section, the classifiers are applied to classify the 92 patents judged by the 

experts for the product features. Unlike for regular classification, only ontological 

keywords are considered for this type of classification, which is called ontological 

classification. The ontological keywords are shown in Table 14.  

As described in section 4.4, the TF-IDF matrix is calculated based on the term 

frequency of 30 ontological keywords in 19,525 patents. The training and test sets 

actually contain the TF-IDF of the ontological keywords extracted from the TF-IDF 

matrix.  

All k-NN ontological classifications resulted in reasonable performances, as 

shown in Table 23. All ROC AUC’s are between 0.74 and 0.78. Also, F-score for n=8 is 

0.65. All in all, k-NN with n=8 has the best performance; in particular, its specificity and 

accuracy show a very reasonable performance. 
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Number of 

Neighbors 

Average of 

Sensitivity 

Average of 

Specifity 

Average 

of ROC 

AUC 

Average 

of 

Accuracy 

Average of 

Precision 

Average 

of F-

score 

n=3 0.68 0.88 0.78 0.83 0.78 0.63 

n=4 0.61 0.93 0.77 0.86 0.83 0.65 

n=5 0.70 0.80 0.75 0.77 0.70 0.57 

n=6 0.58 0.90 0.74 0.83 0.78 0.58 

n=7 0.62 0.88 0.75 0.82 0.74 0.59 

n=8 0.62 0.94 0.78 0.87 0.82 0.65 

n=9 0.62 0.93 0.78 0.86 0.78 0.64 

Table 23- k-NN performance: ontological classification for the product features 

 

The performance of random forest in the ontological classification is much better 

than the performance of random forest in the regular classification. All measures have 

improved tremendously; however, sensitivity is around 0.5, which is not high enough. As 

shown in Table 24, the random forest classifier with n=15 has the best performance. Its 

ROC AUC is 0.72, and its other measures have slightly better performance than those of 

classifications with similar ROC AUC.  

SVM has better performance in the ontological classification. As shown in Table 

25 and, SVM with C= 100, gamma=0.9, and RBF kernel has the best performance among 

all of the other SVM ontological classifications. ROC AUC with 0.87 shows that this 

classifier has performed nearly perfectly. Sensitivity (recall) is 0.81, which is a 

reasonable performance for this research. More details about the performance of the 

SVM classifiers are available in Table  and Table  in Appendix C. 
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Number 

of Trees 

Average of 

Sensitivity 

Average of 

Specifity 

Average of 

ROC AUC 

Average of 

Accuracy 

Average 

of 

Precision 

Average 

of F-

Score 

4 0.42 0.92 0.67 0.81 0.68 0.53 

5 0.51 0.91 0.71 0.82 0.74 0.55 

6 0.46 0.92 0.69 0.81 0.75 0.53 

7 0.51 0.91 0.71 0.82 0.72 0.54 

8 0.48 0.92 0.70 0.82 0.75 0.53 

9 0.52 0.91 0.71 0.82 0.77 0.55 

10 0.50 0.92 0.71 0.83 0.77 0.52 

11 0.52 0.92 0.72 0.83 0.75 0.53 

12 0.49 0.93 0.71 0.83 0.75 0.52 

13 0.51 0.92 0.72 0.83 0.74 0.53 

14 0.50 0.92 0.71 0.82 0.74 0.45 

15 0.52 0.93 0.72 0.83 0.77 0.52 

16 0.48 0.93 0.70 0.83 0.75 0.49 

17 0.50 0.92 0.71 0.82 0.73 0.53 

18 0.49 0.93 0.71 0.83 0.73 0.50 

19 0.51 0.92 0.72 0.83 0.69 0.54 
Table 24- Random forest performance: ontological classification for the product features 

 

SVM Parameters Ave. of 
Sensitivity 

Ave. of 

Specificity 

Ave. of 

ROC AUC 

Ave. of 

Accuracy 

Ave. of 

Precision 

Ave. of 

F-score C Gamma Kernel 

10 0.1 RBF 0.66 0.91 0.78 0.85 0.77 0.64 
Table 25- Best SVM classifier in ontological classification for the product features 

 

The performances of the classifiers in the ontological classification for the 

product features are compared in Table 26. The SVM shows remarkably higher 

performance than the other classifiers. Although the sensitivity of the k-NN is better, the 

specificity of the SVM has performed better. In this condition, the ROC AUC and F-score 

of the SVM show that the general performance of the SVM is much better than of the 
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others. The specificity of the SVM, which is 0.92, shows this classifier has been able to 

classify perfectly irrelevant patents, and that enhances the overall performance of the 

SVM because the data is inherently imbalanced and the majority of the data contain 

irrelevant patents. 

Classifier 
Sensitiv

ity 
Specific

ity 
ROC_A

UC 
Accura

cy 
Precisi

on 
F-

score 
Chance 0.69 0.01 0.35 0.53 0.38 0.01 

KNN(n=8) 0.94 0.62 0.78 0.87 0.82 0.65 

RF (n=15) 0.93 0.52 0.72 0.83 0.77 0.55 

SVM ('C=', 100, 'gamma=0.9', 

'kernel=', 'RBF') 
0.81 0.92 0.87 0.84 0.78 0.73 

Table 26- The best performance of the classifiers: ontological classification for the product features 

5.2.3.3. Ontological Semantic Classification 

In this section, the classifiers are applied to classify the 92 patents judged by the 

experts for the product features. In ontological semantic classification, 30 ontological 

keywords, as well as 42 of their synonyms, are considered. This amounts to 72 

ontological semantic keywords in total, which are displayed in Table 14.  

As described in section 4.4, the TF-IDF matrix is calculated based on the term 

frequency of 72 ontological keywords in 19,525 patents. The training and test sets 

actually contain the TF-IDF of the ontological semantic keywords extracted from the TF-

IDF matrix.  

The k-NN classifiers have reasonable performance in ontological semantic 

classifications, as shown in Table 27. The ROC AUC values are greater than 0.75, and 

their sensitivity is around 0.90. The k-NN with n=3 has the best performance. Its ROC 
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AUC (0.82) and its F-score (0.70) show that this classifier performs significantly better 

than the other k-NN classifiers shown in Table 27. Also, its sensitivity is 0.90, and its 

specificity is 0.74. Thus, k-NN with n=3 performs with high accuracy.  

 

Number 
of 
Neighbors 

Average of 
Sensitivity 

Average of 
Specificity 

Average of 
ROC AUC 

Average of 
Accuracy 

Average of 
Precision 

Average of 
 F-score 

n=3 0.90 0.74 0.82 0.86 0.82 0.70 

n=4 0.92 0.61 0.77 0.85 0.75 0.62 

n=5 0.88 0.64 0.76 0.82 0.74 0.61 

n=6 0.93 0.59 0.76 0.85 0.81 0.62 

n=7 0.92 0.62 0.77 0.85 0.76 0.63 

n=8 0.94 0.62 0.78 0.86 0.81 0.65 

n=9 0.93 0.62 0.77 0.86 0.82 0.64 
Table 27- k-NN performance: ontological semantic classification for the product features 

The random forest classifiers exhibit similar performances in the ontological 

semantic classification (OSC) and in the ontological classification (OC); the ROC AUC of 

OSC has only improved slightly in comparison to that of the OC. Nonetheless, as shown 

in Table 28, random forest classifier with n=17 has the best performance in the OSC. Its 

ROC AUC is 0.76 and its other measures have slightly better performance than of 

random forest with n=19.  

SVM with C= 100, gamma=0.1, and RBF kernel has the best performance among 

all the SVM ontological semantic classifications. The ROC AUC of the SVM is 0.87; 

however, it is similar to of the best SVM of the ontological classification; the other 

measures and specifically the ROC AUC show how perfectly this classifier has performed 

in the ontological semantic classification (sensitivity=0.91, specificity=0.82, 
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accuracy=0.89, precision=0.87, and F-score=0.77). More details about the other SVM 

classifiers with different parameters are available in Table  and Table  in Appendix C. 

 

Number of 
Trees 

Ave. of 
Sensitivity 

Ave. of 
Specificity  

Ave. of 
ROC AUC 

Ave. of 
Accuracy 

Ave. of 
Precision 

Ave. of 
F-score 

4 0.41 0.96 0.69 0.84 0.75 0.47 

5 0.53 0.93 0.73 0.84 0.72 0.55 

6 0.45 0.96 0.71 0.84 0.74 0.50 

7 0.54 0.94 0.74 0.85 0.75 0.57 

8 0.45 0.96 0.71 0.84 0.74 0.51 

9 0.54 0.95 0.74 0.85 0.79 0.58 

10 0.48 0.95 0.72 0.85 0.75 0.53 

11 0.56 0.94 0.75 0.86 0.77 0.59 

12 0.51 0.96 0.73 0.85 0.77 0.56 

13 0.55 0.95 0.75 0.86 0.78 0.59 

14 0.51 0.96 0.73 0.86 0.80 0.56 

15 0.56 0.95 0.75 0.86 0.77 0.60 

16 0.54 0.96 0.75 0.86 0.79 0.60 

17 0.58 0.95 0.76 0.86 0.79 0.61 

18 0.52 0.96 0.74 0.86 0.80 0.58 

19 0.56 0.95 0.76 0.86 0.78 0.61 
Table 28- Random forest performance: ontological semantic classification for the product features 

 

SVM Parameters Ave. of 
Sensitivit

y 

Ave. of 

Specificity 

Ave. of 

ROC AUC 

Ave. of 

Accurac
y 

Ave. of 

Precision 

Ave. of 

F-
score C Gamma 

Kernel 

100 0.1 RBF 0.91 0.82 0.87 0.89 0.87 0.77 
Table 29- The best SVM classifier in ontological semantic classification for the product features 

 

The performances of the classifiers in the ontological semantic classification of 

the product features are compared in Table 30. The ROC AUC (0.87) and F-score (0.77) 

of the SVM show how the SVM performs remarkably better than the other classifiers in 
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the ontological semantic classification. Although the sensitivity of the random forest is 

better, the specificity of the SVM has performed much better. The specificity of the 

SVM, which is 0.82, shows that this classifier has been able to classify perfectly 

irrelevant patents, and it enhances the overall performance of the SVM, because the 

data are inherently imbalanced and the majority of the data contain irrelevant patents. 

 

Classifier 

Sensitivi

ty 

Specifici

ty 

ROC 

AUC 

Accura

cy 

Precisi

on 

F-

score 

Chance 0.69 0.01 0.35 0.54 0.38 0.01 

KNN(n=3) 0.90 0.74 0.82 0.86 0.82 0.70 

RF (n=17) 0.95 0.58 0.76 0.86 0.79 0.61 

SVM('C=', 100, 'gamma =0.1', 

'kernel=', 'rbf') 
0.91 0.82 0.87 0.89 0.87 0.77 

Table 30- The best performance of the classifiers: ontological semantic classification for the product features 

 

5.2.3.4. Best classifier for the Product Features  

Table 31 shows the best classifiers in regular classification (RC), ontological 

classification (OC), and ontological semantic classification (OSC) for the product 

features. In all three scenarios (RC, OC, and OSC) SVM is the best classifier. Also, the 

SVM of the OSC is the best scenario to classify the product features. Therefore, the 

SVM-OSC scenario will be applied to classify the product features to identify the 

opportunities. 
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Scenar

io Best Classifier 

Sensitiv

ity 

Specif

ity ROC AUC 

Accur

acy 

Precisio

n F-score 

RC 
SVM (('C=', 10, 'gamma=0.1', 

'kernel=', 'rbf')) 
0.66 0.91 0.78 0.85 0.77 0.64 

OC 
SVM ('C=', 100, 'gamma=0.9', 

'kernel=', 'rbf') 
0.81 0.92 0.87 0.84 0.78 0.73 

OSC SVM('C=', 100, 'gamma=0.1', 
'kernel=', 'rbf') 

0.91 0.82 0.87 0.89 0.87 0.77 

Table 31- The best classifiers in the RC, the OC, and the OSC of the product features 

 

5.2.4 Enabling technologies Classification 

In this section, k-NN, random forest, and SVM classifiers are applied to classify the 

data set provided for the enabling technologies (thin wall iron casting). The data set 

contains 17 patents that the Finex experts judged as relevant to the enabling 

technologies and 36 patents that the Finex experts judged as irrelevant to the enabling 

technologies.  

 

5.2.4.1. Regular Classification 

As shown in Table 32, none of the k-NN classifiers perform well. All measures are 

low, and ROC AUC and F-score show the overall performance of the k-NN classifiers are 

weak. Nonetheless, k-NN with n=3 is the best one among these weak classifiers. 

The random forest classifiers couldn’t perform well in regular classification. As 

shown in Table 33, however, the accuracy measures are slightly high (more than 0.63), 

the ROC AUC and F-score measures show the overall performance of the random forest 
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classifiers is low. Nonetheless, random forest with n=5 has the best performance in the 

regular classification. 

The random forest classifiers couldn’t perform well in regular classification. As 

shown in Table 33, however, the accuracy measures are slightly high (more than 0.63), 

the ROC AUC and F-score measures show the overall performance of the random forest 

classifiers is low. Nonetheless, random forest with n=5 has the best performance in the 

regular classification. 

 

Number of 
Neighbors 

Average of 
Sensitivity 

Average of 
Specifity 

Average of 
ROC AUC 

Average of 
Accuracy 

Average of 
Precision 

Avera
ge of 

F-
score 

n=3 0.27 0.75 0.51 0.59 0.54 0.28 

n=4 0.07 0.90 0.49 0.63 0.39 0.09 

n=5 0.19 0.81 0.50 0.61 0.46 0.21 

n=6 0.10 0.92 0.51 0.65 0.44 0.13 

n=7 0.18 0.84 0.51 0.63 0.48 0.22 

n=8 0.09 0.93 0.51 0.66 0.45 0.12 

n=9 0.13 0.88 0.51 0.63 0.47 0.17 

Table 32- k-NN performance: regular classification for the enabling technologies 

 

The SVM classifier performs weakly in regular classification (as did the k-NN 

classifiers and the random forest classifiers). As shown in Table 34, the SVM classifier 

with C= 20, Gamma=0.3, and linear kernel perform better than the other SVM 

classifiers. Their accuracy measures are 0.65, but ROC AUC (0.52) and F-score (0.52) are 



 

155 

still low. More details about the other SVM classifiers with different parameters are 

available in Table  and Table  in Appendix D. 

 

Number 
of Trees 

Average of 
Sensitivity 

Average 
of 
Specifity 

Average of 
ROC AUC 

Average of 
Accuracy 

Average of 
Precision 

Average 
of F-score 

4 0.10 0.90 0.50 0.64 0.44 0.12 

5 0.19 0.84 0.52 0.63 0.46 0.21 

6 0.10 0.93 0.51 0.66 0.43 0.12 

7 0.17 0.88 0.52 0.65 0.50 0.19 

8 0.09 0.93 0.51 0.66 0.44 0.12 

9 0.13 0.90 0.51 0.65 0.49 0.16 

10 0.07 0.95 0.51 0.66 0.43 0.10 

11 0.11 0.91 0.51 0.65 0.45 0.14 

12 0.06 0.96 0.51 0.66 0.45 0.09 

13 0.09 0.93 0.51 0.66 0.47 0.12 

14 0.06 0.96 0.51 0.67 0.42 0.09 

15 0.08 0.94 0.51 0.66 0.42 0.11 

16 0.05 0.97 0.51 0.67 0.40 0.07 

17 0.06 0.95 0.51 0.66 0.44 0.08 

18 0.03 0.97 0.50 0.67 0.40 0.05 

19 0.06 0.95 0.51 0.66 0.44 0.08 

Table 33- Random forest performance: regular classification for the enabling technologies 

 

SVM Parameters Ave. of 
Sensitivity 

Ave. of 

Specificity 

Ave. of 

ROC AUC 

Ave. of 

Accuracy 

Ave. of 

Precision 

Ave. of 

F-score C Gamma Kernel 

20 0.3 linear 0.15 0.88 0.52 0.64 0.52 0.19 

Table 34- SVM classifier performance:  regular classification for the enabling technologies (kernel: linear) 
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5.2.4.2. Ontological Classification 

In this section, the classifiers are applied to classify the 53 patents that the Finex 

experts judged for the enabling technologies. Unlike for regular classification, only 

ontological keywords are considered for the ontological classification. The ontological 

keywords are shown in Table 15.  

As described in section 4.4, the TF-IDF matrix is calculated based on the term 

frequency of 70 ontological keywords in 19,525 patents. The training and test sets 

actually contain the TF-IDF of the ontological keywords extracted from the TF-IDF 

matrix.  

When compared to regular classification, the k-NN classifiers performed slightly 

better in ontological classification. In particular, the k-NN classifier with n=5 remarkably 

performed well. Its ROC AUC (0.57) and accuracy (0.62) have improved in comparison to 

regular classification. Nonetheless, its sensitivity (0.43) is too low, and it impacted the F-

score (0.41) negatively. 

Number of 

Neighbors 

Ave. of 

Sensitivity 

Ave. of 

Specifity 

Aver. of ROC 

AUC 

Ave. of 

Accuracy 

Ave. of 

Precision 

Ave. of 

F-score 

n=3 0.29 0.74 0.52 0.59 0.49 0.28 

n=4 0.13 0.84 0.48 0.60 0.40 0.13 

n=5 0.43 0.71 0.57 0.62 0.61 0.41 

n=6 0.15 0.84 0.50 0.62 0.47 0.18 

n=7 0.32 0.76 0.54 0.61 0.54 0.32 

n=8 0.17 0.83 0.50 0.61 0.48 0.19 

n=9 0.30 0.74 0.52 0.60 0.51 0.30 

Table 35- k-NN performance: ontological classification for the enabling technologies 
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The random forest classifiers did not perform well in the ontological classification 

(just like they did not perform well in the regular classification). The ROC AUC’s are less 

than 0.50 meaning the overall performance of the random classifiers are even worse 

than ‘chance’. 

Number 
of Trees 

Average of 
Sensitivity 

Average 
of 
Specifity 

Average of 
ROC AUC 

Average of 
Accuracy 

Average of 
Precision 

Average 
of F-score 

4 0.21 0.71 0.46 0.55 0.42 0.21 

5 0.25 0.67 0.46 0.53 0.44 0.23 

6 0.23 0.70 0.46 0.55 0.44 0.22 

7 0.23 0.69 0.46 0.54 0.42 0.22 

8 0.22 0.70 0.46 0.54 0.44 0.21 

9 0.24 0.69 0.47 0.55 0.45 0.23 

10 0.22 0.71 0.46 0.55 0.44 0.21 

11 0.24 0.68 0.46 0.54 0.44 0.23 

12 0.22 0.70 0.46 0.55 0.43 0.22 

13 0.24 0.70 0.47 0.55 0.45 0.23 

14 0.22 0.70 0.46 0.55 0.43 0.22 

15 0.23 0.69 0.46 0.54 0.42 0.22 

16 0.22 0.71 0.46 0.55 0.46 0.22 

17 0.23 0.70 0.47 0.55 0.44 0.23 

18 0.22 0.71 0.46 0.55 0.46 0.22 

19 0.22 0.71 0.47 0.55 0.45 0.22 

Table 36- Random forest performance: ontological classification for the enabling technologies 

The overall performance of the SVM classifiers in the ontological classification (OC) 

has improved slightly in comparison to their performance in the regular classification 

(RC). In comparison to RC, the sensitivity of the SVM’s has improved remarkably, but 

their specificity has degraded. In general, the SVM F-score measures of OC are 6% to 8% 

higher than those of RC. All in all, the SVM with C= 0.001, Gamma=1, and RBF kernel has 

the best performance in the ontological classification by the SVM classifiers. More 
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details about the other SVM classifiers with different parameters are available in Table  

and Table  in Appendix D.  

 

SVM Parameters Ave. of 
Sensitivity 

Ave. of 

Specificity 

Ave. of 

ROC AUC 

Ave. of 

Accuracy 

Ave. of 

Precision 

Ave. of 

F-score C Gamma Kernel 

0.0
01 1 

RBF 
0.71 0.33 0.52 0.47 0.53 0.44 

Table 37- Best SVM classifier performance:  ontological classification for the enabling technologies 

 

Comparing the best performance of the classifiers in Table 38 suggests that the 

k-NN is the best classifier for the ontological classification for the enabling technologies; 

however, its performance is not much better than chance. The other classifiers even 

performed worse than chance.  

Classifier 

Ave. of 

Sensitivity 

Ave. of 

Specifity 

Ave. of 

ROC AUC 

Ave. of 

Accuracy 

Ave. of 

Precision 

Ave. of 

F-score 

Chance 0.42 0.72 0.57 0.62 0.58 0.42 

KNN (n=5) 0.43 0.71 0.57 0.62 0.61 0.41 

RF (n=9) 0.24 0.69 0.47 0.55 0.45 0.23 

SVM (C=100, gamma= 

0.1,  kernel=RBF) 
0.49 0.55 0.52 0.53 0.51 0.39 

Table 38- The best performance of the classifiers: ontological classification for the enabling technologies 

 

5.2.4.3. Ontological Semantic Classification 

In this section, the classifiers are applied to classify the 53 patents that the experts 

judged for the enabling technologies. In ontological semantic classification (OSC), 70 

ontological keywords, as well as 71 of their synonyms, are considered. These ontological 

semantic keywords (141 in total) are shown in Table 15.  
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As described in section 4.4, the TF-IDF matrix of OSC is calculated based on the term 

frequency of 141 ontological keywords in 19,525 patents. The training and test sets 

actually are extracted from the TF-IDF matrix of OSC.  

Number of 

Neighbors 

Ave. of 

Sensitivity 

Ave. of 

Specifity 

Ave. of ROC 

AUC 

Ave. of 

Accuracy 

Ave. of 

Precision 

Ave. of 

F-score 

n=3 0.45 0.82 0.63 0.70 0.64 0.48 

n=4 0.19 0.92 0.56 0.69 0.59 0.25 

n=5 0.31 0.87 0.59 0.69 0.59 0.38 

n=6 0.15 0.95 0.55 0.69 0.55 0.21 

n=7 0.23 0.93 0.58 0.70 0.64 0.30 

n=8 0.11 0.96 0.54 0.68 0.53 0.16 

n=9 0.16 0.93 0.54 0.67 0.55 0.21 

Table 39- k-NN performance: ontological semantic classification for the enabling technologies 

 

As shown in Table 39, the performance of the k-NN classifiers has notably 

improved in OSC in comparison to their performances in RC and OC. The ROC AUC of 

three k-NN classifiers are close to 0.6, and that of the k-NN with n=3 is 0.63. Also, the 

accuracy measures of the k-NN classifiers have improved by around 10%. The accuracy 

of the best k-NN classifier with n=3 is 0.70. Despite the improvement of the sensitivity 

measures in some k-NN classifiers, these measures are still low; they affect the F-score 

negatively. For example, the sensitivity of the best k-NN (n=3) is 0.45 and its F-score is 

0.48, while its specificity is 0.82. This means this classifier can successfully recognize 

irrelevant patents, but its performance in recognizing relevant patents is still low.  

As shown in Table 40, the ROC AUC scores of the random forest classifiers in the 

ontological semantic classification (OSC) have improved slightly in comparison to their 
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ROC AUC scores in the ontological classification (OC). The ROC AUC’s are around 0.5 

(chance), and F-score measures are too low. The main reason for this is that the 

sensitivity measures are low. Nonetheless, the random forest with n=5 has the best 

performance in the OSC.  

Number 

of Trees 

Average of 

Sensitivity 

Average of 

Specifity 

Average of 

ROC AUC 

Average of 

Accuracy 

Average 

of 

Precision 

Average 

of F-

Score 

4 0.14 0.87 0.50 0.63 0.44 0.17 

5 0.26 0.80 0.53 0.62 0.52 0.27 

6 0.15 0.87 0.51 0.64 0.45 0.18 

7 0.24 0.81 0.53 0.63 0.50 0.26 

8 0.16 0.87 0.52 0.64 0.48 0.19 

9 0.23 0.83 0.53 0.63 0.53 0.25 

10 0.16 0.89 0.52 0.65 0.46 0.19 

11 0.22 0.83 0.53 0.64 0.52 0.25 

12 0.17 0.87 0.52 0.64 0.49 0.20 

13 0.19 0.84 0.52 0.63 0.49 0.22 

14 0.16 0.88 0.52 0.64 0.51 0.19 

15 0.19 0.85 0.52 0.64 0.51 0.23 

16 0.15 0.89 0.52 0.65 0.50 0.19 

17 0.19 0.86 0.52 0.64 0.47 0.22 

18 0.15 0.88 0.52 0.64 0.46 0.18 

19 0.18 0.84 0.51 0.63 0.48 0.20 
Table 40- Random forest performance: ontological semantic classification for the enabling technologies 

 

As shown in Table 41, the overall performance of the SVM classifiers in the 

ontological semantic classification (OSC) has improved slightly in comparison to their 

performance in the ontological classification (OC) and the regular classification (RC). On 

average, the ROC AUC measures of the SVM’s are 3% to 4%, and their accuracy 
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measures have improved by 9%. More details about the performance of the SVM 

classifiers are available in Table  and Table  in Appendix D. 

SVM Parameters Ave. of 
Sensitivity 

Ave. of 

Specificity 

Ave. of 

ROC AUC 

Ave. of 

Accuracy 

Ave. of 

Precision 

Ave. of 

F-score C Gamma Kernel 

100 0.8 RBF 0.42 0.74 0.58 0.63 0.61 0.4 

Table 41- Best SVM classifier performance:  ontological semantic classification for the enabling technologies 

 

5.2.4.4. Best Classifier for the Enabling technologies Classification 

Table 42 shows the best classifiers in the regular classification (RC), the ontological 

classification (OC), and the ontological semantic classification (OSC) for the enabling 

technologies. None of the classifiers could perform well in the RC; they performed 

worse than chance. The K-NN with n=5 is the best classifier in the OC and k-NN with n=3 

is the best classifier in the OSC.  

Scen

ario 

Classif

ier 

Ave. of 

Sensitivity 

Ave. of 

Specifity 

Ave. of 

ROC AUC 

Ave. of 

Accuracy 

Ave. of 

Precision 

Ave. of F-

score 

RC Chanc

e 
0.40 0.71 0.55 0.61 0.58 0.40 

OC KNN 

(n=5) 0.43 0.71 0.57 0.62 0.61 0.41 

OSC KNN 

(n=3) 0.45 0.82 0.63 0.70 0.64 0.48 

Table 42- The best classifiers in the RC, the OC, and the OSC of the enabling technologies 

 

5.2.5 Opportunity Identification 

The patents relevant to both the product features (light weight product) and 

enabling technologies (thin wall iron casting) are potential opportunities that can be 

considered for new product planning. The best scenarios (introduced in Table 31 and 
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Table 42, respectively) are applied to identify the opportunities for new product 

planning in the Finex case. They are presented in Table 43. 

 

Ontology Classification  Classifier Parameters 

Product features OSC SVM C= 100, Gamma=0.1, 
kernel= RBF 

Enabling technologies OSC k-NN N=3 

Table 43- The scenarios used for the opportunity identification 

 

In order to identify the opportunities, the following steps have been taken: 

- The SVM classifier (C= 100, Gamma=0.1, kernel= RBF) is trained by using 

the TF-IDF of the OSC of the product features, and then the trained SVM 

is used to classify the 19,525 patents. Consequently, 750 patents are 

classified as relevant to the product features. 

- Similarly, the k-NN classifier (n=3) is trained by using the TF-IDF of the 

OSC of the enabling technologies, and then the trained k-NN is used to 

classify the 19,525 patents. Consequently, 5415 patents are classified are 

classified as relevant to the enabling technologies. 

- The joint list of two sets of the classified patents contains 188 patents, 

which are known as the opportunities for new product planning in the 

Finex case. The patent numbers of the opportunities are shown in Table  

in Appendix E. 
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5.3. Opportunity Authentication 

OSC classifies patents either as relevant or as irrelevant, according to the subject 

of an ontology. Still, experts should step in and review the classified patents as 

opportunities to identify the ones that are truly valuable.  

In order to authenticate some of the identified opportunities, 20 patents are 

randomly selected out of 188 opportunities identified and evaluated more deeply by 

expert E3 who has the best performance among the experts. The patents are evaluated 

from three angles:  

- Relatedness: how much the technology is related to the case. 

- Innovativeness: how much the technology can be considered innovative. 

- Usability: how much the technology is applicable for the Finex case. 

The result of the evaluation is shown in Table 44. The used scale for evaluation is 

as below: 

1=very weak, 3=weak, 5= moderate, 7=strong, and 9=very strong. 

 

As shown in Table 44, the relatedness of 15 authenticated patents is scored 

greater than seven, meaning they are highly relevant to the subject of the case. Also, 

the innovativeness of seven authenticated patents is scored higher than seven, meaning 

they contain technologies which can be considered highly innovative. At the end, the 

usability of 15 of the authenticated patents is scored more than 5, meaning they are 

usable for solving the problem stated in the Finex case. 

 



 

164 

# Patent Number Relatedness innovativeness usability 

1 US5127467 9 3 7 

2 US5165464 9 3 7 

3 US5501833 9 3 7 

4 US5664619 9 3 9 

5 US5800902 5 7 3 

6 US6129134 9 7 7 

7 US6309743 9 9 9 

8 US6328820 3 3 1 

9 US6427755 3 9 3 

10 US6537395 9 3 7 

11 US6582533 7 9 5 

12 US6719104 1 3 1 

13 US6908590 7 3 7 

14 US6913062 9 3 9 

15 US7045022 9 3 7 

16 US7056598 9 7 7 

17 US7086151 9 7 7 

18 US7793703 9 3 5 

19 US8840738 9 3 5 

20 US8905203 1 3 1 
Table 44- Evaluation of 20 opportunities by the expert panel 
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CHAPTER 6: DISCUSSION  

As reported in Chapter 5, applying ontologies can improve the performance of 

classifications. The SVM classifier has a perfect performance in the OSC of the product 

features, while the k-NN classifier has a moderate performance in the OSC of the 

enabling technologies.  In section 6.1 of this chapter, I discuss how human experts’ 

search behavior affects their performance in the patent search.  In section 6.2, the 

performance of the classifiers in RC, OC, and OSC are examined for a different data set. 

This examination reconfirms applying ontologies is a reliable method to improve the 

performance of classifiers. In section 6.3., I discuss why different ontologies come up 

with different classification performances. 

 

6.1. Human Expert’s Patent Search Analysis 

Alongside of developing the method of this research, there has been an important 

question: Do experts basically need an intelligent patent search method? The patent 

search introduced in section 3.4.3 is designed and conducted to answer this question. It 

is studied in the patent search how well experts perform in patent searches without any 

intelligent tool. The results of the patent search experiment are illustrated in section 

4.2. 

Basically, the results of the patent search experiment showed that the experts do 

not have a good performance in the patent searches. The performance of the experts 

can be summarized as below: 
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- The reliability of the patent searches is between 2% and 14.45%. These 

numbers show that the reliability is very low. The average of similarities 

between keywords (shown in Table 11) and the average of similarities 

between relevant patents found in the patent searches (shown in Table 12) 

illustrate that the experts used very low similar keywords and consequently 

found very low similar relevant patents, despite having the ontological 

keywords at their disposal. 

-  The efficiency of the patent searches varies between 0.05 and 0.30, and it is 

0.18 on average. An expert who wants to find 100 relevant patents would have 

to spend 9.26 hours, if he/she were to perform at a rate that reflects the 

average of these efficiencies. Considering cases in which there are thousands 

of relevant patents, it would take a long time to find them. Thus, the efficiency 

of the experts is too low. 

- The effectiveness of the patent searches relatively low. Half of the experts 

have an effectiveness of more than 50%, and half of the experts have an 

effectiveness of less than 50%. 

To figure out how the patent search behavior affects the patent search 

performance, a correlation analysis is applied to the measures introduced in section 4.2. 

A table that represents the results of the correlation analysis is available in Appendix F. 

The result of the correlation analysis is shown in Figure 50. The strong correlations 

between patent search behavior and patent search performance can be taken as 

causation relation, because their search behavior (as expressed by keyword diversity, 



 

167 

query complexity, search speed and error rate) influences their ability to retrieve 

patents and judge them as relevant or irrelevant. The explanations of the correlations 

between patent search behavior and patent search performance follow: 

- Keyword Diversification: There is a moderate negative correlation between 

keyword diversification and efficiency (-0.65). The correlation is moderately 

significant because its p-value is 0.11. When an expert applies more diversified 

keywords, it means he/she performs a search on a greater variety of subjects, 

so he/she has to spend more time to judge patents that he/she has found. 

Therefore, more diversified keywords negatively impact the efficiency of 

his/her patent search. 

- Query Complexity: There is moderate correlation (-0.67) between query 

complexity and reliability. The correlation is moderately significant with 0.10 

for p-value. To explain this correlation, let’s imagine two imaginary experts; 

expert A and expert B who both perform a patent search for a similar concept. 

When expert A applies more complex queries than expert B does, the similarity 

between keywords used by expert A and expert B is decreased. Therefore, 

these two experts come up with less similar patents in their search results. 

Therefore, more complex queries lead to less reliable patent searches. 

- Search Speed: There is no strong correlation between search speed and the 

search performance measures. Nonetheless, there are moderate correlations 

between search speed and two other search behavior measures, which are 

keyword diversification and error. 
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o There is moderate positive correlation (0.66) between search speed 

and keyword diversification with moderate statistical significance (p-

value is 0.11). When an expert does a patent search faster, he/she 

applies more keywords and most likely more distinct keywords. 

Therefore, there is a moderate positive correlation between search 

speed and keyword diversification. 

o  There is a moderate negative correlation between search speed and 

error    (-0.70) with moderate statistical significance (p-value is 0.08). 

When an expert does a patent search faster, he/she retrieves and 

judges more patents. The error rate becomes smaller because the 

number of duplicates and contradictions (numerator of error rate) 

grows slower than the number of patents judged (denominator of 

error rate). This explains the negative correlation between search 

speed and error. 

- Error: Some of the experts came up with some duplicates in their patent 

retrieval and contradictions in their judgments. These errors, especially the 

contradictions, negatively affect effectiveness because the experts have 

misjudged some patents. Thus, they consider some irrelevant patents relevant 

and some relevant patents irrelevant. As shown in Figure 50, there is a strong 

negative correlation (-0.79) between error and effectiveness. The correlation is 

strongly significant with 0.03 for p-value.  
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In addition to the abovementioned explanations of correlations between search 

behavior measures and patent search performance measures, there is a moderate 

positive correlation between efficiency and effectiveness. The number of relevant 

patents constitutes the numerator of both factors. Therefore, there is a positive 

correlation between them. 

 

* Numbers in the parentheses are correlation, and p-value, respectively. 

Figure 50- Relations between patent search behavior and patent search performance 

According to the facts presented in section 4.2 and the discussions of this section, 

there are some conclusions about the patent searches observed in this study: 

1- The patent searches are highly unreliable. 

2-  The patents searches are highly inefficient in finding the relevant patents.  

3- The patent searches are relatively ineffective. 

4- The method of this research significantly improves the performance of patent 

searches because: 
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a.  The method doesn’t rely directly on queries and keywords selected by a 

human expert. The method uses a classification models to process all 

retrieved patents in a corpus.  

b. The method doesn’t have human error. The method doesn’t retrieve 

duplicate patents and doesn’t judge contradictorily one patent to 

relevant and irrelevant. 

c. The method performs patent classification extremely faster than an 

expert. 

6.2. Ontological Semantic Classification 

As a remedy for the low performance of human experts in patent search, 

ontological semantic classification (OSC) can mitigate the effects of this problem. 

Therefore, three hypotheses are introduced in section 1.3 and three scenarios are 

designed in section 3.3 to examine what kind of keywords (regular, ontological, and 

ontological semantic) and which of the classifiers (k-NN, SVM, and random forest) have 

the best performance in patent classification. In these hypotheses, it is assumed that 

OSC would outperform RC and OC. In the Finex case, ontologies for the product features 

and the enabling technologies are developed and applied to two data sets: the Finex 

experts’ data set and expert panel’s data set. Therefore, the hypotheses are literally 

examined two times, and consequently, the performance of OSC is examined four times, 

as shown in Table 45.  
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Data set Finex Experts Expert Panel 

Ontology PF TA PF TA 

Classification RC OC OSC RC OC OSC RC OC OSC RC OC OSC 

Hypotheses 

examination 
#1 #2 

RC: Regular Classification, OC: Ontological Classification, OSC: Ontological Semantic Classification 
PF: Product Features, ET: Enabling technologies 
 

Table 45- the combinations of data sets, ontologies, classifications, and hypotheses examinations 

 

The hypotheses are confirmed in examinations by two sets of experts. Therefore, 

OSC has the best performance in patent search for the product features ontology and 

for the enabling technologies ontology. Also, SVM classifier is the best classifier in the 

three of the OSCs, and k-NN is only in one OSC. Therefore, SVM can be considered as 

the number one priority in choosing classifiers for OSC; however, k-NN should be 

considered as the back-up classifier in case of the weak performance of SVM.  

6.2.1. Reliability of OC and OSC   

As mentioned in Chapter 3, a group of external experts participated in the patent 

search; their performance and behavior are reflected in section 4.2. Since the panel 

experts applied the ontology of the enabling technologies of Finex, the patents classified 

by the panel experts are deployed to reexamine the hypotheses mentioned in chapter 1. 

The final results are shown in Table 46. 

 



 

172 

Sc
en

ar
io

 
Classifier 

Ave. of 

Sensitiv

ity 

Ave. of 

Specificit

y 

Ave. of 

ROC 

AUC 

Ave. of 

Accuracy 

Ave. of 

Precision 

Ave. of 

F-score 

R
C

 

Chance 0.38 0.68 0.53 0.59 0.56 0.36 

k-NN (n=9) 0.21 0.81 0.51 0.63 0.50 0.23 

random forest (n =11) 0.07 0.93 0.50 0.66 0.44 0.10 

SVM (C= 10, Gamma= 

0.1, kernel= RBF) 

0.35 0.68 0.52 0.58 0.50 0.32 

O
C

 

Chance 0.37 0.68 0.52 0.58 0.54 0.35 

k-NN (n=5) 0.11 0.90 0.50 0.65 0.48 0.14 

Random forest (n =5) 0.27 0.79 0.53 0.63 0.52 0.28 

SVM (C= 10, Gamma= 0.1, 

kernel= RBF) 
0.57 0.59 0.58 0.58 0.58 0.45 

O
SC

 

Chance 0.37 0.68 0.52 0.58 0.54 0.35 

k-NN (n=5) 0.18 0.86 0.52 0.65 0.51 0.22 

random forest (n=9) 0.21 0.85 0.53 0.65 0.52 0.24 

SVM(C= 20, Gamma= 

0.1, kernel= RBF) 
0.58 0.64 0.61 0.62 0.62 0.48 

Table 46- The performance of the classifiers based on the patents classified in the patent search experiment 

 

As shown in Table 46, the SVM classifier with ROC AUC 0.52 has the best 

performance in the regular classification (RC); however, all of the classifiers performed 

worse than ‘chance’ in RC. The SVM classifier with C= 10, Gamma= 0.1, RFB kernel has 

the best performance in the ontological classification (OC). The ROC AUC of the SVM is 

0.58, and its sensitivity and F-score is much higher than the other classifiers in the OC. 

Similarly, the SVM classifier with C= 20, Gamma= 0.1, and RFB kernel has the best 

performance in the ontological semantic classification (OSC). The ROC AUC and the 

sensitivity of the SVM are 0.61 and 0.58, respectively. Also, the other measures of the 

SVM are generally better than those of the other classifiers in the OSC. 
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By comparing the performance measures of the best classifiers in the RC, OC, and 

OSC scenarios, the hypotheses are reconfirmed. The OSC performs better than the RC 

and the OC. Also, the OC performs better than the RC.  

6.3. Human Expert’s roles in OSC 

Even though OSC can be considered an intelligent method, it still relies on human 

experts in three activities: 1) ontology design; 2) data set (training set and test set) 

preparation; and 3) opportunity authentication. The performance of human experts in 

activities 1 and 2 impacts the performance of OSC directly, as experts are the only ones 

who can authenticate the opportunities identified by OSC.  

6.3.1. Ontology Design and Evaluation 

The ontological keywords of the product features and the enabling technologies 

are the main inputs of OC and OSC, as shown in Figure 37. If an ontological keyword has 

a high frequency number in a corpus, this keyword is not discriminative enough for 

classification purposes.   

The cut-off value is a good criterion to see if a keyword is discriminative enough. 

As shown in Figure 51, 50% of the ontological keywords of the product features have a 

total term frequency more than the cut-off value (of 20,000). On the other hand, as 

shown in Figure 52, 66% of the ontological semantic keywords have a total term 

frequency more than the cut-off value. This means the ontological semantic keywords 

are more discriminative than the ontological keywords. This fact explains why 
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ontological semantic classification (OSC) performs better than ontological classification 

(OC). 

 
Figure 51- The ontological keywords of the product features (ranked based on their term frequencies in the corpus) 

 

If an ontology does not contain enough discriminative ontological keywords, the 

ontological keywords cannot perform well in classification. The first ontology of the 

enabling technologies, Figure 53, has this deficiency. This problem prevents reasonable 

performance of OC and OSC. Only 13% of the ontological keywords are under the cut-off 

value, as shown in Figure 54. By developing the second edition of the ontology of the 

enabling technologies (shown in Figure 55), the percentage of the ontological keywords 

whose term frequency is greater than the cut-off value increased to 37%.  This 
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improvement could not lead to an acceptable performance in the OC; see Table 42 in 

chapter 4.    

 

Figure 52- The ontological semantic keywords of the product features (ranked based on their term frequencies in the 
corpus) 
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Figure 53- The first edition of the ontology of the enabling technologies (thin wall iron casting) 

 
Figure 54- The ontological keywords of the first enabling technologies (ranked based on their term frequencies in the 
corpus) 
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Figure 55- The second edition of the ontology of the enabling technologies (thin wall iron casing) 

 
Figure 56- The ontological keywords of the 2nd edition of the enabling technologies (ranked based 
on their term frequencies in the corpus) 
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The ontological semantic keywords of the 2nd edition contain more discriminating 

keywords. The frequency of 59% of these keywords is greater than the cut-off value. 

Therefore, the OSC of the enabling technologies performs reasonably (see Table 42 in 

chapter 5). 

 In order to increase the performance of the proposed method, experts need to 

know the cut-off value and the total term frequency of ontological keywords during 

ontology design sessions to pick stronger keywords. This ability improves the efficiency 

of the method to achieve better performance in OC and OCS. 

 

 
Figure 57- The ontological semantic keywords of the 2

nd
 edition of the enabling technologies 

(ranked based on their term frequencies in the corpus) 
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6.3.2. Data set preparation 

Experts should spend enough time to classify both relevant and irrelevant patents 

to the subject of an ontology (e.g., based on the findings of this dissertation, 30 minutes 

for 10 patents). Often, the number of relevant patents in a patent search is much less 

than the number of irrelevant patents. Finding irrelevant patents is not a big challenge 

because they can often be recognized just by looking at the title of the patent. On the 

other hand, finding relevant patents could be a challenge, since experts need to read 

parts of the content (e.g. the abstract, a few paragraphs of the description or a few 

paragraphs of the claims) of the patent to recognize its relevancy. Therefore, experts 

may initially provide just a small number of relevant patents. However, they should be 

ready to find more relevant patents during patent search, if they used weak 

performance measures during cross validation.  

6.4. Wrap-up 

1. Human experts are unreliable, inefficient, and not very effective when it comes to 

performance in patent search. Ontological semantic (OSC) classification is suggested 

to improve the performance of the experts in the patent search.  

2. OSC has two characteristics that differentiate it from methods deployed by human 

experts in patent search. The characteristics are: 1) using computer capabilities 

including natural language processing, information retrieval, and classification as a 

machine learning method; and 2) relying on ontologies. These capabilities help 

improve the reliability, efficiency, and effectiveness of human experts’ efforts in 

patent search. 
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3. The classifiers exhibit different performances for product features and enabling 

technologies. The classifiers perform very well for the product features, and they 

perform moderately well for the enabling technologies. The ontological keywords 

play a major role in the performance of the ontological classifications (OCs) and 

consequently in the performance of the ontological semantic classifications (OSCs). 

The total term frequency number of the ontological keywords determines how 

discriminative each ontological keyword is. Comparing the total term frequency 

number with the cut-off value determines the status of every ontological keyword. 

To boost the performance of OCs and OSCs, experts should consider the total term 

frequency number of ontological keywords during ontology design. 

4. The more discriminative the ontological keywords, the better the classification 

performance. In order to have discriminative ontological keywords during ontology 

design, human experts should preferably take keywords whose total term 

frequency is lower than the cut-off value. Therefore, term frequency numbers 

should be calculated and cut-off value should be determined before ontology 

design.  

5. Ontology evaluation (validation) is very important when experts do a patent search 

for a complex concept like the enabling technologies in the Finex case. The 

evaluation by other experts improves the quality of an ontology, and consequently 

improves the performance of a classification. 
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CHAPTER 7: CONCLUSIONS  

In this chapter, I draw conclusions pertaining to the hypotheses described in 

section 1.3, which are based upon the results of the classifications for the product 

features and the enabling technologies that are discussed in chapters 4, 5 and 6. I also 

identify the limitations of applying natural language processing, information retrieval, 

and machine learning based on the results of the study. In addition, the theoretical 

contributions and practical implications of the study are reviewed. At the end, some 

extensions of the study are suggested for future research. 

7.1. Main Findings 

According to the Hypothesis 1, applying ontological keywords (ontological 

classification) improves the performance of classification over the base line (regular 

classification). The ROC AUC and F-score measures of the classifications for the product 

features (Table 31) and the ROC AUC and F-score measures of the classifications for the 

enabling technologies (Table 42) indicate that the performance of the ontological 

classification is better than that of regular classification. Therefore, the Hypothesis 1 is 

confirmed.  

According to the Hypothesis 2, applying ontological keywords and their 

synonyms (ontological semantic classification) improves the performance of 

classification over the base line (regular classification). The ROC AUC and F-score 

measures of the classifications for the product features (Table 31) and the ROC AUC and 

F-score measures of the classifications for the enabling technologies (Table 42) indicate 
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that the performance of the ontological semantic classification is better than that of 

regular classification. Therefore, Hypothesis 2 is confirmed.  

According to Hypothesis 3, applying ontological keywords and their synonyms 

(ontological semantic classification) improves the performance of classification over that 

of ontological classification. The ROC AUC and F-score measures of the classifications for 

the product features (Table 31) and the ROC AUC and F-score measures of the 

classifications for the enabling technologies (Table 42) indicate that the performance of 

the ontological semantic classification is better than that of ontological classification. 

Therefore, Hypothesis 3 is confirmed.  

According to the patent search results described in section 4.2 and discussed in 

section 6.1, experts performed unreliably, inefficiently and with relatively low 

effectiveness. Applying OSC in to patent search improves all factors pertaining to search 

behavior. OSC eliminates ‘error’ (duplicates and contradictions), improves ‘search 

speed‘, and expands ‘keywords diversity’ by considering ontological keywords and their 

synonyms. Therefore, OSC increases patent search performance in terms of reliability, 

efficiency, and effectiveness. 

7.2. Contributions  

Fulk and Steinfeld’s discussion on the uses of theory reveals the following 

potential contributions to theory that an academic study can make (Fulk & Steinfield, 

1990).  
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1) to provide a framework for identifying empirical patterns; 

2) to resolve inconsistencies across studies; 

3) to generate hypotheses by which generalizable conclusions may be 

tested; 

4) to provide perspective on larger issues; 

5) to recommend directions for future research; and 

6) to help integrate knowledge from related fields. 

In alignment with Steinfeld and Fulk (1990), this dissertation has made the 

contributions to theory listed below.  Each of the numbered items below corresponds to 

the item with the same number in Fulk and Steinfeld (1990). 

1- The method developed in this dissertation has yielded the search framework, 

which can identify a concept in a textual corpus, as has demonstrated for specific 

CPC classes within the USPTO. Figure 58 compares this framework to the state of 

the art in patent search.  

As shown in Figure 58, patent searches that reflect the state of the art contain 

four cyclic steps. The expert that conducts the patent search starts with query 

design. He/she subsequently retrieves some patents and judges them. He/she  
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Figure 58- State of the Art vs. OSC Framework  

 

revises his/her queries depending on what he/she learns. This process continues 

until the expert believes that he/she cannot find any more relevant results. The 

results from the patent search experiment indicate that a patent search that 

reflects the current state of the art has a judgement rate of about one patent per 

minute. Thus, an expert cannot retrieve and judge all patents in a corpus 

because of time and cost limitations. Furthermore, the majority of patents that 

are judged may end up being irrelevant.  

The method developed in this dissertation enhances the performance of patent 

searches by applying machine learning. In this approach, the keywords used in 



 

185 

the ontology (ontological keywords) and their synonyms are considered the main 

features that train classifiers such as k-NN and SVM. Classifiers determine 

whether the documents in the corpus are relevant or irrelevant to the concepts 

in the ontology. The expert still has to invest about 50 to 150 cycles in training 

the classifier, which takes from 50 to 150 minutes. After that, the machine 

classifier classifies patents at a rate in excess of 10,000 per minute. And, unlike 

human experts, the proposed method retrieves and figures out the relevance of 

all patents in a corpus. Thus, the method developed in this dissertation 

significantly improves upon the performance of patent searches that represent 

the current state of the art. 

The approach developed in this dissertation is not restricted to the USPTO. 

Further research, which is described in section 7.5, would allow this method to 

be deployed in other patent databases (such as the European Patent Offices 

database). It could also be applied to texts that are not patents.  

2- In many patent analysis studies, including those based on patent mining and 

citation analysis, data sets are provided based on two patent extraction 

methods: 1) retrieving patents based on queries; and 2) retrieving patents based 

on related CPC classes. In reality, the data sets provided based on the 

abovementioned methods contain many patents that are irrelevant to the 

subject of the study. In other words, those methods come up with data sets with 

lots of noise, which reduces the accuracy of the studies. The method described in 
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this dissertation can be applied as a complementary method to reduce irrelevant 

patents (noise) from the data sets and improve the performance of patent 

analysis.  

3- The study in this dissertation has shown that ontological semantic classification 

is the best scenario for patent classification.  This approach is generalizable to a 

variety of topics that involve the analysis of many kinds of texts, not just patents. 

It is thus possible to generate hypotheses that test the approach in a variety of 

contexts.   

4- To date, network approaches to patent analysis are restricted to citation analysis 

and keyword analysis. Ontological semantic classification allows us to look at 

patents from the network perspective.  This dissertation may thus serve as the 

impetus for applying the network perspective to the content (abstract, 

description and claims) of patents.  

5- The research conducted for this dissertation may motivate future researchers to 

investigate the relations between patents in terms of the concepts introduced in 

their corpuses. The researchers can look at the patent networks in terms of the 

extent to which the patents under investigation have covered the whole concept 

or just some components of the concept (as modeled by ontologies). 

6- Finally, the classification scheme proposed in this dissertation integrates three 

fields of computer science—Natural Language Processing (NLP), Information 

Retrieval (IR), and Machine Learning—with ontological semantic analysis.  
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7.3. Implications for Practitioners  

The method developed in this dissertation can be applied widely in areas where 

practitioners need to recognize one or multiple concepts in patent databases that 

contain a large number of documents. Therefore, the proposed method provides the 

capability to recognize technologies in USPTO database for a variety of purposes such 

as: 

- Opportunity identification: identifying technologies which match with specific 

product features and specific enabling technologies.  

- Technology landscaping: identifying technologies which match specific 

product features. 

- Technology Acquisition: identifying companies that developed a specific 

technology. 

In addition, the proposed method can be applied in areas outside of technology 

management such as infringement analysis, which is a method to identify patents that 

ignore prior intellectual property. 

7.4. Limitations 

This proposed research is subject to the following limitations: 

1- The data set (patents of C22C and B22D sub-classes) is provided by the 

USPTO database, while experts in this study use the Google patent search 

engine. The content of some patents identified by the Google engine are not 
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available in the USPTO database. This problem is not limited to old patents. 

Even, some recently issued patents are not available in USPTO database. To 

solve this problem, the unavailable patents are manually downloaded from 

the Google database and added manually to the data set. 

2- WordNet database is used as the main source of the synonyms of the 

ontological keywords. Some keywords may have been common synonyms in 

the field of the study, but they are not considered as a synonym in WordNet. 

For example, ‘lightweight’ is a common term used in the patents, but it 

doesn’t exist in WordNet, so it is not available as a synonym of ‘light’.  

3- The more time is spent by the experts, the more patents are classified by 

experts, and the better the performance of the classifiers become. The time 

constraint of experts is always an important limitation in this study.  

7.5. Future Studies 

There are a few directions suggested for the future studies: 

1- It is expected that this research will be applicable on European 

patents because the structure of these patents is similar to those of 

the USPTO database, and these patents are written in English. Further 

research is required to assess whether the approach developed in this 

dissertation can be to other foreign patent databases. Chinese and 

Japanese patents are of special concern because of the large linguistic 

differences between English and these Far Eastern languages, as well 
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as the fundamental differences between western and kanji-based in 

writing.   

2- A literature review is a part of almost every research study. 

Researchers search the literature to identify multiple concepts that 

are relevant to their research. They can use the proposed method to 

classify the papers based on every concept they identify. This method 

improves the performance of researchers to review a large number of 

papers in a short time. They can use complementary methods such as 

keyword network analysis and clustering analysis to come up with 

more tangible results. This has not been done to date, and 

consequently should be considered a subject of future research.   

3- The proposed method provides a background to do network analysis 

based on the content of papers. After recognizing relevant patents by 

using the proposed method, a researcher can generate a network of 

patents based on the similarity between patents and the ontology 

under study. The nodes are the patents and the links are the 

similarities measured between patents. The similarities are 

determined based on how much two patents are similar according to 

the ontology under study. Core-Periphery structure analysis (Madani, 

Daim, & Weng, 2015) can be applied to identify novel opportunities.  
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Developing technology intelligence tools, such as the abovementioned 

suggestions and the method of this dissertation, will make technical and academic 

information more available and accessible to practitioners and decision makers. As a 

consequence, practitioners and decision makers reduce their reliance on experts to 

extract data from data sources, to convert the data to information, and to generate 

knowledge from information, in order to make wise decisions.  
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Appendix A: The Questionnaire of Ontology Evaluation 

 

1- Accuracy 
 The asserted knowledge in the ontology of thin wall casting agrees with the 
expert’s knowledge about the domain. 
 
 
Strongly Disagree:     Disagree:   Neutral:   Agree:     Strongly Agree: 
 
Please write you’re your suggestions to make the ontology more accurate: 

……………………………………………………………………………………………… 

……………………………………………………………………………………………… 

 
 
 

2- Adaptability  
 

The ontology of thin wall casting can be used easily in different contexts possibly 
by allowing it to be extended and specialized monotonically, i.e. without the need 
to remove axioms 
 
 
Strongly Disagree:     Disagree:   Neutral:   Agree:     Strongly Agree: 
 
Please write you’re your suggestions to make the ontology more adaptable: 

……………………………………………………………………………………………… 

……………………………………………………………………………………………… 

3- Clarity  
The ontology of thin wall casting communicates effectively the intended meaning 
of thin wall casting. 
 
 
 
Strongly Disagree:     Disagree:   Neutral:   Agree:     Strongly Agree: 
 
Please write you’re your suggestions to make the ontology more clear: 
……………………………………………………………………………………………… 

……………………………………………………………………………………………… 

……………………………………………………………………………………………… 

4- Cohesion  
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The elements of the ontology of ‘thin wall casting’ are strongly related.  
 
 
 
Strongly Disagree:     Disagree:   Neutral:   Agree:     Strongly Agree: 
 
Please write you’re your suggestions to make the ontology more cohesive: 
……………………………………………………………………………………………… 

……………………………………………………………………………………………… 

……………………………………………………………………………………………… 

5- Completeness  
 

The elements of the ontology of thin wall casting completely cover all aspects of 
thin wall casting.  
 
 
Strongly Disagree:     Disagree:   Neutral:   Agree:     Strongly Agree: 
 
Please write you’re your suggestions to make the ontology more completed: 
……………………………………………………………………………………………… 

……………………………………………………………………………………………… 

……………………………………………………………………………………………… 

……………………………………………………………………………………………… 

6- Conciseness 
 The elements of the ontology of thin wall casting don’t reflect any irrelevant or 

redundant aspects of thin wall casting.  

 

 
 
Strongly Disagree:     Disagree:   Neutral:   Agree:     Strongly Agree: 
 
Please write you’re your suggestions to make the ontology more concise: 
……………………………………………………………………………………………… 

……………………………………………………………………………………………… 

……………………………………………………………………………………………… 

 

7- Consistency 
The ontology of thin wall casting doesn’t include or allow any contradictions. 



 

219 

 

 
Strongly Disagree:     Disagree:   Neutral:   Agree:     Strongly Agree: 
 
Please write your suggestions to make the ontology more consistent: 
……………………………………………………………………………………………… 

……………………………………………………………………………………………… 

………………………………………………………………………………………………  
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Appendix B: Stop Words 

A but from keeps often seen thru you're 

able by further kept oh self thus yours 

about c 
furtherm
ore kg ok selves to yourself 

above ca g km okay sensible together 
yourselv
es 

abst came gave know old sent too you've 

accordance can get known omitted serious took z 

according cannot gets knows on seriously toward zero 

accordingly cant getting l once seven towards january 

across can't give largely one several tried february 

act cause given last ones shall tries march 

actually causes gives lately only she truly april 

added certain giving later onto shed try may 

adj certainly go latter or she'll trying june 

affected changes goes latterly ord shes t's july 

affecting clearly going least other should twice august 

affects c'mon gone less others shouldn't two 
septemb
er 

after co got lest otherwise show u october 

afterwards com gotten let ought showed un 
novemb
er 

again come greetings lets our shown under 
decemb
er 

against comes h let's ours showns 
unfortunat
ely xii 

ah concerning had like ourselves shows unless xiii 

ain't 
consequent
ly hadn't liked out significant unlikely xiv 

all consider happens likely outside 
significant
ly until xix 

allow considering hardly line over similar unto xxiv 

allows contain has little overall similarly up vii 

almost containing hasn't 'll owing since upon viii 

alone contains have look own six us HR 

along 
correspond
ing haven't looking p slightly use BR 

already could having looks page so used   

also couldnt he ltd pages some useful   

although couldn't hed m part 
somebod
y uses   

always course hello made particular somehow using   

am c's help mainly particularly someone usually   
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among currently hence make past somethan v   

amongst d her makes per 
somethin
g value   

an date here many perhaps sometime various   

and definitely hereafter may placed 
sometime
s very   

announce described hereby maybe please 
somewha
t via   

another despite herein me plus 
somewhe
re viz   

any did heres mean poorly soon vs   

anybody didn't here's means possible sorry w   

anyhow different hereupon meantime possibly 
specificall
y want   

anymore do hers 
meanwhil
e potentially specified wants   

anyone does herself merely pp specify was   

anything doesn't hes mg 
predomina
ntly specifying wasn't   

anyway doing he's might present still way   

anyways done hi million presumably stop we   

anywhere don't hid miss previously strongly we'd   

apart down him ml primarily sub welcome   

apparently downwards himself more probably 
substantia
lly well   

appear due his moreover promptly 
successful
ly we'll   

appreciate during hither most proud such went   

appropriate e home mostly provides 
sufficientl
y were   

approximat
ely each hopefully mr put suggest we're   

are ed how mrs q sup weren't   

aren edu howbeit much que sure we've   

arent effect however mug quickly t what   

aren't eg hundred must quite take whatever   

arise eight i my qv taken what's   

around eighty id myself r tell when   

as either i'd n ran tends whence   

a's else ie na rather th whenever   

aside elsewhere if name rd than where   

ask end ignored namely re thank whereafter   

asking ending i'll nay readily thanks whereas   

associated enough im nd really thanx whereby   

at entirely i'm near reasonably that wherein   
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Table 47- Stop Words 

  

auth especially 
immediat
e nearly recent thats where's   

available et 
immediat
ely 

necessaril
y recently that's 

whereupo
n   

away et-al 
importan
ce necessary ref the wherever   

awfully etc important need refs their whether   

B even in needs regarding theirs which   

back evenly inasmuch neither regardless them while   

be ever inc never regards 
themselve
s whither   

became every indeed 
neverthel
ess related then who   

because everybody index new relatively thence whoever   

become everyone indicate next research there whole   

becomes everything indicated nine respectively thereafter whom   

becoming everywhere indicates ninety resulted thereby who's   

been ex 
informati
on no resulting therefore whose   

before exactly inner nobody results therein why   

beforehand example insofar non right theres will   

begin except instead none run there's willing   

beginning f into 
nonethele
ss s 

thereupo
n wish   

beginnings far invention noone said these with   

begins few inward nor same they within   

behind ff is normally saw they'd without   

being fifth isn't nos say they'll wonder   

believe first it not saying they're won't   

below five itd noted says they've would   

beside fix it'd nothing sec think wouldn't   

besides followed it'll novel second third www   

best following its now secondly this x   

better follows it's nowhere section thorough y   

between for itself o see 
thoroughl
y yes   

beyond former i've obtain seeing those yet   

biol formerly j obtained seem though you   

both forth just obviously seemed three you'd   

brief found k of seeming through you'll   

briefly four keep off seems 
througho
ut your   
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Appendix C: SVM Performance in RC, OC, and OSC for the Market Need 

SVM Parameters 
Averag

e of 
Sensiti

vity 

Average 
of 

Specificit
y 

Average of 
ROC AUC 

Average of 
Accuracy 

Average of 
Precision 

Average 
of F-
score C 

G
am

m
a

 
0.001 

0.1 0.30 0.96 0.63 0.81 0.40 0.32 

0.001 
0.2 0.30 0.96 0.63 0.82 0.40 0.32 

0.001 
0.3 0.30 0.95 0.62 0.81 0.40 0.32 

0.001 
0.4 0.31 0.96 0.63 0.82 0.40 0.33 

0.001 
0.5 0.31 0.96 0.63 0.82 0.40 0.33 

0.001 
0.6 0.29 0.96 0.63 0.82 0.40 0.32 

0.001 
0.7 0.30 0.96 0.63 0.81 0.40 0.32 

0.001 
0.8 0.30 0.96 0.63 0.82 0.40 0.32 

0.001 
0.9 0.30 0.96 0.63 0.82 0.40 0.32 

0.001 
1 0.30 0.96 0.63 0.82 0.40 0.33 

0.01 
0.1 0.00 1.00 0.50 0.77 0.40 0.00 

0.01 
0.2 0.00 1.00 0.50 0.77 0.40 0.00 

0.01 
0.3 0.00 1.00 0.50 0.77 0.40 0.00 

0.01 
0.4 0.00 1.00 0.50 0.77 0.40 0.00 

0.01 
0.5 0.00 1.00 0.50 0.77 0.40 0.00 

0.01 
0.6 0.00 1.00 0.50 0.77 0.40 0.00 

0.01 
0.7 0.00 1.00 0.50 0.77 0.40 0.00 

0.01 
0.8 0.00 1.00 0.50 0.77 0.40 0.00 

0.01 
0.9 0.00 1.00 0.50 0.77 0.40 0.00 

0.01 
1 0.00 1.00 0.50 0.77 0.40 0.00 



 

224 

SVM Parameters 
Averag

e of 
Sensiti

vity 

Average 
of 

Specificit
y 

Average of 
ROC AUC 

Average of 
Accuracy 

Average of 
Precision 

Average 
of F-
score C 

G
am

m
a

 
0.1 

0.1 0.20 0.80 0.50 0.65 0.40 0.06 

0.1 
0.2 0.20 0.80 0.50 0.65 0.40 0.06 

0.1 
0.3 0.20 0.80 0.50 0.65 0.40 0.06 

0.1 
0.4 0.20 0.80 0.50 0.65 0.40 0.06 

0.1 
0.5 0.20 0.80 0.50 0.65 0.40 0.06 

0.1 
0.6 0.20 0.80 0.50 0.65 0.40 0.06 

0.1 
0.7 0.20 0.80 0.50 0.65 0.40 0.06 

0.1 
0.8 0.20 0.80 0.50 0.65 0.40 0.06 

0.1 
0.9 0.20 0.80 0.50 0.65 0.40 0.06 

0.1 
1 0.20 0.80 0.50 0.65 0.40 0.06 

1.00E-05 
0.1 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-05 
0.2 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-05 
0.3 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-05 
0.4 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-05 
0.5 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-05 
0.6 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-05 
0.7 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-05 
0.8 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-05 
0.9 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-05 
1 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-09 
0.1 0.21 0.80 0.50 0.65 0.40 0.07 
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SVM Parameters 
Averag

e of 
Sensiti

vity 

Average 
of 

Specificit
y 

Average of 
ROC AUC 

Average of 
Accuracy 

Average of 
Precision 

Average 
of F-
score C 

G
am

m
a

 
1.00E-09 

0.2 0.20 0.80 0.50 0.65 0.40 0.06 

1.00E-09 
0.3 0.20 0.80 0.50 0.65 0.40 0.06 

1.00E-09 
0.4 0.21 0.80 0.50 0.65 0.40 0.07 

1.00E-09 
0.5 0.21 0.80 0.50 0.65 0.40 0.07 

1.00E-09 
0.6 0.20 0.80 0.50 0.65 0.40 0.06 

1.00E-09 
0.7 0.21 0.80 0.50 0.65 0.40 0.07 

1.00E-09 
0.8 0.20 0.80 0.50 0.65 0.40 0.06 

1.00E-09 
0.9 0.20 0.80 0.50 0.65 0.40 0.06 

1.00E-09 
1 0.20 0.80 0.50 0.65 0.40 0.06 

10 
0.1 0.47 0.95 0.71 0.84 0.77 0.53 

10 
0.2 0.49 0.95 0.72 0.84 0.78 0.54 

10 
0.3 0.49 0.95 0.72 0.85 0.78 0.54 

10 
0.4 0.48 0.95 0.71 0.84 0.80 0.54 

10 
0.5 0.48 0.95 0.72 0.84 0.77 0.53 

10 
0.6 0.48 0.95 0.71 0.84 0.76 0.54 

10 
0.7 0.48 0.95 0.71 0.84 0.75 0.53 

10 
0.8 0.47 0.95 0.71 0.84 0.77 0.53 

10 
0.9 0.48 0.95 0.71 0.84 0.76 0.53 

10 
1 0.47 0.95 0.71 0.84 0.77 0.53 

100 
0.1 0.49 0.95 0.72 0.84 0.77 0.53 

100 
0.2 0.49 0.95 0.72 0.84 0.76 0.53 
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SVM Parameters 
Averag

e of 
Sensiti

vity 

Average 
of 

Specificit
y 

Average of 
ROC AUC 

Average of 
Accuracy 

Average of 
Precision 

Average 
of F-
score C 

G
am

m
a

 
100 

0.3 0.47 0.95 0.71 0.84 0.78 0.53 

100 
0.4 0.48 0.95 0.71 0.84 0.77 0.53 

100 
0.5 0.48 0.95 0.72 0.84 0.78 0.54 

100 
0.6 0.47 0.95 0.71 0.84 0.72 0.52 

100 
0.7 0.47 0.95 0.71 0.84 0.77 0.53 

100 
0.8 0.48 0.95 0.71 0.84 0.75 0.53 

100 
0.9 0.49 0.95 0.72 0.84 0.74 0.54 

100 
1 0.48 0.95 0.72 0.85 0.78 0.55 

20 
0.1 0.48 0.95 0.72 0.84 0.78 0.54 

20 
0.2 0.47 0.95 0.71 0.84 0.78 0.53 

20 
0.3 0.48 0.95 0.71 0.84 0.74 0.53 

20 
0.4 0.49 0.95 0.72 0.85 0.81 0.55 

20 
0.5 0.49 0.95 0.72 0.85 0.75 0.55 

20 
0.6 0.49 0.95 0.72 0.85 0.77 0.55 

20 
0.7 0.47 0.95 0.71 0.84 0.78 0.53 

20 
0.8 0.48 0.95 0.72 0.84 0.77 0.54 

20 
0.9 0.47 0.95 0.71 0.84 0.74 0.53 

20 
1 0.48 0.95 0.71 0.84 0.77 0.53 

50 
0.1 0.48 0.95 0.71 0.84 0.76 0.53 

50 
0.2 0.47 0.95 0.71 0.84 0.77 0.53 

50 
0.3 0.47 0.95 0.71 0.84 0.72 0.52 
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SVM Parameters 
Averag

e of 
Sensiti

vity 

Average 
of 

Specificit
y 

Average of 
ROC AUC 

Average of 
Accuracy 

Average of 
Precision 

Average 
of F-
score C 

G
am

m
a

 
50 

0.4 0.48 0.95 0.71 0.84 0.72 0.53 

50 
0.5 0.49 0.95 0.72 0.85 0.79 0.54 

50 
0.6 0.47 0.95 0.71 0.84 0.76 0.53 

50 
0.7 0.49 0.95 0.72 0.85 0.77 0.54 

50 
0.8 0.48 0.94 0.71 0.84 0.72 0.52 

50 
0.9 0.48 0.95 0.71 0.84 0.74 0.53 

50 
1 0.49 0.95 0.72 0.84 0.79 0.53 

1.00E-07 
0.1 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-07 
0.2 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-07 
0.3 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-07 
0.4 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-07 
0.5 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-07 
0.6 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-07 
0.7 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-07 
0.8 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-07 
0.9 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-07 
1 0.00 1.00 0.50 0.77 0.40 0.00 

Table 48- SVM classifier performance:  regular classification for the product features (kernel: linear) 
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C 

G
am

m
a

 Avera
ge of 

Sensiti
vity 

Average of 
Specificity 

Average of 
ROC_AUC 

Average of 
Accuracy 

Average of 
Precision 

Average 
of F-score 

0.001 
0.1 0.28 0.96 0.62 0.81 0.40 0.31 

0.001 
0.2 0.29 0.96 0.62 0.81 0.40 0.32 

0.001 
0.3 0.28 0.96 0.62 0.82 0.40 0.32 

0.001 
0.4 0.28 0.96 0.62 0.81 0.40 0.31 

0.001 
0.5 0.27 0.96 0.62 0.81 0.40 0.30 

0.001 
0.6 0.25 0.96 0.61 0.81 0.40 0.29 

0.001 
0.7 0.24 0.97 0.60 0.81 0.40 0.28 

0.001 
0.8 0.23 0.97 0.60 0.81 0.40 0.26 

0.001 
0.9 0.22 0.97 0.60 0.81 0.40 0.25 

0.001 
1 0.20 0.97 0.59 0.81 0.40 0.24 

0.01 
0.1 0.00 1.00 0.50 0.77 0.40 0.00 

0.01 
0.2 0.00 1.00 0.50 0.77 0.40 0.00 

0.01 
0.3 0.00 1.00 0.50 0.77 0.40 0.00 

0.01 
0.4 0.00 1.00 0.50 0.77 0.40 0.00 

0.01 
0.5 0.00 1.00 0.50 0.77 0.40 0.00 

0.01 
0.6 0.00 1.00 0.50 0.77 0.40 0.00 

0.01 
0.7 0.00 1.00 0.50 0.77 0.40 0.00 

0.01 
0.8 0.00 1.00 0.50 0.77 0.40 0.00 

0.01 
0.9 0.00 1.00 0.50 0.77 0.40 0.00 

0.01 
1 0.00 1.00 0.50 0.77 0.40 0.00 

0.1 
0.1 0.20 0.80 0.50 0.65 0.40 0.06 
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C 

G
am

m
a

 Avera
ge of 

Sensiti
vity 

Average of 
Specificity 

Average of 
ROC_AUC 

Average of 
Accuracy 

Average of 
Precision 

Average 
of F-score 

0.1 
0.2 0.20 0.80 0.50 0.65 0.40 0.06 

0.1 
0.3 0.20 0.80 0.50 0.65 0.40 0.06 

0.1 
0.4 0.20 0.80 0.50 0.65 0.40 0.06 

0.1 
0.5 0.20 0.80 0.50 0.65 0.40 0.06 

0.1 
0.6 0.20 0.80 0.50 0.65 0.40 0.06 

0.1 
0.7 0.20 0.80 0.50 0.65 0.40 0.06 

0.1 
0.8 0.20 0.80 0.50 0.65 0.40 0.06 

0.1 
0.9 0.20 0.80 0.50 0.65 0.40 0.06 

0.1 
1 0.20 0.80 0.50 0.65 0.40 0.06 

1.00E-

05 0.1 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-

05 0.2 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-

05 0.3 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-

05 0.4 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-

05 0.5 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-

05 0.6 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-

05 0.7 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E- 0.8 0.00 1.00 0.50 0.77 0.40 0.00 
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C 

G
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a

 Avera
ge of 

Sensiti
vity 

Average of 
Specificity 

Average of 
ROC_AUC 

Average of 
Accuracy 

Average of 
Precision 

Average 
of F-score 

05 

1.00E-

05 0.9 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-

05 1 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-

09 0.1 0.20 0.80 0.50 0.65 0.40 0.06 

1.00E-

09 0.2 0.20 0.80 0.50 0.65 0.40 0.06 

1.00E-

09 0.3 0.20 0.80 0.50 0.65 0.40 0.06 

1.00E-

09 0.4 0.20 0.80 0.50 0.65 0.40 0.06 

1.00E-

09 0.5 0.20 0.80 0.50 0.65 0.40 0.06 

1.00E-

09 0.6 0.20 0.80 0.50 0.65 0.40 0.06 

1.00E-

09 0.7 0.20 0.80 0.50 0.65 0.40 0.06 

1.00E-

09 0.8 0.20 0.80 0.50 0.65 0.40 0.06 

1.00E-

09 0.9 0.20 0.80 0.50 0.65 0.40 0.06 

1.00E-

09 1 0.20 0.80 0.50 0.65 0.40 0.06 

10 
0.1 0.66 0.91 0.78 0.85 0.77 0.64 
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G
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 Avera
ge of 

Sensiti
vity 

Average of 
Specificity 

Average of 
ROC_AUC 

Average of 
Accuracy 

Average of 
Precision 

Average 
of F-score 

10 
0.2 0.45 0.93 0.69 0.82 0.72 0.48 

10 
0.3 0.42 0.94 0.68 0.82 0.71 0.46 

10 
0.4 0.40 0.95 0.67 0.83 0.68 0.46 

10 
0.5 0.39 0.95 0.67 0.83 0.67 0.45 

10 
0.6 0.39 0.95 0.67 0.83 0.69 0.45 

10 
0.7 0.38 0.96 0.67 0.83 0.71 0.46 

10 
0.8 0.37 0.96 0.67 0.83 0.68 0.45 

10 
0.9 0.38 0.97 0.67 0.83 0.73 0.46 

10 
1 0.38 0.97 0.68 0.84 0.74 0.46 

100 
0.1 0.43 0.95 0.69 0.83 0.76 0.50 

100 
0.2 0.43 0.94 0.68 0.83 0.71 0.48 

100 
0.3 0.40 0.95 0.67 0.83 0.66 0.46 

100 
0.4 0.41 0.95 0.68 0.83 0.74 0.47 

100 
0.5 0.40 0.95 0.67 0.83 0.70 0.45 

100 
0.6 0.40 0.95 0.67 0.83 0.69 0.46 

100 
0.7 0.37 0.96 0.67 0.83 0.67 0.45 

100 
0.8 0.38 0.96 0.67 0.83 0.73 0.45 

100 
0.9 0.38 0.97 0.67 0.83 0.68 0.46 

100 
1 0.38 0.97 0.67 0.83 0.71 0.46 

20 
0.1 0.46 0.93 0.69 0.82 0.72 0.48 

20 
0.2 0.42 0.95 0.69 0.83 0.74 0.49 
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G
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m
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 Avera
ge of 

Sensiti
vity 

Average of 
Specificity 

Average of 
ROC_AUC 

Average of 
Accuracy 

Average of 
Precision 

Average 
of F-score 

20 
0.3 0.41 0.95 0.68 0.83 0.73 0.47 

20 
0.4 0.41 0.95 0.68 0.83 0.73 0.46 

20 
0.5 0.40 0.96 0.68 0.83 0.66 0.46 

20 
0.6 0.39 0.95 0.67 0.83 0.70 0.46 

20 
0.7 0.38 0.96 0.67 0.83 0.72 0.45 

20 
0.8 0.39 0.96 0.67 0.83 0.73 0.45 

20 
0.9 0.38 0.97 0.67 0.83 0.69 0.46 

20 
1 0.38 0.97 0.68 0.84 0.69 0.46 

50 
0.1 0.42 0.95 0.69 0.83 0.68 0.49 

50 
0.2 0.42 0.95 0.68 0.83 0.76 0.48 

50 
0.3 0.41 0.95 0.68 0.83 0.71 0.46 

50 
0.4 0.40 0.95 0.67 0.82 0.68 0.46 

50 
0.5 0.41 0.95 0.68 0.82 0.73 0.47 

50 
0.6 0.40 0.96 0.68 0.83 0.72 0.46 

50 
0.7 0.39 0.96 0.67 0.83 0.73 0.46 

50 
0.8 0.39 0.97 0.68 0.83 0.77 0.47 

50 
0.9 0.38 0.97 0.67 0.84 0.70 0.46 

50 
1 0.38 0.97 0.67 0.83 0.70 0.45 

1.00E-

07 0.1 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-

07 0.2 0.00 1.00 0.50 0.77 0.40 0.00 
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G
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m
a

 Avera
ge of 

Sensiti
vity 

Average of 
Specificity 

Average of 
ROC_AUC 

Average of 
Accuracy 

Average of 
Precision 

Average 
of F-score 

1.00E-

07 0.3 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-

07 0.4 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-

07 0.5 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-

07 0.6 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-

07 0.7 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-

07 0.8 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-

07 0.9 0.00 1.00 0.50 0.77 0.40 0.00 

1.00E-

07 1 0.00 1.00 0.50 0.77 0.40 0.00 

Table 49- SVM classifier performance: regular classification for the product features (kernel: rbf) 
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SVM Parameters Average 
of 

Sensitivity 

Average 
of 

Specificity 

Average 
of ROC 

AUC 

Average 
of 

Accuracy 

Average 
of 

Precision 

Average 
of F-
score C Gamma 

0.001 0.1 0.38 0.9 0.64 0.80 0.40 0.35 

0.001 0.2 0.40 0.89 0.65 0.79 0.40 0.36 

0.001 0.3 0.38 0.89 0.63 0.79 0.40 0.34 

0.001 0.4 0.39 0.89 0.64 0.79 0.40 0.35 

0.001 0.5 0.39 0.9 0.64 0.79 0.40 0.35 

0.001 0.6 0.37 0.89 0.63 0.79 0.40 0.33 

0.001 0.7 0.40 0.89 0.65 0.79 0.40 0.36 

0.001 0.8 0.39 0.9 0.64 0.79 0.40 0.35 

0.001 0.9 0.38 0.9 0.64 0.79 0.40 0.35 

0.001 1 0.39 0.89 0.64 0.79 0.40 0.35 

0.01 0.1 0.00 1 0.50 0.77 0.40 0.00 

0.01 0.2 0.00 1 0.50 0.77 0.40 0.00 

0.01 0.3 0.00 1 0.50 0.77 0.40 0.00 

0.01 0.4 0.00 1 0.50 0.77 0.40 0.00 

0.01 0.5 0.00 1 0.50 0.77 0.40 0.00 

0.01 0.6 0.00 1 0.50 0.77 0.40 0.00 

0.01 0.7 0.00 1 0.50 0.77 0.40 0.00 

0.01 0.8 0.00 1 0.50 0.77 0.40 0.00 

0.01 0.9 0.00 1 0.50 0.77 0.40 0.00 

0.01 1 0.00 1 0.50 0.77 0.40 0.00 

0.1 0.1 0.64 0.85 0.75 0.80 0.81 0.59 

0.1 0.2 0.65 0.86 0.76 0.81 0.80 0.60 

0.1 0.3 0.66 0.86 0.76 0.81 0.80 0.60 

0.1 0.4 0.65 0.86 0.76 0.81 0.77 0.60 

0.1 0.5 0.65 0.85 0.75 0.80 0.82 0.59 

0.1 0.6 0.64 0.86 0.75 0.81 0.83 0.60 

0.1 0.7 0.65 0.86 0.76 0.81 0.76 0.60 

0.1 0.8 0.65 0.85 0.75 0.80 0.80 0.60 

0.1 0.9 0.65 0.87 0.76 0.81 0.81 0.60 

0.1 1 0.65 0.85 0.75 0.80 0.82 0.59 

0.00001 0.1 0.00 1 0.50 0.77 0.40 0.00 

0.00001 0.2 0.00 1 0.50 0.77 0.40 0.00 

0.00001 0.3 0.00 1 0.50 0.77 0.40 0.00 
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SVM Parameters Average 
of 

Sensitivity 

Average 
of 

Specificity 

Average 
of ROC 

AUC 

Average 
of 

Accuracy 

Average 
of 

Precision 

Average 
of F-
score C Gamma 

0.00001 0.4 0.00 1 0.50 0.77 0.40 0.00 

0.00001 0.5 0.00 1 0.50 0.77 0.40 0.00 

0.00001 0.6 0.00 1 0.50 0.77 0.40 0.00 

0.00001 0.7 0.00 1 0.50 0.77 0.40 0.00 

0.00001 0.8 0.00 1 0.50 0.77 0.40 0.00 

0.00001 0.9 0.00 1 0.50 0.77 0.40 0.00 

0.00001 1 0.00 1 0.50 0.77 0.40 0.00 

1.E-09 0.1 0.49 0.72 0.60 0.66 0.40 0.32 

1.E-09 0.2 0.50 0.72 0.61 0.66 0.40 0.32 

1.E-09 0.3 0.49 0.72 0.60 0.66 0.40 0.32 

1.E-09 0.4 0.50 0.71 0.61 0.66 0.40 0.33 

1.E-09 0.5 0.47 0.73 0.60 0.66 0.40 0.31 

1.E-09 0.6 0.49 0.72 0.60 0.66 0.40 0.31 

1.E-09 0.7 0.48 0.72 0.60 0.66 0.40 0.31 

1.E-09 0.8 0.48 0.72 0.60 0.66 0.40 0.31 

1.E-09 0.9 0.49 0.71 0.60 0.66 0.40 0.32 

1.E-09 1 0.48 0.72 0.60 0.66 0.40 0.31 

10 0.1 0.86 0.78 0.82 0.80 0.75 0.65 

10 0.2 0.86 0.78 0.82 0.80 0.72 0.65 

10 0.3 0.86 0.78 0.82 0.80 0.76 0.65 

10 0.4 0.85 0.78 0.82 0.80 0.74 0.64 

10 0.5 0.86 0.78 0.82 0.80 0.74 0.65 

10 0.6 0.86 0.78 0.82 0.80 0.73 0.65 

10 0.7 0.86 0.78 0.82 0.80 0.73 0.65 

10 0.8 0.86 0.78 0.82 0.80 0.74 0.65 

10 0.9 0.85 0.78 0.82 0.80 0.74 0.65 

10 1 0.86 0.78 0.82 0.80 0.75 0.65 

100 0.1 0.91 0.78 0.84 0.81 0.76 0.69 

100 0.2 0.91 0.78 0.84 0.81 0.74 0.68 

100 0.3 0.90 0.78 0.84 0.81 0.76 0.68 

100 0.4 0.91 0.78 0.85 0.81 0.76 0.69 

100 0.5 0.92 0.78 0.85 0.81 0.75 0.69 

100 0.6 0.91 0.78 0.84 0.81 0.76 0.68 
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SVM Parameters Average 
of 

Sensitivity 

Average 
of 

Specificity 

Average 
of ROC 

AUC 

Average 
of 

Accuracy 

Average 
of 

Precision 

Average 
of F-
score C Gamma 

100 0.7 0.90 0.78 0.84 0.81 0.76 0.68 

100 0.8 0.91 0.78 0.85 0.81 0.74 0.69 

100 0.9 0.90 0.78 0.84 0.80 0.74 0.68 

100 1 0.90 0.78 0.84 0.81 0.76 0.68 

20 0.1 0.89 0.78 0.83 0.80 0.76 0.67 

20 0.2 0.87 0.78 0.82 0.80 0.75 0.66 

20 0.3 0.88 0.78 0.83 0.80 0.74 0.67 

20 0.4 0.87 0.78 0.82 0.80 0.74 0.66 

20 0.5 0.89 0.78 0.84 0.80 0.76 0.68 

20 0.6 0.87 0.78 0.82 0.80 0.73 0.66 

20 0.7 0.88 0.78 0.83 0.80 0.76 0.66 

20 0.8 0.89 0.78 0.83 0.80 0.75 0.67 

20 0.9 0.88 0.78 0.83 0.81 0.76 0.67 

20 1 0.87 0.78 0.83 0.80 0.73 0.66 

50 0.1 0.91 0.77 0.84 0.80 0.75 0.68 

50 0.2 0.89 0.78 0.83 0.80 0.76 0.67 

50 0.3 0.91 0.78 0.84 0.80 0.75 0.68 

50 0.4 0.90 0.78 0.84 0.80 0.75 0.68 

50 0.5 0.89 0.78 0.84 0.80 0.74 0.67 

50 0.6 0.91 0.77 0.84 0.80 0.74 0.68 

50 0.7 0.89 0.77 0.83 0.80 0.74 0.67 

50 0.8 0.90 0.78 0.84 0.80 0.75 0.68 

50 0.9 0.89 0.78 0.84 0.80 0.75 0.68 

50 1 0.89 0.78 0.84 0.80 0.74 0.67 

1.E-07 0.1 0.00 1 0.50 0.77 0.40 0.00 

1.E-07 0.2 0.00 1 0.50 0.77 0.40 0.00 

1.E-07 0.3 0.00 1 0.50 0.77 0.40 0.00 

1.E-07 0.4 0.00 1 0.50 0.77 0.40 0.00 

1.E-07 0.5 0.00 1 0.50 0.77 0.40 0.00 

1.E-07 0.6 0.00 1 0.50 0.77 0.40 0.00 

1.E-07 0.7 0.00 1 0.50 0.77 0.40 0.00 

1.E-07 0.8 0.00 1 0.50 0.77 0.40 0.00 

1.E-07 0.9 0.00 1 0.50 0.77 0.40 0.00 
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SVM Parameters Average 
of 

Sensitivity 

Average 
of 

Specificity 

Average 
of ROC 

AUC 

Average 
of 

Accuracy 

Average 
of 

Precision 

Average 
of F-
score C Gamma 

1.E-07 1 0.00 1 0.50 0.77 0.40 0.00 
Table 50 - SVM classifier performance in ontological classification for the product features (kernel: linear) 
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C Gamma 
Average 

of 
Specificity 

Average 
of 

Sensitivity 

Average 
of ROC 

AUC 

Average 
of 

Accuracy 

Average 
of 

Precision 

Average 
of 

 F-score 

0.001 0.1 0.90 0.37 0.64 0.79 0.40 0.34 

0.001 0.2 0.90 0.39 0.64 0.80 0.40 0.35 

0.001 0.3 0.90 0.38 0.64 0.79 0.40 0.34 

0.001 0.4 0.90 0.39 0.64 0.80 0.40 0.36 

0.001 0.5 0.90 0.40 0.65 0.80 0.40 0.36 

0.001 0.6 0.90 0.39 0.65 0.80 0.40 0.36 

0.001 0.7 0.90 0.40 0.65 0.80 0.40 0.36 

0.001 0.8 0.89 0.41 0.65 0.80 0.40 0.36 

0.001 0.9 0.88 0.42 0.65 0.79 0.40 0.35 

0.001 1 0.87 0.44 0.66 0.79 0.40 0.36 

0.01 0.1 1.00 0.00 0.50 0.77 0.40 0.00 

0.01 0.2 1.00 0.00 0.50 0.77 0.40 0.00 

0.01 0.3 1.00 0.00 0.50 0.77 0.40 0.00 

0.01 0.4 1.00 0.00 0.50 0.77 0.40 0.00 

0.01 0.5 1.00 0.00 0.50 0.77 0.40 0.00 

0.01 0.6 1.00 0.00 0.50 0.77 0.40 0.00 

0.01 0.7 1.00 0.00 0.50 0.77 0.40 0.00 

0.01 0.8 1.00 0.00 0.50 0.77 0.40 0.00 

0.01 0.9 1.00 0.00 0.50 0.77 0.40 0.00 

0.01 1 1.00 0.00 0.50 0.77 0.40 0.00 

0.1 0.1 0.80 0.20 0.50 0.65 0.40 0.06 

0.1 0.2 0.80 0.20 0.50 0.65 0.40 0.06 

0.1 0.3 0.80 0.20 0.50 0.65 0.40 0.06 

0.1 0.4 0.80 0.20 0.50 0.65 0.40 0.06 

0.1 0.5 0.81 0.22 0.52 0.66 0.43 0.10 

0.1 0.6 0.87 0.34 0.60 0.73 0.67 0.28 

0.1 0.7 0.90 0.48 0.69 0.80 0.77 0.47 

0.1 0.8 0.91 0.57 0.74 0.83 0.86 0.57 

0.1 0.9 0.91 0.63 0.77 0.84 0.86 0.62 

0.1 1 0.90 0.66 0.78 0.84 0.87 0.64 

0.00001 0.1 1.00 0.00 0.50 0.77 0.40 0.00 

0.00001 0.2 1.00 0.00 0.50 0.77 0.40 0.00 

0.00001 0.3 1.00 0.00 0.50 0.77 0.40 0.00 

0.00001 0.4 1.00 0.00 0.50 0.77 0.40 0.00 

0.00001 0.5 1.00 0.00 0.50 0.77 0.40 0.00 
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C Gamma 
Average 

of 
Specificity 

Average 
of 

Sensitivity 

Average 
of ROC 

AUC 

Average 
of 

Accuracy 

Average 
of 

Precision 

Average 
of 

 F-score 

0.00001 0.6 1.00 0.00 0.50 0.77 0.40 0.00 

0.00001 0.7 1.00 0.00 0.50 0.77 0.40 0.00 

0.00001 0.8 1.00 0.00 0.50 0.77 0.40 0.00 

0.00001 0.9 1.00 0.00 0.50 0.77 0.40 0.00 

0.00001 1 1.00 0.00 0.50 0.77 0.40 0.00 

1.E-09 0.1 0.71 0.52 0.61 0.66 0.40 0.34 

1.E-09 0.2 0.72 0.51 0.61 0.66 0.40 0.34 

1.E-09 0.3 0.72 0.51 0.61 0.66 0.40 0.33 

1.E-09 0.4 0.72 0.51 0.61 0.66 0.40 0.33 

1.E-09 0.5 0.73 0.49 0.61 0.66 0.40 0.32 

1.E-09 0.6 0.73 0.49 0.61 0.66 0.40 0.32 

1.E-09 0.7 0.72 0.52 0.62 0.66 0.40 0.34 

1.E-09 0.8 0.72 0.50 0.61 0.66 0.40 0.31 

1.E-09 0.9 0.70 0.55 0.63 0.66 0.40 0.36 

1.E-09 1 0.70 0.55 0.62 0.66 0.40 0.35 

10 0.1 0.79 0.84 0.81 0.80 0.73 0.64 

10 0.2 0.79 0.86 0.83 0.81 0.77 0.66 

10 0.3 0.79 0.86 0.83 0.81 0.75 0.66 

10 0.4 0.79 0.89 0.84 0.82 0.77 0.68 

10 0.5 0.79 0.89 0.84 0.81 0.74 0.68 

10 0.6 0.81 0.88 0.85 0.83 0.77 0.69 

10 0.7 0.81 0.89 0.85 0.83 0.79 0.70 

10 0.8 0.81 0.89 0.85 0.83 0.79 0.71 

10 0.9 0.81 0.90 0.86 0.83 0.79 0.71 

10 1 0.81 0.91 0.86 0.83 0.79 0.72 

100 0.1 0.79 0.89 0.84 0.81 0.74 0.69 

100 0.2 0.81 0.90 0.85 0.83 0.78 0.71 

100 0.3 0.81 0.91 0.86 0.83 0.76 0.72 

100 0.4 0.81 0.91 0.86 0.83 0.78 0.71 

100 0.5 0.81 0.91 0.86 0.83 0.79 0.72 

100 0.6 0.81 0.92 0.86 0.83 0.81 0.72 

100 0.7 0.81 0.92 0.86 0.83 0.77 0.72 

100 0.8 0.81 0.91 0.86 0.84 0.78 0.72 

100 0.9 0.81 0.92 0.87 0.84 0.78 0.73 

100 1 0.81 0.91 0.86 0.83 0.78 0.72 
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C Gamma 
Average 

of 
Specificity 

Average 
of 

Sensitivity 

Average 
of ROC 

AUC 

Average 
of 

Accuracy 

Average 
of 

Precision 

Average 
of 

 F-score 

20 0.1 0.79 0.86 0.83 0.81 0.76 0.67 

20 0.2 0.79 0.85 0.82 0.81 0.72 0.66 

20 0.3 0.79 0.89 0.84 0.81 0.78 0.68 

20 0.4 0.81 0.89 0.85 0.82 0.77 0.69 

20 0.5 0.81 0.89 0.85 0.83 0.77 0.70 

20 0.6 0.81 0.91 0.86 0.83 0.79 0.72 

20 0.7 0.81 0.91 0.86 0.83 0.78 0.72 

20 0.8 0.81 0.90 0.86 0.83 0.78 0.71 

20 0.9 0.81 0.91 0.86 0.84 0.79 0.72 

20 1 0.81 0.91 0.86 0.83 0.80 0.72 

50 0.1 0.80 0.87 0.84 0.81 0.75 0.68 

50 0.2 0.80 0.89 0.84 0.82 0.76 0.68 

50 0.3 0.81 0.89 0.85 0.83 0.78 0.70 

50 0.4 0.81 0.90 0.85 0.83 0.78 0.71 

50 0.5 0.81 0.91 0.86 0.83 0.78 0.72 

50 0.6 0.81 0.91 0.86 0.83 0.78 0.72 

50 0.7 0.81 0.92 0.86 0.83 0.78 0.72 

50 0.8 0.81 0.92 0.86 0.83 0.80 0.73 

50 0.9 0.81 0.92 0.86 0.84 0.78 0.73 

50 1 0.81 0.91 0.86 0.84 0.80 0.72 

1.E-07 0.1 1.00 0.00 0.50 0.77 0.40 0.00 

1.E-07 0.2 1.00 0.00 0.50 0.77 0.40 0.00 

1.E-07 0.3 1.00 0.00 0.50 0.77 0.40 0.00 

1.E-07 0.4 1.00 0.00 0.50 0.77 0.40 0.00 

1.E-07 0.5 1.00 0.00 0.50 0.77 0.40 0.00 

1.E-07 0.6 1.00 0.00 0.50 0.77 0.40 0.00 

1.E-07 0.7 1.00 0.00 0.50 0.77 0.40 0.00 

1.E-07 0.8 1.00 0.00 0.50 0.77 0.40 0.00 

1.E-07 0.9 1.00 0.00 0.50 0.77 0.40 0.00 

1.E-07 1 1.00 0.00 0.50 0.77 0.40 0.00 
Table 51- SVM classifier performance:  ontological classification for the product features (kernel: RFB) 
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SVM Parameters Ave. of 
Sensitivit

y 
Ave. of 
Specific

ity 

Ave. of 
 ROC 
AUC 

Ave. of 
Accuracy 

Ave. of 
Precision 

Ave. of F-
score C 

G
am

m
a

 
0.001 0.1 0.38 0.93 0.66 0.82 0.40 0.37 

0.001 0.2 0.37 0.93 0.65 0.82 0.40 0.37 

0.001 0.3 0.38 0.94 0.66 0.82 0.40 0.37 

0.001 0.4 0.36 0.93 0.65 0.81 0.40 0.36 

0.001 0.5 0.37 0.93 0.65 0.81 0.40 0.37 

0.001 0.6 0.37 0.94 0.65 0.82 0.40 0.37 

0.001 0.7 0.38 0.93 0.65 0.82 0.40 0.37 

0.001 0.8 0.38 0.93 0.66 0.82 0.40 0.37 

0.001 0.9 0.37 0.94 0.65 0.82 0.40 0.37 

0.001 1 0.37 0.93 0.65 0.82 0.40 0.37 

0.01 0.1 0.00 1.00 0.50 0.77 0.40 0.00 

0.01 0.2 0.00 1.00 0.50 0.77 0.40 0.00 

0.01 0.3 0.00 1.00 0.50 0.77 0.40 0.00 

0.01 0.4 0.00 1.00 0.50 0.77 0.40 0.00 

0.01 0.5 0.00 1.00 0.50 0.77 0.40 0.00 

0.01 0.6 0.00 1.00 0.50 0.77 0.40 0.00 

0.01 0.7 0.00 1.00 0.50 0.77 0.40 0.00 

0.01 0.8 0.00 1.00 0.50 0.77 0.40 0.00 

0.01 0.9 0.00 1.00 0.50 0.77 0.40 0.00 

0.01 1 0.00 1.00 0.50 0.77 0.40 0.00 

0.1 0.1 0.64 0.91 0.78 0.85 0.80 0.63 

0.1 0.2 0.64 0.91 0.78 0.85 0.82 0.64 

0.1 0.3 0.64 0.90 0.77 0.84 0.81 0.62 

0.1 0.4 0.63 0.91 0.77 0.84 0.81 0.62 

0.1 0.5 0.64 0.91 0.77 0.85 0.80 0.63 

0.1 0.6 0.64 0.91 0.77 0.85 0.79 0.63 

0.1 0.7 0.64 0.91 0.77 0.84 0.80 0.63 

0.1 0.8 0.64 0.91 0.78 0.85 0.81 0.63 

0.1 0.9 0.65 0.91 0.78 0.85 0.83 0.64 

0.1 1 0.63 0.91 0.77 0.84 0.83 0.62 

1E-05 0.1 0.00 1.00 0.50 0.77 0.40 0.00 

1E-05 0.2 0.00 1.00 0.50 0.77 0.40 0.00 

1E-05 0.3 0.00 1.00 0.50 0.77 0.40 0.00 
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SVM Parameters Ave. of 
Sensitivit

y 
Ave. of 
Specific

ity 

Ave. of 
 ROC 
AUC 

Ave. of 
Accuracy 

Ave. of 
Precision 

Ave. of F-
score C 

G
am

m
a

 
1E-05 0.4 0.00 1.00 0.50 0.77 0.40 0.00 

1E-05 0.5 0.00 1.00 0.50 0.77 0.40 0.00 

1E-05 0.6 0.00 1.00 0.50 0.77 0.40 0.00 

1E-05 0.7 0.00 1.00 0.50 0.77 0.40 0.00 

1E-05 0.8 0.00 1.00 0.50 0.77 0.40 0.00 

1E-05 0.9 0.00 1.00 0.50 0.77 0.40 0.00 

1E-05 1 0.00 1.00 0.50 0.77 0.40 0.00 

1E-09 0.1 0.37 0.77 0.57 0.67 0.40 0.23 

1E-09 0.2 0.35 0.77 0.56 0.66 0.40 0.20 

1E-09 0.3 0.37 0.77 0.57 0.67 0.40 0.23 

1E-09 0.4 0.37 0.77 0.57 0.67 0.40 0.23 

1E-09 0.5 0.38 0.77 0.57 0.67 0.40 0.23 

1E-09 0.6 0.35 0.77 0.56 0.66 0.40 0.21 

1E-09 0.7 0.36 0.77 0.57 0.67 0.40 0.22 

1E-09 0.8 0.35 0.77 0.56 0.66 0.40 0.21 

1E-09 0.9 0.38 0.77 0.58 0.67 0.40 0.24 

1E-09 1 0.35 0.77 0.56 0.66 0.40 0.21 

10 0.1 0.84 0.89 0.86 0.88 0.83 0.75 

10 0.2 0.83 0.89 0.86 0.87 0.83 0.75 

10 0.3 0.82 0.89 0.86 0.87 0.84 0.74 

10 0.4 0.83 0.89 0.86 0.88 0.84 0.75 

10 0.5 0.82 0.89 0.85 0.87 0.83 0.74 

10 0.6 0.83 0.89 0.86 0.87 0.84 0.74 

10 0.7 0.83 0.89 0.86 0.87 0.82 0.75 

10 0.8 0.83 0.89 0.86 0.87 0.86 0.75 

10 0.9 0.83 0.89 0.86 0.87 0.85 0.75 

10 1 0.83 0.88 0.86 0.87 0.81 0.74 

100 0.1 0.81 0.89 0.85 0.88 0.86 0.75 

100 0.2 0.80 0.89 0.85 0.87 0.82 0.73 

100 0.3 0.80 0.89 0.85 0.87 0.83 0.73 

100 0.4 0.80 0.89 0.85 0.87 0.83 0.73 

100 0.5 0.80 0.89 0.85 0.87 0.84 0.74 

100 0.6 0.81 0.89 0.85 0.87 0.81 0.74 
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SVM Parameters Ave. of 
Sensitivit

y 
Ave. of 
Specific

ity 

Ave. of 
 ROC 
AUC 

Ave. of 
Accuracy 

Ave. of 
Precision 

Ave. of F-
score C 

G
am

m
a

 
100 0.7 0.82 0.89 0.86 0.88 0.85 0.75 

100 0.8 0.80 0.89 0.85 0.87 0.82 0.73 

100 0.9 0.82 0.89 0.86 0.88 0.86 0.75 

100 1 0.81 0.90 0.85 0.88 0.82 0.74 

20 0.1 0.81 0.89 0.85 0.87 0.82 0.74 

20 0.2 0.81 0.89 0.85 0.88 0.82 0.74 

20 0.3 0.80 0.89 0.85 0.87 0.82 0.73 

20 0.4 0.81 0.89 0.85 0.87 0.82 0.73 

20 0.5 0.81 0.89 0.85 0.87 0.87 0.74 

20 0.6 0.82 0.89 0.85 0.87 0.84 0.74 

20 0.7 0.80 0.89 0.84 0.87 0.83 0.73 

20 0.8 0.81 0.89 0.85 0.87 0.84 0.74 

20 0.9 0.81 0.89 0.85 0.87 0.81 0.73 

20 1 0.81 0.89 0.85 0.87 0.82 0.73 

50 0.1 0.79 0.89 0.84 0.87 0.80 0.73 

50 0.2 0.79 0.89 0.84 0.87 0.82 0.72 

50 0.3 0.78 0.89 0.84 0.87 0.80 0.72 

50 0.4 0.79 0.89 0.84 0.87 0.83 0.72 

50 0.5 0.80 0.89 0.85 0.87 0.83 0.73 

50 0.6 0.80 0.89 0.85 0.87 0.81 0.73 

50 0.7 0.79 0.89 0.84 0.87 0.82 0.73 

50 0.8 0.80 0.90 0.85 0.87 0.83 0.73 

50 0.9 0.80 0.89 0.85 0.87 0.83 0.74 

50 1 0.78 0.89 0.84 0.87 0.83 0.73 

1E-07 0.1 0.00 1.00 0.50 0.77 0.40 0.00 

1E-07 0.2 0.00 1.00 0.50 0.77 0.40 0.00 

1E-07 0.3 0.00 1.00 0.50 0.77 0.40 0.00 

1E-07 0.4 0.00 1.00 0.50 0.77 0.40 0.00 

1E-07 0.5 0.00 1.00 0.50 0.77 0.40 0.00 

1E-07 0.6 0.00 1.00 0.50 0.77 0.40 0.00 

1E-07 0.7 0.00 1.00 0.50 0.77 0.40 0.00 

1E-07 0.8 0.00 1.00 0.50 0.77 0.40 0.00 

1E-07 0.9 0.00 1.00 0.50 0.77 0.40 0.00 
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SVM Parameters Ave. of 
Sensitivit

y 
Ave. of 
Specific

ity 

Ave. of 
 ROC 
AUC 

Ave. of 
Accuracy 

Ave. of 
Precision 

Ave. of F-
score C 

G
am

m
a

 
1E-07 1 0.00 1.00 0.50 0.77 0.40 0.00 

Table 52- SVM classifier performance in ontological semantic classification for the product features (kernel: linear) 
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SVM Parameters Ave. of 
Sensitivity 

Ave. of  

Specificity 

Ave. of  

ROC AUC 

Ave. of  

Accuracy 

Ave. of  

Precision 

Ave. of  

F-score C Gamma 

0.001 0.1 0.93 0.38 0.65 0.82 0.40 0.37 

0.001 0.2 0.94 0.37 0.66 0.82 0.40 0.38 

0.001 0.3 0.95 0.37 0.66 0.83 0.40 0.38 

0.001 0.4 0.95 0.37 0.66 0.83 0.40 0.38 

0.001 0.5 0.95 0.36 0.66 0.83 0.40 0.38 

0.001 0.6 0.96 0.37 0.66 0.83 0.40 0.39 

0.001 0.7 0.96 0.36 0.66 0.83 0.40 0.38 

0.001 0.8 0.96 0.37 0.67 0.84 0.40 0.39 

0.001 0.9 0.96 0.36 0.66 0.83 0.40 0.39 

0.001 1 0.97 0.37 0.67 0.84 0.40 0.40 

0.01 0.1 1.00 0.00 0.50 0.77 0.40 0.00 

0.01 0.2 1.00 0.00 0.50 0.77 0.40 0.00 

0.01 0.3 1.00 0.00 0.50 0.77 0.40 0.00 

0.01 0.4 1.00 0.00 0.50 0.77 0.40 0.00 

0.01 0.5 1.00 0.00 0.50 0.77 0.40 0.00 

0.01 0.6 1.00 0.00 0.50 0.77 0.40 0.00 

0.01 0.7 1.00 0.00 0.50 0.77 0.40 0.00 

0.01 0.8 1.00 0.00 0.50 0.77 0.40 0.00 

0.01 0.9 1.00 0.00 0.50 0.77 0.40 0.00 

0.01 1 1.00 0.00 0.50 0.77 0.40 0.00 

0.1 0.1 0.80 0.20 0.50 0.65 0.40 0.06 

0.1 0.2 0.80 0.20 0.50 0.65 0.40 0.06 

0.1 0.3 0.80 0.20 0.50 0.65 0.40 0.06 

0.1 0.4 0.80 0.20 0.50 0.65 0.40 0.06 

0.1 0.5 0.80 0.21 0.51 0.65 0.41 0.08 

0.1 0.6 0.82 0.27 0.54 0.68 0.55 0.16 

0.1 0.7 0.83 0.35 0.59 0.70 0.61 0.28 

0.1 0.8 0.86 0.42 0.64 0.75 0.75 0.38 

0.1 0.9 0.87 0.47 0.67 0.77 0.78 0.46 

0.1 1 0.89 0.48 0.69 0.79 0.84 0.48 

1E-05 0.1 1.00 0.00 0.50 0.77 0.40 0.00 

1E-05 0.2 1.00 0.00 0.50 0.77 0.40 0.00 

1E-05 0.3 1.00 0.00 0.50 0.77 0.40 0.00 

1E-05 0.4 1.00 0.00 0.50 0.77 0.40 0.00 

1E-05 0.5 1.00 0.00 0.50 0.77 0.40 0.00 

1E-05 0.6 1.00 0.00 0.50 0.77 0.40 0.00 
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SVM Parameters Ave. of 
Sensitivity 

Ave. of  

Specificity 

Ave. of  

ROC AUC 

Ave. of  

Accuracy 

Ave. of  

Precision 

Ave. of  

F-score C Gamma 

1E-05 0.7 1.00 0.00 0.50 0.77 0.40 0.00 

1E-05 0.8 1.00 0.00 0.50 0.77 0.40 0.00 

1E-05 0.9 1.00 0.00 0.50 0.77 0.40 0.00 

1E-05 1 1.00 0.00 0.50 0.77 0.40 0.00 

1E-09 0.1 0.78 0.34 0.56 0.66 0.40 0.20 

1E-09 0.2 0.78 0.31 0.55 0.66 0.40 0.17 

1E-09 0.3 0.78 0.34 0.56 0.67 0.40 0.20 

1E-09 0.4 0.78 0.32 0.55 0.66 0.40 0.19 

1E-09 0.5 0.79 0.31 0.55 0.66 0.40 0.18 

1E-09 0.6 0.79 0.32 0.55 0.67 0.40 0.19 

1E-09 0.7 0.79 0.29 0.54 0.66 0.40 0.16 

1E-09 0.8 0.79 0.30 0.54 0.66 0.40 0.16 

1E-09 0.9 0.79 0.28 0.53 0.66 0.40 0.14 

1E-09 1 0.79 0.28 0.54 0.66 0.40 0.14 

10 0.1 0.87 0.86 0.87 0.87 0.83 0.75 

10 0.2 0.89 0.86 0.87 0.88 0.85 0.77 

10 0.3 0.89 0.84 0.87 0.88 0.83 0.76 

10 0.4 0.91 0.80 0.85 0.88 0.85 0.74 

10 0.5 0.92 0.78 0.85 0.89 0.83 0.74 

10 0.6 0.93 0.77 0.85 0.90 0.87 0.76 

10 0.7 0.94 0.77 0.86 0.90 0.88 0.77 

10 0.8 0.95 0.76 0.86 0.91 0.88 0.77 

10 0.9 0.96 0.76 0.86 0.91 0.90 0.77 

10 1 0.95 0.75 0.85 0.91 0.89 0.77 

100 0.1 0.91 0.82 0.87 0.89 0.87 0.77 

100 0.2 0.92 0.79 0.85 0.89 0.87 0.76 

100 0.3 0.92 0.79 0.86 0.89 0.85 0.75 

100 0.4 0.92 0.79 0.86 0.89 0.85 0.76 

100 0.5 0.93 0.79 0.86 0.90 0.87 0.77 

100 0.6 0.93 0.78 0.85 0.89 0.88 0.76 

100 0.7 0.94 0.78 0.86 0.91 0.91 0.78 

100 0.8 0.95 0.76 0.85 0.90 0.91 0.76 

100 0.9 0.96 0.76 0.86 0.91 0.87 0.77 

100 1 0.95 0.75 0.85 0.91 0.87 0.77 

20 0.1 0.89 0.85 0.87 0.88 0.84 0.76 

20 0.2 0.90 0.84 0.87 0.89 0.87 0.77 
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SVM Parameters Ave. of 
Sensitivity 

Ave. of  

Specificity 

Ave. of  

ROC AUC 

Ave. of  

Accuracy 

Ave. of  

Precision 

Ave. of  

F-score C Gamma 

20 0.3 0.91 0.81 0.86 0.89 0.87 0.76 

20 0.4 0.92 0.78 0.85 0.89 0.85 0.75 

20 0.5 0.93 0.79 0.86 0.90 0.85 0.76 

20 0.6 0.93 0.78 0.86 0.90 0.87 0.76 

20 0.7 0.95 0.77 0.86 0.91 0.90 0.78 

20 0.8 0.94 0.76 0.85 0.90 0.87 0.76 

20 0.9 0.95 0.75 0.85 0.91 0.89 0.76 

20 1 0.96 0.76 0.86 0.91 0.91 0.78 

50 0.1 0.90 0.84 0.87 0.89 0.84 0.77 

50 0.2 0.92 0.78 0.85 0.89 0.85 0.74 

50 0.3 0.92 0.78 0.85 0.89 0.85 0.75 

50 0.4 0.93 0.78 0.85 0.89 0.86 0.75 

50 0.5 0.93 0.79 0.86 0.90 0.86 0.77 

50 0.6 0.93 0.78 0.86 0.90 0.86 0.76 

50 0.7 0.95 0.77 0.86 0.91 0.89 0.78 

50 0.8 0.95 0.77 0.86 0.91 0.88 0.77 

50 0.9 0.95 0.76 0.86 0.91 0.89 0.77 

50 1 0.96 0.76 0.86 0.91 0.86 0.77 

1E-07 0.1 1.00 0.00 0.50 0.77 0.40 0.00 

1E-07 0.2 1.00 0.00 0.50 0.77 0.40 0.00 

1E-07 0.3 1.00 0.00 0.50 0.77 0.40 0.00 

1E-07 0.4 1.00 0.00 0.50 0.77 0.40 0.00 

1E-07 0.5 1.00 0.00 0.50 0.77 0.40 0.00 

1E-07 0.6 1.00 0.00 0.50 0.77 0.40 0.00 

1E-07 0.7 1.00 0.00 0.50 0.77 0.40 0.00 

1E-07 0.8 1.00 0.00 0.50 0.77 0.40 0.00 

1E-07 0.9 1.00 0.00 0.50 0.77 0.40 0.00 

1E-07 1 1.00 0.00 0.50 0.77 0.40 0.00 
Table 53- SVM classifier performance in ontological semantic classification for the product features (kernel: RBF) 
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Appendix D: SVM Performance in RC, OC, and OSC for the Enabling 

technologies 

SVM Parameters Average 
of 

Sensitivity 

Average 
of 

Specificity 

Average 
of ROC 

AUC 

Average 
of 

Accuracy 

Average 
of 

Precision 

Average 
of F-score C Gamma 

0.001 0.1 0.52 0.49 0.51 0.53 0.51 0.34 

0.001 0.2 0.53 0.50 0.51 0.53 0.50 0.35 

0.001 0.3 0.52 0.50 0.51 0.53 0.47 0.34 

0.001 0.4 0.52 0.50 0.51 0.53 0.49 0.34 

0.001 0.5 0.51 0.49 0.50 0.52 0.47 0.33 

0.001 0.6 0.52 0.50 0.51 0.53 0.50 0.34 

0.001 0.7 0.52 0.50 0.51 0.53 0.48 0.34 

0.001 0.8 0.53 0.49 0.51 0.53 0.48 0.35 

0.001 0.9 0.52 0.49 0.51 0.53 0.48 0.34 

0.001 1 0.53 0.50 0.51 0.53 0.49 0.34 

0.01 0.1 0.52 0.50 0.51 0.53 0.49 0.34 

0.01 0.2 0.53 0.49 0.51 0.53 0.49 0.35 

0.01 0.3 0.52 0.49 0.51 0.53 0.47 0.34 

0.01 0.4 0.53 0.49 0.51 0.53 0.49 0.35 

0.01 0.5 0.53 0.49 0.51 0.53 0.49 0.35 

0.01 0.6 0.52 0.49 0.50 0.52 0.47 0.34 

0.01 0.7 0.52 0.50 0.51 0.53 0.49 0.34 

0.01 0.8 0.52 0.49 0.51 0.53 0.49 0.34 

0.01 0.9 0.52 0.50 0.51 0.53 0.49 0.34 

0.01 1 0.52 0.49 0.51 0.53 0.51 0.34 

0.1 0.1 0.12 0.90 0.51 0.64 0.49 0.13 

0.1 0.2 0.12 0.90 0.51 0.64 0.47 0.13 

0.1 0.3 0.11 0.90 0.51 0.64 0.49 0.11 

0.1 0.4 0.12 0.90 0.51 0.64 0.50 0.12 

0.1 0.5 0.12 0.89 0.51 0.64 0.47 0.13 

0.1 0.6 0.13 0.89 0.51 0.63 0.49 0.13 

0.1 0.7 0.12 0.90 0.51 0.64 0.49 0.12 

0.1 0.8 0.13 0.89 0.51 0.63 0.47 0.13 

0.1 0.9 0.13 0.90 0.51 0.64 0.55 0.13 

0.1 1 0.12 0.90 0.51 0.64 0.46 0.12 

1E-05 0.1 0.12 0.90 0.51 0.64 0.46 0.13 

1E-05 0.2 0.13 0.89 0.51 0.64 0.49 0.14 

1E-05 0.3 0.12 0.90 0.51 0.64 0.48 0.12 
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SVM Parameters Average 
of 

Sensitivity 

Average 
of 

Specificity 

Average 
of ROC 

AUC 

Average 
of 

Accuracy 

Average 
of 

Precision 

Average 
of F-score C Gamma 

1E-05 0.4 0.13 0.89 0.51 0.64 0.50 0.14 

1E-05 0.5 0.14 0.89 0.51 0.64 0.48 0.14 

1E-05 0.6 0.13 0.90 0.51 0.64 0.48 0.14 

1E-05 0.7 0.12 0.89 0.51 0.64 0.49 0.13 

1E-05 0.8 0.12 0.90 0.51 0.64 0.49 0.13 

1E-05 0.9 0.13 0.89 0.51 0.64 0.46 0.13 

1E-05 1 0.12 0.90 0.51 0.64 0.45 0.13 

1E-09 0.1 0.52 0.50 0.51 0.53 0.46 0.34 

1E-09 0.2 0.53 0.49 0.51 0.53 0.47 0.34 

1E-09 0.3 0.51 0.50 0.50 0.53 0.47 0.33 

1E-09 0.4 0.52 0.50 0.51 0.53 0.51 0.34 

1E-09 0.5 0.52 0.49 0.51 0.53 0.49 0.34 

1E-09 0.6 0.53 0.50 0.51 0.53 0.49 0.35 

1E-09 0.7 0.52 0.49 0.51 0.53 0.47 0.34 

1E-09 0.8 0.53 0.50 0.52 0.53 0.49 0.35 

1E-09 0.9 0.52 0.49 0.51 0.53 0.48 0.34 

1E-09 1 0.53 0.50 0.52 0.53 0.48 0.35 

10 0.1 0.15 0.88 0.52 0.64 0.52 0.19 

10 0.2 0.16 0.88 0.52 0.64 0.50 0.20 

10 0.3 0.15 0.88 0.52 0.64 0.51 0.19 

10 0.4 0.15 0.87 0.51 0.64 0.46 0.19 

10 0.5 0.15 0.88 0.52 0.64 0.48 0.19 

10 0.6 0.15 0.88 0.52 0.65 0.50 0.19 

10 0.7 0.16 0.89 0.52 0.65 0.47 0.20 

10 0.8 0.14 0.88 0.51 0.64 0.51 0.17 

10 0.9 0.16 0.88 0.52 0.65 0.46 0.20 

10 1 0.15 0.88 0.51 0.64 0.53 0.18 

100 0.1 0.16 0.88 0.52 0.64 0.50 0.20 

100 0.2 0.15 0.88 0.52 0.64 0.46 0.19 

100 0.3 0.14 0.88 0.51 0.64 0.50 0.18 

100 0.4 0.16 0.87 0.51 0.64 0.51 0.19 

100 0.5 0.15 0.88 0.52 0.64 0.47 0.19 

100 0.6 0.15 0.87 0.51 0.64 0.50 0.19 

100 0.7 0.15 0.88 0.51 0.64 0.44 0.19 

100 0.8 0.15 0.88 0.51 0.64 0.51 0.18 
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SVM Parameters Average 
of 

Sensitivity 

Average 
of 

Specificity 

Average 
of ROC 

AUC 

Average 
of 

Accuracy 

Average 
of 

Precision 

Average 
of F-score C Gamma 

100 0.9 0.16 0.87 0.52 0.64 0.49 0.20 

100 1 0.15 0.87 0.51 0.64 0.46 0.19 

20 0.1 0.16 0.88 0.52 0.64 0.51 0.19 

20 0.2 0.15 0.88 0.51 0.64 0.44 0.18 

20 0.3 0.15 0.88 0.52 0.64 0.52 0.19 

20 0.4 0.15 0.88 0.51 0.64 0.47 0.19 

20 0.5 0.15 0.87 0.51 0.64 0.50 0.18 

20 0.6 0.14 0.88 0.51 0.64 0.44 0.18 

20 0.7 0.15 0.88 0.52 0.64 0.49 0.19 

20 0.8 0.15 0.88 0.52 0.64 0.48 0.18 

20 0.9 0.16 0.88 0.52 0.65 0.45 0.20 

20 1 0.15 0.88 0.51 0.64 0.51 0.19 

50 0.1 0.15 0.87 0.51 0.64 0.47 0.19 

50 0.2 0.15 0.88 0.51 0.64 0.49 0.18 

50 0.3 0.15 0.88 0.51 0.64 0.52 0.19 

50 0.4 0.14 0.88 0.51 0.64 0.46 0.18 

50 0.5 0.15 0.88 0.51 0.64 0.52 0.19 

50 0.6 0.14 0.87 0.51 0.63 0.49 0.18 

50 0.7 0.15 0.88 0.51 0.64 0.47 0.18 

50 0.8 0.15 0.87 0.51 0.64 0.46 0.19 

50 0.9 0.16 0.88 0.52 0.64 0.46 0.20 

50 1 0.14 0.87 0.51 0.63 0.45 0.18 

1E-07 0.1 0.52 0.50 0.51 0.53 0.51 0.34 

1E-07 0.2 0.52 0.49 0.51 0.53 0.44 0.34 

1E-07 0.3 0.52 0.49 0.51 0.53 0.45 0.34 

1E-07 0.4 0.52 0.49 0.51 0.53 0.48 0.34 

1E-07 0.5 0.53 0.50 0.52 0.54 0.48 0.35 

1E-07 0.6 0.52 0.49 0.51 0.53 0.48 0.34 

1E-07 0.7 0.53 0.49 0.51 0.53 0.49 0.34 

1E-07 0.8 0.53 0.49 0.51 0.53 0.46 0.35 

1E-07 0.9 0.52 0.50 0.51 0.53 0.45 0.34 

1E-07 1 0.52 0.50 0.51 0.53 0.46 0.34 
Table 54- SVM classifier performance:  regular classification for the enabling technologies (kernel: linear) 

SVM Parameters Average Average Average Average Average Average 
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C Gamma 
of 

Sensitivity 
of 

Specificity 
of ROC 

AUC 
of 

Accuracy 
of 

Precision 
of F-score 

0.001 0.1 0.52 0.50 0.51 0.53 0.50 0.34 

0.001 0.2 0.52 0.50 0.51 0.53 0.50 0.34 

0.001 0.3 0.51 0.51 0.51 0.53 0.47 0.34 

0.001 0.4 0.51 0.51 0.51 0.53 0.51 0.33 

0.001 0.5 0.52 0.50 0.51 0.53 0.48 0.34 

0.001 0.6 0.50 0.51 0.51 0.53 0.46 0.33 

0.001 0.7 0.52 0.50 0.51 0.53 0.49 0.34 

0.001 0.8 0.52 0.52 0.52 0.54 0.49 0.35 

0.001 0.9 0.50 0.52 0.51 0.54 0.46 0.33 

0.001 1 0.52 0.51 0.51 0.54 0.52 0.35 

0.01 0.1 0.53 0.49 0.51 0.53 0.51 0.35 

0.01 0.2 0.53 0.50 0.52 0.54 0.49 0.35 

0.01 0.3 0.52 0.50 0.51 0.53 0.48 0.34 

0.01 0.4 0.52 0.51 0.51 0.54 0.51 0.34 

0.01 0.5 0.51 0.51 0.51 0.53 0.48 0.33 

0.01 0.6 0.52 0.51 0.51 0.53 0.47 0.34 

0.01 0.7 0.51 0.51 0.51 0.54 0.49 0.34 

0.01 0.8 0.49 0.52 0.51 0.54 0.46 0.32 

0.01 0.9 0.50 0.51 0.51 0.54 0.46 0.33 

0.01 1 0.50 0.51 0.50 0.53 0.49 0.33 

0.1 0.1 0.13 0.90 0.51 0.64 0.48 0.14 

0.1 0.2 0.12 0.90 0.51 0.64 0.47 0.13 

0.1 0.3 0.11 0.90 0.51 0.64 0.49 0.12 

0.1 0.4 0.11 0.90 0.50 0.64 0.49 0.11 

0.1 0.5 0.11 0.91 0.51 0.64 0.47 0.12 

0.1 0.6 0.11 0.91 0.51 0.65 0.49 0.12 

0.1 0.7 0.12 0.92 0.52 0.65 0.52 0.13 

0.1 0.8 0.11 0.92 0.51 0.65 0.50 0.12 

0.1 0.9 0.12 0.92 0.52 0.65 0.48 0.14 

0.1 1 0.11 0.92 0.51 0.65 0.49 0.12 

1E-05 0.1 0.12 0.90 0.51 0.64 0.51 0.13 

1E-05 0.2 0.11 0.90 0.51 0.64 0.48 0.12 

1E-05 0.3 0.12 0.91 0.51 0.64 0.49 0.12 

1E-05 0.4 0.11 0.90 0.51 0.64 0.50 0.12 

1E-05 0.5 0.12 0.90 0.51 0.64 0.48 0.13 

1E-05 0.6 0.11 0.91 0.51 0.64 0.50 0.12 
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SVM Parameters Average 
of 

Sensitivity 

Average 
of 

Specificity 

Average 
of ROC 

AUC 

Average 
of 

Accuracy 

Average 
of 

Precision 

Average 
of F-score C Gamma 

1E-05 0.7 0.12 0.91 0.51 0.65 0.50 0.14 

1E-05 0.8 0.11 0.91 0.51 0.64 0.48 0.12 

1E-05 0.9 0.11 0.91 0.51 0.65 0.46 0.12 

1E-05 1 0.11 0.92 0.52 0.65 0.52 0.13 

1E-09 0.1 0.52 0.50 0.51 0.53 0.49 0.34 

1E-09 0.2 0.53 0.50 0.52 0.54 0.53 0.35 

1E-09 0.3 0.51 0.50 0.51 0.53 0.46 0.33 

1E-09 0.4 0.51 0.51 0.51 0.53 0.48 0.33 

1E-09 0.5 0.52 0.51 0.52 0.54 0.50 0.35 

1E-09 0.6 0.51 0.50 0.51 0.53 0.48 0.33 

1E-09 0.7 0.50 0.51 0.51 0.54 0.49 0.32 

1E-09 0.8 0.51 0.51 0.51 0.54 0.49 0.33 

1E-09 0.9 0.51 0.52 0.51 0.54 0.51 0.34 

1E-09 1 0.50 0.52 0.51 0.54 0.53 0.33 

10 0.1 0.15 0.88 0.51 0.64 0.49 0.18 

10 0.2 0.13 0.90 0.52 0.65 0.48 0.17 

10 0.3 0.10 0.90 0.50 0.64 0.45 0.13 

10 0.4 0.10 0.91 0.50 0.64 0.44 0.13 

10 0.5 0.09 0.92 0.51 0.65 0.46 0.13 

10 0.6 0.07 0.93 0.50 0.65 0.47 0.10 

10 0.7 0.06 0.92 0.49 0.64 0.44 0.09 

10 0.8 0.04 0.93 0.49 0.64 0.41 0.06 

10 0.9 0.03 0.94 0.48 0.64 0.37 0.04 

10 1 0.02 0.93 0.48 0.64 0.38 0.03 

100 0.1 0.14 0.89 0.52 0.65 0.46 0.18 

100 0.2 0.12 0.89 0.51 0.64 0.48 0.16 

100 0.3 0.11 0.90 0.51 0.65 0.47 0.15 

100 0.4 0.10 0.91 0.50 0.64 0.45 0.13 

100 0.5 0.09 0.92 0.51 0.65 0.48 0.13 

100 0.6 0.08 0.92 0.50 0.65 0.46 0.11 

100 0.7 0.06 0.92 0.49 0.64 0.46 0.09 

100 0.8 0.04 0.93 0.49 0.64 0.42 0.06 

100 0.9 0.03 0.93 0.48 0.64 0.37 0.04 

100 1 0.02 0.94 0.48 0.64 0.38 0.03 

20 0.1 0.14 0.88 0.51 0.64 0.46 0.17 
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SVM Parameters Average 
of 

Sensitivity 

Average 
of 

Specificity 

Average 
of ROC 

AUC 

Average 
of 

Accuracy 

Average 
of 

Precision 

Average 
of F-score C Gamma 

20 0.2 0.13 0.89 0.51 0.64 0.47 0.16 

20 0.3 0.11 0.90 0.51 0.65 0.49 0.15 

20 0.4 0.10 0.91 0.51 0.65 0.43 0.14 

20 0.5 0.09 0.92 0.50 0.65 0.41 0.12 

20 0.6 0.07 0.92 0.50 0.64 0.42 0.10 

20 0.7 0.07 0.93 0.50 0.65 0.45 0.09 

20 0.8 0.05 0.93 0.49 0.64 0.41 0.06 

20 0.9 0.02 0.93 0.48 0.64 0.37 0.03 

20 1 0.02 0.93 0.48 0.64 0.37 0.03 

50 0.1 0.14 0.89 0.52 0.65 0.48 0.18 

50 0.2 0.12 0.90 0.51 0.64 0.48 0.16 

50 0.3 0.10 0.90 0.50 0.64 0.47 0.14 

50 0.4 0.10 0.91 0.51 0.65 0.44 0.13 

50 0.5 0.10 0.92 0.51 0.65 0.48 0.13 

50 0.6 0.08 0.92 0.50 0.64 0.43 0.10 

50 0.7 0.07 0.92 0.50 0.64 0.44 0.09 

50 0.8 0.05 0.93 0.49 0.64 0.38 0.06 

50 0.9 0.02 0.93 0.48 0.63 0.39 0.03 

50 1 0.02 0.94 0.48 0.64 0.37 0.03 

1E-07 0.1 0.52 0.49 0.50 0.52 0.48 0.33 

1E-07 0.2 0.54 0.50 0.52 0.53 0.50 0.36 

1E-07 0.3 0.52 0.50 0.51 0.53 0.48 0.34 

1E-07 0.4 0.53 0.51 0.52 0.54 0.50 0.36 

1E-07 0.5 0.51 0.51 0.51 0.53 0.49 0.34 

1E-07 0.6 0.52 0.51 0.51 0.54 0.51 0.34 

1E-07 0.7 0.51 0.52 0.51 0.54 0.51 0.34 

1E-07 0.8 0.50 0.51 0.51 0.54 0.49 0.33 

1E-07 0.9 0.51 0.51 0.51 0.54 0.48 0.33 
Table 55- SVM classifier performance:  regular classification for the enabling technologies (kernel: RBF) 

 

SVM Parameters Average 
of 

Sensitivity 

Average 
of 

Specificity 

Average 
of ROC 

AUC 

Average 
of 

Accuracy 

Average 
of 

Precision 

Average 
of F-
score C Gamma 

0.001 0.1 0.65 0.34 0.49 0.46 0.51 0.40 
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SVM Parameters Average 
of 

Sensitivity 

Average 
of 

Specificity 

Average 
of ROC 

AUC 

Average 
of 

Accuracy 

Average 
of 

Precision 

Average 
of F-
score C Gamma 

0.001 0.2 0.63 0.34 0.49 0.45 0.44 0.38 

0.001 0.3 0.63 0.34 0.49 0.45 0.46 0.39 

0.001 0.4 0.64 0.34 0.49 0.46 0.49 0.40 

0.001 0.5 0.64 0.34 0.49 0.46 0.46 0.39 

0.001 0.6 0.64 0.34 0.49 0.46 0.47 0.39 

0.001 0.7 0.64 0.33 0.49 0.45 0.49 0.39 

0.001 0.8 0.65 0.33 0.49 0.45 0.47 0.40 

0.001 0.9 0.63 0.34 0.49 0.45 0.46 0.38 

0.001 1 0.64 0.34 0.49 0.46 0.48 0.39 

0.01 0.1 0.64 0.34 0.49 0.45 0.45 0.39 

0.01 0.2 0.64 0.34 0.49 0.45 0.45 0.39 

0.01 0.3 0.65 0.34 0.49 0.46 0.46 0.40 

0.01 0.4 0.65 0.34 0.49 0.46 0.48 0.40 

0.01 0.5 0.65 0.34 0.50 0.46 0.49 0.40 

0.01 0.6 0.65 0.34 0.49 0.45 0.48 0.40 

0.01 0.7 0.63 0.34 0.49 0.45 0.47 0.39 

0.01 0.8 0.65 0.34 0.50 0.46 0.48 0.39 

0.01 0.9 0.65 0.33 0.49 0.46 0.48 0.40 

0.01 1 0.65 0.33 0.49 0.45 0.45 0.39 

0.1 0.1 0.26 0.74 0.50 0.57 0.49 0.19 

0.1 0.2 0.25 0.73 0.49 0.56 0.45 0.18 

0.1 0.3 0.25 0.74 0.49 0.57 0.48 0.18 

0.1 0.4 0.24 0.73 0.49 0.56 0.47 0.17 

0.1 0.5 0.25 0.74 0.49 0.57 0.48 0.18 

0.1 0.6 0.25 0.73 0.49 0.56 0.47 0.18 

0.1 0.7 0.25 0.74 0.49 0.56 0.48 0.18 

0.1 0.8 0.23 0.74 0.49 0.56 0.45 0.17 

0.1 0.9 0.26 0.73 0.50 0.57 0.48 0.19 

0.1 1 0.25 0.73 0.49 0.56 0.48 0.18 

1E-05 0.1 0.24 0.73 0.49 0.56 0.48 0.18 

1E-05 0.2 0.25 0.73 0.49 0.56 0.48 0.18 

1E-05 0.3 0.24 0.74 0.49 0.57 0.48 0.18 

1E-05 0.4 0.24 0.74 0.49 0.56 0.46 0.18 

1E-05 0.5 0.24 0.74 0.49 0.57 0.48 0.18 

1E-05 0.6 0.24 0.74 0.49 0.57 0.47 0.18 
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SVM Parameters Average 
of 

Sensitivity 

Average 
of 

Specificity 

Average 
of ROC 

AUC 

Average 
of 

Accuracy 

Average 
of 

Precision 

Average 
of F-
score C Gamma 

1E-05 0.7 0.23 0.76 0.49 0.57 0.47 0.17 

1E-05 0.8 0.25 0.74 0.50 0.57 0.48 0.19 

1E-05 0.9 0.24 0.74 0.49 0.56 0.46 0.18 

1E-05 1 0.25 0.74 0.49 0.56 0.47 0.18 

1E-09 0.1 0.63 0.34 0.48 0.45 0.45 0.38 

1E-09 0.2 0.64 0.34 0.49 0.46 0.47 0.40 

1E-09 0.3 0.64 0.35 0.49 0.46 0.43 0.39 

1E-09 0.4 0.66 0.34 0.50 0.46 0.49 0.40 

1E-09 0.5 0.65 0.34 0.50 0.46 0.46 0.39 

1E-09 0.6 0.64 0.34 0.49 0.45 0.46 0.39 

1E-09 0.7 0.64 0.35 0.49 0.46 0.48 0.40 

1E-09 0.8 0.65 0.32 0.49 0.45 0.48 0.40 

1E-09 0.9 0.65 0.34 0.50 0.46 0.49 0.40 

1E-09 1 0.64 0.34 0.49 0.45 0.46 0.40 

10 0.1 0.50 0.53 0.51 0.52 0.51 0.38 

10 0.2 0.51 0.52 0.51 0.51 0.51 0.39 

10 0.3 0.49 0.52 0.51 0.51 0.50 0.38 

10 0.4 0.50 0.51 0.51 0.51 0.50 0.38 

10 0.5 0.51 0.52 0.52 0.51 0.55 0.39 

10 0.6 0.51 0.51 0.51 0.51 0.51 0.39 

10 0.7 0.49 0.52 0.51 0.51 0.50 0.38 

10 0.8 0.50 0.53 0.51 0.52 0.52 0.39 

10 0.9 0.51 0.51 0.51 0.51 0.52 0.39 

10 1 0.51 0.52 0.51 0.51 0.53 0.39 

100 0.1 0.49 0.51 0.50 0.50 0.49 0.37 

100 0.2 0.48 0.51 0.49 0.50 0.49 0.37 

100 0.3 0.48 0.51 0.49 0.50 0.49 0.37 

100 0.4 0.50 0.51 0.50 0.51 0.52 0.38 

100 0.5 0.48 0.51 0.50 0.50 0.50 0.37 

100 0.6 0.49 0.51 0.50 0.51 0.51 0.38 

100 0.7 0.49 0.51 0.50 0.50 0.50 0.38 

100 0.8 0.48 0.51 0.50 0.50 0.50 0.37 

100 0.9 0.46 0.50 0.48 0.49 0.50 0.35 

100 1 0.49 0.51 0.50 0.50 0.50 0.37 

20 0.1 0.49 0.52 0.50 0.51 0.49 0.38 
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SVM Parameters Average 
of 

Sensitivity 

Average 
of 

Specificity 

Average 
of ROC 

AUC 

Average 
of 

Accuracy 

Average 
of 

Precision 

Average 
of F-
score C Gamma 

20 0.2 0.51 0.52 0.51 0.51 0.51 0.39 

20 0.3 0.50 0.52 0.51 0.52 0.49 0.39 

20 0.4 0.51 0.54 0.52 0.53 0.53 0.40 

20 0.5 0.51 0.52 0.52 0.52 0.52 0.39 

20 0.6 0.50 0.52 0.51 0.51 0.52 0.38 

20 0.7 0.49 0.52 0.51 0.51 0.53 0.38 

20 0.8 0.51 0.52 0.51 0.51 0.52 0.39 

20 0.9 0.49 0.52 0.50 0.51 0.50 0.38 

20 1 0.50 0.52 0.51 0.52 0.53 0.39 

50 0.1 0.49 0.52 0.50 0.51 0.50 0.38 

50 0.2 0.51 0.52 0.51 0.51 0.52 0.39 

50 0.3 0.49 0.53 0.51 0.52 0.51 0.38 

50 0.4 0.49 0.52 0.51 0.51 0.53 0.38 

50 0.5 0.49 0.52 0.51 0.51 0.50 0.38 

50 0.6 0.50 0.51 0.51 0.51 0.53 0.39 

50 0.7 0.51 0.51 0.51 0.51 0.51 0.39 

50 0.8 0.50 0.51 0.51 0.51 0.50 0.38 

50 0.9 0.49 0.52 0.51 0.51 0.51 0.38 

50 1 0.49 0.52 0.50 0.51 0.51 0.37 

1E-07 0.1 0.66 0.33 0.50 0.45 0.51 0.40 

1E-07 0.2 0.63 0.33 0.48 0.45 0.47 0.38 

1E-07 0.3 0.64 0.34 0.49 0.46 0.49 0.39 

1E-07 0.4 0.65 0.33 0.49 0.46 0.47 0.39 

1E-07 0.5 0.66 0.32 0.49 0.45 0.49 0.40 

1E-07 0.6 0.64 0.34 0.49 0.45 0.46 0.39 

1E-07 0.7 0.64 0.34 0.49 0.45 0.44 0.39 

1E-07 0.8 0.66 0.32 0.49 0.45 0.48 0.40 

1E-07 0.9 0.65 0.33 0.49 0.45 0.47 0.40 

1E-07 1 0.64 0.34 0.49 0.45 0.48 0.39 
Table 56- SVM classifier performance:  ontological classification for the enabling technologies (kernel: linear)  
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SVM Parameters Average 
of 
Sensitivity 

Average 
of 
Specificity 

Average 
of ROC 
AUC 

Average 
of 
Accuracy 

Average 
of 
Precision 

Average 
of F-
score C Gamma 

0.001 0.1 0.64 0.34 0.49 0.45 0.45 0.39 

0.001 0.2 0.67 0.34 0.50 0.46 0.49 0.40 

0.001 0.3 0.67 0.33 0.50 0.46 0.48 0.41 

0.001 0.4 0.68 0.32 0.50 0.46 0.48 0.42 

0.001 0.5 0.69 0.32 0.50 0.46 0.51 0.42 

0.001 0.6 0.69 0.33 0.51 0.46 0.51 0.43 

0.001 0.7 0.69 0.33 0.51 0.46 0.50 0.42 

0.001 0.8 0.69 0.32 0.50 0.46 0.50 0.42 

0.001 0.9 0.69 0.33 0.51 0.46 0.51 0.43 

0.001 1 0.71 0.33 0.52 0.47 0.53 0.44 

0.01 0.1 0.64 0.34 0.49 0.45 0.46 0.38 

0.01 0.2 0.64 0.34 0.49 0.46 0.46 0.39 

0.01 0.3 0.67 0.33 0.50 0.46 0.51 0.41 

0.01 0.4 0.66 0.34 0.50 0.46 0.48 0.40 

0.01 0.5 0.66 0.34 0.50 0.46 0.49 0.41 

0.01 0.6 0.68 0.33 0.51 0.46 0.50 0.42 

0.01 0.7 0.68 0.33 0.51 0.46 0.52 0.42 

0.01 0.8 0.67 0.33 0.50 0.46 0.49 0.41 

0.01 0.9 0.70 0.33 0.52 0.47 0.52 0.44 

0.01 1 0.69 0.33 0.51 0.46 0.55 0.42 

0.1 0.1 0.24 0.75 0.50 0.57 0.49 0.18 

0.1 0.2 0.26 0.73 0.50 0.57 0.50 0.19 

0.1 0.3 0.25 0.73 0.49 0.56 0.47 0.18 

0.1 0.4 0.27 0.74 0.51 0.57 0.50 0.20 

0.1 0.5 0.27 0.73 0.50 0.57 0.48 0.19 

0.1 0.6 0.28 0.73 0.50 0.57 0.51 0.21 

0.1 0.7 0.30 0.72 0.51 0.57 0.51 0.22 

0.1 0.8 0.28 0.73 0.50 0.57 0.50 0.20 

0.1 0.9 0.29 0.73 0.51 0.57 0.54 0.21 

0.1 1 0.30 0.72 0.51 0.57 0.53 0.22 

1E-05 0.1 0.26 0.74 0.50 0.57 0.49 0.19 

1E-05 0.2 0.27 0.74 0.50 0.57 0.52 0.20 

1E-05 0.3 0.26 0.72 0.49 0.56 0.47 0.19 

1E-05 0.4 0.26 0.73 0.50 0.57 0.49 0.19 

1E-05 0.5 0.28 0.73 0.50 0.57 0.52 0.21 
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SVM Parameters Average 
of 
Sensitivity 

Average 
of 
Specificity 

Average 
of ROC 
AUC 

Average 
of 
Accuracy 

Average 
of 
Precision 

Average 
of F-
score C Gamma 

1E-05 0.6 0.28 0.73 0.50 0.57 0.47 0.20 

1E-05 0.7 0.30 0.71 0.51 0.56 0.50 0.21 

1E-05 0.8 0.28 0.73 0.50 0.57 0.51 0.20 

1E-05 0.9 0.30 0.73 0.51 0.57 0.49 0.22 

1E-05 1 0.30 0.72 0.51 0.57 0.53 0.22 

1E-09 0.1 0.66 0.34 0.50 0.46 0.50 0.41 

1E-09 0.2 0.67 0.33 0.50 0.46 0.48 0.41 

1E-09 0.3 0.66 0.33 0.50 0.46 0.50 0.41 

1E-09 0.4 0.66 0.33 0.50 0.46 0.49 0.41 

1E-09 0.5 0.68 0.32 0.50 0.45 0.50 0.41 

1E-09 0.6 0.69 0.33 0.51 0.46 0.50 0.42 

1E-09 0.7 0.68 0.34 0.51 0.47 0.51 0.42 

1E-09 0.8 0.69 0.33 0.51 0.46 0.52 0.43 

1E-09 0.9 0.69 0.33 0.51 0.46 0.54 0.43 

1E-09 1 0.70 0.33 0.51 0.47 0.52 0.44 

10 0.1 0.47 0.51 0.49 0.50 0.50 0.36 

10 0.2 0.47 0.52 0.50 0.51 0.50 0.37 

10 0.3 0.45 0.55 0.50 0.52 0.50 0.36 

10 0.4 0.45 0.55 0.50 0.51 0.50 0.36 

10 0.5 0.47 0.53 0.50 0.51 0.50 0.37 

10 0.6 0.46 0.53 0.49 0.51 0.45 0.36 

10 0.7 0.43 0.53 0.48 0.50 0.47 0.34 

10 0.8 0.44 0.54 0.49 0.51 0.49 0.35 

10 0.9 0.44 0.55 0.50 0.52 0.47 0.35 

10 1 0.43 0.56 0.50 0.52 0.50 0.35 

100 0.1 0.49 0.55 0.52 0.53 0.51 0.39 

100 0.2 0.44 0.54 0.49 0.51 0.51 0.35 

100 0.3 0.39 0.55 0.47 0.49 0.50 0.31 

100 0.4 0.41 0.53 0.47 0.49 0.48 0.33 

100 0.5 0.40 0.53 0.47 0.49 0.47 0.32 

100 0.6 0.42 0.53 0.47 0.49 0.46 0.33 

100 0.7 0.42 0.53 0.48 0.49 0.47 0.33 

100 0.8 0.43 0.54 0.48 0.50 0.49 0.35 

100 0.9 0.42 0.54 0.48 0.50 0.47 0.33 

100 1 0.43 0.55 0.49 0.51 0.48 0.34 
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SVM Parameters Average 
of 
Sensitivity 

Average 
of 
Specificity 

Average 
of ROC 
AUC 

Average 
of 
Accuracy 

Average 
of 
Precision 

Average 
of F-
score C Gamma 

20 0.1 0.48 0.54 0.51 0.52 0.51 0.38 

20 0.2 0.47 0.54 0.51 0.52 0.49 0.37 

20 0.3 0.46 0.54 0.50 0.51 0.51 0.36 

20 0.4 0.46 0.53 0.50 0.51 0.50 0.37 

20 0.5 0.43 0.54 0.48 0.50 0.49 0.34 

20 0.6 0.43 0.54 0.49 0.51 0.50 0.35 

20 0.7 0.42 0.55 0.49 0.51 0.47 0.34 

20 0.8 0.40 0.55 0.48 0.50 0.49 0.33 

20 0.9 0.41 0.54 0.47 0.50 0.45 0.33 

20 1 0.41 0.56 0.49 0.51 0.48 0.34 

50 0.1 0.49 0.54 0.52 0.53 0.51 0.38 

50 0.2 0.47 0.55 0.51 0.52 0.47 0.38 

50 0.3 0.43 0.54 0.48 0.50 0.49 0.34 

50 0.4 0.42 0.56 0.49 0.51 0.48 0.33 

50 0.5 0.40 0.55 0.47 0.50 0.50 0.33 

50 0.6 0.43 0.53 0.48 0.50 0.47 0.34 

50 0.7 0.42 0.53 0.48 0.49 0.46 0.33 

50 0.8 0.41 0.55 0.48 0.51 0.50 0.34 

50 0.9 0.43 0.53 0.48 0.50 0.45 0.34 

50 1 0.42 0.55 0.48 0.51 0.45 0.34 

1E-07 0.1 0.65 0.33 0.49 0.45 0.46 0.39 

1E-07 0.2 0.66 0.33 0.49 0.45 0.48 0.40 

1E-07 0.3 0.67 0.33 0.50 0.46 0.47 0.41 

1E-07 0.4 0.67 0.32 0.50 0.45 0.46 0.41 

1E-07 0.5 0.67 0.34 0.51 0.46 0.50 0.41 

1E-07 0.6 0.68 0.33 0.50 0.46 0.50 0.42 

1E-07 0.7 0.70 0.32 0.51 0.46 0.52 0.43 

1E-07 0.8 0.70 0.34 0.52 0.47 0.52 0.43 

1E-07 0.9 0.70 0.34 0.52 0.47 0.52 0.43 

1E-07 1 0.70 0.32 0.51 0.46 0.52 0.43 
Table 57- SVM classifier performance:  ontological classification for the enabling technologies (kernel: RBF) 
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SVM Parameters Average 
of 

Sensitivity 

Average 
of 

Specificity 

Average 
of ROC 

AUC 

Average 
of 

Accuracy 

Average of 
Precision 

Average 
of F-Score 

C Gamma 

0.001 0.1 0.68 0.42 0.55 0.53 0.59 0.46 

0.001 0.2 0.66 0.42 0.54 0.52 0.55 0.44 

0.001 0.3 0.67 0.43 0.55 0.53 0.58 0.44 

0.001 0.4 0.67 0.42 0.55 0.52 0.61 0.45 

0.001 0.5 0.67 0.43 0.55 0.53 0.56 0.45 

0.001 0.6 0.68 0.42 0.55 0.52 0.57 0.45 

0.001 0.7 0.67 0.42 0.55 0.52 0.59 0.45 

0.001 0.8 0.67 0.42 0.54 0.52 0.57 0.44 

0.001 0.9 0.66 0.43 0.54 0.52 0.56 0.44 

0.001 1 0.68 0.42 0.55 0.52 0.58 0.45 

0.01 0.1 0.66 0.41 0.54 0.51 0.56 0.43 

0.01 0.2 0.67 0.42 0.54 0.52 0.56 0.44 

0.01 0.3 0.67 0.42 0.54 0.52 0.57 0.45 

0.01 0.4 0.67 0.41 0.54 0.51 0.58 0.44 

0.01 0.5 0.66 0.43 0.54 0.52 0.55 0.44 

0.01 0.6 0.67 0.42 0.55 0.52 0.59 0.45 

0.01 0.7 0.67 0.41 0.54 0.51 0.55 0.44 

0.01 0.8 0.65 0.42 0.54 0.52 0.55 0.43 

0.01 0.9 0.66 0.43 0.54 0.52 0.57 0.44 

0.01 1 0.66 0.43 0.54 0.52 0.55 0.44 

0.1 0.1 0.25 0.82 0.54 0.63 0.55 0.22 

0.1 0.2 0.27 0.81 0.54 0.62 0.55 0.23 

0.1 0.3 0.28 0.83 0.55 0.64 0.59 0.25 

0.1 0.4 0.25 0.83 0.54 0.63 0.55 0.22 

0.1 0.5 0.27 0.82 0.55 0.63 0.59 0.23 

0.1 0.6 0.27 0.82 0.54 0.63 0.57 0.23 

0.1 0.7 0.25 0.82 0.53 0.62 0.55 0.22 

0.1 0.8 0.27 0.82 0.54 0.63 0.57 0.23 

0.1 0.9 0.27 0.82 0.54 0.63 0.56 0.23 

0.1 1 0.27 0.82 0.55 0.63 0.60 0.23 

1E-05 0.1 0.26 0.83 0.54 0.63 0.55 0.23 

1E-05 0.2 0.26 0.83 0.54 0.63 0.58 0.23 

1E-05 0.3 0.27 0.84 0.55 0.64 0.56 0.24 



 

261 

SVM Parameters Average 
of 

Sensitivity 

Average 
of 

Specificity 

Average 
of ROC 

AUC 

Average 
of 

Accuracy 

Average of 
Precision 

Average 
of F-Score 

C Gamma 

1E-05 0.4 0.27 0.82 0.54 0.63 0.58 0.23 

1E-05 0.5 0.27 0.82 0.55 0.63 0.59 0.24 

1E-05 0.6 0.26 0.82 0.54 0.63 0.57 0.22 

1E-05 0.7 0.27 0.83 0.55 0.64 0.61 0.24 

1E-05 0.8 0.28 0.82 0.55 0.63 0.57 0.24 

1E-05 0.9 0.27 0.82 0.55 0.63 0.58 0.24 

1E-05 1 0.28 0.82 0.55 0.63 0.55 0.24 

1E-09 0.1 0.67 0.42 0.55 0.52 0.58 0.44 

1E-09 0.2 0.67 0.42 0.54 0.52 0.57 0.44 

1E-09 0.3 0.66 0.42 0.54 0.52 0.59 0.43 

1E-09 0.4 0.67 0.42 0.54 0.52 0.57 0.44 

1E-09 0.5 0.66 0.42 0.54 0.52 0.56 0.44 

1E-09 0.6 0.67 0.43 0.55 0.53 0.58 0.45 

1E-09 0.7 0.69 0.42 0.55 0.52 0.57 0.45 

1E-09 0.8 0.65 0.43 0.54 0.52 0.58 0.44 

1E-09 0.9 0.67 0.42 0.55 0.52 0.60 0.45 

1E-09 1 0.66 0.43 0.55 0.53 0.57 0.45 

10 0.1 0.39 0.67 0.53 0.58 0.55 0.36 

10 0.2 0.39 0.65 0.52 0.57 0.52 0.35 

10 0.3 0.39 0.67 0.53 0.58 0.54 0.35 

10 0.4 0.38 0.67 0.52 0.57 0.56 0.34 

10 0.5 0.39 0.66 0.53 0.58 0.51 0.35 

10 0.6 0.38 0.66 0.52 0.57 0.49 0.34 

10 0.7 0.39 0.66 0.53 0.57 0.55 0.36 

10 0.8 0.40 0.66 0.53 0.58 0.50 0.36 

10 0.9 0.39 0.67 0.53 0.57 0.53 0.35 

10 1 0.39 0.66 0.53 0.57 0.53 0.35 

100 0.1 0.39 0.69 0.54 0.59 0.53 0.36 

100 0.2 0.38 0.70 0.54 0.59 0.54 0.35 

100 0.3 0.38 0.70 0.54 0.59 0.54 0.35 

100 0.4 0.38 0.70 0.54 0.60 0.56 0.35 

100 0.5 0.38 0.69 0.53 0.59 0.54 0.35 

100 0.6 0.38 0.70 0.54 0.59 0.58 0.35 
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SVM Parameters Average 
of 

Sensitivity 

Average 
of 

Specificity 

Average 
of ROC 

AUC 

Average 
of 

Accuracy 

Average of 
Precision 

Average 
of F-Score 

C Gamma 

100 0.7 0.39 0.70 0.55 0.60 0.55 0.36 

100 0.8 0.39 0.69 0.54 0.59 0.50 0.36 

100 0.9 0.37 0.70 0.54 0.59 0.54 0.34 

100 1 0.39 0.69 0.54 0.59 0.52 0.37 

20 0.1 0.38 0.67 0.53 0.58 0.51 0.35 

20 0.2 0.38 0.67 0.52 0.57 0.51 0.35 

20 0.3 0.39 0.66 0.52 0.57 0.51 0.35 

20 0.4 0.38 0.66 0.52 0.57 0.53 0.34 

20 0.5 0.39 0.66 0.53 0.57 0.54 0.35 

20 0.6 0.40 0.66 0.53 0.57 0.49 0.35 

20 0.7 0.38 0.67 0.52 0.57 0.53 0.34 

20 0.8 0.39 0.67 0.53 0.58 0.53 0.35 

20 0.9 0.38 0.67 0.52 0.57 0.54 0.35 

20 1 0.38 0.66 0.52 0.57 0.52 0.34 

50 0.1 0.40 0.69 0.55 0.60 0.54 0.37 

50 0.2 0.42 0.69 0.55 0.60 0.55 0.38 

50 0.3 0.40 0.70 0.55 0.60 0.54 0.37 

50 0.4 0.39 0.69 0.54 0.59 0.52 0.36 

50 0.5 0.37 0.68 0.53 0.58 0.51 0.34 

50 0.6 0.40 0.69 0.54 0.59 0.52 0.36 

50 0.7 0.38 0.69 0.53 0.59 0.51 0.35 

50 0.8 0.37 0.69 0.53 0.58 0.51 0.34 

50 0.9 0.39 0.69 0.54 0.59 0.52 0.36 

50 1 0.40 0.69 0.55 0.60 0.53 0.36 

1E-07 0.1 0.66 0.42 0.54 0.52 0.56 0.44 

1E-07 0.2 0.66 0.42 0.54 0.52 0.55 0.44 

1E-07 0.3 0.67 0.42 0.54 0.52 0.58 0.44 

1E-07 0.4 0.66 0.43 0.55 0.52 0.57 0.44 

1E-07 0.5 0.68 0.42 0.55 0.52 0.56 0.45 

1E-07 0.6 0.65 0.43 0.54 0.52 0.57 0.44 

1E-07 0.7 0.67 0.42 0.55 0.52 0.59 0.45 

1E-07 0.8 0.66 0.42 0.54 0.52 0.57 0.44 

1E-07 0.9 0.66 0.41 0.54 0.51 0.56 0.44 
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SVM Parameters Average 
of 

Sensitivity 

Average 
of 

Specificity 

Average 
of ROC 

AUC 

Average 
of 

Accuracy 

Average of 
Precision 

Average 
of F-Score 

C Gamma 

1E-07 1 0.67 0.43 0.55 0.52 0.60 0.45 
Table 58- SVM classifier performance:  ontological semantic classification for the enabling technologies (kernel: linear) 
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SVM 
Parameters 

Average 
of 

Sensitivity 

Average 
of 

Specificit
y 

Average of 
ROC AUC 

Average of 
Accuracy 

Average of 
Precision 

Average 
of F-
Score C 

G
am

m
a

 

0.001 0.1 0.64 0.43 0.54 0.52 0.55 0.43 

0.001 0.2 0.66 0.42 0.54 0.52 0.57 0.43 

0.001 0.3 0.65 0.44 0.54 0.53 0.60 0.44 

0.001 0.4 0.66 0.44 0.55 0.53 0.61 0.45 

0.001 0.5 0.65 0.44 0.55 0.53 0.56 0.44 

0.001 0.6 0.64 0.45 0.55 0.53 0.58 0.43 

0.001 0.7 0.64 0.45 0.55 0.53 0.59 0.43 

0.001 0.8 0.64 0.44 0.54 0.53 0.59 0.43 

0.001 0.9 0.64 0.46 0.55 0.54 0.58 0.44 

0.001 1 0.63 0.46 0.54 0.53 0.58 0.42 

0.01 0.1 0.67 0.42 0.55 0.52 0.57 0.44 

0.01 0.2 0.65 0.43 0.54 0.52 0.55 0.43 

0.01 0.3 0.65 0.44 0.55 0.53 0.54 0.44 

0.01 0.4 0.66 0.44 0.55 0.53 0.59 0.45 

0.01 0.5 0.65 0.43 0.54 0.52 0.55 0.43 

0.01 0.6 0.63 0.45 0.54 0.53 0.57 0.43 

0.01 0.7 0.65 0.45 0.55 0.53 0.56 0.44 

0.01 0.8 0.64 0.45 0.55 0.53 0.57 0.43 

0.01 0.9 0.64 0.46 0.55 0.54 0.60 0.43 

0.01 1 0.62 0.47 0.54 0.54 0.59 0.42 

0.1 0.1 0.25 0.83 0.54 0.63 0.54 0.22 

0.1 0.2 0.28 0.82 0.55 0.63 0.58 0.24 

0.1 0.3 0.27 0.82 0.55 0.63 0.60 0.23 

0.1 0.4 0.25 0.83 0.54 0.63 0.56 0.22 

0.1 0.5 0.27 0.84 0.56 0.65 0.61 0.24 

0.1 0.6 0.24 0.85 0.55 0.64 0.57 0.22 

0.1 0.7 0.23 0.86 0.55 0.65 0.57 0.22 

0.1 0.8 0.23 0.86 0.55 0.65 0.58 0.22 

0.1 0.9 0.22 0.87 0.54 0.65 0.57 0.21 

0.1 1 0.22 0.87 0.54 0.65 0.58 0.21 

1E-05 0.1 0.26 0.82 0.54 0.63 0.56 0.23 

1E-05 0.2 0.26 0.84 0.55 0.64 0.58 0.24 
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SVM 
Parameters 

Average 
of 

Sensitivity 

Average 
of 

Specificit
y 

Average of 
ROC AUC 

Average of 
Accuracy 

Average of 
Precision 

Average 
of F-
Score C 

G
am

m
a

 

1E-05 0.3 0.26 0.83 0.55 0.64 0.58 0.23 

1E-05 0.4 0.24 0.86 0.55 0.65 0.59 0.23 

1E-05 0.5 0.26 0.84 0.55 0.64 0.55 0.23 

1E-05 0.6 0.25 0.86 0.55 0.65 0.61 0.23 

1E-05 0.7 0.24 0.85 0.54 0.64 0.59 0.22 

1E-05 0.8 0.23 0.86 0.54 0.64 0.56 0.21 

1E-05 0.9 0.24 0.85 0.54 0.64 0.58 0.22 

1E-05 1 0.21 0.86 0.54 0.64 0.54 0.20 

1E-09 0.1 0.66 0.43 0.54 0.52 0.54 0.44 

1E-09 0.2 0.66 0.43 0.55 0.53 0.56 0.44 

1E-09 0.3 0.65 0.43 0.54 0.52 0.55 0.43 

1E-09 0.4 0.64 0.44 0.54 0.53 0.59 0.43 

1E-09 0.5 0.64 0.45 0.55 0.53 0.57 0.43 

1E-09 0.6 0.64 0.45 0.54 0.53 0.58 0.43 

1E-09 0.7 0.65 0.45 0.55 0.53 0.59 0.43 

1E-09 0.8 0.64 0.47 0.55 0.54 0.61 0.44 

1E-09 0.9 0.63 0.47 0.55 0.54 0.56 0.43 

1E-09 1 0.63 0.47 0.55 0.54 0.56 0.43 

10 0.1 0.42 0.66 0.54 0.58 0.55 0.38 

10 0.2 0.39 0.68 0.54 0.59 0.54 0.36 

10 0.3 0.38 0.69 0.53 0.59 0.53 0.35 

10 0.4 0.36 0.71 0.54 0.60 0.53 0.35 

10 0.5 0.35 0.73 0.54 0.60 0.55 0.34 

10 0.6 0.33 0.74 0.53 0.60 0.50 0.33 

10 0.7 0.33 0.73 0.53 0.60 0.52 0.32 

10 0.8 0.32 0.74 0.53 0.61 0.56 0.32 

10 0.9 0.31 0.75 0.53 0.61 0.53 0.31 

10 1 0.32 0.76 0.54 0.62 0.54 0.33 

100 0.1 0.39 0.70 0.55 0.60 0.55 0.37 

100 0.2 0.36 0.73 0.55 0.61 0.54 0.35 

100 0.3 0.38 0.73 0.55 0.61 0.52 0.37 

100 0.4 0.38 0.72 0.55 0.60 0.54 0.36 
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SVM 
Parameters 

Average 
of 

Sensitivity 

Average 
of 

Specificit
y 

Average of 
ROC AUC 

Average of 
Accuracy 

Average of 
Precision 

Average 
of F-
Score C 

G
am

m
a

 

100 0.5 0.40 0.71 0.56 0.61 0.55 0.37 

100 0.6 0.40 0.74 0.57 0.63 0.56 0.38 

100 0.7 0.40 0.74 0.57 0.63 0.57 0.39 

100 0.8 0.42 0.74 0.58 0.63 0.61 0.40 

100 0.9 0.39 0.75 0.57 0.63 0.56 0.38 

100 1 0.39 0.75 0.57 0.63 0.53 0.38 

20 0.1 0.41 0.67 0.54 0.59 0.55 0.37 

20 0.2 0.38 0.69 0.53 0.59 0.53 0.35 

20 0.3 0.36 0.72 0.54 0.60 0.54 0.34 

20 0.4 0.35 0.73 0.54 0.61 0.56 0.34 

20 0.5 0.36 0.73 0.54 0.61 0.54 0.35 

20 0.6 0.33 0.73 0.53 0.60 0.53 0.32 

20 0.7 0.32 0.73 0.53 0.60 0.53 0.32 

20 0.8 0.31 0.73 0.52 0.59 0.52 0.30 

20 0.9 0.33 0.74 0.53 0.60 0.51 0.32 

20 1 0.33 0.74 0.54 0.61 0.53 0.33 

50 0.1 0.40 0.68 0.54 0.59 0.55 0.36 

50 0.2 0.38 0.73 0.56 0.62 0.56 0.38 

50 0.3 0.37 0.72 0.55 0.61 0.55 0.36 

50 0.4 0.35 0.71 0.53 0.59 0.52 0.33 

50 0.5 0.35 0.72 0.53 0.60 0.52 0.34 

50 0.6 0.35 0.72 0.54 0.60 0.52 0.34 

50 0.7 0.35 0.72 0.54 0.60 0.55 0.34 

50 0.8 0.36 0.73 0.54 0.61 0.54 0.35 

50 0.9 0.36 0.73 0.55 0.61 0.54 0.35 

50 1 0.34 0.74 0.54 0.61 0.53 0.34 

1E-07 0.1 0.64 0.42 0.53 0.51 0.56 0.43 

1E-07 0.2 0.66 0.43 0.54 0.52 0.60 0.44 

1E-07 0.3 0.65 0.44 0.55 0.53 0.54 0.44 

1E-07 0.4 0.64 0.44 0.54 0.53 0.54 0.43 

1E-07 0.5 0.65 0.44 0.55 0.53 0.58 0.44 

1E-07 0.6 0.65 0.45 0.55 0.53 0.56 0.44 
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SVM 
Parameters 

Average 
of 

Sensitivity 

Average 
of 

Specificit
y 

Average of 
ROC AUC 

Average of 
Accuracy 

Average of 
Precision 

Average 
of F-
Score C 

G
am

m
a

 

1E-07 0.7 0.64 0.45 0.55 0.53 0.57 0.44 

1E-07 0.8 0.63 0.46 0.54 0.53 0.60 0.43 

1E-07 0.9 0.62 0.47 0.54 0.54 0.54 0.43 

1E-07 1 0.62 0.47 0.55 0.54 0.56 0.42 
Table 59- SVM classifier performance:  ontological semantic classification for the enabling technologies (kernel: RFB) 
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Appendix E: Patents Identified as Opportunities 

 

38555 5387272 5800637 6129134 6427755 6800244 7165598 7767040 8420011 9016443 

5111873 5391243 5800902 6180258 6460602 6805827 7168529 7776257 8435670 9028959 

5127467 5423925 5837387 6187119 6467528 6817859 7175719 7776486 8453711 9057121 

5131144 5451352 5841042 6196363 6468673 6841011 7226641 7793703 8535764 9089893 

5135041 5460639 5855239 6241056 6491772 6844085 7258154 7824607 8550145 9109275 

5157136 5462107 5858127 6271162 6505716 6880681 7258209 7845918 8607941 9193411 

5165464 5476554 5887684 6280541 6524405 6908590 7261951 7861832 8656982 9194033 
5211500 5501833 5902511 6290784 6537395 6913062 7267882 7879129 8657972 9228244 

5224535 5509728 5948353 6299834 6558815 6918427 7331373 7879460 8672077 9285169 

5234080 5515905 5979538 6309743 6564856 6962189 7429301 7892369 8701948 9293232 

5244517 5524696 5979614 6321826 6572712 7000677 7438770 8016018 8709124 9352388 

5246056 5535857 5980651 6328093 6582533 7045022 7494552 8025747 8714232 9376738 

5253398 5613184 5988260 6328820 6610247 7045207 7559353 8091609 8802243 9403574 

5261511 5658400 6021842 6329075 6627340 7056598 7588179 8132612 8840738 9453272 
5282374 5664619 6088906 6337455 6705848 7074282 7608156 8168011 8905203 9487848 

5318094 5705125 6109334 6368427 6712124 7081151 7628196 8192561 8939266 9488238 

5323883 5728638 6110268 6386271 6719104 7086151 7644750 8276647 8945466 3421886 

5326384 5746268 6110299 6395107 6745819 7087318 7648594 8349096 8962163 -- 

5344606 5782324 6125916 6409966 6773664 7163594 7766073 8360134 8997945 -- 

Table 60- The patent numbers of the 188 opportunities identified in the Finex case 
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Appendix F: Correlation Analysis Results 

 

 

Table 61- Correlation analysis results 

Keyword 

Diversity

Query 

Complexit

y

Search 

Speed Efficiency Effectiveness reliability error

Pearson 

Correlation
1.00 -0.66 0.66 -0.65 -0.37 0.37 -0.02

Sig. (2-tailed) 0.11 0.11 0.12 0.41 0.41 0.96

N 7 7 7 7 7 7 7

Pearson 

Correlation
-0.66 1.00 0.06 0.25 0.49 -0.67 -0.52

Sig. (2-tailed) 0.11 0.89 0.58 0.26 0.10 0.23

N 7 7 7 7 7 7 7

Pearson 

Correlation
0.66 0.06 1.00 -0.39 0.23 -0.27 -0.70

Sig. (2-tailed) 0.11 0.89 0.39 0.62 0.55 0.08

N 7 7 7 7 7 7 7

Pearson 

Correlation
-0.65 0.25 -0.39 1.00 0.71 0.01 -0.20

Sig. (2-tailed) 0.12 0.58 0.39 0.07 0.99 0.67

N 7 7 7 7 7 7 7

Pearson 

Correlation
-0.37 0.49 0.23 0.71 1.00 -0.36 -0.79

Sig. (2-tailed) 0.41 0.26 0.62 0.07 0.43 0.03

N 7 7 7 7 7 7 7

Pearson 

Correlation
0.37 -0.67 -0.27 0.01 -0.36 1.00 0.46

Sig. (2-tailed) 0.41 0.10 0.55 0.99 0.43 0.30

N 7.00 7 7 7 7 7 7

Pearson 

Correlation
-0.02 -0.52 -0.70 -0.20 -0.79 0.46 1.00

Sig. (2-tailed) 0.96 0.23 0.08 0.67 0.03 0.30

N 7 7 7 7 7 7 7

Effectiveness

reliability

error

Correlations

 

Keyword 

Diversity

Query 

Complexity

Search Speed

Efficiency
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