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ABSTRACT

Many modern computer systems are distributed over space. Well-known exam-

ples are the Internet of Things and IBM’s TrueNorth for deep learning applica-

tions. At the Asynchronous Research Center (ARC) at Portland State University

we build distributed hardware systems using self-timed computation and delay-

insensitive communication. Where appropriate, self-timed hardware operations

can reduce average and peak power, energy, latency, and electro-magnetic in-

terference. Alternatively, self-timed operations can increase throughput, toler-

ance to delay variations, scalability, and manufacturability.

The design of complex hardware systems requires design automation and sup-

port for test, debug, and product characterization.

My PhD thesis focuses on design compilation and test support for dataflow ap-

plications. Both parts are necessary to go from self-timed circuits to large-scale

hardware systems.

As part of my research in design compilation, I have extended the ARCwelder

compiler designed by Willem Mallon (previously with NXP and Philips Hand-

shake Solutions). The resulting ARCwelder compiler can support multiple self-

timed circuit families.

The key to testing distributed systems, including self-timed systems, is to iden-

tify the actions in the systems. In distributed systems there is no such thing

as a global action. To test, debug, characterize, and even initialize distributed
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systems, it is necessary to control the local actions - individually! The designs

that we develop at the ARC separate the actions from the states ab initio.

As part of my research in test and debug, I implemented a special circuit to

control actions, called MrGO. I also implemented a scan and JTAG test interface

to take control over each individual and local action, each individual and local

communication state, and any subset of data-related state elements one might

wish to control or observe. My test implementations have been built into two

silicon test experiments, called Weaver and Anvil, and were used successfully

for testing, debug, and performance characterizations.
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1. INTRODUCTION 1

1

Introduction

Many modern computer systems are distributed over space. Well-known ex-

amples are Internet of Things and IBM’s TrueNorth for Deep Learning appli-

cations. In clocked synchronous systems, large modern chips require multiple

clock domains. High clock frequencies are possible only in limited-area clock

domains [21]. Data synchronization between the clock domains is becoming

increasingly onerous. At the Asynchronous Research Center (ARC) at Portland

State University we build distributed hardware systems using self-timed com-

putation and delay-insensitive communication. Self-timed design offers a way

to coordinate actions between multiple time domains without using synchroniz-

ers. The flexibility provided by self-timed coordination makes it easier to change

designs so they fit in a power or speed or time-to-market schedule. Self-timed

design may be inevitable [54].

To make the design of self-timed systems practical, we must have automated

design tools [7]. Current access to design automation tools for self-timed sys-

tems is very restrictive. Some of the best known tools are proprietary [5, 3].

Also, usage of the self-timed design paradigm is inhibited by difficulties related

to testing [62]. Testing self-timed systems often requires dealing with combi-

national loops and distributed actions – both of which are handled poorly by
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standard tools for synchronous designs [59].

My PhD thesis focuses on both design compilation and test support for self-

timed designs, particularly self-timed designs for dataflow applications. Both

parts are necessary to go from self-timed circuits to large-scale hardware sys-

tems. The key insights resulting from this research have already led to gen-

eralizations and similar insights for other self-timed design approaches and

tools [46].

1.1 Research Objective and Approach

Objective

The primary objective of this research is to provide generic design compilation

and test support for self-timed circuits.

Approach

My research doesn’t start from scratch. I use existing self-timed design families

called GasP [55] and Click [43]. I use an existing design compiler tool called

ARCwelder. I use existing scan test support approaches developed for testing

synchronous designs and adapted for testing self-timed designs. My motivation

for reusing these as my starting points is as follows.

1. Click and GasP are excellent starting points for circuit design, because

they are the two extremes of so-called bundled-data self-timed circuit fam-

ilies – with GasP the most asynchronous and Click the most synchronous

self-timed circuit style.

2. ARCwelder is an excellent starting point for design automation, because it

compiles dataflow designs already into Click implementations. ARCwelder
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was built by Willem Mallon, a compiler and self-timed circuit expert, who

based this compiler design on his prior knowledge and expertise as a core

team member of Philips Handshake Solutions [43, 42].

3. Scan is an excellent starting point for test and test automation, because

as ARC researchers we have access to scan test software and hardware

equipment used by Sun-Oracle Laboratories to test GasP integrated cir-

cuits.

None of these three categories of starting points provide a generic design and

test solution by themselves. But, together they can teach us where design and

test automation procedures for Click and GasP differ and how we might intro-

duce a new point of view to emphasize their same-ness in terms of design and

test automation, while maintaining their uniqueness in terms of low power, high

speed and latency tolerance.

1.2 Research Summary

To compile a given dataflow design into self-timed circuits that are implemented

using a GasP or a Click circuit design style, we partition the design into building

blocks and provide a GasP or Click implementation for each building block.

We have building blocks for buffering, data-driven selection, branch and merge

operations, and so on. In GasP, all existing building blocks were fully pipelined,

storing their own data. In Click, however, most of the building blocks that Willem

Mallon had built into the ARCwelder compiler were pipelined only in their topo-

logical ordering, and few stored data. Willem separated building blocks into

blocks for data storage and blocks for flow control. Willem called the blocks that

store data “Storage modules.” He called flow control blocks by their function,
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e.g. Merge, Join, Fork, and Distribute. Except for Storage modules, all other

modules in ARCwelder refrain from storing data.

To compile the same ARCwelder dataflow designs in both Click and GasP, I de-

veloped a new collection of GasP modules. The new GasP modules implement

flow control modules without storage for which Willem had a Click implementa-

tion in ARCwelder. I named this new collection “Telescope GasP” — TGasP in

short — because the communication behavior of the new modules resembles

the folding and un-folding of a telescope.

In theory, all that the ARCwelder compiler must now support is a one-to-one

mapping of dataflow building blocks, connected into a directed graph. Each

building block is mapped to either a Click module implementation or a GasP or

TGasP module implementation. In practice, this turned out to be more difficult

than we had anticipated. Differences that we had expected to be minor, such as

circuit initialization, and other differences that we had expected to be modular,

such as communication protocol checks, incurred changes at multiple levels in

the code and more code duplications than we felt were reasonable for a unified

compiler solution. The documentation in this thesis shows where ARCwelder

can be made more robust and more generic in supporting Click and (T)GasP

designs.

The unanticipated difficulties in reusing ARCwelder to compile dataflow designs

into either Click or (T)GasP circuits served as an eye opener for how we, at

our Asynchronous Research Center (ARC) and in the asynchronous research

community at large, have created a “Tower of Babel” by using different commu-

nication protocols, different initialization schemes, and different design and test

approaches.
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As a result of my compiler study, we at the ARC started emphasizing the sim-

ilarities between the various self-timed circuit families. In doing so, we created

a new point of view that applies to the design and test of self-timed circuits in

general [46]. This new point of view, will, I believe, also lead to a unified compiler

solution for mapping dataflow designs into self-timed circuits of any style or mix

of styles.

For the rest of my thesis research, I have worked out various parts related to

the test solution presented in the 2015 publication by Roncken et al. [46]. The

key to testing distributed systems, including self-timed systems, is to identify the

actions in the system. In a distributed system there is no such thing as a global

action. To test, debug, characterize, and even initialize a distributed system, it is

necessary to control the local actions individually! The designs that we develop

at the ARC separate the actions from the states ab initio.

As part of my research in test and debug, I implemented a special circuit to

control actions, called MrGO. I also developed a scan and JTAG test interface

to take control over each individual and local action, each individual and local

communication state, and any subset of data related state elements one might

wish to control or observe. My test implementations keep the system’s speed

and power unchanged. They have been built into two silicon test experiments,

called Weaver and Anvil, and were used successfully for test, debug, and per-

formance characterizations.

The special circuit for action control, MrGO, contains an arbiter. The presence

of MrGO in each and every action has increased the number of arbiters in our

designs dramatically. Where before we used arbiters only to solve access to

shared resources, we now use arbiters in each and every basic computation

cycle. Every self-timed action now has an arbitrated MrGO circuit. To develop a
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good MrGO implementation it is essential to design a fast and efficient arbiter. I

have done extensive research on arbiter designs. I improved the existing ARC

arbiter, making it efficient and robust. I also analyzed and compared the ARC

arbiter design that we use as the basis for MrGO to the arbiter design used

by the majority of self-timed circuit designs elsewhere. My analysis gives great

insight into the role of the various transistors in both arbiter designs and how to

size them for optimum performance.

1.3 My Contributions

While most of this thesis is joint work with my supervisors, the following key

contributions are largely mine.

• The design and implementation of the Telescope GasP or TGasP family

presented in Chapter 2 of this thesis, including the broadcast, narrowcast

and repeat modules in Appendices A, B, and C.

• The development of a working scan design and JTAG test interface for

GasP presented in Chapter 6 and Appendices E and F.

• The implementation of MrGO – the special circuit that allows us to con-

trol actions for initialization, test, debug, and characterization – and more

recently mixed synchronous-asynchronous circuit operation [45].

• The development of a series of arbiter designs with lower input load and

noise sensitivity, presented in Appendices G and H.

• The delay analysis and optimization in Chapter 7 of the ARC arbiter as

used in MrGO, and of an alternative arbiter commonly used outside the

ARC and referenced in the Sparsø-Furber book [50].
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1.4 Thesis Organization

The rest of this thesis is organized as follows.

• Chapter 2 introduces Telescope GasP or TGasP. TGasP modules supple-

ment the already existing or “traditional” GasP modules. Together, GasP

and TGasP form a complete backend for the existing ARCwelder compiler

developed by Willem Mallon. This backend is complete in the sense that

it serves as a replacement for the existing backend in Click. All previous

dataflow designs in ARCwelder can be mapped to Click or to circuit im-

plementations with GasP and TGasP modules. I discuss the design differ-

ences between Telescope GasP and traditional GasP. I also show various

ways to design TGasP circuits and their pros and cons. A representative

set of TGasP modules with correctly sized designs and SPICE simulations

can be found in the ARC reports shown in Appendices A, B, and C.

• Chapter 3 discusses our self-timed dataflow design and compilation flow

and the ARCwelder compiler. I explain key differences between the Click

and GasP circuit families. I explain the various steps involved in extending

the ARCwelder compiler to compile dataflow designs into both Click and

GasP circuit implementations.

Note

The ARCwelder compiler research and experimental results from Chapter

3 have changed the point of view on self-timed design and test at the ARC.

The new design point of view is included in my thesis in Chapter 4. The

new test point of view is included in my thesis in Chapter 5.

• Chapter 4 introduces the ARC’s new point of view on self-timed design [46].
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This new design point of view applies to all self-timed circuit families and

makes it possible to mix, match, reuse, and exchange designs from differ-

ent circuit families without further translation. The new approach, dubbed

“Naturalized Communication,” makes computation as important as com-

munication from the lowest levels of design and up. As a result, the

specifics of the various communication protocols and data storage solu-

tions can be hidden inside the design modules, and modules can interact

using common, generic interfaces.

• Chapter 5 introduces the ARC’s new point of view on initialization and

testing of self-timed designs [46]. This new point of view applies to all self-

timed circuit families and distributed systems. The new approach, dubbed

“Naturalized Testing,” makes actions as important as states, from the low-

est levels of design-for-test and up. In addition to scan design-for-test

circuitry to manage state, we add go signals and MrGO circuitry to man-

age actions. Chapter 5 describes various test experiments using MrGO

and scan.

• Chapter 6 gives an overview of hierarchical design-for-test implementa-

tions from standard external test interfaces to the specific management of

(1) distributed states via traditional scan test circuits and (2) distributed ac-

tions via the new MrGO circuitry. Supporting documentation for Chapter 6

with specific implementation details can be found in Appendices E and F.

• Chapter 7 focuses on arbiter designs and compares the ARC arbiter and

the Sparsø-Furber arbiter [50]. Supporting documentation for Chapter 7

can be found in Appendices G and H.

• Appendices A, B, and C provide additional details to Chapter 2, Appendix
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E and Appendix F provide additional details to Chapters 5–6, and Appen-

dices G and H provide additional details to Chapter 7.

• Appendix D gives the IEEE publication “Naturalized Communication and

Testing,” published at ASYNC 2015, to which my PhD thesis was instru-

mental, and which — vice versa — was instrumental to this thesis.

• Appendix I contains the slides of my PhD dissertation defense, presented

on the 3rd of November, 2017. Reading this 4-slides-per-page handout

may be the quickest way to get a tour of this thesis. I hope you will enjoy

the tour!
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2

Telescope GasP (TGasP)

This chapter gives the rationale for using Telescope GasP (TGasP) implementa-

tions for pipeline modules used in ARCwelder [18]. ARCwelder is a design and

compilation environment for self-timed dataflow computations. The software for

ARCwelder was developed by Willem Mallon at Portland State University be-

tween 2010 and 2012. The organization of ARCwelder builds upon results and

key lessons learned from the self-timed data-driven compiler effort by Hand-

shake Solutions [43].

The term “telescope,” introduced in this thesis, refers to the communication be-

havior of a pipeline with telescope modules. The forward extension by commu-

nication channels with valid data and the reverse shortening by communication

channels with no-longer-valid or irrelevant data are reminiscent of the extension

(unfolding) and shortening (folding) of a jointed telescope with sliding tubes —

see also Figure 2.1.1. This is particularly obvious for modules with a single data

input and a single data output channel:

• (unfold) A handshake on the input starts a handshake on the output chan-

nel.
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• (fold) After the output handshake completes, the input handshake com-

pletes.

2.1 Why Telescope GasP?

The modules in Willem Mallon’s version of ARCwelder are Click modules [18]

and most of them use the telescopic handshake relation described earlier, as

do most of the original handshake components used by Philips Handshake So-

lutions [60, 50, 43]. We use Telescope GasP Modules to have a GasP version

for such “Telescope Click” modules.

Telescopic handshakes can be used, for instance, to avoid intermediate data

storage, which is the key reason why Willem Mallon incorporated them in AR-

Cwelder. They can also be used to bridge long distances [10].

Wires that span a long distance often require amplification. Unidirectional wires,

like data wires, can be amplified by inserting repeaters, i.e., buffers or pairs of in-

verters. Single-track statewires in GasP cannot be amplified using buffers or in-

verters because they are bi-directional. To amplify these single-track statewires

we insert a Telescope GasP module with the following properties:

• The module behaves like a First In First Out (FIFO) buffer module.

• The forward latency in the control flow matches that in the repeated data

wires.

The ASYNC 2011 publication by Jo Ebergen et al. [10] presents an design that

behaves like a Telescope GasP FIFO module. Insertion of such a module helps

reduce or even avoid the relaxation delays for long-range GasP communication
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that I presented at ASYNC 2010 [23] and which were also reported separately

by Simon Hollis [12].

Figure 2.1.1(top) presents an example of a dataflow FIFO using Telescope GasP

modules as repeater modules. Only the Store modules, Store1 and Store2, con-

trol latches in the datapath. The Amplify modules, Amp1 and Amp2 and Amp3,

control no data latches. To make this work, the data latch contents feeding the

combinational logic must remain stable until the latches fed by the combinational

logic have captured the results. To meet this requirement, the Amplify modules

keep their predecessors waiting, holding their data valid and stable, until their

successors have stored the results of the combinational logic computation, as

illustrated in Figure 2.1.1(bottom).

When the leftmost Store module in Figure 2.1.1, Store1, initiates a handshake

to its successor, Amp1, Amplify module Amp1 initiates a handshake to its suc-

cessor module, Amp2, who then initiates a handshake to its successor, Amp3.

Meanwhile, the data stored in Store1 are processed by the combinational logic.

After three amplifications, the handshake reaches the rightmost Store module,

Store2. By the time the handshake reaches Store2, the results of the com-

binational logic computation have arrived at the latch inputs of Store2. Mod-

ule Store2 now captures these results in its latches, and releases the data-

control bundling requirement for its predecessor, Amp3, which subsequently re-

leases the bundling requirements for its predecessor, Amp2, and so forth, until

the bundling requirement on the output channel of the leftmost Store module,

Store1, is released. At this point, Store1 may start a new handshake with new

data.

Store modules, like Store1 and Store2 in Figure 2.1.1(top), are the only modules

in ARCwelder that store data. They do so by clocking local latches or flipflops in
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Fig. 2.1.1: (top) Example of a dataflow computation using TGasP Amplify modules.
The picture shows the data latches and combinational logic at the top and the con-
trol part of the GasP and TGasP modules at the bottom. We assume that the
delay through the latches and combinational logic is smaller than the delay through
the control. Modules Store1 and Store2 are traditional GasP modules that allow
their predecessors to fetch new data on their input channels while their succes-
sors process the data on their output channels. Modules Amp1, Amp2 and Amp3
are TGasP modules that keep their predecessors waiting, holding their data valid
and stable, until their successors have stored the results of the combinational logic
computation. (bottom) Space-Time diagram showing the telescopic handshake
behavior of the Amplify modules. Note the forward extension of the handshake
channels with valid data while the data are processed by the combinational logic
between Store1 and Store2. Note the reverse shortening of these same chan-
nels with no-longer-valid or irrelevant data after the computed results are stored
by Store2. This behavior is reminiscent of the extension (unfolding) and shorten-
ing (folding) of a jointed telescope with sliding tubes. As reference, a picture of a
jointed telescope with sliding tubes has been inserted in the bottom-right corner.
Notice its similarity to the shaded area in the Space-Time diagram.
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the datapath. As such, Store modules can be used to isolate data computations

and datapaths and to interface between different datapath computations. The

non-Store modules in Figure 2.1.1 and in the ARC reports in Appendices A, B,

and C avoid storing data and clocking latches or flipflops in the datapath.

The ARCwelder compiler lets the designer indicate explicitly when and where

data are to be stored. The compiler checks that every loop in the dataflow graph

has at least two Store modules; all other modules may be free of storage. AR-

Cwelder also checks that data-control bundling requirements are met on a dat-

apath per datapath basis, from the sending set of Store modules with latches

feeding the combinational logic computations in the datapath to the receiving

set of Store modules with latches fed by the datapath. It is unnecessary to

guarantee data-control bundling requirements on individual, intermediate chan-

nel connections. This makes it possible to use time-borrowing techniques to

optimize datapaths in their entirety for speed and power [18].

2.2 Traditional versus Telescope GasP

There are two implementation differences between traditional and Telescope

GasP. For one, traditional GasP modules have storage, i.e., they control latches

in the datapath, where Telescope GasP modules avoid data storage. For in-

stance, signal cl in the traditional 6-4 GasP implementation of the Store module

in Figure 2.2.1 will clock local latches in the datapath in order to capture and hold

data. There is no matching cl signal in the Telescope GasP implementation of

the Amplify module in Figure 2.2.3.

As a side remark, we can, of course, keep Store signal cl in Figure 2.2.1 inter-

nal. If we refrain from connecting signal cl to any latches in the datapath, the 6-4
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Fig. 2.2.1: Circuit for traditional 6-4 GasP module Store, with input handshake
signal and master clear in[sw,mc], output handshake signal and master clear
out[sw,mc], and local clock signal cl to clock data latches for storing data. We
use the top-right icon to represent this GasP Store module.

GasP implementation becomes storage-free. Internalizing signal cl is one pos-

sible approach for implementing storage-free modules using traditional GasP.

So, the fact that the module does or doesn’t have storage control is not unique

to Telescope GasP. What’s unique is the way control-data bundling relations are

maintained, which we’ll discuss next.

The second and more crucial difference between traditional and Telescope GasP

implementation concerns the communication relation between the input and out-

put channels. In traditional GasP, reverse handshakes on the input channels

reset while forward handshakes on the output channels start. This leads to

maximum concurrency and produces the low cycle times, low latency, and high

throughput that are the hallmarks of GasP [55, 23]. This concurrency is clearly

visible in the SPICE simulation in Figure 2.2.2.
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Fig. 2.2.2: SPICE-level simulation of the 6-4 GasP implementation of the Store
module in Figure 2.2.1. Red signal in[sw] and blue signal out[sw] swap their states
in parallel and create a high pulse on clock signal cl, whenever in[sw] is high and
out[sw] is low. After in[sw] has gone low, the predecessor in the simulation test en-
vironment switches in[sw] back to high. Likewise, after out[sw] has gone high, the
successor in the simulation test environment switches out[sw] back to low. Then,
the cycle starts again.
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Fig. 2.2.3: Circuit for Telescope GasP module Amplify, with input handshake sig-
nal and master clear in[sw,mc] and output handshake signal and master clear
out[sw,mc]. We can use either of the two top-right icons to represent this GasP
Amplify module.

Fig. 2.2.4: SPICE-level simulation of the Telescope GasP Amplify module in Fig-
ure 2.2.3. Red signal in[sw] and blue signal out[sw] have a telescopic handshake
relationship: in[sw] high causes out[sw] to go high, and when out[sw] has gone
low, only then will in[sw] go low. The simulation clearly shows that each high pulse
on out[sw] is strictly contained within a high pulse on in[sw] : the blue signal is
always below the red signal.
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In Figure 2.2.2, the red input handshake signal in[sw] resets, i.e., goes low, at

the same time that the blue output handshake signal out[sw] starts, i.e., goes

high. In Telescope GasP, reverse handshakes on the input channels postpone

their reset phase until forward handshakes on the output channels have finished

both their start and reset phases. This is clearly visible in the SPICE simulation

in Figure 2.2.4: each high pulse on the red input signal in[sw] completely en-

capsulates the high pulse on the blue output signal out[sw].

2.3 Cost of and Alternatives to Telescope GasP

Because each reverse handshake in the dataflow graph postpones its reset

phase until the forward handshake is complete, the control-data bundling con-

straints in Telescope GasP keep their simple form: a high request signal indi-

cates that the data signals have arrived and that the data values are valid and

stable. The strictness with which this simple control-data bundling is maintained

may be overkill, but it does avoid the need for latching and it avoids the need for

keeping intermediate data outside of Store modules. The price for this simplic-

ity, in particular in combination with single-track handshaking, is extra latency

on the reverse path. We will explain this below.

Single-track handshake protocols share state. To separate forward from reverse

state in a single-track statewire and create different forward and reverse opera-

tions during a single-track handshake, one must add at least one gate inversion

in each handshake direction. In the case of non-inverting statewires that use

the same encoding, e.g., high for valid data and low for no-longer-valid or ir-

relevant data, one must add an even number of inversions in each handshake

direction. So, for Telescope GasP, it takes at least four inverter delays per hand-
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shake cycle to do something different in the forward direction in comparison to

the backward, i.e., reverse, direction. One has only to look at the handshake

protocol to realize that forward and reverse functionality are always different in

Telescope GasP: reverse resets wait until forward resets are done. As a result,

each Telescope GasP module adds at least four gate delays to the overall cycle

time, just to implement telescoping.1 A pipeline with 6-4 GasP implementations

for the Store module and with Telescope GasP implementations for other mod-

ules has a minimum cumulative cycle time of 10+4k gate delays, where k is

the maximum number of consecutive Telescope GasP modules between Store

modules.

This unavoidable increase in cycle time for inserting single-track style repeater

modules may be a disadvantage over design styles that work with multi-track

handshake signaling and insert multi-track repeater modules. With separate

tracks in each forward and reverse handshake direction, it is possible to add gate

delays in one direction but not in the other. See for instance the double-track

Click circuit in Figure 3.2.2(top), which has gates in the reverse direction but

not in the forward direction. Click uses two-phase handshaking over separate

tracks [43]. Consequently, Click datapath designs may not experience as much

increased cycle time when they use telescoping as do designs with GasP and

TGasP. But even in Click, changes in cycle time will be cumulative for pipelines

of telescope modules, because of the telescope unfolding and folding sequence.

Should we conclude that the behavioral implications of telescope handshaking

combine adversely with the physical implications of single-track handshaking?

If so, then perhaps we should avoid using Telescope GasP and instead continue

using traditional 6-4 GasP with its minimum constant cycle time of 10 gate de-
1We size transistors using a logical effort model and thus each gate contributes to a unit

gate delay.
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lays. Using traditional GasP to implement the dataflow design in Figure 2.1.1

may work if we use additional synchronization between the Store modules at the

beginning and end of each datapath. The purpose of such begin-end synchro-

nization is to keep the data latches that feed the combinational logic valid and

stable until the latches fed by the combinational logic have captured the com-

puted results. This could provide an alternative solution for using a telescope

communication protocol when the goal is to avoid intermediate data storage. It

would be a dubious solution when the goal is to bridge long distances. Also, this

alternative solution would change the dataflow graph input to ARCwelder, be-

cause the dataflow graph would contain extra channel connections and it would

use a different handshake signaling sequence. As such, this alternative solution

approach is of little help when it comes to mapping existing dataflow designs in

ARCwelder.

I pursue Telescope GasP for a simple reason: to have a “drop-in,” i.e., module-

by-module, GasP-style replacement for the dataflow designs already present

in ARCwelder and implemented currently using Click Store modules and “Tele-

scope Click” non-Store modules. Assuming that we can make the forward la-

tency in Telescope GasP match the delay needs for control-data bundling, e.g.,

assuming that the forward latency in the control path matches the delay of the

combinational logic, then the art of reducing the datapath cycle time is really in

reducing the reverse latency. We can reduce the reverse latency in a datapath

by using a fast reset strategy on the reverse handshakes. Section 2.4 contains

an example of how this can be done for the Amplify module. The design solu-

tions presented in Appendices A, B, and C show how one can do this for other

existing ARCwelder modules that use telescope handshakes.
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2.4 Designing Telescope GasP Modules

Our actual designs of the Telescope GasP modules can be found in Appen-

dices A, B, and C. Here, in this section, we give only a flavor of the design ap-

proach. We explored three different approaches in designing Telescope GasP

modules. The first approach uses separate self-resetting loops for input and out-

put channels. The Amplify module in Figure 2.2.3 is an example of this first de-

sign approach. It has two self-resetting loops: the loop at the top is used to start

and stop the high drive for out[sw], while the loop at the bottom is used to start

and stop the low drive for in[sw]. The second approach shown in Figure 2.4.1

shares the self-resetting loops. It has one self-resetting loop, with separate taps

to start and stop the high respectively low drives for out[sw] and in[sw]. The sec-

ond design approach is based on the repeater design by Jo Ebergen et al. [10]

but we generalized the approach to other modules beyond Amplify. The third

design approach shown in Figure 2.4.2 uses separate self-resetting loops for

handshake signals as used in the first design, but it cross-couples the loops to

improve timing margins. This is explained in more detail further on.

All three approaches have their advantages and disadvantages. The advantage

of the first approach used in Figure 2.2.3 is that its control-data bundling con-

straints are less strict than those for the second approach used in Figure 2.4.1.

This is not immediately obvious from the Amplify design, but it will become ob-

vious when we get to the data-controlled Distribute modules. For details, see

Appendix B.

The advantage of the second approach used in Figure 2.4.1 is that it has timing

margins that we feel are safe — safer than those in the first approach. The

caption of Figure 2.4.3 contains a detailed explanation of the Amplify operation
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Fig. 2.4.1: Our second alternative Telescope GasP circuit implementation for mod-
ule Amplify. It differs from the first one in Figure 2.2.3, because it shares the self-
resetting loops between the input and output handshakes insofar possible.

and safe timing margins in the second design approach.

In contrast to the safe timing margins in the second design approach, the first

design approach in Figure 2.2.3 has two marginal relative timing constraints:

1. After in[sw] rises, it takes 2 gate delays before out[sw] rises and disables

the inverted input AND gate in the lower self-resetting loop, while it takes 3

gate delays for the high in[sw] signal to enable that same AND gate via the

lower self-resetting loop. To guarantee a telescope relation between in[sw]

and out[sw], the inverted input AND gate must sense the disabling out[sw]

transition before it senses the enabling in[sw] transition. The timing margin

between the two is only 1 gate delay.

2. After out[sw] falls, it takes 2 gate delays before in[sw] falls and disables

the NAND gate in the upper self-resetting loop, while it takes 3 gate delays

for the low out[sw] signal to enable that same NAND gate via the upper

self-resetting loop. To guarantee a correct handshake relation between

in[sw] and out[sw], the NAND gate must sense the disabling in[sw] before
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Fig. 2.4.2: Our third alternative Telescope GasP circuit implementation for module
Amplify, similar to the first one in Figure 2.2.3 but with better timing margins.

it senses the enabling out[sw] transition. The timing margin between the

two is only 1 gate delay.

A timing margin of only 1 gate delay is marginal and sensitive to noise interfer-

ence and process variations. We can make both margins as safe as the timing

margins deployed in the second approach by adding extra circuitry to delay the

transition that must arrive later by two additional gate delays. Other transitions

remain unaffected. For instance, to delay a transition from sin low to sout high

we insert the left-hand circuit of Figure 2.4.4, and to delay a transition from sin

high to sout low we insert the right-hand circuit of Figure 2.4.4.

The two delay circuits in Figure 2.4.4 add two gate delays to the targeted sin-to-

sout transition. Depending on the actual cycle time of the module in the given

datapath, we can extend this further to four additional gate delays or more, with-



2. TELESCOPE GASP (TGASP) 24

Fig. 2.4.3: SPICE-level simulation of module Amplify in Figure 2.4.1.
• The top window shows the telescopic handshake relation between in[sw] and
out[sw].
• The middle window shows the simulated timing margins from out[sw] high to
s0 low (1 gate delay) and to s0plus2 low (3 gate delays) and to stopping the high
drive on out[sw] (5 gate delays). The in[sw] reset timing margin of 3 gate delays
that we see when going from out[sw] high, disabling the inverted input AND gate,
to s0plus2 low, enabling the AND gate, is large enough to guarantee the telescopic
relation between in[sw] and out[sw]. It is also small enough to fit within the high
pulse width of 5 gate delays for out[sw] in order to maintain throughput. The re-
maining 2 gate delays after s0plus2 goes low are used to stop the high drive on
out[sw] so the receiver can reset out[sw] without a fight conflict.
• Similar to the middle window, the bottom window shows the simulated delay mar-
gins from in[sw] going low to s0 high (1 gate delay) and to s0plus2 high (3 gate
delays) and to stopping the low drive on in[sw] (5 gate delays). The out[sw] set
timing margin of 3 gate delays that we see when going from in[sw] low, disabling
the NAND gate, to s0plus2 high, enabling the NAND gate, is large enough to guar-
antee a telescopic handshake relation between in[sw] and out[sw]. It is also small
enough to fit within the low pulse width of 5 gate delays for in[sw] in order to main-
tain throughput. The remaining 2 gate delays after s0plus2 goes high are used to
stop the low drive on in[sw], so the sender can set in[sw] without a fight conflict.
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Fig. 2.4.4: Delay circuits to increase the timing margin from sin low to sout high by
two gate delays (left), and to increase the delay from sin high to sout low by two
gate delays (right). Other path delays remain unchanged.

out losing throughput. These two types of delay circuits are sufficiently generic

for our needs, and have the following properties:

• The target transition is slowed down by sufficient margin.

• The target transition is fast enough to sustain maximum throughput.

• The delays of the other transitions remain unchanged.

Adding delay circuits to improve the timing margin has one limitation. The delay

circuits are asymmetric in nature, which limits the maximum gate delays one can

obtain by inserting such delay modules. In this thesis, the maximum number of

gate delays is 5, as limited by the 5-gate delay pulse width of 6-4 GasP.

An alternative to adding delay circuits in the first design is to use the third de-

sign approach shown in Figure 2.4.2, which has the following relative timing

constraints:
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1. After in[sw] rises, it takes 1 gate delay to disable the B-Driver gate in the

lower self-resetting loop, while it takes 4 gate delays for the high in[sw]

signal to enable this B-Driver gate via the lower self-resetting loop. To

guarantee a telescope relation between in[sw] and out[sw], the B-Driver

gate must sense the in[sw]-based disabling transition before it senses the

in[sw]-based enabling transition. The timing margin between the two is 3

gate delays, which we consider safe.

2. After out[sw] falls, it takes 1 gate delay to disable the A-Driver in the upper

self-resetting loop, while it takes 4 gate delays for the low out[sw] signal

to enable the same A-Driver via the upper self-resetting loop. To guaran-

tee a correct handshake relation between in[sw] and out[sw], the A-Driver

gate must sense the out[sw]-based disabling transition before it senses

the out[sw]-based enabling transition. The timing margin between the two

is 3 gate delays, which we consider safe.

The key advantage of the third design approach in Figure 2.4.2 is that both

relative timing constraints have a safe timing margin of 3 gate delays. A disad-

vantage of the third design approach is that the complexity of the A-Driver and

B-Driver gates increases as each gate gets an additional input.

2.5 Latency Reduction in the Reverse Direction

In addition to the single module test configuration used for Figure 2.4.3, we also

tested the behavior of the Amplify module in a datapath configuration consisting

of a First In First Out (FIFO) configuration of Amplify modules. The purpose

of this second test configuration was to show how one could generate a fast
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Fig. 2.5.1: Fast reset configuration to reset concurrently the three Amplify modules
in the middle First In First Out (FIFO) design.

reset signal to shorten the reverse latency in the datapath. This second test

configuration follows in Figure 2.5.1.

Figure 2.5.1 shows a sender FIFO configuration on the left, designed using

traditional 6-4 GasP modules. The sender FIFO feeds a datapath consisting

of another FIFO configuration with three Amplify modules, designed in Tele-

scope GasP using the circuit implementation of Figure 2.4.1. The right-hand

side shows the receiving half of a Store module, designed in 6-4 GasP using

the implementation of Figure 2.2.1. We deleted the sending half from this Store

module because we don’t need it, and we added extra circuitry to generate a

fast reset signal, called mc_fastRTZ.

When the input handshake signal to the Store module on the right rises, i.e.,

out[sw] goes high, the module generates a 5-gate-delay high pulse on

mc_fastRTZ, which is distributed to reset concurrently all outstanding hand-

shakes for the Amplify modules in the middle FIFO. This works, as can be seen
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Fig. 2.5.2: Fast reset SPICE-level simulation results for the test configuration in
Figure 2.5.1.
• The top window shows how the pink high pulse on the fast reset signal,
mc_fastRTZ, resets concurrently both the green handshake on out[sw] of the third
Amplify module and the red handshake on in[sw]. The reset slope for out[sw]
is steeper than the reset slope for in[sw] because: (1) out[sw] is reset first by
mc_fastRTZ and two gate delays later also by out[sw] via the negated input AND
gate in the third Amplify module and the strong cl-to-out[sw] driver in the Store
module, while (2) in[sw] is reset first by mc_fastRTZ, and two gate delays later by
a weaker driven m1[sw].
• The bottom window shows the beginning and end of each handshake over the
initial, intermediate and final statewires in[sw], m1[sw], m2[sw], and out[sw] in the
Amplify queue. The handshakes at the output channel of each module start 2 gate
delays after the handshakes at the input channel. But thanks to the fast reset sig-
nal, mc_fastRTZ, shown in the top window, all outstanding handshakes end at the
same time. The steepness of the reset slopes for in[sw], m1[sw], m2[sw], out[sw]
depends on how many modules there are between the statewire and the Store
module at the end of the datapath: the fewer modules in-between, the steeper
the slope. This is because the second drive wave for resetting each handshake
comes from the successor module, which is strongest when coming from the Store
module. In the above text for the top window, we already explained the slope dif-
ferences for the falling transitions on in[sw] versus out[sw]. The bottom simulation
window clearly shows that differences in slope peter out quickly: the slope differ-
ences for the falling transitions on in[sw], m1[sw], and m2[sw] are significantly less
prominent.
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from the SPICE simulation in Figure 2.5.2. The cycle time for the Amplify FIFO

without a fast reset signal would be 10 + 3*4 = 22 gate delays. With the fast

reset signal we obtain a cycle time of 10 + 3*2 = 16 gate delays. These results

are same with the Amplify implementations of Figures 2.2.3 and 2.4.2.

2.6 Summary and Conclusions

This chapter introduced Telescope GasP, or TGasP, to have a module-by-module

GasP-style replacement for the dataflow designs already present in ARCwelder

and implemented currently using Click Store modules and “Telescope Click”

non-Store modules. The idea is that, instead of mapping a Store module to

a Click Store circuit, ARCwelder can now map a Store module to a GasP Store

circuit. And, instead of mapping a non-Store module to a specific “Telescope

Click” circuit implementation, ARCwelder can now map a non-Store module to a

TGasP circuit implementation. In the next chapter, I will discuss the ARCwelder

compiler extensions for GasP and TGasP.

I introduced the term “telescope” for the communication behavior of a “tele-

scope” module, because the forward extension of its communication channels

with valid data and the reverse shortening with no-longer-valid or irrelevant data

are reminiscent of the extension and shortening of a jointed telescope with slid-

ing tubes, as illustrated in Figure 2.1.1.

Telescope handshake modules can be used to avoid intermediate data storage,

which is the key reason why Willem Mallon incorporated them in ARCwelder.

They can also be used as repeater modules to bridge long distances.

An alternative solution to avoid intermediate storage — over short distances —
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would be to maintain a parallel communication protocol, such as used by Store

modules, and avoid storing intermediate data but to keep the data stable and

valid for as long as needed by adding extra — short-distance — synchroniza-

tion channels between the Store modules at the beginning and end of each

datapath.

Telescope GasP suffers from latency in the reverse direction of the dataflow.

Section 2.5 and Appendices A, B, and C present a fast reset solution to amelio-

rate this problem. There are similarities between implementing these fast reset

solutions for Telescope GasP and implementing a datapath begin-to-end syn-

chronization scheme for traditional GasP. Further investigations of these simi-

larities are outside the scope of this thesis. Also outside the scope of this thesis

are our continued investigations as to where and by how much we might want

to change the forward and reverse latencies in Telescope GasP. The low 2-gate-

delay latencies used in this thesis result in a myriad of custom driver designs.
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2.7 My Contributions for Chapter 2

While most of this thesis is joint work with my supervisors, the following key

contributions are largely mine.

• I extended the GasP-style circuit family with Telescope GasP (TGasP)

modules. I developed a representative set of TGasP modules for control-

driven and data-driven dataflow control operations: fork, join, branch, case

selection, non-arbitrated and arbitrated merge, and repetition. The cor-

responding TGasP module designs follow in the ARC reports in Appen-

dices A, B, and C. All modules have been sized correctly and have been

simulated with SPICE to validate their behaviors.

• I developed three different circuit design approaches to implement each

Telescope GasP module, and explored their advantages and disadvan-

tages in terms of design complexity and timing.
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3

Silicon Compilation for Click and GasP

To design any computer system of substance, we need design tools [7][14],

preferably a silicon compiler – with a user interface to enter the design at a high

enough level so we can focus on algorithmic correctness before we map it to

a circuit implementation, and with a suite of analysis tools so we can evaluate

the various implementation options in terms of energy, throughput, latency, and

area. Few silicon compilers are available that support self-timed design. Some

of the best known ones are proprietary, owned by companies like Tiempo [5]

and Fulcrum [3].

This chapter summarizes the changes made to the ARC’s silicon compiler, AR-

Cwelder, so it compiles dataflow designs to both Click and GasP-style imple-

mentations.

ARCwelder was developed by Willem Mallon, between 2010 an 2012, when

Willem worked at the Asynchronous Research Center (ARC) at Portland State

University. The compiler maps dataflow designs to VLSI circuits and – ultimately

– to silicon. The name of the compiler reflects how, at the user interface, AR-

Cwelder welds together both text and graphics to convey the intent of the design.
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The organization of ARCwelder is based on that of the last compiler developed

by Philips Handshake Solutions [43]. The compiler focuses on dataflow designs,

as opposed to the control-oriented focus of previous compiler generations de-

veloped and supported by Handshake Solutions and the prior Philips Tangram

team [42, 60]. The reason for this focus shift was caused by a shift in appli-

cations requested by the customers of Handshake Solutions. Originally, most

applications were in the area of low power, automotive, smart cards, and dis-

tributed control. But more and more customers were seeking higher throughput

applications in the signal-processing domain. After delivering the asynchronous

ARM996HS in 1996, which was licensed through ARM Ltd, the design engineers

at Handshake Solutions realized that this type of design stretched the compiler

capabilities to the limit in terms of circuit latency and throughput. Meanwhile,

the test engineers had come to the conclusion that, despite intense collabora-

tion between Handshake Solutions and the Computer Aided Design (CAD) tool

companies they worked with, the CAD tools were largely incapable of dealing

with latch-based designs. As a result, most of the latches had to be replaced

by flipflops to permit static timing analysis, fault simulation, and test genera-

tion. The engineers developed a new circuit family, called Click, which uses

flipflops instead of latches. All loops in Click go through flipflops. The data are

tightly coupled to the control flow to accommodate pipelined applications with

high throughput dataflows while saving power and energy. Click is the most

synchronous asynchronous self-timed circuit family we know of. Commercial

CAD tools for static timing analysis, fault simulation, and test generation have

an easier task dealing with Click circuits than with most other self-timed circuits.

For Handshake Solutions, supporting Click required the development of a new

compiler [43]. Neither Click nor its compiler were patented, because by that time

Philips was closing down Handshake Solutions.
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At the ARC, we’re trying to save some of the key insights and knowledge built

up by Handshake Solutions, starting with Click and its compiler. Willem Mallon

has played a key role in kick-starting this effort, and is still dedicated in con-

tinuing it through his Dutch consulting company, Third Party B.V., for hardware

and software compilers. ARCwelder is available through a Berkeley Software

Distribution (BSD) permissive free software license. A major hurdle with AR-

Cwelder, after Willem left, was that there were no instruction manuals for either

the Graphical User Interface (GUI) or the compiler source code. Ivan Sutherland

has taken over the GUI implementation, so the GUI is now covered. Together

with Hoon Park, Anping He, Navaneeth Jamadagni, Ivan Sutherland, and Marly

Roncken, I looked at the compilation and static and dynamic timing analysis

parts. We wrote cheatsheets for how to use the GUI, how to compile a GUI

design to a Click circuit, how to model and simulate the circuit in Verilog, and

how to run static timing analysis and fix timing constraints [39, 40, 35].

3.1 Existing ARCwelder Compiler

Figure 3.1.1 gives an overview of the various capabilities of ARCwelder, showing

the functions supported by the compiler and their position in the design flow.

I use blue-colored boxes to indicate the functions, and pink-colored ones to

indicate the input files used by a function and the output files produced as a

result of executing the function.

During their time at the ARC, Navaneeth Jamadagni and Willem Mallon devel-

oped ARCwelder interfaces to commercial CAD tools for placement and routing

(Place&Route) and back-annotation of the Place&Route results to get more ac-

curate simulation results in terms of power, latency, and throughput. As part of
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his PhD research [15, 16], Navaneeth Jamadagni investigated how best to use

commercial CAD tools to optimize and implement arithmetic datapath computa-

tions.

In the following subsections, I will give an overview of the key stages in the

ARCwelder compiler flow: Graphical User Interface, Parser, Static and Dynamic

Validation.
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Fig. 3.1.1: ARCwelder organization, with the key compiler functions colored blue
and the input and output files used and produced by each compiler function colored
pink.
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3.1.1 Graphical User Interface

Each ARCwelder design starts at the Graphical User Interface (GUI). The de-

signer uses the GUI to create designs. Each design is a network of handshake

modules connected by handshake channels. The designer creates the network

topology of modules and channels — graphically. The designer provides the

data operations, data types, and handshake behaviors for the modules and

channels — textually. The designer also uses the GUI to inspect the correctness

of the design by simulating the handshake behavior.

3.1.2 Parser

The second compiler stage in ARCwelder is the Parser. The Parser maps a GUI

design to a circuit. Users can choose the type of circuit family that they wish to

map to.

3.1.3 Static Validation

The third compiler stage in the ARCwelder design flow is Static Validation. The

purpose of Static Validation is to check whether the design meets the timing

constraints for correct communication and data transfer. The generation of these

timing constraints is the subject of Hoon Park’s PhD research [39, 41].

3.1.4 Dynamic Validation

The fourth compiler function in the design flow is Dynamic Validation. The pur-

pose of dynamic validation is to check the functional correctness of the design
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Fig. 3.2.1: Implementation of a Store module in Click (left) and GasP (right).

through simulation.

3.2 ARCwelder Compiled Circuits: Existing versus New

At the ARC, we use both Click and GasP circuits. GasP originated from Sun

Microsystems Laboratories [55] in the United States. Click originated from

Philips Handshake Solutions [43] in The Netherlands. The current version of

ARCwelder compiles dataflow designs to Click circuits. To make ARCwelder

usable for both types of circuits that we work with at the ARC, I extended the

compiler so it supports not only Click [43] but also GasP [53]. Click and GasP

circuits have a different architecture and a different handshake behavior. This

section explains the key differences that mattered most in adapting the compiler

to fit both families.

Figure 3.2.1 shows two implementations of a Store module, in Click respectively

GasP. Before going over their behavior, let’s first look at the architecture of the

designs.
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• The Click version uses two wires per handshake channel, a request wire to

start the handshake, and an acknowledge wire to signal its completion. For

instance, handshake channel in has request wire in_R and acknowledge

wire in_A.

The GasP version uses a single bi-directional wire per handshake channel,

which acts as request when high, and as acknowledge when low. For

instance, handshake channel in has a single bi-directional wire in[sw].

• In Click, the state is stored in data flipflops and in the control flipflop, FF.

In GasP, the state is stored in data latches and on the statewires, in[sw]

and out[sw], and their half-drivers and half-keepers. In Figure 3.2.1(right),

the half-keeper for keeping the statewire high, KeepHI, is drawn at the

module side that drives the statewire low, DriveLO. Likewise, the half-

keeper for keeping the statewire low, KeepLO, is drawn at the module side

that drives the statewire high, DriveHI. This way, the half-keeper that keeps

the statewire one way can be shut off immediately when the statewire is

driven the other way, thereby avoiding a drive fight. Each GasP statewire

in Figure 3.2.1 is driven for 5 gate delays. During that time, the drive is

handed over to the half-keeper at the other end of the channel. After 5

gate delays, the half-driver at the other end of the channel may drive the

statewire the other way.

• Both Click and GasP have self-resetting loops, and both generate a high

pulse local clock per handshake, called ck in Click and fire in GasP — see

Figure 3.2.1. The high pulse temporarily renders the storage elements in

the datapath — flipflops in Click, latches in GasP — transparent, and thus

copies the data from the input channel to the output channel.

As far as their behavior goes: each Click and GasP Store module acts when
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• its input channel has valid data —

i.e., when in_R differs from in_A in Click, and when in[sw] is high in GasP,

and

• its output channel has space —

i.e., when out_R matches out_A in Click, and out[sw] is low in GasP.

When it acts, it raises its local clock — ck for Click in Figure 3.2.1 and fire for

GasP — resulting in the following three concurrent actions:

1. The data latches or flipflops capture the data, passing data from in to out.

2. Channel in is declared empty – its handshake completes:

• In Click, in_A flips and its value now matches with the value on in_R.
• In GasP, in[sw] goes low.

3. Channel out is declared full – its handshake starts:

• In Click, out_R flips and its value now differs from out_A.
• In GasP, out[sw] goes high.

The changes on the channel wires activate two internal reset loops that reset

the local clock again to low. At this point, the states of the control wires in each

channel are kept by flipflop FF in the Click module and by the half-keepers in

the GasP module.

All our current GasP modules control data latches in the datapath and overlap

the handshake completion on channel in with the handshake start on channel

out, while handing over the data from in to out.

This is not the case for all Click modules used in ARCwelder. In fact, the Store

module is the only Click module with data storage and overlapping completion

and start of input-output handshakes. All other Click modules in ARCwelder
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Fig. 3.2.2: Fork module implemented in Click (top) and in TGasP (bottom).

transfer but refrain from storing data. While transferring data, a non-Store mod-

ule keeps its input channels suspended in their handshake communications until

the output channels have completed theirs.

Figure 3.2.2 (top) gives an example of such a non-Store Click module: a 1-input



3. SILICON COMPILATION FOR CLICK AND GASP 41

2-output Fork module. Click circuits are initialized with all handshake signals set

to low. From there, the handshake behavior for the Fork module proceeds as

follows. A change on input request signal in_R leads to a similar change on the

out0_R and out1_R request signals for the two output channels of the module.

The module then waits until both output successor modules have completed

their computations and terminated the output handshakes by flipping out0_A

and out1_A. The changes on out0_A and out1_A make the flipflop’s clock pin

(ck ) high, which flips the value at the flipflop’s output pin (Q), thus causing in_A

to flip and terminate the handshake on input channel, in. The termination of

the input handshake also causes the flipflop’s clock pin to reset low via the two

self-resetting internal loops through the XOR and AND gates, in preparation for

the next handshake cycle. Note that the Fork’s handshake behavior acts like a

telescope:

• it unfolds its channel handshakes from left to right (in to out)

— declaring them full with valid data,

• and it folds them back from right to left (out to in)

— declaring them empty with no-longer-relevant data.

In Chapter 2, we introduced GasP-style modules that operate using such tele-

scopic handshakes. We called this GasP-style extension “Telescope GasP” —

“TGasP” in short.

A TGasP version of the Fork module follows in Figure 3.2.2 (bottom) – see also

Figure 15 in Appendix A. It uses an internal set–reset latch to remember whether

the next action is in the forward or in the reverse direction. Just like in traditional

6-4 GasP, it drives the statewires for 5 gate delays before handing the drive back

to the statewire keepers. Like Click, this TGasP implementation assumes that

all the statewires start low (empty).
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A representative set of TGasP modules, with correctly sized gates and transis-

tors and with SPICE simulations, can be found in Appendices A, B and C. I

have used these TGasP modules and the GasP Store module in Figure 3.2.1

to investigate how to support GasP-style circuits in ARCwelder. Given that AR-

Cwelder already works for Click, it made sense to start with the same module

base. Section 3.3 discusses the ARCwelder adaptations that I made to compile

dataflow designs to both Click and (T)GasP circuits.

3.3 ARCwelder for Click and (T)GasP

To make ARCwelder usable for the type of circuits that we work with at the ARC,

we extended the compiler so it supports not only Click [43] but also GasP-style

circuits [53]. Our goal is to use the same GUI design as was used for the Click

implementation, and just re-map the modules and channels in the design to

(T)GasP instead of Click.

The subsections below discuss changes in each of the four compiler stages

shown in Figure 3.1.1. These changes allowed me to create a first – not neces-

sarily elegant but operational – version of ARCwelder that supports both Click

and (T)GasP.

3.3.1 Graphical User Interface Changes

Each ARCwelder design starts in the GUI. The designer uses the GUI to indi-

cate which handshake control modules and data operations to use, and how to

connect them. He or she can use a standard set of modules, or define new ones

in the GUI. The designer displays the modules and their connections graphically,
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Fig. 3.3.1: GUI design for a Fibonacci number generator, generating the sum
of the last two numbers in a sequence, primed here with 0 and 1, and gener-
ating 1, 2, 3, 5, etcetera. The design contains two fullStore modules, lastFib
and next_to_lastFib, one Store module, nextFib, and one Join, sum. Each full-
Store module starts with data, Store starts empty. The text files fill in the details
on data types (16-bit words, representing a number), initial data settings (0 for
next_to_lastFib, 1 for lastFib), and the data operation in the Join (+).

but provides the data operations, data types, and handshake behaviors of the

modules in text format.

Figure 3.3.1 shows an example of a GUI design for a Fibonacci number gen-

erator. The design contains one Store module, two fullStore modules and a

Join module, connected by handshake channels. Text snippets with data oper-

ations, data types and initial data settings are shown on the right-hand side of

Figure 3.3.1. The designer can use the GUI to inspect the correctness of the

design by simulating the handshake behavior, event by event, and by providing

data inputs and validating data outputs handshake by handshake.
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3.3.2 Parser Changes

The Parser maps the GUI design files to circuit design files that can be simu-

lated in Verilog and analyzed and mapped to silicon. The Parser maintains the

design hierarchy of the GUI-level design. Originally, the Parser replaced each

handshake module by a corresponding Click circuit implementation in Verilog,

each handshake channel by a pair of request-acknowledge wires, and each data

operation by a functional Verilog model.

In the extension, the Parser supports mappings to (T)GasP circuits. It maps

each handshake module to a corresponding GasP or TGasP circuit implemen-

tation in Verilog, each channel to a single bidirectional request-acknowledge

wire, called a “statewire,” and each data operation by a functional Verilog model.

This sounds quite similar to mapping a GUI design to a Click implementation,

and it is — except that:

• The bidirectional wire mappings in (T)GasP required additional code and

the use of inout Verilog signals.

• In Click, all channels are initialized low. In (T)GasP, we view channels as

the key state-holding elements of the module, and we may initialize them

high or low. This is not a big deal at the Verilog netlist level, but it has

additional implications for the dynamic validation code used later in the

design flow. During dynamic validation, we check that the data sent over

the channel is stable during each handshake, i.e., from the handshake’s

request to its acknowledge.

• The Parser uses generalized Click modules. The generalized modules

support arbitrary numbers of handshake channels for data input and data



3. SILICON COMPILATION FOR CLICK AND GASP 45

output. As a result the Verilog implementations for the various Click mod-

ules may vary significantly in area, latency and throughput.

This contrasts with (T)GasP modules, which we design with great care to

obtain the same forward latency, the same reverse latency, and the same

throughput.

As a result, (T)GasP modules can be generalized to some extent with

more input and output channels, but not as extensively as Click modules.

This has not been an issue yet because the existing designs that went

through ARCwelder have a limited number of input-output channels per

module. In the future we may want to change a design at the GUI level,

depending on whether we map it to Click or (T)GasP. Alternatively, we may

want to restrict the number of channels per module or module type, based

performance targets for area, latency, and throughput.

• Click modules use standard-cell Verilog implementations. The module im-

plementations are programmed and stored in a database in the compiler,

and used by the Parser to generate a Verilog netlist for a given GUI de-

sign. The Verilog descriptions of the standard cells are provided through a

separate library. (T)GasP assumes custom-cell implementations, possibly

supported with a corresponding layout, simulated extensively in SPICE,

and designed using Electric [48]. The Verilog implementations stored in

the compiler database for (T)GasP are imported from Electric.

3.3.3 Static Validation Changes

ARCwelder offers a modular approach to static timing analysis. Each module

comes with a set of timing constraints. The constraints vary from manufacturing
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constraints such as minimal clock pulse widths for flipflops, bundled data con-

straints such as data setup and hold constraints, and control constraints. The

manufacturing constraints manage lower level analog and silicon implementa-

tion aspects. The bundled data constraints manage correct handover of data

through the communication channels. The control constraints manage the sta-

bilization of the self-timed logic between subsequent communications.

The constraints are formulated and validated on a module-by-module basis, but

their computations may span several modules. The handshake channels act as

the timing interface between the modules. The full expansion of the constraints

is done during validation. Where expansion is needed, the timing constraints

in the modules are formulated by induction, assuming that necessary timing

information will be handed over through the handshake channels. This works

beautifully, and allows for the flexible skewing of data versus control that’s often

needed to optimize the circuit performance in speed or power. Willem Mallon

refers to this as Bounded Bundled Data [18].

The timing constraints are stored in a special file, called “HC Timing Constraints”

in Figure 3.1.1. The constraints express the relation between certain computa-

tion paths — e.g. how the delay through one path must be shorter than the

delay through other paths, starting from the same location in the circuit. With

each constraint, also a repair location is given, i.e., a location in the Verilog

netlist where extra delay can be inserted to increase the delay of the intended

longer path so it’s indeed longer than that of the intended shorter path. For

more details on the semi-automatic generation of such timing constraints, see

the PhD work by Hoon Park [39, 41].

We can use the static timing analysis code in ARCwelder in three ways:
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1. To validate and correct circuit timing:

ARCwelder reads the timing constraints for each module. It computes the

delay of the two constrained paths, using the gate delay information and the

gate input to output connectivity in the Verilog netlist, and it outputs the differ-

ence of the supposedly longer minus the supposedly shorter path in a timing

report. A special procedure, called “Repair Timing Failures” in Figure 3.1.1,

reads the timing report and updates the netlist by inserting adequate delay at

specified repair locations. ARCwelder repeats the whole process for the up-

dated netlist, and its updated netlist, etcetera, until all violations are resolved.

If the repeated process fails to terminate, i.e., each repetition sees a timing

violation, this would be an indication that the timing constraints are inconsis-

tent or incomplete.

2. To validate the soundness and completeness of the timing constraints:

ARCwelder can insert random delays at random locations in the Verilog

netlist, and then follow the process in item 1 above to adjust the circuit timing

until all timing constraints are satisfied. If this process fails to terminate within

reasonable time, then we may assume that the constraints are incomplete or

inconsistent. In that case, we investigate the timing reports to understand

what to fix where. For instance, the constraints and their repair delay inser-

tion points may have circular dependencies.

If the process terminates, we run a dynamic validation test for the circuit, to

check the handshake behavior and the handover of data. If this test fails,

then we may assume that the constraints are incomplete or inconsistent. We

investigate the failing run information to understand what’s missing or wrong

and how to fix it.

3. To interface with commercial static timing analysis tools:
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ARCwelder can translate the constraints stored in the “HC Timing Constraints”

files for the handshake components, and reformulate these so they become

readable by standard Static Timing Analysis tools, such as Synopsys Prime-

Time. We can then let the standard tools do the analysis.

There are many issues with using standard tools for static timing analysis of

self-timed circuits, especially when the circuits have combinational loops —

as do GasP and TGasP. I have investigated these issues as part of my MSc

research. My MSc thesis explains how one can formulate timing constraints

for GasP modules and analyze them using Synopsys PrimeTime [22].

The beauty of the ARCwelder code is that it can pre-partition the statically

timed paths into portions that the standard tools can handle, and manage the

non-standard loop unrolling inside ARCwelder.

Below follows a list of changes that I applied to make the ARCwelder static

timing analysis code work for (T)GasP, with conclusions that I have drawn from

these changes.

1. Separate timing constraint files for (T)GasP:

I added a completely new directory with timing constraint files for (T)GasP

modules. This is probably unavoidable because the module implementations

are different from those in Click. Nevertheless, the code itself could benefit

from a higher level of abstraction, so modules with similar timing constraints

can share procedures rather than store separate but similar code fragments.

Seeking such a higher-level of abstraction has become part of Hoon Park’s

research. In collaboration with Anping He, Professor Song, and Marly Ron-

cken, Hoon has been identifying the constraint patterns and how they relate

to the design patterns of Click and GasP modules [41].
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2. Support for asymmetric delay insertion:

Some of the (T)GasP repair solutions use asymmetric delay insertions to

maintain a 5-gate-delay drive pulse on the statewire. The asymmetry com-

plicates the formulation of the timing constraints, because the original AR-

Cwelder code is ignorant of the high or low state of a signal when it follows

the timing paths from gate to gate. By partitioning the (T)GasP timing con-

straints at delay insertion points it becomes possible to guarantee that the

correct gate input-to-output delay is used, without explicit reference to high

or low signal values. This approach, which I used in my ARCwelder code

extension, has been subsequently adopted and formalized in the research

work of Hoon Park [39, 41].

3. Termination guarantees for evaluating paths with bi-directional wires:

The bidirectional nature of the (T)GasP statewires caused longest path com-

putations to loop forever in ARCwelder. I worked with Willem Mallon to split

off a separate code fragment for calculating the longest path in (T)GasP de-

signs. Though this separate code fragment avoids the non-terminating loops,

it would be preferable to have a more integral solution that works for Click as

well as for (T)GasP. In general, I see both the need and the possibility for

a more uniform code base for path tracing, using a predefined collection of

start, stop, and partition points, such as flipflops, channel interface signals,

and delay insertion points.

The Verilog netlist analyzed by the ARCwelder static timing analysis code is

not the same as the Verilog netlist simulated during dynamic validation. The

existing static analysis code works with gate delays and gate connectivity. Its

gate connectivity information is unidirectional. Bidirectional transistor-level

modules, such as the statewire driver modules in (T)GasP and their half-

keepers, or even the transistor models generated by Electric, do not fit in. To
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support static timing analysis for TGasP in ARCwelder, I decided on a case-

by-case basis which parts of the Verilog netlist to unroll and where to stop

such unrolling to substitute strictly unidirectional input-output “gates.” This

works, but requires additional verification and automation.

3.3.4 Dynamic Validation Changes

ARCwelder supports dynamic validation of any Verilog netlist generated by AR-

Cwelder, be it generated by the Parser or during Static Timing Validation. Be-

fore we simulate an ARCwelder generated Verilog netlist, we write a test bench,

in Verilog, with additional environment modules that automatically control the

netlist inputs and automatically inspect the netlist output values against the val-

ues that we expect the design to produce in response to the given inputs. In

addition to inspecting a textual test report, noting correct as well as incorrect

results, we can inspect graphical waveforms for signals in the design and in

the test environment. The ARCwelder code for dynamic validation can support

on-the-fly checks to validate proper handshake behavior. For instance, the code

can verify that the data sent over the channel are stable during each handshake,

i.e., from the handshake’s request to its acknowledge signal.

Below I list my key code changes to make ARCwelder’s dynamic analysis work

for (T)GasP, and conclusions and recommendations that I derived from these.

1. Handshake checks under different channel initializations

I adapted the monitors that check for proper handshake behavior. In Click, all

handshake channels are initialized low. In (T)GasP, we can initialize them low

(empty) or high (full). I already hinted at this in Section 3.3.2 when discussing

the ARCwelder Parser. The original code counts the number of handshake
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events per channel, starting at 0. Each monitor assumes that an even num-

ber means that all handshakes have completed, i.e., the channel is empty,

while an odd number means that the channel is in a handshake, i.e., the

channel is full. By initializing the event count of initially high handshake chan-

nels to 1, the monitors are in tune again with ARCwelder’s odd-even count

mechanism of handshake events.

2. Additional Verilog models for (T)GasP

A lot of time went into the development of Verilog models for (T)GasP for

our Verilog simulator of choice. Willem Mallon wanted to use Icarus Ver-

ilog because no license is needed to run it and because it runs on a lap-

top. Icarus Verilog works fine for Click but not for (T)GasP circuits. For

instance, it doesn’t handle the bidirectional transistor models generated by

Electric. A dedicated ARC report summarizes my Icarus Verilog models for

(T)GasP [24]. The major disadvantage of committing to Icarus Verilog is that

the resulting (T)GasP models are too far removed from the Electric models

to sign-off on real silicon validation.

For the Weaver chip [56, 46], a GasP test chip on real silicon, we ignored

Icarus Verilog and instead used Mentor Graphics Modelsim for our Verilog

simulations. The extra modeling effort in ModelSim concerned only a few

constructs — those where analog meets digital, such as arbiters and such

as tristate structures where the delays don’t quite match and for which Verilog

would create X-s while in reality the output state is well-defined. A summary

of these Modelsim models can be found in the 2014 ARC report, ARC2014-

smg03 [35].
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3.4 ARCwelder Click versus (T)GasP Experiments

The new ARCwelder code successfully compiles dataflow designs to Click and

to (T)GasP.

To test and compare ARCwelder compiled Click and (T)GasP designs, I experi-

mented with three algorithmic designs: a Fibonacci number generator, a Great-

est Common Divisor, and Willem Mallon’s LEETL microcontroller [19]. This sec-

tion contains the details of the Fibonacci experiment [29]. Information about the

two other experiments can be found in the 2013 ARC reports, ARC2013-smg04

and ARC2013-smg05 [30, 31].

The Fibonacci design generates a sequence of Fibonacci numbers. More specif-

ically, it generates the sum of the last two numbers in a sequence, primed with 0

followed by 1, thus generating sequence 1, 2, 3, 5, etcetera. Figure 3.4.1 shows

my GUI design for the Fibonacci experiments reported in this section. Note

that it is different from the GUI’s Fibonacci design in Figure 3.3.1. Figure 3.4.1

contains two fullStore modules, lastFib and next_to_lastFib, one Store module,

temp, two Fork modules, f1 and f2, and one Join module, sum. Each fullStore

module starts with valid data, Store starts empty with irrelevant data. The data

in next_to_lastFib and lastFib are structured as 16-bit words and initialized to a

value of 0 respectively 1. Channels con0 and con3 are the first to handshake.

The testbench collects the Fibonacci sequence from con5 in tb_out.

For our experiments, we map the Fibonacci design in Figure 3.4.1 to Click re-

spectively (T)GasP circuits, and we simulate each mapped circuit with gate-level

timing information.

We assume a unit-level (inverting) gate delay model of 100ps. We assume that
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Fig. 3.4.1: Another GUI design for a Fibonacci number generator, generating the
sum of the last two numbers in a sequence, primed here with first 0 and then 1,
and thus generating 1, 2, 3, 5, etcetera. The design contains two fullStore modules,
lastFib and next_to_lastFib, one Store module, temp, two Fork modules, f1 and f2,
and one Join module, sum. Each fullStore module starts with a data value: we
start next_to_lastFib with 0 and lastFib with 1.

it takes 2 unit-level gate delays to go through an XOR or XNOR gate and 1

unit-level gate delay to flip the output of flipflop FF after ck goes high in Fig-

ure 3.2.1(left).

Under these assumptions, the GasP Store implementation in Figure 3.2.1 has

a forward path delay of 600ps from in[sw] high to out[sw] high, and a reverse

path delay of 400ps from out[sw] low to in[sw] low. Likewise, the Click Store

implementation has a forward path delay of 500ps and a reverse path delay of

500ps.

Table 3.4.1 summarizes the corresponding forward and reverse path delays for
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Table 3.4.1: Forward and reverse path delays for Click and (T)GasP modules,
using 100ps unit-level gate delays, 2 unit-level gate delays for X(N)OR, and 1 for
flipflop FF ck to Q.

Store fullStore Join Fork

GasP Forward Path Delay 600 600 200 200

GasP Reverse Path Delay 400 400 200 200

Click Forward Path Delay 500 800 500 0

Click Reverse Path Delay 500 500 0 500

Click and (T)GasP implementations of the various modules in the Fibonacci

design of Figure 3.4.1.

Table 3.4.2 and Table 3.4.3 show cumulative timing details for generating the

first two Fibonacci numbers in the (T)GasP respectively Click implementation of

Figure 3.4.1.

The timing details in Tables 3.4.2–3.4.3 indicate that the respective cycle times

between two successive Fibonacci numbers observed at tb_out are:

• for GasP: 1100 (unfold) + 500 (interfacing) + 1000 (fold) = 2600 ps, and

• for Click: 1300 (unfold) + 500 (interfacing) + 1500 (fold) = 3300 ps.

So, the GasP implementation has a 21% faster cycle time than the Click imple-

mentation.

In other words: despite the absence of a fast reset signal in the TGasP im-

plementations used in this experiment, the timing results of the Fibonacci im-

plementation with (T)GasP modules are better than the timing results for the

implementation with Click modules. This is also true for the two other experi-
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ments [30, 31]. Perhaps, the unavoidable reverse latency for single-track tele-

scope solutions, like TGasP, is less of a disadvantage than suggested in Chap-

ter 2.

Specifically — without delay for data computations — we observed that:

• for the Fibonacci design, (T)GasP has 21% higher throughput than Click,

• for the Greatest Common Divisor, (T)GasP has 34% higher throughput

than Click,

• for LEETL, GasP has 24% higher throughput than Click.

A larger delay for data computations, e.g., for + in module sum, will bring the

throughput results for the Click implementations closer to those for (T)GasP.
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Table 3.4.2: GasP timing information for the first two Fibonacci results for Fig-
ure 3.4.1.

Path and Delay Information Cumulative

Delay [ps]

Initialization makes 2000ps 2000

First telescope unfolding:

f1(200ps) + sum(200ps) + f2(200ps)

makes 600ps 2600

tb_out-handshake(500ps)

in parallel with

con6-handshake(500ps)

makes 500ps 3100

First telescope folding:

f2(200ps) + sum(200ps) + next_to_lastFib(400ps) + f1(200ps)

in parallel with

temp-finish-copy(100ps)

makes 1000ps 4100

Second telescope unfolding:

con0-handshake(500ps) + f1(200ps) + sum(200ps) + f2(200ps)

makes 1100ps 5200
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Table 3.4.3: Click timing information for the first two Fibonacci results for Fig-
ure 3.4.1.

Path and Delay Information Cumulative

Delay [ps]

Initialization makes 2000ps 2000

First telescope unfolding:

lastFib-start(200ps) + f1(0ps) + sum(500ps) + f2(0ps)

makes 700ps 2700

tb_out-handshake(500ps)

in parallel with

con6-handshake(500ps)

makes 500ps 3200

First telescope folding:

f2(500ps) + sum(0ps) + next_to_lastFib(500ps) + f1(500ps)

in parallel with

temp-finish-copy(0ps)

makes 1500ps 4700

Second telescope unfolding:

con0-handshake(800ps) + f1(0ps) + sum(500ps) + f2(0ps)

makes 1300ps 6000
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3.5 Summary and Conclusion

This chapter gave an overview of the ARCwelder design flow, and of the changes

I made to ARCwelder to compile dataflow designs to Click as well as GasP

and Telescope GasP circuits. The chapter ends with a comparison of a Click

versus (T)GasP compiled Fibonacci number generator. In addition to the Fi-

bonacci design, I tested and compared Click and (T)GasP implementations for

two other designs [30, 31]: a Greatest Common Divisor, and Willem Mallon’s

LEETL micro-controller [19]. Ignoring the data computation delays, the compiled

(T)GasP designs all have a higher throughput than the compiled Click designs.

Additional delay for data computations, like the numeric addition used in the Fi-

bonacci design, will bring the throughput results for the Click implementations

closer to those for (T)GasP. A summary of how to run such experiments, and a

more detailed evaluation of the three Click versus (T)GasP design experiments

can be found in separate ARC reports [32, 29, 30, 31].

The resulting ARCwelder compiler for Click and (T)GasP uses a lot of code

duplication. The amount of code duplication points to the need for a more inte-

gral design flow. My ARCwelder study and experiments have served as an eye

opener for how we at the ARC and how the self-timed research community at

large have created a “Tower of Babel”:

Our “Tower of Babel” — By exposing the differences between our com-

munication protocols to our design and test flows, it has become

practically impossible to share tools and designs between different

self-timed circuit families.

The next two chapters explain the ARC’s new point of view on design and test.
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This new point of view exposes the similarities between the various self-timed

circuit families, without sacrificing their peculiarities.

3.6 My Contributions for Chapter 3

While most of this thesis is joint work with my supervisors, the following key

contributions are largely mine.

• My ARCwelder compiler study has changed our point of view for design

and test at the ARC. The new point of view and related developments were

published by Marly Roncken et al. [46], and are described in Chapters 4

and 5 of this thesis.

• I imported the Telescope GasP modules described in Appendices A, B

and C into ARCwelder. I modeled the modules in Verilog, using Verilog

annotation scripts in Electric – the ARC’s design environment for GasP-

style circuits. The Verilog models were then stored in the Parser’s “HC &

Gate Library” — see Figure 3.1.1.

• While importing (T)GasP modules into ARCwelder, I discovered a bug in

the master-clear implementation. This bug has two parts. First, during

master-clear, all statewires were initialized low (empty). Second, the end

of master-clear served as a start signal, thus confounding master-clear

and start. These master-clear implementations worked fine for previous

GasP modules but are no longer adequate for new GasP modules devel-

oped at the ARC for use with ARCwelder. For one, the fullStore module

requires a high (full) statewire for its output channel. Second, initialization
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takes time, especially in the presence of telescope modules. To give initial-

ization the time it needs, master-clear and start signals must be different.

Note

The master clear bug has been solved in the new design and test approach

described in Chapters 4 and 5 of this thesis [46]. The new approach can

initialize a statewire high (full) or low (empty), as needed. The new ap-

proach also separates initialization from execution — see Section 5.2.1.
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4

Naturalized Communication

Both my ARCwelder compiler extension to (T)GasP – see Chapter 3 — and

Hoon Park’s ARCtimer timing verification flow [39, 41] suffered from seemingly

unnecessary code duplication. We had expected to be able to reuse more of

the existing compilation solutions for Click when compiling to (T)GasP. But even

small differences such as initialization were more deeply embedded in the com-

piler code than we had anticipated. Likewise, Hoon Park’s verification efforts

required him to specify and verify communication parts of the design even when

only the computation part changed.

Both my and Hoon’s research resulted in a new point of view for how to design

self-timed VLSI systems. At the ARC, we started to view self-timed circuits as

networks of links and joints. Links deal with the communication issues, including

data storage, full and empty storage, data transport, and full and empty trans-

port. Joints deal with the computation issues, including flow control, arbitration,

and arithmetic operations. Instead of using handshake protocol interfaces, we

now use full-empty interfaces. This allows mixing and matching of self-timed

circuit families and reduces redundant work in building computer aided design

(CAD) support for the various circuit families.
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Link

Joint

Fig. 4.0.1: A self-timed dataflow system with communication channels, called links,
and flow control and data computation modules, called joints, can be viewed as a
directed graph with data flowing in the direction indicated by the arrows.

A separation of communication and computation is beneficial because it allows

us to verify the communication parts independently from the computation parts

— and vice versa. The full-empty interfaces between the two emphasize the

commonality between the different circuit families, including Click and GasP. By

moving the interface from the handshake signals — which are different for Click

and GasP — to full, empty, make-full (fill), and make-empty (drain) signals —

which are the same for Click and GasP — Click circuits can now “talk” directly

to GasP circuits.

Figure 4.0.1 shows a self-timed dataflow graph using links as edges and joints

as nodes. The links are the self-timed communication channels, with data flow-

ing in the direction of the arrows. The joints are the self-timed computation

modules that implement flow control and data operations.

This chapter presents the ARC’s novel point of view for designing with such

links and joints. This point of view was published and presented at ASYNC

2015 [46]. Appendix D contains a copy of the publication. The presentation can

be downloaded from the ARC website [2].

Below, we contrast systems with handshake interfaces (Section 4.1) against
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systems with full-empty interfaces (Section 4.2).

4.1 Systems with Handshake Interfaces

We see a self-timed system as a directed graph of links and joints, as shown in

Figure 4.0.1. Figure 4.1.1 represents a joint as a stick figure with data flowing

in the direction of the arrow, and links as rectangles. Each link-joint-link triple

in Figure 4.0.1 represents a First In First Out (FIFO) buffer, with an input link,

called in, and an output link, called out. The most important property of a link is

whether it is full or empty, just as the most important property of a parking place

is whether or not it is occupied. We color the rectangle of a full link dark and

leave an empty link white.

Each link reports its full or empty state at both ends. It accepts a fill command

at its input end and a drain command at its output end. Fill and drain commands

Fig. 4.1.1: A pictorial representation of a self-timed FIFO action.
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change the state of a link. The impact of fill and drain commands is observed

immediately at the near end of the link but may take time to traverse the length

of the link before appearing at the link’s far end.

The FIFO in Figure 4.1.1 starts with empty links. When its input link in is full and

its output link out is empty, the joint performs three tasks:

• it captures and hands over the data from link in to link out,

• it drains link in, making it empty, and

• it fills link out, making it full.

These tasks are performed in parallel. They are repeated when the joint’s input

link, in, has new data and is again full, and its output link, out, has transferred

the captured data and is again empty.

The representations for full and empty links depend on the specific handshake

protocol. Click uses a non-return-to-zero (non-RTZ) variant and GasP uses a

return-to-zero (RTZ) variant. Their full-empty representations are as follows —

see also Figure 4.1.2:

• Full and empty link representations in a non-RTZ variant (Click)

This representation uses two boolean- or bit-signaling wires: a request

signal from the sender to the receiver of the data, and an acknowledge

signal in the reverse direction. The typical convention is that the link

is full when request and acknowledge differ, and the link is empty when

the two signal values are the same. Note that the link is full for request-

acknowledge values 0-1 (low-high) and 1-0 (high-low). Likewise, the link

is empty for values 0-0 (low-low) and 1-1 (high-high).
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• Full and empty link representations in a RTZ variant (GasP)

This representation uses a single bi-directional signaling wire, called

statewire. The typical convention is that the link is full when the statewire

is 1 (high), and the link is empty when the statewire is 0 (low).

Figure 4.1.3 shows a FIFO GasP module and a FIFO Click module. The two

modules differ in how they represent full and empty links, and how they capture

data.

Different handshake variants lead to different self-timed circuit families. Well-

known circuit families that use two-phase bundled-data handshake protocols are

Micropipeline [51], GasP [55, 53], Mousetrap [49], and Click [43]. Micropipeline,

Mousetrap and Click use a non-return-to-zero (non-RTZ) variant. GasP uses a

return-to-zero (RTZ) variant.

Figure 4.1.4(top) shows a longer FIFO using one GasP module and one Click

module. GasP was invented and developed by researchers at Sun-Oracle Lab-

oratories in the United States of America. To honor these American-based re-

searchers, the GasP module wears a cowboy hat. Click was invented and de-

veloped by researchers at Philips Handshake Solutions, in The Netherlands. To

honor these Netherlands-based researchers, the Click module wears wooden

shoes.

If this FIFO works correctly, it will copy the data from left to right and thus move

the blue color of the rectangle, an indicator for the link being “full,” from the

left-most link to the right-most link. Figure 4.1.4(bottom) shows that this fails to

happen: something goes wrong in the middle link.
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Fig. 4.1.2: Full-empty representations for non-RTZ and RTZ bundled-data hand-
shake protocols. Data are valid when the link is full, and may change only when
the link is empty.
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Fig. 4.1.3: Original circuit designs for a single-input-output FIFO module in GasP
(a) and Click (b). The dashed lines mark the interface between the joint in the
middle and the left-hand and right-hand links. Note that the joints hold all the logic
— the links are “just wires.”
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Figure 4.1.5(top) zooms into the middle link’s handshake interface, to see what

went wrong. The data connections match. But there is no direct way to connect

the single bidirectional GasP handshake signal to the two unidirectional Click

handshake signals so they convey the same full and empty information.

To make this GasP-Click communication happen requires that we add protocol

translators in the link. Figure 4.1.5(bottom) shows an example of two translators

for filling a link and reporting the link’s full state back. Translators are expensive

and they cost extra validation effort in addition to extra area, time and power.

The point of this mixed GasP-Click FIFO is to illustrate that handshakes may

be fine to implement self-timing, but as interfaces they complicate collaboration

and design reuse.

There is an alternate solution for designing mixed handshake systems without

the need for protocol translators. In Section 4.2, we present a link-aware design

approach that de-emphasizes the differences in “how full and empty links are

represented” and “how data are captured” by moving both the full-empty logic

and the data storage outside the joints and into the links. This results in a

standard link-joint interface that works for different self-timed circuit families and

that allows translator-free communication between them.
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Systems with handshake interfaces

Fig. 4.1.4: (top) Pictorial view of a FIFO with GasP and Click modules, and a full
input link. To honor their inventors, the GasP module wears a cowboy hat and the
Click module wears wooden shoes. (bottom) The link which serves as a handshake
interface for both the GasP module and the Click module fails as a communication
interface.
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Systems with handshake interfaces

Fig. 4.1.5: (top) Detail of the failing communication over the middle link in Fig-
ure 4.1.4. The GasP module on the left uses a single bidirectional statewire and
the Click module on the right uses unidirectional request and acknowledge signals
to represent “full” or “empty.” There is no way to wire these control signals so they
convey the same full-empty information. (bottom) Example of translators to fill a
link between different handshake modules, and report the link’s full state back to
the sender module.
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4.2 Systems with Full-Empty Interfaces

Figure 4.2.1(top) repeats the GasP FIFO module of Figure 4.1.3(a). Figure 4.2.1

(bottom) does the same but also moves the full and empty link retention as well

as the data latches into the links. The interface signals thus created sense the

full-empty state of the links (full in, fullout), handover data (Din, Dout), make an

incoming link empty (drainin), and make an outgoing link full (fillout). Inside each

GasP link one now sees data latches, a bidirectional statewire, half-keepers,

and pull-up and pull-down drivers. Outside, one sees D, and unidirectional full,

fill, and drain signals.

Figure 4.2.2(top) repeats the Click FIFO module of Figure 4.1.3(b). The bottom

figure does the same but also moves the full and empty link retention as well

as the data flipflops into the links. The interface signals thus created sense

the full-empty state of the links (full in, fullout), handover data (Din, Dout), make

an incoming link empty (drainin), and make an outgoing link full (fillout). Inside

each Click link one now sees data flipflops, a request signal, R, an acknowledge

signal, A, and XOR and XNOR gates that translate R and A to full and empty.

Outside, one sees D, fill, drain, and full. We also duplicated control flipflop FF,

moving one copy into the left link and the other copy into the right link. This

solution is better than the original Click FIFO solution in terms of modularity and

storage capacity when used in larger systems – see Appendix D for details.
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Fig. 4.2.1: GasP circuit with handshake Interfaces (top), and full-empty interfaces
(bottom).
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Fig. 4.2.2: Click circuit with handshake Interfaces (top), and full-empty interfaces
(bottom).
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When we repeat the mixed FIFO experiment of Figure 4.2.3(top) using GasP

and Click links and joints with full-empty interfaces, all goes well — see Fig-

ure 4.2.3.

Note that links as well as joints in Figure 4.2.3(top) are marked as GasP or

Click. This makes sense for the links because of the handshakes inside them.

But FIFO joints with full-empty interfaces are in essence the same for GasP

and Click. We call the resulting links and joints “naturalized” links and joints, as

explained in the following section.

4.2.1 Naturalized Links and Joints

Our link-aware design view puts equal emphasis on links and joints, by giving

each the digital logic needed to perform its role in the system. The term “natu-

ralized” comes from the idea that naturalized citizens share the same rights as

native-born citizens. We naturalize links, giving them status equal to joints.

A naturalized link receives fill or drain commands and data. It reports the data

and its full-empty state. Data flow from one end of the link to the other end, and

are captured in-between. Fill and drain commands arrive at opposite ends of

the link. When the link receives a fill command, i.e., fill is high, the link changes

its state to full. Upon receiving a drain command, i.e., drain is high, the link

changes its state to empty. The two links in Figure 4.2.1 (bottom) are examples

of a naturalized link implemented in GasP. The two links in Figure 4.2.2 (bottom)

are examples of a naturalized link implemented in Click.

Joints respond to the full and empty state of their links. In general, the con-

trol logic of a joint is an AND-function of the conditions necessary for it to act.
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Systems with full-empty interfaces

Fig. 4.2.3: (top) The mixed FIFO of Figure 4.1.4–4.1.5 with one full input link works
correctly when we use full-empty interfaces. The final state shown here indicates
that the data and blue color of the rectangle were handed over correctly from left-
most to right-most link. (bottom) Mixed systems with full-empty interfaces commu-
nicate without translators.
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Fig. 4.2.4: Design sketch of a joint without stored state with n naturalized incoming
and m naturalized outgoing links, where 1 ≤ i ≤ n and 1 ≤ j ≤ m. If data are
just copied then Doutj [1 : M] is the concatenation of Din1 [1 : N1] to Dinn [1 : Nn] and
M = N1 + . . . + Nn (N1, . . . , Nn ≥ 0).

Some joints have multiple such AND-functions to guard different actions. The

response of a joint usually changes one or more of the link states to which the

joint responded. Thus, there is a feedback loop from link-state to joint-action and

back to link-state. The throughput of a self-timed system is in part dependent on

the delay of such feedback loops. The delay may be adjusted to accommodate

data operations coordinated by the joint. The signals that call for fill or drain

actions may persist for only a short time, a time whose duration depends on the

circuits in the feedback loop.

Joints that pipeline, fork, or join combinational dataflow operations can be free

of stored state. Figure 4.2.4 sketches the design of such a joint. The joints in

Figure 4.2.1 (bottom) and Figure 4.2.2 (bottom) are examples of such a joint —

with n=m=1.

The store-free joint shown in Figure 4.2.4 works with any of the naturalized links.

The same is true for joints with locally stored state for flow control. The func-

tionality and compositionality of each link combination are the same. Different

links may have different timing constraints. However, the fact that functional and

timing differences are confined to the links simplifies modeling, validation, and

silicon compilation.
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With the responsibilities for full-empty link retention and data storage assigned

to the links, the link-aware view makes joints significantly easier to understand

and design. More details about naturalized links and joints can be found in

Appendix D.

4.3 Impact of Naturalization on System Design

The link-aware point of view offers complete generality to self-timed systems.

All types of links are interchangeable — see Figure 6 in Appendix D. System

designers can choose which type to use based on system demands for power

conservation or data latency.

Figure 4.3.1 illustrates the impact on throughput that naturalized communication

can have. The naturalized Mousetrap ring with Mousetrap links is slower than

the original Mousetrap ring. However, the naturalized Mousetrap ring with GasP

links is faster than the original Mousetrap ring.

Throughput differences between naturalized and original pipelines within the

same family become smaller and may disappear completely for joints that ac-

commodate selective participation. This is because selective participation and

shared state do not fare well together, and because AND-functions and exclusive-

OR gates that can be optimized away when all links participate become essen-

tial when it is necessary to select participants — as the original Click modules

in [43] attest.

We avoided estimating the power and area cost of naturalized communication,

because we expect that power and area are dominated by datapath operations

and wire lengths.
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Fig. 4.3.1: Three canopy graphs for simulations of rings with 24 pipeline stages.
The center graph with fewer data points is from simulation with an original Mouse-
trap module. Naturalizing its links with the circuit of Figure 6(c) in Appendix D pro-
duces the lower graph. The increased number of logic gates costs performance.
Using the link circuits of Figure 6(b) in Appendix D produces the upper graph, im-
proving the original performance. These three 90nm simulations omit data latches
and wire loads.
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4.4 Summary and Conclusion

This chapter is built around a novel point of view to “naturalize” the communi-

cation links, giving them status equal to computation joints [46]. Naturalized

communication unifies thinking about a wide variety of self-timed circuit families

and facilitates mixing and matching multiple self-timed circuit families within a

single system.

Differentiating links from joints is a simple idea of great power because it offers

a higher level of abstraction for each. The simple full-empty interface between

links and joints and the resulting unification of the Click and GasP circuit families

attest to the impact of the new abstractions. Such abstractions and the unifica-

tion of families simplify computer aided design, and herald circuit improvements

that extend the geographic reach and reduce the energy consumption of links.

The next chapter shows how this novel point of view also empowers us to test,

debug and characterize self-timed circuits and systems.
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4.5 My Contributions for Chapter 4

While most of this thesis is joint work with my supervisors, the following key

contributions are largely mine.

Naturalized communication unifies thinking about a wide variety of self-timed

circuit families. Though not directly my discovery, the “naturalization communi-

cation” concept has been influenced greatly by the results of my PhD research

on the ARCwelder compiler and by Hoon Park’s PhD research on ARCtimer, the

ARCwelder timing verification flow.

Hoon and I worked with sufficiently different and yet also sufficiently similar cir-

cuit families — Click and GasP — to expose a lack of reuse in the respective

compiler and verification flows that we worked with. Both our PhD studies ex-

posed a lack of reuse of similar results between the two circuit families as well

as a lack of reuse of similar results between different modules within a family

This acted as an eye opener to our supervisors. In her ASYNC 2015 presen-

tation of the Naturalized Communication and Testing paper1, Marly started by

saying [2, page 1 of presentation notes]:

Naturalized communication and testing has been an amazing team builder.

The ideas came out of the research work by the first three authors

and have been tested on silicon by the other three authors.

Marly, Hoon and I are the first three authors, and Navaneeth, Chris and Ivan are

the other three authors.

1M. Roncken, S. Mettala Gilla, H. Park, N. Jamadagni, C. Cowan, and I. Sutherland, “Natu-
ralized Communication and Testing” In Proc. IEEE International Symposium on Asynchronous
Circuits and Systems (ASYNC), pages 77–84, May 2015.
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5

Naturalized Testing

In the context of this chapter “testing” means validating that the fabricated design-

on-silicon operates as intended [6, 8]. This includes structural testing, by which

we mean low-speed testing to uncover fabrication defects, as well as functional

testing and at-speed testing to uncover incorrect or marginal functionality.

This chapter is based on the ARC’s ASYNC 2015 paper [46], shown in Ap-

pendix D, and on the corresponding presentation on our ARC website

(http://arc.cecs.pdx.edu/) [2, 1].

5.1 Testing: Where we Came from, Are, and Go

A great deal of the wisdom for testing self-timed circuits comes from testing

synchronous circuits. When its clock “ticks”, the synchronous circuit acts. It acts

by using the present state to compute a next state, which takes over at the next

tick. Many synchronous test solutions use some form of scan test to control and

observe state. They often reuse the existing clock to start and stop the action

under test [61]. This works because each cycle in the design contains a clocked

state-holding element. The “tick” governs every synchronous loop.
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Fig. 5.1.1: Where we came from: synchronous test view. The vertical axis con-
trols the clock, by enabling or disabling it. We call it GO control – you may call it
test mode. Traditional clocked systems have one GO control. The horizontal axis
labeled Data shows which part of the global state is scanned. If only some data
items are scanned, say just the counters, it’s a partial scan test solution. If all data
are scanned, it’s a full scan test solution.

Figure 5.1.1 shows a two-dimensional image of the test solution used for syn-

chronous systems. The vertical axis, labeled GO, controls the clock by enabling

and disabling it. Traditional clocked systems have one GO control, also known

as test mode. The red line indicates which part of the state is scanned. The

test solutions represented by the red line go from no scan to partial scan to full

scan.

Even though we use two axes to describe this red line the line itself is one-

dimensional. From our point of view, traditional scan test is a one-dimensional

test method.
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Fig. 5.1.2: Where we are: synchronous test view applied to self-timed systems.

The test solution becomes two-dimensional when we apply it to self-timed sys-

tems. Figure 5.1.2 shows not a two- but a three-dimensional image of this test

solution applied to self-timed systems. The additional third axis on the right-

hand side of the image is labeled Full-Empty and represents the control states

of the links. The Infinity chip designed by Sun Microsystems in 2008:

• scans every full-empty state,

• scans the counters,

• and can load and unload one Data item.

With exactly one GO control, Figure 5.1.2 shows really a two-dimensional plane

with test solutions. We went from one-dimensional — the red line — to two-
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Fig. 5.1.3: Where we go: three-dimensional test view of self-timed systems.

dimensional.

To see the third dimension requires that we recognize that a self-timed system

isn’t about global action. The actions of a self-timed system are spontaneous,

self-generated, and widely distributed in both space and time. The ability to

control these distributed actions separately matters. That’s what the GO axis is

for, to control one action, or two, or three, . . . or all of them. Our latest chip, the

Weaver scans all GO control signals, every full-empty state, and the counters.

In addition it can load and unload one Data item.

What you get with this dedicated GO action-control goes way beyond stuck-at

fault detection. Dedicated action control combined with traditional scan access
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to Data and Full-Empty states gives you not only stuck-at fault detection, but

also at-speed test, debug, and characterization. Examples follow in Section 5.3.

5.2 Naturalized Testing

What makes self-timed circuits “tick”? One may be tempted to point at the locally

generated clocks, but these are just by-products of the data. Self-timed circuits

act upon the state of their links. Links meet at joints. Each cycle in the design

contains a joint. This makes joints the ideal place to start and stop self-timed

actions.

We emphasize that testing requires access to both state and action. Unfortu-

nately, the two are often confounded: the action part of a test solution is often

integrated into the state part. Once integrated, it becomes much harder to sep-

arate the two in order to reduce test access costs or to fine-tune or reuse test

solutions for debug. In this chapter, we call attention to actions, and let them

play their own part in the test solution.

The term “naturalized” in the title of this section and chapter comes from the

idea that naturalized citizens share the same rights as native-born citizens. We

naturalize actions, giving them status equal to states.

In the following sub-sections, we introduce a new circuit element, MrGO, dedi-

cated to actions, which it can safely start, stop, and freeze. MrGO fits into joints.

Combined with scan-test based access to naturalized links, joints with MrGO

provide a rich environment for test and debug.
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5.2.1 Takeoff: From Initialization to Self-Timed Operation

Because each link stores its own full-empty state, links require initialization.

Some initial link states may evoke instant action from joints. If one permits joints

to act during initialization, a joint’s action may conflict with initialization. We ad-

vocate adding a go signal to each and every joint. The go signal can be yet

another guard term anywhere in the joint’s AND-function — see Figure 4.2.4. A

de-asserted (low) go signal makes the joint’s fill and drain signals low, thereby

freezing the joint. Frozen joints cannot conflict with initialization.

Both the initialization signals and the go signal may suffer long and varied delays

from their source to remote parts of a large system. Because of differences in

these delays, initialization may end at different times in remote parts of the sys-

tem. Likewise an asserted go signal may arrive, unfreeze, and start operations

for different parts of the system at different times. A correct start after initial-

ization depends only on avoiding conflict between initialization and operation at

every joint. We can make each test insensitive to delay variation in different go

signals.

We can deliver initialization signals via a scan chain. A single global go signal

would suffice to freeze the system for initialization.

5.2.2 Landing: Stopping a Self-Timed Operation in Full Flight

Molnar et al. recognized long ago how to stop a self-timed circuit using a proper

stopper [37]. When a self-timed circuit is told to stop, it must decide cleanly

whether to stop at once or to complete a pending or underway action. Because

the stop signal is entirely independent of internal signals, a proper stopper must
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provide for metastability delay. In other words, a proper stopper must contain an

arbiter or mutual exclusion element [20].

Once stopped, it is useful to sense the state of the system. The same scan

chain that provides initial values — see Section 5.2.1 — can sense the state of

the links.

When used to re-initialize the system, for instance for the purpose of priming

the next test, a proper stopper must be added after the AND function of a joint’s

action [46].

5.2.3 MrGO

We have found it convenient to combine the go signal and the arbitrated stop

in one circuit: MrGO, pronounced “Mister GO” — see Figure 5.2.1(top)1. When

appended to the AND-functions of the joints, as in Figure 5.2.1(bottom), it serves

as proper starter for takeoffs and as proper stopper for landings. MrGO also

helps us test the circuit, as we will show in Section 5.3.

5.3 Testing with MrGO

For test control, it is essential that MrGO be placed inside the non-blocking joint-

link-joint feedback loops. This ensures that any arbitration contest between go

and local self-timed signals will resolve and end with the go signal taking control

of the arbiter. To start and stop each and every joint action individually, each

MrGO gets a separate go signal from a scan chain.
1Marly Roncken discovered the need for individual action control. As a mark of respect, the

action control circuit “MrGO” is named after her — the letters M and R are the initials of Marly
Roncken.
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Fig. 5.2.1: MrGO with its icon inset in the grey area (top), and a joint with MrGO
(bottom). The bold central transistor in MrGO delays the active-low grant signal,
out, by conducting only after metastability ends. Transistor sizing reduces the log-
ical effort from in to out. Split pull-up transistors in the left NAND gate avoid a
floating out signal. Selective metastability-protected freezing (go is low) and un-
freezing (go is high) of joints provides for testing. MrGO is inspired by the HOLD
design-for-test solution [44], proper stopper [37], and Seitz mutual exclusion ele-
ment [20].

Selectively asserted go signals provide a wide variety of test options. The test

options mentioned in sub-sections 5.3.1–5.3.3 and 5.3.7 are useful for structural

testing, like the presence of stuck-at faults. The test options mentioned in sub-

sections 5.3.3–5.3.6 are useful for testing delay faults and marginal functionality.

For debug, all test options matter.
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5.3.1 One-shot Test of a Selected Joint

Figure 5.3.1 gives a pictorial view of a one-shot test setup. Initialization sets the

link states and internal states and data for the joint to be tested. With all other

joints frozen, permitting the selected joint to go lets it take at most one action.

For example, the joint in Figure 5.2.1(bottom) will either do nothing or generate

a high pulse on its fill and drain signals, changing both links. After re-freezing

the selected joint, examination of its links and internal state reveals if it took

the expected action. This is a typical test setup for structural testing of stuck-at

faults.

5.3.2 Following a Thread of Actions

A sequence of one-shot tests can follow a data item along a pipeline. Each one-

shot test advances the data item to joints that might act were they not frozen.

The next step freezes the joint that previously acted and then permits the next

joint to go. Allowing joints to go only one at a time makes it possible to track

the flow of data items through a system. Figure 5.3.2 shows an example of a

sequence of one-shot tests to cope with a marginal latch in one of the Anvil

chips [46].

5.3.3 Breakpoints

Testing a rarely used part of a system, such as memory error correction, is

possible by freezing one or more joints there. Full-speed action of the rest of

the system will stop at calls for action of a frozen joint. Figure 5.3.3 shows a

breakpoint test scenario taken from the Weaver chip [56, 46].
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Fig. 5.3.1: Pictorial view of a one-shot test of selected joint 3. Full links are colored
blue and empty links are colored white, as in Figure 4.1.1.

Fig. 5.3.2: A series of one-shot tests shift the data items into place for the marginal
latch test of Figure 5.3.7. Like non-overlapping clocks, go and nogo commands can
shift a single data item or many data items at once through a pipeline. Rows 1–13
above, shift exactly one data item, F, into place for row 1 of Figure 5.3.7. Similar
steps place data items E through A. The low activity factor of such a single-shift
approach makes it possible to shift data reliably to and from the marginal latch.
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5.3.4 Testing a Single Data Item at Speed

To test a single data item at speed, we leave several adjacent joints unfrozen to

permit a data item to pass at speed through them. A frozen joint upstream of this

test section blocks entry of test data input. A frozen joint downstream prevents

escape of test data output. Unfreezing the upstream frozen joint releases the

test data item to flow through the test section at speed. Figure 5.3.4 gives a

pictorial view of such an at-speed test. Figure 5.3.5 gives a textural view of a

similar at-speed test.

5.3.5 Testing a Burst of Data Items at Speed

Just as a single data item can flow through a test section, so can a burst of

data items. The burst of data items queues up behind the upstream frozen joint

much like water behind a dam. Unfreezing the joint releases the burst. There

must be adequate data storage for the entire burst in the release and capture

sections ahead of and behind the test section. Figure 5.3.6 gives a pictorial view

of such a test. Figure 5.3.7 shows how we used such a test setup to identify a

marginally operating latch in one of the Anvil chips.

5.3.6 Testing the Reverse Flow of “Bubbles” at Speed

Canopy graphs, like the one in Figure 4.3.1, teach us that data items flowing

forward through a pipeline tend to move at a different speed than spaces or

“bubbles” flowing backward, in the reverse direction. We have learned through

painful experience that testing the flow of bubbles through a congested pipeline

is as important as testing the flow of data through an empty pipeline.
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Fig. 5.3.4: Pictorial view of an at-speed test with a single data item. The data go
at speed through joint 3, which has a counter that counts the number of actions
performed by the joint. After the test, the counter value, which started at 0, should
have a value of 1. As before, we color full links blue and empty links white.

Fig. 5.3.5: Textual representation of an at-speed test of a counter in joint 4 by
sending a single data item through joint 4, at speed. The top row (init) shows a
pipeline segment with seven joints, 1–7, and a counter attached to joint 4. Initially
all seven joints are frozen, illustrated by the square brackets “[” and “]” around each
joint, and all links between them are empty, illustrated by the simple dash “-” for
each link. The counter value, count, is 0. Next, as shown in row 2, we prepare a
test section (tunnel) to test the counter at speed by permitting joints 3, 4, and 5
to go when possible, illustrated by the absent brackets. In addition, we fill the link
between joints 1 and 2 with one data item, A, illustrated by the labeled arrow. None
of the joints can act yet, but as soon as we permit joint 2 to go, as shown in row 3
(run), data item A moves to the right as far and as fast as it can, incrementing the
counter.
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Fig. 5.3.6: Pictorial view of an at-speed test with a burst of data items. As before,
we color full links blue and empty links white.

Fig. 5.3.7: At-speed test to identify a marginal latch near pipeline stage 8 using
a burst of data items. Using the same notation as in Figure 5.3.5, the top row
(init) shows a pipeline segment with frozen joints and six full links, followed by a
frozen weak stage — a joint with a marginal latch in one of its links — followed by a
pipeline segment with frozen joints and six empty links. The data items for the full
links are shifted into place as explained in Figure 5.3.2. Next, as shown in row 2,
we prepare an at-speed test section (tunnel) through joints 8 to 13, as illustrated by
the absent brackets. None of the joints can act until we permit joint 7 to go. Before
giving permission, in row 3 (run), we reduce the supply voltage to aggravate the
error condition of the marginal latch. The resulting behavior is captured in the
pipeline segment after the weak stage. Various data patterns of successive bits
such as 101010, 110110, 001001 exercise the weak latch. Competing patterns for
adjacent bits can check for sensitivity to crosstalk.
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A test section initialized with full rather than empty links reveals its response

to bubbles, allowing detection of faulty behaviors often overlooked — see Fig-

ures 5.3.8 and 5.3.9.

Fig. 5.3.8: Pictorial view of an at-speed test for bubbles. As before, we color full
links blue and empty links white.

Fig. 5.3.9: Textual representation of an at-speed test for bubbles. This test comple-
ments the test of data flowing forward in Figure 5.3.5 in that it tests the reverse flow.
The top row (init) shows all seven joints frozen, illustrated by the square brackets
around them, all links between them full, indicated by the labeled arrows, and a
counter value of 0. Next, as shown in row 2, we prepare an at-speed test section
(tunnel) through joints 3, 4 and 5, as illustrated by the absent brackets. In addition,
we empty the link between joints 6 and 7, introducing one bubble, illustrated as “-.”
None of the joints can act yet, but as soon as we permit joint 6 to go, in row 3 (run),
the bubble moves to the left as far and as fast as it can. The counter increments as
token C moves past.
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5.3.7 Stuck-at Fault Coverage

Figure 5.3.10 gives a pictorial view of the general setup for exhaustive stuck-at

fault testing for links and joints. For each stuck-at fault, we (1) first freeze the

joint to be tested, (2) then initialize the states in the links and the data, and (3)

then permit the joint under test to go, allowing it to take at most one action. After

re-freezing the selected joint, examination of its links and internal state reveals

whether or not it took the expected action. We repeat this test for all relevant

data and full-empty link combinations.

We do this for every (input-links)–joint–(output-links) configuration in the design.

A similar stuck-at test scheme can be defined for links with normally transparent

latches.

Fig. 5.3.10: Pictorial representation and test outline for exhaustive testing of stuck-
at faults. As before, we color full links blue and empty links white.
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5.4 Summary and Conclusion

The work outlined in this chapter presents the ARC’s new point of view on test-

ing. We emphasize that testing requires access to both state and action. Differ-

entiating actions from states is a simple idea of great power because it clarifies

how self-timed systems work. Unlike actions in synchronous systems that occur

simultaneously in response to an external clock, the actions of self-timed sys-

tems are spontaneous, self-generated, and widely distributed in both space and

time.

Separate action control with MrGO, combined with traditional scan access to

state, makes it possible to (1) exit an initial state cleanly to start circuit operation

in a delay-insensitive manner, (2) stop a running circuit in a clean and delay-

insensitive manner, (3) single- or multi-step circuit operations for test and debug,

and (4) test sub-systems at-speed. The poster in Figure 5.5.1 illustrates this

MrGO-centric test solution.

The next chapter implements this test solution and makes it ready for silicon

test and debug, using traditional scan access and an industry-standard test in-

terface.
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5.5 My Contributions for Chapter 5

While most of this thesis is joint work with my supervisors, the following key

contributions are largely mine.

• I implemented MrGO, sizing its transistors using logical effort calculations

for a typical FIFO joint configuration. I present a more precise sizing strat-

egy in Chapter 7.

• I developed and ran test, debug and characterization scenarios for the

ARC’s Weaver and Anvil chips, using MrGO and the standard scan test

interface presented in Chapter 6.
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Fig. 5.5.1: My ASYNC 2015 poster illustrating how to test self-timed circuits using
MrGO.
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6

Hierarchical Design for Test and Debug

In this chapter, I give implementation details for the test and debug approach

presented in Chapter 5. These implementations show how we can control the

individual actions in a distributed self-timed system and how we can control

and observe the distributed states. Specifically, Chapter 6 provides details on

how we organize the scan actions, which we clock globally, to test an un-clocked

self-timed system. We opted for a clocked scan solution, rather than a self-timed

version, because a clocked version makes it easier to use existing standard scan

test interfaces.

To stay in tune with the distributed operation and power distribution of our self-

timed systems, we limit the global activity that a global scan clock may induce

into the system. We limit global test activity in the system by scanning test stimuli

in and test responses out through separate scan storage elements that play no

role in the self-timed operations. If needed, surplus global test activity resulting

from a globally scan-clocked write action of scan values into system signals can

be partitioned over multiple scan-clock write actions. Likewise, surplus global

test activity in the reverse direction resulting from a globally scan-clocked read

action can be partitioned over multiple scan-clock read actions. Additionally,
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scan 

[full-empty states]

Scan Latches
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Scan Chain

JTAG Controller

Scan Latches
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JTAG bus
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Scan Cap
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^
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TDI
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TMS
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link Joint
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 [data states]

...

Chip Design Module
Links and Joints

...

Fig. 6.0.1: Design for test hierarchy for self-timed systems, showing:
At the module level — right: A link with full or empty and data states, and a joint
with go signals to start and stop individual joint actions.
At the design level — middle: Multiple scan chains of serially connected scan
latches, each controlling or observing a state or go signal at the lower module
level.
At chip level — left: The JTAG Controller to translate IO signals into scan chain
instructions for (1) shifting test stimuli through IO signals into the scan chain, (2)
writing these into state or go signals, (3) reading test responses from any resulting
system actions out into the scan chain, and (4) shifting these out through the IO
signals.

by blocking individual actions, we can prevent state changes from propagating

further into the system until the desired test configuration is ready for execution.

As such we are able to support standard clocked test interfaces and scan chains

without jeopardizing the performance characteristics of the self-timed system.

Many commercial chips have a standard clocked test interface that can be pro-

grammed to control the scan operations as needed. For my thesis, I have taken

a scan reference design from Sun-Oracle Laboratories as a starting point. This

scan reference design consists of multiple clocked scan chains that are con-

trolled through a standard clocked test interface as defined by the Joint Test

Action Group (JTAG) [13].

The resulting design for test and debug approach is hierarchical. The lowest
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level gives direct controllability and observability of state settings and state tran-

sitions, or actions, as explained in Chapter 5. The higher levels make the lower

level controllability and observability settings accessible via the scan chains and

the external JTAG test interface. The JTAG test interface requires only a small

fixed number of test access pins on the chip. Figure 6.0.1 shows a block diagram

of this hierarchy, which can be explained as follows:

1. At the module level I add and identify special control and observe signals

in each link and joint to (1) initialize, or write, internal states, (2) start, single

step, and stop actions, and (3) capture, or read, internal states.

2. At the design level I add serial-shift, parallel-read, parallel-write scan chains

and hook them up to write the control and read the observe signals at the

module level. More specifically, I use serial-shift scan chains that run inde-

pendently and in parallel to the circuit under test. Each scan chain segment

is composed of two latches per bit.

Note that I separate the scan chain from the self-timed design that is under

test. The standard scan test practice is to turn system latches or flipflops

used in the design into scannable flipflops, where each flipflop will have two

inputs. One input is devoted to the function need of the circuit and the other

input is devoted to shifting data through the scan chain which includes the

present flipflop. I avoid this standard scan test practice in order to maintain

the state of the self-timed system during scan-shift operations, and to obtain

a low-power scan profile.

I connect the scan chains to the special control and observe signals at the

module level. By doing so, I lose the direct controllability and observability

of these signals, which now come under the controllability and observability

capabilities of the scan chain operations. Though this costs test time, it favor-
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ably reduces the number of external signals needed to control and observe

the circuit states and actions.

3. At the chip level, I use a JTAG Controller configuration to program the scan

chain operations. JTAG Controllers offer an external interface and config-

uration setup that are commonly used by chip manufacturers. Though this

makes for an even more indirect controllability and observability of circuit

state and actions, it provides a standard test interface through a small set of

IO pins.

In the next three subsections I will give more detail on these three levels of

test and debug hierarchy, and indicate how to avoid losing controllability or ob-

servability when moving from a direct non-standard test interface at the module

level to an indirect standard interface at the chip level. Further details, includ-

ing SPICE simulation waveforms, can be found in Appendices E–F. The GasP

circuit examples in these appendices don’t yet use links and joints, but the scan

test solutions and results apply equally to link and joint circuit formulations.

The module-level solutions in this chapter are based on GasP circuits. Similar

solutions can be constructed for Click circuits and Telescope GasP circuit.

6.1 Module level Test and Debug

Test and debug require the ability to control and observe the circuit state and to

start, single-step or multi-step, and stop state-to-state transitions. The state of

a GasP circuit is typically captured in (1) the full or empty statewires in its links

and (2) the datapath latches. So, obviously, we’d like to control and observe

statewires and datapath latches.
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Fig. 6.1.1: First In First Out (FIFO) design example showing a joint with two GasP
links. The links store data using 1-bit datapath latches. We would like to control
and observe the following signals for initialization, test, and debug: the joint’s go
signal, each link’s statewire and — if desired — its 1-bit stored data signal. To limit
the size of the statewire drivers, we would like to turn off the keepers while we drive
the statewire during test operations. The PMOS or NMOS type AND gates at the
link’s high and low keepers and their kp-labeled input signals allow us to do that —
see also Figure 6.2.3.

From a 1997 publication by Charles Molnar et al. [37] and a 2010 ARC report

by Ivan Sutherland [52], we know that to debug GasP we must stop a self-timed

operation in full flight, which requires a so-called Proper Stopper. From the

ARC’s 2015 publication by Marly Roncken et al. [46] and Chapter 5, we know

to add a Proper Starter as well, so that we can force the circuit to be stable

when we start a normal or test operation. MrGO of Figure 5.2.1 from Chapter 5

combines both features in one proper start-stop design.

As an example, Figure 6.1.1 shows a GasP First In First Out (FIFO) design

with a joint and two links, and a summary of the signals I’d like to control and

observe for initialization, test, and debug. MrGO is inserted in the joint, after the

synchronizing PMOS AND-type gate and at or before the gate that generates

the fire signal. MrGO receives an arbitrated start-stop signal, called go here. A
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high go signal allows the GasP module to operate and a low go signal stops the

self-timed action in a clean way.

To coordinate the initialization of state signals, full-empty and data, with the

setting and resetting of proper start and stop signals, it is necessary to use

an initialization-start-stop protocol that is in-sensitive to delays in go signals.

Intuitively, the protocol separates low from high test settings for go signals, by

requiring that:

• All go signals return to low at the end of each test, before we scan in new

full-empty and data state variables for the next test.

• When the new scanned-in state of the circuit has stabilized, a subset of the

go signals may be set to high, monotonically, either in parallel or serially.

The exact formalization and mathematical foundation of this initialization-start-

stop protocol needs further work and is left for future research.

Having separate state initialization and action start signals is new in the context

of GasP circuits and in the context of test and debug. But it’s not a new idea

in itself, in the context of design: the self-timed circuits generated by the Philips

Tangram compiler in the early 1990’s already separated initialization from start

[60]. Surprisingly, though, people seem to have forgotten the need for this. Dur-

ing the recent ASYNC conference, held in Potsdam from 12-14 May 2014, one

presenter addressed the issue of being unable to initialize, specifically reset, his

self-timed circuits [17]. His mistake was that he used a single signal to reset

and to start the circuit. As a result, his circuits lacked the necessary stabiliza-

tion time window between exiting the reset phase and starting the circuit. Such

a stabilization time window is necessary because exiting an initialization phase,

reset included, takes time. For instance, it takes time to go from driving a GasP
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fire
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fire
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X2X1

Fig. 6.1.2: Implementation of a 1-bit datapath latch. Its icon is shown in the top
right corner. Where needed, we replace the 1-bit latch with the 1-bit scan latch of
Figure 6.2.4(top).

statewire externally to handing over the drive responsibility to the statewire keep-

ers and to disconnect the external drive from the statewire. Moreover, until the

external drive is properly disconnected, the external driver can interfere with

an already running circuit operation that’s driving the statewire. By providing a

separate start signal, the start of the circuit operation can be postponed until

the circuit is stable and properly disconnected from its reset and initialization

drivers.

In addition to what’s shown in Figure 6.1.1, a joint may have extra data signals,

coming from data latches in the links, which act as extra control inputs to the

joint’s gates. There may also be extra control signals going the other direc-

tion, which act as selection signals for the datapath. We can manage these

by controlling and observing the full-empty state and data latches in the links.
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Figure 6.1.2 shows the circuit of a 1-bit data latch.

The subsections below give a more detailed summary of the control and obser-

vation signals in Figure 6.1.1, and how they help in test and debug.

6.1.1 Proper Start Control: Make go High

Each GasP joint has its own go signal to permit the next action and the corre-

sponding state transitions in the links from the present link states, as explained

in Chapter 5. By making the go signal high, we allow the joint to act and change

the state of its links, where applicable. The GasP joint in Figure 6.1.1 can act

if its predecessor link, in[1], is full (fullin[1] high) and its successor link, out[1],

is empty (fullout[1] low). The AND of go high, fullin[1] high, and fullout[1] low re-

sults in drainin[1] and fillout[1] going high, which again results in three concurrent

sub-actions that together copy the data from in[1] to out[1] :

1. fillout[1] high makes fire high, copying Dout[1] to out[1] ’s data latch and

out[1].Dstored,

2. drainin[1] high makes fullin[1] low, declaring link in[1] empty, and

3. fillout[1] high makes fullout[1] high, declaring link out[1] full.

These three actions are followed by a 5-gate-delay self-resetting phase, starting

with fullin[1] low and fullout[1] high, resetting the AND gate to low, and ending with

the following three concurrent actions:

1. fire goes low, making the latch in link out[1] opaque, a.k.a. “closing the

latch,” which renders the latch insensitive to new data changes on

in[1].Dstored,
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2. drainin[1] goes low, thus enabling the other side to fill link in[1] again with

new data,

3. and fillout[1] goes low, thus enabling the other side to drain link out[1].

Note that the high go signal does not interfere with the self-reset phase. This is

crucial because it keeps intact the existing handshake protocol on the statewires.

As a result, it is possible to test not only a single-step state transition as de-

scribed above, but arbitrarily long sequences of state transitions in a GasP

pipeline. This is extremely useful for debug and characterization of throughput

and power.

6.1.2 Proper Stop Control: Make go Low

To stop a self-timed operation cleanly, we arbitrate between continuing the joint

operation and stopping it. We stop the operation by making go low at some

point in time. This can be when the circuit is stable or while it is running at full

speed.

The arbitration circuit in MrGO is fair in the sense that a signal that loses arbitra-

tion will be granted during the next arbitration cycle. So, if the low go loses the

arbitration because MrGO’s arbiter favored continuing the self-timed operation,

it will win the next arbitration cycle. Moreover, go low will win the arbiter within

one non-blocking action cycle, here: one arbitration delay and 10 gate delays

later.

As an example, consider a pipeline with eleven GasP links connecting eleven

GasP joints, like those in Figure 6.1.1, eight of which have permission to act and

three of which are blocked:
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A|B.C|-.-.-.-.-|-.-.-.
where

• The letters A, B, and C denote the data in full links.

• A dash “-” denotes an empty link.

• A period “.” represents a GasP joint with permission to act (go is high).

• A vertical bar “|” represents a GasP joint not permitted to act (go is low).

The values in A, B, and C are waiting to enter the long center section of this

pipeline. If we unblock the second blocked GasP joint we get:

A|B.C.-.-.-.-.-|-.-.-.

which is unstable and rapidly changes to the stable configuration:

A|-.-.-.-.-.B.C|-.-.-.

What’s interesting about this example is that B and C move at full speed from

one link to another. Separate control of the go signal to each joint permits us to

test short bursts of activity at full speed. See also Figure 5.3.6 in Chapter 5.

ARC report ARC2013-smg09 in Appendix F presents a similar but slightly smaller

example that controls the go signals from the higher level JTAG controller and

scan chains. The appendix shows SPICE level waveforms for the rapidly-

changing statewires and fire signals between the initial and final pipeline config-

uration.

6.1.3 Full-empty State Control and Observation

We can initialize links to either full, which indicates the presence of valid data, or

empty, which indicates the absence of data or that the data are no longer needed
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and may be changed by the sender. For instance, initializing pred[1][sw] to high

for the GasP link in Figure 6.1.1 makes link in[1] full, thus indicates that there’s

new data on the in[1].Dstored signal stored in the 1-bit latch in link in[1].

In addition to controlling the state, I’d also like to observe the state of each

statewire – without destroying it. Being able to single-step through a computa-

tion and inspect the state at each step on the way, without destroying it, will be

particularly helpful for debugging.

6.1.4 Data Control and Observation

Though we may not want to control or observe all datapath latches, we might

want to control and observe at least the ones that interface with the control logic,

i.e.,:

• control datapath latches whose outputs control a joint action

• control signals, other than fire signals, that steer datapath operations, e.g.,

control signals for data multiplexers.

Also here, I’d also like to observe the state signals without destroying them, to

accommodate debugging efforts.

6.2 Design Level Test and debug

At this level, we’ll add extra connections to the individual go signals of each joint

and to the individual full-empty statewire signals and selected data signals of

each link, so they remain easy to access but can be controlled and observed

through a much smaller external interface. As access mechanism, I will use
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Fig. 6.2.1: Pictorial representation of a GasP FIFO design (top) with two scan
chains (bottom). The stick figure at the top represents the FIFO joint and the rect-
angular boxes represent the FIFO links. Each scan chain consists of serially con-
nected scan segments. Each scan segment connects to exactly one joint, link or
data signal. The one-to-one connections are indicated in the bidirectional vertical
arrows between circuit and scan chains. The upper scan chain connects to state
signals in the circuit, including those in the pictured links. The lower scan chain
connects to go signals in the circuit, including those in the pictured joint. As in
Figure 4.1.1, we color the rectangles of full links blue, and those of empty links
white.

serial shift and parallel read-write scan chains that run along the joints and links

and that connect to the control and observation signals for go, full-empty, and

data, discussed in Section 6.1.

Figure 6.2.1 gives a pictorial representation of a self-timed GasP FIFO con-

nected to two such scan chains. The upper scan chain is for controlling and

observing state signals in the circuit, including state signals of this FIFO circuit.

The lower scan chain is for controlling — and possibly observing — go signals

in the circuit, including the go signal of this FIFO circuit. The stick figure at the

top represents the FIFO joint and the rectangular boxes left and right to the stick
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figure represent the FIFO links and their data. The series of scan elements at

the bottom form the scan chains. The vertical bidirectional arrows indicate the

read-write connections between circuit and scan chains.

Figure 6.2.2 shows how these connections can be used to start and stop circuit

actions and to write and read the state values that we want to control and ob-

serve. The series of scan operations in Figure 6.2.2 illustrate how each scan

chain can:

• shift bit values serially in (load) and out (unload):

In the design hierarchy in Figure 6.0.1, the scan chains are the interfaces

between the JTAG bus connections and the scan bus connections. In

Figures 6.2.1–6.2.2, the JTAG bus connections are represented as scan

inputs and outputs, and the scan bus connections are represented as the

vertical bidirectional arrows between circuit and scan chains. Each verti-

cal arrow is a one-to-one connection between a circuit signal and a scan

segment. The scan segments do the serial shifting.

• read, or capture, bit values in parallel from the design into the scan

chain:

In Figures 6.2.1–6.2.2, the values to be read travel down the vertical ar-

rows from the target circuit signals to the corresponding scan segments.

• write, or launch, bit values in parallel from the scan chain into the

design:

In Figures 6.2.1–6.2.2, the values to be written travel up the vertical arrows

from the corresponding scan segments to the target circuit signals.

The scan operations in Figure 6.2.2 support a one-shot test of the FIFO for

copying the data forward from its data input link in to its data output link out,
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as illustrated in Figure 4.1.1 of Chapter 4. Figure 5.3.1 of Chapter 5 showed

the principles behind such a one-shot test, but without the corresponding scan

operations for enabling and disabling the go signal and for reading and writing

the state signals.

The narrative for Figure 6.2.2 is as follows. First, we stop all FIFO actions by

making the go signal in the FIFO’s joint low. To do this, we shift the value low (0)

into the appropriate scan segment (steps 1 and 2) and then write (load) low into

go (step 3). With all circuit actions stopped, it is now safe to change the circuit

states. In step 3, we shift into position the values 1, full, 0, and empty for the

full-empty GasP statewire and data signals of respectively link in and link out, In

step 4, we write these values into the target signals. We are now ready to test if

the FIFO will forward the data from its full link in to its empty link out.

To enable the FIFO to act, we must first make its go signal high. In steps 6

and 7, we shift the value high (1) into the appropriate scan segment and then

write it into the go signal. If the circuit acts correctly, it will copy the data from

in to out, drain in, and fill out, resulting in step 8 — see also Figures 4.1.1 and

Figure 5.3.1. To validate that this action happened, we must scan out the full-

empty statewire and data values. To do this, we first stop all FIFO actions (steps

9 and 10), then read the FIFO state values of both links (step 11), and shift them

out for inspection (step 12).
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Fig. 6.2.2: Scan operations for a one-shot FIFO test — see also Figure 5.3.1.
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Fig. 6.2.2: (continued)
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Figure 6.2.2 shows clearly that the serial shifting takes place inside the scan

chain but outside the circuit. The only interaction between the circuit and the

scan chain is during parallel read or write operations.

Note that I use the scan chain to disable the FIFO’s go signal, making go low. I

prevent the FIFO from acting before I allow the scan chain to read from or write

into any of the FIFO’s state signals. Likewise, I use the scan chain to enable the

FIFO’s go signal, making go high. I enable the FIFO to act after the FIFO state

is updated and stable.

To be able to stop and start FIFO actions separately from initializing FIFO states,

the scan chain for the go signals is separate from the scan chain for the state

signals. This is the reason for the two scan chains in Figures 6.2.1–6.2.2. Alter-

natively, I could have used a single scan chain with extra scan segments, say

one per already existing go or state scan segment. I would use the extra scan

segment to indicate whether or not read or write actions should ignore and thus

disconnect the associated go or state scan segment from the circuit. Another

alternative, used in the Weaver, is to have one scan chain but two separate write

signals, one for go signals and the other one for the state signals.

The scan segments that we use for testing GasP circuits come in three fla-

vors, shown in Figures 6.2.3–6.2.4. The first flavor connects to signals that are

never driven by the self-timed design, such as the go signals in the joints in Fig-

ures 6.2.1–6.2.2. Each such scan segment drives and keeps the scan-launched

value on the target signal. The drive-and-keep latch in Figure 6.2.3(top) imple-

ments such a scan segment. The second and third flavors connect to signals

that are under control of the self-timed design, such as the full and data signals

in a link. The second flavor of scan segments is for signals like the full-empty

statewire in a GasP link, where we want the driver circuitry of the signal to op-
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erate in mutual exclusion with its — possibly strong — keeper circuitry. The

drive-and-release latch in Figure 6.2.3(bottom) implements this second flavor

scan segment. The third flavor is for signals, like a stored data signal in a GasP

link, where we allow the driver circuitry to overtake the value on the — nec-

essarily weaker — keeper. The shift-and-capture latch in Figure 6.2.4(bottom)

implements this third flavor scan segment.

The fat green lines in the three designs are the scan buses. They bundle the

relevant scan signals communicated from one scan segment to the next into a

uniform communication link. Each bus contains the scan clocks for shifting and

reading and writing, and the scan data bit that’s shifted forward, as well as the

final scan data and clock signals coming back.

Further details about the implementations and notations used in Figures 6.2.3–

6.2.4 follow in Sections 6.2.1–6.2.4 below and in Appendix E.

6.2.1 Scan Shift

To observe GasP signals without destroying them, the serial scan shifts are

done outside the GasP circuit, using an LSSD type scan shift register consisting

of two latches in series clocked by non-overlapping clocks [6].

Each latch pair “small W” and “small R” in Figures 6.2.3–6.2.4 acts as a master-

slave shift register. The latches are clocked by two active-high scan clocks, phi1

and phi2. When its scan clock is high, the value at the latch input is copied into

the latch and onto the latch output. When the scan clock is low, the latch keeps

its currently stored value.

The last scan chain segment in a single scan chain is connected to a so-called
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Fig. 6.2.3: First (top) and second (bottom) flavor scan segment implementations for
GasP, for connecting go signals respectively full-empty statewire signals. To control
or observe a go signal, e.g., the go signal of the joint in Figure 6.1.1, connect it
to signal dout[T] of the drive-and-keep latch. To control or observe a full-empty
statewire driver-keeper pair, e.g., the driver and keeper signals succ[1][sw] and
succ[1][kp] in Figure 6.1.1, connect the pair to the pair of signals link[0][sw,keep]
of the drive-and-release latch. The scan segments can be connected in series to
form one or more scan chains. Scan values are shifted in from scanIn[0][1:8] to
scanOut[0][1:8], with scanIn[0] (sin) representing the scan input value.
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Fig. 6.2.4: Single-bit datapath latch with its multiplexed datapath latch version (top)
and a corresponding third flavor scan segment implementation (bottom). The top-
left datapath latch cannot be controlled but it can be observed through scan by con-
necting its dout[0] signal to rddata[0] of the shift-and-capture latch. The top-right
multiplexed datapath latch can be controlled and observed through scan by con-
necting its signals wrdata[0], load, and dout[0] to the respective signals wrdata[0],
wr (scanIn[0][4]), and rddata[0] of the shift-and-capture latch. By connecting multi-
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shifted in from scanIn[0][1:8] to scanOut[0][1:8], with scanIn[0] (sin) representing
the scan input value.
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ScanCap design (see Figure 6.0.1) which returns three of the scan signals, phi1

and phi2 and sout respectively, and sends these back into the scan chain in

reverse direction, as phi1_return and phi2_return and scan_data_return. These

three signals travel back, un-clocked, to the first scan segment and are visible

as scan output pins.

Signal scan_data_return is the sout signal of the entire scan chain. It is returned

in reverse direction by the scan chain’s end segment, ScanCap, and output

under signal name scan_data_return. As scan_data_return, it can be inspected

for test and debug.

Signals phi1_return and phi2_return are the signals at the end of the farthest

out clock branches for scan clocks phi1 and phi2. Each return signal acts as

a completion detection signal that indicates that the clock signal has reached

all end points in the distributed clock network. We use these return signals to

generate non-overlapping-high phi1 and phi2 clocks for reliable scan shifting.

6.2.2 Non-Destructive Read of Circuit Signals

The slave part of the shift register, “small R” in Figures 6.2.3–6.2.4, can addi-

tionally copy and store the value of the GasP signal that it’s connected to, so the

value can be shifted out for inspection during test and debug. This copy action

happens when the scan read clock signal, rd, is high, and has no impact on

the value of the GasP circuit signal other than adding extra load capacitance.

Because full-empty statewires may be long, we minimized the extra load capac-

itance on the statewire by splitting the read action over two separate circuits —

see Figure 6.2.3(bottom): one near the statewire that inputs a local signal whose

value matches that of the statewire ANDed with the read clock, and another one
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to capture this ANDed signal into the slave latch of the shift register.

6.2.3 Non-Destructive Write of Circuit Signals

The scan segment designs differ slightly in how they write the GasP circuit sig-

nals. The designs in Figure 6.2.3(top) and Figure 6.2.4(bottom) copy the value

of scan signal sout into the circuit signal when the scan write clock, wr, is high,

and keep it there when wr is low. The design in Figure 6.2.3(bottom) copies

sout into the statewire three gate delays after wr goes high, and uses these

three gate delays to disable the statewire keepers. It releases the drive three

gate delays after wr goes low, and uses these three gate delays to transfer the

drive responsibility back to the statewire keepers. The three gate delay skew

matches the delay in the enabling and disabling circuitry in the keeper logic,

shown in Figure 6.1.1.

6.2.4 Initialization at Power-Up

Like the direct access configuration described in Section 6.1, the scan chain

approach described here still allows us to read the state of the GasP circuit

without destroying it, and still allows us to access all state variables. Control

and observation are more indirect, though, because only the scan bus signals

at the interface of the first scan segment in the scan chain are visible to the

test environment. The advantage of this is a drastic reduction in external test

pins. The disadvantage is that each control and observation action must be

translated into the correct number and sequence of scan clock operations for

scan shifting, reading GasP circuit signals, and writing circuit signals. As a

result, some operations that we used to take for granted when we had direct
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access to the GasP state signals require more planning.

The key operation that requires more planning is initialization at or shortly after

power-up. This is especially desirable for GasP circuits, which may experience

fights on the statewires when both the high and the low statewire drivers hap-

pen to get activated at power-up. In the past, each GasP module had a global

master-clear signal that, when high, drove all statewires low, see for instance

Figure 2.2.1 in Chapter 2. Having all statewires low yields a stable, well-defined

initial state at or shortly after power-up. The scan chain can perform a similarly

quick reset action if, for all scan chains, we make both scan shift clocks, phi1 and

phi2, high, and scan write clock, wr, high, and scan input signal, sin, low. This

will cause the low sin signal to ripple through each scan chain to all go signals

and statewires. We can do the same for scanned data latches, if needed.

6.3 Chip Level Test and debug

The external scan chain interface presented in Section 6.2. is still rather exotic

compared to standard commercial scan interfaces. We can create a standard

interface by connecting the scan chains to the IO pins via a standard scan in-

terface that’s used in industry and that can be programmed to control the scan

operations as needed.

As standard scan interface, I use the JTAG Controller defined by the Joint Test

Action Group (JTAG) [13]. The JTAG Controller is an IEEE 1149.1 standard

for Standard Test Access Port (TAP) and Boundary Scan. Boundary scan test

focused originally on controlling the IO pins of each chip for the purpose of

testing the interconnections between chips on a board. But the test patterns

stored at the chip boundaries can also be used to test the individual chips.
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Fig. 6.3.1: Block diagram of the JTAG Controller, which observes the output results
for the various scan chains via one test output, TDO (Test Data Out), and which
controls the scan chain operations via four external test input pins: TDI (Test Data
In), TCK (Test Clock), TMS (Test Mode Select), and TRSTb (Test Reset active low
signal).
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The JTAG test view fits with our self-timed circuit test view: we can view the

design as the board, the joints as the chips, and the links as the interconnec-

tions between the chips on the board. Likewise, scan chains can be viewed as

boundary scan chains, where the serial scan segments store the test patterns

and where the write-read scan connections between scan segments and circuit

launch the test stimuli and capture the test responses.

Figure 6.3.1 gives an overview of the architecture of the JTAG Controller, show-

ing the following modules:

• JTAG Central: This is the interface module between the external pins and

the GasP scan chains. It has two submodules: JTAG Control and Scan

Control Group.

• JTAG Control: This module contains the IEEE 1149.1 standard Test Ac-

cess Port (TAP) Controller, which is a finite state machine from which we

can program the Instruction Register (IR), which keeps test related state

information for the TAP Controller, the Test Data Output (TDO) Driver,

which determines which test data goes to the TDO pin, and the Scan Con-

trol Group, which uses the stored IR and the TAP outputs to select a scan

chain and apply IR and TAP instructions to it.

• Scan Control Group: This module groups the Test Data Input (TDI) signal

with the TAP controller and IR logic signals coming from the JTAG Con-

trol module. It translates these into specific scan chain signal settings and

hands a TDO signal back from the scan chains to the JTAG Control mod-

ule.

I was lucky to have a reference design from Sun-Oracle Laboratories with a

JTAG Controller implementation. I studied this design carefully and adapted it
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so GasP circuits with links and joints can be initialized at power-up. The original

Sun-Oracle solution used a global reset signal built into the design to initialize

the circuit during or after powering up the circuit, as we did in our traditional

(T)GasP circuits before we re-designed them with links and joints [46] — see for

instance signal in[mc] in Figure 2.2.1 of Chapter 2.

Getting the links and joints in a stable state during power-up can be done by

overlapping the high signals for the normally non-overlapping scan clocks, while

keeping the write clocks high, and while keeping all scan inputs low for the scan

chains connected to go and full-empty statewire signals. In addition to initial-

ization at power-up, overlapping scan shift clocks can also speed up operations

that are an integral part of our link-joint test approach and that I expect will be

used frequently, such as:

• making all go signals low between test operations

• making all go signals high for normal, self-timed, circuit operations.

To enable overlapping-high scan shift clocks as shown in the SPICE simulation

waveforms in Figure 34 of Appendix F, I made the following design changes in

the JTAG Controller:

1. In the Instruction Register (IR), I added a ninth register bit that is used

as overlap_enable signal in the Scan Control Group and that determines

whether or not the scan shift clocks can be high at the same time. IR

register bits are programmed through the standard JTAG IO pins TMS and

TDI — see Section 3 in Appendix F.

2. In the Scan Control Group, I added an extra mode to the Scan Control

Clock Generator which enables both scan shift clocks to be high when the

IR overlap_enable signal is high — see Figure 23 in Appendix F.
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Overlapping-high scan shift clocks are necessary but not sufficient to support a

quick reset mode at power-up. For a quick reset at power-up, we want the scan

shift clocks and the scan write clock to be high and we want the scan read clock

and the scan input signal to be low, for all scan chains — or at the very least for

the scan chains connected to go and full-empty statewire signals.

To support such a quick reset, I propose to add a Scan Reset Mux for every

scan chain controlled by the Scan Control Group, as shown in Figure 6.3.1. The

Scan Reset Mux is inserted in each Scan Control module — see Figure 20 in

Appendix F. The schematic of the Scan Reset Mux follows in Figure 6.3.2.

During power-up, we keep JTAG IO signal TRSTb low. As soon as the power

comes up, this will cause TRST to go high. With TRST high, the Scan Reset

Mux will connect the scan input signal to GND (low) instead of TDI, connect one

scan shift clock to VDD (high) instead of CK1, connect the other scan shift clock

to VDD (high) instead of CK2, connect the write clock to VDD (high) instead of

WR, and connect the read clock to GND (low) instead of RD. This subsequently

causes the low scan input to ripple through each scan chain to all go and full-

empty signals. After power-up, we can make TRSTb high again, and use the

normal JTAG central signals to program the scan operations or run the circuit in

self-timed mode.

A complete explanation of the JTAG Controller and the changes I made to the

original implementation of the Sun-Oracle Laboratories version can be found in

Appendix F.



6. HIERARCHICAL DESIGN FOR TEST AND DEBUG 126

Scan
Reset
mux

TRSTb

leaf[1:5]root[1:5]

root[1:5]

leaf[1:5]

J

J

TRSTb X=6

s

0

1

s

0

1

s

0

1

s

0

1

Scan Reset Mux

Mux

Mux

Mux

Mux

1500

CK1

CK2

TDI

TDI,CK1,CK2,WR,RD

TRST

TRST

TRST

TRST

TRST

WR

a[1:5]

a[1]

a[2]

a[3]

a[4]

gnd

vdd

vdd

vdd

s

0

1

Mux

TRST

RD
a[5]

gnd

Fig. 6.3.2: Scan Reset Mux module to support initialization at power-up. This mod-
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6.4 Summary and Conclusion

The test strategy outlined in this chapter has a research as well as a practi-

cal aspect. The research aspect is in the module-level design for test solution

presented in Section 6.1. The remaining Sections 6.2 and 6.3 cover the more

pragmatic aspects of taking the module-level design for test solution and inte-

grating it in an industry-standard framework.

At the module level, I added, proper start-stop control, by adding go signals.

Combined with initialization, each go signal can be used as a proper start and

as a proper stop signal. The resulting control circuit, called MrGO, is ANDed

into each joint action – see Chapter 5. Further background and details on this

can be found in ARC reports [57, 47] and in Appendix E.

At the design level, I could reuse much of the scan design features used by Sun-

Oracle Laboratories to test and debug earlier chip designs in GasP. I added new

scan features to control and observe each individual go signal and each indi-

vidual GasP full-empty statewire signal. These additional scan features signifi-

cantly increased the density in controllability and observability compared to the

original Sun-Oracle designs, and asked for new logical and layout configurations

in the scan designs. At the ARC, we revised the Electric design libraries to cre-

ate scan schematics and layout solutions best suited to the new link-joint-based

GasP designs with built-in testability. Some of these revisions are reported in

Appendix E.

At the chip level, I added an extra test mode setting to enable initialization during

power-up and to allow overlapping scan shift clocks to speed up operations that

I expect will be used frequently during test and debug. Further details can be

found in Appendix F.
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With the help of Sun-Oracle Laboratories, the ARC manufactured two working

chip experiments: Weaver and Anvil. Both experiments use the design for test

solution described in Chapter 5 and Section 6.1, as well as the scan chains

described in Section 6.2, and a JTAG Controller interface. Because we were

not sure how the existing Sun-Oracle test software would cope with my JTAG

modifications, the two chip experiments use the original Sun-Oracle JTAG Con-

troller instead of the modified JTAG Controller described in Section 6.3 and Ap-

pendix F.

Information on the Weaver design can be found in a separate ARC report [56],

downloadable from the ARC website [1].

The ARC’s Weaver report is silent about how good the design for test solution

is for manufacturing testing: a handful of chips won’t give us the Defects-Per-

Million (DPM) numbers that are required to qualify a structural test method. But

ignoring DPM numbers, the Weaver and Anvil experiments described in the

ARC’s Weaver report and in Chapter 5 are clear evidence of a successful design

for test approach and implementation.
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6.5 My Contributions for Chapter 6

While most of this thesis is joint work with my supervisors, the following key

contributions are largely mine.

• Many of the scan test features discussed here already existed in a related

form at Sun-Oracle Laboratories, where they were used to test and debug

test chips with earlier GasP circuits. But this is the first time a GasP design

has an externally controllable go signal, multiple externally controllable

and observable full-empty statewires, and more than one possible initial

state.

• I added an extra test mode setting to allow overlapping scan shift clocks,

to speed up operations that I expect will be used frequently in our test

approach, such as disabling or enabling all go signals to stop or start all

distributed actions.

• I proposed a quick reset solution that can be activated through the existing

industry-standard JTAG TRSTb pin, and that we can use at power-up to

initialize the circuit as soon as the power comes up. This solution is exter-

nal to the JTAG TAP controller — by necessity, as we cannot step the TAP

controller during power-up.
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7

Arbitration

A good MrGO implementation requires a good arbiter design. I have done ex-

tensive research on arbiter designs. Starting with an arbiter design presented in

the 2010 ARC report ARC2010-is49 by Ivan Sutherland [52, 53], I developed:

1. a series of arbiter designs with reduced load and load variation, as seen

by the input signals of the arbiter – see Appendix G,

2. a noise-robust arbiter design, by adding keepers that prevent the outputs

from drifting during a contested or decided arbitration when both arbiter

inputs request the arbiter’s service – see Appendix H, and

3. a mathematical foundation to size arbiters for minimum uncontested grant

delay.

This chapter discusses item 3. It continues with a noise-robust arbiter version,

developed under item 2, henceforth called ARC arbiter, and formulates how

to size the transistors in this version to minimize uncontested grant delays. It

presents a similar formulation to size another arbiter, here called Sparsø-Furber

— or SF — arbiter, commonly used outside the ARC. It ends by comparing the

uncontested grant delays of the two arbiters.
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7.1 A Tale of Two Arbiters

“First Come First Serve” (FCFS) is an important operation in many systems. An

FCFS circuit, or arbiter, serves as an umpire to choose which of two competing

input events arrived first. A key feature of an arbiter is how it treats a tie, when

both inputs arrive at the same time.

Because a clocked system treats time in discrete quanta, also known as clock

periods, “at the same time” in a clocked system means “within the same clock

period,” making tie resolution simple. After detecting a tie, synchronous arbiter

can pick the input with highest priority or use some other simple rule to make a

good choice.

Self-timed systems however treat time as a continuous rather than a quantized

variable. Deciding which of two events happened first in continuous time is more

difficult then in quantized time, because the difference in the arrival times may

be arbitrarily small. Chaney and Molnar’s 1973 classic paper [9] pointed out

that, when given conflicting inputs at very nearly the same time, a flipflop might

enter an intermediate state neither flipped nor flopped. The intermediate state

is metastable and will eventually resolve into one of the two stable states. On

rare occasions metastability may persist for a surprisingly long time. How long

metastability persists depends on the flipflop’s design and the proximity of the

two arrivals.

Prior to the end of metastability, random noise may cause the flipflop to evolve

towards either of its stable states. Fortunately it is relatively easy to use the

difference in its two output voltages to tell when a flipflop is no longer metastable.

Given sufficient difference between its two output voltages, a flipflop will reliably

evolve towards the state that magnifies the voltage difference. Although it is
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impossible to tell when metastability begins, it is easy to tell when metastability

ends.

In Chapter 7 of the 1980 Mead-Conway text [20], Chuck Seitz published a sim-

ple and dependable arbiter that he called a Mutual Exclusion or ME circuit. The

Seitz Mutual Exclusion circuit is dependable because it postpones its answer

until after metastability, if any, ends. Seitz’s circuit uses a transistor threshold

voltage to detect the end of metastability. It postpones its choice until one of two

”anti-metastability” transistors begins to conduct. Which of these two transistors

begins to conduct indicates reliably that the flipflop will settle in the correspond-

ing state. Seitz’s circuit is simple, elegant and dependable. Variations of Seitz’s

circuit have been published in several places and are widely used, including in

our own work at the Asynchronous Research Center at Portland State Univer-

sity.

There are four CMOS versions of the original Seitz’s circuit. CMOS can cross

couple either NAND or NOR gates and can use either N-type of P-type transis-

tors to detect the end of metastability. At the ARC we use a variant of Seitz’s

arbiter that uses cross-coupled NAND gates and N-type detection transistors

as shown in Figure 7.1.1. Figure 5.20 of Chapter 5.8 of the Sparsø-Furber

book [50] offers cross-coupled NAND gates and P-type detection transistors,

yielding a two-stage design that closely matches Seitz’s original. Figure 7.1.2

presents the topology of the Sparsø-Furber variant. Reference [50], like other

texts that offer versions of the Seitz arbiter, shows the circuit topology but fails

to offer guidance about what transistor sizes might offer minimum delay. Like

many other publications, [50] leaves to users the choice of suitable transistor

sizes.

This chapter offers help in picking transistor sizes. We consider both the ARC
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Fig. 7.1.1: The ARC arbiter. The dashed arrow shows an uncontested grant de-
lay path from R[1] going high to G[1] going low. Node X is connected to the source
of transistor M that drives G[1]. Node Y is connected to the gate of transistor M
that drives G[1]. Transistors A, B and M on the left are the active transistors in the
delay path from R[1] to G[1].

arbiter of Figure 7.1.1 and the Sparsø-Furber arbiter of Figure 7.1.2, henceforth

abbreviated as SF arbiter. The two circuits differ in the type of transistors used to

detect the end of metastability. The SF arbiter of Figure 7.1.2 is faithful to Seitz’s

original design, and uses the threshold voltage of P-type transistors. In contrast,

the ARC arbiter of Figure 7.1.1 uses the threshold voltage of N-type transistors

instead. The ARC arbiter is the result of a transcription error made many years

ago by Ivan Sutherland in converting Seitz’s original circuit to CMOS, and is

based on Figure 5 of Appendix G.

In addition to the type of transistors used to detect the end of metastability, the

two circuits are profoundly different logic-wise. The ARC arbiter of Figure 7.1.1 is

an inverting one-stage design. The SF arbiter of Figure 7.1.2 is a non-inverting

two-stage design.
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Fig. 7.1.2: The Sparsø-Furber or SF arbiter. The two dashed arrows show the
uncontested grant delay path from R[1] going high to G[1] going high. Node X is
connected to the gate of transistor M that drives G[1]. Node Y is connected to the
source of transistor M that drives G[1]. Transistors Q, A, and B on the right and
transistor M on the left are the active transistors in the delay path from R[1] to G[1].

7.1.1 How the Arbiter Circuits Work

Let us contrast the uncontested operation of the two circuits. The ARC ar-

biter uses three-input NAND gates, devoting the third input to detecting the

end of metastability. The SF arbiter uses a separate inverting logic stage to

detect the end of metastability. This difference changes the function of the

anti-metastability transistors, labeled M in both Figures 7.1.1 and Figure 7.1.2.

As one of the NAND gate outputs, labeled X or Y, changes, the ARC arbiter

changes the source voltage of transistor M, holding M’s gate voltage constant.

The SF arbiter, in contrast, changes the gate voltage of transistor M, holding

its source voltage constant. As illustrated by the arrows, output current from

the ARC arbiter flows through N-type transistors A, B and M in series as shown
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in the dashed arrow in Figure 7.1.1. Output current from the SF arbiter flows

through P-type transistors Q in series with M as shown by the long-dash arrow

in Figure 7.1.2.

Because the ARC arbiter has only a single stage, rising request signals R[1] or

R[2] produce falling grant signals G[1] or G[2]. In contrast, the SF arbiter has two

stages, and so rising request signals produce rising grant signals. Both arbiters

provide mutual exclusion and so deliver at most one grant signal per arbitration.

7.1.2 Least Uncontested Delay

We seek least uncontested delay for two reasons. First, in our systems metasta-

bility is rare because the inputs to an arbiter circuit must be exceedingly close

together in time to cause metastability. We optimize the much more common

case of uncontested arrival. Second, in the rare case of metastability, our self-

timed systems are able to wait as long as it takes for metastability to resolve. Our

self-timed systems need a decisive answer but have no deadline to meet. The

analysis we offer here contributes nothing to the design of synchronizer circuits

used to cross clock domain boundaries. Synchronizer circuits must minimize

the probability that metastability persists longer than a clock period.

To a large degree, we also ignore reset time. We are interested only in how long

it takes from the rising edge of a request to the arbiter’s response. How long it

takes to reset the arbiter for its next decision is of lesser importance. As long

as other parts of the system limit the minimum cycle time, the actual reset time

is of little importance. In effect, by lengthening reset time to shorten grant time,

we “rob Peter to pay Paul.”
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7.1.3 Our Simulation and Analysis

We have done both simulation and analysis to understand the impact of differ-

ent transistor sizes on the performance of these two circuits. Simulation using

SPICE for a variety of operating conditions shows that good performance is

possible with a wide variety of transistor sizes. Mathematical analysis of cir-

cuit models yields “optimum” transistor sizes. We used two circuit models for

our analysis of each circuit and found optimum sizes by setting to zero a par-

tial derivative of delay with respect to transistor size. The “optimum” transistor

sizes found in this way are well within the range of good sizes suggested by

SPICE. The simulations make clear that sizes close to optimum provide nearly

as good performance. It is encouraging to know that the two circuits tolerate

size variation well.

The mathematical analysis reveals useful relationships between the sizes of

various transistors. The analysis shows how sizes depend on the amount of

drive expected of the circuits.

The mathematical analysis results are discussed in Section 7.2.

The SPICE simulation results are discussed in Section 7.3

7.2 Mathematical Analysis

Our strategy for analysis starts with a delay equation for the uncontested case.

We treat total delay as the sum of small delays for each part of the circuit.

Although some of these delays overlap in time, the sum seems appropriate

because each driving transistor must provide charge to each of its parallel loads.
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Picking which parts of the circuit to represent requires careful examination of the

structure of each circuit.

We model the arbiter circuits with a similar input to output stepup for each. Given

an arbitrary fixed size for the input transistor, labeled B in both Figure 7.1.1 and

Figure 7.1.2, the load imposed on each arbiter circuit is s times bigger, where s

is the desired stepup.

We use upper-case letters to represent transistors and lower-case letters to rep-

resent drive strengths. Notice that drive strength differs from transistor width. To

achieve similar strength, P-type transistors must be wider than N-type transis-

tors.

In our mathematical analysis, we will consider the ARC and SF arbiters from a

parametric point of view. The hard question is what parameters to adopt.

7.2.1 Parameters: Load, Strength, Delay

We can measure and express delay in explicit time units, like picoseconds, or

in-explicit units, relative to a reference gate delay. For our delay analysis, we

have taken the latter approach, using relative gate delays. We express absolute

delay, Dabs, as the product of (1) total gate delay units, D, and (2) the reference

gate delay, “tau,” also written as τ:

Dabs = D ∗ τ (7.2.1)

Parameter D is unitless and process independent. The process is encoded in

τ. Specifically, τ is the delay of an inverter, without parasitic loads, driving an

identical inverter. In summary, we compute delay in terms of D, i.e., in terms of

total gate delay units, and scale the result to the proper circuit process, using τ.
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For each part of the circuit, D can be computed as the ratio of (1) output load

for this part of the circuit to (2) drive strength of this part of the circuit. For back-

ground information, see the 1999 “Logical Effort ” book by Ivan Sutherland et

al. [58] and the 2004 publication on “Transistor Sizing” by Jo Ebergen et al. [11]:

D =
Load

Strength
(7.2.2)

Load is the sum of all the capacitances at the output of this circuit part. Strength

is a measure of how much charge the part can deliver per unit time. We as-

sume that all transistors are of minimum length, so a transistor’s strength is

proportional to its width, w, as are the capacitance of its gate and its ability to

produce an output current. Under these assumptions, we may consider the size

of a transistor to be its width.

The size of a transistor differs from the transistor’s strength, as follows. If an

N-type transistor of strength 1 presents an input capacitance of CN to its driver,

then a P-type transistor of strength 1 presents an input capacitance of γ ∗ CN.

The constant γ, expressed by the Greek letter “gamma,” expresses how much

bigger a P-type transistor must be compared to an N-type transistor to deliver

the same charge. A γ times bigger, i.e., wider, P-type transistor is also γ times

harder to drive. Constant γ is process dependent, and generally greater than 1.

It was often taken to be 2 in older fabrication processes, but its value in modern

processes tends to be closer to 1.

Load is expressed in units matching the reference input capacitance, Cref, pre-

sented by the smallest size inverter available in the given process technol-

ogy, with one strength-1 N-type transistor and one strength-1 P-type transistor,

where:

Cref = CN + (γ ∗ CN) = (1 + γ) ∗ CN .
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Thus, relative to Cref, the input capacitance of a strength-1 N-type transistor with

input capacitance CN is:

CN

(1 + γ) ∗ CN
=

1

(1 + γ)
.

Likewise, relative to Cref, the input capacitance of a strength-1 P-type transistor

with input capacitance γ ∗ CN is:

CN

(1 + γ) ∗ γ ∗ CN
=

γ

(1 + γ)
.

Table 7.2.1 generalizes these formulas to transistors of strength x, for x ≥ 1.

For the delay analysis of the arbiters in Figures 7.1.1 and 7.1.2, we will need

to know the drive strength of two or three transistors in series. For instance,

transistor A is connected in series with transistor B.

We can express the drive strength of such serial configurations in a normalized

form. We can define s(a, b), the normalized drive strength of transistor A with

Table 7.2.1: P-type and N-type transistor equations for input capacitance versus
strength, assuming P-type transistors are γ times harder to drive than N-type tran-
sistors. We assume that the input capacitances on a transistor’s gate, drain, and
source are similar, as is the case in the 90nm and 40nm manufacturing processes
we have worked with.

Type Strength Input capacitance of transistor’s Gate or Drain or Source

N x
x

1 + γ

P x
γ ∗ x
1 + γ
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strength a in series with transistor B with strength b, as the reciprocal of a sum

of reciprocals, as follows:

s (a, b) =
1

1

a
+

1

b

=
a ∗ b

a + b
(7.2.3)

Similarly, we can define s(a, b, m), the normalized drive strength of the three in-

series transistors A, with strength a, B, with strength b, and M, with strength m,

as follows:

s(a, b, m) =
1

1

a
+

1

b
+

1

m

=
a ∗ b ∗ m

(a ∗ m) + (b ∗ m) + (a ∗ b)
(7.2.4)

Best transistor strengths are a strong function of stepup. To aid comparison of

the two arbiter circuits in Figures 7.1.1 and 7.1.2, we choose an identical input

capacitance for each. The R[1] input load for the uncontested R[1] to G[1] path

in the ARC arbiter, shown in Figure 7.1.1, is presented only by transistor B,

because we ignore the tiny P-type reset transistors.

Likewise, the R[1] input load for the uncontested R[1] to G[1] paths in the SF

arbiter, shown in Figure 7.1.2, is presented also only by transistor B, because

we ignore the tiny P-type reset transistor, P1B. For each arbiter analysis we will

have the arbiter drive a load that is s times as big as its input load, where s is

the stepup expected of the arbiter. In practice we tend to load arbiters lightly by

keeping s small, e.g., 2 or 3.



7. ARBITRATION 141

The best strength for transistor M is a compromise between (1) the load M

presents to the NAND gates that drive it and (2) M’s ability to drive the arbiter

output. A stronger M speeds driving the arbiter’s output, but a stronger M is

also harder to drive and therefore retards action of the NAND gates. Although

a weaker M is easier for the NAND gates to drive, a weaker M takes longer to

drive the arbiter output. Analysis of the delay equations for the R[1] to G[1] paths

shows the best compromise. Likewise, the best strengths for transistors other

than M is a compromise between their ability to drive loads and the load they

impose on their inputs. For instance transistor A drives B and M in series and is

driven by the other A and B in series.

Our goal to seek the least uncontested delay translates to seeking the best

strengths for transistors A and M in relation to B.

7.2.2 Overall Delay Analysis

We analyzed each arbiter’s uncontested request-grant delay, for R[1] to G[1],

using two optimization methods — the first without and the second with transis-

tor parasitic loads. Both methods use only transistors that play an active role in

the request-grant path. We represent the delays in τ units — see Section 7.2.1.

The two optimization methods differ in the absolute delay values that they pro-

duce for each arbiter. The two methods grossly agree, though, on how to size

the transistors A and M relative to B to minimize the least uncontested delay —

which is the result that we seek. This chapter will discuss only the non-parasitic

optimization method. Details about the parametric analysis are left for a future

publication.
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7.2.3 ARC Arbiter Analysis

In this section, we analyze the ARC arbiter. We want to find the best strengths

for transistors A and M for minimizing the total uncontested delay of the ARC

arbiter in Figure 7.1.1, as represented by the uncontested delay from R[1] going

high to G[1] going low.

The best strengths depend on the strength of B and on how much load the

arbiter drives relative to B. We use lower case variables a, b, and m, to denote

the strengths of transistors A, B, and M, respectively. We will generate answers

in terms of how much stronger or weaker than transistor B should be transistors

A and M. For our calculations we will ignore the capacitive loads of transistors

P1B, P1A, P2A, P2B, P3, and P4, because these keeper transistors play an

active role only in the reset phase, and are small enough to have only a marginal

effect on our results.

Note that making A or M stronger both expedites and retards the uncontested

path:

• A stronger A or M expedites the path by improving strengths s(a, b) and

s(a, b, m).

• A stronger A or M retards the path by increasing the load on the NAND

gates.

Our plan is first to write an equation for delay in terms of our variables, a and

m. Armed with such an equation we can find a best value for each variable by

equating to zero the partial derivative of the delay with respect to that variable.

We will consider the total delay as partitioned serially over three sub-paths.
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Each sub-path will show a combination of transistors driving an individual load.

We will express the total delay as the sum of the three smaller sub-path delays

as if the sub-path delays were separate. In reality, the drives overlap in time.

However, the sum is valid because the time it takes to fill a combination of loads

with charge is the sum of the times it would take to fill with charge each individual

load.

For the first delay, D1, we consider the other A and B filling A with charge. For

the second delay, D2, we consider A and B filling M with charge. For the third

delay, D3, we consider A, B, and M filling the final output load s ∗ b on G[1] with

charge.

From equation 7.2.2 and Table 7.2.1 we derive:

D1 =
a

(1 + γ) ∗ s (a, b)
(note 1 )

D2 =
2 ∗ m

(1 + γ) ∗ s (a, b)
(note 2 )

D3 =
s ∗ b

(1 + γ) ∗ s (a, b, m)

DtotalARC = D1 + D2 + D3

Using equations 7.2.3–7.2.4, the resulting equation for total delay is given by:

DtotalARC =
(a + b)(a + (2 ∗ m))

(1 + γ) ∗ a ∗ b
+

s ∗ ((a ∗ b) + (a ∗ m) + (b ∗ m))

(1 + γ) ∗ a ∗ m
(7.2.5)

1Remember that we ignore keeper transistor loads.
2Note that A and B in Figure 7.1.1 drive the source of one M and the gate of the other M

transistor.
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Table 7.2.2: Equations for best strengths for transistors A and M in the ARC arbiter
of Figure 7.1.1 to minimize the least uncontested request to grant delay — ignoring
parasitics.

ARC arbiter’s best strength for A a =
√
(b ∗ ((2 ∗ m) + (s ∗ b)))

ARC arbiter’s best strength for M m =

√
(

a ∗ b
(a + b)

∗ s ∗ b
2

)

We found a best strength value for each of the variables a and m by equating

equation 7.2.5 so as to zero the partial derivative of the delay with respect to the

variable. The results follow in Table 7.2.2.

7.2.4 Sparsø-Furber (SF) Arbiter Analysis

In this section, we analyze the Sparsø-Furber, or SF, arbiter. We want to find the

best strengths for transistors A, M, and Q for minimizing the total uncontested

delay of the SF arbiter in Figure 7.1.2, as represented by the uncontested delay

from R[1] going high to G[1] going high.

The best strengths depend on the strength of B and on how much load the SF

arbiter drives relative to B. We use the lower case variables, a, b, m, and q, to

denote the strengths for transistors A, B, M, and Q. We will generate answers in

terms of how much stronger or weaker than transistor B transistors A, M, and Q

should be. In this analysis, we ignore the load of keeper transistors P1B, P2B,

and N.

Following the approach in Section 7.2.3, our plan is first to write an equation for

delay in terms of our variables, a, m, and q. Armed with such an equation we
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can find a best value for each variable by equating to zero the partial derivative

of the delay with respect to that variable.

We will consider the total delay as partitioned serially over two sub-paths. Each

sub-path will show a combination of transistors driving an individual load. We

will express the total delay as the sum of the two smaller sub-path delays as if

the delays were separate. In reality, the drives overlap in time. Nevertheless, the

sum is valid because the time it takes to fill a combination of loads with charge

is the sum of the times it would take to fill with charge each individual load.

For the first delay, D1, we consider A and B filling the other A as well as M and

Q with charge — following the short-dash arrow in Figure 7.1.2. For the second

delay, D2, we consider M and Q filling the final output load s ∗ b on G[1] with

charge — following the long-dash arrow in Figure 7.1.2.

From equation 7.2.2 and Table 7.2.1 we derive:

D1 =
a + (2 ∗ γ ∗ m) + (2 ∗ γ ∗ q)

(1 + γ) ∗ s (a, b)
(note 3 )

D2 =
s ∗ b

(1 + γ) ∗ s (m, q)
(note 4 )

DtotalSF = D1 + D2

3Note that A and B in Figure 7.1.2 drive the source of one M and the gate of the other M
transistor.

4Note that A and B in Figure 7.1.2 drive the drain of one Q and the gate of the other Q
transistor.
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Table 7.2.3: Equations for best strengths for transistors A, M, and Q in the SF
arbiter of Figure 7.1.2 to minimize the least uncontested request to grant delay —
ignoring parasitics. We assume that P-type transistors are γ times harder to drive
than N-type transistors — see Section 7.2.1.

SF arbiter’s best strength for A a =
√
(b ∗ γ ∗ ((2 ∗ m) + (2 ∗ q)))

SF arbiter’s best strength for M m =

√
(

a ∗ b
(a + b)

∗ s ∗ b
2 ∗ γ

)

SF arbiter’s best strength for Q q =

√
(

a ∗ b
(a + b)

∗ s ∗ b
2 ∗ γ

)

Using equation 7.2.3, the resulting equation for total delay is given by:

DtotalSF =
(a + b)(a + (2 ∗ γ ∗ m) + (2 ∗ γ ∗ q))

(1 + γ) ∗ a ∗ b
+

s ∗ b ∗ (m + q)

(1 + γ) ∗ m ∗ q
(7.2.6)

We found a best value for each of the variables a, m, and q, by equating equa-

tion 7.2.6 so as to zero the partial derivative of the delay with respect to the

variable. The results follow in Table 7.2.3.

7.2.5 Mathematical Delay Analysis: Summary and Comparison

Tables 7.2.2–7.2.3 summarize the results for minimizing delay equations 7.2.5

and 7.2.6 through variables a, m, and q.

Note that for the ARC arbiter, the best strength a for transistor A is the geometric

mean5 of (1) the strength of B, b, and (2) the load driven by the transistor-AND

series A-B: two M transistors, each of strength m, and the scaled output load

s ∗ b.
5The geometric mean of X and Y is the square root of their product:

√
(X ∗ Y) .
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Quite similarly, for the SF arbiter, the best strength a for transistor A is the geo-

metric mean of (1) the strength of B, b, and (2) the load driven by transistor-AND

series A-B: two M transistors, each of strength m, and two Q transistors, each

of strength q. In the SF arbiter, the best strength of A is independent of the

scaled output load. This is because the SF arbiter has two subsequent stages.

Transistor A plays a role only in the first stage that drives X, as indicated by the

small-dash arrow in Figure 7.1.2.

For both arbiters, the best strength m for transistor M is approximately the geo-

metric mean of the transistor-AND series A-B and the scaled output load s ∗ b.

For the SF arbiter, the best strength q for transistor Q is approximately the geo-

metric mean of the series transistors AND pair and the scaled output load s ∗ b.

Transistors M and Q in the SF arbiter have the same sizing equations. For least

uncontested delay, the strength for m and q are equal. Also note that the term

γ appears in all SF arbiter equations. This is because M and Q are P-type

transistors.

To compare DtotalARC versus DtotalSF for different stepups s, we will keep

strength b of transistor B constant, thus providing a common reference point

for input capacitance, b, and a common reference point for output load, s ∗ b, per

stepup.

With b fixed to 12 and stepup s fixed to first 1, then 2, and finally 3, we can

now solve the equations in Tables 7.2.2 and 7.2.3 — e.g. by using MATLAB [4]

— to get the best strength a, m, and q for each arbiter and for each stepup.

Substituting these best strengths into equations 7.2.5 respectively 7.2.6 gives

us each arbiter’s least uncontested grant delay, DtotalARC respectively DtotalSF,

for each stepup. The results follow in Table 7.2.4.
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The last column in Table 7.2.4 indicates that the ARC arbiter has a smaller, i.e.,

better, least uncontested grant delay than the SF arbiter. The ARC arbiter’s least

uncontested grant delay is 32–39% better.

Remember, though, that the mathematical analysis presented in this chapter

ignores parasitic loads — see Section 7.2.2. In the next section, we will look at

SPICE simulations, which include parasitic loads, and compare the two arbiters

again in SPICE.

Table 7.2.4: Mathematically best strengths and uncontested grant delays for both
arbiters. The best strengths a, m, and q for transistors A, M and Q are based on
Tables 7.2.2 and 7.2.3, with b fixed to 12, and γ fixed to 2. Least uncontested grant
delay, D, expressed in τ units, is based on delay equations 7.2.5, for the ARC
arbiter, and 7.2.6, for the SF arbiter. The decimal numbers for a, m, q, and D have
been rounded to the nearest tenth.

Stepup
Best strength

a of A

Best strength

m (q) of M (Q)

D [τ]

(% over SF)

ARC

Arbiter

1 17.3 6.5 2.6 (−39%)

2 22.8 9.7 3.6 (−36%)

3 26.9 12.0 4.5 (−32%)

SF

Arbiter

1 22.8 5.0 4.3

2 25.0 7.0 5.6

3 26.5 8.6 6.6
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7.3 SPICE Delay Simulations

To complement the mathematical analysis presented in Section 7.2, I will redo

the sizing for best transistor strengths and least uncontested grant delay using

SPICE-based circuit simulations [38] in a 90nm CMOS process technology. As

in Table 7.2.4, the SPICE simulations are set up with strength b for transistor B

fixed to 12, with γ fixed to 2, and with stepup s fixed to first 1, then 2, and finally

3.

Because the SPICE simulations consider transistor parasitic capacitances, the

strengths of transistors other than A, B, M, and Q are taken into account. For

the ARC arbiter in Figure 7.5.1, I fixed the strengths for transistors P3, P1B, and

P2B to 1, to reduce the input capacitance of the arbiter. I made the strength of

keeper transistor P4 slightly higher, using 2. I fixed the strengths for transistors

P1A and P2B to 4, to ease the arbiter’s reset and release phase. Likewise, for

the SF arbiter in Figure 7.5.2, I fixed the strengths for transistors P1B and P2B

to 2, to reduce the input capacitance of the arbiter in a way similar to that of the

ARC arbiter. I fixed the strength of keeper transistor N to 4 and the strengths for

transistors P1B and P2B to 6, to ease the arbiter’s reset and release phase.

To give both arbiters the same stepup, I calculated the normalized input ca-

pacitance of each arbiter, and then loaded each arbiter with an s times bigger

output capacitance. The normalized input capacitance for each arbiters is de-

termined by (1) N-type transistor B, of strength 12, and (2) two P-type transistors

of strength 1 for the ARC arbiter versus one P-type transistor of strength 2 for

the SF arbiter. Based on Table 7.2.1, both result in a normalized input capaci-

tance of (4 + 4
3) ≈ 5.33. I have rounded off the corresponding output loads for a

stepup s of 1, 2, and 3 to respectively 5.5, 11, and 16.
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With B and all transistors that play a secondary role to the least uncontested

grant delay fixed, I can now sweep strengths a, m, and q of transistors A, M, and

Q, and measure the corresponding SPICE-simulated uncontested grant delay

of each arbiter. The delays are measured from the time request input signal

R[1] reaches its 50%-VDD voltage level to the time that grant output signal G[1]

reaches its 50%-VDD voltage level.

The sweep results follow in Figure 7.3.1. The X-axis sweeps strength a of tran-

sistor A. The Y-axis shows the corresponding uncontested R[1] to G[1] delay in

picoseconds. The six graphs plotted represent the best-strength m results for

the given arbiter, the given range of a sizes, and the given stepup. For instance,
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Fig. 7.3.1: SPICE-simulated delay graphs, for the two arbiters implemented in a
90nm CMOS process with γ = 2. Transistor B strength b has been fixed to 12. The
X-axis sweeps strength a of transistor A. The Y-axis shows the uncontested R[1] to
G[1] delay in picoseconds. The top three graphs belong to the best-m simulation for
the SF arbiter for stepups 3 (highest, in grey) to 1 (lowest, in purple). The bottom
three graphs belong to the best-m simulation for the ARC arbiter for stepups 3
(highest, in red) to 1 (lowest, in green).
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the graph with name ARC_su1_M8 represents the best delay graph with the

lowest R[1] to G[1] delays for the ARC arbiter, as indicated by the name’s prefix

“ARC,” simulated with a stepup of 1, as indicated by the name’s middle term

“su1.” This best delay graph was obtained from a simulation using strength m of

8 for transistor M, as indicated by the name’s suffix “M8.”

As we sweep strength a of transistor A, we see a minimum delay point at the

“best-a.” For strengths greater or smaller than this best-a, the delay increases.

The same is true in the sweeps of strength m for transistor M. This is because

making A or M stronger or weaker both expedites and retards the uncontested

R[1] to G[1] path — see also page 142.

The delay graphs are relatively flat around each best-a, best-m point. The arbiter

delays are nearly constant for a good range of transistor A and M strengths. This

gives the designer some flexibility in sizing the transistors. Looking at the SPICE

simulation results for all three stepups we conclude that — relative to transistor

B strength b:

• Best strength a of A is obtained around 2 ∗ b.

• Best strength m of M is obtained around 2
3 ∗ b.

Table 7.3.1 summarizes the simulated best-a, best-m and least uncontested

grant delays. The last column indicates that the ARC arbiter has a smaller,

i.e., better, grant delay than the SF arbiter. The ARC arbiter’s least uncontested

grant delay is 23–27% better.
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7.4 Comparison of Analyzed versus Simulated Results

SPICE-based ring oscillator experiments, performed for the 90nm CMOS pro-

cess in which we simulated the two arbiter designs, indicate that τ is 6–8 pi-

coseconds.

Additional experiments show that an inverter with one strength-1 N-type tran-

sistor and one strength-1 P-type transistor, driving three similar inverters, has a

delay of 20 picoseconds, i.e., 2.5 to 3.3 τ units. We assume this delay to be our

typical “gate delay.”

The analyzed versus simulated comparisons in Table 7.4.1 normalize all delays

to τ units, using a τ unit of 7 picoseconds. As indicated in the last column,

the results differ by at most one τ unit, i.e., a third of a gate delay — which we

feel is good enough, considering that the analysis ignores transistor parasitic

Table 7.3.1: SPICE-simulated best strengths and uncontested grant delays. The
best strengths a, m, and q for transistors A, M, and Q are based on the results
presented in Figure 7.3.1. The least uncontested grant delay, D, expressed in
picoseconds (ps), is the minimum delay at the best-a, best-m(and q) point of the
corresponding arbiter-stepup graph.

Stepup
Best strength

a of A

Best strength

m (q) of M (Q)

D [ps]

(% over SF)

ARC

Arbiter

1 22 8 25.5 (−27%)

2 22 8 29.9 (−23%)

3 24 12 33.0 (−23%)

SF

Arbiter

1 24 6 34.7

2 22 8 39.0

3 24 10 42.6
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capacitances.

More importantly, the additional analyzed and simulated results in Tables 7.2.4–

7.3.1 show trends that are similar: both indicate that the ARC arbiter’s grant

delay is somewhat better (32–39% versus 23–27%) and both point to similar

best transistor sizing strategies.

7.5 Sizing Validation from a Design Perspective

Figures 7.5.1–7.5.2 show best-strength ARC arbiter and SF arbiter schemat-

ics, with transistor strengths agreeable with our mathematical analysis and with

the SPICE simulation settings and optimization results in Sections 7.3 and Ta-

ble 7.3.1.

In this section, we look at the resulting schematics and check design aspects

that were temporarily put aside during our mathematical analysis and SPICE

simulation.

Table 7.4.1: Analyzed versus simulated uncontested grant delays, compared with
τ = 7 ps.

Stepup
D [τ]

from Table 7.2.4

D [ps] ( [τ] )

from Table 7.3.1

Difference

in τ

ARC

Arbiter

1 2.6 25.5 (3.6) 1.0

2 3.6 29.9 (4.3) 0.7

3 4.5 33.0 (4.7) 0.2

SF

Arbiter

1 4.3 34.7 (5.0) 0.7

2 5.6 39.0 (5.6) 0.0

3 6.6 42.6 (6.1) −0.5
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One of those design aspects concerns each arbiter’s reset time, which we ig-

nored to a large degree, as noted at the end of Section 7.1.2:

• As long as other parts of the system limit the minimum cycle time, the

actual reset time is of little importance. In effect, by lengthening reset time

to shorten grant time, we “rob Peter to pay Paul.”

We want to make sure that the reset time fits within the minimum cycle time of

our self-timed designs — i.e., continuing the metaphor, that “Peter lives above

the poverty line.”

To establish their reset times, I re-simulated the two optimized arbiters in SPICE.

For the ARC arbiter in Figure 7.5.1, I measured the uncontested grant delay from

R[1] high to G[1] low, and I measured the reset delay from R[1] low to G[1] high.

Similarly, for the SF arbiter in Figure 7.5.2, I measured the uncontested grant

delay from R[1] high to G[1] high, and I measured the reset delay from R[1] low

to G[1] low. As in Section 7.3, all delays are measured from and to a 50%-VDD

voltage level.

Figure 7.5.3 shows the four corresponding delay graphs, with delays normalized

to τ units of 7 picoseconds (as in Table 7.4.1), showing three stepup delays per

graph — plus a no-load delay, extrapolated for a stepup s of 0, with the arbiter

driving nothing.
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and Table 7.3.1.
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and Table 7.3.1.
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As reference, I have also included delay graphs for a NAND gate and an inverter,

each with equal input-to-output delays for rising and falling output.

The delay graphs in Figure 7.5.3 show three other design aspects of interest,

namely: how good each design is regarding (1) performing its logical function,

e.g., arbitrate, in addition to (2) driving its output signal, i.e. acting as input-to-

output amplifier, as well as (3) driving its own internal capacitance. Specifically,

for each gate delay, D, we have [58]:

D = gh + p

where:

• g is the logical effort,

• h is the electrical effort, here also known as stepup s, and

• p is the internal parasitic delay, i.e. the delay for s = 0, driving nothing.

Figure 7.5.3 shows that the logical effort numbers (g) for the two arbiters are

surprisingly good. To perform uncontested grants, the logical effort of each

arbiter is smaller than that of an inverter!

But the key message to take away from Figure 7.5.3 is that the maximum reset

delays for the two arbiters stay below 5 gate delay, i.e., 15 τ units, which is the

minimum self-reset time that we use for our 6-4 GasP and our Click designs.

So, as long as we avoid overloading the arbiters, our arbiter optimization strat-

egy and the resulting arbiter designs in Figures 7.5.1–7.5.2 are valid from a

design point of view.
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again for a stepup s of 1, 2, and 3.
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7.6 Summary and Conclusion

We analyzed two arbiter designs – the ARC arbiter and the Sparsø-Furber (SF)

arbiter. We derived mathematical equations for transistor strengths to minimize

the most important delay in each arbiter — the uncontested request-to-grant

delay. Our analysis provides insight into the role played by the non-keeper tran-

sistors labeled A, B and Q in Figure 7.1.1 – Figure 7.1.2 and the metastability

transistor labeled M. From the equations we derived best strengths for A, M, and

Q relative to B for least uncontested grant delay.

We confirmed our equations with SPICE simulations for a 90nm CMOS man-

ufacturing process. Like the analysis results, the SPICE simulation results in-

dicate that the ARC arbiter has a smaller, i.e., better, uncontested grant delay

than the SF arbiter, for similar input capacitance and stepup. In SPICE, the ARC

arbiter’s least uncontested grant delay is approximately 25% better. The SPICE

simulations also indicate that each arbiter’s uncontested grant delays are nearly

constant for a good range around the best transistor A, M, and Q strengths.

This gives the designer some flexibility in sizing the transistors. Both optimized

arbiter designs have surprisingly good logical effort.

In our analytical delay analysis, we used two optimization methods — one with-

out and one with transistor parasitic capacitances. Both optimization methods

give exact sizing optima well within the range suggested by our SPICE simula-

tions. This chapter omits the mathematical analysis with parasitic capacitances,

because the extra details add little to the final results.

The final results provide the designer guidance about the best relative strengths

of transistors A, B, M, and Q. If we fix the strength of transistor B, the best

strength for transistor A is any value between 1.5 to 2 times the strength of
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transistor B. Roughly, M is the geometric mean of the strength of A and B in

series and the arbiter load. The best strength of transistor M is any value be-

tween 0.5 to 0.8 times the strength of transistor B. Transistor Q can have the

same strength as transistor M. But — as the SPICE simulations show — miss-

ing these choices by a factor of 2 or so doesn’t matter.

A key motivation for this arbiter analysis is the presence of an arbitrated MrGO

in each and every joint – see Chapter 5. MrGO uses a variant of the ARC arbiter

in Figure 7.1.1, but with only one output.

For future work, a similar analysis and simulation with arbiter designs that use

cross-coupled NOR gates instead of cross-coupled NAND gates would be wel-

come.

7.7 My Contributions for Chapter 7

While most of this thesis is joint work with my supervisors, the following key

contributions are largely mine.

• I developed a series of arbiter designs for reduced load and load variation

as seen by the input signals of the arbiter. A reduced input load is impor-

tant especially for arbiter inputs that are weakly driven or that are driven

by keepers on potentially long wires, such as GasP full or empty indicating

statewires. A reduced input load is less important for MrGO arbiter inputs,

because MrGO is driven locally by a strong AND function.

• I developed a noise-robust arbiter by adding keepers that prevent the ar-

biter outputs from drifting during a contested or decided arbitration when

both arbiter inputs request the arbiter’s service. These keepers are essen-
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tial for the arbiter to operate in an asynchronous environment where inputs

may wait for arbitrarily long times before being served. These keepers are

now an integral part of all ARC arbiters.

• I took the noise-robust arbiter that we, at the ARC, use as the basis for

MrGO, and compared it to the elsewhere commonly used Sparsø-Furber

(SF) arbiter. For similar input capacitive load and a corresponding stepup

to output capacitive load, the ARC arbiter’s uncontested request-to-grant

is approximately 25 % faster.

• I presented an analytical analysis as well as SPICE simulations for the two

arbiters. The final results provide the designer with guidance about how to

size such arbiters — guidance that was much needed and not addressed

in the existing literature.
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8

Conclusion and Future work

My PhD thesis focuses on design compilation and test support for dataflow

applications. Both parts are necessary to go from self-timed circuits to large-

scale hardware systems. I started with (1) an existing ARCwelder compiler that

mapped dataflow applications to Click circuits, and (2) an existing test approach

that worked on GasP circuits. In this thesis I extend the ARCwelder compiler

to support a larger class of GasP circuits than existed beforehand. This larger

class was necessary to support the already compiler-supported dataflow oper-

ations. I also extend the existing test approach to one that supports many forms

of testing — slow and at speed. The extended test approach can be used to test

as well as to debug and characterize the final hardware system and its parts.

My thesis goal was to develop general compilation and test principles for a mul-

titude of self-timed circuit families, including Click and GasP. Now, at the end of

my PhD research and developments in design compilation and test, I can report

that we indeed have general design and test principles that work for many – if not

all – of the well-known self-timed circuit families, including Click and GasP [46].

Though these design and test principles are not an immediate result of my PhD

research, my research served as an eye opener by providing pointers for where
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to look for common design and test principles.

This eyeopener came approximately midway in my PhD research. As a result,

parts of this PhD thesis use the old design approach, before the ARC’s 2015

publication, while other parts use the new approach, advocated in our 2015

publication [46].1

The old approach is used in the Telescope GasP (TGasP) designs in Chap-

ter 2 and Appendices A–C, in the ARCwelder compiler study in Chapter 3, in

those parts of the hierarchical design for test and debug solution presented in

Appendices E–F, and in those parts of the arbiter design study presented in

Appendices G–H.

The new approach, also known as “Naturalized Communication and Testing,”

is used in Chapters 4 and 5, which explain the new design and test principles.

The new approach separates communication and data storage, done in links,

from computation and actions done in joints. This link-joint model hides the

specifics of the communication protocols and the specifics of the data storage

inside the links, thus creating a generic link-joint interface that operates in terms

of “got data” (full), “got space” (empty), “copy data” (fill), and “no longer need

your data” (drain). These terms match well the notion of dataflow in distributed

systems.

The link-joint model gives full freedom to work with multiple circuit families and to

use each family’s strengths and weaknesses to decide who goes where, when,

and why.

Given that large parts of this PhD thesis use the old design approach, I will end
1Note that the ARC’s 2015 publication by Marly Roncken et al. [46] is a joint publication by

all team members of the Asynchronous Research Center (ARC).
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this thesis by providing guidelines for future work on how to adapt “old approach”

results to the new approach:

• The TGasP modules in Chapter 2 must be partitioned into links and joints.

More investigation is needed to decide which of the three circuit design

solutions makes the most sense in the new approach.

• The ARCwelder compiler discussed in Chapter 3 must be reformulated in

terms of links and joints and a general full-empty protocol. I suspect that

doing this with care will solve most of the problems I encountered when

I extended the existing ARCwelder compiler code from supporting Click

circuits to also supporting GasP and Telescope GasP circuits. In the new

approach:

– Initialization can be isolated in the links.

– Action control can be isolated in the joints.

– Combinational loops now go from joint to link to joint, through MrGO.

• The hierarchical design for test and debug results presented in Chapter 6

and Appendices E–F can remain mostly unchanged, except that the circuit

modules must be partitioned into links and joints. Each circuit family may

need its own specific scan read-write library. It would be a good idea to

implement my proposal for initialization at power-up, so future chips can

be powered up reliably, without experiencing extended drive fights.
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Portland State University. This internal ARC report serves as appendix to Chap-

ters 2 and 3 and can be found as reference [25] of this thesis. The full citation is

as follows:

• Swetha Mettala Gilla, Marly Roncken, and Ivan Sutherland.

GasP Storage and Telescope GasP Broadcast: Store, Amplify, Fork and

Join. Technical Report, ARC2012-smg02, Asynchronous Research Cen-

ter, Portland State University, March, 2012.
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Abstract 
This document gives Telescope GasP implementations for pipeline modules for storage and broadcast 
communication used in ARCwelder [5,6]. ARCwelder, previously called TPDesign, is a design and 
compilation environment for dataflow computations; we use it to design self-timed systems. The 
organization of ARCwelder builds upon results and key learnings of the data-driven compiler effort by 
Handshake Solutions [13]. Related self-timed compilation efforts can be found in for instance [1,2,3,19]. 
 
An overall motivation for Telescope GasP, including pros, cons, and alternatives, can be found in [8]. 
Telescope GasP implementations for narrowcast 1-to-1ofN or 1ofN-to-1 communications, or 1-to-1toNofN 
communications follow in [10]. Telescope GasP implementations for Repeat modules follow in [11]. The 
references in the current ARC report list all references on Telescope GasP used here or in [8,9,10,11].  
 
 
Keywords: GasP backend for ARCwelder (TPDesign), Telescope GasP for storage and broadcasting. 
 
 
Notation: 
1. All GasP implementations in this document and in the related documents [8,9,10,11] are non-

inverting, i.e. their handshake channels, a.k.a. statewires, use the same encoding. Statewires say 
whether the data bundled with the statewire are valid. We use: 
• HI for a high voltage level, e.g. VDD, to indicate a handshake REQUEST phase with valid data.  
• LO for a low voltage level, e.g. VSS or GND, to indicate a handshake ACKNOWLEDGE phase 

where data are no longer needed. 
In our circuit diagrams, we use a short 45-degree line segment for VDD and a triangle for VSS. A 
PMOS transistor connected to VDD and an NMOS transistor connected to VSS are depicted as:  

                                         respectively     
 
2. Our schematic designs use a so-called JBOX construct. This is a special construct in Electric [14] to 

connect signals with different names. The symbol for a JBOX construct is a box with the letter J in it. 
We specifically use it to join the master clear (mc) signals on the various statewires of a module. For 
example, Figure 8 on page 12 uses a JBOX to connect master clear signals in[mc] and out[mc]. 

 
3. It turns out that the telescoping handshake relation requires more relative timing constraints than are 

required for conventional GasP [18,7]. The constraints that we need to obtain a telescopic handshake 
relation tend to be transition specific. If the delay margins are small, e.g. in the order of 1 gate delay, 
we may want to add extra delay circuitry to increase the margin from say 1 to 3 gate delays. To delay 
a transition from sin LO to sout HI by two additional gate delays we will use the left-hand circuit in 
Figure 1 below, and to delay a transition from sin HI to sout LO by two additional gate delays, we will 
use the right-hand circuit in Figure 1.  
 
The two delay circuits in Figure 1 add two gate delays to the targeted sin-to-sout transition. 
Depending on the actual cycle time of the module in the given data path, we can extend this further to 
four additional gate delays or more, without losing throughput. These two types of delay circuits are 
sufficiently generic for our needs, and have the following properties: 
• The required transition is slowed down by sufficient margin. 
• The required transition is fast enough to sustain the maximum throughput. 
• The delay of the opposite transition matches the original delay without the delay circuit. 

 
When we present the circuit schematics of a telescope GasP component, we will indicate places with 
a 1 gate delay margin where one of the delay circuits in Figure 1 may be needed. 
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Figure 1: Delay circuits to increase the delay margin from sin LO to sout HI by two gate delays (left), and to 
increase the margin from sin HI to sout LO by two gate delays (right). Other path delays remain unchanged. 
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1. INTRODUCTION 
 
This document gives GasP control implementations for the following pipeline modules used in ARCwelder 
and specified and listed in [5,6]: Store, Amplify, Fork, and Join. These modules facilitate storage and 
broadcasting. Below follows a short description of each module. We will leave out handshake details and 
focus on dataflow aspects instead. We grouped some of the modules to emphasize their similarity.  
 
• Store 

o Our GasP implementation for the Store module is a 6-4 GasP basic FIFO module. It is the only 
module in this document that clocks latches in the data path to store data.  

o The design details of the Store module follow in Section 3 of this document. 
• Amplify 

o The Amplify module is the self-timed version of the well-known “repeater” module in synchronous 
designs. It is used in the control logic to bridge long module-to-module distances with minimal 
latency. Our two Telescope GasP implementation versions are based on [4] but are non-inverting. 
In a sense, they form a Telescope GasP version of the basic FIFO module without storage.  

o The two implementations follow in Section 4 of this document. 
• Fork and Join 

o Fork and Join modules form a companion pair for broadcast communication, providing one input 
to N-way outputs (Fork) and N-way inputs to one output (Join). We give Telescope GasP 
implementations for two-way and three-way Fork and Join modules.  

o Implementation details for the Fork modules follow in Section 5 of this document. 
o Implementation details for the Join modules follow in Section 6 of this document. 

 
When designing these modules, we distinguish and design four communication control actions: 
 

1. Forward Transfer  
The HI handshake request signal coming in from the predecessor statewire transfers into a HI 
request signal on the successor statewire. The actual transfer generally requires synchronization 
with other incoming and with outgoing signals. We opted for a forward transfer latency of 6 gate 
delays for the Store module and of 2 gate delays for the other modules. 

2. Backward Transfer 
The LO handshake acknowledge signal coming in from the successor statewire transfers into a 
LO acknowledge signal on the predecessor statewire. The transfer generally requires 
synchronization with other outgoing and with incoming signals. We opted for a backward transfer 
latency of 4 gate delays for the Store module and of 2 gate delays for the other modules. 

3. Forward Reset  
The forwarded HI request signal on the successor statewire turns off its own HI drive after 5 gate 
delays, thereafter relying on the keeper to keep the statewire HI as long as needed. The Forward 
Reset in a storage-free Telescope GasP module strictly precedes its Backward Reset. Traditional 
GasP modules, like module Store, turn off their forward HI and backward LO drives concurrently. 

4. Backward Reset 
In a storage-free Telescope GasP module, the backward transferred LO acknowledge signal on 
the predecessor statewire turns off its own LO drive after 5 gate delays. Traditional GasP 
modules, like module Store, turn off their forward HI and backward LO drives concurrently. 
 

The two transfer parts each contain a driver and a half-keeper. Similar to the half-keeper design 
organizations of 4-2 Gasp in [18] and of 6-4 GasP in [7], the half-keeper serves two purposes: it prevents 
the statewire from floating when the drive ceases, and it avoids a keeper-driver short-current conflict.  
 
We will explore two different approaches in designing Telescope GasP modules. The first approach uses 
separate self-resetting loops for incoming and outgoing handshake channels. The Amplify module in 
Figure 8 is an example of this first design approach. It has two self-resetting loops: the loop at the top is 
used to start and stop the HI drive for out[sw], while the loop at the bottom is used to start and stop the LO 
drive for in[sw]. The second approach shares self-resetting loops between incoming and outgoing 

APPENDIX A. TELESCOPE GASP: STORAGE AND BROADCAST 177



ARC# 2012-smg02  Asynchronous Research Center page 5 of 32 
 

handshake channels where possible. The Amplify module in the following Figure 9 is an example of the 
latter design approach. It has one self-resetting loop, with separate taps to start and stop the HI 
respectively LO drives for out[sw] and in[sw]. The second design approach is based on the amplifier 
design in [4], but we generalized the approach to other modules beyond Amplify.  
 
Telescope GasP implementations designed according to the first approach are saved under library name 
TelescopeGasP_SeparateStates. Implementations designed according to the second approach are saved 
under TelescopeGasP_wStateSharing. 
 
Both approaches have their advantages and disadvantages. The advantage of the first approach used in 
Figure 8 is that its control-data bundling constraints are less strict than those for the second approach 
used in Figure 9. This is not immediately obvious from the Amplify design, but it will become obvious 
when we get to the data-controlled Distribute modules. For details, see [10].  
 
The advantage of the second approach used in Figure 9 is that it has larger delay margins than the first 
approach. The second approach has delay margins that we feel are safe, whereas the first approach has 
marginal relative timings that we may want to adjust. Figure 8 has two such marginal relative timings: 

1. After in[sw] rises, it takes 2 gate delays before out[sw] rises and disables the inverted input AND 
gate in the lower self-resetting loop, while it takes 3 gate delays for the HI in[sw] signal to enable 
that same AND gate via the lower self-resetting loop. To guarantee a telescope relation between 
in[sw] and out[sw], the inverted input AND gate must sense the disabling out[sw] transition before 
it senses the enabling in[sw] transition. The delay margin between the two is only 1 gate delay.  

2. After out[sw] falls, it takes 2 gate delays before in[sw] falls and disables the NAND gate in the 
upper self-resetting loop, while it takes 3 gate delays for the LO out[sw] signal to enable that same 
NAND gate via the upper self-resetting loop. To guarantee a correct handshake relation between 
in[sw] and out[sw], the NAND gate must sense the disabling in[sw] before it senses the enabling 
out[sw] transition. The delay margin between the two is only1 gate delay. 

 
A delay margin of only 1 gate delay is marginal and sensitive to noise interference and process variations. 
We can make both margins as safe as the delay margins deployed in the second design approach, by 
adding extra circuitry to delay the transition that must arrive later by 2 more gate delays.  Other transitions 
remain unaffected. For instance, to delay a transition from sin LO to sout HI we insert the left-hand circuit 
of Figure 1, and to delay a transition from sin HI to sout LO we insert the right-hand circuit of Figure 1.  
 
One of the design criteria for the current Telescope GasP implementations is a small 2 gate delay latency 
between incoming and outgoing handshakes. From [8], we know that we need at least 2 gate delays to 
implement non-inverting Telescope GasP. Our design criterion is to make this latency no more than 2 gate 
delays. To be more precise: we want a minimum latency of 2 gate delays per module from the moment its 
last parallel incoming handshake goes HI (starts) to the moment its outgoing handshakes go HI (start), 
and, likewise, a minimum latency of 2 gate delays from the moment its last outgoing handshake goes LO 
(resets) to the moment its parallel incoming handshakes go LO (reset).  
 
To guarantee this low latency, some of the control functionality is inevitably forced into the drivers for the 
handshake channels. This results in a myriad of custom driver designs, each with 1 gate delay latency. 
Section 2 below lists all custom design drivers used for the design of Store, Amplify, Fork, and Join, and 
includes their circuit schematics. 
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2. Custom Driver Designs for Storage & Broadcast Modules 
 
To achieve a small 2 gate delay transfer latency, some of the forward and backward transfer logic is 
inevitably integrated into the driver and half-keeper logic. As a result, Telescope GasP modules use a 
large variation of driver and half-keeper logic for incoming and outgoing statewires - larger than we are 
used to see in traditional, e.g. 6-4, GasP modules.  
 
Section 2.1 gives the implementations of HI driver and LO half-keeper logic for successor drivers of 
outgoing statewires of storage and broadcast modules. Section 2.2 does the same for the LO driver and 
HI half-keeper logic for predecessor drivers of incoming statewires. By convention, the initial value of a 
statewire is LO, and so the master clear (mc) signal and related circuitry for fast return-to-zero resetting 
appear in the predecessor drivers. 
 

2.1. Single-Track Statewire Drivers for Pull-HI and Keep-LO 
 
Our implementations of Store, Amplify, Fork, and Join use the following HI driver and LO half-keeper logic 
for successor drivers: 
• Succ Driver: A LO input drives the statewire HI, and a half-keeper keeps the statewire LO. 
• Succ AND Driver: The AND of two LO inputs drives the statewire HI, and a half-keeper keeps it LO. 
 
Both circuits have an input-to-output transition time of one gate delay. Their implementations follow in 
Figure 2 and Figure 3 below. 
 
 
 

 
 
 

Figure 2: Transistor-level GasP design for Succ Driver, with one input to drive the statewire HI within one gate 
delay, and a half-keeper to keep it LO. Its input signal is named in. Its statewire output is named succ. The 
official name of this gate in the 180nm library kept in Electric [14] is SucDri10. We will use the icon in the top 
right corner of the picture as a gate-level shortcut for the design. SucDri10 is used in the 6-4 GasP design of 
the Store module, and in the Telescope GasP design of the Amplify and Fork modules, and in the first design 
implementation for the two-way Join. 
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Figure 3: Transistor-level GasP design for Succ AND Driver, with library cell name SucAndDri10. When 
inputs inA and inB are LO, statewire succ is driven HI within one gate delay. The half-keeper keeps succ LO, 
when needed. The top-right icon serves as gate-level shortcut. SucAndDri10 is used in the second design 
implementation for the two-way Join and in the three-way Join. 

 
 

2.2. Single-Track Statewire Drivers for Pull-LO and Keep-HI 
  
Our implementations of Store, Amplify, Fork, and Join use the following LO driver and HI half-keeper logic 
for predecessor drivers: 
• Pred Driver: A HI input drives the statewire LO, and a half-keeper keeps it HI. 
• Pred AND Driver: The AND of two HI inputs drives the statewire LO and a half-keeper keeps it HI. 
  
Both circuits have an input-to-output transition time of one gate delay. Their implementations follow below 
in Figure 4 and Figure 5. By default, statewires are initialized LO. So, unless otherwise specified, LO 
drivers have a master clear (mc) input signal and related circuitry to initialize the statewire to LO. All 
driver implementations in this Section follow the default initialization settings. That means that also any 
additional circuitry for fast (return-to-zero) resetting goes into the LO driver logic for incoming statewires. 
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Figure 4: Transistor-level GasP design for Pred Driver, with one input in to drive statewire pred LO within one 
gate delay, and a half-keeper to keep pred HI. The official cell name is predDri10wMC. In addition to in, there 
is an extra input signal mc, for master clear, which we use to initialize pred to LO. We will use the icon in the 
top right corner of the picture as a gate-level shortcut for this design. It is used in the 6-4 GasP design of the 
Store module, and in the Telescope GasP design of the Amplify module, in the first design implementation of 
the two-way Fork, and in the Join modules.    

 
 

Figure 5: Transistor-level GasP design for Pred AND Driver. Its official name in the 180nm cell library kept in 
Electric [14] is predSymAndDri10wMC. When both inputs inA and inB are high or input signal mc is high, 
statewire pred is driven LO within one gate delay. The symmetric NMOS AND pair in the design makes the 
gate delay independent of the arrival ordering of the inputs. The half-keeper is there to keep pred HI, when 
needed. Global input signal mc, for master clear, is used to initialize pred to LO. We will use the icon in the 
top right corner as a gate-level shortcut for this design. It is used in the second design implementation of the 
two-way Fork, and in the three-way Fork module. 
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3. Store Module 
 
Data storage is indicated explicitly in ARCwelder [5,6]. For the time being, we’ll separate storage and 
computation. We anticipate that for future low-latency designs, we may combine more complex control 
features into storage elements.  
 
The basic Store control module is implemented as a 6-4 GasP FIFO module. Its circuit diagram follows in 
Figure 6. The Forward Transfer part uses the Succ Driver of Figure 2.  There are 5 additional gates 
between input in[sw] of the Store module and the input of the Succ Driver, giving a total forward latency of 
6 gate delays for the Store module.  
 
The Backward Transfer part is implemented by the Pred Driver of Figure 4. There are 3 additional gates 
between output out[sw] of the Store module and the input of the Pred Driver, giving a total backward 
latency of 4 gate delays for the Store module. 

 
In addition to a master clear signal mc, to initialize the module, and input and output statewires in[sw] and 
out[sw], the module has an output signal, called cl. Signal cl acts as a local or source-synchronous clock 
signal. It controls latches or flip-flops in the data path, to make these store new or keep old data. 
 
The behavior of the Store module can be described as follows. Initially, in[sw], out[sw] and mc are LO. 
When in[sw] goes HI, indicating the presence of data, and out[sw] is LO, indicating the availability of 
space, clock signal cl goes HI.  Signal cl going HI results in the following three parallel sets of actions:  

1. Latches become transparent and flip-flops receive new data in their master latches. 
2. The Forward and Backward Transfer sections report the presence of new data to the successor 

and new availability of space to the predecessor modules by driving out[sw] HI and in[sw] LO. 
3. The Forward and Backward Reset sections kick in, and cut off the HI clock pulse, the HI forward 

drive, and the LO backward drive to a 5 gate delay pulse signal each. At the end of the HI clock 
pulse, the latches become opaque and the flip-flops copy the new data to their slave latches and 
to their outputs. Data outputs of the latches and flip-flops now contain stable and new data.  

At the end of these three parallel sets of actions, the Store module waits until out[sw] is LO and in[sw] is 
HI again, so it can start its next cycle. 
 
The minimum cycle time is 10 gate delays, as set by the 5 gate delay loops in the circuit diagram of 
Figure 6. The right-hand loop executes the Forward Transfer and Forward Reset sections. The left-hand 
loop executes the Backward Transfer and Backward Reset sections. Both loops start simultaneously with 
the negated-input AND gate in the middle. The loops share 3 gates: the negated-input AND, and its two 
subsequent inverters or rather inverting amplifiers. 
 
In Figure 7 we give a collection of SPICE-level simulation waveforms of our 6-4 GasP implementation of 
the Store module. The waveforms were programmed and viewed from the Electric design environment 
[14] that we use for designing GasP modules. The waveforms support the above behavioral description. 
 
Note 
Figure 6 uses a JBOX to connect in[mc] to out[mc]. As also explained in Introduction Section 1, a JBOX is 
special construct in Electric [14] to connect, i.e. join, signals with different names. The symbol for a JBOX 
construct is a box with the letter J in it. We specifically use it to join the master clear (mc) signals on the 
various statewires of a module, as we do here for in[mc] and out[mc].
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.   

 
 

Figure 6: Circuit for 6-4 GasP control module Store, with input statewire and master clear in[sw,mc], output 
statewire and joined master clear out[sw,mc], and local clock signal cl to clock and store data in the bundled 
data path. We will use the icon in the top-right corner to represent this GasP Store module. 

 

 
 

Figure 7: SPICE-level simulation of the 6-4 GasP implementation of the Store module in Figure 6. Red signal 
in[sw] and blue signal out[sw] swap their states in parallel and create a HI pulse on the clock signal, whenever 
in[sw] is HI (FULL) and out[sw] is LO (EMPTY).  After in[sw] has gone LO, the predecessor in the simulation 
test environment switches in[sw] back to HI. Likewise, after out[sw] has gone HI, the successor in the 
simulation test environment switches out[sw] back to LO. Then, the cycle starts again. 
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4. Amplify Module  
 
The Amplify module is the self-timed version of the well-known “repeater” module in synchronous designs. 
It is used in the control logic to bridge long module-to-module distances with minimal latency.  
 
The implementation of the Amplify module in Figure 8 is an example of our first design approach with 
independent self-resetting loops for statewires of incoming and outgoing handshake channels. It has two 
self-resetting loops: the loop at the top is used to start and stop the HI drive for out[sw], while the loop at 
the bottom is used to start and stop the LO drive for in[sw].  
 
The Amplify module implementation in Figure 9 is an example of the second design approach with shared 
self-resetting loops for the statewires of incoming and outgoing handshake channels. It has one self-
resetting loop, with separate taps to start and stop the HI respectively LO drive for out[sw] and in[sw]. 
Figure 9 is based on the amplifier design in [4], but uses non-inverting logic between incoming and 
outgoing handshakes.  
 
SPICE simulations of the handshake behavior of the Amplify implementations in Figure 8 and Figure 9 
follow in Figure 10 and Figure 11(top). The handshake behaviors are the same, and can be described as 
follows. Initially, in[sw], out[sw] and mc are LO. When in[sw] goes HI, indicating the presence of data, 
and out[sw] is LO, indicating the availability of space, the following four sets of actions are started in 
sequence, ordered as indicated: 

1. The Forward Transfer part signals new data to the successor module by driving out[sw] HI. It 
takes 2 gate delays to go from in[sw] HI to out[sw] HI. 

2. The Forward Reset part kicks in, cutting off the HI forward drive to a 5 gate delay pulse signal. 
3. The Backward Transfer part waits until out[sw] is LO, and then reports new availability of space 

to the predecessor module by driving in[sw] LO, 2 gate delays after receiving out[sw] LO. 
4. The Backward Reset part kicks in, cutting off the LO backward drive to a 5 gate delay pulse.  

At the end of these four serial sets of actions, the Amplify module waits until in[sw] is HI again, so it can 
start its next cycle. 
 
Internally, the behaviors of the two Amplify implementations differ. The advantage of the implementation in 
Figure 9 is that it has delay margins that are relatively safe.  In contrast, the implementation in Figure 8 
has two marginal delay margins that we may want to increase to guarantee that the in[sw]-out[sw] 
handshakes really telescope. The two marginal delay margins in Figure 8 are as follows: 

1. The path to disable the negative-input AND gate, which starts with in[sw] HI and then goes the 
NAND gate and Succ Driver to out[sw] HI, must have  less delay than the path to enable the gate 
from the same starting point, in[sw] HI, through the lower loop. The delay margin between these 
two paths is only 1 gate delay.   

2. Likewise, the path to disable the NAND gate, which starts with out[sw] LO and then goes through 
the negative-input AND gate and Pred Driver to in[sw] LO,  must have less delay than the path to 
enable the gate from the same starting point, out[sw] LO, through the upper loop. The delay 
margin between these two paths is only 1 gate delay.  

We can adjust both margins to 3 gate delays by inserting the proper delay circuits from Figure 1, page 3. 
This would make the delay margins in the implementation of the Amplify module in Figure 8 as safe as 
those in Figure 9. Details on the corresponding safety margins for the implementation of the Amplify 
module in Figure 9  follow in Figure 11(middle and bottom) – see caption for details. 
 
The two implementations have the same cycle time and latencies. In both implementations, the Forward 
Transfer part is implemented using the Succ Driver of Figure 2.  There is 1 additional gate between 
incoming handshake channel in[sw] and the input of the Succ Driver, giving a total forward latency of 2 
gate delays. In both implementations, the Backward Transfer part is implemented by the Pred Driver of 
Figure 4. There is 1 additional gate between outgoing handshake channel out[sw] of the Amplify module 
and the input of the Pred Driver, giving a total backward latency of 2 gate delays. 
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Figure 8: Circuit for Telescope GasP control module Amplify, with input statewire and master clear in[sw,mc] 
and output statewire and joined master clear out[sw,mc]. We can use either of the two icons in the top-right 
corner of this picture to represent an Amplify module. This design is saved under the library name 
TelescopeGasP_SeparateStates, to indicate that it uses separate self-resetting loops for in[sw] and out[sw]. 
 

 
 
 

 

 
Figure 9: Second Telescope GasP implementation for module Amplify, different than the first one in Figure 8. 
Here, we share the self-resetting loops between incoming and outgoing statewires insofar possible. This 
second Amplify implementation is saved in the library name TelescopeGasP_wStateSharing, under module 
name AmplifyT. The appendix `T’ in the module name stands for `Telescope’. The design is based on [4]. 
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Figure 10: SPICE-level simulation of the Telescope GasP implementation of the Amplify module in Figure 8. 
Red signal in[sw] and blue signal out[sw] have a telescopic handshake relationship: in[sw] HI causes out[sw] to 
go HI, and when out[sw] has gone LO, only then will in[sw] go LO. The simulation clearly shows that each HI 
pulse of out[sw] is contained strictly within a HI pulse of in[sw]. 

 

 

Figure 11: SPICE-level simulation of module Amplify in Figure 9.  
• The top window clearly shows the telescoping handshake relation between in[sw] and out[sw].  
• The middle window shows the simulated delay margins from out[sw] HI in green to s0 LO in purple          

(1 gate delay) and to s0plus2 LO in pink (3 gate delays) and back to the green out[sw] no-drive and LO 
(minimal 5 gate delays). The in[sw] reset safety margin of 3 gate delays that we see in Figure 9 when 
going from out[sw] HI disabling the inverted input AND gate to s0plus2 LO enabling the AND gate is large 
enough to guarantee the telescope relation between in[sw] and out[sw]. It is also small enough to fit within 
the minimum HI pulse width of 5 gate delays for out[sw] in order to maintain throughput. The remaining 2 
gate delays after s0plus2 goes LO are used to stop the HI drive on out[sw] (see Figure) so the receiver 
can reset out[sw] without a fight conflict.  

• Similar to the middle window, the bottom window shows the simulated delay margins from in[sw] going LO 
in red to s0 HI in purple (1 gate delay) and to s0plus2 HI in pink (3 gate delays) and back to the red in[sw] 
going HI (minimal 5 gate delays). The out[sw] set safety margin of 3 gate delays that we see in Figure 9 
when going from in[sw] LO disabling the NAND gate to s0plus2 HI enabling the NAND gate is large 
enough to guarantee a 1-1 telescopic handshake relation between in[sw] and out[sw]. It is also small 
enough to fit within the minimum LO pulse width of 5 gate delays for in[sw] in order to maintain 
throughput. As can be seen from Figure 9, the remaining 2 gate delays after s0plus2 goes HI are used to 
stop the LO drive on in[sw], so the sender can set in[sw] without a fight conflict.  

in[mc] 
in[sw] 
out[sw] 
 
 

in[sw] 
s0 
s0plus2 
 
 

out[sw] 
s0 
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2  
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Without a fast reset signal, the minimum cycle time for each implementation is 2+5+2+5=14 gate delays, 
as set by the 2 gate delay transfers and the 5 gate delay loops in the circuit diagrams of Figure 8 and 
Figure 9, assuming that successor and predecessor modules keep the statewires HI respectively LO for a 
minimum of 5 gate delays. The cycle time increases in steps of 4 gate delays for each additional Amplify 
module. This skewing of the cycle time happens because each successive Amplify module’s Backward 
Transfer section must wait until the corresponding Forward Transfer in the module has completed. 
 
Using a fast reset signal, we can reduce the backward latency and reduce the cycle time. We designed a 
test environment that generates such a fast reset signal and that passes it to the Amplify module via the 
existing master clear signal in the module. We tested the behavior of the Amplify module with this fast 
reset, using the configuration in Figure 12.  
 
Figure 12 shows a sender queue on the left, designed using traditional 6-4 GasP, that feeds a data path 
consisting of a first-in-first-out queue of three Amplify modules, designed in Telescope GasP using the 
implementation in Figure 9. The right-hand side shows the receiving half of a Store module, designed in 
6-4 GasP using the implementation in Figure 6. We deleted the sending half from the Store 
implementation, because we don’t need it, and we added extra circuitry to generate a fast reset signal, 
which is called mc_fastRTZ. This new configuration works as follows. 
 
Four gate delays after the start of an incoming handshake to the Store module, i.e. after out[sw] goes HI, 
the Store module makes mc_fastRTZ become HI. At the same time, i.e. four gate delays after out[sw] 
goes HI, the Store module makes its local clock signal cl HI. The mc_fastRTZ signal is distributed to all 
Amplify as master clear input to the LO driver for the module’s incoming handshake channel. The cl 
signal, besides clocking latches in the data path, also acts as input to the LO driver for out[sw], the 
handshake channel going out of the last Amplify module in the queue. Consequently, five gate delays after 
out[sw] goes HI,  all outstanding handshake communications in the Amplify queue are reset concurrently. 
The reset stops after 5 gate delays, via the self-resetting loop in the Store module. Figure 13 and Figure 
14 show SPICE-level simulation waveforms of mc_fastRTZ, and the corresponding concurrent reset to LO 
for Amplify channels in[sw], m1[sw], m2[sw], and out[sw]. 
 
The cycle time for the Amplify queue without a fast reset signal would be 10 + 3*4 = 22 gate delays. With 
the fast reset signal, we obtain a cycle time of 10 + 3*2 = 16. These results would be the same had we 
used the Amplify implementation in Figure 8. 
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Figure 12: Fast reset configuration and test environment to concurrently reset all handshakes in the three 
Amplify modules in the middle queue. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: SPICE-level simulation results for the fast reset and test configuration in Figure 12.  
• The top window shows how the pink HI pulse on the fast reset signal, mc_fastRTZ, concurrently resets 

both the green handshake on out[sw] of the third Amplify module and the red handshake on in[sw]. The 
reset slope for out[sw] in green is steeper than the reset slope for in[sw] in red. Details on the reset slope 
situation follow in Figure 14 below.  

• The bottom window shows the beginning and end of each handshake over the initial, intermediate and 
final statewires in[sw], m1[sw], m2[sw], and out[sw] in the Amplify queue. The handshakes at the outgoing 
channel of each module start 2 gate delays after the handshakes at the incoming channel. But thanks to 
the fast reset signal, mc_fastRTZ, shown in the top window, all outstanding handshakes end at the same 
time. The steepness of the reset slopes for in[sw], m1[sw], m2[sw], out[sw] depends on how many 
modules there are between the statewire and the Store module at the end of the data path: the fewer 
modules in-between, the steeper the slope. A more detailed explanation follows in Figure 14 below. 
Differences in slope peter out quickly: the slope differences for the falling transitions on in[sw], m1[sw], 
and m2[sw] are significantly less prominent.  
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Figure 14: SPICE-level simulation details for the fast reset and test configuration in Figure 12. The top window 
contains waveforms for signals in the first, i.e. left-most Amplify module, Amplify[1], of the 3-stage Amplify 
queue in Figure 12.  The middle and bottom windows show the waveforms for similar signals in the second 
and third Amplify modules in the queue, Amplify[2] and Amplify[3]. The waveforms display the slope differences 
between the falling handshake transitions on the module’s output channel, in orange, and the module’s input 
channel, in red. In each case, the falling slope for the orange signal at the output channel is steeper than the 
falling slope for the red signal at the input channel. The other signals, in blue, green, and pink, are there to 
explain why this is so: 
• The blue signal, mc_fastRTZ, is the fast reset signal generated by the Store module. During its 5 gate 

delay HI pulse, all orange and red handshake signals are reset to LO, simultaneously. 
• The green signal, reset, is part of the normal backward reset path. When HI, it resets the red incoming 

handshake signal of the Amplify module to LO, with or without the extra help of mc_fastRTZ. Signal reset 
is internal to the Amplify module. It rises 1 gate delay after a falling transition on the outgoing handshake 
signal, as can be seen from the schematics in Figure 9.  

• From Figure 12 we can see that the falling handshake for out[sw] is driven from the Pred Driver in the 
Store module, via the local clock signal cl.  
o Signal cl is amplified for the purpose of steering data latches, but the test configuration does not 

include these data latches. As a result, the load on signal cl is much smaller than the load on the fast 
reset signal, though both are amplified in the same way. This causes cl to rise faster than 
mc_fastRTZ, which in turn causes out[sw] to fall earlier than m2[sw], m1[sw], and in[sw].  

o Also, looking at the implementation of the Pred Driver in Figure 4, we can see that cl steers an 
NMOS transistor of strength 10. All other falling handshakes are driven from the Pred Driver in the 
successor Amplify module in the queue, via the fast reset signal mc_fastRTZ and the master clear 
driver input.  Looking at the implementation of the Pred Driver in Figure 4, we can see that the 
master clear signal steers a much weaker NMOS transistor of strength 3.667. Consequently, out[sw] 
falls more steeply than m2[sw], m1[sw], and in[sw] - at least initially. As a result, the green reset 
signal rises first in module Amplify[3], and then in Amplify[2] and then in Amplify[1].  

• When the green reset signal rises, it starts helping the blue mc_fastRTZ signal to reset the incoming red 
handshake signal to LO. This explains the knee and subsequent steeper slope for the red signal in each 
window. We see such a knee at the initial slope to steeper slope change for m2[w] at about 1 Volt, for 
m1[sw] at about 0.5 Volt, and for in[sw] at a little below 0.5 Volt. The result is that m2[sw] completes its 
LO transition before m1[sw], and that both m2[sw] and m1[sw] finish their LO transition before in[sw]. 

• The pink signal, s0plus2, is part of the self-resetting loop in the Amplify module. It is LO at the start of the 
mc_fastRTZ HI pulse. It goes HI 4 gate delays after mc_fastRTZ goes HI, and 1 more gate delays later, it 
stops the HI pulse on the green reset signal. The 5 gate delay HI pulse on the blue mc_fastRTZ signal 
stops at about the same time. With both Pred Driver inputs LO, the LO drive on the incoming red 
handshake signal ceases, after a - partially concurrent - drive of 5 gate delays.  
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5. Fork Modules 
Fork modules provide one input to multiple output, or 1-to-NofN, broadcast communication. In Sections 
5.1 and 5.2 below, we give Telescope GasP implementations for two-way and three-way Fork modules. 
 

5.1. 2-Way Fork Module, or Fork2 
 
Figure 15 and Figure 16 show our two Telescope GasP circuit implementation for the 2-way Fork 
module, or Fork2. The module provides a one input to two output broadcast communication. The Fork2 
implementation in Figure 15 is an example of our first design approach with independent self-resetting 
loops for the statewires of incoming and outgoing handshake channels. It has two self-resetting loops: the 
loop at the top serves to start and stop the HI drives for outA[sw] and outB[sw], the loop at the bottom 
serves to start and stop the LO drive for in[sw]. The Fork2 implementation in Figure 16 is an example of 
the second design approach which shares self-resetting loops between the statewires of incoming and 
outgoing handshake channels. It has one self-resetting loop, with separate taps to start and stop the HI 
drives for outA[sw] and outB[sw] and the LO drive for in[sw].  
 
A SPICE-level simulation of the handshake behavior of the Fork2 implementation in Figure 15 follows in 
Figure 17. The handshake behaviors are the same for both implementations, and can be described as 
follows. Initially, in[sw], outA[sw], outB[sw], and mc are LO. When in[sw] goes HI, indicating the 
presence of data, and both outA[sw] and outB[sw] are LO, indicating the availability of broadcast space, 
the following four actions are started in sequence, in the order indicated below: 

1. The Forward Transfer part signals new data to both successor modules by driving outA[sw] and 
outB[sw] HI. This takes 2 gate delays. 

2. The Forward Reset part kicks in, cutting off both HI forward drives after 5 gate delays. 
3. The Backward Transfer part waits until both outA[sw] and outB[sw] are LO, and then reports 

new availability of space to the predecessor module by driving in[sw] LO, 2 gate delays later. 
4. The Backward Reset part kicks in, cutting off the LO backward drive after 5 gate delays.  

At the end of these four serial actions, the Fork2 module waits until in[sw] is HI again, so it can start its 
next cycle. 
 
The waveforms in Figure 17 support the above behavioral description of the module. We deliberately 
skewed the loads and delays for outA[sw] and outB[sw] to make both signals visible. Had we not done 
so, their pulses would overlap. 
 
Internally, the behaviors of the two Fork2 implementations differ. The advantage of the implementation in 
Figure 16 is that it has relatively safe delay margins, whereas the implementation in Figure 15 has two 
delay margins that are marginal. The differences in delay margin are very similar to the ones we described 
in Section 4 for the two implementations of module Amplify.  
 
The two marginal delay margins in Figure 15 are as follows: 

1. After in[sw] rises, it takes 2 gate delays before both outA[sw] and outB[sw] rise and disable the 
inverted input AND gate in the lower self-resetting loop, while it takes 3 gate delays for the HI 
in[sw] signal to enable that same inverted input AND gate via the lower self-resetting loop. To 
guarantee a telescope relation between in[sw] and outA[sw]-outB[sw], the inverted input AND gate 
must sense the two disabling outA[sw] and outB[sw] transitions before it senses the enabling 
in[sw] transition. The margin between the first two transitions and the latter is only 1 gate delay.  

2. After both outA[sw] and outB[sw] have fallen, it takes 2 gate delays before in[sw] falls and 
disables the NAND gate in the upper self-resetting loop, while it takes 3 gate delays for the LO 
outA[sw] and outB[sw] signals to enable that same NAND gate via the upper self-resetting loop. 
To guarantee a correct handshake relation between in[sw] and outA[sw]-outB[sw], the NAND gate 
must sense the disabling in[sw] before it senses the enabling outA[sw] and outB[sw] transitions. 
The delay margin between the disabling and the two enabling transitions is only1 gate delay. 
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Figure 15: Circuit for Telescope GasP control module Fork2, which is a 2-way Fork. It has input statewire and 
master clear in[sw,mc] and two broadcast output statewires with a joined master clear, outA[sw,mc] and 
outB[sw,mc]. We will use either of the two icons in the top-right corner of this picture, when we represent this 
a 2-way Fork module. This design is saved under the library name TelescopeGasP_SeparateStates, to indicate 
that it uses separate self-resetting loops for in[sw] and outA[sw]-outB[sw]. 
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Figure 16: Second Telescope GasP implementation for module Fork2, different from the first one in Figure 15. 
This design shares the self-resetting loops between incoming and outgoing statewires insofar as possible.  It  is 
saved in library TelescopeGasP_wStateSharing, under module name Fork2T (appendix `T’ in the module name 
stands for `Telescope’). 
 

 
 
 
 
 

 
 

Figure 17: SPICE-level simulation of the Telescope GasP implementation of the 2-way Fork module. We 
deliberately skewed the loads and delays for the blue and pink signals outA[sw] and outB[sw] to separate their 
pulses. Red signal in[sw] has a telescopic handshake relation with blue and pink signals outA[sw] and 
outB[sw]: in[sw] HI causes both outA[sw] and outB[sw] to go HI, and when both outA[sw] and outB[sw] have 
gone LO again only then will in[sw] go LO also. The simulation clearly shows that both HI pulses for outA[sw] 
and outB[sw] are strictly contained within the HI pulse for in[sw].  
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A delay margin of only 1 gate delay is marginal and sensitive to noise interference and process variations.  
We can adjust both margins to 3 gate delays by inserting the proper delay circuits from Figure 1, page 3. 
This would make the delay margins in the implementation of the Fork2 module in Figure 15 as safe as 
those in Figure 16. 
 
The two implementations have the same cycle time and latencies. In both implementations, the two 
Forward Transfer parts are implemented using the Succ Driver of Figure 2.  There is 1 additional gate 
between in[sw] and the input of the two Succ Drivers, giving a total forward latency of 2 gate delays. In 
both implementations, the Backward Transfer part is implemented by the Pred AND Driver of Figure 5. 
There is 1 additional gate between the two outgoing channels outA[sw] and outB[sw] of the Fork2 
module and the input of the Pred AND Driver, giving a total backward latency of 2 gate delays. 
 
Without a fast reset signal, the minimum cycle time for each implementation is 2+5+2+5=14 gate delays, 
as set by the 2 gate delay transfers and the 5 gate delay self-resetting loops in the circuit diagrams of 
Figure 15  and Figure 16, assuming that successor and predecessor modules keep the statewires HI 
respectively LO for a minimum of 5 gate delays. The cycle time increases in steps of 4 gate delays for 
each successor module between the Fork2 module and the following Store module. This skewing of the 
cycle time happens because each next module’s Backward Transfer section must wait until the 
corresponding Forward Transfer in the module has completed. 
 
Using a fast reset signal, we can reduce the backward latency and lower the cycle time. We designed a 
test environment that generates such a fast reset signal and that passes it to the Fork2 module via the 
existing master clear signal in the module. We tested the behavior of the Fork2 module with this fast reset, 
using the configuration in Figure 18.  
 
Figure 18 shows a sender queue on the left, designed using traditional 6-4 GasP, that feeds a data path 
consisting of a tree of Fork2 modules with maximum depth of 3, designed in Telescope GasP using the 
implementation in Figure 16. The right-hand side shows the receiving half of a Store module, designed in 
6-4 GasP using the implementation in Figure 6. We deleted the sending half from the Store 
implementation, because we don’t need it, and we added extra circuitry to generate a fast reset signal, 
which is called mc_fastRTZ, and to reset all outgoing handshakes at the end of the Fork2 tree. This new 
configuration works in a way similar to the fast reset configuration for the Amplify module in Figure 12.  
 
Four gate delays after the last incoming handshake to the Store module, i.e. after outA[sw], outB[sw], 
outC[sw], outD[sw], and outE[sw] have gone HI, the Store module makes mc_fastRTZ HI. At the same 
time, i.e. four gate delays after outA[sw] to outE[sw] have gone HI, the Store module makes its local clock 
signal cl HI. The mc_fastRTZ signal is distributed to each Fork2 module as master clear input to the LO 
driver for the module’s incoming handshake channel. The cl signal, besides clocking latches in the data 
path, also acts as input to the LO driver for outA[sw] to outE[sw], the handshake channels going out of the 
last Fork2 modules in the tree. Consequently, five gate delays after outA[sw] to outE[sw] have gone HI,  all 
outstanding handshake communications in the Fork2 tree are reset concurrently. The reset stops after 5 
gate delays, via the self-resetting loop in the Store module.  
 
Figure 19 and Figure 20 show SPICE-level simulation waveforms of mc_fastRTZ, and the corresponding 
concurrent reset to LO for Fork2 channels in[sw], m1[sw], m2[sw], and outA[sw]. 
 
The cycle time for the Fork2 tree without a fast reset signal would be 10 + 3*4 = 22 gate delays. With the 
fast reset signal, we obtain a cycle time of 10 + 3*2 = 16. These results would be the same had we used 
the Fork2 implementation in Figure 15. 
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Figure 18: Fast reset configuration and test environment to reset concurrently all handshakes in the Fork2 
modules in the middle tree. Note that this is a much more complex configuration than the one in Figure 12 that 
concurrently resets the queued Amplify modules. It is also less modular than we would like it to be. We 
anticipate that, in practice, outA[sw] to outE[sw] are reset either by individual Store modules, or by some re-
converging tree that joins these final statewires, thus maintaining modularity. We also anticipate that, in 
practice, we will be able to identify a particular Store module from which we can tap the mc_fastRTZ signal. 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

Figure 19: SPICE-level simulation results for the fast reset and test configuration in Figure 18. Similar to the 
fast reset results for module Amplify, here we see the beginning and end of each handshake over the initial, 
intermediary and final statewires in[sw], m1[sw], m2[sw], and outA[sw] in the Fork2 tree. The handshakes at 
the outgoing channel of each module start 2 gate delays after the handshakes at the incoming channel. The 
blue HI pulse on the fast reset signal, mc_fastRTZ, concurrently resets all statewires from outA[sw] to in[sw]. 
The reset slope is steepest for the green-colored statewire outA[sw], then for pink statewire m2[sw], followed by 
orange statewire m1[sw], and it is shallowest for the red-colored statewire in[sw]. A more detailed explanation 
follows in Figure 20 below. 
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Figure 20: SPICE-level simulation details for the fast reset and test configuration in Figure 18. The top window 
contains waveforms for signals in the left-most Fork2 module Fork2[1]. The middle and bottom windows show 
the waveforms for similar signals in the following top-most second and third Fork2 modules, Fork2[2] and 
Fork2[3]. The details are very similar to the fast reset details for module Amplify in Figure 14. 
• The green signal, reset_AB, is part of the normal backward reset path. When HI, it resets the red 

incoming handshake signal of the Fork2 module to LO, provided reset_s0 is also HI. The two AND-ed 
resets work with or without extra help of mc_fastRTZ. Signal reset_AB is internal to the Fork2 module. It 
rises 1 gate delay after both outgoing handshakes have fallen – see the schematics in Figure 16.  

• The falling handshake for outA[sw] is driven from the Pred Driver in the Store module, via the local clock 
signal cl.  

• From Figure 12 we can see that the falling handshake for outA[sw] is driven from the Pred Driver in the 
Store module, via the local clock signal cl.  
o Signal cl is amplified for the purpose of steering data latches, but the test configuration does not 

include these data latches. As a result, the load on signal cl is much smaller than the load on the fast 
reset signal, though both are amplified in the same way. This causes cl to rise faster than 
mc_fastRTZ, which in turn causes outA[sw] to fall earlier than m2[sw], m1[sw] and in[sw].  

o Also, looking at the implementation of the Pred Driver in Figure 4, we can see that cl steers an 
NMOS transistor of strength 10. In contrast, the falling handshakes for m2[sw], m1[sw], and in[sw] 
are driven from the Pred AND Driver in the successor Fork2 modules in the queue, via the fast reset 
signal mc_fastRTZ and the master clear driver input.  From the Pred AND Driver in Figure 5, we can 
see that the master clear signal steers a much weaker NMOS transistor of strength 3.667. 
Consequently, outA[sw] falls more steeply than m2[sw], m1[sw], and in[sw] - at least initially. As a 
result, the green reset signal rises first in module Fork2[3], and then in Fork2[2], and then in Fork2[1].  

• When the green reset signal rises, it starts helping the blue mc_fastRTZ signal in resetting the incoming 
red handshake signal to LO. This explains the knee and subsequent steeper slope for the red signal in 
each window. We see such a knee at the initial slope to steeper slope change for m2[w] at about 1 Volt, 
for m1[sw] at a little above 0.5 Volt, and for in[sw] at a little below 0.5 Volt. The result is that the LO 
transition completes first for m2[sw] then for m1[sw], and last for in[sw]. 

• The pink signal, reset_s0, is a 1 gate delay inverted s0plus2 signal, and is part of the self-resetting loop in 
the Fork2 module. It is HI at the start of the mc_fastRTZ HI pulse. It goes LO 5 gate delays after 
mc_fastRTZ goes HI, stopping the LO drive through the AND gate that it drives jointly with reset_AB. The 
5 gate delay HI pulse on mc_fastRTZ stops at about the same time. With all Pred AND Driver inputs LO, 
the LO drive on the incoming red statewire ceases, after a - partially concurrent - drive of 5 gate delays.  
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5.2.  3-Way Fork Module, or Fork3 
Figure 21 and Figure 22 show our two Telescope GasP circuit implementations for the 3-way Fork 
module, called Fork3. The designs are very similar to the two implementations of the 2-way Fork module 
in Figure 15 and Figure 16. From these 2-way to 3-way Fork extensions one can already see the limit in 
implementing an N-way Fork for the same latency and throughput as a 2-way Fork, for large N. All N 
signals must be synchronized at the NAND and negated-input AND gates at the start of the Forward and 
Backward Transfer parts. Beyond N=3, we might want to build trees of Fork modules. 
 

 
 

Figure 21: Circuit for Telescope GasP control module Fork3, which is a 3-way Fork. It has input statewire and 
master clear in[sw,mc] and three broadcast output statewires with a joined master clear,  outA[sw,mc],  
outB[sw,mc], and outC[sw,mc]. We will use the top-right icon when we represent a 3-way Fork module. This 
design is saved under the library name TelescopeGasP_SeparateStates, to indicate that it uses separate self-
resetting loops for in[sw] and outA[sw]-outB[sw]-outC[sw]. 
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Figure 22: Second Telescope GasP implementation for module Fork3, different than the first one in Figure 21. 
Here, we share the self-resetting loops between incoming and outgoing statewires insofar possible.  This 
second Fork3 implementation is saved in the library name TelescopeGasP_wStateSharing, under module 
name Fork3T (appendix `T’ in the module name stands for `Telescope’). 

 

6. Join Modules 
Join modules provide many-input-to-one-output broadcast synchronization. In Sections 6.1 and 6.2 below, 
we will give Telescope GasP implementations for two-way and three-way Join modules. 

6.1. 2-Way Join Module, or Join2 
 
Figure 23 and Figure 24 show our Telescope GasP circuit implementation for the 2-way Join module, or 
Join2. Join2 is more or less the reverse of Fork2. The module merges two incoming communication 
streams into one output communication stream. The Join2 implementation in Figure 23 is an example of 
our first design approach with independent self-resetting loops for statewire of incoming and outgoing 
handshake channels. It has two self-resetting loops: the loop at the top is used to start and stop the HI 
drive for out[sw], the loop at the bottom is used to start and stop the LO drives for inA[sw] and inB[sw]. 
The Join2 implementation in Figure 24 is an example of the second design approach where we share 
self-resetting loops between the statewires of incoming and outgoing handshake channels, where 
possible. It has one self-resetting loop, with separate taps to start and stop the HI drive for out[sw] and the 
LO drives for inA[sw] and inB[sw].  
 
A SPICE-level simulation of the handshake behavior of the Fork2 implementation in Figure 23 follows in 
Figure 25. The handshake behaviors are the same for both implementations, and can be described as 
follows. Initially, inA[sw], inB[sw], out[sw], and mc are LO. When inA[sw] and inB[sw] go HI, indicating 
the broad presence of data on both incoming channels, and when out[sw] is LO, indicating the availability 
of space, the following four sets of actions are started in sequence, in the order indicated below: 

1. The Forward Transfer part signals new data to the successor module by driving out[sw] HI. This 
takes 2 gate delays. 

2. The Forward Reset part kicks in, cutting off the HI forward drives after 5 gate delays. 
3. The Backward Transfer parts waits until out[sw] is LO, and then report new availability of space 

to the predecessor modules by driving both inA[sw] and inB[sw] LO, 2 gate delays later. 
4. The Backward Reset part kicks in, cutting off both LO backward drives after 5 gate delays.  

At the end of these four serial sets of actions, the Join2 module waits until inA[sw] and inB[sw] are HI 
again, so it can start its next cycle. 
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Figure 23: Circuit for Telescope GasP control module Join2, which is a 2-way Join. It has two input statewires 
with a master clear signal,  inA[sw,mc] and inB[sw,mc], and one output statewire with a joined master clear, 
out[sw,mc]. We will use either of the two icons in the top-right corner when we represent a 2-way Join module.  
This design is saved under the library name TelescopeGasP_SeparateStates, to indicate that it uses separate 
self-resetting loops for inA[sw]-inB[sw] and out[sw]. 

 
Figure 24: Second Telescope GasP implementation for module Join2. Here, we share the self-resetting loops 
between incoming and outgoing statewires insofar as possible.  This implementation is saved in the library 
name TelescopeGasP_wStateSharing, under module name Join2T (appendix `T’ stands for `Telescope’). 
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Figure 25: SPICE-level simulation of the Telescope GasP implementation of Join2 in Figure 23. We 
deliberately skewed the loads and delays for the red and green signals inA[sw] and inB[sw] to separate their 
pulses. Red and green signals inA[sw] and inB[sw] have a telescopic handshake relationship with blue signal 
out[sw]: inA[sw] HI and inB[sw] HI causes out[sw] to go HI, and when out[sw] has gone LO again only then will 
inA[sw] and inB[sw] go LO also. The simulation clearly shows that the HI pulse for out[sw] is strictly contained 
within the HI pulses for inA[sw] and inB[sw].  

 
 
 
The waveforms in Figure 25 support the above behavioral description of the module. We deliberately 
skewed the loads and delays for inA[sw] and inB[sw] to make both signals visible. Had we not done so, 
their pulses would overlap. 
 
Internally, the behaviors of the two Join2 implementations differ. The advantage of the implementation in 
Figure 24 is that it has delay margins that are relatively safe, whereas the implementation in Figure 23 
has two delay margins that are marginal. The differences in delay margin are very similar to the ones we 
described earlier for the two implementations of other broadcast modules, Amplify respectively Fork2. 
 
The two marginal delay margins in Figure 23 are as follows: 

1. After inA[sw] and inB[sw] have both risen, it takes 2 gate delays before out[sw] rises and disables 
the inverted input AND gate in the lower self-resetting loop, while it takes 3 gate delays for the HI 
inA[sw] and inB[sw] signals to enable that same inverted input AND gate via the lower self-
resetting loop. To guarantee a telescope relation between inA[sw]-inB[sw] and out[sw], the 
inverted input AND gate must sense the disabling out[sw] transition before it senses the enabling 
inA[sw] and inB[sw] transitions. The margin between disabling and enabling is only 1 gate delay.  

2. After out[sw] has fallen, it takes 2 gate delays before both inA[sw] and inB[sw] fall and disable the 
NAND gate in the upper self-resetting loop, while it takes 3 gate delays for the LO out[sw] signal to 
enable that same NAND gate via the upper self-resetting loop. To guarantee a correct handshake 
relation between inA[sw]-inB[sw] and out[sw], the NAND gate must sense the disabling transitions 
coming from inA[sw] and inB[sw] before it senses the enabling out[sw] transition. The margin 
between disabling and enabling is only 1 gate delay. 

 
A delay margin of only 1 gate delay is marginal and sensitive to noise interference and process variations.  
We can adjust both margins to 3 gate delays by inserting the proper delay circuits from Figure 1, page 3. 
This would make the delay margins in the implementation of the Fork2 module in Figure 23 as safe as 
those in Figure 24. 
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The two implementations have the same cycle time and latencies. In both implementations, the Forward 
Transfer part is implemented using the Succ Driver of Figure 2.  There is 1 additional gate between 
inA[sw] respectively inB[sw] and the input of the Succ Driver, giving a total forward latency of 2 gate 
delays. In both implementations, the two Backward Transfer parts are implemented using the Pred AND 
Driver of Figure 5. There is 1 additional gate between the outgoing channel out[sw] of the Join2 module 
and the input of the two Pred AND Drivers, giving a total backward latency of 2 gate delays. 
 
Without a fast reset signal, the minimum cycle time for each implementation is 2+5+2+5=14 gate delays, 
as set by the 2 gate delay transfers and the 5 gate delay self-resetting loops in the circuit diagrams of 
Figure 23 and Figure 24, assuming that successor and predecessor modules keep the statewires HI 
respectively LO for a minimum of 5 gate delays. The cycle time increases in steps of 4 gate delays for 
each successor module between the Join2 module and the following Store module. This skewing of the 
cycle time happens because each next module’s Backward Transfer section must wait until the 
corresponding Forward Transfer in the module has completed. 
 
Using a fast reset signal, we can reduce the backward latency and lower the cycle time. We designed a 
test environment that generates such a fast reset signal and that passes it to the Fork2 module via the 
existing master clear signal in the module. We tested the behavior of the Join2 module with this fast reset, 
using the configuration in Figure 26.  
 
Figure 26 shows a set of sender queues on the left, designed using traditional 6-4 GasP, that feed a data 
path consisting of a tree of Join2 modules with a depth of 3, designed in Telescope GasP using the 
implementation in Figure 24. The right-hand side shows the receiving half of a Store module, which 
matches that in Figure 12. We deleted the sending half from the Store implementation, because we don’t 
need it, and we added extra circuitry to generate a fast reset signal, which is called mc_fastRTZ, and to 
reset the outgoing handshake at the end of the Join2 tree. This new configuration works in a way similar to 
the fast reset configurations for Amplify and Fork2 in Figure 12 and Figure 18, respectively.  
 
Four gate delays after the last incoming handshake to the Store module, i.e. after out[sw] has gone HI, the 
Store module makes mc_fastRTZ HI. At the same time, i.e. four gate delays after out[sw] has gone HI, the 
Store module makes its local clock signal cl HI. The mc_fastRTZ signal is distributed to each Join2 
module as master clear input to the LO driver for the module’s incoming handshake channel. The cl 
signal, besides clocking latches in the data path, also acts as input to the LO driver for out[sw]. 
Consequently, five gate delays after out[sw] has gone HI, all handshake communications in the Join2 tree 
are reset concurrently. The reset stops after 5 gate delays, via the self-resetting loop in the Store module. 
Figure 27 and Figure 28 show the corresponding SPICE-level simulation waveforms. 
 
Like the earlier 3 deep queue of Amplify modules and the 3 deep tree of Fork modules, the cycle time for 
the 3 deep tree of Join2 modules without a fast reset signal would be 10 + 3*4 = 22 gate delays. With the 
fast reset signal, we obtain a cycle time of 10 + 3*2 = 16. These results would be the same had we used 
the Join2 implementation in Figure 23. 
 
Unlike the earlier fast reset simulation results for Amplify and Fork modules, the detailed SPICE simulation 
in Figure 28 shows, for the first time that the internal reset signal overlaps with the next handshake cycle. 
This is the result of (a) a faster reset of the incoming handshake on inD[sw] for the left-most Join2 
component in Figure 26, Join2[1], and a correspondingly faster start of the next handshake on inD[sw], 
versus (b) a slower reset of the outgoing handshake on in2[sw] for Join2[1], and a correspondingly slower 
termination of the internal green reset. We conclude from this that it is probably not a good idea to re-use 
the weak drive of the master clear signal for fast resets. In the future, we will use a separate fast reset 
input with a strong first order fast reset drive and an equally strong second-order internal reset drive. 
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Figure 26: Fast reset configuration and test environment to concurrently reset all handshakes in the three 
Join2 modules in the middle tree.  
 
 

 
 
 
 

 
 
 
Figure 27: SPICE-level simulation results for the fast reset and test configuration in Figure 26. We see the 
beginning and end of each handshake on incoming channels inA[sw] in red, inB[sw] in purple, inC[sw] in 
orange, and inD[sw] in yellow, and on green outgoing channel out[sw] in the Join2 tree. The handshake at the 
outgoing channel of each module starts 2 gate delays after the handshakes at the incoming channels. Given 
that the tree is three Join2 modules deep, and that the incoming handshakes start at the same time, the 
handshakes on out[sw] start 6 gate delays after the handshakes on inA[sw] to inD[sw]. The pink HI pulse on 
the fast reset signal, mc_fastRTZ, concurrently resets all these handshakes. The reset slope starts earlier and 
is steepest for statewire out[sw]. We will look into the reset slopes in more detail in Figure 28 below. Note that 
the 5 gate delay pulse on mc_fastRTZ ends just in time to avoid a fight conflict with the next handshake cycle. 
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Figure 28: SPICE-level simulation details for the fast reset and test configuration in Figure 26. The top window 
contains waveforms for signals in the first, i.e. left-most Join2 module, Join2[1].  The middle and bottom 
windows show the waveforms for similar signals in the second and third level Join2 modules. Join2[2] and 
Join2[3]. The waveforms display the slope differences between the falling handshake transitions on the 
module’s output channel, in orange, and the module’s input channel, in red. Unlike the previous fast reset 
simulations for modules Amplify and Fork2, the falling slope for the orange signal at the output channel is NOT 
ALWAYS steeper than the falling slope for the red signal at the input channel. Specifically, for Join2[1] the 
incoming red channel falls more steeply than the outgoing orange channel. Below, we explain why this is so:  
• The green signal, reset, is part of the normal backward reset path. When HI, it resets the red incoming 

handshake signal of the Join2 module to LO. It rises 1 gate delay after the outgoing handshake has fallen, 
as can be seen from the schematics in Figure 24.  

• The falling handshake for out[sw] is driven from the Pred Driver in module Store, via local clock signal cl.  
o Signal cl is amplified for the purpose of steering data latches, but the test configuration does not 

include these data latches. As a result, the load on signal cl is much smaller than the load on the fast 
reset signal, though both are amplified in the same way. This causes cl to rise faster than 
mc_fastRTZ, which in turn causes out[sw] to fall earlier than m1[sw], m2[sw], and inD[sw].  

o Also, looking  at the implementation of the Pred Driver in Figure 4, we can see that cl steers an 
NMOS transistor of strength 10. In contrast, the falling handshakes for m1[sw], m2[sw], and inD[sw] 
are driven from the Pred Driver in the successor Join2 module in the queue, via the fast reset signal 
mc_fastRTZ and the master clear driver input.  From the Pred Driver in Figure 4, we can see that the 
master clear signal steers a much weaker NMOS transistor of strength 3.667. Consequently, out[sw] 
falls more steeply  than m1[sw], m2[sw], and inD[sw], at least initially. As a result, the green reset 
signal rises first in module Fork2[3], then in Fork2[2] and last in Fork2[1].  

• When the green reset signal rises, it starts helping the blue mc_fastRTZ signal in resetting the incoming 
red handshake signal to LO. This explains the knee and subsequent steeper slope for the red signal in the 
bottom two windows. We see such a knee for m1[w] at about 1 Volt and for m2[sw] at 0.8 Volt. For 
inD[sw] in the top window, the green reset signal signal comes too late: inD[sw] is already LO. 

• To understand why the falling slope for the incoming handshake on inD[sw] is steeper than for the 
outgoing handshake on m2[sw], we must take a closer look at the driver ends of the two statewires. Join2 
statewires in1[sw] and in2[sw] are connected to a Succ AND Driver in the predecessor Join2 module. 
From the Succ AND Driver schematics in Figure 3, we can see that this means that these statewires are 
connected to a PMOS transistor of size 20. In contrast, statewire inD[sw] is connected to a Succ Driver in 
the 6-4 GasP Store module that acts as its predecessor. From Figure 2, we can see that this is a 
connection to a PMOS transistor of size 10, i.e. half the drain capacitance compared to the PMOS driver 
connection  for in1[sw] and in2[sw].  All other connections to these statewires are similar in size. So, all 
with all, statewire inD[sw] has a sufficiently lower stray capacitance than statewires in1[sw] and in2[sw] to 
achieve a steeper falling slope – sufficiently steeper to stand out in the top simulation. 

• What also stands out in the top simulation window is that the green internal reset pulse continues beyond 
the blue fast reset pulse. In the top window, this creates the additional side effect that the green pulse is 
still driving the LO driver for statewire inD[sw] when inD[sw] is pulled HI to start the next handshake. This 
is the result of (a) a faster reset of the incoming handshake on inD[sw] and a correspondingly faster start 
of the next handshake on inD[sw], versus (b) a slower reset of the outgoing handshake on in2[sw] and a 
correspondingly slower termination of the internal green reset. 
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reset 

Join2[2] 

 

m1[sw] 
out[sw] 
reset 

Join2[3] 

mc_fastRTZ 

APPENDIX A. TELESCOPE GASP: STORAGE AND BROADCAST 202



ARC# 2012-smg02  Asynchronous Research Center page 30 of 32 
 

6.2. 3-Way Join Module, or Join3 
 
Figure 29 and Figure 30 show our two Telescope GasP circuit implementations for the 3-way Join 
module, called Join3. The designs are very similar to the two implementations of the 2-way Join module in 
Figure 23 and Figure 24. Similar to the Fork extensions, one can already see the limit in implementing an 
N-way Join for the same latency and throughput as a 2-way Fork, for large N. All N signals must be 
synchronized at the NAND and negated-input AND gates at the start of the Forward and Backward 
Transfer parts. Beyond N=3, we might want to build trees of Join modules. 
 
 

 
 

Figure 29: Circuit for Telescope GasP control module Join3, which is a 3-way Join. It has three input 
statewires with a master clear signal,  inA[sw,mc], inB[sw,mc], and inB[sw,mc], and one output statewire 
with a joined master clear, out[sw,mc]. We will use the icon in the top-right corner of this picture, when we 
represent a 3-way Join module. This design is saved under the library name TelescopeGasP_SeparateStates, 
to indicate that it uses separate self-resetting loops for inA[sw]-inB[sw] and out[sw]. 
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Figure 30: Second Telescope GasP implementation for module Join3. Here, we share the self-resetting loops 
between incoming and outgoing statewires insofar possible.  This implementation is saved in the library name 
TelescopeGasP_wStateSharing, under module name Join3T (appendix `T’ in the name stands for `Telescope’). 
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7. Conclusion and Future Work 
 
This document gives the implementation and simulation details of a GasP broadcast module, Store, that 
stores data, and of Telescope GasP implementations for other broadcast modules that do not store data 
but are used in ARCwelder [5,6]: Amplify, Fork, and Join. 
 
Telescope GasP implementations have a minimum cumulative cycle time of 10+4k gate delays, where k is 
the number of consecutive Telescope GasP modules in the data path following and including the present 
module up the Store modules that store the computed results at the end of the data path. The increase in 
cycle time of 4 gate delays per data path module is due to the use of single-track channels.  
 
This puts single-track designs styles, like Telescope GasP, at a disadvantage over other telescoping 
handshake design styles that use multi-track handshake signaling, such as Click [13]. We can alleviate 
this disadvantage and obtain a cumulative cycle time of 10+2k gate delays by adding a fast reset strategy.  
 
The fast reset solutions presented in this document share two key features: 

1. The fast reset signal is generated from the final Store module in the data path. We anticipate that, 
in case of the Fork module, we will be able to identify a particular Store module from which we can 
tap its fast reset signal. We leave such identification for future work.  

2. We re-use the existing master clear input signal to the module as fast reset signal input. This was 
the easiest way to create a fast reset, without changing the module. For practical use, though, the 
master clear signal operates through an almost three times weaker NMOS transistor than the 
transistors and transistor stacks used in normal post-initialized Telescope GasP operations. This 
makes the master clear input too weak to use as a fast reset, as is visible in the SPICE simulation 
results for the Join2 module – see caption of Figure 20 on page 22. In the future, we will use a 
separate fast reset input that operates according to the logical effort expectations of a normal 
post-initialized Telescope GasP operation. 
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Abstract 
This document gives Telescope GasP implementations for pipeline modules for narrowcast 1-to-1ofN or 
1ofN-to-1, or for 1-to-MofN communications under arbitration or data control. These modules are used in 
ARCwelder [5,6]. ARCwelder, previously called TPDesign, is a design and compilation environment for 
dataflow computations; we use it to design self-timed systems. The organization of ARCwelder builds 
upon results and key learnings of the data-driven compiler effort by Handshake Solutions [13]. Related 
self-timed compilation efforts can be found in for instance [1,2,3,19]. 
 
An overall motivation for Telescope GasP, including pros, cons, and alternatives, can be found in [8]. 
Telescope GasP implementations for broadcast 1-to-NofN or NofN-to-1 follow in [9]. Telescope GasP 
implementations for Repeat modules follow in [11]. The references in the current ARC report list all 
references on Telescope GasP used here or in [8,9,10,11]. 
 
 
Keywords: GasP backend for ARCwelder (TPDesign), Telescope GasP for narrowcast and arbitrated or  
data-driven control. 
 
 
Notation: 
1. All GasP implementations in this document and in the related documents [8,9,10,11] are non-

inverting, i.e., their handshake channels, a.k.a. statewires, use the same encoding. Statewires say 
whether the data bundled with the statewire are valid. We use: 

 HI for a high voltage level, e.g. VDD, to indicate a handshake REQUEST phase with valid data.  

 LO for a low voltage level, e.g. VSS or GND, to indicate a handshake ACKNOWLEDGE phase 
where data are no longer needed. 
In our circuit diagrams, we use a short 45-degree line segment for VDD and a triangle for VSS. A 
PMOS transistor connected to VDD and an NMOS transistor connected to VSS are depicted as: 

                                        respectively     
 
2. Our schematic designs use a so-called JBOX construct. This is a special construct in Electric [14] to 

connect signals with different names. The symbol for a JBOX construct is a box with the letter J in it. 
We specifically use it to join the master clear (mc) signals on the various statewires of a module. For 
example, Figure 11 on page 14 uses a JBOX to connect master clear signals in[mc] and out[mc]. 

 
3. It turns out that the telescoping handshake relation requires extra relative timing constraints that are 

not required for conventional GasP [18,7]. The constraints that we need to obtain a telescopic 
handshake relation tend to be transition specific. If the delay margins are small, e.g. in the order of 1 
gate delay, we may want to add extra delay circuitry to increase the margin from say 1 to 3 gate 
delays. To delay a transition from sin LO to sout HI by two additional gate delays we will use the left-
hand circuit in Figure 1 below, and to delay a transition from sin HI to sout LO by two additional gate 
delays, we will use the right-hand circuit in Figure 1.  
 
The two delay circuits in Figure 1 add two gate delays to the targeted sin-to-sout transition. 
Depending on the actual cycle time of the module in the given data path, we can extend this further to 
four additional gate delays or more, without losing throughput. These two types of delay circuits are 
sufficiently generic for our needs, and have the following properties: 
 The required transition is slowed down by sufficient margin. 
 The required transition is fast enough to sustain the maximum throughput. 
 The delay of the opposite transition matches the original delay without the delay circuit. 

 
When we present the circuit schematics of a telescope GasP component, we will indicate places with 
a 1 gate delay margin where one of the delay circuits in Figure 1 may be needed. 
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Figure 1: Delay circuits to increase the delay margin from sin LO to sout HI by two gate delays (left), and to 
increase the margin from sin HI to sout LO by two gate delays (right). Other path delays remain unchanged. 
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1. INTRODUCTION 
 
This document gives GasP control implementations for the following pipeline modules used in ARCwelder 
and specified and listed in [5,6]: Merge, Branch, and Distribute. These modules facilitate narrowcast 
communication for 1ofN-to-1 or 1-to-1ofN or 1-to-MofN modules. The selection can be sender-driven, 
arbitrated or data-driven. Below follows a short description of each module. We will focus on dataflow 
aspects and leave out handshake details. We grouped some of the modules to emphasize their similarity.  
 

 Merge and Branch 
o Merge and Branch modules form a companion pair. They generalize the single input, single output 

streaming by selecting one of many inputs (Merge) or one of many outputs (Branch). We give 
Telescope GasP implementations for 2-way Merge and Branch modules.  

o We cover the full type set of Merge modules: (1) a default Merge whose inputs are mutually 
exclusive, (2) an arbitrated Merge that can handle concurrent inputs, and (3) a sequential Merge 
that takes its inputs in a round-robin fashion.  

o At present, ARCwelder supports only the sequential Branch that takes its outputs in a round-robin 
fashion; we give Telescope GasP designs for a two-, three-, and four-way sequential Branch. 

o Implementation details for the Merge module follow in Section 4 of this document. 
o Implementation details for the Branch module follow in Section 5 of this document. 

 Distribute 
o The Distribute module streams one input to a subset of N-way outputs. The subset varies per 

communication and is set via N additional incoming control bits. We give Telescope GasP 
designs for 2-way, 3-way and 4-way Distribute modules.  

o Implementation details for the Distribute module follow in Section 6 of this document. 
 

Note: The following text up to Section 2 has been copied from [9], to make this document self-contained. 
 
When designing Telescope GasP modules, we distinguish and design four communication control parts: 
 

1. Forward Transfer  
The HI handshake request signal coming in from the predecessor statewire transfers into a HI 
request signal on the successor statewire. The actual transfer generally requires synchronization 
with other incoming and with outgoing signals. We opted for a forward transfer latency of 6 gate 
delays for the Store module and of 2 gate delays for the other modules. 

2. Backward Transfer 
The LO handshake acknowledge signal coming in from the successor statewire transfers into a 
LO acknowledge signal on the predecessor statewire. The transfer generally requires 
synchronization with other outgoing and with incoming signals. We opted for a backward transfer 
latency of 4 gate delays for the Store module and of 2 gate delays for the other modules. 

3. Forward Reset  
The forwarded HI request signal on the successor statewire turns off its own HI drive after 5 gate 
delays, thereafter relying on the keeper to keep the statewire HI as long as needed. The Forward 
Reset in a storage-free Telescope GasP module strictly precedes its Backward Reset. Traditional 
GasP modules, like module Store, turn off their forward HI and backward LO drives concurrently. 

4. Backward Reset 
In a storage-free Telescope GasP module, the backward transferred LO acknowledge signal on 
the predecessor statewire turns off its own LO drive after 5 gate delays. Traditional GasP 
modules, like module Store, turn off their forward HI and backward LO drives concurrently. 
 

The two transfer parts each contain a driver and a half-keeper. Similar to the half-keeper design 
organizations of 4-2 Gasp in [18] and of 6-4 GasP in [7], the half-keeper serves two purposes: it prevents 
the statewire from floating when the drive ceases, and it avoids a keeper-driver short-current conflict.  
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We will explore two different approaches in designing Telescope GasP modules. The first approach uses 
separate self-resetting loops for incoming and outgoing handshake channels. The Merge module in 
Figure 11 is an example of this first design approach. It has three self-resetting loops: the loop at the top 
is used to start and stop the HI drive for out[sw], while the two lower loops start and stop the LO drives for 
inA[sw] respectively inB[sw]. The second approach shares self-resetting loops between incoming and 
outgoing handshake channels where possible. The Merge module in the following Figure 12 is an 
example of the latter design approach. It has two self-resetting loop to start and stop the HI-LO drives for 
out[sw]-inA[sw] respectively out[sw]-inB[sw].  
 
Telescope GasP implementations designed according to the first approach are saved under library name 
TelescopeGasP_SeparateStates. Implementations designed according to the second approach are saved 
under TelescopeGasP_wStateSharing. 
 
Both approaches have their advantages and disadvantages. The advantage of the first approach used in 
Figure 11 is that it supports more incoming and outgoing channels than the second approach used in 
Figure 12, because the first design approach is capable of spreading the input loads over multiple gates. 
This will become obvious when we discuss the sequential or round-robin Merge. The first approach easily 
handles a 3-input sequential Merge module, but the second approach does not.  
 
The advantage of the second approach used in Figure 12 is that it has larger delay margins than the first 
approach. The second approach has delay margins that we feel are safe, whereas the first approach has 
marginal relative timings that we may want to adjust. Figure 11 has two such marginal relative timings: 

1. After either inA[sw] or inB[sw] have risen, it takes 2 gate delays before out[sw] rises and disables 
the two inverted input AND gates in the two lower self-resetting loops, while it takes 3 gate delays 
for the risen incoming signal to enable its corresponding AND gate via its lower self-resetting loop. 
To guarantee a telescope relation between inA[sw] and out[sw] and between inB[sw] and out[sw], 
the inverted input AND gate must sense the disabling out[sw] transition before it senses the 
enabling incoming transition. The delay margin between the two is only 1 gate delay.  

2. After out[sw] falls, it takes 2 gate delays before the present HI signal on either inA[sw] or inB[sw] 
falls and disables the NAND gate in the upper self-resetting loop, while it takes 3 gate delays for 
the LO out[sw] signal to enable that same NAND gate via the upper self-resetting loop. To 
guarantee a correct handshake relation between inA[sw] and out[sw] and between inB[sw] and 
out[sw], the NAND gate must sense the disabling incoming transition before it senses the 
enabling out[sw] transition. The delay margin between the two is only1 gate delay. 

A delay margin of only 1 gate delay is marginal and sensitive to noise interference and process variations. 
We can make both margins as safe as the delay margins deployed in the second design approach, by 
adding extra circuitry to delay the transition that must arrive later by 2 more gate delays.  Other transitions 
remain unaffected. For instance, to delay a transition from sin LO to sout HI we insert the left-hand circuit 
of Figure 1, and to delay a transition from sin HI to sout LO we insert the right-hand circuit of Figure 1.  
 
One of the design criteria for the current Telescope GasP implementations is a low 2 gate delay latency 
between incoming and outgoing handshakes. From [8], we know that we need at least 2 gate delays to 
implement non-inverting Telescope GasP. Our design criterion is to make this latency no more than 2 gate 
delays. To be more precise: we want a minimum latency of 2 gate delays per module from the moment its 
last incoming handshake goes HI (starts) to the moment its outgoing handshakes go HI (start), and, 
likewise, a minimum latency of 2 gate delays from the moment its last outgoing handshake goes LO 
(resets) to the moment its incoming handshakes go LO (reset).  
 
To guarantee this low latency, some of the control functionality is inevitably forced into the drivers for the 
handshake channels. This results in a myriad of custom driver designs, each with 1 gate delay latency. 
Section 2 below lists all custom design drivers used for the design of Merge, Branch, and Distribute 
modules, and includes their circuit schematics. 
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2. Custom Driver Designs for Merge, Branch, and Distribute 
 
To achieve a small 2 gate delay transfer latency, some of the forward and backward transfer logic gets 
integrated inevitably into the driver and half-keeper logic. As a result, Telescope GasP modules use a 
large variation of driver and half-keeper logic for incoming and outgoing statewires - larger than we are 
used to see in traditional, e.g. 6-4, GasP modules.  
 
Section 2.1 gives the implementations of the HI driver and LO half-keeper logic for successor drivers of 
outgoing statewires of narrowcast and arbitrated or data-driven control modules. Section 2.2 does the 
same for the LO driver and HI half-keeper logic for predecessor drivers of incoming statewires. By default, 
we assume that the initial value of a statewire is LO, and so, we will add a master clear (mc) signal and 
related circuitry for fast return-to-zero resetting to the LO driver logic. 

2.1. Single-Track Statewire Drivers for Pull-HI and Keep-LO 
Our Merge, Branch, and Distribute implementations use the following HI driver and LO half-keeper logic 
for successor drivers: 

 Succ Driver: see [9]. 

 Succ AND Driver: see [9]. 

 Succ OR Driver: 2 LO inputs, either of which drives the statewire HI, and a half-keeper to keep it LO. 

 Succ OR3 Driver: 3 LO inputs, either driving the statewire HI, and a half-keeper to keep it LO. 

 Succ ORAND Driver: 3 LO inputs ORAND-ed to drive the statewire HI and half-keeper to keep it LO. 

 Succ OR2xAND Driver: 4 LO inputs ORAND-ed to drive the statewire HI; half-keeper to keep it LO. 
All five circuits have an input-to-output transition time of one gate delay. Implementations not already 
given in [9] follow in Figure 2 to Figure 5 below. 
 

 

 
Figure 2: Transistor-level GasP design for Succ OR Driver. Either input  inA or inB will drive statewire succ 
HI within one gate delay. The half-keeper is there to keep succ LO, when needed. The official 180nm cell 
name in our Electric design environment [14]  is SucOrDri10. We use the icon in the top right corner as a gate-
level shortcut for Succ OR Driver. It is used in the default Merge module. 
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Figure 3: Transistor-level GasP design for Succ OR3 Driver, with three inputs, named inA, inB and inC, 
either of which will drive statewire succ HI within one gate delay, and a half-keeper to keep succ LO. This 
official cell name is suc3inOrDri10S. We will use the icon in the top right corner of the picture as a gate-level 
shortcut for this driver design. It is used in the three-way Sequential Merge module. 

 

 
Figure 4: Transistor-level GasP design for Succ ORAND Driver. Its official cell name is sucOrAndDri10S. 
When inA is low and either inB or inC are low, statewire succ is driven HI within one gate delay. The half-
keeper is there to keep succ LO, when needed. We will use the icon in the top right corner of the picture as a 
gate-level shortcut for this driver design. It is used in our first Arbitrated Merge design. 
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Figure 5: Transistor-level GasP design Succ OR2xAND Driver. Its official cell name is sucOr2xAndDri10. 
When either condA and inA are both low or condB and inB are both low, statewire succ is driven HI within 
one gate delay. The half-keeper is there to keep succ LO, when needed. We use the icon in the top-right 
corner as a gate-level shortcut for this driver design. It is used in our second Arbitrated Merge design, and 
saved under the library for TelescopeGasP_wStateSharing 

 

2.2. Single-Track Statewire Drivers for Pull-LO and Keep-HI 
  
Our Merge, Branch, and Distribute implementations use the following HI driver and LO half-keeper logic 
for predecessor drivers:  

 Pred Driver: see [9]. 

 Pred AND Driver: see [9]. 

 Pred OR Driver: 2 HI inputs, either of which drives the statewire LO, and a half-keeper to keep it HI. 

 Pred OR3 Driver: 3 HI inputs, either of which drives the statewire LO, and a half-keeper to keep it HI. 

 Pred Driver with MC and fastRTZ: Pred Driver with extra 2-input guarded fastRTZ facility. 

 Pred OR Driver with MC and fastRTZ: Pred OR Driver with extra 2-input guarded fastRTZ facility. 

 Pred AND Driver with MC and fastRTZ: Pred AND Driver with extra 2-input guarded fastRTZ facility. 
 
All seven circuits have an input-to-output transition time of one gate delay. By convention, statewires are 
initialized LO. So, unless otherwise specified, LO drivers have a master clear (mc) input signal and 
related circuitry to initialize the statewire to LO. All driver implementations in this Section follow this 
convention. Also any additional circuitry for fast resetting is integrated into the LO driver logic for 
predecessor drivers of incoming statewires.  
 
GasP implementations not already given in [9] follow in Figure 6 to Figure 10 below. 
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Figure 6: Transistor-level GasP design for Pred OR Driver, with two inputs inA and inB, either of which will 
drive statewire pred LO within one gate delay. The official 180nm cell name in our Electric design environment 
is predOrDri10wMC. The half-keeper is there to keep pred HI, when needed. Input signal mc, for master 
clear, is used to initialize pred to LO. We will use the top-right as a gate-level shortcut for this design. It is used 
in the two-way Sequential Branch module, also known as Toggle Branch or two-way Round-Robin Branch. 

 
 

 
Figure 7: Transistor-level GasP design for Pred OR3 Driver, with three inputs inA, inB, inC, either of which 
will drive statewire pred LO within one gate delay. Its official name is predOr3Dri10wMC. The half-keeper is 
there to keep pred HI, when needed. Input signal mc, for master clear, is used to initialize pred to LO. We will 
use the icon in the top right corner of the picture as a gate-level shortcut for this driver design. It is used in the 
three-way Sequential Branch module. 

predORDri10wMC 
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Figure 8: Transistor-level GasP design for predecessor driver Pred Driver with MC and fastRTZ. Its official 
name is predDri10wMCwFastRTZ. For normal operations, this driver acts like a Pred Driver with input signal 
inA to drive statewire pred LO within one gate delay, and with master clear signal mc to initialize pred to LO. 
We added a conditional fast reset operation: when both cond and fastRTZ are HI input stat wire pred is driven 
LO within one gate delay. The half-keeper is there to keep pred HI, when needed. We will use the icon in the 
top-right corner of the picture as a gate-level shortcut for this driver design. It is used in our second design for 
the two-way Sequential Merge module, also known as Toggle Merge or two-way Round-Robin Merge. This 
predecessor driver is saved under the library for TelescopeGasP_wStateSharing. 
 
 

 
 
 

 
 

Figure 9: Transistor-level GasP design for predecessor driver Pred OR Driver with MC and fastRTZ. Its 
official name is predORDri10wMCwFastRTZ. For normal operations, this driver acts like a Pred OR Driver 
with either input signal in1 or input signal in2 driving statewire pred LO within one gate delay, and with master 
clear signal mc to initialize pred to LO. We added a conditional fast reset operation: when both cond and 
fastRTZ are HI input stat wire pred is driven LO within one gate delay. The half-keeper is there to keep pred 
HI, when needed. We will use the top-right icon as a gate-level shortcut for this driver design. It is used in our 
second design for the two-way Sequential Branch module, also known as Toggle Branch or two-way Round-
Robin Branch. This predecessor driver is saved under the library for TelescopeGasP_wStateSharing. 
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Figure 10: Transistor-level GasP design for Pred AND Driver with MC and fastRTZ. Its official name is 
predANDDri10wMCwFastRTZ. For normal operations, this driver acts like a Pred AND Driver with two HI input 
signals in1 and in2 to jointly drive statewire pred LO within one gate delay, and with master clear signal mc to 
initialize pred to LO. We added a conditional fast reset operation: when both cond and fastRTZ are HI input 
stat wire pred is driven LO within one gate delay. The half-keeper is there to keep pred HI, when needed. We 
will use the top-right icon as a gate-level shortcut for this driver design. It is used in our second design for the 
two-way Distribute module, and it is saved under the library for TelescopeGasP_wStateSharing. 
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3. Data Steering Logic for Merge, Branch, and Distribute 
 
Unlike the broadcast modules in [9], the modules in this document steer data selectively: some data are 
forwarded to the outgoing communication channels, other data are ignored. We forward only those data 
bits that are bundled with incoming handshake channels that participate in the current telescope action. 
 
We opted to broadcast the incoming data to all outgoing handshake channels, no matter whether or not 
the receiving module participates in the action. As a result, no special steering logic is needed for the 
single-input, multiple-output Branch and Distribute modules.    
 
That leaves us with the Merge modules. Merge modules do need special steering logic. For each Merge 
module, we will design a special data steering signal per incoming handshake channel. The steering 
signal will be HI when the data bundled with the handshake channel are to be forwarded, and it will be LO 
when the bundled data are to be ignored. Such steering signals can be used to control the multiplexers in 
the data path that multiplex the data bits coming into the module onto the module’s outgoing data bits. Our 
Telescope GasP designs focus primarily on the handshake circuitry. As such, our design implementations 
of the Merge modules will show the data steering signals, but not the bit-wise multiplexers in the data path. 
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4. Merge Modules 

Merge modules generalize the single input, single output streaming of an Amplify module by selecting one 
of many inputs. In short, Merge modules provide 1ofN-to-1 communication. In Sections 4.1 to 4.4 below, 
we give Telescope GasP implementations for a two-way un-arbitrated Merge, a two-way arbitrated Merge, 
and two- to four-way sequential Merge modules. 

4.1. Default Merge Module, or Merge 
The Default Merge module, which we will simply call Merge, provides single input to single output 
communication. Upon receiving exactly one out of two possible input communication requests, it will 
perform a corresponding output communication, using the data of the selected input source as output 
data. The Merge module assumes that the environment will send it input communication requests in a 
mutually exclusive fashion. We can tap the data steering signals from the control inputs, because these 
remain stable until the end of the output communication. 
 
Figure 11 and Figure 12 show our Telescope GasP circuit implementation for the Merge module. The 
implementation in Figure 11  is an example of our first design approach with independent self-resetting 
loops for statewire of incoming and outgoing handshake channels. It has three self-resetting loops: the 
loop at the top is used to start and stop the HI drive for out[sw], the two loop at the bottom are used to 
start and stop the LO drives for inA[sw] respectively inB[sw]. The Merge implementation in Figure 12 is an 
example of the second design approach with shared self-resetting loops between the statewires of 
incoming and outgoing handshake channels. It has two self-resetting loops, with separate taps to start and 
stop the HI drive for out[sw] and the LO drives for inA[sw] and inB[sw].  
 
A SPICE-level simulation of the handshake behavior of the Merge implementation in Figure 11  follows in 
Figure 13. The handshake behaviors are the same for both implementations, and can be described as 
follows. Initially, inA[sw], inB[sw], out[sw], and mc are LO. When either inA[sw] or inB[sw] go HI, 
indicating mutual exclusive presence of data on the incoming channels, and when out[sw] is LO, 
indicating the availability of space, the following four sets of actions are started in sequence, as follows: 

1. The Forward Transfer part signals the presence of new data to the successor module by driving 
out[sw] HI. This takes 2 gate delays. The steering signal for the HI incoming channel is driven HI. 

2. The Forward Reset section kicks in, cutting off the HI forward drive to a 5 gate delay pulse signal. 
3. The Backward Transfer waits until out[sw] is LO, and then reports new availability of space to the 

predecessor by driving the presently HI inA[sw] respectively inB[sw] LO, 2 gate delays later. 
4. The Backward Reset part kicks in, cutting off both LO backward drives after 5 gate delays.  

After action 4, the Merge waits until again either inA[sw] or inB[sw] is HI, so it can start its next cycle. 
 
Internally, the behaviors of the two Merge implementations differ. The advantage of the implementation in 
Figure 12 is that it has delay margins that are relatively safe, whereas the implementation in Figure 11 
has two delay margins that are marginal. The differences in delay margin are very similar to those 
described in [9] for the two implementations of the broadcast modules. The two marginal delay margins in 
Figure 11  are as follows: 

1. After either inA[sw] or inB[sw] have risen, it takes 2 gate delays before out[sw] rises and disables 
the two inverted input AND gates in the two lower self-resetting loops, while it takes 3 gate delays 
for the risen incoming signal to enable its corresponding AND gate via its lower self-resetting loop. 
To guarantee a telescope relation between inA[sw] and out[sw] and between inB[sw] and out[sw], 
the inverted input AND gate must sense the disabling out[sw] transition before it senses the 
enabling incoming transition. The delay margin between the two is only 1 gate delay.  

2. After out[sw] falls, it takes 2 gate delays before the present HI signal on either inA[sw] or inB[sw] 
falls and disables the NAND gate in the upper self-resetting loop, while it takes 3 gate delays for 
the LO out[sw] signal to enable that same NAND gate via the upper self-resetting loop. To 
guarantee a correct handshake relation between inA[sw] and out[sw] and between inB[sw] and 
out[sw], the NAND gate must sense the disabling incoming transition before it senses the 
enabling out[sw] transition. The delay margin between the two is only1 gate delay. 
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Figure 11: Telescope GasP implementation of module Merge. The circuit has two input statewires with a 
master clear signal,  inA[sw,mc] and inB[sw,mc], two corresponding data steering signals steer[A] and 
steer[B], and one output statewire with a forwarded master clear, out[sw,mc]. We will use either of the two 
icons in the top-right corner of this picture, when we represent a Default Merge module.  This particular 
implementation is saved under the library name TelescopeGasP_SeparateStates, to indicate that it uses 
separate self-resetting loops for inA[sw], inB[sw], and out[sw]. 
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Figure 12: Second Telescope GasP implementation for module Merge. Here, we share the self-resetting loops 
between incoming and outgoing statewires insofar possible.  This implementation is saved in the library named 
TelescopeGasP_wStateSharing, under module name Merge2TfastRTZ. Appendix `TfastRTZ’ in the name 
indicates that this is a Telescope GasP implementation with fast reset capability. To ensure that we reset only 
the incoming handshake that caused out[sw] to go HI, we have AND-ed the fast reset signal at the LO driver 
with an internal guard signal. The guard for inA[sw] is tapped from internal state signal sA via three inversions, 
The guard for inB[sw] is tapped from internal state signal sB via three inversions.  
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Figure 13: SPICE-level simulation of the Telescope GasP implementation of the Merge module in Figure 11. 
Red and green signals inA[sw] and inB[sw] have a telescopic handshake relationship to blue signal out[sw]: 
inA[sw] or inB[sw] HI causes out[sw] to go HI, and when out[sw] has gone LO, only then will the input go LO. 
The simulation clearly shows that each HI out[sw] pulse is contained within a HI pulse on inA[sw] or inB[sw]. 

 
 
 
 
 
 
 
 
 
 
 
A delay margin of only 1 gate delay is marginal and sensitive to noise interference and process variations.  
We can adjust both margins to 3 gate delays by inserting the proper delay circuits from Figure 1, page 3. 
This would make the delay margins in the implementation of the Merge module in Figure 11 as safe as 
those in Figure 12. 

 
The two implementations have the same cycle time and latencies. In both implementations, the Forward 
Transfer part is implemented using the Succ OR Driver of Figure 2.  There is 1 additional gate between 
inA[sw] respectively inB[sw] and the input of the Succ OR Driver, giving a total forward latency of 2 gate 
delays. In both implementations, the two Backward Transfer parts are implemented using a Pred OR 
Driver. The Pred OR Drive version used in Figure 12 has an additional fast reset, as shown in Figure 9. 
There is 1 additional gate between the outgoing channel out[sw] of each Merge implementation and the 
input of the two Pred OR Drivers, giving a total backward latency of 2 gate delays. 
 
Without a fast reset signal, the minimum cycle time for each implementation is 2+5+2+5=14 gate delays, 
as set by the 2 gate delay transfers and the 5 gate delay self-resetting loops in the circuit diagrams of 
Figure 11  and Figure 12, assuming that successor and predecessor modules keep the statewires HI 
respectively LO for a minimum of 5 gate delays. The cycle time increases in steps of 4 gate delays for 
each successor module between the Merge module and the following Store module. This skewing of the 
cycle time happens because each next module’s Backward Transfer section must wait until the 
corresponding Forward Transfer in the module has completed. 
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Using a fast reset signal, we can reduce the backward latency and lower the cycle time to 12 gate delays 
per Merge module, with an increase in steps of 2 gate delays for each successor module between the 
Merge module and the following Store module. We designed a test environment that generates such a 
fast reset signal. We tested the behavior of the Merge module with this fast reset, using the test 
configuration in Figure 14. Unlike the fast reset solution that we presented in [9] for use in broadcast 
communication modules, in Figure 14 we avoid sharing the master clear circuitry for fast resets. We have 
two reasons for providing a fast reset signal that is separate from the master clear signal: 

 The first reason is due to the fact that all module implementations for Telescope GasP distribute 
the master clear signal over all incoming and outgoing channels, via a so-called JBOX construct, 
as explained in the beginning of this document. This makes it impossible to reset some inputs but 
not others. Though this did not matter for the broadcast modules in [9], it does matter for the 
narrowcast modules described in the current document.  

 The second reason is that we prefer the fast reset drive to be stronger than the master clear 
signal drive. The master clear signal uses a weak 3.667 NMOS transistor to drive the 
predecessor statewire LO, as can be seen for instance in the Pred OR Driver in Figure 6. All 
other input signals to the Pred OR Driver use an NMOS transistor drive capability of 10 to drive 
the predecessor statewire LO. We would like the fast reset to have the stronger drive capability. 
Figure 9 shows an implementation of the Pred OR Driver with such a stronger-drive fast reset. 

 

Figure 14 shows a mutually exclusive sender environment with two senders on the left feeding a three-
level deep tree of Merge modules. The Merge modules are designed in Telescope GasP using the 
implementation in Figure 12. The right-hand side shows the receiving half of a Store module [9]. We 
deleted the sending half from the Store implementation, because we don’t need it, and we added extra 
circuitry to generate a fast reset signal, which is called mc_fastRTZ, and to reset the outgoing handshake 
at the end of the Merge tree. This new configuration works in a way similar to the fast reset configurations 
for the broadcast modules in [9]. 
 
Four gate delays after the last incoming handshake to the Store module, i.e., after out[sw] has gone HI, 
the Store module makes mc_fastRTZ HI. At the same time, i.e., four gate delays after out[sw] has gone 
HI, the Store module makes its local clock signal cl HI. The mc_fastRTZ signal is distributed to each 
Merge module, as a separate input signal. The cl signal, besides clocking latches in the data path, also 
acts as input to the LO driver for out[sw]. Consequently, five gate delays after out[sw] has gone HI,  all 
outstanding statewires that actively participate in the current telescoping communication are reset 
concurrently. The reset stops after 5 gate delays, via the self-resetting loop in the Store module. Figure 15 
and Figure 16 show the corresponding SPICE-level simulation waveforms. 
 
Specifically, Figure 15 shows that statewires that play no role in the current telescoping communication 
are not reset. As an example, observe how statewire inB[sw] rises as soon as statewire inA[sw] has fallen, 
about midway through the top simulation and right in the middle of the first HI pulse on fastRTZ. The 
reverse happens during the second HI pulse on fastRTZ: as soon as statewire inB[sw] has fallen, 
statewire inA[sw] rises unhindered about midway during the fastRTZ pulse. The fact that only those 
handshakes are reset that actually participate in the present handshake telescope leading to out[sw] going 
HI, is due to the pairing of the fast reset signal with an internal guard signal. The guard signal indicates 
whether or not the incoming handshake plays a role in the current handshake telescope. See Figure 12 
for design details.  
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Figure 14: : Fast reset configuration and test environment to concurrently reset all Merge-connected statewires 
that actively participate in the current handshake telescope leading to out[sw] going HI. Note that, unlike the 
fast reset signal mc_fastRTZ in[9], the fast reset signal fastRTZ generated by the above Store module is 
independent of master clear signal mc.  

 
 

 
 

Figure 15: SPICE-level simulation results for the fast reset and test configuration in Figure 14.  

 The top window shows how the blue HI pulse on fast reset signal fastRTZ concurrently resets all 
handshake signals that caused out[sw] to rise. The first HI pulse on fastRTZ has no effect on the rising 
purple inB[sw] signal, which is exactly how it should be as inB[sw] did not participate in the first out[sw] 
handshake.  Likewise, the second HI pulse on fastRTZ has no effect on the rising red inA[sw] signal, 
which is also how it should be given that inA[sw] did not participate in the second out[sw] handshake. 
Signal out[sw] falls earlier than the other handshake signals. An explanation follows in Figure 16 below.  

 The bottom window shows the behaviors of the data steering signals for each Merge module. As 
expected, steer[A] rises 2 gate delays after inA[sw] rises, steer[C] two gate delays after AB[sw], and 
steer[D] two gate delays after ABC[sw]. The fall simultaneously during the fast reset pulse on fastRTZ. 
Note that steer[B] does not rise until the end of the fastRTZ pulse, after inB[sw] has risen. The yellow 
steering signals never rise: they represent the steering signals of statewires m1[sw] to m6[sw] unused by 
the given test setup. Note that the rising and falling slopes of the used steering signals are very steep. 
This is because they carry no load: the test configuration does not steer any data latches.  
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Figure 16: SPICE-level simulation details for the fast reset and test configuration in Figure 14. The top window 
contains waveforms for signals in the bottom-left Merge module, Merge[1].The middle and bottom windows 
show the waveforms for similar signals in the bottom-middle and rightmost modules of the tree, Merge[2] and 
Merge[3]. The waveforms display the slope differences between the falling handshake transitions on the 
module’s output channel, in orange, and the module’s input channel, in red. The falling slopes are almost 
identical for Merge[1] and Merge[2]. Only for Merge[3] do we see a difference. Below, we explain why this is so: 

 The blue signal, fastRTZ, is the fast reset signal generated by the Store module. During its 5 gate delay HI 
pulse, all orange and red handshake signals are reset to LO, simultaneously. 

 To understand why the falling slope for the outgoing handshake on out[sw] starts earlier and is slightly 
steeper than for the incoming handshake on ABC[sw] for Merge[3], AB[sw] for Merge[2], and inA[sw] for 
Merge[1], we must take a closer look at the LO drivers for the two statewires and at the LO driver input 
signals. Statewire out[sw] is connected to a Pred Driver in the successor Store module and driven by the 
local clock signal cl. Signal cl is amplified for the purpose of steering data latches, but the test 
configuration does not include these data latches. As a result, the load on signal cl is much smaller than 
the load on the fast reset signal, fastRTZ, though both are amplified in the same way. This causes cl to 
rise faster than fastRTZ, which in turn causes out[sw] to fall earlier than ABC[sw], AB[sw], and inA[sw].  

 The green signal, resetA or resetB, is part of the normal backward reset path. When HI, it resets the red 
incoming handshake signal of the Merge module to LO, with or without the extra help of the guarded 
fastRTZ signal. From the Merge schematics in Figure 12, we can see that the guards for the internal reset 
and the fast reset originate from the same signal. Signal sAplus2 is used to reset inA[sw]. Signal sBplus2 
is used to reset inB[sw]. If the guard holds, i.e., is HI, then the internal reset rises 1 gate delay after a 
falling transition on the orange outgoing handshake, and 2 gate delays after the blue fast reset rises. 

 Unlike the fast reset signal that we generated for the broadcast modules in [9], which used a 3.667 strong 
NMOS transistor in the driver, the guarded fast reset for the Merge module uses an NMOS transistor 
stack of strength 10. Consequently, the red incoming handshake signals for the Merge modules have 
steeper reset slopes than the broadcast modules in [9].  As a result, the red signals are largely reset by 
the time the green internal reset starts, making the internal reset less effective during fast resets of Merge.  

 Pink signal, sAplus2 or sBplus2, acts as (negated) guard for fastRTZ and as (confirming) guard for the 
internal reset. It is LO at the start of the fastRTZ HI pulse. It goes HI 4 gate delays after fastRTZ goes HI, 
and 1 more gate delay later, it stops the HI pulse on the green internal reset signal and its stops the 
fastRTZ drive to the red incoming handshake, thus ceasing  the LO drive on the red incoming handshake. 
The 5 gate delay HI pulse on fastRTZ stops around the same time.  

 
 
 

4.2. Arbitrated Merge Module 
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The Arbitrated Merge module provides single input to single output communication. Upon receiving one or 
more out of two possible input communication requests, it will arbitrate between the requests and non-
deterministically select one to work with. For the selected incoming request, it performs a corresponding 
output communication using the data of the selected input data as output data. We can tap the data 
steering signals from the arbiter outputs, which remain stable until the output communication is complete. 
 
Figure 17 and Figure 18 show our Telescope GasP implementation for the Arbitrated Merge module. The 
implementation in Figure 17 is an example of our first design approach with independent self-resetting 
loops for statewires of incoming and outgoing handshake channels. It has three self-resetting loops: the 
loop at the top is used to start and stop the HI drive for out[sw], the two loop at the bottom are used to 
start and stop the LO drives for inA[sw] respectively inB[sw]. The Merge implementation in Figure 18  is 
an example of the second design approach with shared self-resetting loops between the statewires of 
incoming and outgoing handshake channels. It has two self-resetting loops, with separate taps to start and 
stop the HI drive for out[sw] and the LO drives for inA[sw] and inB[sw].  
 
A SPICE-level simulation of the handshake behavior of the Arbitrated Merge implementation in Figure 17 
follows in Figure 21(top). The handshake behaviors are the same for both implementations, and can be 
described as follows. Initially, inA[sw], inB[sw], out[sw], and mc are LO. When either or both of inA[sw] 
and inB[sw] go HI, indicating the presence of data on the incoming channels, and when out[sw] is LO, 
indicating the availability of space, the following four sets of actions are started in sequence, as follows: 

1. The Forward Transfer part signals the presence of new data to the successor module by driving 
out[sw] HI. This takes 2 gate delays. Meanwhile, also the steering signal for the arbiter-selected 
incoming channel is driven HI. 

2. The Forward Reset section kicks in, cutting off the HI forward drive to a 5 gate delay pulse signal. 
3. The Backward Transfer waits until out[sw] is LO, and then reports new availability of space to the 

predecessor by driving the arbiter-selected incoming channel LO, 2 gate delays after observing 
the LO out[sw] signal. The forwarded data signals are reset LO. 

4. The Backward Reset section kicks in, cutting off the LO backward drive to a 5 gate delay pulse.  
At the end of these four serial sets of actions, the Arbitrated Merge module waits until either inA[sw] or 
inB[sw] is HI again, so it can start its next cycle. 
 
Figure 19 and Figure 20 show the circuit details of our arbiter design. The design is based on the 
interlock element in [Figure 7.25, 15] by Charles Seitz. We discussed this design in earlier ARC reports 
[16,17]. The organization in Figure 19 reflects the layout organization of the arbiter in GasP. This layout 
has been proven topologically equivalent to the design by Seitz, using Electric [14].   
 
We would like to emphasize that the arbiter is fair in that it will alternately select inA[sw] followed by 
inB[sw], or vice versa, whenever these two inputs overlap. This is because it will take at least 5 gate 
delays for the selected input statewire to bounce back from LO to HI, while the unselected input statewire 
is already HI. 
 
Figure 21(top) shows a SPICE-level simulation of the Arbitrated Merge module supporting the external 
handshake behavior of the arbitrated Merge module, described above. Figure 21(bottom) shows a SPICE 
simulated arbitrated resolution of two competing arbiter inputs and the corresponding changes in voltage 
levels for intermediate and output signals of the arbiter. 
 
We are not quite happy with the voltage drop in the arbiter selected input – see Figure 21(top). We can 
diminish this voltage drop at the cost of a somewhat slower minimum latency through the arbiter. Swetha 
developed a new arbiter design with a sufficiently small voltage drop for the arbiter selected input. We use 
it in the second Arbitrated Merge design Figure 18. The resulting waveforms are visible in Figure 23 and  
 

Figure 24, and show relatively stable and well-defined voltage levels for the arbiter inputs. Swetha will 
write a separate ARC report with an analysis of the issues and solutions in the arbiter design [12]. 
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Figure 17:  Telescope GasP implementation for the Arbitrated Merge module. The circuit has two input 
statewires with a master clear signal,  inA[sw,mc] and inB[sw,mc], two corresponding data steering signals 
steer[A] and steer[B], and one output statewire with a forwarded master clear, out[sw,mc]. We will use the 
icon in the top-right corner of this picture, as a gate-level representation of an Arbitrated Merge module. This 
particular implementation is saved under the library name TelescopeGasP_SeparateStates, to indicate that it 
uses separate self-resetting loops for inA[sw], inB[sw], and out[sw]. 
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Figure 18: Second Telescope GasP implementation for the Arbitrated Merge. Here, we use a size 10 arbiter 
and share the self-resetting loops between incoming and outgoing statewires.  In reality we need an arbiter 
between size 5 and 10 for both Arbitrated Merge versions. This implementation is saved in the library named 
TelescopeGasP_wStateSharing, under module name Merge2TfastRTZwArbiter. Substring `TfastRTZ’ in the 
name indicates that this is a Telescope GasP implementation with fast reset capability. To ensure that we reset 
only the incoming handshake that caused out[sw] to go HI, we have AND-ed the fast reset signal at the LO 
driver with an internal guard signal. The guard for inA[sw] is tapped from internal state signal sA via three 
inversions, The guard for inB[sw] is tapped from internal state signal sB via three inversions. 
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Figure 19: Circuit design of the 2-way arbiter in Figure 17, called Arbitrated Latch. The Arbitrated Latch is 
implemented as a cross-coupled pair of so-called Arbitrated Latch Nand gates, whose design follows below in 
Figure 21. When one or both of the requesting inputs req[A] and req[B] are HI, the arbiter grants exactly one 
of the HI requests by lowering the corresponding grant output. It lowers grant[A] if it grants a HI req[A] 
request, and it lowers grant[B] if it grants a HI req[B] request. It never lowers both grant[A] and grant[B]. We 
use the icon in the top-right corner as a gate-level representation for this 2-way arbiter design. 

 

.  
Figure 20: Circuit implementation for the Arbitrated Latch Nand circuit used in the arbiter design of  
Figure 19. Input req[B] is one of the input requests to the arbiter. Input inA, also called cross[A], is cross-
coupled to the intermediary output signal of the complementary Arbitrated Latch Nand gate in the arbiter. 
Likewise, output cross, also called cross[B], is cross-coupled to the intermediary input signal of the 
complementary Arbitrated Latch Nand gate in the arbiter. Output signal grant[B] is driven high whenever 
req[B] is LO. If req[B] is HI the cross-coupling works like an arm-wrestling match between the requests. Due 
to the extra voltage build-up across the NMOS pass transistor between cross and grant[B], even a mid-way 
voltage tie between in[A] and cross leaves both grant signals at a sufficiently high voltage level,. The 
combination of cross-coupling and NMOS transistor ensures that the outgoing grant signal, here grant[B], 
retains a high voltage level until the arbitration process resolves in favor of grant[B].   
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Figure 21: SPICE-level simulations of (top) the GasP implementation of the Arbitrated Merge in Figure 17, 
and (bottom) the resolution of two competing arbiter inputs and corresponding changes in voltage levels for 
intermediary signals and output signals of the Arbitrated Latch design in Figure 19 and Figure 21.  

 In the top window, one can see the fairness property of the arbiter: when statewires inA[sw] and inB[sw] 
arrive at about the same time and the arbiter selects inA[sw], then it will select inB[sw] next.  

 The bottom window gives a more detailed view of such a scenario, including the initial metastable 
behavior where the arbiter is still deciding whether to select the A side or the B side.  

 We are not quite happy with the voltage drop in the arbiter selected input, visible in top window. The 
voltage of inA[sw] and inB[sw] drops below 1.5 Volt. We can diminish this voltage drop at the cost of a 
somewhat slower minimum latency through the arbiter. Swetha developed a new arbiter design with a 
sufficiently small voltage drop for the arbiter selected input. We use it in the second Arbitrated Merge 
design of Figure 18. The resulting waveforms are visible in Figure 15 and Figure 16, and show very 
stable and strong voltage levels. An analysis of the issues and presentation of the new arbiter design 
solution will be published as a separate ARC report [12]. 
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Internally, the behaviors of the two Arbitrated Merge implementations differ. The advantage of the 
implementation in Figure 18 is that it has delay margins that are relatively safe, whereas the 
implementation in Figure 17 has two delay margins that are marginal. The differences in delay margin are 
very similar to those described in Section 4.1 for the two implementations of the Merge module.  
 
The two marginal delay margins in Figure 17 are as follows: 

1. After either inA[sw] or inB[sw] have been selected by the arbiter, it takes 1 more gate delay before 
out[sw] rises and disables the two inverted input AND gates in the two lower self-resetting loops, 
while it takes 2 more gate delays for the selected signal to enable its corresponding AND gate via 
its lower self-resetting loop. To guarantee a telescope relation between inA[sw] and out[sw] and 
between inB[sw] and out[sw], the inverted input AND gate must sense the disabling out[sw] 
transition before it senses the enabling incoming transition. The delay margin is only 1 gate delay.  

2. After out[sw] falls, it takes 2 gate delays before the present HI signal on either inA[sw] or inB[sw] 
falls and disables the NAND gate in the upper self-resetting loop, while it takes 3 gate delays for 
the LO out[sw] signal to enable that same NAND gate via the upper self-resetting loop. To 
guarantee a correct handshake relation between inA[sw] and out[sw] and between inB[sw] and 
out[sw], the NAND gate must sense the disabling incoming transition before it senses the 
enabling out[sw] transition. The delay margin between the two is only1 gate delay  

 
A delay margin of only 1 gate delay is marginal and sensitive to noise interference and process variations.  
We can adjust both margins to 3 gate delays by inserting the proper delay circuits from Figure 1, page 3. 
This would make the delay margins in the implementation of the Arbitrated module in Figure 17 as safe 
as those in Figure 18. 
 
The two implementations have the same cycle time and the same latencies. The Forward Transfer parts 
in Figure 17 and Figure 18 use respectively the Succ ORAND Driver of Figure 4 and the Succ OR2xAND 
Driver of Figure 5. There is 1 additional gate, namely the arbiter, between inA[sw] respectively inB[sw] 
and the input of the driver in the Forward Transfer part, giving a minimal forward latency of 2 gate delays.  
 
This minimum latency holds if the arbiter is uncontested, for instance when there is only one input request. 
The arbiter is a metastable device and so, in theory, when both input requests arrive at about the same 
time, the delay through the arbiter can be arbitrarily long. In practice, however, arbitrations are rarely 
contested, and their resolution time is generally around 1 gate delay. 
 
In both implementations, the two Backward Transfer parts are implemented using a Pred OR Driver. The 
Pred OR Drive version used in Figure 18 has an additional fast reset, and can be found in Figure 9. 
There is 1 additional gate between the outgoing channel out[sw] of each Arbitrated Merge implementation 
and the input of the two Pred OR Drivers, giving a total backward latency of 2 gate delays. 
 
Without a fast reset signal, the minimum cycle time for each implementation is 2+5+2+5=14 gate delays, 
as set by the 2 gate delay transfers and the 5 gate delay self-resetting loops in the circuit diagrams of 
Figure 17 and Figure 18, assuming that successor and predecessor modules keep the statewires HI 
respectively LO for a minimum of 5 gate delays. The cycle time increases in steps of 4 gate delays for 
each successor module between the Arbitrated Merge module and the following Store module.  
 
Using a fast reset signal, we can reduce the backward latency and lower the cycle time to 12 gate delays 
per Arbitrated Merge module, with an increase in steps of 2 gate delays for each successor module 
between the Arbitrated Merge module and the following Store module. We designed a test environment 
that generates such a fast reset signal. The test setup and the generation of the fast reset signal, fastRTZ, 
are very similar to the test setup and fast reset generation for Telescope GasP module Merge. Test setup 
and simulation waveforms for the Arbitrated Merge follow in Figure 22, Figure 23, and  
 

Figure 24 below.  
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Figure 22: Fast reset configuration and test environment to concurrently reset all Arbitrated Merge connected 
statewires that actively participate in the current handshake telescope leading to out[sw] going HI. Note that, 
unlike the fast reset signal mc_fastRTZ in [9], but like the fast reset signal fastRTZ in the Default Merge 
module in this document, the fast reset signal fastRTZ generated by the Store module in this picture is 
independent of master clear signal mc. 

 
 

 

 
 

Figure 23: SPICE-level simulation results for the fast reset and test configuration in Figure 22. The simulation 
window shows how the pink HI pulse on fast reset signal fastRTZ concurrently resets all handshake signals 
that caused out[sw] to rise. The first HI pulse on fastRTZ has no effect on the HI inB[sw] signal, in orange, 
which is exactly how it should be as inA[sw]  - and not inB[sw] - was selected by the arbiter, and so inB[sw] did 
not participate in the first out[sw] handshake.  Likewise, the second HI pulse on fastRTZ has no effect on the HI 
inA[sw] signal, in red, which is also how it should be given that inA[sw] was not arbiter selected and hence did 
not participate in the second out[sw] handshake. The reset slope for out[sw] starts earlier and is slightly steeper 
than for the other handshake signals. Details follow in  
 
Figure 24 below.  
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Figure 24: SPICE-level simulation details for the fast reset and test configuration in Figure 22. The top window 
contains waveforms for signals in the bottom-left Arbitrated Merge module, MergeArbiter[1]. The middle and 
bottom windows show the waveforms for similar signals in the bottom-middle and rightmost modules of the 
tree, MergeArbiter[2] and MergeArbiter[3]. The waveforms display the slope differences between the falling 
handshake transitions on the module’s output channel, in orange, and the module’s input channel, in red. The 
details are similar to those for the default Merge component, explained in Figure 16. The differences in start 
and steepness of the falling slopes for the statewires of each module can be explained from differences in 
respectively (a) input slopes to the LO drivers for the statewires and (b) stray capacitance on the statewires. 
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4.3. 2-Way Sequential Merge Module, or Toggle Merge 
 
The 2-way Sequential Merge module, also called Toggle Merge or Round-Robin Merge, provides single 
input to single output communication. The Toggle Merge will alternate the communications over its input 
channels, starting with in1[sw], then in2[sw], then again in1[sw], etcetera. For the selected incoming 
communication, it performs a corresponding output communication and it produces a steering signal to 
forward the data of the selected communication. Figure 25 and Figure 26 show our Telescope GasP 
circuit implementation for the Toggle Merge module.  
 
The implementation in Figure 25 is an example of our first design approach with independent self-
resetting loops for statewires of incoming and outgoing handshake channels. It has four self-resetting 
loops to start and stop the drives for external, incoming or outgoing, statewires. The top and bottom loops 
are used to start and stop the HI drive for out[sw]. The two middle loops are used to start and stop the LO 
drives for inA[sw] respectively inB[sw]. There are two internal statewires, called alt1[sw] and alt2[sw], to 
keep track of whose input round it is. Their self-resetting loops overlap with the two middle loops. 
 
The Toggle Merge implementation in Figure 26 is an example of the second design approach with shared 
self-resetting loops between the statewires of incoming and outgoing handshake channels. It has two self-
resetting loops for external statewires, with separate taps to start and stop the HI drive for out[sw] and the 
LO drives for inA[sw] and inB[sw]. It has two additional loops to encode internal statewires, called RR1 
and RR2, that keep track of whose input round it is. 
 
Note that in each implementation, we tap the data steering signals from the internal statewires. This is 
possible, because the internal statewires remain stable until the output communication is complete. 
 
A SPICE-level simulation of the handshake behavior of the Toggle Merge implementation in Figure 25 
follows in Figure 27. The handshake behaviors are the same for both implementations, and can be 
described as follows. Initially, in1[sw], in2[sw], out[sw], and mc are LO, and input of choice is in1[sw], 
as indicated by alt1[sw] being initialized HI and alt2[sw] being initialized LO. When in1[sw] goes HI, 
indicating the presence of data, and out[sw] is LO, indicating the availability of space, the following four 
sets of actions are started in sequence, as follows: 

1. The Forward Transfer section signals the presence of new data to the successor module by 
driving out[sw] HI. This takes 2 gate delays. Meanwhile, the relevant, now HI, alt-signal steers the 
data that are bundled with the input of choice to the output. 

2. The Forward Reset section kicks in, cutting off the HI forward drive to a 5 gate delay pulse signal 
3. The Backward Transfer waits until out[sw] is LO, and then it starts three actions simultaneously: 

(1) it reports availability of space to the predecessor of choice by driving the associated input LO, 
(2) it drives the HI alt-signal LO, and (3) it drives the complementary alt-signal HI, thus assigning 
the next input of choice to the other input. Each of these three actions takes 2 gate delays. The 
combined delay is also 2. Data signals will now be steered from the other input to the output. 

4. The Backward Reset section kicks in, cutting off the LO backward drive, the LO alt-signal drive, 
and the HI complementary alt-signal drive to a 5 gate delay pulse signal, each.  

At the end of these four serial sets of actions, the Toggle Merge waits until input in2[sw] is HI, so it can 
start its next cycle of parallel actions. These cycles repeat with the input of choice alternating or toggling 
between in1[sw] and in2[sw].  
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Figure 25: Telescope GasP control circuit for the 2-way Sequential Merge module, also called Toggle Merge. 
The circuit has two input statewires with a master clear signal, in1[sw,mc] and in2[sw,mc], their 
corresponding data steering signals steer[1] and steer[2], and one output statewire with a joined master clear, 
out[sw,mc]. The two internal statewires alt1[sw] and alt2[sw] keep track of which input is input of choice. The 
first round is for in1[sw], the next for in2[sw], and so on, in a round-robin fashion. The Pred Driver icon 
marked “10H”, initializes alt1[sw]  to HI. The circuit is thus initialized in favor of input channel in1[sw]. This 
implementation is saved under TelescopeGasP_SeparateStates to indicate that it uses separate self-resetting 
loops for in1[sw], in2[sw], and out[sw]. We will use the icon in the top-right corner of this picture, when we 
represent a Toggle Merge. We will also use rrM instead of TM as icon text, where ‘rr’ stands for ‘round-robin’. 
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Figure 26: Second Telescope GasP implementation for the Toggle Merge. Here, we share the self-resetting 
loops between incoming and outgoing statewires insofar possible.  This implementation is saved in the library 
named TelescopeGasP_wStateSharing, under module name Merge2TfastRTZwArbiter. Substring `TfastRTZ’ 
in the name indicates that this is a Telescope GasP implementation with fast reset capability. To ensure that 
we reset only the incoming handshake that caused out[sw] to go HI, we have AND-ed the fast reset signal at 
the LO driver with an internal guard signal. The guard for in1[sw] is tapped from internal state signal s1 via 
three inversions, The guard for in2[sw] is tapped from internal state signal s2 via three inversions. 

 
 

 
 
 

Figure 27:  SPICE-level simulations of the GasP implementation of the Toggle Merge in Figure 25. Red and 
green statewires in1[sw] and in2[sw] have a telescopic handshake relationship to blue statewire out[sw]: 
in1[sw] or in2[sw] HI causes out[sw] to go HI, and when out[sw] has gone LO, only then will the input go LO. 
The simulation clearly shows that (1) each HI out[sw] pulse is strictly contained within a HI pulse on in1[sw] or 
in2[sw] and (2) out[sw] handshakes go alternately with in1[sw] respectively in2[sw] handshakes. 
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Internally, the behaviors of the two Toggle Merge implementations differ. The implementation in Figure 26  
has relatively safe delay margins, whereas the implementation in Figure 25 has two delay margins that 
are marginal. The two marginal delay margins in Figure 25 are as follows: 

1. After the chosen in1[sw] or in2[sw] has risen, it takes 2 gate delays before out[sw] rises and 
disables the two inverted input AND gates in the two middle self-resetting loops, while it takes 3 
gate delays for the chosen incoming signal to enable the corresponding AND gate via its middle 
self-resetting loop. To guarantee a telescope relation between in1[sw] and out[sw] and between 
in2[sw] and out[sw], the AND gate must sense the disabling out[sw] transition before it senses the 
enabling incoming transition. The delay margin between the two is only 1 gate delay.  

2. After out[sw] falls, it takes 2 gate delays before the present HI signal on the chosen in1[sw] or 
in2[sw] falls and disables the three input NAND gate in the upper or lower loop, while it takes 3 
gate delays for the LO out[sw] signal to enable that same NAND gate via the upper or lower self-
resetting loop. To guarantee a correct handshake relation between in1[sw] and out[sw] and 
between in2[sw] and out[sw], the NAND gate must sense the disabling incoming transition before 
it senses the enabling out[sw] transition. The delay margin between the two is only1 gate delay. 

 
A delay margin of only 1 gate delay is marginal and sensitive to noise interference and process variations.  
We can adjust both margins to 3 gate delays by inserting the proper delay circuits from Figure 1, page 3. 
This would make the delay margins in the implementation of the Toggle Merge module in Figure 25  as 
safe as those in Figure 26. 
 
The two implementations have the same cycle time and the same latencies. The Forward Transfers in 
Figure 25 and Figure 26 use the Succ OR Driver of Figure 2. There is 1 extra gate between in1[sw] 
respectively in2[sw] and the input of the driver in the Forward Transfer part, giving a minimal forward 
latency of 2 gate delays. The Backward Transfer parts are implemented using a Pred OR Driver. The Pred 
OR Drive version used in Figure 26 has an additional fast reset, and can be found in Figure 9. There is 1 
additional gate between the outgoing channel out[sw] of each Toggle Merge implementation and the 
input of the two Pred OR Drivers, giving a total backward latency of 2 gate delays. 
 
In addition to the Forward and Backward Transfer and Forward and Backward Reset sections, there is an 
additional alternating loop section for passing a round-robin token around to create alternating in1[sw] 
and in2[sw] communications. This token ring is implemented using internal communication channels. 
This is a control-oriented solution. An alternative implementation would be to encode the token ring in an 
internal data structure, using flipflops as is done in the Click backend to ARCwelder [6,13]. 
 
The control-oriented token ring solution presented in Figure 25 has two internal single-track channels, or 
statewires, called alt1[sw] and alt2[sw]. Statewire alt2[sw] is initialized LO via a separate Pred Driver 
similar to the Pred Driver in [4]. Statewire alt1[sw] is initialized HI via the special Pred Driver in Figure 25 
with icon text “10H” (suffix `H’ stands for `HI’). This special Pred Driver is like the Pred Driver in [4], except 
that a HI master clear signal mc will initialize the Pred Driver output to HI. In reality, this HI master clear 
feature would likely be implemented as part of the HI driver and LO half-keeper logic for alt1[sw]. 
  
Without a fast reset signal, both implementations have a minimum cycle time of  2+5+2+5=14 gate delays, 
as set by the 2 gate delay transfers and the 5 gate delay self-resetting loops - assuming that successor 
and predecessor modules keep the statewires HI respectively LO for a minimum of 5 gate delays. The 
cycle time increases in steps of 4 gate delays for each Telescope GasP successor module between the 
Toggle Merge module and the following Store module.  
 
With a fast reset signal, we can reduce the backward latency and lower the cycle time to 12 gate delays 
per Toggle Merge module, with an increase in steps of 2 gate delays for each successor module between 
the Toggle Merge module and the following Store module. We designed a test environment that generates 
such a fast reset signal. The test setup and the generation of the fast reset signal, fastRTZ, are very 
similar to the test setup and fast reset generation for the previous Merge modules. Test setup and 
simulation waveforms for the Toggle Merge follow in Figure 28 and Figure 29 below.  
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Figure 28: Fast reset configuration and test environment to concurrently reset all Toggle Merge statewires that 
actively participate in the current handshake telescope leading to out[sw] going HI. Unlike the fast reset signal 
mc_fastRTZ in [9], but like the fast reset signal fastRTZ in the other Merge modules in this document, the fast 
reset signal fastRTZ generated by the Store module in this picture is independent of master clear signal mc. 

    

 

 
 

Figure 29: SPICE-level simulation results for the fast reset and test configuration in Figure 28. The top 
simulation window shows how the pink HI pulse on fast reset signal fastRTZ concurrently resets all handshake 
signals that caused the green out[sw] signal to rise. The first HI pulse on fastRTZ has no effect on the HI 
in2[sw] signal, in yellow, which is exactly how it should be as in1[sw]  - and not in2[sw] – is the  first input of 
choice. The bottom three simulation windows give a module-by-module view of the fast reset cycle. Just like for 
the other Merge modules, the differences in start and steepness of the falling slopes for the statewires of each 
Toggle Merge module can be explained from differences in (a) input slopes to the LO drivers for the statewires 
and (b) stray capacitance on the statewires. 
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4.4. 3-Way Sequential Merge Module 
 
The 3-way Sequential Merge module or 3-way Round-Robin Merge provides single input to single output 
communication. It sequentially selects communications over its input channels, starting with in1[sw], then 
in2[sw], then in3[sw], and back in a round-robin fashion. For the selected incoming communication, it 
performs a corresponding output communication on out[sw] and produces a steering signal to forward 
the data of the selected communication to out[sw]. Figure 30 shows our Telescope GasP implementation 
for the three-way sequential Merge module.  
 
The implementation in Figure 30 is an example of our first design approach, with independent self-
resetting loops for statewires of incoming and outgoing handshake channels. It generalizes the 
implementation in Figure 25.  
 
The generalization from a two-way to a three-way implementation has a price. For one, there are now six 
instead of four self-resetting loops to start and stop the drives for statewires of external, incoming or 
outgoing handshake channels. Second, there are now three instead of two extra internal statewires with 
self-resetting loops that partially overlap the self-resetting loops for the external signals. Third, instead of 
the Suc OR Driver of Figure 2 the 3-way version uses the Suc OR3 Driver of Figure 3 to drive out[sw]. 
 
A similar generalization would also work for the second design approach, at the cost of a Suc OR3 Driver 
and two additional internal statewires: one for in3[sw] to out[sw] telescope handshakes and the other to 
encode a third round-robin signal, RR3. 
 
We refrain from providing a behavioral description and waveform. The behavior is a straightforward 
extension of the behavior for the 2-way sequential Merge. The main motivation for designing and 
presenting this 3-way sequential Merge is to get and give a feel for the growth in design complexity when 
we generalize the basic 1of2-to-1 solution to 1ofN-to-1 solutions, for N larger than 2.  
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Figure 30: Telescope GasP control circuit for the 3-way Sequential Merge or Round-Robin Merge module. The 
circuit has three input statewires with a master clear signal, in1[sw,mc] in2[sw,mc], and in3[sw,mc], ], their 
corresponding data steering signals steer[1], steer[2], steer[3], and one output statewire with a joined master 
clear, out[sw,mc]. The three internal statewires, alt1[sw], alt2[sw], and alt3[sw], keep track of whose input 
turn or round it is. The first round is for in1[sw], the next for in2[sw], the one after that for in3[sw], and so on, 
in a round-robin fashion. The implementation is a straightforward extension of the 2-way Sequential merge 
presented in Figure 25. We will use the top-right icon to represent a 3-way Sequential Merge. 

APPENDIX B. TELESCOPE GASP: NARROWCAST 240



ARC# 2012-smg03        Asynchronous Research Center page 35 of 55 
 

5. Branch Modules 
Branch modules provide single input to single output 1-to-1ofN communication, by selecting exactly one 
out of one or more available outputs. For now, our selections are done in a sequential, or round-robin, 
fashion, with the only freedom being the number of module outputs. The module waits until the input 
communication becomes available and streams it to the corresponding output communication. We opted 
to broadcast the input data to all outputs, no matter whether or not the receiving module participates in the 
action. As a result, no special steering logic is needed. Section 5.1 below gives a GasP implementation for 
the 2-way Sequential Branch module with two module outputs, also known as Toggle Branch. Section 5.2 
extends this GasP implementation to create a 3-way Sequential Branch module, and Section 5.3 carries 
this one step further to a 4-way Sequential Branch. 

5.1. 2-Way Sequential Branch Module, or Toggle Branch  
The 2-way Sequential Branch module, also called Toggle Branch, provides single input to single output 
round-robin 1-to-1of2 communication. Upon receiving an input communication, it streams the input data to 
one of the outputs, starting with out1[sw]. The next time it receives an input communication, it will pass 
the communication on to out2[sw], then back again to out1[sw], etcetera, in a round-robin fashion.  
Figure 31 and Figure 32 show our two Telescope GasP implementations for the Toggle Branch module. 
The implementations are more or less the reverse of the Toggle Merge in Figure 25 and Figure 26.  
 
The implementation in Figure 31 is an example of our first design approach with independent self-
resetting loops for statewires of incoming and outgoing handshake channels. It has four self-resetting 
loops to start and stop the drives for external, incoming or outgoing, statewires. The bottom and top loops 
are used to start and stop the HI drive for out1[sw] respectively out2[sw], and the two middle loops are 
used to start and stop the LO drive for in[sw]. The other two loops encode internal statewires, called 
alt1[sw] and alt2[sw], to keep track of whose output round it is – these partially overlap with the two middle 
loops for in[sw]. 
 
The Toggle Branch implementation in Figure 32 is an example of the second design approach with 
shared self-resetting loops between the statewires of incoming and outgoing handshake channels. It has 
two self-resetting loops for external statewires, with separate taps to start and stop the HI drives for 
out1[sw]  and out2[sw] and the LO drive for in [sw]. It has two additional loops to encode internal 
statewires, called RR1 and RR2, to keep track of whose output round it is. 
 
SPICE-simulated waveforms of the handshake behavior of the implementation in Figure 31 follow in 
Figure 33. The handshake behaviors are the same for both implementations, and can be described as 
follows. Initially, in[sw], out1[sw], out2[sw], and mc are LO, alt1[sw] is HI, and alt2[sw] is LO. When 
in[sw] goes HI, indicating it has data, and output out1[sw] is LO, indicating it has space to receive these 
data, and alt1[sw] is HI, indicating that out1[sw] is the present output of choice, the following four actions 
are started sequentially, in order of occurrence: 

1. The Forward Transfer part signals the presence of new data to the successor module of choice by 
driving the output of choice HI. This takes 2 gate delays. 

2. The Forward Reset kicks in, cutting off the HI forward drive to a 5 gate delay pulse signal. 
3. The Backward Transfer waits until the chosen output is LO, and then it starts three actions in 

parallel: (1) it reports availability of space to the predecessor by driving in[sw] LO, (2) it drives the 
HI alt-signal LO, and (3) it drives the complementary alt-signal HI, thus assigning the next output 
of choice to the other output. Each of these three actions takes 2 gate delays. Given that these 
three actions take place in parallel, the total execution time is also 2 gate delays. 

4. The Backward Reset section kicks in, cutting off the LO backward drive, the LO alt-signal drive, 
and the HI complementary alt-signal drive to a 5 gate delay pulse signal, each.  

At the end of these four serial actions, the Toggle Branch waits until input in[sw] is HI again, so it can 
start its next cycle of parallel actions. These cycles repeat with the output of choice alternating between 
out1[sw] and out2[sw]. 
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Figure 31: Telescope GasP implementation for the 2-way Sequential Branch module, also called Toggle 
Branch. This implementation is more-or-less the reverse of the Toggle Merge circuit in Figure 25. The circuit 
has one input statewire with a master clear signal, in[sw,mc], and two output statewires with a forwarded 
master clear signal, out1[sw,mc] and out2[sw,mc]. The two internal statewires alt1[sw] and alt2[sw] serve to 
keep track of whose output turn or round it is. The first round is for out1[sw], the next for out2[sw], and so on, 
in a round-robin fashion. The Pred Driver icon marked “10H”, initializes alt1[sw]  to HI. The circuit is thus 
initialized in favor of output channel out1[sw]. This particular implementation is saved under the library 
TelescopeGasP_SeparateStates to indicate that it uses separate self-resetting loops for in1[sw], in2[sw], and 
out[sw]. We will use the icon in the top-right corner of this picture, when we represent a Toggle Branch 
module. We may also use rrB instead of TB as icon text, where ‘rr’ stands for ‘round-robin’. 
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Figure 32: Second Telescope GasP implementation for the Toggle Branch, also called Round-Robin Branch. 
Here, we share the self-resetting loops between incoming and outgoing statewires insofar possible. This 
implementation is saved in the library named TelescopeGasP_wStateSharing, under module name 
BranchRR2TfastRTZ. Substring RR2 in the name indicates that this is a round-robin version with 2 output. 
Substring `TfastRTZ’ indicates that this is a Telescope GasP implementation with fast reset capability. Internal 
statewires RR1 and RR2 keep track of whose output round it is. Internal statewires s1 and s2 control the begin 
and end of  the HI drive for outgoing statewires and the LO drive for the incoming statewire.   

 
Figure 33: SPICE-level simulations of the GasP implementation of the 2-way Sequential Branch in Figure 31. 
Red statewire in1[sw] has a telescopic handshake relationship to blue and pink statewires ou1t[sw] and 
out2[sw]: in[sw] HI causes either out1[sw] or out2[sw] to go HI. When the respective output has gone LO, only 
then will in[sw] go LO. The simulation clearly shows that (1) each HI output pulse is strictly contained within a 
HI pulse on in[sw], and (2) in[sw] handshakes telescope alternately with out1[sw] and out2[sw] handshakes. 
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Internally, the behaviors of the two implementations differ. The implementation in Figure 32 has relatively 
safe delay margins, whereas the implementation in Figure 31 has two delay margins that are marginal. 
The two marginal delay margins in Figure 31 are as follows: 

1. After in[sw] has risen, it takes 2 gate delays before the chosen out1[sw] or out2[sw] rises and 
disables the two inverted input AND gate connections to the two middle self-resetting loop, while it 
takes 3 gate delays for the chosen incoming signal to enable the corresponding AND gate via its 
middle self-resetting loop. To guarantee a telescope relation between in1[sw] and out[sw] and 
between in2[sw] and out[sw], the AND gate must sense the disabling out[sw] transition before it 
senses the enabling incoming transition. The delay margin between the two is only 1 gate delay.  

2. After the chosen out1[sw] or out2[sw] falls, it takes 2 gate delays before in[sw] falls and disables 
the two three input NAND gate in the top and bottom loops, while it takes 3 gate delays for the 
chosen outgoing signal to enable that same NAND gate via its top or bottom self-resetting loop. 
For a correct handshake relation between in[sw] and out1[sw] respectively in[sw] and out2[sw], 
the NAND gate must sense the disabling transition before it senses the enabling one. The delay 
margin between the two is only1 gate delay. 

 
A delay margin of only 1 gate delay is marginal and sensitive to noise interference and process variations.  
We can adjust both margins to 3 gate delays by inserting the proper delay circuits from Figure 1, page 3. 
This would make the delay margins in the implementation of the Toggle Branch module in Figure 31   as 
safe as those in Figure 32. 
 
The two implementations have the same cycle time and the same latencies. The Forward Transfers in 
Figure 31 and Figure 32 use the Succ Driver in [9]. There is 1 extra gate between in[sw] and the input of 
the Succ Driver, giving a minimal forward latency of 2 gate delays. The Backward Transfer parts are 
implemented using a Pred OR Driver. The Pred OR Driver version used in Figure 32 has an additional 
fast reset, and can be found in Figure 9. There is 1 additional gate between outgoing channel out1[sw] 
and out2[sw] of each Toggle Branch implementation and the input of the corresponding Pred OR Driver, 
giving a total backward latency of 2 gate delays. 
 
In addition to the Forward and Backward Transfer and Forward and Backward Reset parts, there is an 
additional alternating loop section for passing a round-robin token around to create alternating out1[sw] 
and out2[sw] communications. This token ring is implemented using internal communication channels. 
Just like in the earlier Toggle Merge implementations, these are control-oriented solutions. Alternative 
implementations can be obtained by encoding the token ring in an internal data structure, for instance by 
using flipflops as is done in the Click backend to ARCwelder [6,13]. 
 
The control-oriented token ring solution presented in Figure 31 has two internal single-track channels, or 
statewires, called alt1[sw] and alt2[sw]. Statewire alt2[sw] is initialized LO via a separate Pred Driver 
similar to the Pred Driver in [9]. Statewire alt1[sw] is initialized HI via the special Pred Driver in Figure 31 
with icon text “10H” (suffix `H’ stands for `HI’). This special Pred Driver is like the Pred Driver in [9], except 
that a HI master clear signal mc will initialize the Pred Driver output to HI. This HI master clear feature 
could be - and preferably will in the future - part of the HI driver and LO half-keeper logic for alt1[sw]. 
  
Without a fast reset signal, both implementations have a minimum cycle time of  2+5+2+5=14 gate delays, 
as set by the 2 gate delay transfers and the 5 gate delay self-resetting loops - assuming that successor 
and predecessor modules keep the statewires HI respectively LO for a minimum of 5 gate delays. The 
cycle time increases in steps of 4 gate delays for each Telescope GasP successor module between the 
Toggle Branch module and the following Store module.  
 
With a fast reset signal, we can reduce the backward latency and lower the cycle time to 12 gate delays 
per Toggle Branch module, with an increase in steps of 2 gate delays for each successor module between 
the Toggle Branch module and the following Store module. We designed a test environment that 
generates such a fast reset signal. The test setup and the generation of the fast reset signal, fastRTZ, are 
similar to the test setup and fast reset generation for the Merge modules. Test setup and simulation 
waveforms for the Toggle Branch follow in Figure 34 and Figure 35 below. 
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Figure 34: Fast reset configuration and test environment to concurrently reset all Toggle Branch statewires 
that actively participate in the current handshake telescope leading to out1[sw] or out2[sw] going HI. Unlike 
fast reset signal mc_fastRTZ in [9], but like the fast reset fastRTZ used in the Merge modules in this 
document, the fast reset signal fastRTZ generated by the Store module in this picture is independent of master 
clear signal mc. Though hard to see, some of the Toggle Branch icons in this picture are flipped over their 
horizontal axis. As a result, the first telescope handshake takes the path (in[sw],12[sw],123[sw],out1[sw]). 
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Figure 35: SPICE simulation results for the first telescope handshake over (in[sw],12[sw],123[sw],out1[sw]) in 
the fast reset and test configuration in Figure 34. The top window shows how the blue HI pulse on fast reset 
signal fastRTZ concurrently resets all handshake signals that caused out1[sw] to rise. During the 5 gate delay 
HI pulse on fastRTZ, all orange and red handshake signals are reset to LO, simultaneously. The bottom three 
simulation windows show a module-by-module snapshot of the fast reset cycle. Just like was the case for the 
Merge modules, the differences in start and steepness of the falling slopes for the statewires of each Toggle 
Branch module can be explained from differences in (a) input slopes to the LO drivers for the statewires and (b) 
stray capacitance on the statewires. 
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5.2. 3-Way Sequential Branch Module 
 
The 3-way Sequential Branch module provides single input to single output communication. Whenever it 
receives a communication over its input channel, in[sw], it streams the corresponding data to one of the 
output channels, out1[sw], out2[sw], or out3[sw]. It selects the output communication channel in a 
round-robin fashion, starting with out1[sw]. 
 
Figure 36 gives our Telescope GasP circuit implementation for the 3-way Sequential Branch. The circuit 
implementation is a straightforward extension of that for the 2-way Sequential Branch, or Toggle Branch in 
Figure 31. The token ring now contains three statewires: alt1[sw], alt2[sw], and alt3[sw]. The three 
statewires are connected so that the single HI “token” goes around in a round-robin fashion.  
 
The generalization from a two-way to a three-way implementation has a price. For one, there are now six 
instead of four self-resetting loops to start and stop the drives for statewires of external, incoming or 
outgoing handshake channels. Second, there are now three instead of two extra internal statewires with 
self-resetting loops that partially overlap the self-resetting loops for the external signals. Third, instead of 
the Pred OR Driver of Figure 6 the 3-way version uses the Pred OR3 Driver of Figure 7 to drive in[sw]. 
 
A similar generalization would also work for the second design approach, at the cost of two additional 
internal statewires: one for in[sw] to out3[sw] telescope handshakes and the other to encode a third 
round-robin signal, RR3. We would also need a Pred OR3 Driver with both a master clear and a fast reset, 
This predecessor driver is where the bottleneck lies: the implementation would require a stack of six levels 
of PMOS transistors in series to implement the HI keeper part of this drive-LO and keep-HI device. We 
are hesitant to use such deep transistor stacks.  
 
There are other ways to build N-way Sequential Branch modules: 

 Instead of adding functional complexity to a single module, we could distribute the complexity over 
multiple modules, like we do for the four-way Sequential Branch in the subsequent Section 5.3.  

 We could relax the 2 gate delay forward and backward latencies in more complex N-way module 
designs, where N exceeds 2. This would enable us to spread the complexity over multiple gates and 
drivers, and keep the gates and drivers relatively simple. A module with a forward and backward 
latency of 3 or 4 gate delays would still have a smaller or equal latency compared to a design with two 
or more modules in series. 

 
Notes: 

 The first design approach would also need a Pred OR3 Driver if it were provisioned with a fast reset. 

 We do not provide a behavioral description and waveform for the 3-way Sequential Branch. The 
behavior is a straightforward extension of the behavior for the 2-way sequential Branch. The main 
motivation for designing and presenting this 3-way sequential Branch is to get a feel for the growth in 
design complexity when we generalize the basic 1-to-1of2 solution to 1-to-1ofN solutions, for N>2. 
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Figure 36: Telescope GasP implementation for the 3-way Sequential Branch module. The circuit is a 
straightforward extension of the Toggle Branch circuit in Figure 31. The token ring now contains three 
statewires: alt1[sw], alt2[sw], and alt3[sw]. The three statewires are connected so that the single HI “token” 
goes around in a round-robin fashion. The 3-way Sequential Branch module has one input statewire with a 
master clear signal, in[sw,mc], and three output statewires with a forwarded master clear signal, out1[sw,mc], 
out2[sw], and out3[sw,mc]. We will use the top-right icon to represent a 3-way Sequential Branch.    
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5.3. 4-Way Sequential Branch Module 
The 4-way Sequential Branch module provides single input to single output communication. Whenever it 
receives a communication over its input channel, in[sw], it streams the corresponding data to one of the 
output communication channels, out1[sw], out2[sw], out3[sw], or out4[sw]. It selects the output 
channel in a round-robin fashion, starting with out1[sw].  
 
Figure 37 and Figure 38 give our Telescope GasP implementation for the 4-way Sequential Branch 
module, and a SPICE level simulation showing its sequential input behavior. 
 
Rather than extending the circuit implementations of the 2-way Sequential Branch modules in Figure 31 
and Figure 32 for the first and second design approaches, we designed a balanced tree structure 
consisting 2-way Sequential Branch modules. We did this design in Electric [14], and provided it with its 
own icon. But we could as easily do this design in ARCwelder [6], except that ARCwelder does not yet 
support hierarchical designs and naming and icon conventions for sub-designs. 
 
Without a fast reset signal, the minimum cycle time of this design is 2+2+5+2+2+5=18 gate delays. If we 
were to add a fast reset signal, the cycle time would decrease to 14 gate delays. 
 
 
 

 
 
 
Figure 37: Telescope GasP design solution for a 4-way Sequential Branch. The 4-way Sequential Branch 
module has one input statewire with a master clear signal, in[sw,mc], and four output statewires with a 
forwarded master clear signal, out1[sw,mc], out2[sw], out3[sw], and out4[sw,mc]. This is a hierarchical 
design, built using three instances of a 2-way Sequential Branch or Toggle Branch module. We connected the 
instances to form a balanced tree structure. The tree structure comes with a penalty of larger latencies and a 
larger cycle time. It induces a total forward latency and total backward latency of 4 gate delays each: 2 gate 
delays more in each direction than for a basic Telescope GasP module. A fast reset signal would cut the 
backward latency down to 0 gate delays. We will use the top-right icon to represent a 4-way Sequential Branch.    
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Figure 38: SPICE-level simulations of the GasP implementation of the 4-way Sequential Branch in  

 
Figure 37, using the 2-way Sequential Branch or Toggle Branch implementation of Figure 31. The telescoping 
handshake behavior would be the same had we used the 2-way Sequential Branch implementation of Figure 
32. The simulation clearly shows that (1) each HI output pulse is strictly contained within a HI pulse on in[sw], 
and that  (2) in[sw] handshakes go in a round-robin fashion with out1[sw], out2[sw], out3[sw] and out4[sw] 
handshakes. 
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6. Distribute Modules 
 
The Distribute modules stream one input to a possibly empty subset of N outputs. The subset can be 
tuned per communication and is set via N additional incoming control bits. As in the Branch modules, we 
opted to broadcast the input data to all outputs, no matter whether or not the receiving module participates 
in the action. As a result, no special steering logic is needed. Sections 6.1, 6.2, and 6.3 below give 
Telescope GasP designs for respectively 2-way, 3-way and 4-way Distribute modules.  
 
 

6.1. 2-Way Distribute Module 
 
The 2-way Distribute module streams the data from one incoming communication channel, in[sw], to a 
subset of 2 outgoing communication channels, out1[sw] and out2[sw]. The selection of outputs to 
stream the data to depends on 2 additional incoming “guard” or control data bits d[1:2]. The control data 
bits are bundled with an incoming control statewire, called to[sw] in Figure 39 and called guard[sw] in 
Figure 40. Channel outi[sw] is in the selection if its controlling data bit d[i] is HI, for i ranging from 1 to 2.  
 
Figure 39 and Figure 40 show our two Telescope GasP implementations. The version in Figure 39 is an 
example of our first design approach with independent self-resetting loops for statewires of incoming and 
outgoing handshake channels. It has two self-resetting loops to start and stop the drives for external, 
incoming or outgoing, statewires. The top loop has two taps to start and stop the HI drive for out1[sw] and 
out2[sw]. The bottom loop has two taps to start and stop the LO drive for in[sw] and to[sw]. The 
implementation in Figure 32 is an example of the second design approach with shared self-resetting 
loops between the statewires of incoming and outgoing handshake channels. It also has two self-resetting 
loops for external statewires, with separate taps to start and stop the HI drives for out1[sw] and out2[sw] 
and the LO drive for in[sw].  
 
SPICE-simulated waveforms of the handshake behavior of the implementation in Figure 39 follow in 
Figure 41. The handshake behaviors are the same for both implementations, and can be described as 
follows. Initially, in[sw], to[sw], out1[sw], out2[sw], and master clear signal mc are LO. When in[sw] 
goes HI, indicating it has data, and to[sw] goes high, indicating that the control data bits d[1:2] have been 
updated, and both outputs out1[sw] are LO, indicating there is enough space to receive the incoming 
data, then the following four actions are started sequentially in the order indicated: 

1. The Forward Transfer part signals the presence of new data to the successor modules of the 
selected outputs by driving these outputs HI. This takes 2 gate delays. 

2. The Forward Reset section kicks in, cutting off the HI forward drives to a 5 gate delay pulse. 
3. The Backward Transfer waits until the selected outputs are LO — which may be directly following 

action 1 above, in case no outputs were selected — and then it reports availability of space to the 
predecessor by driving in[sw] and to[sw] LO. In case at least one output was selected, in[sw] 
and to[sw] are driven LO 2 gate delays after the last selected output goes LO. If no output was 
selected, in[sw] and to[sw] are driven LO 5 gate delays after in[sw] went HI. The latter case has 
an additional waiting time of 3 gate delays to accommodate a 5 gate delay HI pulse on in[sw]. 

4. The Backward Reset section kicks in, cutting off the LO backward drives to a 5 gate delay pulse.  
At the end of these four serial actions, the 2-way Distribute module waits until inputs in[sw] and to[sw] 
are HI again, so it can start its next cycle.  
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Figure 39: Telescope GasP implementation for the 2-way Distribute module. It has two input statewires with a 

master clear signal, in[sw,mc] and to[sw,mc], and two output statewires with a joined master clear signal, 
out1[sw,mc] and out2[sw,mc]. The two data control signals d[1:2] have a bundled-delay relation to input 
statewire to[sw,mc]. We will use the icon in the top-right corner to represent a 2-way Distribute module. This 
particular implementation is saved under the library TelescopeGasP_SeparateStates to indicate that it uses 
separate self-resetting loops for statewires of incoming versus outgoing handshake channel.  
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Figure 40: Second Telescope GasP implementation for a 2-way Distribute module, different from Figure 39. 
Here, we share the self-resetting loops between incoming and outgoing statewires. This implementation is 
saved in the library named TelescopeGasP_wStateSharing, under module name Distribute2TfastRTZ. 
Substring `TfastRTZ’ indicates that this is a Telescope GasP implementation with fast reset capability. 

 

 
 

Figure 41: SPICE-level simulations of the GasP implementation of the 2-way Distribute in Figure 39. Red 
statewire in[sw] has a telescopic handshake relationship to blue and pink statewires ou1t[sw] and out2[sw]: 
in[sw] HI causes ou1t[sw] to go HI if yellow signal d[1] is HI, and it causes out2[sw] to go HI if green signal d[2] 
is HI. The yellow and green data control signals are bundled with signal to[sw] not shown here. When the 
respective output have gone LO, only then will in[sw] go LO. The simulation shows telescope handshake cycles 
with 0, 1 and 2 participating outputs, and demonstrates that (1) each HI output pulse is strictly contained within 
a HI pulse on in[sw], and (2) outi[sw] participates if and only if d[i] is HI, for i=1,2. 
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Internally, the behaviors of the two implementations differ. We would like to emphasize three differences: 
1. For one, the implementation in Figure 40 has relatively safe delay margins, whereas the 

implementation in Figure 39 has two delay margins that are marginal. The two marginal delay 
margins in Figure 39 are as follows: 
o After in[sw] and to[sw] have risen, it takes 2 gate delays before the chosen signals in the subset of 

out1[sw] and out2[sw] rise and disable the inverted input AND gate in the bottom loop, while it 
takes 3 gate delays for the two incoming signals to enable the same inverted input AND gate via 
the bottom self-resetting loop. To guarantee a telescope relation from in[sw] and to[sw] to 
out1[sw] and out2[sw], the AND gate must sense the disabling transitions before it senses the 
enabling one. The delay margin between the two is only 1 gate delay.  

o After the chosen signals in the subset of out1[sw] and out2[sw] fall, it takes 2 gate delays before 
in[sw] falls and disables the two input NAND gate in the top loop, while it takes 3 gate delays for 
the chosen outgoing signals to enable this NAND gate via the top self-resetting loop. For a correct 
handshake relation, the NAND gate must sense the disabling transition before it senses the 
enabling one. The delay margin between the two is only1 gate delay. 

A delay margin of only 1 gate delay is marginal and sensitive to noise interference and process 
variations. We can adjust both margins to 3 gate delays by inserting the proper delay circuits from 
Figure 1, page 3. This would make the delay margins in the implementation of the 2-way Distribute in 
Figure 39  as safe as those in Figure 40. 

2. Second, the first design approach used in Figure 39 has the advantage that its control-data bundling 
constraints are less strict than those for the second design approach used in Figure 40: 
o Statewire to[sw] in Figure 39 comes in at the same gates as its bundled data bits d[1] and d[2]. 

Thus, the control-data bundling constraints between to[sw] and d[1:2] remain the same as they 
were prior to entering the Distribute module.  

o In contrast, statewire guard[sw] in Figure 40 arrives one inverter gate earlier than its bundled 
control bits d[1] and d[2] arrive at the PMOS stacks to pull down s1 and s2 to help reset in[sw] and 
guard[sw] in case any of the outgoing channels do not participate in the action. Consequently, the 
control-data bundling constraints between guard[sw] and d[1:2] change: the Distribute module 
makes it harder for the control to arrive before the data than it was prior to entering the module. It 
makes it harder by a margin of 1 gate delay. 

3. Third, unlike earlier module designs in this document and in [9], this time the first design approach 
leads to a simpler implementation than the second design approach:  
o For one, the second implementation has special logic to reset the incoming channels in case any 

of the outgoing channels does not participate. The first implementation seems to have no need for 
this. This is because the first implementation in Figure 39 has yet to be corrected for marginal 
delay margins, as explained in item 1 above. As soon as we add the proper delay circuits from 
Figure 1 on page 3, the need for d[1:2] for resetting the incoming channels will become obvious.  

 The bottom loop in Figure 39 is responsible for resetting the incoming channels. It needs a 
delay circuit of the type shown in Figure 1(right) to add two extra gate delays to the AND-ed 
transition in the bottom loop that starts with in[sw] and to[w] both HI and ends with the 
corresponding input for the inverted input AND gate going LO.   

 With the delay circuit from Figure 1(right), but without d[1:2], this HI to LO bottom loop 
transition will take 5 gate delays, always. In particular, it will take 5 gate delays when in[sw] 
and to[sw] go HI while d[1] and d[2] are LO, and 2 more to reset in[sw] and to[sw], giving a 
total HI to LO cycle time for in[sw] and to[sw] of 7 gate delays when no data are distributed. 
Compare this to the implementation in Figure 40 which does this in 5 gate delays. 

 There is a simple solution for reducing the HI to LO cycle time in the absence of data from 7 
to 5 gate delays: only delay the HI to LO bottom loop transition when d[1] and d[2] are LO. We 
can do this by adjusting the delay circuit of Figure 1(right) as shown in Figure 42(bottom). 

o The resulting circuit for Figure 39 with top and bottom gates replaced by the circuits shown in 
Figure 42 is still simpler than the 2-way Distribute implementation for the second design approach 
shown in Figure 40. This is because the second approach focuses on individual input-to-output 
connections. When no data is distributed, these individual connections are bypassed and the 
bypasses are gathered to jointly reset the inputs. The individual bypass and gather circuitry in 
Figure 40 is more complex than the joined d[1:2] bypass in the delay circuits for Figure 39.  
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Figure 42: Delay circuits replacing the top three gates in Figure 39 (top) and the bottom three gates (bottom). 
Both delay circuits are variants of the earlier delay circuits shown in Figure 1. The top circuit increases the 
delay margin from out2[sw] and out1[sw] LO to the arrival of the corresponding HI transition at the 2-input 
NAND gate in the top loop. The margin increases by 2 gate delays. The bottom circuit  gives a similar increase 
in delay margin from in[sw] and to[sw] HI to the arrival  the corresponding LO transition at the 3 inverted input 
AND gate in the bottom loop, as long as either d[1] or d[2] is HI. The final gate in the bottom circuit is 
implemented directly as a PMOS-NMOS transistor and channel connected network, and takes 1 gate delay 

 
The two implementations have the same cycle time and the same latencies. The two Forward Transfers in 
Figure 39 and Figure 40 use the Succ AND Driver in [9]. There is 1 extra gate between in[sw] 
respectively to[sw] and the inputs of the two Succ AND Drivers, giving a minimal forward latency of 2 gate 
delays. The two Backward Transfer parts are implemented using a Pred Driver and a Pred AND Driver. 
The Pred AND Driver is used in Figure 40 and has an additional fast reset – see Figure 10. In both 
cases, there is 1 additional gate between the outgoing channel out1[sw] and out2[sw] and the input of 
the corresponding Pred OR Driver or Pred AND Driver, giving a total backward latency of 2 gate delays. 
 
Without a fast reset signal, both implementations have a minimum cycle time of 2+5+2+5=14 gate delays, 
as set by the 2 gate delay transfers and the 5 gate delay self-resetting loops - assuming that successor 
and predecessor modules keep the statewires HI respectively LO for a minimum of 5 gate delays. The 
cycle time increases in steps of 4 gate delays for each Telescope GasP successor module between the 
Distribute module and the following Store module.  
 
With a fast reset signal, we can reduce the backward latency and lower the cycle time to 12 gate delays 
per 2-way Distribute module, with an increase in steps of 2 gate delays for each successor module 
between the current Distribute module and the following Store module. We designed a test environment 
that generates such a fast reset signal. The test setup and the generation of the fast reset signal, fastRTZ, 
are very similar to the test setup and fast reset generation for the Merge and Branch modules. Test setup 
and simulation waveforms for the 2-way Distribute with fast reset follow in Figure 43 and Figure 44 below. 
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Figure 43: Fast reset configuration and test environment to concurrently reset all Distribute statewires that 
actively participate in the current handshake telescope leading to out1[sw] or out2[sw] or 1_2[sw] or 2_1[sw] 
going HI. We use the 2-way Distribute implementation of Figure 40. Each Store module at the right generates 
a local fast reset signal for the Distribute module that it is connected to. These local fast reset signals are OR-
ed to produce the common fastRTZ signal that resets all participating Distribute statewires concurrently. This 
solution is less general than we would like it to be. For one, it requires that the Distribute tree is balanced. We 
anticipate that, in practice, we will be able to identify a particular set of Store modules from which to generate 
such a common fastRTZ signal. 

 
 

 
    

Figure 44: SPICE simulation results for two telescope handshakes in the fast reset and test configuration in 
Figure 43. During the 5 gate delay HI pulse on fastRTZ, all currently HI orange and red handshake signals are 
reset to LO, simultaneously. Just like was the case for the Merge and Branch modules, the differences in start 
and steepness of the falling slopes for the statewires of each Distribute module can be explained from 
differences in (a) input slopes to the LO drivers for the statewires and (b) stray capacitance on the statewires. 
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6.2. 3-Way Distribute Module 
 
The 3-way Distribute module streams the data from one incoming communication channel, in[sw], to a 
subset of 3 outgoing communication channels, out1[sw], out2[sw], and out3[sw]. The selection of 
outputs to stream the data to depends on 3 additional incoming “guard” or control data bits d[1:3]. The 
control data bits are bundled with an incoming control statewire, called either to[sw] or guard[sw]. 
Channel outi[sw] is in the selection if its controlling data bit d[i] is HI, for i ranging from 1 to 3.  
 
The generalization from the two-way Distribute implementation in Figure 39 to the three-way version in 
Figure 45 has a price – though the price that we paid here is much more reasonable than the price that 
we paid for the two-way to three-way generalization of the Sequential Branch module. There are still only 
two self-resetting loops to start and stop the drives for statewires of external, incoming or outgoing 
handshake channels. But instead of Pred Drivers the 3-way version uses Pred AND Drivers to drive 
in[sw] and to[sw] LO – see [9] for details on the two predecessor driver designs. 
 
Generalizing the fast reset version for the second design in Figure 40 is more challenging: the 
predecessor drivers would be replaced by a Pred AND3 Driver with fast reset. Although do-able, we are 
hesitant to keep on making the drivers more and more complex.  
 
There are other ways to build N-way Distribute modules for N larger than 2: 

 Instead of adding functional complexity to a single module, we could distribute the complexity over 
multiple modules, like we do for the four-way Distribute in the subsequent Section 6.3.  

 We could relax the 2 gate delay forward and backward latencies in more complex N-way module 
designs, where N exceeds 2. This would enable us to spread the complexity over multiple gates and 
drivers that are relatively simple. A module with a forward and backward latency of 3 or 4 gate delays 
would still have a smaller or equal latency compared to a design with two or more modules in series. 
 

Note: 

 We do not provide a behavioral description and waveform for the 3-way Distribute module. The 
behavior is a straightforward extension of the behavior for the 2-way version. The main motivation for 
designing and presenting this 3-way version is to get and give a feel for the growth in design 
complexity when we generalize the basic 1-to-1to2of2 solution to 1-to-1toNofN solutions, for N>2. 
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Figure 45: Telescope GasP control circuit for the 3-way Distribute module. This design is a generalization of 

the 2-way Distribute module in Figure 39. It has two input statewires with a master clear signal, in[sw,mc] and 
to[sw,mc], three output statewires with a joined master clear signal, out1[sw,mc], out2[sw,mc], and 
out3[sw,mc]. Data control signals d[1:3] have a bundled-delay relation to statewire to[sw,mc]. We will use the 
icon in the top-right corner to represent a 3-way Distribute module.    
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6.3. 4-Way Distribute Module 
 
The 4-way Distribute module streams the data from one incoming communication channel, in[sw], to a 
subset of 4 outgoing communication channels, out1[sw] ,out2[sw], out3[sw], and out4[sw]. The 
selection of outputs to stream the data to depends on 4 additional incoming control data bits d[1:4]. The 
control data bits are bundled with an incoming control statewire, called either to[sw] or guard[sw]. 
Channel outi[sw] is in the selection if its controlling data bit d[i] is HI, for i ranging from 1 to 4.  
 
Figure 46 and Figure 47 give our Telescope GasP implementation for the 4-way Distribute module, and a 
SPICE level simulation showing its behavior.  
 
Rather than extending the circuit implementation of the Distribute 2 and Distribute 3 modules in Figure 39 
and Figure 45, we partitioned the design into two layers of Telescope GasP modules: two 2-way Fork 
modules from [9] followed by two 2-way Distribute modules. One of the two-way Forks broadcasts the 
input data to both Distribute modules, and the other one partitions the control data over the Distribute 
modules. They do this concurrently. The 2-way Distribute modules each control two output channels. 
Between them, they cover the data-controlled distribution over all four output channels.  
 
We did this design in Electric [14], and provided it with its own icon. We could, in principle, have done the 
design in ARCwelder [6], except that ARCwelder does not yet support hierarchical designs and naming 
and icon conventions for sub-designs.  
 
The minimum cycle time of this design is 2+2+5+2+2+5=18 gate delays. If we were to add a fast reset 
signal, the cycle time would decrease to 14 gate delays. 
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Figure 46: Telescope GasP design of a 4-way Distribute. It has two input statewires with a master clear signal, 

in[sw,mc] and to[sw,mc], and four output statewires with joined master clear signal, out1[sw,mc], out2[sw], 
out3[sw], and out4[sw,mc]. Data control signals d[1:4] have a bundled-delay relation to input statewire 
to[sw,mc]. This is a hierarchical design, built using two instances of the 2-way Fork module in [9] and two 
instances of the 2-way Distribute module in Figure 39. One Fork broadcasts the data on in[sw] to both 
Distribute modules, the other partitions the control data over both Distribute modules. They do this 
concurrently. The 2-way Distribute modules each control two output channels. Between them, they cover the 
data-controlled distribution over all four output channels. We will use the icon in the top-right corner to 
represent this 4-way Distribute design. 
    

 
 

Figure 47: SPICE-level simulations of the 4-way Distribute of Figure 46, showing that (1) each HI output pulse 
is strictly contained within a HI in[sw] pulse in red, and (2) outi[sw] participates if and only if d[i] is HI, for i=1,2. 
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7. Conclusion and Future Work 
This document gives the implementation and simulation details of Telescope GasP modules for 
narrowcast and arbitrated or data driven control used in ARCwelder [5,6]: Merge, Branch, and Distribute. 
 
Telescope GasP implementations have a minimum cumulative cycle time of 10+4k gate delays, where k is 
the number of consecutive Telescope GasP modules in the data path following and including the present 
module up the Store modules that store the computed results at the end of the data path. The increase in 
cycle time of 4 gate delays per data path module is due to the use of single-track channels. This puts 
single-track designs styles, like Telescope GasP, at a disadvantage over other telescoping handshake 
design styles that use multi-track handshake signaling, such as Click [13]. We can alleviate this 
disadvantage and obtain a cumulative cycle time of 10+2k gate delays by adding a fast reset strategy.  
 
The fast reset solutions presented in this document share the following key features: 

1. The fast reset signal is generated from the final Store module in the data path. We anticipate that, 
in case of the Distribute module, we will be able to identify a particular set of Store modules from 
which we can tap a fast reset signal. We leave such identification for future work.  

2. Unlike the fast reset solutions for the broadcast modules in [9] where we re-used the existing 
master clear input signal to the module as fast reset signal input, the modules in this document 
use a separate fast reset input that function according to the logical effort expectations of a 
normal post-initialized Telescope GasP operation. 

3. By convention, statewires in Telescope GasP are initialized LO. So, the separate fast reset input 
will be an extra input for the predecessor driver. The modules in this document select which 
incoming and outgoing handshake channels will participate in the current telescope action. To 
ensure that only the incoming handshakes that participate are reset, we AND the fast reset signal 
with an internal guard signal. The guard indicates whether or not to reset the handshake channel. 

4. This fast reset strategy adds two extra inputs to the predecessor drivers. This has a noticeable 
impact on the complexity of the circuitry for predecessor drivers. The driver complexity also 
makes it harder to generalize the module designs for more incoming or outgoing channels, as we 
observe in Section 5.2, where we generalize the 2-way Sequential Branch to a 3-way version. 

 
To generalize Merge, Branch, and Distribute modules for more incoming and outgoing channels, we can: 

 Use more complex gates and drivers. 

 Spread the function over multiple modules, like we do for the four-way Distribute in Section 6.3.  

 Increase the 2 gate delay forward and backward latencies to 3 or 4 gate delays, by spreading the 
action over more and simpler gates and drivers. A module with a forward and backward latency of 3 to 
4 gate delays still has a smaller or equal latency compared to two or more modules in series. 

 
Unlike the broadcast modules in [9], the modules in this document steer data selectively. We forward only 
those data bits that are bundled with incoming handshake channels that participate in the current 
telescope action. We opted to broadcast the incoming data to all outgoing handshake channels, no matter 
whether or not the receiving module participates in the action. As a result, no special steering logic is 
needed for the single-input, multiple-output Branch and Distribute modules. But Merge modules do need 
special steering logic. Each of our Merge modules has a data steering signal per incoming handshake 
channel. The signal is HI when the data bundled with the handshake channel are to be forwarded, and it is 
LO when the bundled data are to be ignored. Such steering signals can be used to control the multiplexers 
in the data path that multiplex the data bits coming into the module onto the module’s outgoing data bits.  
 
As before, we used two design approaches to implement the modules in this document. Both approaches 
have their advantages and disadvantages. The advantage of the first approach is that its control-data 
bundling constraints are less strict than those for the second approach, as we demonstrate for the 2-way 
Distribute module in Section 6.1. The advantage of the second approach is that it has better delay margins 
than the first approach; this is true for all modules discussed here.  
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Abstract 
This document gives Telescope GasP implementations for Repeat modules used in ARCwelder [5,6] to 
implement repetitive data streaming. ARCwelder, previously called TPDesign, is a design and compilation 
environment for dataflow computations; we use it to design self-timed systems. Its organization builds 
upon results and key learnings of the data-driven compiler effort by Handshake Solutions [13]. Related 
self-timed compilation efforts can be found in for instance [1,2,3,19]. 
 
An overall motivation for Telescope GasP, including pros, cons, and alternatives, can be found in [8]. 
Implementations for storage and broadcast modules are given in [9], Module implementations for 
narrowcast 1-to-1ofN or 1ofN-to-1, or for 1-to-1toNofN communications are given in [10]. This document 
[11] closes the present series of Telescope GasP modules by giving implementations for Repeat modules. 
The references in the current ARC report list all references on Telescope GasP used here or in 
[8,9,10,11].  
 
 
Keywords: GasP backend for ARCwelder (TPDesign), Telescope GasP for repetitive data streaming. 
 
 
Notation: 
1. All GasP implementations in this document and in the related documents [8,9,10] are non-inverting, 

i.e., their handshake channels, a.k.a. statewires, use the same encoding. Statewires say whether the 
data bundled with the statewire are valid. We use: 

 HI for a high voltage level, e.g. VDD, to indicate a handshake REQUEST phase with valid data.  

 LO for a low voltage level, e.g. VSS or GND, to indicate a handshake ACKNOWLEDGE phase 
where data are no longer needed. 

In our circuit diagrams, we use a short 45-degree line segment for VDD and a triangle for VSS. A 
PMOS transistor connected to VDD and an NMOS transistor connected to VSS are depicted as:  

                                         respectively     
 

2. Our schematic designs use a so-called JBOX construct. This is a special construct in Electric [14] to 
connect signals with different names. The symbol for a JBOX construct is a box with the letter J in it. 
We specifically use it to join the master clear (mc) signals on the various statewires of a module. For 
example, Figure 2 on page 4 uses a JBOX to connect master clear signals in[mc] and out[mc].  

 
 
Acknowledgements: We gratefully acknowledge Professor Dr. Xiaoyu Song for encouraging and   
supporting Swetha to conduct this research as part of her PhD thesis work. 
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1. Introduction 
 
This document gives GasP control implementations for Repeat modules. These modules are used in 
ARCwelder [5,6] to implement repetitive data streaming. Below follows a short description: 

 Repeat  
o We implemented two types of Repeat module, only one of which was listed in [5]. We dubbed the 

listed version RepeatUntil, and added RepeatWhile.  
o RepeatUntil streams the input data to the output at least once. After each output, it waits for a 

guard input to determine whether or not to stream the same data to the output once more.  
o RepeatWhile streams the input data to the output zero or more times. Initially, and again after 

each output, it waits for a guard input to determine whether or not to stream the input data to the 
output one more time. In GasP, the RepeatWhile module is easier to implement than the 
RepeatUntil module, and therefore, we will present its implementation details first. 

o Implementation details follow in Section 3. 
 
When designing GasP modules, we distinguish and design four communication control actions: 
 

1. Forward Transfer  
The HI handshake request signal coming in from the predecessor statewire transfers into a HI 
request signal on the successor statewire. The actual transfer generally requires synchronization 
with other incoming and with outgoing signals. We opted for a forward transfer latency of 6 gate 
delays for the Store module and of 2 gate delays for the other modules. 

2. Backward Transfer 
The LO handshake acknowledge signal coming in from the successor statewire transfers into a 
LO acknowledge signal on the predecessor statewire. The transfer generally requires 
synchronization with other outgoing and with incoming signals. We opted for a backward transfer 
latency of 4 gate delays for the Store module and of 2 gate delays for the other modules. 

3. Forward Reset  
The forwarded HI request signal on the successor statewire turns off its own HI drive after 5 gate 
delays, thereafter relying on the keeper to keep the statewire HI as long as needed. The Forward 
Reset in a storage-free Telescope GasP module strictly precedes its Backward Reset. Traditional 
GasP modules, like module Store, turn off their forward HI and backward LO drives concurrently. 

4. Backward Reset 
In a storage-free Telescope GasP module, the backward transferred LO acknowledge signal on 
the predecessor statewire turns off its own LO drive after 5 gate delays. Traditional GasP 
modules, like module Store, turn off their forward HI and backward LO drives concurrently. 
 

The two transfer parts each contain a driver and a half-keeper. Similar to the half-keeper design 
organizations of 4-2 Gasp in [18] and of 6-4 GasP in [7], the half-keeper serves two purposes: it prevents 
the statewire from floating when the drive ceases, and it avoids a keeper-driver short-current conflict.  
 
One of the design criteria for the current Telescope GasP implementations is a small 2 gate delay latency 
between incoming and outgoing handshakes. From [8], we know that we need at least 2 gate delays to 
implement non-inverting Telescope GasP. Our design criterion is to make this latency no more than 2 gate 
delays. To be more precise: we want a minimum latency of 2 gate delays per module from the moment its 
last parallel incoming handshake goes HI (starts) to the moment its outgoing handshakes go HI (start), 
and, likewise, a minimum latency of 2 gate delays from the moment its last outgoing handshake goes LO 
(resets) to the moment its parallel incoming handshakes go LO (reset).  
 
To guarantee this low latency, some of the control functionality is inevitably forced into the drivers for the 
handshake channels. This results in a myriad of custom driver designs, each with 1 gate delay latency. 
Section 2 below lists all custom design drivers used for the design of RepeatUntil and RepeatWhile and 
includes their circuit schematics provided these are not already given in [9] or [10]. 
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2. Custom Driver Designs for Repeat Modules 
 
To achieve a small 2 gate delay transfer latency, some of the forward and backward transfer logic is 
inevitably integrated into the driver and half-keeper logic. As a result, Telescope GasP modules use a 
large variety of driver and half-keeper circuits for incoming and outgoing statewires - larger than we are 
used to see in traditional, e.g. 6-4, GasP modules.  
 
Section 2.1 gives the implementations of HI driver and LO half-keeper logic for successor drivers of 
outgoing statewires of Repeat modules. Section 2.2 does the same for the LO driver and HI half-keeper 
logic for predecessor drivers of incoming statewires. By convention, the initial value of a statewire is LO, 
and so the master clear (mc) signal and related circuitry for fast return-to-zero resetting appear in the 
predecessor drivers. 
 

2.1. Single-Track Statewire Drivers for Pull-HI and Keep-LO 
 
Our implementations of RepeatWhile and RepeatUntil use the following HI driver and LO half-keeper logic 
for successor drivers: 

 Succ AND Driver: The AND of two LO inputs drives the statewire HI, and a half-keeper keeps it LO. 
See [9] for circuit details. 

 Succ OR1xAND Driver: 3 LO inputs ORAND-ed to drive the statewire HI; half-keeper to keep it LO. 
Both circuits have an input-to-output transition time of one gate delay. The new driver implementation for 
Succ OR1xAND Driver follows in  

Figure 1 below. 
 
 
 

 
 

 
Figure 1: Transistor-level GasP design for Succ OR1xAND Driver. Either a LO input on  inA or LO inputs on 
both inB and condB will drive statewire succ HI within one gate delay. The half-keeper is there to keep succ 
LO, when needed. We use the icon in the top right corner of the picture as a gate-level shortcut for this driver. 
It is used in the RepeatUntil module. 
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2.2. Single-Track Statewire Drivers for Pull-LO and Keep-HI 
  
Our implementations of RepeatUntil and RepeatWhile use the following LO driver and HI half-keeper logic 
for predecessor drivers: 

 Pred Driver: A HI input drives the statewire LO, and a half-keeper keeps it HI - see [9] for details. 

 Pred OR Driver with MC and fastRTZ: Pred OR Driver with extra 2-input guarded fastRTZ facility. 
Two HI inputs, either of which drives the statewire LO for normal resets, and half-keeper to keep it HI. 
See [10] for circuit details. 

 
Both circuits have an input-to-output transition time of one gate delay. Their implementations are given in 
[9,10]. By convention, statewires are initialized LO. So, unless otherwise specified, LO drivers have a 
master clear (mc) input signal and related circuitry to initialize the statewire to LO. The driver 
implementations for the Repeat modules follow this convention. That means that also any additional 
circuitry for fast (return-to-zero) resetting goes into the LO driver logic of the predecessor drivers. 
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3. Repeat Module 
Repeat modules are used in ARCwelder [5,6] to implement repetitive data streaming. We implemented 
two types of Repeat module, only one of which was listed in [5]. We dubbed the listed version RepeatUntil, 
and added RepeatWhile. Implementation details for the RepeatWhile module follow in Section 3.1 below, 
and implementation details for the RepeatUntil module follow in Section 3.2 below. 
 

3.1. RepeatWhile 
The RepeatWhile module streams its source data zero or more times to its outgoing handshake channel. 
Initially, and again after each output, it waits for a guard input to determine whether or not to stream the 
source data at its incoming channel to its outgoing channel one more time.  
 
The implementation of the RepeatWhile module in Figure 2 follows the second design approach for 
designing Telescope GasP modules – see [8] for a quick explanation of the two design approaches. 
Because the second approach gives a simpler solution than the first approach when it comes to 
implementing a RepeatWhile, this is the only implementation we will provide. The implementation has two 
self-resetting loops. The top loop has separate taps to start and stop the HI respectively LO drive for 
out[sw] respectively guard[sw]. The bottom loop is used to start and stop the LO drive for in[sw].  
 
SPICE-level simulations for this implementation follow in Figure 3 and Figure 4. Figure 3 shows the 
handshake behavior, while Figure 4 shows some of the details for the internal signaling  behavior.  
 
The handshake behavior can be described as follows. Initially, in[sw], guard[sw], out[sw], mc and 
fastRTZ are LO. When in[sw] and guard[sw] go HI, indicating the presence of both source data and the 
fact that a guarded decision has been made, and out[sw] is still LO, indicating the availability of space, 
the following actions take place in sequence and ordered as indicated: 

1. If the guarded decision is a GO, i.e., if guard[d] is HI, then the Forward Transfer part streams the 
source data to the successor module by driving out[sw] HI, 2 gate delays later. If the guarded 
decision is a NOGO, i.e., if guard[d] is LO, then the repetitive sequence of actions 2 to 5 to 1 is 
skipped for the following two final actions: 
1.1. Start both Backward Transfer parts by driving in[sw] and guard[sw] LO, 5 gate delays after 

the last of them went HI. The additional waiting time serves the purpose of accommodating a 
5 gate delay HI pulse on in[sw] and guard[sw]. 

1.2. Then start both Backward Resets in order to limit the LO drives on in[sw] and guard[sw] to a 
5 gate delay pulse. 

2. The Forward Reset part kicks in, limiting the HI forward drive to a 5 gate delay pulse signal. 
3. The Backward Transfer part waits until out[sw] is LO, and then requests a new guarded decision 

by driving guard[sw] LO, 2 gate delays later. 
4. The Backward Reset kicks in, limiting the LO drive on guard[sw] to a 5 gate delay pulse.  
5. The module now waits until guard[sw] is HI again, and then continues with action 1 above. 

After action 1.2, at the end of this variable-length sequence of actions, the RepeatWhile module waits until 
both in[sw] and guard[sw] are HI again, so it can start its next RepeatWhile cycle. 
 
The Forward Transfer part in Figure 2 uses a Succ AND Driver [9].  There is 1 additional gate between 
incoming handshake channels in[sw] and guard[sw] and the input of the Succ AND Driver, giving a total 
forward latency of 2 gate delays. The Backward Transfer part for guard[sw] uses a Pred OR Driver with 
master clear and fast reset [10]. There is 1 additional gate between outgoing handshake channel out[sw] 
of the RepeatWhile module and the input of the Pred OR Driver with fast reset, giving a total backward 
latency of 2 gate delays. Incoming handshake channel in[sw] has no dependencies to out[sw]. It plays a 
role in ending the repetition, as explained in items 1.1 and 1.2 above, and adds no extra backward latency 
to the 5 gate delay HI handshake pulses for in[sw] and out[sw]. 
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Figure 2: Telescope GasP implementation for the RepeatWhile module. It has two input statewires with a 
master clear signal, in[sw,mc] and guard[sw,mc], and one output statewire with a joined master clear signal, 
out [sw,mc], and a fast reset input fastRTZ The data signal in the guard guard[d] is bundled with the 
statewire signal in the guard guard[sw]. The implementation is saved under TelescopeGasP_wStateSharing, 
under module name RepeatWhileTfastRTZ. Substring `TfastRTZ’ in the module name indicates that this is a 
Telescope GasP implementation with fast reset capability. The module has an internal reset signal, used 
during normal telescope handshakes involving out[sw], and an external reset signal for fast resetting. To 
ensure that we reset only actions related to the current iteration cycle, the fast reset and internal reset signals 
are connected ONLY to the predecessor driver for guard[sw] and are AND-ed with an internal guard signal 
tapped from internal statewire sG. 
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Figure 3: SPICE-level simulations of the RepeatWhile module in Figure 2. If both in[sw] and guard[sw] are HI 
then out[sw] will go HI provided pink signal guard[d] is HI, and if guard[d] is LO then out[sw] will stay LO and 
both in[sw] and guard[sw] will go LO. Guard condition, guard[d], may change when guard[sw] is LO. For every 
HI pulse on out[sw], the source data provided via in[sw] (not shown here) are streamed to the destination of 
out[sw]. For every HI pulse on out[sw] there is an encompassing HI pulse on guard[sw]. The simulation shows:  

 One RepeatWhile loop with two repetitive out[sw]-guard[sw] handshake telescopes during which guard[d] 
is HI and which ends with guard[d] going LO followed by a final guard[sw] HI pulse and in[sw] going LO.  

 A subsequent RepeatWhile loop during which guard[d] is LO, which ends immediately with a HI pulse on 
both in[sw] and guard[sw], while out[sw] remains LO. 

Note that (1) each HI pulse on out[sw] is strictly contained within a HI pulse on in[sw] and guard[sw], and that 
(2) out[sw] participates in the telescope action if and only if in[sw], guard[sw] and guard[d] are all HI. 

 
 
 

 
 
 

Figure 4: SPICE-level simulations showing the internal signaling details for module RepeatWhile in Figure 2 
for the first of the two RepeatWhile loops in Figure 3.  

 The bottom window shows guard[d] changing from HI to LO after the second HI pulse on guard[sw]. 

 The top window shows the signaling details for guard[sw] to out[sw] handshakes. The top simulation starts 
with the purple guard[sw] going HI, followed by the green out[sw] going HI 2 gate delays later, followed by 
the internal sG signal in red going LO 1 more gate delay later and the internal sGplus2 signal in orange 
going LO 2 more gate delays later, and back to the green out[sw] going LO, 5 gate delays after it went HI, 
and to the purple guard[sw] signal going LO, also 5+4=9 gate delays after it went HI. The safety margin of 
3 gate delays for resetting guard[sw] that we see in Figure 2 when going from out[sw] HI disabling the 
inverted input AND gate to sGplus2 LO enabling the AND is large enough to guarantee a telescopic 
handshake relation between guard[sw] and out[sw]. It is also small enough to fit within the minimum HI 
pulse width of 5 gate delays for out[sw] in order to maintain throughput. The remaining 2 gate delays after 
sGplus2 goes LO are used to stop the HI drive on out[sw] so the receiver can reset out[sw] without a fight 
conflict. When out[sw] is reset LO, the inverted input AND gate makes resetG go HI one gate delay later, 
which then resets guard[sw] to LO one more gate delay later - two gate delays after out[sw] went LO. After 
guard[d] changes to LO, guard[sw] handshakes are reset LO without incurring a handshake on out[sw]. 

 The middle window shows the signaling details for in[sw] handshakes. The simulation starts with the 
purple in[sw] going HI, and is followed by the red sAll signal going LO after guard[d] has fallen and 
guard[sw] has become HI again, as indicated in the top and bottom windows. Signal sAll going LO makes 
orange signal sAllplus2 go LO 2 gate delays later, which makes pink signal resetAll go LO 1 more gate 
delay later, which gets us back to the purple signal in[sw] that goes LO 1 more gate delay later, at about 
the same time that the guard[sw] goes LO in the top window.  
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Without a fast reset signal, the minimum cycle time is min(5, k*(2+5+2+5))=min(5,k*14) gate delays, 
where k is the number of out[sw] iterations. The cycle time is set by the 2 gate delay transfers and the 5 
gate delay loops in the circuit diagram of Figure 2, assuming that successor and predecessor modules 
keep the statewires HI respectively LO for a minimum of 5 gate delays. The cycle time increases in steps 
of k*4 gate delays for each successive non-Repeat Telescope GasP module between the current 
RepeatWhile and the next Store module. In case of nested Repeat modules, a recursive formula can be 
written to calculate the overall cycle time. 
 
Using a fast reset signal, we can reduce the backward latency and reduce the cycle time to min(5,k*12) 
with an increase in steps of k*2 gate delays for each successive non-Repeat Telescope GasP module 
between the current RepeatWhile and the next Store module. We designed a test environment that 
generates such a fast reset signal and passes it to the RepeatWhile module via the already provided 
fastRTZ input. We tested the behavior of the RepeatWhile module with this fast reset, using the 
configuration in Figure 5. 
 
Figure 5 shows a set of parallel sender queues on the top, designed using traditional 6-4 GasP. The 
queues feed the two pairs of source input and guard input channels of the nested RepeatWhile data flow 
queue in the middle. The bottom portion of Figure 5 contains the receiving half of a Store module [9]. We 
deleted the sending half from the Store implementation, because we don’t need it, and we added extra 
circuitry to generate a fast reset signal, which is called fastRTZ.  
 
This test configuration works as follows. Four gate delays after the start of an incoming handshake to the 
Store module, i.e., after out[sw] goes HI, the Store module makes fastRTZ go HI. The fastRTZ signal is 
distributed to the rightmost RepeatWhile module in the inner loop of the green data path under test and to 
its successor Telescope GasP modules - i.e., to the rightmost Merge module. At the same time, i.e., four 
gate delays after out[sw] goes HI, the Store module makes its local clock signal cl HI. The cl signal acts 
as input to the LO driver for out[sw]. Consequently, five gate delays after out[sw] goes HI, all active 
handshake communications in the rightmost RepeatWhile and Merge modules are reset concurrently. The 
reset stops after 5 gate delays, via the self-resetting loop in the Store module.  
 
 
 

Figure 6 shows SPICE-level simulation waveforms for fastRTZ and the corresponding concurrent reset 

to LO for channels mid3a1[sw] and guard1[sw] going out of respectively into the rightmost RepeatWhile 
module. Note that the leftmost RepeatWhile and Merge modules are not affected by this fastRTZ. The 
two fast reset inputs to the leftmost Merge modules are tied to ground in Figure 5. If needed, we could 
generate a fast reset signal for the leftmost RepeatWhile and Merge modules from the internal reset 
signal resetAll in the rightmost RepeatWhile module that resets mid2b[sw] as well as guard1[sw].  
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Figure 5: Fast reset configuration and test environment for the bottom-left green data path with RepeatWhile 
and Merge modules. The green icons with text `M’ represent the Merge modules. Those with text `Rw’ 
represent the RepeatWhile modules. The above test configuration concurrently resets statewires guard1[sw], 
mid3a1[sw] and out[sw] that are connected to the rightmost RepeatWhile and Merge modules that form the 
inner loop in the green data path under test. Note that, unlike the fast reset signal mc_fastRTZ in [9], but 
similar to the fast reset signal fastRTZ in [10], the fastRTZ signal generated by the above Store module is 
independent of master clear signal mc. Note also that fastRTZ is distributed only to the rightmost RepeatWhile 
and Merge. The fast reset inputs for the leftmost RepeatWhile and Merge are grounded. This guarantees that 
only inner loop actions are reset by this fastRTZ signal, while outer loop actions remain unaffected by it. 
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Figure 6: SPICE-level simulation results for the fast reset and test configuration in Figure 5.  

 The third window from the top shows the fastRTZ pulse. 

 The top window shows that fastRTZ does not impact the leftmost RepeatWhile and Merge modules in the 
outer loop of the data path under test. This is exactly how we expect it to be, because the fast reset inputs 
for these components are connected to ground. The backward transfer delay from handshake signal 
mid2b[sw], in green and going out of the first Merge module, to handshake signal mid2a1[sw], in blue and 
coming into the first Merge, remains 2 gate delays. The backward transfer delay from the blue handshake 
signal mid2a1[sw] going out of the first RepeatWhile module to the orange handshake signal guard[sw] 
coming into the module also remains 2 gate delays.  

 The second window from the top shows that the fastRTZ does impact the rightmost RepeatWhile and 
Merge modules in the inner loop of the data path under test. When fastRTZ goes HI, it concurrently resets 
all inner loop handshakes signals between guard1[sw] and out[sw] that caused out[sw] to rise. 
Specifically, it resets out[sw] in green, mid3a1[sw] in blue, and guard[sw] in orange. Note that all three 
signals are LO by the end of the fastRTZ HI pulse. 

 The bottom window shows the internal reset behavior for the rightmost, RepeatWhile module in Figure 5.  

o Blue signal fastRTZ is the fast reset signal generated by the Store module. During its 5 gate delay HI 
pulse, the orange mid3a1[sw] and red guard1[sw] handshake signals are reset LO, simultaneously.  

o Green signal resetG is part of the normal backward reset path. When HI, it resets the red incoming 
handshake signal of the RepeatWhile module to LO, with or without the extra help of the guarded 
fastRTZ signal. From the RepeatWhile schematics in Figure 2, we can see that the guards for the 
internal reset and the fast reset originate from the same signal: sGplus2. If the guard holds, i.e., if 
sGplus2 is LO, then the internal reset resetG rises 1 gate delay after a falling transition on the orange 
outgoing handshake, and 2 gate delays after the blue fast reset rises. 

o As in [10], we use a strong fast reset signal that functions according to the logical effort expectations 
of a normal post-initialized Telescope GasP operation. Consequently, the red incoming handshake 
signal for guard1[sw] has a steep reset slope when reset by fastRTZ. As a result, the red signal is 
largely reset by the time the green internal reset starts, making the internal reset less effective during 
fast resets of RepeatWhile.  

o Pink signal sGplus2 acts as guard for both the fast and the internal reset. If it is LO at the start of the 
fastRTZ HI pulse, then the red guard1[sw] signal will be reset. In that case, it goes HI 4 gate delays 
after fastRTZ goes HI, and 1 more gate delay later it stops the HI pulse on the green internal reset 
signal and its stops the fastRTZ drive to guard1[sw], thus ceasing  the LO drive for guard1[sw]. The 5 
gate delay HI pulse on fastRTZ stops around the same time. 
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3.2. RepeatUntil 
The RepeatUntil module streams its source data one or more times to its outgoing handshake channel. 
After each output, it waits for a guard input to determine whether or not to stream the source data at its 
incoming channel to its outgoing channel one more time.  
 
The implementation of the RepeatUntil module in Figure 7 below follows the second design approach for 
designing Telescope GasP modules – see [8] for a quick explanation of the two design approaches. The 
implementation resembles that of the Toggle Merge design in Figure 26 of [10]. It has two self-resetting 
loops for external statewires, with separate taps to start and stop the HI drive for out[sw] and the LO 
drives for in[sw] and guard[sw]. It has two additional loops to encode internal statewires, called RR1 and 
RRmore that keep track of whether the source data are forwarded for the first time or for more times.  
 
The handshake behavior can be described as follows. Initially, in[sw], guard[sw], out[sw], mc and 
fastRTZ are LO, RR1 is high, and RRmore is LO. When in[sw] goes HI, indicating the presence of 
source data, and out[sw] is still LO, indicating the availability of space, the following actions take place in 
sequence and ordered as indicated: 

1. The Forward Transfer part streams the source data to the successor module by driving out[sw] 
HI, 2 gate delays after in[sw] goes HI. 

2. The Forward Reset part kicks in, limiting the HI forward drive to a 5 gate delay pulse signal. The 
Forward Reset works via internal statewire RR1, which is reset to LO 1 gate delay after out[sw] 
goes HI, and which in turn resets RR1plus2 to LO 2 gate delay later, which results in stopping the 
LO drive for out[sw] 2 more gate delays later – 5 gate delays after out[sw] went HI. 

3. The module waits until it can do a Backward Transfer. The Backward Transfer works via statewire 
RRmore, which is set to HI 1 gate delay after out[sw] goes LO, and which in turn sets 
RRmoreplus2 to HI 2 gate delay later – 3 gate delays after out[sw] went LO. With RRmoreplus2 
HI, the module is ready to follow a guarded decision on doing another out[sw] handshake cycle.  

4. The module waits until guard[sw] is HI. If the guarded decision is a GO, i.e., if guard[d] is HI, 
then the module proceeds with the repetitive sequence of actions 5 to 9 to 4. If it’s a NOGO, i.e., if 
guard[d] is LO, the module skips the repetition and ends with the following final series of actions: 
4.1. First start both Backward Transfer parts by driving in[sw] and guard[sw] LO, 5 gate delays 

after the last of them went HI. The 5 gate delays serves the purpose of accommodating a 5 
gate delay HI pulse on in[sw] and guard[sw], and are set by the top-right loop in Figure 7 via 
internal reset signal resetAll which feeds both predecessor drivers. 

4.2. Then start both Backward Resets in order to cut off the LO drives on in[sw] and guard[sw] to 
a 5 gate delay pulse. This is again accomplished by the top-right loop in Figure 7, which 
resets the HI resetAll signal to LO after 5 gate delays and thus cuts off the LO drives for 
in[sw] and guard[sw] one gate delay later – 5 gate delays after both went LO. 

4.3. Meanwhile, 3 gate delays after resetAll goes HI and hence 2 gate delays after in[sw] and 
guard[sw] go LO, RRmoreplus2 goes LO and puts on hold successive guard[sw]-out[sw] 
telescope handshakes. One more gate delay later, i.e., 3 gate delays after in[sw] and 
guard[sw] go LO, RR1plus2 goes HI. The module is now ready to respond to the next in[sw] 
handshake, with 5-3=2 gate delays to spare before in[sw] can be expected to go HI again.  

5. We have a guarded decision that’s a GO, in[sw] is HI, out[sw] is LO for at least 3 gate delays, 
and RRmoreplus2 is HI. The module is poised for another out[sw] handshake, which will start 
two gate delays after guard[sw] rises, thus allowing out[sw] to be LO for at least 5 gate delays.  

6. The Forward Transfer in item 4 above is followed by a Forward Reset through the bottom-right 
loop in Figure 7, which cuts off the HI drive for out[sw] after 5 gate delays.  

7. The Backward Transfer part waits until out[sw] is LO, and then requests a new guarded decision 
by driving guard[sw] LO, 2 gate delays later. 

8. The Backward Transfer in item 6 above is followed by a Backward Reset through the bottom-right 
loop in Figure 7, which cuts off the LO drive for guard[sw] after 5 gate delays.  

9. The module continues with action 4 above. 
 
After action 4.3, at the end of this variable-length sequence of actions, the RepeatUntil module waits until 
both in[sw] is HI again, so it can start its next RepeatUntil cycle. 
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Figure 7: Telescope GasP implementation for the RepeatUntil module. It has two input statewires with a 
master clear signal, in[sw,mc] and guard[sw,mc], one output statewires with a joined master clear signal, out 
[sw,mc], and a fast reset input fastRTZ The data signal in the guard guard[d] is bundled with the statewire 
signal in the guard guard[sw]. The implementation is saved under TelescopeGasP_wStateSharing, under 
module name RepeatUntilTfastRTZ. Substring `TfastRTZ’ in the module name indicates that this is a 
Telescope GasP implementation with fast reset capability. Similar to the RepeatWhile implementation in 
Figure 2, there is an internal reset signal, used during normal telescope handshakes with out[sw], and an 
external reset signal for fast resetting. To ensure that we reset only actions related to the current iteration, the 
fast reset and internal telescope reset signals are connected ONLY to the predecessor driver for guard[sw] 
and are AND-ed with an internal guard signal tapped from signal sG. 

 
 
 

 
     

 

Figure 8: SPICE-level simulations of the RepeatUntil module in Figure 7. Each in[sw] pulse in red contains at 
least one out[sw] HI pulse in green. Another green out[sw] HI pulse is added for every guard[sw] pulse in purple 
with pink guard[d] HI, until in[sw] is HI and guard[sw] is HI but guard[d] is LO. Guard condition, guard[d], may 
change when guard[sw] is LO. For every HI pulse on out[sw], the source data provided via in[sw] (not shown) 
are streamed to the destination of out[sw]. The simulation shows:  

 One RepeatUntil loop consisting of one in[sw] handshake inside which there is a single out[sw] handshake 
followed by two guard[sw]-out[sw] handshake telescopes during which guard[d] is HI, followed by guard[d] 
going LO, followed by a final guard[sw] HI pulse and in[sw] going LO.  

 A subsequent RepeatWhile loop during which guard[d] is LO, consisting of one in[sw] handshake inside 
which there is a single out[sw] handshake and separate of which there is a guard[sw] handshake that 
ends simultaneously with the handshake on in[sw].  

Unlike suggested by these waveforms, a HI pulse on out[sw] must be strictly contained within a HI pulse on 
guard[sw] only from the second to the last out[sw] HI pulse in an in[sw] HI pulse. 
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Figure 9: SPICE-level simulations showing the internal signaling details for module RepeatUntil in Figure 7 
between the end of the first RepeatUntil loop and the start of the next RepeatUntil loop in Figure 8.  

 The top window shows the external handshake signals, just like in Figure 8. 

 The middle window shows the signaling details for the internal statewires RRmore and RR1. When 
resetAll goes HI at the end of first RepeatUntil loop, RRmore goes LO 1 gate delay later and RR1 goes HI 
2 gate delays after resetAll goes HI. Both RRmore and RR1 are state holding. So, by the end of the 5 gate 
delay HI pulse on resetAll, RR1 and resetAll remain LO respectively HI. Internal statewire RR1 is reset to 
LO as soon as out[sw] goes HI in the next RepeatWhile loop. When out[sw] goes LO, it sets RRmore to 
HI and resetAll to LO, 1 gate delay later. With resetAll LO, RRmore is reset back to LO after 1 more gate 
delay. This explains the small rising pulse on RRmore, which his harmless. RRmore is LO and RR1 high 
by the end of the resetAll pulse and well before the next in[sw] and guard[sw] handshakes come in. 

 The bottom window shows the signaling details related to RR1 and sAll. When resetAll goes HI at the end 
of the first RepeatUntil loop, sAllplus2 and RR1plus2 go HI 4 gate delays later, which is 1 gate delay 
before the end of the resetAll HI pulse and 2 gate delays before the next in[sw] handshake starts. Signal 
sAll goes LO as soon as it becomes clear that the current out[sw] pulses will not be followed by more 
out[sw] pulses in the current RepeatWhile loop, i.e., when in[sw] and guard[sw] are HI and guard[d] is LO. 
Here, sAll and sAllplus2 go LO right at the start of the loop’s first out[sw] HI pulse. Signal RR1plus2 is part 
of the 5 gate delay self-resetting loop for out[sw]: RR1plus2 goes LO 3 gate delays after out[sw] goes HI 
and stops the out[sw] HI drive 2 gate delays later. 
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SPICE simulations for the module implementation in Figure 7 are presented in Figure 8 and Figure 9. 
Figure 8 shows the handshake behavior, and Figure 9 shows details about the signaling behavior internal 
to the module.  
 
Regarding forward and backward transfer latencies, we can say the following. The Forward Transfer part 
in Figure 7 uses the Succ OR1xAND Driver of  

Figure 1 in this document. There is 1 additional gate between incoming handshake channels in[sw] and 

guard[sw] and the input of the Succ AND Driver, giving a total forward latency of 2 gate delays. The 
Backward Transfer part for guard[sw] uses a Pred OR Driver with master clear and fast reset [10]. There 
is 1 additional gate between outgoing handshake channel out[sw] of the module and the input of the Pred 
OR Driver with fast reset, giving a total backward latency of 2 gate delays. Incoming handshake channel 
in[sw] plays a role in setting up the guarded repetitions and ending the overall repetition, as explained in 
items 4.1 to 4.3 above, and adds no extra backward latency to the 5 gate delay HI handshake pulses for 
in[sw] and out[sw]. 
 
Without a fast reset signal, the minimum cycle time is min(5, k*(2+5+2+5))=min(5,k*14) gate delays, 
where k is the number of out[sw] iterations. The cycle time is set by the 2 gate delay transfers and the 5 
gate delay loops in the circuit diagram of Figure 7, assuming that successor and predecessor modules 
keep the statewires HI respectively LO for a minimum of 5 gate delays. The cycle time increases in steps 
of k*4 gate delays for each successive non-Repeat Telescope GasP module between the current 
RepeatUntil module and the next Store module. In case of nested Repeat modules, a recursive formula 
can be written to calculate the overall cycle time. 
 
Using a fast reset signal, we can reduce the backward latency and reduce the cycle time to min(5,k*12) 
with an increase in steps of k*2 gate delays for each successive non-Repeat Telescope GasP module 
between the current RepeatUntil and the next Store module. We designed a test environment that 
generates such a fast reset signal and passes it to the RepeatUntil module via the already provided 
fastRTZ input. We tested the module under this fast reset, using the configuration in Figure 10, which is 
very similar to the configuration in Figure 5 for testing RepeatWhile module under a fast reset.  
 
Figure 11 and Figure 12 show the SPICE-simulated waveforms. Note that only the rightmost RepeatUntil 
and Merge modules in the innermost loop of the green data path are affected by the fastRTZ signal. We 
tied the two fast reset inputs for the leftmost RepeatUntil and Merge modules in the outermost loop to 
ground. If needed, we could generate a fast reset signal for the leftmost RepeatUntil and Merge modules 
from the internal reset signal resetAll in the rightmost RepeatUntil module. 
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Figure 10: Fast reset configuration and test environment for the bottom-left green data path with RepeatUntil 
and Merge modules. The green icons with text `M’ represent the Merge modules. Those with text `Ru’ 
represent the RepeatUntil modules. The above test configuration concurrently resets statewires guard1[sw], 
mid3a1[sw] and out[sw] that are connected to the rightmost RepeatWhile and Merge modules that form the 
inner loop in the green data path under test. This reset and test configuration is similar to the one in Figure 5 
with RepeatWhile modules. The fastRTZ signal generated by the above Store module is independent of master 
clear signal mc, and distributed only to the rightmost RepeatWhile and Merge modules. The fast reset inputs 
for the leftmost RepeatWhile and Merge modules are grounded. This guarantees that only inner loop actions 
are reset by this fastRTZ signal, while outer loop actions remain unaffected by it. 
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Figure 11: SPICE-level simulation results for the fast reset and test configuration in Figure 10.  

 The bottom window shows the fastRTZ pulse. 

 The top window shows that fastRTZ does not impact the leftmost RepeatWhile and Merge modules that 
form the outer loop in the green data path under test. This is exactly how we expect it to be given that the 
fast reset inputs for these components are connected to ground. The backward transfer delay from 
handshake signal mid2b[sw], in green and going out of the first Merge module, to handshake signal 
mid2a1[sw], in blue and coming into the first Merge, remains 2 gate delays. The backward transfer delay 
from the blue handshake signal mid2a1[sw] going out of the first RepeatWhile module to the orange 
handshake signal guard[sw] coming into the module also remains 2 gate delays.  

 The middle window shows that fastRTZ does impact the rightmost RepeatWhile and Merge modules that 
form the inner loop in the green data path under test, as expected. When signal fastRTZ goes HI, it 
concurrently resets all inner loop handshakes signals between guard1[sw] and out[sw] that caused out[sw] 
to rise. Specifically, the first fastRTZ HI pulse resets concurrently only the handshakes on the green 
out[sw] and blue mid3a1[sw] statewires. The second fastRTZ HI pulse resets concurrently out[sw] and 
mid3a1[sw] as well as the orange guard1[sw] statewire. The third and fourth fastRTZ HI pulses operate 
while guard1[d] is LO. Consequently, guard1[sw] no longer causes out[sw] to rise, and the third and fourth 
fastRTZ HI pulses reset concurrently only out[sw] and mid3a1[sw]; guard1[sw] and in[sw] are reset 2 gate 
delays later via the internal backward reset path in the RepeatWhile module. 

 
 

 
 

Figure 12: Internal reset behavior for the rightmost RepeatUntil module in the inner loop of Figure 10.  

 Blue signal fastRTZ is the fast reset signal. During its 5 gate delay HI pulse, the red guard1[sw] signal 
coming in to the module is reset simultaneously with the orange out[sw] signal going out, provided 
guard1[sw] played a role in making out[sw] go HI. The first fastRTZ pulse does not reset guard1[sw], but 
the second fastRTZ pulse does. 

 Green signal resetG is part of the normal backward reset path. When HI, it resets the red guard1[sw] to 
LO, with or without the extra help of the guarded fastRTZ signal. From the RepeatUntil schematics in 
Figure 7, we can see that the guards for the internal reset and the fast reset originate from the same 
signal: sG, or rather sGplus2. If the guard holds, i.e., if sGplus2 is LO, then resetG rises 1 gate delay after 
a falling transition on the orange out[sw], and 2 gate delays after the blue fast reset rises. 

 As in [10], we use a strong fast reset signal that functions according to the logical effort expectations of a 
normal post-initialized Telescope GasP operation. Consequently, the red incoming handshake signal 
guard1[sw] has a steep reset slope, when reset by fastRTZ. As a result, the red signal is largely reset by 
the time the green internal reset starts, making the internal reset less effective during fast resets of 
RepeatUntil. We see this happening for the second fastRTZ pulse. 

 Pink signal sGplus2 acts as guard for both the fast and the internal reset. If it is LO at the start of the 
fastRTZ HI pulse, then the red guard1[sw] signal will be reset. In that case, it goes HI 4 gate delays after 
fastRTZ goes HI, and 1 more gate delay later it stops the HI pulse on the green internal reset signal and 
its stops the fastRTZ drive to guard1[sw], thus ceasing  the LO drive for guard1[sw]. The 5 gate delay HI 
pulse on fastRTZ stops around the same time. 
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4.  Conclusion and Future Work 
 
This document gives the implementation and simulation details of Telescope GasP modules for 
RepeatWhile and RepeatUntil for use in ARCwelder [5,6]. 
 
For all previous Telescope GasP implementations, we have a minimum cumulative cycle time of 10+4k 
gate delays, where k is the number of consecutive Telescope GasP modules in the data path following 
and including the present module up the Store modules that store the computed results at the end of the 
data path. Repeat modules have a similar formula for cycle time, provided we don’t nest them. In case of 
nested Repeat modules, a recursive formula can be written to calculate the overall cycle time. The 
increase in cycle time of 4 gate delays per data path module is due to the use of single-track channels.  
 
This puts single-track designs styles, like Telescope GasP, at a disadvantage over other telescoping 
handshake design styles that use multi-track handshake signaling, such as Click [11]. We can alleviate 
this disadvantage and obtain a cumulative cycle time of 10+2k gate delays by adding a fast reset strategy.  
 
The fast reset solutions presented in this document share the following key features with [10]: 

1. As in [10], the modules in this document use a separate fast reset input that function according to 
the logical effort expectations of a normal post-initialized Telescope GasP operation. 

2. The Repeat modules in this document select which incoming and outgoing handshake channels 
will participate in the current telescope action. To ensure that only the incoming handshakes that 
participate and that relate to the current iteration are reset, we AND the fast reset signal with an 
internal guard signal. The guard indicates whether or not to reset the handshake channel. This 
guarded reset approach is similar to what we did in [10]. 

 
The new fast reset features, unique to Repeat modules are as follows: 

1. If there is only one Repeat module, the fast reset signal is generated from Store modules in the 
data path. As in [9,10], we anticipate that we will be able to identify a particular set of Store 
modules from which we can tap a fast reset signal, and leave such identification for future work. 
We distribute this fast reset signal to the Repeat module and all its successor Telescope GasP 
modules up to the Store module. We can connect the fast rest inputs of components preceding 
the Repeat module to ground. Alternatively, we could connect these fast rest inputs to the internal 
reset signal in the Repeat module to support fast resets for pre-repeat actions in the data path.   

2. In case of nested Repeat modules, we use the fast reset generation approach described in item 1 
above to generate a fast reset signal for the last, i.e., innermost, Repeat module in the data path. 
We can generate a separate fast reset signal for one of the other nested Repeat modules from 
the internal reset signal in the next Repeat module that succeeds it, and then distribute this reset 
signal as fast reset input for all Telescope GasP modules in between the two Repeat modules.  

3. We envision that the approach described in items 1 and 2 above would enable a multi-phase fast 
reset strategy for inner to outer Repeat loops. We leave this vision for future work. 
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Abstract—We ”naturalize” the handshake communication links
of a self-timed system by assigning the capabilities of filling and
draining a link and of storing its full or empty status to the
link itself. This contrasts with assigning these capabilities to the
joints, the modules connected by the links, as was previously
done. Under naturalized communication, the differences between
Micropipeline, GasP, Mousetrap, and Click circuits are seen only
in the links — the joints become identical; past, present, and
future link and joint designs become interchangeable.

We also “naturalize” the actions of a self-timed system, giving
actions status equal to states — for the purpose of silicon test
and debug. We partner traditional scan test techniques dedicated
to state with new test capabilities dedicated to action. To each
and every joint, we add a novel proper-start-stop circuit, called
MrGO, that permits or forbids the action of that joint. MrGO,
pronounced “Mister GO,” makes it possible to (1) exit an initial
state cleanly to start circuit operation in a delay-insensitive
manner, (2) stop a running circuit in a clean and delay-insensitive
manner, (3) single- or multi-step circuit operations for test and
debug, and (4) test sub-systems at speed.

I. INTRODUCTION

Point of view is worth 80 IQ points
Alan Kay, Turing Award 2003, Kyoto Prize 2004, Draper Prize 2004

We view a self-timed dataflow or pipeline system as a directed
graph with links as edges and joints as nodes, as suggested
by Figure 1. The links are the communication channels,
with data flowing in the direction of the arrows. The joints
are the self-timed modules that implement flow control and
data operations. In this paper, we take a novel point of
view of links and joints. We present this view using two-
phase handshake channels with bundled data [9] as links, and
Micropipeline [11], GasP [12], Mousetrap [8], and Click [5]
modules as joints. Note however that this new viewpoint is
useful beyond these self-timed families and protocols!

Links deserve the full attention of circuit designers because
they consume most of the energy, cause most of the delay,
and occupy most of the area in a modern digital system.
Nevertheless, publications presenting the Micropipeline, GasP,
Mousetrap, and Click circuit families treat the links merely as
simple wires and put all the digital logic in the joints. We
offer a different, communication-aware or link-aware, point of
view. Our link-aware view puts equal emphasis on links and
joints, by giving each the digital logic needed to perform its
role in the system. The title of the paper comes from the idea
that naturalized 1 citizens share the same rights as native-born
citizens. We naturalize links, giving them status equal to joints.

1Although there are many two-word oxymorons, such as the “guest host”
for a late night TV show or a “giant shrimp,” single-word oxymorons, like
“naturalized,” are rare.

Link
Joint

Figure 1 A self-timed dataflow system with communication
channels, called links, and flow control and data computation
modules, called joints, can be viewed as a directed graph
with data flowing in the direction indicated by the arrows.

This point of view is so simple that readers may consider it
obvious. Simple, yes, but it is also very powerful for it reveals
how self-timed circuits and systems work, how to represent
them, how to design them, and how to test them. This point
of view unifies the existing families of self-timed circuits.

The role of a joint becomes much clearer and much simpler
after pruning away its link-specific tasks. Joints are, more
obviously than ever, the meeting points for links to coordinate
states and exchange data. The coordinating actions are done
in the joints, making joints the ideal place to start and stop
self-timed action. This sets the stage for a new view of testing,
with joints controlling the actions and links holding the states.

To support this test view, we advocate adding a novel proper
start-stop circuit, called MrGO, to each and every joint in
the system. MrGO, pronounced “Mister GO,” has a single
external input, called go, which it arbitrates against pending
or underway joint actions. De-assertion of the go signal to
MrGO provides reliable stopping of self-timed operation, but
more importantly, freezes joint action. Freezing joints while
initializing links to full or empty prevents the self-timed
joint actions from prematurely changing the initial states of
links. Selectively permitting joints to “go” allows for single-
and multi-step operation and at-speed testing of sub-systems.
MrGO removes the timing uncertainty of every joint, thus
rendering a desired part or all of a self-timed system as orderly
as a clocked system, whenever needed.

The outline of this paper is as follows. Section II reviews the
Micropipeline, GasP, Mousetrap, and Click circuit families, as
presented in their original publications. Section III presents the
new link-aware view and the corresponding link-joint interface
for “what a link tells a joint” and “what a joint tells a link.”
Section IV presents test and debug from the new point of
view and an implementation for MrGO and its use. Section V
describes test scenarios with MrGO performed on two 40nm
TSMC chip experiments. Section VI concludes the paper.
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(a) Micropipeline

(b) GasP

(d) Click

(c) Mousetrap
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Figure 2 Circuit designs for a single-input single-output
FIFO module in each of the four bundled-data two-phase
circuit families. The dashed lines mark the interface between
the joint in the middle and the left-hand and right-hand links.
Note that the joints hold all the logic for flow control and
data computation — the links are “just wires.”

II. FOUR BUNDLED-DATA TWO-PHASE CIRCUIT FAMILIES

The bundled-data circuit descriptions for Micropipeline [11],
GasP [12], [10], Mousetrap [8], and Click [5] use two-phase
handshake protocols to communicate the presence or absence
of valid data on a link. A full link carries valid data. An
empty link carries data that are no longer or not yet significant.
Figure 2 describes the circuit of a FIFO module in each family.

The circuit description of each FIFO module includes half of
the incoming link over which data arrive, a joint between the
two links, and half of the outgoing link. The designs emphasize
the joint between links, and treat each link as merely a
handshake channel of nothing but wire. This joint-centric
view has implications for initialization and testing at the
system level — see Section III-C. To restore compositionality
for initialization and testing, we re-designed the four circuit
descriptions from a link-aware point of view.

Before we explain the re-designs, let us go over the original
module designs in Figure 2. Whenever the incoming link is
full and the outgoing link is empty, the FIFO module performs
three tasks:

• capture and hand-over one data item,
• make the incoming link empty, and
• make the outgoing link full.

These tasks are performed in parallel. They are repeated when
the incoming link has new data and is again full and the
outgoing link has transferred captured data and is again empty.
The four FIFO module designs differ mainly in two ways:

• how they represent full and empty links, and
• when they capture data.

The representations for full and empty links depend on the
specific variant of the two-phase handshake protocol used.
Micropipeline, Mousetrap and Click use a non-return-to-zero
(non-RTZ) variant. GasP uses a return-to-zero (RTZ) variant.
The link representations used in this paper appear in Figure 3.

Time

full fullempty emptyempty

request (r)
acknowledge (a)

non-RTZ

statewire (sw)
RTZ

valid validdata (D)
bundled data Voltage

Figure 3 Non-RTZ and RTZ two-phase handshake variants.
By convention, data must be valid when the link is full, and
may change only when the link is empty. In reality, data may
be kited, as long as the values are valid when captured.

When data are captured depends on the protocol variant for
bundled data. Micropipeline and Mousetrap use normally-

transparent latches for which the clock signal is high when the
outgoing links that forward the data are empty. The intent is to
decrease latency by forwarding data as far into the pipeline as
is possible. GasP and Click use normally-opaque latches and
flipflops for which the clock signal is high when all incoming
links over which the data arrive are full and all outgoing links
that forward the data are empty. The intent is to save energy by
preventing data from rippling through the pipeline prematurely.
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These family differences, explained for a simple FIFO design
but present in any design at the module- or system- level, make
the various circuit families much harder to work with than is
necessary, and much harder to exchange or combine. These
differences permeate many parts of a design flow, ranging
from compilation and throughput analysis to relative timing
verification, static and dynamic timing and function validation,
and silicon test and debug.

In Section III, we present a link-aware re-design approach that
de-emphasizes the differences in “how data are captured” and
“how full and empty links are represented” by moving both
the data latches and the full and empty logic out of the joints
and into the links. This results in a standard link-joint interface
for all four circuit families, and allows free exchange between
the families of past, present, and future link and joint designs.

III. NATURALIZED COMMUNICATION

Figure 4 repeats the GasP FIFO module of Figure 2(b) after
moving both the data latches and the full and empty link
retention into the links. The interface signals thus created sense
the full-empty status of the links (fullin, fullout), hand over
data (Din, Dout), make an incoming link empty (drainin),
and an outgoing link full (fillout).

swin

Din[1:N] Dout[1:N]

swout

k

k

k

k

drainin fillout

fullin fullout

Din Dout
latch

clock

Figure 4 Circuit re-design for the GasP FIFO module of
Figure 2(b). The responsibility for capturing data has moved
from the joint to the receiving link. Representing full or
empty is now entirely in the links. We colored “link logic”
grey, reserving the white center for the simplified joint.

One forms longer GasP FIFOs by connecting GasP FIFO
modules head to tail. Each head-to-tail connection pairs the
“link logic” in the two grey halves, forming a closed grey
rectangle as in Figure 5. Inside each GasP grey rectangle live
data latches, a statewire, weak half-keepers, and strong pull-
up and pull-down drivers. Outside, we see D, fill, drain,
and full. The GasP control circuitry for the link in Figure 5,
which we call a naturalized link, appears in Figure 6(b).

Our new viewpoint makes the link-joint interface of Figure 5
the standard communication interface for all four families. The
interface involves data and commands from the joint and state
reports from the link. The joint can command a full incoming
link to drain and an empty outgoing link to fill. Fill and drain

link control circuitry (see Figure 6)

fill

full full

drain

D Dlatch

clock

Figure 5 Naturalized link with standard link-joint interface.
Wiring clock to fill makes the latches normally-opaque, and
wiring clock to ¬full makes them normally-transparent.

commands come from opposite ends of the link. Data flow
from one end of the link to the other end, and are captured
in-between. Each link reports its full-empty state to the joints
at its two ends. Those reports, as well as the data at the two
ends, may differ briefly as information flows through the link.

In the following sub-sections, we discuss the types of links
(Section III-A) and the types of joints (Section III-B) that the
naturalized communication viewpoint yields, and their impact
on self-timed system design (Section III-C).

A. Link Types

A naturalized link receives fill or drain commands and data. It
reports the data and its full-empty state. Data flow from one
end of the link to the other end, and are captured in-between.
Fill and drain commands arrive at opposite ends of the link.
When the link receives a fill command, i.e. fill is high, the link
changes its state to full. Upon receiving a drain command, i.e.
drain is high, the link changes its state to empty.

Data may flow normally-opaque or normally-transparent in
each link, as indicated in Figure 5. Fill and drain actions can be
implemented in various ways. Figure 6 shows a few options:

• The GasP link in Figure 6(b) has two isolated transistors,
one at each end of the link, to perform the fill and drain
actions: the PMOS pull-up transistor fills; the NMOS
pull-down transistor drains. The statewire itself and the
two half-keepers, one at each end, maintain the full-empty
state between fill and drain actions. The states at the two
ends may differ briefly but will ultimately match [2].

• Each Micropipeline (a), Mousetrap (c), and Click (d)
link stores the full-empty state on two wires: the request
wire and the acknowledge wire. The fill action changes
the request wire, making its value differ from that of
the acknowledge. The drain action changes the acknowl-
edge wire, making its value match that of the request.
Exclusive-OR gates generate the full-empty state of the
link by comparing the request and the acknowledge val-
ues, giving full (1) for “differ” and empty (0) for “match.”
Because request and acknowledge are separate signals,
they have separate state-holding circuit elements to hold
and change them. Micropipeline and Mousetrap change
each wire by copying the other wire and complementing
if needed. Click changes each wire by complementing its
value, using a flipflop to store the old and new values.

• A Set-Reset flipflop (e) provides a simple and perhaps
the most standard link control circuit one can imagine.
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(a) Micropipeline

(b) GasP

(d) Click

(e) Set-Reset flipflop

(c) Mousetrap
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Figure 6 Implementation examples of link control circuitry.
These supplement the link data circuitry of Figure 5.

B. Joint Types

Joints respond to the full and empty state of their links. In
general, the control logic of a joint is an AND-function of the
conditions necessary for it to act. Some joints have multiple
such AND-functions to guard different actions. The response
of a joint usually changes one or more of the link states to
which the joint responded. Thus, there is a feedback loop from
link-state to joint-action and back to link-state. The throughput
of a self-timed system is in part dependent on the delay of such
feedback loops. The delay may be adjusted to accommodate
data operations coordinated by the joint. The signals that call
for fill or drain action may persist for only a short time, a time
whose duration depends on the circuits in the feedback loop.

Naturalizing the links clarifies the role of a joint. Joints that
pipeline, fork, or join combinational dataflow operations can
be free of stored state. Figure 7 sketches the design of such a
joint. The joint in Figure 4 (center section) is an example of
such a joint — with n = m = 1.

Din1
[1:N1]

... ...
AND-function

...

fullin1

fullinn

...

fullout1

fulloutm

Dinn
[1:Nn]

Doutj
[1:M]

... ...drainini

...... ...

...

filloutj
[1:M]

...

Combinational Logic

Figure 7 Design sketch of a joint without stored state with
n naturalized incoming and m naturalized outgoing links,
where 1 ≤ i ≤ n and 1 ≤ j ≤ m. If data are just copied
then Doutj [1 : M ] is the concatenation of Din1 [1 : N1] to
Dinn [1 :Nn] and M = N1 + . . . + Nn (N1, . . . , Nn ≥ 0).

Stored state for control logic appears only in joints sensitive
to selective link participation. Examples are joints that send
arriving data alternately to different outgoing links, joints that
arbitrate between incoming links, and joints that guard the
participation of links based on data reported on other links.

The store-free joint shown in Figure 7 works with any of the
links in Figure 6. The same is true for joints with locally stored
state for flow control. The functionality and compositionality
of each link combination are the same. Different links may
have different timing constraints — a topic that, due to space
limitations, is outside the scope of this paper. However, the
fact that functional and timing differences are confined to the
links simplifies modeling, validation, and silicon compilation.

With the responsibilities for full-empty link retention and data
storage assigned to the links, the link-aware view makes both
types of joints significantly easier to understand and design.

C. Impact of Naturalization on System Design

The link-aware point of view offers complete generality to
self-timed systems. All types of links are interchangeable —
see Figure 6. Moreover, substituting a normally-transparent
for a normally-opaque link or vice versa is always possible
— see Figure 5. System designers can choose which type to
use based on system demands for power conservation or data
latency. Remarkably, the circuit of Figure 7 can drive a mix
of normally-transparent and normally-opaque outgoing links.

Figure 8 illustrates the impact on throughput that naturalized
communication can have. The naturalized Mousetrap ring with
Mousetrap links is slower than the original Mousetrap ring.
However, the naturalized Mousetrap ring with GasP links is
faster than the original Mousetrap ring.

Throughput differences between naturalized and original
pipelines within the same family become smaller and may
disappear completely for joints that accommodate selective
participation. This is because selective participation and shared
state do not fare well together, and because AND-functions
and exclusive-OR gates that can be optimized away when all

links participate become essential when it is necessary to select
participants — as the original Click modules in [5] attest.

We avoided estimating the power and area cost of naturalized
communication, because we expect that power and area are
dominated by datapath operations and wire lengths.
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Figure 8 Three canopy graphs for simulations of rings
with 24 pipeline stages. The center graph with fewer data
points is from simulation with an original Mousetrap module.
Naturalizing its links with the circuit of Figure 6(c) produces
the lower graph. The increased number of logic gates costs
performance. Using the link circuits of Figure 6(b) produces
the upper graph, improving the original performance. These
three 90nm simulations omit data latches and wire loads.

IV. NATURALIZED TESTING

In the context of this paper “testing” means validating whether
or not the fabricated design-on-silicon operates as intended [1].
This includes structural testing, by which we mean low-speed
testing to uncover fabrication defects, as well as functional and
at-speed testing to uncover incorrect or marginal functionality.

A great deal of the wisdom for testing self-timed circuits
comes from testing synchronous circuits. When its clock
“ticks” the synchronous circuit acts. It acts by using the present
state to compute a next state, which takes over at the next tick.
Many synchronous test solutions use some form of scan test

to control and observe state. They re-use the existing clock to
start and stop the test action [13]. This works because each
cycle in the design contains a clocked state-holding element.
The “tick” governs every synchronous loop.

What makes self-timed circuits “tick” ? 2 One may be tempted
to point at local clocks, but these are just by-products. Self-
timed circuits act upon the state of their links. Links meet at
joints. Each cycle in the design contains a joint. This makes
joints the ideal place to start and stop self-timed action.

We emphasize that testing requires access to both state and
action. Unfortunately, the two are often confounded: the action
part of a test solution is often integrated into the state part.
Once integrated, it becomes much harder to separate them
in order to reduce test access costs or to fine-tune or re-use
test solutions for debug. With this paper, we call attention to
actions, and let them play their own part in the test solution.

In the following sub-sections, we introduce a new circuit
element, MrGO, dedicated to actions, which it can safely
start, stop, and freeze. MrGO fits into joints. Combined with
scan-test based access to naturalized links, joints with MrGO
provide a rich environment for test and debug.

⊗
Did You Know
that a ring of original Mousetrap modules cannot possibly
hold an odd number of tokens? The same is true for rings
of original Micropipeline and Click modules.

The reason is that all three circuit families fuse together
a forward request and a reverse acknowledge wire.

• To see why odd initialization is impossible start with an
empty ring. During initialization, any change in state of a
fused wire changes the state of two links. The change will
either fill one link and drain the other link, fill both links,
or drain both links. Each change keeps the number of full
links even, and so the number of full links cannot be odd.

• In contrast, naturalized links can be initialized to full or
empty independent of and without changing adjacent links.

This little recognized truth appears clearly in Figure 8
• Although all rings have 24 stages, only the two naturalized

Mousetrap graphs have sample points for all occupancies.
• The center graph for original Mousetrap can plot throughput

only for even link occupancy, offering fewer sample points.

Naturalized communication
restores the generality

lost to the original circuit families

A. Takeoff: From Initialization to Self-Timed Operation

Because each naturalized link stores its own full-empty state,
links require initialization. Some circuit families, like original
GasP, used specialized master-clear circuitry to initialize links
with fixed values, typically “empty.” Others, like Click, use a
scan chain to initialize links with different values.3

Some initial link states may evoke instant action from joints.
If one permits joints to act during initialization, a joint’s
action may conflict with initialization. We advocate adding
a go signal to each and every joint. The go signal can be yet
another guard term anywhere in the joint’s AND-function —
see Figure 7. A de-asserted (low) go signal makes the joint’s
fill and drain signals low, thereby freezing the joint. Frozen
joints cannot conflict with initialization.

Both the initialization signals and the go signal may suffer long
and varied delays from their source to remote parts of a large
system. Because of differences in these delays, initialization
may end at different times in remote parts of the system.
Likewise an asserted go signal may arrive, unfreeze, and start
operations for different parts of the system at different times.
A correct start after initialization depends only on avoiding
conflict between initialization and operation at every joint.

Initialization may include state-holding elements in the joints,
like those used for selective link control. We can deliver
initialization signals via a scan chain. A single global go signal
would suffice to freeze the system for initialization.

2Kees van Berkel, thank you for initiating this pun in your ASYNC 1999
Industry Demo presentation “The PCA5007 Pager IC: What Makes it Tick.”
We have encountered it several times since, but never before used it ourselves.

3The Click paper [5] includes a solution for scanning the flipflops that
determine the link states, and provides references to related work for scanning
other types of state-holding elements used in self-timed circuit designs.
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B. Landing: Stopping a Self-Timed Operation in Full flight

Molnar et al. recognized long ago how to stop a self-timed
circuit [3]. When a self-timed circuit is told to stop, it must
decide cleanly whether to stop at once or to complete a
pending or underway action. Because the stop signal is entirely
independent of internal signals, a proper stopper must provide
for metastability delay. In other words, a proper stopper must
contain an arbiter or mutual exclusion element [7].

Once stopped, it is useful to sense the state of the system.
The same scan chain that provides initial values — see
Section IV-A — can sense the state of the links and the joints.
The proper stopper can be added anywhere in the joint.

C. MrGO

We have found it convenient to combine the go signal and the
arbitrated stop in one circuit: MrGO, pronounced “Mister GO”
— see Figure 9(top). When appended to the AND-functions
of the joints, as in Figure 9(bottom), it serves as proper starter
for happy takeoffs and as proper stopper for happy landings.
MrGO also helps us test the circuit, as we will show next.

For test control, it is essential that MrGO be placed inside
the joint-link-joint feedback loops. This ensures that any
arbitration contest between go and local self-timed signals will
resolve and end with the go signal taking control of the arbiter.
To start and stop each and every joint individually, each MrGO
gets a separate go signal from a scan chain.

D. Testing with MrGO: Single- and Multi-Step Operations

Selectively asserted go signals provide a wide variety of test
options. We list some below. We can make each test insensitive
to delay variation in different go signals.

1) One-shot Test of a Selected Joint:

Initialization sets the link states and internal states and data for
the joint to be tested. With all other joints frozen, permitting
the selected joint to go lets it take at most one action. 4

After re-freezing the selected joint, examination of its links
and internal state reveals if it took the expected action.

2) Following a Thread of Action:

A sequence of one-shot tests can follow a data item along a
pipeline. Each one-shot test advances the data item to joints
that might act were they not frozen. The next step freezes the
joint that previously acted and then permits the next joint to
go. Allowing joints to go only one at a time makes it possible
to track the flow of data items through a system. See Figure 13.

3) Breakpoint:

Testing a rarely used part of a system, such as memory error
correction, is possible by freezing one or more joints there.
Full-speed action of the rest of the system will stop at calls
for action of a frozen joint.

4) Testing a Single Data Item At Speed:

This test setup leaves several adjacent joints unfrozen to permit
a data item to pass at speed through them. A frozen joint
upstream of this test section blocks entry of test data input. A
frozen joint downstream prevents escape of test data output.
Unfreezing the upstream frozen joint releases the test data item
to flow through the test section at speed. See Figure 10.

5) Testing a Burst of Data Items At Speed:

Just as a single data item can flow through a test section, so
can a burst of data items. The burst of data items queues up
behind the upstream frozen joint much like water behind a
dam. Unfreezing the joint releases the burst. There must be
data storage for the entire burst in the release and capture
sections ahead of and behind the test section. See Figure 12.

6) Testing the Flow of Bubbles At Speed:

Canopy graphs (Figure 8) teach us that data flowing forward
through a pipeline tend to move at a different speed than
bubbles flowing backward. We have learned through painful
experience that testing the flow of bubbles through a congested
pipeline is as important as testing the flow of data through an
empty pipeline. A test section initialized with full rather than
empty links reveals its response to bubbles, allowing detection
of faulty behaviors often overlooked. See Figure 11.

Test options 1–3 are useful for structural testing, for instance
for stuck-at faults. Options 3–6 are useful for testing delay
faults and marginal functionality. For debug, all options matter.

4For example, the joint in Figure 9(bottom) will either do nothing or
generate a high pulse on its fill and drain signals, changing both links.
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Figure 9 MrGO with its icon inset in the grey area (top),
and a joint with MrGO (bottom). The bold central transistor
in MrGO delays active-low grant signal, out, by conducting
only after metastability ends. Transistor sizing reduces the
logical effort from in to out. Split pull-up transistors in
the left NAND gate avoid a floating out signal. Selective
metastability-protected freezing (go is low) and unfreezing
(go is high) of joints provides for testing. MrGO is inspired
by the HOLD design-for-test solution [6], proper stopper [3],
and Seitz’ mutual exclusion element [7].
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test command counter stage count
init [1] - [2] - [3] - [4] - [5] - [6] - [7] 0

tunnel [1]
A−→ [2] - 3 - 4 - 5 - [6] - [7] 0

run [1] - 2
A−→ 3 - 4 - 5 - [6] - [7] 0

[1] - 2 - 3
A−→ 4 - 5 - [6] - [7] 0

... [1] - 2 - 3 - 4
A−→ 5 - [6] - [7] 1

done [1] - 2 - 3 - 4 - 5
A−→ [6] - [7] 1

Figure 10 (testing the counter in pipeline stage 4 with a single data item, at speed)
The top row (init) shows a pipeline segment with seven joints, 1–7, and a counter attached to joint 4. Initially all seven joints are
frozen, illustrated by the square brackets “[” and “]” around each joint, all links between them are empty, illustrated by the simple
dash “-” for each link, and the counter value, count, is 0. Next, as shown in row 2, we prepare a test section (tunnel) to test the
counter at speed by permitting joints 3, 4 and 5 to go when possible, illustrated by the absent brackets. In addition, we fill the link
between joints 1 and 2 with one data item, A, illustrated by the labeled arrow. None of the joints can act yet, but as soon as we
permit joint 2 to go, as shown in row 3 (run), data item A moves to the right as far and as fast as it can, incrementing the counter.

test command counter stage count

init [1]
A−→ [2]

B−→ [3]
C−→ [4]

D−→ [5]
E−→ [6]

F−→ [7] 0

tunnel [1]
A−→ [2]

B−→ 3
C−→ 4

D−→ 5
E−→ [6] - [7] 0

run [1]
A−→ [2]

B−→ 3
C−→ 4

D−→ 5 - 6
E−→ [7] 0

[1]
A−→ [2]

B−→ 3
C−→ 4 - 5

D−→ 6
E−→ [7] 0

... [1]
A−→ [2]

B−→ 3 - 4
C−→ 5

D−→ 6
E−→ [7] 1

done [1]
A−→ [2] - 3

B−→ 4
C−→ 5

D−→ 6
E−→ [7] 1

Figure 11 (testing the counter in pipeline stage 4 with a single bubble, at speed)
This test complements the one in Figure 10. The top row (init) shows all seven joints frozen, illustrated by the square brackets
around them, all links between them full, indicated by the labeled arrows, and a counter value of 0. Next, as shown in row 2, we
prepare an at-speed test section (tunnel) through joints 3, 4 and 5, as illustrated by the absent brackets. In addition, we empty the
link between joints 6 and 7, introducing one bubble, illustrated as “-.” None of the joints can act yet, but as soon as we permit joint
6 to go, in row 3 (run), the bubble moves to the left as far and as fast as it can. The counter increments as token C moves past.

test command weak stage

init [1]
A−→ [2] . . . [6]

F−→ [7] - [8] - [9] . . . [13] - [14]

tunnel [1]
A−→ 2 . . . 6

F−→ [7] - 8 - 9 . . . 13 - [14]

run at lower VDD [1]
A−→ 2 . . . 6

F−→ 7 - 8 - 9 . . . 13 - [14]
...
done [1] - 2 . . . 6 - 7 - 8

A−→ 9 . . . 13
F−→ [14]

Figure 12 (testing the marginal latch in pipeline stage 8 with a burst of data items, at speed)
Using the same notation as in Figure 10, the top row (init) shows a pipeline segment with frozen joints and six full links, followed
by a frozen weak stage — a joint with a marginal latch — followed by a pipeline segment with frozen joints and six empty links.
The data items for the full links are shifted into place as explained in Figure 13. Next, as shown in row 2, we prepare an at-speed
test section (tunnel) through joints 8 to 13, as illustrated by the absent brackets. None of the joints can act until we permit joint
7 to go. Before giving permission, in row 3 (run), we reduce the supply voltage to aggravate the error condition of the marginal
latch. The resulting behavior is captured in the pipeline segment after the weak stage. Various data patterns of successive bits such
as 101010, 110110, 001001 exercise the weak latch. Competing patterns for adjacent bits can check for sensitivity to crosstalk.

test command weak stage

init [1] - [2] - [3] - [4] - [5] - [6] - [7] - [8]

go 1
F−→ [2] - [3] - [4] - [5] - [6] - [7] - [8]

nogo [1]
F−→ [2] - [3] - [4] - [5] - [6] - [7] - [8]

go [1] - 2
F−→ [3] - [4] - [5] - [6] - [7] - [8]

nogo [1] - [2]
F−→ [3] - [4] - [5] - [6] - [7] - [8]

...
nogo [1] - [2] - [3] - [4] - [5] - [6]

F−→ [7] - [8]

Figure 13 (shifting the data items into place for the marginal latch test of Figure 12)
Like non-overlapping clocks go and nogo commands can shift a single data item or many data items at once through a pipeline.
Rows 1–13 above, shift exactly one data item, F, into place for row 1 of Figure 12. Similar steps place data items E through A.
The low activity factor of such a single-shift approach makes it possible to shift data reliably to and from the marginal latch.
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V. SILICON TEST AND DEBUG EXAMPLES

We have two working chip experiments, Weaver and Anvil,
both built in 40nm TSMC CMOS. Both experiments use rings
of normally-opaque GasP pipelines with naturalized commu-
nication to recirculate data at high speed. Anvil has a MrGO
circuit in each and every GasP stage, i.e. joint, to provide
go control, including arbitrated stop. Weaver has go control
in each and every GasP stage and arbitrated stop capability
in nearly all stages. Although the intended purposes of these
two silicon experiments are beyond the scope of this paper,
the few examples in this section show how naturalized testing
has provided assurance of their correct operation. Weaver and
Anvil each have an IEEE standard JTAG test access port and
scan interface [4] to provide a low speed interface to their
high-speed operation. Software in a control computer sets up
and runs test commands, and evaluates the results of each test.

Each of several re-circulating rings in Weaver and Anvil has
a binary counter attached to one of its stages. The counter
is supposed to increment each time a data item passes by.
Reading counts via the JTAG interface before and after a full-
speed run of known duration allows test software to compute
throughput and to make canopy graphs of each ring. The
Weaver has measured throughput of about 6 Giga data items
per second. Before using a counter, we test its correct operation
using tests through pipeline segments around the counter stage
— like the two at-speed tests for a single data item and a single
bubble passing the counter in Figures 10–11. Correct counter
operation is essential to many tests and measurements.

Note that although it takes hours to write the software to test
correct operation of a counter, and milliseconds for the test
computer to set up suitable initial conditions, the actual tests
in Figures 10 and 11 run to completion in half a nanosecond.

Anvil includes latches of many different designs. One par-
ticular latch gave erratic results at reduced power supply
voltage. Exploring the details of its behavior required testing
the marginal latch with a variety of data patterns run at speed
with reduced supply voltage, VDD. Figure 12 shows how
selective go control made this possible.

Anvil limits the area cost of its scan chain by limiting the
number of places in a relatively long pipeline where the scan
chain can insert or retrieve data values. As a result, Anvil
allows data entry only dozens of pipeline stages ahead of
the marginal latch. Moreover, because the noise of full-speed
operation might cause errors, slow and careful delivery of
the test patterns seemed essential. The method described in
Figure 13 provides slow but accurate delivery of suitable data
input patterns shown in the first row of Figure 12 and slow
but accurate retrieval of data results shown in the last row.

Weaver has some joints that steer data items to alternate links.
To detect a data item that might stray outside its planned path,
test software freezes all joints outside that path. Each such
frozen joint acts as a breakpoint — stray data items fill links
that terminate at such frozen joints. An overview of scanned-
out full links quickly identifies not only that there are stray
data items, but also whither they have strayed.

VI. CONCLUSION

This paper is built around a novel point of view. We differ-
entiate links from joints and actions from states, empowering
each to play its natural role during system design and test.

Differentiating links from joints is a simple idea of great power
because it offers a higher level of abstraction for each. The
simple interface between links and joints of Figure 5 and the
resulting unification of four bundled-data two-phase circuit
families attest to the impact of the new abstractions. Such
abstractions and the unification of families simplify computer
aided design, and herald circuit improvements that extend the
geographic reach and reduce the energy consumption of links.

Differentiating actions from states is a simple idea of great
power because it clarifies how self-timed systems work. Unlike
actions in synchronous systems that occur simultaneously in
response to an external clock, the actions of self-timed systems
are spontaneous, self-generated, and widely distributed in
both space and time. Separate action control with MrGO
of Figure 9, combined with traditional scan access to state,
enables single-step and local at-speed operations essential to
silicon test and debug. Although every action changes local
state, we can test that those actions conform to expectation.
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1. Introduction 

We seek to control and observe the state of every state-holding element on a chip, so 
we can test and gain confidence in the chip’s functionality. It is common to use a scan 
chain for this purpose. The scan chain is a serial shift register that can provide access, 
over time, to many places on the chip. Its backbone is composed of two latches per bit 
or one flip-flop per bit.  

The scan chain in commercial chips sometimes uses the flip-flops or latches of the 
working circuit as part of the scan chain. This reduces the total number of latches on 
the chip at the cost of making the scan chain an intimate part of the working circuits of 
the chip. This may cause two instances of the same working part of a chip to differ 
solely because the sequence of scan through their flip-flops differs. Tarik Ono at Oracle 
had trouble getting a modular FIFO accepted precisely because it differed in every 
instance solely because of scan chain layout.  

We want to connect every state holding element to a scan chain, but avoid close 
coupling between the working parts of the chip and the scan means. It’s essential that 
the scan chain be able to sense and report the state of each and every state-holding 
element in the chip. It is desirable that the scan chain also be able to deliver a value to 
each and every state-holding element in the chip.  

To avoid close coupling between the main design and the scan design, we make all 
main latches have two inputs. One input will be devoted to the functional need of the 
object circuit. The other input will be connected to the scan chain. Thus, from the scan 
chain one can set a chosen value to the input of each and every such two-input latch.  

This report focuses on the scan details to initialize, start, and single-step GasP control 
modules that are not data driven [1,2]. The additional scan design features of data-
driven control modules are discussed in a later report. 

Figure 1 shows a block diagram for the scan chain organization to initialize, start, and 
single-step a GasP design that’s not data-driven. As reference example, we use a 
simple linear GasP FIFO consisting of three GasP storage modules. The configuration 
in Figure 1 enables us to control and observe the voltage level of each module’s start 
signal, go, and the voltage level of each statewire and keeper pair, sw-kp. The scan 
chain operations are programmed from the JTAG Box, using a predefined instruction 
set (see [3] for details).  

The remainder of this report is organized as follows. Section 2 gives the design details 
of (1) the GasP FIFO to show which signals are controlled and observed by scan, and 
(2) the two scan chains in Figure 1. Section 3 explains how the given scan designs 
enable us to control and observe the go and sw-kp signals in the FIFO. Section 4 
summarizes and concludes this report. Section 5 is an appendix with further schematic 
details for sub-cells used in the scan chain designs in Section 2.  
 
NOTE: All designs in this report are in library Electric_180nm_ARC2013-smg08-09. 
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Figure 1:  Block diagram to initialize, start, and single-step a GasP design that’s not data-driven. 

2. Scan Designs 
This section gives the schematic design details of the scan chains and scan 
connections for the GasP FIFO used in the block diagram in Figure 1.  

2.1. GasP FIFO Design 

Figure 2 outlines the three-stage GasP FIFO design that we use as reference example.  
It uses three types of storage modules: SRC, plain, and SNK. 
 
The schematic details of the plain version follow in Figure 3. It has the usual GasP Pred 
and Succ drivers, whose designs follow in Figure 4, for completeness sake. The 
difference between the SRC, plain, and SNK storage types is as follows. In SRC, the 
Pred driver is deleted and replaced by a wire connection from VDD to pred[sw].  
Similarly, in SNK, the Succ driver is deleted and replaced by a wire connection from 
VSS to succ[sw]. 
 
The key signals for scan in the plain storage module are: go, pred[sw], succ[sw], 
pred[kp] and succ[kp]. The go signal is used to cleanly stop the module operation [1]. 
Wires pred[sw] and succ[sw] are bi-directional statewires, used for handshake 
communication between modules. In this schematics, state-wire HI means full or 
request, and LO means empty or acknowledge. Uni-directional signals pred[kp] and 
succ[kp] are used to turn off the keepers during initialization to prevent them from 
fighting the initial value settings.  
 
NOTE: The schematics in this report show the signal directionalities for normal-mode 
operation. But signals go, pred[sw], succ[sw], pred[kp], and succ[kp] are bi-directional, 
i.e., they can be written (controlled) and read (observed), for scan test purposes. 
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Figure 2: Three-stage GasP FIFO design, with three storage elements of type SRC, plain, and SNK. 

 
 

 
Figure 3: Schematic diagram and icon for a plain GasP Storage module. Our scan design can control and 
observe signals go, pred[sw], succ[sw], pred[kp] and succ[kp]. The rectangular gates named “Pred Setup 
Delay” and “Succ Hold Delay” are variable delay insertion points which can be programmed for timing 
closure.This design can be found in sub-library gaspL_go_init under the name gaspStorage10wDelay_boxes. 

NOTE: For future fault-coverage experiments, we’ll likely replace the complex gates by single-inversion gates. 
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Figure 4: Schematics and icons for Pred Driver (left) and Succ Driver (right). Note the name change: signal init 
here is renamed to pred[kp] respectively succ[kp] in the Storage Pred and Succ Driver instances above. These 
two designs can be found under sub-library driversL_init, as predDri10wMC_init respectively sucDri10_init. 

 
The normal-mode storage operation has two phases: 
 
1. Initialization:  

Using the scan entry points to the Storage modules, we set all go signals LO, so the 
sw are no longer driven from the GasP modules; we may still have keeper fights, 
though. Then we set the sw signals to their intended value, and when we do so, the 
keepers are turned off automatically by the scan chain design for sw-kp pairs. For 
the FIFO example, we’ll set all sw signals LO. After the initial state is propagated 
and stable, we can start the self-timed operation. To do this, we set all go signals HI. 
 

2. Self-Timed Operation:  
In the example, we now have a stable initial state, with HI go signals and LO sw 
signals. As soon as pred[sw] goes HI, the plain storage module produces a HI 
transition on the fire signal, which results in three actions: the data-path latches 
capture the incoming data (absent in our example), succ[sw] is driven HI thus 
acknowledging and completing the 2-phase incoming handshake, and pred[sw] is 
driven LO thus acknowledging and starting a 2-phase outgoing handshake. 
Meanwhile, the self-resetting loops reset the fire signal to LO after five gate delays, 
ending both the data-path capture phase and the state-wire drives. 
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2.2. Scan Chain Designs 

Figure 5 shows a more detailed version of the scan chain designs for go and sw-kp 
pairs. Each scan chain is a serially connected chain of scan capture-launch-shift cells 
terminated by a scan cap cell, and connected by an 8-bit daisy chain.  
 
Each Scan Capture-launch-shift cell can: 

 Capture, or read, data in parallel from the design into the scan chain.  

 Launch, or write, data in parallel from the scan chain into the design. 

 Shift data serially in and out from its incoming chain to its outgoing bus 
connection. 

 
Each Scan Cap cell can:  

 Turn the final scan data and far-out scan clock signals back in reverse-shift direction 
to the JTAG Box for scan output inspection and completion detection of the current 
scan shift cycle.  

 
 
 
 

 
 

 
Figure 5: More detailed version of Figure 1, showing the scan connections between the JTAG Box and the 
GasP FIFO. We have separate scan chains for controlling and observing go and sw-kp signals. In particular: 

 go scan signals can make each individual go signal high or low 

 sw scan signals can make each  individual statewire (temporarily) high or low. 
Each scan chain design  is a serially connected chain of capture-launch-shift cells terminated by a scan cap, 
and connected by an 8-bit bus with scan data and control signals.  
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The scan cap cells for the three scan chain designs are identical and designed à la 
Figure 6. Note that the two scan clock signals coming in from the bus as s[2] and s[3] 
and the single data signal, coming in from the bus as s[1], are returned to the bus as 
s[7], s[6], and s[8], respectively. 
 
 

 
Figure 6: Schematic diagram and icon of the Scan Cap design. See sub-library scanL, scanCap. 

 
The Scan Capture-launch-shift cells come in two flavors: one version stores the 
launched value on the signal in the design, and the other version shortly drives the 
launched value but then releases its drive to enable the design to take over and control 
the signal value. We use the “drive-and-keep” version to scan-control go signals, and 
the “drive-and-release” version to scan-control sw-kp signal pairs. 
 
Both versions use a common structure to capture and shift scan and design values into 
the scan chain. We dubbed this common structure: Basic Scan Cell. Its design follows 
in Figure 7. The cells tagged “5A” are single non-inverting latch designs. For 
completeness sake, their schematics can be found in the Appendix of this report. 
 
The complete Scan Capture-launch-shift versions follow in Figure 8 and Figure 9(a-
b). The tristate buffer design in Figure 9(a-b) replaces the latch design in Figure 8, and 
can be found in the Appendix of this report. 
 
The first design in Figure 9(a), scanJT1, is simpler and works for the scan configuration 
in Figure 5. The second design in Figure 9(b), scanJT2, also works for scan 
configurations with mixed go and sw-kp scan cells in one long scan chain, because it 
can locally disable the wr signals for any sw-kp pair in the design. For our example, we 
will use scanJT1. 
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Figure 7: Basic Scan Cell design and icon to capture scan and design data and shift the data through the scan 
chain. This diagram is stored in sub-library scanL under the name scanCellB. 

 
 
 
 

 
Figure 8: Schematic and icon for the “Drive-and-keep” Scan Capture-launch-shift version in the go scan 
chain in Figure 5. This diagram is stored in sub-library scanL under the name scanJD. 
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Figure 9: Schematic and icon for two possible “Drive-and-release” Scan Capture-launch-shift cell versions, 
that can be used for the sw-kp scan chain in Figure 5. They are stored in sub-library scanL under the names 
scanJT1 (top) and scanJT2 (bottom). The top design, scanJT1, is simpler and works for the scan configuration 
in Figure 5. The bottom design, scanJT2, also works for scan configurations with mixed go and sw-kp scan 
cells in one long scan chain, because it can locally disable the wr signals for any sw-kp pair in the design.  
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3. Scan Operations 
 
The scan design in Section 2 plays a role in both the normal-mode operations of the 
design and in the test-mode operations. We use scan to initialize the design, i.e., to set 
the design in a well-defined state. A proper initial state is what’s required prior to any 
normal-mode operation as well as prior to any test-mode operation. We also use scan 
to start the circuit in a delay-insensitive, i.e., well-defined and well-controlled, manner. 
Both normal-mode and test-mode operations require a delay-insensitive start state. It’s 
the initial and start state settings that determine the difference between normal and test 
mode operations, but the control mechanisms to get these settings are the same.  

Below, we explain how we control the settings of initial and start states, and how we can 
observe them for test validation purposes.  

3.1. Initialization 

The number one priority when initializing a GasP design is quickly to remove drive 
conflicts on the statewires due to an arbitrary setting that the circuit arrived in after it 
was powered up. We use an initialization procedure with the following step sequence: 

 Step 1: For each scan chain, make the JTAG scan input signal, sin, LO. 

 Step 2: For each scan chain, make both scan shift clocks, SCCK1 and SCCK2, HI. 

 Step 3: For each scan chain, write the LO values to the go and paired sw-kp signals. 
Note that his initialization procedure also sets each scan chain in a well-defined and 
stable initial state. Note also that instead of using overlapping SCCK1 and SCCK2 
clocks in Step 2, we could have used alternate HI pulses on SCCK1 and SCCK2 to 
serially shift the LO sin value into each and every scan location. 
 
The JTAG Box operates one scan chain at a time, and so we must serialize Step 1 to 3. 
It seems most logical to use the following ordering: 

 Init go:  
First execute Step 1 to Step 3 for the go scan chain, because this will stop the 
stronger drives on the statewires by the Pred and Succ Drivers. For Step 2, the crux 
is to wait long enough for the LO sin value to propagate through the entire go scan 
chain. At that point, we can lower the scan shift clocks. For Step 3 we use a HI clock 
pulse on wr to drive-and-keep the LO scan input values onto the go signals. 

 Init sw-kp pairs:  
Execute Step 1 to Step 3 for the sw scan chain, in order to create a well-defined 
initial state with all statewires LO. The Drive-and-release scan design version in 
Figure 9(a), i.e., scanJT1, automatically disables the keepers when wr is HI and the 
sw is driven LO, and it automatically enables the keepers when wr is LO. 
 

The JTAG Box comes with an instruction set to program and issue the above sequence 
of steps. Details on this instruction set and on how it’s used to run the above action 
sequence for initializing the 3-stage FIFO design can be found in ARC report [3]. For 
now, we’ll assume that we can give the proper scan values to the JTAG bus interface 
between the JTAG Box and two scan chains. Each scan chain has its own 8-bit bus 
interface, sic[1:8], where sic is either jtag_go or jtag_sw, where: 
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 sic[1:8] = sin, SCCK1, SCCK2, wr, rd, SCCK1_return, SCCK2_return, sin_return 
o sin:  the scan-data input to the scan chain. 
o SCCK1, SCCK2:  are the scan clock signals for shifting data in and out. 
o rd: the clock-enable signal for reading data from the design into the scan chain. 
o wr: the clock-enable signal for writing data from the chain into the design. 
o SCCK1_return, SCCK2_return and sin_return: Scan Cap return signals. 

Using the instruction set in [3,4], we can program the bus interfaces between the JTAG 
Box and the design and thus initialize the design as shown below in Figure 10. 
 

Scan Interface 
 

Scan data 
[1] 

SCCK1 
[2] 

SCCK2 
[3] 

write 
[4] 

read 
[5] 

return bus  
[6:8] 

1.  jtag_go [1:8] 

LO HI HI LO LO 

wait long enough  
for completion 

with stable: 
 [8]=[1]=LO 
[7]=[2]=HI 
[6]=[3]=HI 

2.  jtag_go [1:8] LO LO LO HI LO N.A.  

3.  jtag_go [1:8] LO LO LO LO LO N.A. 

4. jtag_sw [1:8] Repeat jtag_go[1:8] steps 1-3, but now for jtag_sw[1:8] 

Figure 10: Initialization instruction sequence at the bus interfaces between the JTAG Box and scan chains. 

 

3.2. Start Normal-Mode Operation 

The normal-mode operation requires a different initial state than the one obtained at the 
end of Step 4 in Figure 10. For instance, we’d like an initial start state for the 3-stage 
FIFO in Figure 1, where all go signals are HI, for self-timed operation, and all sw 
signals are LO, to start with an empty FIFO. We can create this start state by continuing 
the initialization sequence in Figure 10 with the event sequence shown in Figure 11. In 
general, any go, and sw pattern can be obtained for the start state, using the scan shift 
capabilities of the scan chain. 
 

Scan Interface 
 

Scan data 
[1] 

SCCK1 
[2] 

SCCK2 
[3] 

write 
[4] 

read 
[5] 

return bus  
[6:8] 

1.  jtag_go [1:8] 

HI HI HI LO LO 

wait long enough  
for completion 

with stable: 
 [8]=[1]=HI 
[7]=[2]=HI 
[6]=[3]=HI 

2. jtag_go [1:8] HI LO LO HI LO N.A. 

3. jtag_go [1:8] HI LO LO LO LO N.A. 

Figure 11: Post-init normal-mode start instruction sequence at the JTAG Box to scan chain interface. 
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3.3. Single-Step Operation 

Single-step operation is really a bounded-step operation to test certain behaviors and 
possible fault scenarios in the design. It usually takes many single-step operations to 
adequately test the design. In single-step operation mode, we allow the design to run in 
limited self-timed fashion.  
 
 
Figure 12 shows an example of a single-step run starting from go1 and go2 HI, go3 LO, 
and all sw signals LO. A correct design will transform this start state into an end state 
with sw1 and sw2 HI – which we can then scan out for inspection. 
Note that we could have shifted in sw values serially, which would allow us to scan in 
new values for the single-step test we’re preparing, while shifting out older sw values 
that can be used for test observation. Vice versa: while we shift out older values for 
inspection, we can shift in new values for the next single-step test. 
 
 
 

Scan Interface 
 

Scan data 
[1] 

SCCK1 
[2] 

SCCK2 
[3] 

write 
[4] 

read 
[5] 

return bus  
[6:8] 

1.  jtag_go [1:8] Repeat jtag_go[1:8] steps 1-3 in Figure 10 

2. jtag_sw [1:8] Repeat steps 1-3 in Figure 10, but now for jtag_sw[1:8] 

3. jtag_go [1-8] LO LO LO LO LO N.A. 

4. jtag_go [1-8] LO HI LO LO LO N.A. 

5. jtag_go [1-8] LO LO LO LO LO N.A. 

6. jtag_go[1-8] LO LO HI LO LO N.A. 

7. jtag_go [1-8] LO LO LO LO LO N.A. 

8. jtag_go [1-8] 
Repeat jtag_sw[1:8] steps 3-7 above, but now  

with Scan data, i.e., jtag_go[1], set to HI 

9. jtag_go [1-8] Repeat step 8 above 

10. jtag_go [1-8] HI LO LO HI LO N.A. 

11. jtag_go[1-8] HI LO LO LO LO N.A. 

 

Figure 12: Single-step instruction sequence at the JTAG Box to scan chain interface for the design in Figure 1 
and Figure 5, without the scan-out part. Step 1 guarantee that the statewires are not driven from the design, so 
we can safely drive them from the scan chain, in step 2. 
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4. Conclusion 
This report presents a Scan Chain Setup for GasP designs, illustrated for a GasP FIFO 
module. The block diagram of the Scan Chain Setup is shown in Figure 1. It uses (1) a 
JTAG Box, (2) two scan chains to control and observe the go, and sw signals in the 
GasP design, and (3) the GasP FIFO design. We explained the organization of the two 
scan chains, and the scan operations. 
 
Except for the time it takes to go from a power-up to a stable initial state, we can 
operate the scan design in a way that avoids drive fights and floating statewires. 
 
We presented a single building block solution, scanJD, to control and observe go 
signals. We presented two possible scan building blocks, scanJT1 and scanJT2, to 
control and observe statewires. The example scan chain configuration of Figure 1 uses 
scanJD building blocks to scan go signals and can use either scanJT1 or scanJT2 
building blocks to scan sw signals. Had we used a single-chain scan configuration in 
Figure 1, then that would have consisted of scanJD building blocks to scan go signals 
and only scanJT2 building blocks to scan sw signals.  For single-chain scan 
configurations with mixed scan access to go and sw signals, we must be able to avoid 
driving any of the sw signals when we write the final scan values into the go signals, so 
as to ensure a delay-insensitive normal-mode or single-step test operation.  
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5. APPENDIX 
 
For the sake of completeness, this section contains the implementations for the latch 
and tristate sub-designs used in the Basic, Drive, and Tri-State Scan Cell designs in 
Figure 7, Figure 8, and Figure 9. All designs are designed in Electric [4]. 
 

 1-bit non-Inverting Latch: This is a typical 1-input non-inverting latch design, with 
input bit in[1], high-enabled clock, hcl, and output bit out[1]. Its schematic design 
follows in Figure 14. Lower-level design details follow later in this appendix. The 
design operates as follows: 

o If hcl = HI then out[1] = in[1] 
o else out[1] keeps its current value 

 2-bit non-Inverting Latch: A 2-bit multiplexed non-inverting latch design with inputs 
inA[1] and inB[1], non-overlapping clocks, hcl[A] and hcl[B], and output out[1]. Its 
schematic design follows in Figure 14. Lower-level design details follow later in this 
appendix. The design operates as follows:  

o If hcl[A] = HI     (hcl[B] must be LO) then out[1] = inA[1] 
o elsif hcl[B] = HI (hcl[B] must be LO) then out[1] = inB[1] 
o else out[1] keeps its current value 

 1-bit Inverting Latch: A typical 1-input inverting latch design, with input bit in[1], 
high-enabled clock, hcl, and output out[F]. Its design follows in Figure 15. Lower-
level details follow later in the appendix. The design operates as follows: 

o If hcl = HI then out[F] = ¬in[1] 
o else out[F] keeps its current value 

 2-bit Inverting Latch: A 2-bit multiplexed inverting latch design with inputs inA[1] 
and inB[1], non-overlapping clocks hcl[A] and hcl[B], and output out[1]. Its schematic 
design follows in Figure 16. Lower-level design details follow later in this appendix. 
The design operates as follows:  

o If hcl[A] = HI     (hcl[B] must be LO) then out[1] = ¬inA[1] 
o elsif hcl[B] = HI (hcl[B] must be LO) then out[1] = ¬inB[1] 
o else out[1] keeps its current value 

 LatchPointF: This is the basic building block for the 1 and 2-bit Inverting Latch 
designs. It has a 1-bit input in[1], two tristate outputs out[F] and out[T], and a high-
enabled clock, hcl. The design follows in Figure 17 and operates as follows: 

o If hcl = HI then out[F] = ¬in[1] and out[T] = in[1] 
o else out[F] and out[T] keep their current values 

 Keeper: Back-to-back keeper design, with a strong inversion from out[s] to out[B] 
and a weak inversion from out[B] to out[s]. Its design follows in Figure 18. Note that 
the strongly driven side out[B] is the one connected to the output pin in the 1-bit and 
2-bit Inverting Latch designs 

 Tristate Buffer: Typical tri-state design solution for driving a 1-bit input in[1] onto 
the 1-bit output out[1] by making the high-enabled clock hcl HI, and then releasing 
the drive by lowering the clock. The schematic design follows in Figure 19.  
 

APPENDIX E. TEST SETUP: SCAN CHAIN ORGANIZATION 304



 

ARC# 2013-smg08 Asynchronous Research Center page 15 of 17 
 

 
Figure 13: Schematic diagram and icon for the 1-bit non-Inverting Latch design. See  latchesL, latch1in5A. 

 

 

Figure 14: Schematic diagram and icon  for the 2-bit non-Inverting Latch design. See latchesL latch2in5A. 

 

 
Figure 15: Schematic diagram and icon of a 1-bit Inverting Latch. See sub-library latchesL raw1inLatchF. 
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Figure 16: Schematic diagram and icon of the 2-bit Inverting Latch. See sub-library latchesL, raw2inLatchF. 

 
 

 
Figure 17: Schematic diagram of LatchPointF used as sub-design in the scan latch designs. The special 
inverter tagged “L” is a LO-threshold inverter, with an N drive strength twice the P drive strength. The icon for 
this design is in the top-right corner. This diagram is stored in sub-library latchesL under the name latchPointF. 
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Figure 18: Schematic diagram and icon of the Keeper design. See sub-library latchPartsL under latchKeep. 

 
 
 
 

 
Figure 19: Tristate buffer design and icon, used in the two “Drive-and-release” Scan Capture-launch-shift cell 
versions. This diagram is stored in sub-library scanL under the name tristateBuffer. 
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Abstract 
This document shows how we can use the Joint Test Action Group (JTAG) controller to 
scan test GasP circuits. We give the details of the Test Access Point (TAP) architecture 
and the JTAG controller implementation and its use in operating the scan chains for the 
GasP control logic introduced in [5]. This document also works out the details of some 
of the GasP scan experiments mentioned in [5]. Our JTAG solutions are designed in 
Electric [7] and tested using SPICE level simulations. We adapted them from the 90nm 
Sun Microsystems designs in [1,2] to a 180nm technology, extended them with an 
overlapping scan shift clock mode for fast initialization of the design under test, and we 
revised the GasP scan chain control logic to accommodate the Init, Go, and Single Step 
operations explained in  [3,4,5].  
 
All designs in this report are available for downloading using electric 9.0 for 180nm, 
using Swetha’s Electric directory version Electric_180nm_ARC2013-smg08-09 with its 
anOpener.jelib opened as key library, and Swetha’s JTAG_experiments2013.jelib 
opened as second Electric library.  
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1. INTRODUCTION 
The Joint Test Action Group (JTAG) IEEE 1149.1 standard is used to test an assembled 
product. This standard defines the test access port (TAP) and boundary-scan 
architecture that can be adopted as a standard feature of integrated circuit design. 
Boundary scan test originally focused on controlling the IO pins of each chip in order to 
allow testing the interconnections between chips on a board, whereas Scan Chain test 
was used to test the internal logic of the chip or design under test. With System-on-Chip 
architectures, the board is now the chip, and the chip is now an on-chip module or sub-
system. And with that, the JTAG IEEE 1149.1 TAP architecture has become a standard 
interface for testing on-chip communication and on-chip systems. In this ARC report, 
our focus is on testing the GasP modules and handshake connections in a given 
design. In this report, our design can be seen as a single product rather than as an 
assembly of products. As such, we have no need for specific boundary scan test 
capabilities in the TAP controller, and will focus on plain scan test capabilities.  
 
In [5], we explained our scan chain organization for testing the control modules in a 
GasP design. As reference design in [5] we used a three-stage GasP FIFO. In the 
present report, ARC2013-smg09, we will use use slightly larger FIFO with five stages, 
and we will go over some of the scan chain test experiment shown in [5], and show how 
we can set them up and program them through the chip JTAG controller interface. 
Figure 1 shows a block diagram of the new test experiment. It is similar to the block 
diagrams in Figures 1 and 5 in [5], with the exception that we now use five rather than 
three stages for the linear FIFO and that we now focus on the JTAG Box.  
 
The JTAG Box in Figure 1 has three key modules: Pulse Setup, JTAG Control, and 
Scan Control Group. Modules JTAG Control and Scan Control Group are combined into 
a single module: JTAG Central. The functions for each of these modules are as follows: 
1. Pulse Setup: This is our programming interface. It can reside either on or off chip. It 

allows us to define signal input pulses to the JTAG Central module, and group them 
into pre-defined building blocks to obtain a more abstract, more modular, more user-
friendly, and less error-prone approach for programming our scan tests. 

2. JTAG Central: This is the interface module between (1) our programming 
environment as defined by the Pulse Setup module, and (2) the scan chains with the 
GasP design under test as defined in [5]. It is partitioned into two sub-modules: 
JTAG Control and Scan Control Group. 

3. JTAG Control: This module contains the IEEE 1149.1 standard TAP architecture. 
We extended the architecture with some extra instruction register control logic for 
special scan features that we like, such as non-overlapping shift clocks for fast 
initialization. This extension falls within the IEEE standards, but may not fall within 
the programming interface developed at the time by Sun Microsystems for [1,2]. So, 
to re-use the existing software, we may have to drop our special scan features. 

4. Scan Control Group: This module groups the Test Data Input (TDI) signal coming 
from the Pulse Setup module with the signals generated by the TAP controller and 
IR logic from the JTAG Control module. It translates these into specific scan chain 
signal settings and hands a Test Data Output (TDO) signal back from the scan 
chains to the JTAG Control module.  
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Figure 1: Experimental test setup with a JTAG Box (left), SW/KP and GO scan chains (middle) and a linear 
GasP FIFO with five stages acting as the design under test.  

 
The rest of this report is organized as follows. Section 2 compares our JTAG Box 
design with the IEEE standard and the original implementation by Sun Microsystems, 
now Oracle, in [1,2]. Section 3 discusses the JTAG Control module, Section 4 discusses 
the JTAG Central module, and Section 5 gives the design details of the Scan Control 
Group. Section 6 explains the Pulse Setup module. Section 7 discusses the scan test 
experiments that we ran scan and presents their SPICE simulation results with 
waveforms. Section 8 concludes this report.  

2. JTAG Box Overview 
A more detailed JTAG Box implementation follows in Figure 2. It satisfies the IEEE 
standard in [6] and is based on the version implemented by Sun Microsystems, now 
Oracle, for [1,2]. The pink modules are the ones we added to the standard IEEE 
architecture. Similar additions are present in the Sun-Oracle version.  They are: 

1. A Pulse Setup module to provide a more abstract user-friendly programming 
interface, on- or off-chip, which overlaps with Sun-Oracle’s implementation. 

2. A Scan Control Group module for individual control for multiple scan chains, like 
the SW/KP and GO scan chains in Figure 1. The Sun-Oracle implementation 
also supports multiple scan chains. 

3. A Clock Generator to generate non-overlapping clocks. Our design and test 
implementations use level-triggered single latches and double-latch master-slave 
flipflops [5] rather than edge-triggered flipflops popular in synchronous designs. 
For delay-insensitive operation, our latch-based designs use non-overlapping 
clocks: one clock, CK1, for the master latch, and another clock, CK2, for the 
slave latch. The clock generator in Figure 2 takes the external Test Clock, TCK, 
and generates non-overlapping CK1 and CK2. Its design follows in Figure 3. 

4. An IR Control module to overlap scan shift clocks for fast initialization of the 
design. This module is absent in Sun-Oracle’s implementation. 
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Figure 2:  A more detailed version of the architecture of the JTAG Box design than the one given in Figure 1. 
The pink-colored modules are extensions to the IEEE standard given in [6], but compatible with the standard. 

 
These pink-colored add-ons fall within the IEEE standards, but may not fall within the 
programming interface developed by Sun-Oracle, and used for testing the Infinity and 
Marina chips in [1,2]. If we are to re-use the existing software from Sun-Oracle, we may 
have to drop the fast initialization mode by overlapping shift clocks as supported by our 
IR Control module.  The Sun-Oracle implementation provides fast initialization through a 
global master clear signal, mc, which is routed as part of its 9-bit scan bus. Our 8-bit 
scan bus matches Sun-Oracle’s without the mc signal. Also our non-overlapping clock 
strategy is slightly different but we believe that our clocks are phase and skew 
consistent with the Sun-Oracle versions.  
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Figure 3: Implementation and icon for the JTAG Clock Generator in Figure 2, used to translate TCK into two 
non-overlapping clock signals, CK1 and CK2. CK1_fb and CK1_fb are delayed versions of CK1_out and 
CK2_out respectively, taken from the farthest point in the distribution network of CK1_out and CK2_out.  By 
sensing CK1_fb and CK2_fb we can guarantee that we have non-overlapping CK1_out and CK2_out, 
independent of the delays in the two clock distribution networks. After stabilizing: 

 clk HI results in both CK1_out and CK1_fb HI and both CK2_out and CK2_fb LO, and 

 clk LO results in both CK1_out and CK1_fb LO, and both CK2_out and CK2_fb HI. 
This design lives in Electric_180nm_ARC2013-smg08-09, jtagCentralSubModules_unchanged, as clockGen. 

 
The clock interface constraints are set by the IEEE standard: The Test Data Input, TDI, 
must be set up shortly before the Test Clock, TCK, rises. The Test Data Output, TDO, 
becomes available upon TCK falling. We arrange the part in-between differently than 
Sun-Oracle: 
 

 We re-use the top-level Sun-Oracle clock generator shown in Figure 2. But we 
add two lower-level clock generators in the IR Logic and Scan Control Group 
that, in addition to generating complementary clocks, allow both generated clocks 
to be (1) overlapping LO, and (2) overlapping HI. 

 

 TAP Controller outputs become available at CK2 for us, at CK1 for Sun-Oracle; 
ditto for outputs from the IR Logic and Output & Bypass Logic, and for outputs 
from the Scan Control Group, and even for the scan chains themselves.  
 
We want to use CK1 as master clock and CK2 as slave clock for all master-slave 
flipflops in the test configuration. As a result, we pay an extra TCK clock cycle to 
generate TDO at the TDO module, one for CK1 followed by another one for CK2, 
as opposed to just CK2 for Sun-Oracle. For scan operations, this difference 
amounts to pretending there is one more scan register in the scan chain than 
there really is. This does not jeopardize the usability of the scan software. 
 

In conclusion: apart from fast initialization, we are able to re-use the Sun-Oracle scan 
software to program GasP scan operations for SW/KP and GO scan chains. 
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3. JTAG Control Module 
Figure 4 shows our implementation of the JTAG Control Module in Electric [7]. It 
includes the TCK to CK1-CK2 clock generator of Figure 3 for driving our single latches 
and master-slave edge-triggered flipflops. It also shows the sub-modules in the IR Logic 
and in the Output Logic and Bypass Logic.  
 
In the following sub-sections we’ll go over the bigger sub-modules, and explain their role 
in scan testing GasP control circuits. We’ll skip the Bypass sub-modules, because they 
are irrelevant for scan testing GasP. 
 

 
 

Figure 4: Schematic diagram and icon of our JTAG Control Module design in Electric [7]. This design is stored 
in library Electric_180nm_ARC2013-smg08-09 under sub-library jtagCentralLatest2013 as jtagControlNew. 
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3.1. TAP Controller 

The Test Access Port (TAP) Controller is implemented as a 16-state Finite State 
Machine, with states and transitions as depicted in Figure 5. It operates on three binary 
input signals, TCK, TMS, and TRST, where: 

 TCK, for Test Clock, triggers the state-to-state transitions, with a HI pulse. 

 TMS, for Test Mode, determines the state of the TAP controller. In our 
implementation, we read TMS at CK2 HI, which corresponds to TCK LO. So, 
basically, TMS is captured at TCK LO so it is stable by the next TCK HI pulse 
that triggers the next state transition in the TAP Controller. TMS must be stable 
some given setup time prior to the falling edge of TCK, and its new value must be 
updated in time before the next fall of TCK. 

 TRST, for Test Reset, initializes the TAP controller (see also end of Section 3.1). 

 
Figure 5: Finite State Machine implementation of the TAP Controller; see also Figure 6-1 in [6]. 
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The states in the TAP Controller can be divided into four groups: 
1. Reset 
2. Idle 
3. IR control  (select, capture, shift, exit1, pause, exit2 and update) 
4. DR control  (select, capture, shift, exit1, pause, exit2 and update) 

 
State groups 3 and 4 control the TAP Controller outputs: UpdateIR, ShiftIR, CaptureIR, 
ResetN, UpdateDR, ShiftDR, CaptureDR. In Figure 5, the states in groups 1 and 2 are 
in the top-left column. The states in group 3 for IR control are in the right column. The 
states in group 4 for DR control set are in the middle column. A brief description of the 
states follows next. 
 

 TEST_LOGIC_RESET: Group 1 (Reset). 
This state is the intended initial TAP Controller state. It triggers ResetN to reset 
the IR Logic. All test logic is disabled in this state so that the normal-mode 
system operation can continue unhindered. 
 

 RUN_TEST/IDLE: Group 2 (Idle). 
This is a stable TAP Controller state between scan operations, used for running a 
preset test or staying idle for testing while leaving the current instructions intact. 
 

 SELECT_DR_SCAN and SELECT_IR_SCAN: Group 3 or 4 (IR or DR Control). 
These are intermediary states exited on the next TCK cycle, used to control 
instructions registers (IR) or to control data registers (DR) or to reset. In case of 
IR or DR control, we distinguish successor states s_x  where x is DR or IR, and s 
is: 

o CAPTURE: this state triggers output CaptureDR respectively CaptureIR, 
which results in a parallel load operation from design data into the scan 
chain (a.k.a. “read”) respectively from IR data into the IR shift register. 

o SHIFT: this state triggers output ShiftDR respectively ShiftIR to serially 
shift the Instruction Register respectively scan chain by one position. 
SHIFT is entered and exited on TCK LO. While in SHIFT, each 
subsequent TCK HI transition produces a shift-by-one. 

o EXIT1 or EXIT2: temporary controller state, from which the current 
scanning process can be terminated. 

o PAUSE: Temporary suspension state that keeps existing settings. 
o UPDATE: state that triggers UpdateDR respectively UpdateIR, which 

results in a parallel load from scan data into the design (a.k.a. “write”) 
respectively from the IR shift register to IR’s output as the new instruction. 

 
A typical test sequence involves clocking TCK at some cycle rate, setting TRST to 0 for 
a few cycles to reset the TAP controller states and the IR logic, returning TRST to 1, 
and then toggling or leaving TMS as needed per TCK cycle to traverse through the 
intended set of states. Note that a series of five consecutive CLK cycles with TMS 1 
resets the system to the TEST_LOGIC_RESET state, from any state in Figure 5. 
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Figure 6 shows the design of the TAP controller as we implemented it in Electric. Note 
the structural similarity with the IEEE Finite State Machine diagram in Figure 5.  
The key differences to note for our implementation are: 

1. CK1 clocks the master latch of each so-called state latch, which is a flipflop, and 
CK2 clocks the slave latch. Signal TMS is clocked in through a single latch via 
CK2 at the top-left. This clocking scenario is similar to the Sun-Oracle version. 

2. Output as well as internal state signals in the TAP Controller are taken from the 
slave latch of each state latch, while the Sun-Oracle version takes its outputs 
from the master and its internal signals from the slave. It is this difference that 
eventually culminated in the one clock cycle difference at the TDO pin of our 
versus the Sun-Oracle’s JTAG Box design, as discussed at the end of Section 2. 

 
 

 

 
Figure 6: Schematic diagram and icon of our TAP controller module. This design is stored in subdirectory 
Electric_180nm_ARC2013-smg08-09, sub-library jtagCentralLatest2013, as tapCtlJKLNew. 
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The design of the master-slave state latch follows in Figure 7; it operates as follows:  
 

 Always: slave = ~slaveBar. 

 If rst = HI then master = LO 

 If CK1 = HI then master = next 

 If CK2 = HI then slave = master 
 
For proper operation, signals CK1 and rst are never HI at the same time. For the TAP 
Controller, this translates to: TCK and TRST are never HI at the same time. Though 
there is no rule in the IEEE specification that requires this, Section 4.6 in [6] gives some 
recommendations to ensure deterministic operation of the test logic for changing TRST* 
(either TRST or its complement TRSTb) in relation to TCK and TMS. 
 
 
 

 
 

Figure 7: Schematic diagram and icon for the state latch. The internal latches are implemented with 
complementary pass-transistors and back-to-back non-fighting keepers that operate only when the 
corresponding latch enable signal (clock) is LO. Two more examples of this latch design style follow in Figure 8 
and Figure 9. All our single latches and double-latch master-slave flipflops are designed using this design style. 
It is stored in Electric_180nm_ARC2013-smg08-09 under jtagCentralSubModules_unchanged as stateBit. 
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Figure 8: Schematic diagram and icon of a one input one output single inverting latch. Each squared box with a 
cross denotes a P-N transistor pair that acts as a pass transistor.  The two pass transistors in this diagram are 
driven in mutual exclusion. As a result, there is no need to fight the keeper when writing a new din value to dout. 
This design is in Electric_180nm_ARC2013-smg08-09, sub-library jtagCentralSubModules_unchanged, where it 
is stored under the name scan_write. 

 
 

 
 

Figure 9: Schematic diagram and icon of a single non-inverting latch, built as extension to Figure 8. This design 
is stored in Electric_180nm_ARC2013-smg08-09 under jtagCentralSubModules_unchanged as slaveBit. 
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3.2. Instruction Register (IR) Logic 

The JTAG Control Module sets up test instructions that correspond with certain test 
operations. These test operations can range from built-in self-test and instructions for 
testing off-chip circuitry to scan chain operations. We will focus mostly on the scan 
chain operations, for which we added a new instruction mode, called ScanPath mode. 
We use ScanPath mode for scan test operations via the SW/KP and GO scan chains.  
 
The IR Logic has three sub-modules: (1) IR Control, (2) IR, which can operate as shift 
register, and (3) IR Decode. We’ll discuss each sub-module below. 

3.1.1 IR Control 

Figure 10 shows the design configuration for the IR Control module. As input signals, it 
uses CK1_in and CK2_in, which are the CK1 and CK2 signals generated in Figure 2, 
and it uses input signals shift, capture, and update, which are TAP Controller output 
signals ShiftIR, CaptureIR, and UpdateIR in Figure 2. From these, the IR Control 
module generates (1) non-overlapping shift clocks, IRCK1_out and IRCK2_out, that are 
both LO when we’re not shifting IR, and (2) read and write control signals for IR. 

 
Figure 10: Our design implementation of the IR Control Module in Electric [7]. This design is stored in library 
Electric_180nm_ARC2013-smg08-09 under sub-library jtagCentralLatest2013 as jtagIRControl_Scan. 

 
Figure 11 shows the schematic diagram of the IR Shift Control Module, with the internal 
clock generator to generate non-overlapping IR shift clocks, IRCK1_out and IRCK2_out. 
To ensure non-overlap HI, the clock generation logic, shown in Figure 12 also inputs 
the delayed clock signals, which are fed back through the hierarchy from the farthest out 
clock distribution points. This is similar to the JTAG Clock Generator module in Figure 
3. What’s different is that both IRCK1_out and IRCK2_out are LO when sel_enable is 
LO. 

sel 
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Figure 11: Schematic diagram and icon for the IR Shift Control sub-module. This design is stored in library 
Electric_180nm_ARC2013-smg08-09 under sub-library jtagCentralLatest2013 as shift_ctlNew.  

 
 

Figure 12: Schematic diagram and icon of the IR Clock Generator module. Input clocks CK1 and CK2 are 
never HI at the same time. As is the case for the JTAG Clock Generator in Figure 3, we can guarantee that 
CK1_out and CK2_out are never HI at the same time, independent of the delays in the two clock distribution 
networks. But unlike the JTAG Clock Generator, both CK1_out and CK2_out can be stable and LO at the same 
time. After stabilizing: 

 Either sel_enable or CK1 LO results in CK1_out and CK1_fb LO. 

 Either sel_enable or CK2 LO results in CK2_out and CK2_fb LO. 

 Both sel_enable and CK1 HI results in CK1_out and CK1_fb HI. 

 Both sel_enable and CK2 HI results in CK2_out and CK2_fb HI. 
This design is stored in Electric_180nm_ARC2013-smg08-09,  jtagCentralLatest2013, as clockGen_withSel.   

From Figure 11, we can see that sel_enable is clocked in via a single latch via CK1_in. 
So, shortly after CK1_in goes HI, sel_enable is set to the logical AND of shift and sel, 
where sel is HI as it’s connected to VDD in Figure 10. In other words, when CK1_in 
goes HI, the value of shift is assigned to signal sel_enable. Signal shift is set in the TAP 
Controller at CK2, CK2_in here. Having non-overlapping HI CK1_in and CK2_in makes 
this a proper delay-insensitive assignment. So, signal sel_enable is guaranteed stable 
when CK2_in changes, thus causing a proper delay-insensitive sel_enable-CK2 input 
scenario for the IR Clock Generator. 
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Likewise, signal CK1_in_gated, which is the logical AND of shift and CK1_in, is 
guaranteed stable and LO when signal shift changes, because CK1_in and CK2_in are 
never HI at the same time, as is guaranteed by the JTAG Clock Generator in Figure 3. 
When CK1_in rises, signal shift is guaranteed either stable LO or stable HI. For shift LO 
and stable, CK1_in_gated will remain LO and stable. For shift HI and stable, 
CK1_in_gated will rise when CK_in rises, and so will sel_enable, Thus, both cases, shift 
stable LO and shift stable HI, create a proper delay-insensitive sel_enable-CK1 input 
scenario for the IR Clock Generator. 
 
IRCK1_out may be LO when CK1_in is HI, but when IRCK1_out is HI so is CK1_in. 
Likewise, when IRCK2_out is HI, then CK2_in is also HI for the IR Control module. We 
will maintain the phase relation IRCK1_out HI to CK1_in HI to TCK HI, and ditto 
IRCK2_out  HI to CK2_in HI, to TCK LO, throughout our test design. 
 
The incoming capture signal is translated into an IR read control signal, and the 
incoming update signal is translated into an IR write control signal. Remember that the 
incoming capture and update signals are outputs from the TAP Controller, so they 
change at CK2_in.The read and write signals are inputs to the IR, and operate after the 
IRCK2_out entry point in the slave latch of the shift register. So, to make these read and 
write control signals fit in our delay-insensitive clocking strategy, they must be changed 
on IRCK1_out. This is indeed how they’re changed in the designs of the sub-modules 
captCtl and UpdtCtl in Figure 13 and Figure 14. Note that input signal sel for both 
these sub-modules is tied to VDD in the overall design of the IR Control module in 
Figure 10. 

 
Figure 13: Schematic diagram and icon of the Capture Control (captCtl) sub-module. This design is stored in 
library Electric_180nm_ARC2013-smg08-09 under sub-library jtagCentralLatest2013 as capture_ctlNew. 

 
Figure 14: Schematic diagram and icon of the Update Control (UpdtCtl) sub-module. This design is stored in 
library Electric_180nm_ARC2013-smg08-09 under sub-library jtagCentralLatest2013 as update_ctlNew. 
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3.1.2 Instruction Register (IR) – Shift Register Part 

Figure 15 shows our IR design with nine serial-in-parallel-out 9-bit shift registers of type 
scanIRL, with output sout initialized LO, and scanIRH, with output sout initialized HI. 

 
Figure 15: Schematic diagram and icon of the Instruction Register (IR) shift register part. This design is stored 
in library Electric_180nm_ARC2013-smg08-09 under sub-library jtagCentralLatest2013 as IR_New. 

 
 

 
Figure 16: Schematic diagram and icon of the Scan IRL register used in the shift register part of the IR. This 
design is stored in Electric_180nm_ARC2013-smg08-09, jtagCentralSubModules_unchanged, as scanIRL. 
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Figure 16 shows the design of the scanIRL register, with its master latch clocked on 
IRCK1 and its slave latch clocked on IRCK2. It also shows the read (rd) and write (wr) 
control inputs generated by the IR Control module on the IRCK1 clock, and coming in 
after the IRCK2 entry point, to maintain a proper delay-insensitive control scheme.  
 
The TAP Controller never overlaps reset, shift, update, and capture, so scanIRL and 
likewise scanIRH are guaranteed free of drive conflicts between mc (reset), IRCK1 and 
IRCK2 (shift), wr (update) and rd (capture). With that, scanIRL operates as follows:  

 Always dout = ~doutb. 

 If IRCK1 goes HI followed by IRCK2 going HI then sout = sin. 

 If rd = HI then sout = LO. 

 If mc = HI then dout = HI. 

 If wr = HI then dout = sout 
 
The full nine-register long shift register in Figure 15 takes TDI as the input data for SDI 
and uses the two non-overlapping clocks IRCK1 and IRCK2 to shift the data serially out 
to SDO which can then be sent via the TDO Driver to test output data TDO. For proper 
operation, SDI must be stable shortly before IRCK1 rises, which at the level of the JTAG 
Control module translates to: SDI must be stable shortly before CK1 rises, which at the 
JTAG IO level translates to: SDI must be stable shortly before TCK rises. 
 
Upon write HI, the shift register contents are copied in parallel to IR[9:1] and its 
complement IRb[9:1]. Of these, IR[6:1] and IRb[6:1] are connected to the IR Decoder 
and IR[7:9] are connected to the Output Logic in the JTAG Control module in Figure 4. 

The nine bits in the IR shift register code the target test instruction that’s to be executed 
next. The operational meaning of each IR bit in the target test instruction is as follows: 

 IR[9]: represents the scan clock overlap_enable signal: 
 when HI,  the scan shift clocks for the selected scan chain will be overlapping HI. 

 IR[8]: represents the scan capture signal: 
when HI,  the scan capture signal for the selected scan chain will be HI, which 
will result in reading the corresponding GasP signal value into the scan chain. 

 IR[7]: represents the scan update signal: 
when HI,  the scan capture signal for the selected scan chain will be HI, which 
will result in writing the scan values to the corresponding GasP signal. 

 IR[6:5]: don’t play a role in the scan test experiments in [5]. 

 IR[4:1]: determines the selection of one out of 13 possible target scan chains, 
using a 1-hot encoding from 0000 to 1100. The remaining codes 1101 to 1111 
are reserved for non-scan test modes and not used in our scan test experiments. 

Table 1 summarizes this for quick reference: 
 

IR[9] IR[8] IR[7] IR[6:5] IR[4:1] 

overlap_enable capture update - 
0000 to 1100: SelDR[12:0] 
1101 to 1111: non-scan test mode 

 

Table 1: Operational intent of each of the 9 bits in the JTAG Instruction Register (IR). 

APPENDIX F. TEST SETUP: JTAG CONTROLLER 325



ARC# 2013-smg09 Asynchronous Research Center page 18 of 41 
 
 

3.1.3 Instruction (IR) Decoder 

Figure 17 shows the design of the IR Decoder module. The module takes IR outputs 
IR[6:1] and IRb[6:1] and generates ScanPath[0:12] and three test mode signals, 
ByPass, SamplePreload and ExTest. Signal Bypass goes to the Bypass Control module 
in the JTAG Control module in Figure 4, and the other signals go to the Output Logic. 
 
 

 

 
 
 

Figure 17: Schematic diagram and icon for the IR Decoder module. This design is stored in directory 
Electric_180nm_ARC2013-smg08-09 under sub-library jtagCentralSubModules_unchanged as IRdecode. 
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3.3. TDO Driver 

The Test Data Output (TDO) Driver multiplexes data from (1) the IR shift register and 
(2) the currently active scan chain, and outputs the data onto the TDO pin for test 
inspection. The multiplexed data change on CK2. This matches with the clock ordering 
in the TDO Driver in Figure 18, where the input data is clocked in on CK1 and then 
propagated as Test Data Output (TDO) on CK2. The second CK2 stage is needed 
because the IEEE JTAG Controller specification requires that TDO becomes available 
at the falling TCK clock edge, which corresponds to CK2 rising.  See also our 
discussion about this in relation to the Sun-Oracle design at the end of Section 2. 

 
 

Figure 18: Schematic diagram and icon for the Test Data Output (TDO) Driver module. This design is stored in 
directory Electric_180nm_ARC2013-smg08-09 under sub-library jtagCentralLatest2013 as TDOdriver. 

 

3.4. Output Logic 

The Output Logic passes the following signals from the JTAG Control to the Scan 
Control Group in the JTAG Central Module in Figure 1: 

 SelDR[0:12]: one-hot scan chain selection. 

 overlap_enable: control signal to allow overlapping-HI scan shift clocks. 

 Capture (Cap): control signal to write the GasP values to the scan chain. 

 Update (Upd): control signal to write the scan values to the GasP signals.  

 Shift: control signal to shift the scan chain. 

 SelBS and ExTest: are unused in the scan chain experiments reported here. 
o SelBS: is used for SAMPLE/PRELOAD JTAG test operations. 
o ExTest: is used for external JTAG test operations. 
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4. JTAG Central Module  
The JTAG Central module combines the JTAG Control module with the Scan Control 
Group. The Scan Control Group forms the interface to the scan chain, e.g. to the 
SW/KP and GO scan chains in Figure 1. The Scan control group can drive up to 
thirteen scan chains. It drives them in mutual exclusion, i.e., one at a time.  
 
In our case, each scan chain has eight signals. This is different than the original design 
by Sun Microsystems, which uses a nine-th so-called master clear signal, mc, to clear 
all statewires by making them LO or EMPTY.  We anticipate that this difference will not 
matter in our ability to re-use the test software from Sun-Oracle: we just won’t connect 
the mc signal to the design under test, and we’ll initialize the circuit via the scan chains.  

 

As we can see in 1 and 2, the Scan Control Group receives its inputs from (1) the 
Output Logic in the JTAG Control module and (2) the TDI Pulse Setup module in the 
JTAG Box. It distributes these to thirteen Scan Control modules, one per scan chain. 
The interface between scan chain and Scan Control module is an 8-bit bus, called 
leafi[1:8] with i being the index for the module, which has the following signals [5]: 

 leaf[1:8] = sin, SCCK1, SCCK2, wr, rd, SCCK1_return, SCCK2_return, sin_return 
o sin:  is the scan-data input to the scan chain. 
o SCCK1, SCCK2:  are the scan clock signals for shifting data in and out. 
o rd: is the clock-enable signal for readin data from the design into the scan chain. 
o wr: is the clock-enable signal for writing data from the chain into the design. 
o SCCK1_return, SCCK2_return: are the far-out signals for SCCK1 and SCCK2. 
o sin_return: is the scan-data output of the scan chain. 

 
Figure 19 and Figure 20 show the Scan Control Group and Scan Control Module 
designs. Lower level details of the Scan Control Module follow in Figure 21 to Figure 
23.  
 
The input-output relation of the Scan Control module in Figure 20 is as follows: 

 JTAG inputs overlap_enable and shift are combined with the incoming module 
selector sel[i] and the two non-overlapping-HI incoming clocks CK1 and CK2 
and parsed by sub-module Scan Shift Control (ShiftCtl) to generate the two 
output scan shift clocks SCCK1 (leaf[2]) and SCCK2 (leaf[3]) and their far-out 
wire connections SCCK1_fb (leaf[6]) and SCCK2_fb (leaf[7]). The far-out clock 
signals are used by sub-module ShiftCtl to ensure that the generated clocks are 
non-overlapping HI when needed, by using design techniques similar to those we 
used in the designs of the JTAG and IR Clock Generators in Figure 3 and 
Figure 12. The design of sub-module ShiftCtl follows in Figure 22. 

 Input cap for capture is combined with the incoming module selector sel[i] and 
non-overlapping-HI incoming clocks CK1 and CK2 and parsed by sub-module 
Scan Capture Control (captCtl) to generate output rd (leaf[5]) which reads the 
values of the design signals into the scan chain. Scan Capture Control is an 
instance of the same design as IR Capture Control, shown earlier in Figure 13. 
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Figure 19: Schematic diagram the Scan Control Group, showing all thirteen Scan Control Modules, one for 
each scan chain. The input ports on the left are connected to all thirteen modules. The mutually exclusively 
driven and tri-state outputs of the thirteen modules are connected to the single TDO output of the Scan Control 
Group. This design is in Electric_180nm_ARC2013-smg08-09, jtagCentralLatest2013, under 
jtagScanCtlGroupNew. 

 

 Input upd for update is combined with incoming module selector sel[i] and 
incoming clock CK1 and parsed by sub-module Scan Update Control (UpdtCtl) to 
generate output write (leaf[4]) which writes the scan values into the design. 
Scan Update Control is an instance of the same design as IR Update Control, 
shown earlier in Figure 14. 

 Input TDI is amplified and output as leaf[1], which acts as scan data input. 

 Scan bus signal leaf[8] is the output data of the scan chain. It is combined with 
the incoming module selector sel[i] and parsed by sub-module Scan Control 
which, if sel[i] is HI, passes leaf[8] to TDO, and which otherwise tristates its 
connection to TDO. 
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Figure 20: Schematic diagram and icon of a Scan Control Module. This design is stored in directory 
Electric_180nm_ARC2013-smg08-09 under sub-library jtagCentralLatest2013 as jtagScanCtlWBufNew. 

 

 
 
Note that the organization details of sub-module “Scan Control with enable” in Figure 
21 are similar to those of the IR Control module in Figure 10. Like the IR Control 
module, module “Scan Control with enable” has three key modules: (1) ShiftCtl to 
generate the scan shift clocks, (2) capCtl to translate the capture signal into a scan read 
control signal, and (3) updtCtl to translate the update signal into a scan write control 
signal.  
 
Remember that the incoming capture and update signals are outputs from the TAP 
Controller, so they change at CK2. The read and write signals are inputs to the scan 
chains, and operate after the SCCK2 entry point in the slave latch of the scan shift 
register. So, to make these read and write control signals fit in our delay-insensitive 
clocking strategy, we change them while CK1 is HI (and thus SCCK2 is LO). Note that 
this is indeed how they’re changed given the connectivity in Figure 19 to Figure 21 and 
the designs of the two modules captCtl and UpdtCtl in Figure 13 and Figure 14. 
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Figure 21: Schematic diagram and icon of sub-module Scan Control with Enable. Notice the similarity in 
organization with module IR Control in Figure 10. Sub-modules captCtl and UpdtCtl are instances of the same 
designs as those for module IR Control. The design instance for submodule ShiftCtl is different because it 
makes both outgoing clocks SCCK1_out and SCCK2_out HI when both sel and overlap_enable are HI. In 
contrast, the ShiftCTL submodule in module IR Control lacks the overlap_enable input and always generates 
clocks with non-overlapping HI pulses. Input pin TDI is the TDO output pin of the scan chain associated with 
this controller. The TDI to TDO pin connection to the TDO pin of the overall Scan Control Group is established 
when the scan chain is selected, i.e., when sel is HI, and otherwise, i.e., when sel is LO, it’s tri-stated. This 
design is in Electric_180nm_ARC2013-smg08-09, jtagCentralLatest2013, under jtagScanControl_mcNew. 
 

 
 
 
The design differences between the sub-module “Scan Control with enable” in Figure 
21 and the IR Control module in Figure 10 are (1) an additional tri-state TDI to TDO 
connection in the scan controller, where TDI is the local TDO output pin of the scan 
chain associated with the controller, and (2) an additional clock generation mode in the 
shift control block, ShiftCtl, that makes both generated clocks HI whenever the scan 
control inputs overlap_enable and sel are HI; otherwise clock generation is the same.  
 
The designs for the Scan Shift Control block and the Scan Control Clock Generator 
follow in Figure 22 and Figure 23 below. 
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Figure 22: Schematic diagram and icon for the Scan Shift Control module. The difference with respect to the 
earlier IR Shift Control module shown in Figure 11 is in the Clock Generator, whose design follows in Figure 23. 
This design is in Electric_180nm_ARC2013-smg08-09, jtagCentralLatest2013, under shift_ctl_mcNew. 
 

 

 
 

Figure 23: Schematic diagram and icon of the Scan Control Clock Generator. In addition to the functionality of 
the IR Control Clock Generator module presented in Figure 12, the above diagram pulls both CK1_out and 
CK2_out and HI whenever overlap_enable is HI and the associated scan chain is selected, i.e., sel_enable is 
HI. After stabilizing, the above diagram behaves as follows:  

 Either sel_enable or CK1 LO results in CK1_out and CK1_fb LO.  

 Either sel_enable or CK2 LO results in CK2_out and CK2_fb LO.  

 Both sel_enable and CK1 HI results in CK1_out and CK1_fb HI. 

 Both sel_enable and CK2 HI results in CK2_out and CK2_fb HI.  

 Both sel_enable and overlap_enable HI results in CK1_out, CK1_fb, CK2_out, and CK2_fb HI.  
This design can be found in directory Electric_180nm_ARC2013-smg08-09, sub-library jtagCentralLatest2013, 
under clockGen_withSelandOverlap. 
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5. JTAG Box Programming Interface 
To ease the design of our scan tests in Electric [7], we use a programming interface, 
which we call “Pulse Setup”.  The Pulse Setup interface provides a more abstract and 
user-friendly interface to program signal pulses for (1) JTAG Central module inputs TDI, 
TCK, TMS, TRSTb and (2) scan chain input TDI. We typically generate the TCK as a 
continuous clock signal, which starts clocking after a given offset time. For TDI, TMS, 
and TRSTb, we generate non-continuous pulses by using Piece Wise Linear (PWL) 
components from our Electric design library. A piece-wise linear specification indicates 
the corner points, i.e., points of change, in the (Time x Voltage) pulse function; the 
changes in-between these points are linear in the Time-Voltage domain. Figure 
24(right) is an example of a piece-wise linear specification. We use a 180nm process 
technology, where LO corresponds to 0 Volt and HI to 1.8 Volt. 
 
Our test sequences starts with TCK and TRSTb LO, to unambiguously reset the TAP 
Controller. After some time, we set TRSTb to HI, which ends the reset phase, start the 
continuous clock function of TCK, and then start toggling TMS as needed to traverse 
the TAP controller to the desired states from where we toggle TDI to program the 
desired test instruction or the desired scan values, whichever one the given TAP 
Controller state allows us to program. Details follow in Sections 5.1 to 5.3 below. 

5.1. TCK and TRSTb Pulse Setup 

For TCK, we use a clock period of 5 ns, a HI pulse width of 2.3 ns, 200 ps rise and fall 
times, and a start time of 23.5 ns. The resulting LO pulse width is 2.3 ns. We start with 
TRSTb LO (0 Volt) for 20 ns, and make it HI (1.8 Volt) 0.2 ns later and for the rest of the 
(under 20 seconds) simulation. This ensures that the TAP Controller is reset when TCK 
starts its clock function at 23.5 ns.  The pulse components and an initial segment of 
their waveforms follow in Figure 24 and Figure 25 below. 
 

 
 
Figure 24: Pulse components for JTAG Control inputs TCK and TRSTb. These designs are stored in directory 
Electric_180nm_ARC2013-smg08-09, jtagCentralLatest2013 as PULSE_generator and PWL_generator. 
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Figure 25: Initial segment of the pulse waveforms for the TCK and TRSTb pulse components of Figure 24. 

 

5.2. TMS Pulse Setup 

The strategy is to first load an instruction in the IR Logic and then update the scan data. 
Consequently, the TAP controller traverses first the IR control states and then the DR 
control states. Figure 5 shows that this leads to the following 4-step algorithm: 

1. Set the TAP Controller in the IDLE state for a duration of zero or more cycles. 
During initialization, this happens automatically provided we keep TMS LO while 
the TAP Controller is reset and for the first few TCK clock cycles after reset, as 
explained in Section 5.1. 

2. Set-IR: Go via SELECT_DR_SCAN to SELECT_IR_SCAN to CAPTURE_IR, on 
to SHIFT_IR for as many TCK cycles as needed to shift in the next instruction, 
and then via EXIT1_IR to UPDATE_IR to hand over the new instruction. 

3. Go to IDLE for a positive number of TCK cycles, or skip IDLE (default). 
4. Set-DR: Go via SELECT_DR_SCAN to CAPTURE_DR, on to SHIFT_DR for as 

many TCK cycles as needed to shift in the next scan values, and then via 
EXIT1_DR to UPDATE_DR to hand over the scan data. 

 
Figure 26 shows the pulse component for a full algorithmic cycle from step 1 to step 1, 
assuming 9 TCK clock cycles to shift in a full 9-bit instruction during SHIFT_IR, and 
assuming 5 TCK clock cycles to shift in five GO values for the 5-stage FIFO of Figure 1. 
   
From Section 3.1, we know that TMS must be set up prior to TCK going LO, and before 
TCK goes LO again. The Delay value for the TMS pulse generator must be set such 
that TMS changes while TCK is HI and sufficiently before TCK goes LO. In this report, 
we have used TMS Delay=40ns, i.e.,: 

 TMS Delay = TCK Delay (23.5 ns) + 3 TCK HI-LO cycles (15 ns) + 1.5 ns in TCK HI, 

 which implies that the TMS Delay ends while TCK is HI and 1 ns before TCK falls,  

 which is good enough for the simulations for the small-scale design in this report. 
This also implies that TMS is LO for the first 3 TCK clock cycles, which guarantees that 
the TAP Controller has had the opportunity to transition from the RESET to the IDLE 
state, before we start the TMS pulse sequence.   
 
The supporting waveforms, relating TMS to TCK, CK1, CK2, and the RESET to IDLE 
transition in the Tap Controller follow in Figure 27 below. 
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Figure 26: Pulse component and icon (top-left) for JTAG Control input TMS. This TMS pulse generator loads a 
full 9-bit instruction and five scan values, which we’ll use to scan in either 5 GO signals or 4 SW values. The 
default TMS Delay value is 0 ns, as shown here. For the simulations in this ARC report, the TMS Delay is 40 ns. 
This design is in Electric_180nm_ARC2013-smg08-09, jtagCentralLatest2013,as IR_DR_tms_go_generator. 

 

 
 

 
 

Figure 27: Relation between the waveforms (1) generated by the pulse components for TCK in Figure 24(left), 
and (2) the TCK resulting CK1 and CK2 waveforms generated by the JTAG Clock Generator in Figure 3,  and 
(3) the RESET and IDLE state transitions in the Tap Controller, and (4) the TMS pulse component in Figure 26, 
where TMS is the signal generated by the pulse component and tms_at_CK is the version that’s distributed 
during CK2 HI in our implementation of the TAP Controller in Figure 6. The gap between the two vertical 
dashed lines around 40ns shows that we have an adequate setup time for TMS with respect to CK2 rising. 

 
The TMS pulse generated by the pulse component in Figure 26 translates into the 
following bit vector: 

TCK 

CK1 

CK2 

Reset 

Idle 

TMS 

tms_at_CK2 
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 110[09]1110[05]110  

 where: 
o 0 means LO and 1 means HI, 

 
o each bit represents the TMS value seen during the HI TCK clock pulse, 

and counted from the point in time when the parameterized Delay expires. 
 

o bit values in red indicate TMS values input during the SHIFT_IR state, 
and those in blue indicate TMS values input during the SHIFT_DR state. 

 
Ideally the TMS pulse component itself could have provided a bit level user interface, 
with setup and hold time settings for the bits in relation to TCK, but this is not possible in 
the underlying SPICE environment. Instead, the valid setup and hold time settings and 
the valid bit values must be programmed manually by carefully programming both the 
piece-wise linear sequence of time-voltage pairs and the Delay value so that in relation 
to the TCK parameters the bits line up adequately with each TCK HI pulse.  
 
We expect that a Verilog-supported component would be able to directly provide a more 
abstract and scalable bit-level user interface.  
  
The relation between the TMS values and the TAP Controller state transitions through 
the Finite State Machine configuration in Figure 5 is illustrated more clearly in Table 2, 
and is supported by the SPICE simulated waveforms in Figure 28. 
 

 

 
Table 2: The stages of the TMS Pulse Setup algorithm (top row) set against the TAP controller states traversed 
through the Finite State Machine in Figure 5 (middle row) and the corresponding TMS values (lower row). 

 INIT Set-IR Set-DR IDLE 

TAP  
States 

RESET 
IDLE 

SELECT_DR_SCAN 
SELECT_IR_SCAN 
CAPTURE_IR 

SHIFT_IR 
 

EXIT1_IR 
UPDATE_IR 
 

SELECT_DR_SCAN 
CAPTURE_DR 

SHIFT_DR 

EXIT1_DR 
UPDATE_D
R 
 
 

IDLE 

TMS  
pulse 

[0] 110 
00000000
0 

11 10 00000 11 0 
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Figure 28: Relation between the TMS values generated by the TMS pulse component in Figure 26 and the 
states traversed in the Tap Controller at each TCK HI-LO cycle. Note that there are exactly 9 HI-LO TCK clock 
cycles when ShiftIR is high, i.e., in the SHIFT_IR state, and exactly 5 HI-LO TCK cycles when ShiftDR is high. 

 

5.3. TDI Pulse Setup 

TDI is an input for (1) the shift register in the IR Logic sub-module in the JTAG Control 
module and (2) the Scan Control Group module which directs it to the scan chains. The 
modules use TDI during different periods of the test execution. The IR data values are 
shifted in during the SHIFT_IR state of the TAP Controller, i.e., at the red TMS LO bits 
in Table 2, and the scan data values are shifted in during the SHIFT_DR state, i.e., 
upon the blue TMS LO bits in Table 2. They are shifted in at the rising edge of TCK. 
 
From Table 2, we can see that a total of nine (9) TDI bits are shifted into the IR shift 
register part during the SHIFT_IR state of the TAP Controller, and that the first and last 
of these TDI bits are shifted in during the 4-th and 12-th TMS bit, respectively.  
 
More precisely, based on the design of the state latches (Figure 7) used in the TAP 
Controller (Figure 6): TAP Control output ShiftIR goes HI on the 4-th TMS bit at the fall 
of TCK. So, we can safely delay the TDI component action by setting: 

 TDI Delay = TMS Delay + 4.5 TCK cycles = 40 ns + 22.5 ns = 62.5 ns, 

 which – by symmetry in the HI-LO-rise-fall TCK pulse generation – ends 1 ns 
before TCK goes HI, which suffices for the simulations in this report. 

 
Figure 29 shows that the TMS setup time to JTAG Clock Generated output CK2 HI is 
fine, and so are the TDI setup to IR Clock Generated CK1 HI and the TDI setup time to 
Scan Control Clock generated SCCK1 HI. 
 

TCK 

Reset 

Idle 

TMS 

SelIR 

CapIR 

ShiftIR 

X1IR 

UpdIR 

SelDR 

CapDR 

ShiftDR 

X1DR 

UpdDR 

APPENDIX F. TEST SETUP: JTAG CONTROLLER 337



ARC# 2013-smg09 Asynchronous Research Center page 30 of 41 
 
 

 
Figure 29:  SPICE waveforms for the TMS-TDI Pulse Generators in our scan test operations, showing that the 
TMI set up time to JTAG Clock Generator output signal CK2 HI is fine. Likewise, the TDI setup time to both the 
IR Clock Generator output CK1 HI and Scan Control Clock Generator output CK1 HI are fine. 

 
 
 
 
From the IR register design in Figure 15, we can see that the shift register bits, as 
encountered from the TDI side, are ordered from high to low, so the first TDI bit shifted 
in ends up at IR[1] and the last and nine-th bit shifted in ends up in IR[9]. 
 
For example, to shift in instruction IR[9:1]=101110000 for clearing the GO signals when 
the GO scan chain is attached to leaf0 of the Scan Control Group, we serially shift in 
TDI bits 000011101 with the first bit, 0, read in on the first TCK cycle after TDI Delay, 
and the nine-th bit, 1, read on the nine-th TCK cycle after TDI Delay expires. The 
resulting IR status is shown in Table 2.  
 
 
 

IR[9] IR[8] IR[7] IR[6:5] IR[4:1] 

1 0 1 11 0000 

 
Table 3: Bit values in the IR shift register part after serially shifting in the TDI bit values 000011101 on TCK HI. 
This instruction reads as: overlap the scan clocks (IR[9]), don’t read the values of the design signals (~IR[8]) but 
rather write the scan values into the corresponding design signals (IR[7]), and use the scan chain connected to 
leaf0 [IR[4:1]. IR[6:5] play no role here. The IR codes are explained in Section 3.1.2 and Table 1. 

 
 
 

TMS 

TDI 

JTAG CK1 
JTAG CK2 

IR CK1 
IR CK2 

SCCK1 
SCCK2 
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Shifting in five scan bits is similar, except that the first TDI bit shifted in during 
SHIFT_DR will end up at scan register GO_SCAN[5] for GO[5] and the last bit shifted in 
will end up at the scan register GO_SCAN[1] for GO[1]. For example, to shift in 
GO_SCAN[5:1]=11101 we serially shift in TDI bits 11101 with the first bit, 1,shifted in on 
the first TCK cycle in state SHIFT_DR, and the second to last bit, 0, on the second to 
last TCK cycle in state SHIFT_DR. The resulting GO_SCAN values follow in  
Table 4. 
 
 
 

GO_SCAN[1] GO_SCAN[2] GO_SCAN[3] GO_SCAN[4] GO_SCAN[5] 

1 0 1 1 1 

 
Table 4: Bit values in the GO Scan Chain after serially shifting in the TDI bit values 11101 on TCK HI. 

 
 
 

From Table 2, we can see that the first and last of these TDI bits are shifted in during 
the 17-th and 21-st TMS bit, respectively. More precisely, based on the design of the 
state latches (Figure 7) used in the TAP Controller (Figure 6): TAP Control output 
ShiftDR goes HI on the 17-th TMS bit at the fall of TCK. So, after shifting in the last TDI 
bit value for SHIFT_IR, we can safely wait with providing new TDI bits for a duration of:  

 TDI skip = 5 TCK cycles = 25 ns. 
 
In-between the TAP Controller states SHIFT-IR and SHIFT-DR, TDI plays no role, as 
neither (1) the shift register in the IR Logic sub-module in the JTAG Control module nor 
(2) the Scan Control Group module which directs it to the scan chains are using TDI. 
The shift register part of IR is then not using TDI because shiftDR is reset to LO upon 
exiting Tap Controller state Shift_IR at TCK LO, which disables CK1 and CK2 clock 
propagation in the IR Clock Generator, leaving both shift register clocks disabled at LO 
– see Figure 11 and Figure 12 for details. The same reasoning applies to the Scan 
Control Clock Generator, as can be seen from Figure 22 and Figure 23.  
 
Figure 30 shows the piece-wise linear pulse component for the TDI signal. It has nine 
parameters, V1 to V9, to hand over the nine IR shift register values, and five, D1 to D5, 
to hand over the five scan shift values to either the GO or the SW-KP scan chains. In 
case a parameter is left unspecified, its voltage level defaults to 1, i.e., 1.8 Volt.  
 
Given the tight TMS-TDI connection, we will combine Figure 26 and Figure 30 into one 
single Pulse Generator, shown in Figure 31, for ease of use in our test program setups. 
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Figure 30: Piece-wise linear (PWL) component and icon (top-right) for the JTAG Control input TDI used in this 
report. The tiny – and here illegible – sequence of pairs of time(ns)-voltage(V) points for the PWL specification 
reads as follows:  

 Sequence offset time: 
TDI Delay = 0 ns by default, but for the purpose of this report, we’ll set TDI Delay =  62.5 ns  

 TDI values for IR: 
(0-0) (0.2-V1) (5-V1) (5.2-V2) (10-V2) (10.2-V3) (15-V3) (15.2-V4) (20-V4)  
(20.2-V5) (25-V5) (25.2-V6) (30-V6) (30.2-V7) (35-V7) (35.2-V8) (40-V8) (40.2-V9) 

 TDI values for DR:  
(65-V9) (65.2-D1) (70-D1) (70.2-D2) (75-D2) (75.2-D3) (80-D3) (80.2-D4) (90-D4) (90.2-D5)   

The default values for V1 to V9 and D1 to D5  are 1, i.e., 1.8 Volt, as indicated in the icon and PWL sequence. 
This design is in Electric_180nm_ARC2013-smg08-09, jtagCentralLatest2013, stored as TDI_go_generator. 

 
 
 
 

 
Figure 31: Single TMS-TDI Pulse Generator, with its icon (top-right), combining the TMS and TDI Delays and 
the shift parameters for the test instruction (V1 to V9) and scan values (D1 to D5) for one algorithmic test cycle. 
This design is in Electric_180nm_ARC2013-smg08-09, jtagCentralLatest2013, as TMS_TDI_go_generator. 
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6. Scan Test Experiments: Simulation Setup and Results 
Figure 32 shows the schematic diagram of our scan test experiment. It contains the 
JTAG Box setup with the Pulse Setup and JTAG Central module on the left, and the two 
SW-KP and GO scan chains and the 5-stage GasP FIFO on the right. Design and 
SPICE simulations for this test setup were done in 180nm CMOS.  

 
 

Figure 32: Schematic diagram of the scan test experiments performed in this report. Scan chains and FIFO are 
organized and ordered from left to right as SW-KP_scanchain[1:4], GO_scanchain[1:5], and FIFO_stages [1:5]. 
The design and SPICE simulations for this test setup were done in a 180nm CMOS manufacturing process. 
This design is stored in library JTAG_experiments2013 under Experiment_JTAG_firstN_eight. 

 
The test includes both test experiments that control as well as test experiments that 
observe the state of the GasP FIFO. We performed the following scan operations: 

1. go_clear [tms,tdi] set all GO signals to LO. 
2. sw-kp_setup [tms,tdi] set the statewires to specific values of our choice. 
3. go_setup [tms,tdi] un-block some GO signals, allowing limited self-timing. 
4. sw-kp_sense [tms,tdi] read the statewires (after the self-timed operation). 

 
The details of the Pulse Setup program follow in Section 6.1 below, and the test 
functionality is explained in Section 6.2, along with the SPICE simulation waveforms.  

6.1. Programming the Input Pulse Generators 

The Pulse Generators for TCK and TRSTb in Figure 32 are exact replica of those in 
Figure 24. The Pulse Generators for the TMS and TDI pulses are shown in Figure 33: 
there are four separate instances of the combined TMS-TDI Pulse Components à la 
Figure 31, one per scan operation. The scan operations are performed in sequence 
and after the test circuitry has initialized, which is reflected in the offset Delays.  
 
Each scan operation takes 24 TCK cycles, or 120 ns. So, if we offset the Delays for 
TCK and TRSTb and TMS1, as we did before, then all we need to do next to maintain a 
correct skew relation between test clocks and test data is to delay each subsequent 
scan operation by an extra (24+n) TCK cycles, for some positive number n. A summary 
of the overall Delay settings and V1-V9 (IR) parameters and D1-D5 (DR) parameters for 
this scan test experiment are summarized in Table 5 below.  

                                            
1 We maintain a fixed offset of 22.5 ns from TMS Delay to TDI Delay, as we did in Section 5.3. 
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Figure 33: Details of the TMS-TDI Pulse Generators in our test program. 

 
 

Pulse Name 
Parameter 0: 
offset Delay 

Delay comment 
Parameter 1: 

V1[1:9] 
Parameter 2: 

D1[1:5] 

TCK pulse 23.5 ns as in Figure 24  - - 

TRSTb pulse 20 ns as in Figure 24 - - 

Scan 
operation 

TMS-TDI Pulse  

1 go_clear [tms,tdi] 40 ns as in Figure 26 000011101 00000 

2 
sw-kp_setup 
[tms,tdi] 

185 ns 
Delay[1] + 

(24 + 5) TCK cycles  
000111101 11110 

3 go_setup [tms,tdi] 330 ns 
Delay[2] + 

(24 + 5) TCK cycles 
000011100 10100 

4 
sw-kp_sense 
[tms,tdi] 

475 ns 
Delay[3] + 

(24 + 5) TCK cycles 
000011100 10110 

 
Table 5: Overall parameter settings of the Pulse Generators that define the test program. 
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6.2. Scan Operations and SPICE Simulation Results 

In this Section, we explain the intent of each scan operation. To indicate the intent of the 
scan operations, we will describe the FIFO state changes that we expect to see as a 
result of the scan test operations. We will then show the 180nm SPICE simulation 
waveforms, and check that the reported FIFO state changes match our expectations.  
 
We represent FIFO state as the values of its GO and statewire signals; we’ll ignore the 
data values sent along a FULL statewire. This makes sense because this report focuses 
on the GasP control part of the design, and ignores the datapath. 
 
Notation:  
To describe a FIFO state, we use the notation introduced in ARC2012-is04 [4], where: 

A, B, etc  : represents a FULL statewire, with data value A, B, etcetera 
-   : represents an EMPTY statewire  
.   : represents a GasP module with permission to act (GO=HI) 
|   : represents a GasP module denied permission to act (GO=LO) 

We additionally indicate unknown states, e.g. prior to initialization, where: 
X  : represents an unknown statewire state 
*  : represents a GasP module with unknown permission to act 
 

Actions:  
Each stage in the 5-stage FIFO contributes to the FIFO state changes, as follows: 

 FIFO[2], FIFO[3], and FIFO[4]: 
These are instances of the GasP_plain FIFO stage design in ARC2013-smg08 [5]. 
Their states have three signals, a GO signal and two statewire signals, one to the 
previous stage and one to the next stage in the FIFO. A module of this type 
changes state only when GO is HI, the previous statewire EMPTY and the 
next statewire FULL. It then moves the data from the FULL to EMPTY statewire, 
and swaps the FULL and EMPTY indicators: 

 A.-    -.A    

 FIFO[1]: 
This is an instance of the GasP_SRC FIFO stage design in ARC2013-smg08 [5]. 
Its state has two signals, a GO signal and a statewire to the next FIFO stage. The 
module changes state only when GO is HI and the statewire is EMPTY. It then 
presents new data to the statewire, and declares the statewire FULL: 

 .-    -.A    

 FIFO[5]: 
This is an instance of the GasP_SNK FIFO stage design in ARC2013-smg08 [5].   
Its state has two signals, a GO signal and a statewire to the previous FIFO stage. 
The module changes state only when GO is HI and the statewire FULL. It then 
removes the data from the statewire, and declares the statewire EMPTY: 

 A.    -.    

 
We will denote the state of the full 5-stage FIFO as the value sequence of its GO and 
SW signals, ordered as: GO[1] SW[1] GO[2] SW[2] GO[3] SW[3] GO[4] SW[4] GO[5].  
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This gives the following statement of intent for the four scan test operations: 
 
 

1. go_clear [tms,tdi]:  
brings FIFO[1-5] from state: *X*X*X*X*   
to state: |X|X|X|X| 
This end state is confirmed by the SPICE waveforms in Figure 34 (bottom row). 
 
 

2. sw-kp_setup [tms,tdi]  
brings FIFO[1-5] from state: |X|X|X|X|    
to state: |-|B|-|A| 
The statewire end states are confirmed by the SPICE waveforms in Figure 35. 
 
 

3. go_setup [tms,tdi]  
brings FIFO[1-5] from state: |-|B|-|A|     
to limited self-timed operation  
starting in state:   .-|B.-|A. 
ending in state:   .C|-.B|-. 
These state transitions are confirmed by the SPICE waveforms in Figure 36. 
 
 

4. sw-kp_sense [tms,tdi] 
keeps FIFO[1-5] in state: .C|-.B|-. 
while serially shifting out the values of SW[4] to SW[1] at JTAG output TDO. 
State and scan values are confirmed by the SPICE waveforms in Figure 37. 
 
 
 
 

APPENDIX F. TEST SETUP: JTAG CONTROLLER 344



ARC# 2013-smg09 Asynchronous Research Center page 37 of 41 
 
 

 
Figure 34: SPICE waveforms for scan operation go_clear [tms,tdi] with from top to bottom row (see Figure 21):  
(1-2)     the two – here overlapping – scan shift clocks, SCCK1 and SCCK2 
(3)        GO scan chain signal write 
(4)        pulse input TDI  
(5-9)     GO scan chain [1:5] where all scan latches take over the LO value of TDI soon after SCCK1-SCCK2 go HI  
(10-14) GO [1:5] copy the LO value from their scan register on the write HI pulse, thus bringing the FIFO state FIFO [1:5]  
             from state:  *X*X*X*X*   
             to state    :  |X|X|X|X| 
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Figure 35: SPICE waveforms for scan operation sw-kp_sense [tms,tdi] with top to bottom row (see Figure 21):  
(1)      the two – here non-overlapping – scan shift clocks, SCCK1 and SCCK2 
(2)      SW-KP scan chain signal write 
(3)      pulse input TDI  
(4-7)   SW-KP scan chain [1:4] is EMPTY-FULL-EMPTY-FULL at the end of the shift period,  
           where EMPTY=LO and FULL=HI  
(8-11) SW [1:4] copy the value from their scan register upon write HI, giving EMPTY-FULL-EMPTY-FULL,       
           thus bringing the FIFO state FIFO [1:5] 
           from state:  |X|X|X|X|    
           to state    :  |-|B|-|A| 
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Figure 36: SPICE waveforms for scan operation go_setup [tms,tdi] with top to bottom row (see Figure 21):  
(1)         the two – here non-overlapping – scan shift clocks, SCCK1 and SCCK2 
(2)         GO scan chain signal write 
(3)         pulse input TDI  
(4-8)      GO scan chain [1:5] is HI-LO-HI-LO-HI at the end of the shift period 
(9-13)    GO [1:5] copy the value from their scan register on the write HI pulse, giving HI-LO-HI-LO-HI,        
              thus bringing the FIFO state FIFO [1:5] 
              from state                               :   |-|B|-|A|     
              to limited self-timed operation  
              starting in state                       :  .-|B.-|A. 
              and ending in state                 :  .C|-.B|-. 
              as will be visible in the corresponding statewire waveforms in Figure 37 
(14-18)  GasP generated signals fire [1:5].  
              A HI pulse on a fire[i] will flip the current state of all statewires of FIFO[i]. 
              In this case, there’s a HI pulse for fire[1], fire[3], and fire[5],  
              which will result in a statewire change for SW[1], SW[2] and SW[3], and SW[4], respectively. 
              These changes are visible in the statewire waveforms shown in Figure 37.   
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Figure 37: SPICE waveforms for scan operation sw-kp_setup [tms,tdi] with top to bottom row (see Figure 21):  
(1)         pulse input TCK 
(2)         SW-KP scan select signal sel 
(3)         the two – here non-overlapping – scan shift clocks, SCCK1 and SCCK2 
(4)         SW-KP scan chain signal read 
(5)         pulse input TDI  

                (6)         JTAG output TDO takes the value of SW-KP scan chain [4] at TCK LO when the SW-KP scan select signal is HI. 
                             During the five SCCK1-SCCK2 pulses, the TDO values at TCK/SCCK2 HI are: EMPTY, FULL, EMPTY, FULL. 

(7-10)   SW-KP scan chain [1:4] read the final state values of SW [1:4] during the HI read pulse,  
             and shift these to TDO during the five successive non-overlapping SCCK1-SCCK2 HI pulses.   
(11-14) SW [1:4] change in the self-timed operation initiated by scan operation go_setup [tms,tdi] in Figure 36,  
             going from  EMPTY-FULL-EMPTY-FULL  to  FULL-EMPTY-FULL-EMPTY, 
             thus bringing the FIFO state FIFO [1:5] 
             from state :  .-|B.-|A. 
             to state     :  .C|-.B|-. 
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7. Summary 
This document follows up on ARC reports ARC2012-is04 and ARC2013-smg08 [4-5]. It 
is the second reports of the report pair ARC2013-smg08/smg09 with scan test solutions 
for Gasp circuits. Where the previous report [5] gives the details of the scan chain and 
the scan connections in the GasP modules, using a FIFO GasP design as reference, 
the current report gives the details of the JTAG controller and the programming 
environment that we set up to make the interactions with the JTAG controller more user-
friendly. This report also shows four consecutive scan test operations that we 
programmed and the corresponding SPICE simulated waveforms. 
 
Our programming environment works fine for small designs with short scan chains. For 
bigger designs with longer scan chains, we should really move from our, not very 
scalable, SPICE-level Pulse Setup to a scalable Verilog-level Pulse Setup environment. 
We have not yet experimented with the scan software interface developed by Oracle, 
but we expect that the Oracle software will come with a scalable user interface for 
programming scan operations.   
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Abstract 
This document analyzes our current arbiter implementation in the context of single-track asynchronous 
design families such as Telescope GasP [1,4,5,6,7] and traditional GasP [14,3]. During simulations of the 
Telescope GasP implementations for the arbitrated Merge module in [5,6,7,8], we noticed a substantial 
voltage drop in the arbiter selected input – see [Figure 21(top), 6]. We anticipated that we could diminish 
this voltage drop at the cost of a somewhat larger minimum latency through the arbiter. We made a new 
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arbiter design with a sufficiently small voltage drop for the arbiter selected input, and used it in our second 
Arbitrated Merge design – see [Figure 18, Figure 23 and Figure 24, 6]. The waveforms of the new arbiter 
design have relatively stable and well-defined voltage levels for the arbiter selected inputs.  
 
In the current document, we explain the design issues of the original arbiter implementation and evaluate 
several possible solutions, including the new arbiter used in [Figure 18, Figure 23 and Figure 24, 6] —
which we like best. The new arbiter design can be used safely in Telescope GasP designs as well as in 
traditional GasP designs for 4-2 GasP [14] or 6-4 GasP [4]. It can be used safely in any other single-track 
asynchronous circuit family, as well as in multi-track asynchronous circuit families such as Click [8]. The 
design is based on the interlock element in [Figure 7.25, 10] by Charles Seitz. We discussed this design 
in earlier ARC reports [11,12]. The design issues addressed in the current document relate to gate and 
transistor topology and sizing. In addition to changing the arbiter implementation, we also evaluate solution 
approaches with stronger keepers and gate re-orderings. 

  
Keywords: interlock element, arbiter, single-track handshaking, GasP, Telescope GasP. 
 
Notation: 
1. The GasP and Telescope GasP implementations that we use in this document to test the various 

arbiter implementations are non-inverting, i.e., their handshake channels, a.k.a. statewires, use the 
same encoding. Statewires say whether the data bundled with the statewire are valid. We use: 

 HI for a high voltage level, e.g. VDD, to indicate a handshake REQUEST phase with valid data.  

 LO for a low voltage level, e.g. VSS or GND, to indicate a handshake ACKNOWLEDGE phase 
where data are no longer needed. 

In our circuit diagrams, we use a short 45-degree line segment for VDD and a triangle for VSS. A 
PMOS transistor connected to VDD and an NMOS transistor connected to VSS are depicted as: 

                                          respectively     
 
2. Our schematic designs use a so-called JBOX construct. This is a special construct in Electric [9] to 

connect signals with different names. The symbol for a JBOX construct is a box with the letter J in it. 
We use it for instance to join the master clear (mc) signals in the various modules. For example, 
Figure 1 on page 4 uses a JBOX to connect the master clear signals inA[mc], inB[mc], and out[mc]. 

 
Acknowledgements: We gratefully acknowledge Professor Dr. Xiaoyu Song for encouraging and   
supporting Swetha to conduct this research as part of her PhD thesis work. 
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 INTRODUCTION 
Figure 1 below shows a Telescope GasP implementation for an Arbitrated Merge module. The module 
implementation is explained in detail in [6], and also in Section 2 of this document. The module uses an 
arbiter that is based on the interlock element [Figure 7.25, 10] by Charles Seitz. We discussed this type of 
arbiter in earlier ARC reports [11,12]. All our arbiter designs are based on it. 
 
We simulated the Arbitrated Merge module with two different arbiter implementations. The arbiter 
implementations are the same in the sense that both: 
1. arbitrate,  
2. hide metastable voltage levels until these are  resolved, and  
3. alternately select inA[sw] followed by inB[sw], or vice versa, whenever these two inputs overlap.  
 
The two arbiter implementations differ in topology and transistor sizes, and as result, they have different 
latency and input capacitance.  
 
These differences in latency and input capacitance are reflected in the waveforms for statewires inA[sw], 
inB[sw], and out[sw] in Figure 2(top) respectively Figure 2(bottom). Note that: 
1. The cycle period for out[sw] in the top simulation window of Figure 2 is about 0.75 nanoseconds or 

750 picoseconds. The cycle period for out[sw] in the bottom window is about 825 picoseconds, i.e., 
10% higher than the cycle time recorded in the top simulation window. This is because the latency 
through the arbiter implementation used for the bottom simulation window is larger than the latency 
through the arbiter implementation used in top simulation window. 

2. The HI voltage for the two statewires of the incoming channels inA[sw] and inB[sw] drops to about 1.4 
Volt, 75% of VDD, in the top window and to somewhere between 1.7 and  1.75 Volt, 95% to 97% of 
VDD, in the bottom window. In each case, the voltage drop occurs when the arbiter grants the incoming 
channel the right to proceed. In each case, the voltage bounces back slowly to HI due to the keeper 
operation on the statewire.  

We are not happy with the voltage drop in the top window: it makes the statewires more susceptible to 
noise and signal interference than we’re comfortable with. This is an issue especially in situations where the 
arbiter is kept and not released for a long time, as can easily happen in Telescope GasP designs. 
 
The two simulations in the top and bottom windows of Figure 2 reflect what we did to tackle the Voltage 
drop issue: we diminished the HI voltage drop by replacing the original arbiter with a new implementation, at 
the cost of a somewhat larger minimum latency in the new arbiter.  
 
In the rest of this document, we will explain in detail the differences between the two arbiter 
implementations. We will explore intermediary arbiter solutions as well as other solutions such as statewire 
drivers with strong HI keepers to diminish the HI voltage drop on the wire. We use the Arbitrated Merge of 
Figure 1 to simulate the effects in latency and HI voltage drop for these various solutions.  
 
The rest of the document is organized as follows. Section 2 discusses the key behaviors and design 
features of our reference Arbitrated Merge and arbiter designs. Section 3 evaluates the latency and input 
capacitance of various arbiter implementations. For each arbiter implementation, we evaluate the cycle time 
as seen by the Arbitrated Merge module of Figure 1 with the arbiter, and we evaluate the HI voltage drop 
on the handshake channels coming into the Arbitrated Merge. In Section 4, we look at alternative design 
solutions. Rather than changing the arbiter implementation to lower the input capacitance on the statewires, 
instead we change the implementation of the statewire drivers by strengthening the HI keeper in the driver 
so it can cope with a high capacitance arbiter. In Section 5, we look for solutions to shield a statewire from a 
high capacitance arbiter by re-ordering the gates in the module so that a low capacitance gate is placed 
between the statewire and the arbiter. Section 6 summarizes the results and concludes this document.  
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Figure 1: Telescope GasP implementation for an Arbitrated Merge module. The arbiter is represented by the pair 
of cross-coupled NAND gates. The Arbitrated Merge module has two input statewires with a master clear signal,  
inA[sw,mc] and inB[sw,mc], two corresponding data steering signals steer[A] and steer[B], and one output 
statewire with a forwarded master clear, out[sw,mc]. We will use the icon in the top-right corner of this picture, as 
a gate-level representation of an Arbitrated Merge module. This particular module shares the self-resetting loops 
between incoming and outgoing statewires.  It is saved in Electric’s ARC library TelescopeGasP_wStateSharing 
under module name Merge2TfastRTZwArbiter. `TfastRTZ’ in the module name indicates that this is a Telescope 
GasP implementation with fast reset capability. To ensure that we reset only the incoming handshake that caused 
out[sw] to go HI, we have AND-ed the fast reset signal at the LO driver with an internal guard signal. The guard 
for inA[sw] is tapped from internal state signal sA via three inversions, The guard for inB[sw] is tapped from 
internal state signal sB via three inversions. Fast resetting reduces the cycle time and backward latency of 
Telescope GasP designs. For more details, see [6]. 
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Figure 2: SPICE simulations of the Arbitrated Merge in Figure 1 with original arbiter implementation (top) and 
new arbiter implementation (bottom). Red and blue signals inA[sw] and inB[sw] have a telescopic handshake 
relationship to green signal out[sw]: inA[sw] or inB[sw] HI causes out[sw] to go HI, and when out[sw] has gone LO, 
only then will the corresponding input handshake signal go LO. The simulation clearly shows that each HI out[sw] 
pulse is contained within a HI pulse on inA[sw] or inB[sw]. Both windows show the fairness property of the arbiter: 
when red signal inA[sw] and blue signal inB[sw] arrive at about the same time and the arbiter selects the red 
inA[sw], then it will select the blue inB[sw] next.  

 (top) We are not happy with the voltage drop in the arbiter selected input, visible in the top window. The HI 
incoming handshake communication on inA[sw] respectively inB[sw] drops from 1.8 to 1.4 Volt whenever the 
handshake is granted, i.e., whenever grantA respectively grantB goes LO. We can diminish this voltage drop 
at the cost of a somewhat larger minimum latency through the arbiter, as shown in the bottom simulation 
window. The current cycle time for out[sw], as measured for instance from the time out[sw] is at 1 Volt to the 
next time that out[sw] is at 1 Volt, is 750 picoseconds.  

 (bottom) With the new arbiter, the HI voltage for inA[sw] respectively inB[sw] in the bottom window drops 
from 1.8 to about 1.7 Volt, whenever grantA respectively grantB goes LO. The cost for improving the voltage 
levels for inA[sw] and inB[sw] is a reduction in cycle time. The new cycle time for out[sw] in the bottom 
window is 825 picoseconds. This is 10% slower than the cycle time for out[sw] in the top window. 
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 Reference Arbitrated Merge and Arbiter Designs 
Figure 1 shows our reference Telescope GasP design for the Arbitrated Merge module in the context of 
this document. We currently use two implementation styles for Telescope GasP modules, as explained in 
[5,6,7,8]. The two styles behave the same regarding arbitration functionality and timing. We can therefore 
select arbitrarily one of the two Arbitrated Merge designs from [6] as reference design for evaluating 
different arbiter implementations. The Arbitrated Merge in Figure 1 has shared self-resetting loops between 
the statewires of incoming and outgoing handshake channels. It has two self-resetting loops, with separate 
taps to start and stop the HI drive for out[sw] and the LO drives for inA[sw] and inB[sw].  
 
A SPICE-level simulation of the handshake behavior of the Arbitrated Merge implementation was given 
earlier in Figure 2, for two different implementations of the arbiter. Though timing and voltage levels differ, 
the handshake behaviors are essentially the same for both arbiter implementations and can be described 
as follows. Initially, inA[sw], inB[sw], out[sw], and mc are LO. When either or both of inA[sw] and 
inB[sw] go HI, indicating the presence of data on the incoming channels, and when out[sw] is LO, 
indicating the availability of space, the following four sets of actions are started in sequence, as follows: 

1. Indicate the presence of new data to the successor module by driving out[sw] HI. This takes 2 gate 
delays. Meanwhile, drive the steering signal for the arbiter-selected incoming channel HI. 

2. Cut off the HI forward drive to a 5 gate delay pulse signal. 
3. Wait until out[sw] is LO, and then report new availability of space to the predecessor module by 

driving the arbiter-selected incoming channel LO, 2 gate delays after observing the LO out[sw]. 
Meanwhile, also reset the forwarded data steering signals to LO. 

4. Cut off the LO backward drive to a 5 gate delay pulse.  
After action 4, the Arbitrated Merge waits until either inA[sw] or inB[sw] is HI, so it can start its next cycle. 
 
The minimum forward latency in the Arbitrated Merge is 2 gate delays: 1 through the arbiter and 1 through 
the successor driver. This minimum forward latency holds if the arbiter is uncontested, for instance when 
there is only one input request. The arbiter is a metastable device and so, in theory, when both input 
requests arrive at about the same time, the delay through the arbiter can be arbitrarily long. In practice, 
however, arbitrations are rarely contested, and their resolution time is generally around 1 gate delay. 
 
Without a fast reset signal, the minimum cycle time for the Arbitrated Merge module is 2+5+2+5=14 gate 
delays, as set by the 2 gate delays for forward and backward transfers and the 5 gate delay self-resetting 
loops in the circuit diagram of Figure 1. The cycle time increases in steps of 4 gate delays for each 
successor module between the Arbitrated Merge module and the following Store module. Using a fast reset 
signal, we can reduce the backward latency and lower the cycle time to 12 gate delays per Arbitrated 
Merge module, with an increase in steps of 2 gate delays for each successor module between the 
Arbitrated Merge module and the following Store module. For details, see [6]. 
. 
Figure 3 and Figure 4 show a hierarchical schematics of our original arbiter design - see also [6]. The 
design is based on the interlock element in [Figure 7.25, 10] by Charles Seitz – see also [11,12]. The 
organization in Figure 3 has been proven topologically equivalent to the design by Seitz, using Electric [9].  
In our arbiter evaluation, we will work with the flattened version, shown in Figure 5. Each of our arbiter 
implementations is fair in that it will alternately select inA[sw] followed by inB[sw], or vice versa, whenever 
these two inputs overlap. This is because it will take at least 5 gate delays for the selected input statewire to 
bounce back from LO to HI, while the unselected input statewire is already HI. 
 
Figure 6(top) repeats the external handshake behavior of the arbitrated Merge module shown earlier in 
Figure 2(top). Figure 6(bottom) shows a SPICE simulated arbitrated resolution of two competing arbiter 
inputs and the corresponding changes in voltage levels for intermediate and output signals of the arbiter. 
We are not happy with the 1.8 Volt to 1.4 Volt voltage drop in the arbiter selected inputs in Figure 6 (top). 
We can diminish this voltage drop at the cost of a somewhat larger minimum latency through the arbiter. 
Solutions for diminishing the input voltage drop by changing the arbiter implementation follow in Section 3. 
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Figure 3: Hierarchical schematics for the 2-way arbiter, called Arbitrated Latch. The Arbitrated Latch is 
implemented as a cross-coupled pair of so-called Arbitrated Latch Nand gates, whose design follows below in 
Figure 4. When one or both of the requesting inputs req[A] and req[B] are HI, the arbiter grants exactly one of 
the HI requests by lowering the corresponding grant output. It lowers grant[A] if it grants a HI req[A] request, and 
it lowers grant[B] if it grants a HI req[B] request. It never lowers both grant[A] and grant[B]. We use the top-right 
icon as a gate-level representation for this 2-way arbiter design. 

 
 
  

 
 

Figure 4: Implementation and icon for the Arbitrated Latch Nand circuit used in the arbiter design of Figure 3. 
Input req[B] is one of the input requests to the arbiter. Input crossA is cross-coupled to the intermediary output 
signal of the complementary Arbitrated Latch Nand gate in the arbiter. Likewise, output crossB is cross-coupled 
to the intermediary input signal of the complementary Arbitrated Latch Nand gate in the arbiter. Output signal 
grant[B] is driven HI whenever req[B] is LO. If req[B] is HI the cross-coupling works like an arm-wrestling match 
between the requests. Due to the extra voltage build-up across the NMOS pass transistor between crossB and 
grant[B], even a mid-way voltage tie between crossA and crossB leaves both grant signals at a sufficiently high 
voltage level. The combination of cross-coupling and NMOS transistor ensures that the outgoing grant signal, here 
grant[B], retains a high voltage level until the arbitration process resolves in favor of grant[B]. We believe that 
such a high voltage level can be retained for at least 50 gate delays. To ensure that very long arbitration periods 
are supported, one might consider adding a keeper on both grant[A] and grant[B]. Our current arbiter 
implementations do not include such keepers on the grant signals. 
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Figure 5: Flattened version of the hierarchical arbiter implementation presented in Figure 3 and Figure 4. 

 
 

 
 

Figure 6: SPICE simulations of (top) the Telescope GasP implementation of the Arbitrated Merge in Figure 1, 
and (bottom) the resolution of two competing arbiter inputs and corresponding changes in voltage levels for 
intermediary signals and output signals of the arbiter design in Figure 5, or equivalently Figure 3-Figure 4.  

 In the top window, one can see the fairness property of the arbiter: when statewires inA[sw] and inB[sw] 
arrive at about the same time and the arbiter selects inA[sw], then it will select inB[sw] next.  

 The minimum cycle time for out[sw] as measured for instance from the time out[sw] is at 1 Volt to the next 
time that out[sw] is at 1 Volt, is 750 picoseconds. 

 The bottom window gives a more detailed view of such a scenario, including the initial metastable behavior 
where the arbiter is still deciding whether to grant inA[sw] or inB[sw].  

 We are not happy with the voltage drop in the arbiter selected input, visible in the top window. The voltage of 
inA[sw] and inB[sw] drops to about 1.4 Volt. We can diminish this voltage drop at the cost of a somewhat 
larger minimum latency through the arbiter, which we do in the next Section of this document. 
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 Arbiter Implementations with Lower Input Capacitance 
 
The simulations in Figure 2 and Figure 6 indicate that the high input capacitance of the original arbiter 
design in Figure 5 causes a significant voltage drop on its inputs. For the Arbitrated Merge module in 
Figure 1, these inputs are the bidirectional statewires of handshake channels coming into the module. As a 
result, the HI 1.8 Volt voltage on a statewire drops by 25% to 1.4 Volt whenever the incoming channel is 
granted the right to proceed.  
 
A 25% voltage drop makes the statewires more susceptible to noise and signal interference than we’re 
comfortable with. After all: the statewires are the longest control wires in the design, because they form the 
handshake communication interface between the modules. This is an issue especially in situations where 
the arbiter is kept and not released for a long time. Telescope GasP modules have cumulative cycle times 
that grow linearly with the depth of the data path, as explained in [4,5,6,7]. As a result, the arbiter in the 
Arbitrated Merge module may be kept and not released for a long time. We must find a way to reduce the 
25% voltage drop on the statewires to within say 90-100%. 
 
Our current Telescope GasP modules are designed for small forward and backward latencies of 2 gate 
delays each. This low-latency design criterion leaves no room for re-ordering the gates in the forward path. 
The path necessarily goes through the arbiter first and through the successor driver next. As a result, the 
statewires go straight into the arbiter, and experience its full input capacitance.  
 
For designs like our current Telescope GasP modules, where statewires have no choice but to go straight 
into the arbiter, we will discuss two solution approaches to help the statewires cope better with the input 
capacitance of the arbiter. The first solution approach is to re-implement the arbiter so it has lower input 
capacitance. That’s what we do in Sections 3.1 to 3.3 below. The second solution approach is to increase 
the drive strength of the keepers that maintain the HI voltage level on the statewires when the predecessor 
driver has ceased its HI drive. Section 4 discusses the second solution approach.  
 
Solution approaches for designs where gate re-ordering is an option are discussed in Section 5. 
 
 

3.1. Resizing 
 
The new arbiter solution that we simulated in Figure 2(bottom) combines two optimization steps that lower 
the input capacitance. The first optimization step is to reduce the size of transistors that are driven directly 
by inputs and that do not affect the drive strength of the arbiter. This concerns the two transistors marked 
PMOS-A2 and PMOS-B2 in Figure 7. By reducing the size of these two transistors, the input capacitance 
on the statewires of the incoming request channels is reduced to the extent that each statewire now 
requires a step-up-of-3 driving gate of size ((50 * (1 / 3)) + (10 * (2 / 3)) + (10 * (2 / 3))) / 3 = 10 instead of 
((50 * (1 / 3)) + (25 * (2 / 3)) + (10 * (2 / 3))) / 3 = 13.3 to guarantee good slopes on req[A] and req[B]. 
 
We re-simulated the Arbitrated Merge module in Figure 1, using this resized arbiter, to quantify to what 
extent this first optimization helps reduce the voltage drop on the statewires of the incoming handshake 
channels, and what it costs in cycle time. The SPICE-level waveforms are presented in Figure 8. The top 
window in Figure 8 shows that the new cycle time for out[sw] is a bit larger: around 775 picoseconds. It 
also shows that the statewires still experience a voltage drop from 1.8 Volt to 1.4 Volt.  
 
We conclude that this first optimization is not good enough, because the statewires still experience a 
voltage drop to about 75% of VDD for HI voltage levels.  
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Figure 7: Resized implementation of the flattened arbiter in Figure 5. We kept the sizes for the two PMOS 
transistors at the top to maintain the HI grant drives and for the NMOS transistors at the bottom to maintain the LO 
grant drives. We reduced the sizes of the two supporting PMOS transistors in the middle that are connected to an 
incoming request signals: PMOS-A2 and PMOS-B2. These two PMOS transistors help with returning a grant 
signal to HI at the end of the granted request phase. For instance, the left-hand PMOS-A2 plays the supporting 
role of raising the voltage level on internal signal crossA to (1) reduce the voltage conflict over the left-hand pass-
transistor connection to grant[A] and the on-turning PMOS-A1 connection to VDD, and (2) enable the right-hand 
pass-transistor for grant[B]. We anticipate that this size reduction from 25 to 10 for PMOS-A2 and PMOS-B2 will 
have the following pros and cons: 

 Pro: This lowers the input capacitance and thus reduces the voltage drop on the inputs - somewhat. 

 Con: This slows down the release of the arbiter, and thus increases the cycle time - somewhat. 
 

 

 
 

Figure 8: SPICE simulations of (top) the Telescope GasP implementation of the Arbitrated Merge in Figure 1 with 
the resized arbiter of Figure 7 and (bottom) the resolution of two competing arbiter inputs and corresponding 
changes in voltage levels for intermediary signals and output signals of the resized arbiter. The simulation results 
are similar to the results in Figure 6 for the Arbitrated Merge with the old arbiter: 

 The minimum cycle time for out[sw] as measured from the time out[sw] is at 1 Volt to the next time that 
out[sw] is at 1 Volt, is 775 picoseconds - 3% slower than the cycle time with the old arbiter in Figure 5. 

 We are still not happy with the voltage drop in the arbiter selected input, visible in the top window. The 
voltage for inA[sw] and inB[sw] drops to about 1.4 Volt, just like before with the old arbiter. 
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3.2. Re-ordering the NMOS Transistor Stacks 
The new arbiter solution that we simulated in Figure 2(bottom) combines two optimization steps that lower 
the input capacitance. We tried the first optimization step in Section 3.1 above, and found it insufficient. 
Here, we’ll try just the second optimization step. The second optimization step re-orders the NMOS 
transistor stack, so that the request signal now drives the NMOS transistor that’s closest to the VSS rail, as 
indicated in Figure 9. This will increase the latency of uncontested requests, but shield the incoming 
request signal better from internal voltage changes on the cross-coupled signal wires inside the arbiter. We 
re-simulated the Arbitrated Merge module in Figure 1 using this new arbiter implementation, to quantify 
how much this second optimization step helps reduce the voltage drop on the incoming channels, and what 
it costs in cycle time. The SPICE waveforms follow in Figure 10 and show a cycle time for out[sw] of about 
775 picoseconds, and a voltage drop on the statewires down to between 1.65-1.70 Volt, 92%-95% of VDD,  
for HI voltage levels. This may be a workable solution. But it still requires a step-up-of-3 driving gate of size 
((50 * (1 / 3)) + (25 * (2 / 3)) + (10 * (2 / 3))) / 3 = 13.3 to guarantee good slopes on req[A] and req[B]. 

 
 

Figure 9: New arbiter implementation adapted from the flattened arbiter in Figure 5 by swapping the two 
transistors in each NMOS stack. We kept the transistor sizes the same as in the old arbiter in Figure 5. 

 

 
 

Figure 10: SPICE simulations of (top) Telescope GasP implementation of the Arbitrated Merge in Figure 1 with 
the arbiter of Figure 9 , and (bottom) resolution of competing arbiter inputs and corresponding changes in voltage 
levels for intermediary and output signals of the arbiter.  The waveforms indicate (1) a cycle time for out[sw] of 775 
picoseconds and (2) a voltage drop for inA[sw] and inB[sw] from 1.8 to 1.7 Volt - which is acceptable. 
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3.3. Combining Resizing with Re-Ordering the NMOS Stacks  
The new arbiter solution that we simulated in Figure 2(bottom) combines two optimization steps that lower 
the input capacitance. We tried the first optimization step in Section 3.1 above, and found that it was 
insufficient. We tried the second optimization step by itself in Section 3.2 above, and found it workable. 
Here, we combine both optimization steps, to arrive at the solution that we like best. The new arbiter 
implementation and the new simulation results follow in Figure 11 and Figure 12. The reduced input 
capacitance on req[A] and req[B] reduces the step-up-of-3 driving gate to a size of 10 instead of 13.3 to 
guarantee good slopes on the incoming request signals. The HI voltage drop on the statewires is down to 
somewhere between 1.70 and 1.75 Volt or 95%-97% of VDD - good enough to withstand external noise. 
Note that the voltage bounces back completely before the statewire is reset to LO by the predecessor 
drivers in the module; this is due to the statewire keepers. The new cycle time for out[sw] is approximately 
825 picoseconds — 10% slower than the original cycle time of 750 picoseconds in Figure 2(top), which is a 
reasonable price to pay for the reduced input capacitance and an input voltage level between 95%-100%. 

 
 

Figure 11: This is the new arbiter re-implementation of the flattened arbiter in Figure 5 that we like best. It 
combines the two arbiter optimization approaches from Figure 7 and Figure 9.  

  

 
 

Figure 12: Same SPICE-level simulation waveforms as in Figure 2(bottom), but with more waveform details for 
the internal arbiter signals. With this new arbiter, the HI voltage for inA[sw] respectively inB[sw] drops from 1.8 to 
somewhere between 1.70 and 1.75 Volt, whenever grantA respectively grantB goes LO.  This drop is small 
enough to not cause issues with noise, and also small enough for the keepers to restore the voltage to 1.8 Volt 
before the end of the handshake cycle. The cost for improving the voltage levels for inA[sw] and inB[sw] is a 
reduction in cycle time. The new cycle time for out[sw] is 825 picoseconds - 10% larger than in Figure 2(top) with 
the original arbiter implementation of Figure 5. We are satisfied with these final gain-loss percentages. 
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 Alternative Solution: LO Driver with Strong HI Keeper 
 
In Section 3, we looked at three solutions to reduce the voltage drop for the statewire inputs to the arbiter. 
These solutions involved changing the size and ordering of transistors inside the arbiter implementation. In 
this Section, we will look at solutions outside the arbiter, and reduce the voltage drop for the statewire 
inputs to the arbiter by changing the strength of the statewire drivers and keepers. 
  
To drive the original, unchanged arbiter implementation in Figure 5, each input requires a step-up-of-3 
driving gate of size ((50 * (1 / 3)) + (25 * (2 / 3)) + (10 * (2 / 3))) / 3 = 13.3, say 13. This drive size is needed 
to guarantee decent input slopes. The statewires feeding the arbiter in the Arbitrated Merge of Figure 1 are 
driven HI respectively LO for about 5 gate delays by strong drivers. When these drivers are off, HI 
respectively LO keepers maintain the voltage level on the statewires. During arbitration, either the HI driver 
for the statewire is on or the HI keeper is on, or both. To satisfy the strong drive needs during arbitration, it 
would help if both the HI driver and the HI keeper have a drive size of 13.  
 
The HI driver resides in the successor driver of the preceding module, and has a drive size of 10, which is 
sufficiently close to 13. The HI keeper resides in the predecessor driver of the Arbitrated Merge module 
itself. Figure 13 gives the schematics of the predecessor driver with its LO driver and HI keeper. The HI 
keeper is organized as a 4-deep stack of PMOS transistors of size 4 each. Four PMOS transistors of size 4 
in series give a combined size of 1. This is about an order of magnitude too small to compensate for strong 
drive needs during arbitration. For four PMOS transistors in series to offer a combined drive size of about 
13.3, each transistor must have a size of about (13)*4=52. The new predecessor design with upsized 
keeper follows in Figure 14.  
 
We re-simulated the Arbitrated Merge module in Figure 1, using this new predecessor LO driver with strong 
HI keeper implementation from Figure 14, to quantify to what extent this alternative solution helps reduce 
the voltage drop on the statewires of the incoming handshake channels, and what it costs.  
 
The SPICE-level waveforms follow in Figure 15. They show a cycle time for out[sw] of approximately 900 
picoseconds, 17% slower than in Figure 2(top) with the old arbiter and the original driver of Figure 13, and 
slower than our best arbiter result in Figure 2(bottom). 
 
The voltage levels are excellent for competition-free arbitrations: the voltage for the granted incoming 
statewire drops to between 1.70 Volt and 1.75 Volt, and bounces back almost immediately. This exceeds 
the excellent results in Figure 2(bottom) and Figure 12 that we obtained with our best arbiter 
implementation in Figure 11. However, for competing arbitration requests, when the arbiter needs time to 
make a decision, the voltage levels of both statewires rise slowly after reaching 1 Volt, and they stay around 
1.4 Volt for some time, as we can see happening during the first arbitration cycle in Figure 15.  
 
Also, laying out four large PMOS transistors of size 52 in series is not a solution we’d go for easily, because 
it makes the cell layout awkward and big, and significantly increases the logical effort of the predecessor 
driver. The increase in logical effort imposes stronger drive requirements for the upstream gates in the 
Arbitrated Merge, as we can see in Figure 16. Even if we would reduce the keeper size, the voltage issues 
during a competing arbitration request will remain.  
 
In summary:  
We prefer the new arbiter solution of Figure 11 in Section 3.3 over this alternative LO driver HI keeper 
solution. Combining the new arbiter with a somewhat stronger HI keeper in the predecessor driver might be 
a good idea too. 
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Figure 13: Schematics for the predecessor driver used in the Arbitrated Merge module of Figure 1, with its LO 
driver (NMOS transistors at the bottom) and HI keeper (PMOS transistors at the top). During normal operation 
either input signal in or the logical AND of fast reset signal fastRTZ and reset condition cond, drive statewire 
signal pred LO. Both these LO drives have a drive size of 10.  When signal pred is HI and the inputs LO, the 
keeper maintains the HI voltage level on the statewire until one of the LO-driving input combinations kick in. 
Usually, a small HI keeper PMOS stack of combined size 1, as we have here, suffices to maintain a HI voltage 
level; not so when the keeper must also compensate for significant voltage drops induced by contested arbitration. 

 
 
 
 
 
 

 
 

Figure 14: Schematics for the new predecessor driver for the Arbitrated Merge module of Figure 1. We changed 
the drive strengths of the keeper transistors in the PMOS stack so the stack has a total drive of 13. The keeper 
stack uses 4 PMOS transistors in series. For 4 PMOS gates in series to offer a combined drive size of about 13, 
each PMOS transistor must have a size four times that value, which is (13)*4=52. 
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Figure 15: SPICE-level simulation waveforms with the old arbiter implementation of Figure 5 and the new 
predecessor driver implementation with a strong HI keeper of Figure 14. The HI voltage for inA[sw] respectively 
inB[sw] drops from 1.8 Volt to somewhere between 1.70 and 1.75 Volt, whenever grantA respectively grantB goes 
LO.  This drop is low enough to not cause issues with noise. Note that each drop is restored almost immediately to 
1.8 Volt. The simulation visible cost for improving the voltage levels for inA[sw] and inB[sw] is a reduction in cycle 
time. The new cycle time for out[sw] is about 900 picoseconds - 17% slower than in Figure 2(top) with the old 
arbiter and the original driver of Figure 13.  
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Figure 16: Arbitrated Merge with the new predecessor drivers of Figure 14. The new predecessor drivers require 
a step-up-of-3 driving gate of size ((10 * (1 / 3)) + (52 * (2 / 3)) / 3 = 12.7 for input resetA respectively resetB, 
which we rounded down to size 12. The drive strength for the inverter of the fast reset condition input to each 
predecessor driver must be around ((20 * (1 / 3)) + (52 * (2 / 3)) / 3 = 13.8, which we rounded down to 13. The 
original gate size for the inverted input AND gates that generate resetB and resetA was 2, as can be seen in 
Figure 1. The original gate size for the inverters generating the fast reset condition was 3. These increased gate 
sizes force a size increase in the preceding two upstream inverters in series, i.e., the inverters from sA to 
sAplus2 respectively sB to sBplus2. These inverters must be upsized from their original sizes 1 and 4 in Figure 
1 to sizes 4 and 12. The resize dependencies are marked by yellow arrows and boxes. The larger size gates 
result in an overall larger capacitance for the Arbitrated Merge module with the new predecessor driver with the 
strong HI keeper. The larger capacitance causes the 20% higher cycle time for out[sw] in Figure 15. 
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 Gate Re-ordering Solutions 
 
Our current Telescope GasP modules are designed for small forward and backward latencies of 2 gate 
delays each. This low-latency design criterion leaves no room for re-ordering the gates in the forward path. 
The path necessarily goes through the arbiter first and through the successor driver next. As a result, the 
statewires go straight into the arbiter, and experience its full input capacitance. To help the statewires cope 
better with the input capacitance of the arbiter, we re-implemented the arbiter and we re-implemented the 
predecessor driver. That is what Sections 3 and 4 were about.  
 
Here, in Section 5, we take a look at modules that have a larger forward latency, and thus leave room for 
re-ordering the gates in the forward path. Examples are Click modules and traditional 6-4 GasP modules. 
Figure 17 shows a traditional 6-4 GasP implementation for the Arbitrated Merge module. It is called 
gaspDemandMerge, and is described in [13]. Its forward path goes through 6 gates, and starts with an 
arbiter. The two fire signals act as steering signals for the data multiplexers and ensure that the data of the 
granted statewire are forwarded to the successor module.  
 
The larger forward latency puts less stress on the module by allowing more time and gates for amplification. 
Note that each arbiter output in Figure 17 drives only one gate of size 5. Compare this to the arbiter in the 
Telescope GasP module of Figure 1, where each output drives three gates of sizes respectively 1, 5, 10. 
As a result, the 6-4 GasP module uses a lighter-weight arbiter, of size 5, than the Telescope GasP version, 
which uses an arbiter of size 10. The flattened transistor schematics for this lighter-weight arbiter follows in 
Figure 18. Topology and design approach are the same as for the size 10 arbiter in Figure 5 used in the 
Telescope GasP version. The SPICE-simulated waveforms in Figure 19 show that the gaspDemandMerge 
suffers from equally severe voltage drop issues on the statewires coming into the arbiter as do the original 
Arbitrated Merge waveforms in Figure 2(top). 
 
We seek to lower this voltage drop to acceptable levels, by re-ordering the gates in the forward path so that 
(1) the forward path starts with two inverters, and (2) the resulting forward path goes through 6 gates, and 
(3) the arbiter remains unchanged. 
 
Figure 20 shows a re-implementation for the gaspDemandMerge, where the gates are re-ordered as 
specified above, and the arbiter remains unchanged. The corresponding SPICE-level simulated waveforms 
follow in Figure 21. The cycle time for both implementations, with and without re-ordering, is 650 
picoseconds. So, by re-ordering the gates, we did not jeopardize the cycle time. We do, however, lose two 
step-up-of-3 amplifications for generating the fire signals. The fire signals must be amplified outside of the 
module, as needed. This loss of amplification is the price we pay for obtaining the perfect waveforms shown 
in Figure 21, without the earlier voltage drops on the statewires of the incoming handshake channels.  
 
Note: 
We could delete the third requirement “(3) the arbiter remains unchanged”, and make the arbiter part of the 
step-up-of-3 logical effort sizing and amplification strategy. For the gaspDemandMerge module, we could 
keep the arbiter either in its present form between the two inverters and the inverted input AND gates or in 
its inverted form between the first inverter and an inverter followed by the inverted input AND gate per 
arbiter output. By sizing these first four gates on each forward path appropriately we can maintain the 
original amplification for the fire signals. If possible, however, we would prefer to not change the arbiter. 
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Figure 17: 6-4 GasP equivalent of the Arbitrated Merge module in Figure 1. The 6-4 GasP version is called 
gaspDemandMerge [13]. Just like the Telescope GasP implementation in Figure 1, it has two statewires for 
incoming channels, called predA and predB here, a master clear signal, mc, and one statewire for the outgoing 
channel, called succ here. Signal fireA and fireB act as steering signals and local clock signal. Also, just like in 
Figure 1, the statewires for the incoming channels go directly into the arbiter. 
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Figure 18: Flattened transistor schematics for the light-weight arbiter of size 5 used in the gaspDemandMerge 
module in Figure 17. Notice the similarity in topology and design style to the larger size 10 version in Figure 5. 

 

 
 

Figure 19: SPICE-level simulation of the gaspDemandMerge module in 6-4 GasP of Figure 17, showing the 
same voltage drop issues on the incoming handshake channels as seen in Figure 2(top) for the Telescope GasP 
version with the old arbiter. 
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Figure 20: Re-design of the 6-4 GasP gaspDemandMerge module of Figure 17, with re-ordered gates in the 
forward paths and with exactly the same arbiter as before. The two inverters between statewires predA and predB 
and the arbiter shield the statewires from the large input capacitance of the arbiter and from arbitration noise in the 
arbiter. Because the same arbiter is used, we lose two step-up-of-3 gates of amplification in the first four gates 
that drive fireA and fireB. The reduced drive for fireA and fireB is good for driving the remaining two serial gates 
on the forward path to succ, and it is good for driving the predecessor drivers on the backward paths to predA 
and predB. But the reduced drive is inadequate for steering and clocking the data latches. To do that, fireA and 
fireB must be amplified outside the module, as needed.  

 

 
 

Figure 21: Perfect waveforms for the new gaspDemandMerge module in Figure 20, after re-ordering the gates in 
the forward path to shield the two incoming handshake channels from the arbiter. The new waveforms for predA 
and predB lack the voltage drops seen in the original predA and predB waveforms in Figure 19, which is good. 

grantA 

grantB 

 

predA 

predB 

succ 

crossB 

grantA 

grantB 

crossA 

same arbiter but in 
re-ordered module 
of Figure 20 
 

 

fireA 

fireB 

 

APPENDIX G. ARBITER DESIGN: REDUCED INPUT LOAD 370



ARC# 2012-smg05      Asynchronous Research Center page 21 of 21 
 

 Conclusion and Future Work 
 
In SPICE level simulations of Telescope GasP modules with arbitration [6], we observed voltage drops from 
1.8 Volt down to 1.4 Volt, i.e., down to 75% of the supply voltage. The voltage drop occurs on the input that 
is granted access. The arbiter inputs happen also to function as the statewires of incoming handshake 
channels. Statewires are bidirectional and provide the communication infrastructure in Telescope GasP and 
GasP. Consequently, these wires cross longer distances than the wires inside a module. A 25% voltage 
drop on a statewire makes the communication more susceptible than we like to coupling and noise. 
  
In this document, we investigate various solutions for reducing the voltage drop on arbitrated statewires. 
The most promising and most general solution comes in the form of a new arbiter implementation with 
reduced input capacity and reduced sensitivity to arbitration noise. With the new arbiter implementation, the 
voltage on a granted input drops down to somewhere between 95% and 97% of the supply voltage, which 
is good enough for most if not all communication scenarios. The new arbiter can be used in any 
asynchronous circuit in need of arbitration. 
 
In addition to the new arbiter, we can use somewhat stronger HI keepers on arbitrated statewires. We 
showed that a full-strength HI keeper is not a good solution. A full-strength HI keeper requires a significant 
layout area and a noticeable upsizing of upstream logic, resulting in an overall higher module capacitance, 
higher input capacitance during contested arbitrations, and lower cycle time. But combining the new arbiter 
with a somewhat stronger HI keeper on the arbitrated statewires may be a good idea to pursue. We leave 
this for future work. 
 
For circuit families with longer forward latencies, such as 6-4 GasP and Click, we can re-order or rather re-
organize the gates in the forward path and place low capacitance gates, e.g. two low capacitance inverters 
in series, between the statewires of the incoming handshake channels and the inputs of the arbiter. The low 
capacitance gates will shield the statewires from the high capacitance arbiter. This solution can also be 
used with the new arbiter, in case the statewires cannot endure any voltage drop.  
 
The disadvantage of gate-reordering is a potential loss in amplification in the forward path, unless we are 
willing to include the arbiter in the amplification effort by increasing its drive size appropriately. In this 
document, we chose to re-use the same arbiter and not upsize it when we reordered the 6-4 GasP 
implementation of the gaspDemandMerge. The re-ordered gaspDemandMerge loses two step-up-of-3 
amplifications in the steering and local clock generation compared to the original gaspDemandMerge 
implementation, but has adequate drive strength to drive both the successor and the predecessor 
statewires. Circuit families with forward paths of 8 gates or more, like for instance an 8-2 GasP 
implementations of the gaspDemandMerge, may well have adequate drive strength after gate re-ordering to 
drive the successor and predecessor statewires as well as the steering and local clock logic. Also, control-
data bundling constraints that require more than 2 extra gate delays in the control path would fit well at 
arbitration points: the extra 2 gates help set off the loss in amplification in a re-ordered arbiter path. Let’s 
keep this in mind for near-future work on control-data delay matching in Telescope GasP and GasP. 
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ABSTRACT 
This document motivates our extended arbiter design, which has the name “Arbiter D” in Ivan’s design 
library for Electric [7], and compares its performance and behavior against that of our previously preferred 
arbiter, “Arbiter B”. Arbiter implementations can be used in any self-timed circuit. For instance, the 
Arbitrated Merge module in [3] uses an arbiter. We also use arbiters between the go and the state wire 
signals in order to properly stop the circuit when it’s operating in normal, i.e., self-timed, mode, in a way 
similar to the Sun Microsystems solution published in [6].  
 
In this report, we’ll compare arbiter designs in the context of scan-testable single-track GasP circuits [4,5]. 
The earlier design of Arbiter B is motivated in ARC reports [1,3]. By comparing its implementation against 
the original arbiter implementation by Chuck Seitz, called the interlock element in [Figure 7.25, 2], we 
realized that we were missing part of the Seitz arbiter features. The missing part made our design less 
robust against noise. We extended the design of Arbiter B to that of Arbiter D to overcome this drawback. 
This report contains SPICE simulated waveforms for our 180nm CMOS implementations of GasP, 
showing the presence of noise sensitivity in Arbiter B and confirming the noise robustness of Arbiter D. 
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supporting Swetha to conduct this research as part of her PhD thesis work. 
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 Introduction 
The Arbiter is a coordination circuit necessary for asynchronous systems. The purpose 
of the arbiter is to grant only one request at a time. When an arbiter gets two requests at 
a time, it must decide which request to grant first and to delay the second request until 
the first has completed its associated actions. We can use arbiters to achieve a single 
input to single output communication mode of operation between multiple input and 
output channels. The Telescope GasP implementations for the Arbitrated Merge in 
[Figures 17-18, 3] use an arbiter circuit to achieve this – see [3] for more details.  
  
Our arbiter designs are based on the interlock element by Chuck Seitz [Figure 7.25, 2]. 
The Electric library [6] with the arbiters is called GasP. It has four Arbiter circuits:  

1) Arbiter A: our original arbiter design. 
2) Arbiter B: Arbiter A with low input capacitance. 
3) Arbiter C: Arbiter A with extra keeper transistors. 
4) Arbiter D: Arbiter B with extra keeper transistors.  

 
Arbiters A and B are explained in [1]. While simulating waveforms of Arbiter A in a 
Telescope GasP (TGasP) arbitrated Merge design, we discovered non-negligible 
voltage drops on one of the incoming channels of the Merge [3]. We subsequently 
attributed these drops to the channel waiting to be granted access by the arbiter. This 
led to a re-design of the arbiter, Arbiter B that greatly diminishes the voltage drop to a 
negligible amount – see [1] for details.  
 
In this report, we start with Arbiter B, and show a test scenario with a floating grant 
signal and its catastrophic effect in the presence of noise interference. We can prevent 
the floating and thus the noise sensitivity and its catastrophic effect by adding extra 
keeper transistors on the grant signal, thus yielding Arbiter D.1 Section 2 explains the 
designs of Arbiter B and Arbiter D. In Sections 3, we give the test setup and compare 
the SPICE simulated waveforms of the two designs. Section 4 concludes this document. 

 From input-robust Arbiter B to noise-robust Arbiter D 
Our basic arbiter circuit is based on the interlock element designed by Charles Seitz 

[Figure 7.25, 2], repeated here in Figure 1. The interlock element has input-output pairs 
Req1-Ack1 and Req2-Ack2. Requests Req1 and Req2 may overlap and even start 
simultaneously, but acknowledgements Ack1 and Ack2 are strictly mutually exclusive. 
The circuit in Figure 1 accepts active-low inputs and generates active-low outputs. 
 

                                            
1 Similarly, Arbiter C is the result of adding extra keeper transistors to Arbiter A.  
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When both input requests Req1 and Req2 for the interlock element are HI, V1 and V2 
go LO and the pull-up resistors pull Ack1 and Ack2 HI. When exactly one input request, 
say Req1, is LO, the circuit grants it by pulling the corresponding acknowledge signal, 
Ack1, HI. When both Req1 and Req2 are LO, the cross-coupled NOR structure stays in 
a metastable state until it decides which of the two to grant, in which case it lowers the 
corresponding acknowledge signal while keeping the other acknowledge signal HI. 
During metastability, Ack1 and Ack2 are pulled HI by the pull-up resistors. 

 

 
 

Figure 1: Copy of the Interlock Element from [Figure 7.25, 2] by Charles Seitz, without ‘-tagged extensions 

for the signal names, as we’re not using Seitz his formatting conventions. An alternative name for this circuit 
is mutual exclusion circuit or mutual exclusion element. The circuit can be used either alone, or as 
component of more elaborate elements called arbiters, which is how we use it in GasP and TGasP. It 
operates via a four-phase handshake per Req-Ack pair, e.g.:  
 Req1 LO (request), Ack1 LO (granted), Req1 HI (release), Ack1 HI (ready for next request). 
The circuit takes active-low requests Req1 and Req2, and produces active-low acknowledgements Ack1 
and Ack2. The cross-coupled NOR structure forms a latch that remembers whether the arbiter is taken or 
ready to grant a new request or still deciding which request to grant. The state in which the cross-coupled 
NOR structure is still deciding is called “metastable state”. The cross-coupled NOR structure can hang for an 
indeterminate period of time in a metastable state. The pass transistors driven by the cross-coupled NORs 
will remain inactive until one of the NOR output voltages differs from the other by at least the NMOS 
transistor threshold voltage, Vth, which thus acts as the indicator that the cross-coupled NOR structure is 
coming out of metastability and has decided which request to grant. Thus, the NMOS transistor structure 
guarantees that at most one request is granted, i.e., that at most one of the acknowledge signals goes LO. 
The pull-up resistors for Ack1 and Ack2 keep the acknowledge signal HI during a metastable state and when 
the corresponding request is not granted.  

Our GasP, TGasP and Click circuits currently use the arbiter circuit in Figure 2, which 
has  two input request signals, reqA and reqB,  and two active-LO output acknowledge 
signals, grantA and grantB, just like the Seitz interlock element, but our requests are 
active-HI and go into cross-coupled NANDs instead of the Seitz cross-coupled NORs. 
Also, instead of pull-up resistors at the output signals, we use pull-up transistors.  
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Figure 2: Arbiter B, with cross-coupled NAND structure (top) and as flattened transistor schematics (bottom). Note 

that the request inputs are connected to the NAND-rail – as also indicated by the triangle in the NAND gate symbol. 
This is to shield them from the voltage levels and switching activity on crossA and crossB. 

It’s the pull-up transistors that get us in trouble here, because they don’t automatically 
keep signals grantA and grantB high when the circuit is in a metastable state or when 
the corresponding request signal is waiting for the arbiter to be released by the other, 
already granted, request signal.  
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The signal states for the various input combinations, after metastability resolution, are 
shown in Table 1. In particular, whenever both inputs are HI, then 

 when the arbiter grants or has granted reqA, grantB – initially HI – is left floating.  

 when the arbiter grants or has granted reqB, grantA – initially HI – is left floating. 
 
 

Table 1: Truth table for Arbiter B in Figure 2 (top), after metastability resolution. 

Nand Latch inputs 
Nand Latch 

outputs 
Arbiter Pass Pull HI Arbiter Output 

reqA reqB crossA crossB N1 N2 P1 P2 grantA grantB 

0 0 1 1 ON ON ON ON 1 1 

0 1 1 0 OFF ON ON OFF 1 0 

1 0 0 1 ON OFF OFF ON 0 1 

1 1 
1 0 OFF ON OFF OFF floating 0 

0 1 ON OFF OFF OFF 0 floating 

 
 
 
We overcome this drawback in the new arbiter design, Arbiter D, shown in the Figure 3. 
Arbiter D has additional HI-keeper transistors, P3 and P4, which prevent grantA and 
grantB from floating during metastability and during periods where the corresponding 
request signal is HI and waiting for the arbiter to be released by the other, already 
granted, request signal, as indicated in Table 2 below. 
 
 

Table 2: Truth table Arbiter D in Figure 3 (top), after metastability resolution. 

Nand Latch 
inputs 

Nand Latch 
outputs 

Arbiter 
Pass 

Pull HI Keep HI Arbiter Output 

reqA reqB crossA crossB N1 N2 P1 P2 P3 P4 grantA grantB 
0 0 1 1 ON ON ON ON OFF OFF 1 1 

0 1 1 0 OFF ON ON OFF OFF OFF 1 0 

1 0 0 1 ON OFF OFF ON OFF OFF 0 1 

1 1 
1 0 OFF ON OFF OFF ON OFF 1 0 

0 1 ON OFF OFF OFF OFF ON 0 1 
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Figure 3: Circuit design of Arbiter D, with cross-coupled NAND structure (top) and in flattened view (bottom),. 

Arbiter D is an extension of Arbiter B in Figure 2 with additional PMOS keeper transistors to keep grantA and 
grantB HI during metastability and during periods where the corresponding request signal is HI and waiting for 
the arbiter to be released by the other, already granted, request signal. 
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 Test Setup and Simulation Results 

 
Figure 4: Test setup for the arbiter experiment, not showing the scan chains. The go and sw[kp] signals are 

connected to the scan chains, as explained in [4]. The test details for initializing a circuit like this one, for 
single-step test operations and for starting the circuit in normal self-timed mode are explained in [5]. The 
design of this test setup has been saved in Electric library 180GasP25Feb2014_Electric. 

Figure 4 shows the test setup for the arbiter experiments that we use to prove the need 
for the extra PMOS keeper transistors in Arbiter D. The test configuration merges two 
data streams coming from GasP Source (SRC) modules into an Arbitrated Merge 
module that hands the selected streams on to a GasP Sink (SNK) module.  
 
Figure 5 shows a GasP implementation for the Arbitrated Merge, which also goes by the 
name of Demand Merge. It has two incoming channels, predA and predB, two fire 
signals, fireA and fireB – one per input channel – and one outgoing channel, succ. The 
data portion of the channels and the datapath latches are not shown here; only the 
channel’s state wires are, i.e., predA[sw], predB[sw], and succ[sw].  
 
When at least one of the predecessor state wires is HI, indicating the presence of data, 
and the successor state wire is LO, indicating the presence of space, the Demand 
Merge arbitrarily grants access to one of the HI predecessor state wires, raises the 
corresponding fire signal, and then it concurrently (1) raises the successor state wire, 
(2) lowers the granted predecessor state wire and (3) releases the arbiter.  
 
Given that we use GasP circuits with a cycle time of 10 gate delays, the next request HI 
on the granted predecessor will take at least 5 gate delays to arrive after the 
predecessor state wire has gone LO. As a result, the arbiter in the Merge module is fair 
in the sense that an already waiting request will be granted before the just granted 
request has time to re-claim the arbiter. The newly granted request will have to wait with 
firing, though, until succ has completed its handshake, i.e., until succ[sw] has gone LO. 
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Figure 5: GasP implementation for an Arbitrated Merge Module with two input statewires, predA[sw] and 

predB[sw], and one output statewire, succ[sw]. Signals predA[kp], predB[kp], succ[kp] and go are the test 
control signals coming from the scan chains. For this report, we’ll use this design with either an Arbiter B or 
Arbiter D instance. We added the two 50k Ohm resistors on grantA and grantB to mimic noise interference 
on the grant signal; the resistors are not part of the arbiter or Merge design. 

To test the robustness of the arbiter against noise interference, we issue overlapping 
input requests to the Arbitrated Merge, and use a single-step test approach to arrive in a 
noise-sensitive state configuration from where we can distinguish and expose the 
difference in behavior for the noise-sensitive Arbitrated Merge with Arbiter B versus the 
noise-robust version with Arbiter D. The corresponding lower level test details are 
programmable from the scan chains. The test goes as follows: 
 

 Step 1: 
o Scan mode 

Set all go signals LO via the scan chain, then initialize sw1[sw] and sw2[sw] HI 
and sw[3] LO via the scan chain, then make all go’s HI except for go4 of the sink 
module. Reports [4,5] show how to program the scan chain to write go and sw 
signals. The circuit is now in partially self-timed mode. 

grantA 

grantB 
arbiter 

50k 

50k 
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o Self-timed mode 
The final go settings will result in a state for which: 
 
1. The test configuration in Figure 4 performs half a handshake on sw3, the 

output channel of the Merge. This means that sw3[sw] will go HI and stay HI.  
 
2. The test circuit performs one and a half handshake on the first granted input 

channel of the Demand Merge, say sw2 connected to Merge input predB. 
This means that we’ll see predB[sw] go HI, then LO, then HI again. But by 
the time it goes HI again, the arbiter is already claimed by sw1. In the Merge 
version with Arbiter B, this will leave grantB floating at a HI voltage level. 
 

3. The test circuit performs half a handshake on the other input channel, say 
sw1 connected to Merge input predA. This channel gets granted after the 
first channel communication releases the arbiter, leaving grantA driven LO. 
Further progress is stalled at the size-16 NAND gate in the Arbitrated Merge 
until the Merge successor channel has space again to receive the new input 
data from sw1, i.e., until sw3[sw] goes LO. 

 
The resulting state stabilizes in one of two possible end states, one for the 
Merge with Arbiter B where signal grantB is left floating, and one for the version 
with Arbiter D where none of the grant signals are left floating. We will wait for 
the HI voltage level on Arbiter B’s grantB to leak away through the 50k Ohm 
resistor – which we use to mimic noise interference – and to turn into a LO 
voltage level before we move to test step 2. 
 

 Step 2: 
o Scan mode 

Make all go signals LO via the scan chain to freeze the circuit, then make both 
go3 and go4 HI to set the circuit again in partially self-timed mode.  
 
Note that we change the go signals in two phases: all LO, then selectively HI. 
We do this to prevents races. Had we changed the go signals all at once and, 
for instance, go1 and go2 were to go LO much later than go3 and go4 went HI, 
the Merge module might use the old HI values on go1 and go2 to start new 
handshakes on sw1, sw2, and sw3 before the new LO values on go1 and go2 
would put an end to the creation of new handshakes. By setting all go signals 
LO first, we avoid races between old and new go settings and the circuit 
behaviors these enable 
 

o Self-timed mode 
The previous go settings will result in incorrect behavior for the configuration in 
Figure 4 when the Merge uses Arbiter B. They will yield correct behavior when 
the Merge uses Arbiter D. With Arbiter B, the fire signals overlap for the first 
firing action in Step 2. With Arbiter D they remain mutually exclusive.  
The simulation waveforms follow in Figure 6 and Figure 7.   
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Figure 6: SPICE waveforms for the test configuration and Merge in Figure 4 and Figure 5 using Arbiter B, 

showing test simulation details for Step 1 (top simulation window) and Step 2 (bottom simulation window), as 
seen from the viewpoint of the Arbitrated Merge module. Each simulation window shows three sets of 
waveforms, which are correlated by color.  

 

 (Step 1 – top)  Signals predA[sw] and predB[sw] go HI simultaneously in the top row, which results in 
a metastability period for the arbiter in the middle row that ends with grantB going LO, i.e., predB 
granted, which results in fireB going HI, which sets in motion three simultaneous events, succ[sw] 
going HI, predB[sw] going LO, and grantB going HI. The latter event releases the arbiter, which is 
immediately re-claimed by predA, as indicated by grantA going LO. Meanwhile fireB goes LO and 
predB issues a new handshake as indicated by predB[sw] going HI.  
 

There are two strange behaviors in the top simulation window that hint at noise-sensitivity: the voltage 
level of grantA leaks away during the first grant period (when grantB is LO), and the voltage level of 
grantB leaks away during the second grant period (when grantA is LO). The first period is short enough 

to maintain the voltage level to not jeopardize the operation, but the second grant period is sufficiently 
long for the voltage level to switch and create a catastrophic behavior in Step 2 of the test operation.  

 

 (Step 2 – bottom)  Step 2 of the test starts with grantA and grantB both at a low voltage level, thus 
suggesting that both incoming state wires have been granted. Therefore – as soon as succ[sw] goes 
LO – both fireA and fireB go HI, convoluting the data from predA and predB into a single succ 

handshake, which is against the mutual exclusion protocol of the Arbitrated Merge.  
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Figure 7: SPICE waveforms for the test configuration and Merge in Figure 4 and Figure 5 using Arbiter D. 
 

 (Step 1 – top)  This is like the simulation in Figure 6, Step 1, but without the noise-sensitivity 

indications. Note that the arbiter reverses the ordering of the grants over the ordering shown in Figure 6 
by granting predA first, i.e., making grantA LO, and then granting predB, i.e., making grantB LO next. 

 

 (Step 2 – bottom)  Step 2 of the test starts with grantA HI and grantB LO, thus correctly suggesting 
that only incoming state wire predB is granted communication access. Therefore, as soon as succ[sw] 
goes LO, only  fireB goes HI. Step 2 shows two correct mutually exclusive handshakes on succ –
streaming data to succ first from predB and then from predA. 

 Conclusion 
In this report, we compared our design for Arbiter B, motivated in ARC reports [1,3], 
against the original arbiter implementation by Chuck Seitz in [Figure 7.25, 2], and 
indicated that we’re missing part of the Seitz arbiter features. The missing part makes 
our design less robust against noise. We extended the design of Arbiter B to that of 
Arbiter D to overcome this drawback. We set up a test simulation environment and 
presented SPICE simulated waveforms that expose the noise sensitivity in Arbiter B and 
confirm the noise robustness of Arbiter D. 
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