
Portland State University Portland State University 

PDXScholar PDXScholar 

OHSU-PSU School of Public Health Faculty 
Publications and Presentations OHSU-PSU School of Public Health 

9-2018 

HLA-C Downregulation by HIV-1 Adapts to Host HLA HLA-C Downregulation by HIV-1 Adapts to Host HLA 

Genotype Genotype 

Nathaniel D. Batchel 
The George Washington University, Washington DC 

Gisele Umviligihozo 
Faculty of Health Sciences, Simon Fraser Universit 

Suzanne Pickering 
King’s College London School of Medicine, Guy’s Hospital, London, United Kingdom 

Talia Mota 
Department of Medicine, Weill Cornell Medical College, New York, New York 

Hua Liang 
Department of Statistics and Biostatistics, George Washington University 

See next page for additional authors 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/sph_facpub 

 Part of the Immune System Diseases Commons, and the Virus Diseases Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Bachtel, N. D., Umviligihozo, G., Pickering, S., Mota, T., Liang, H., Del Prete, G. Q., ... & Neil, S. (2018). HLA-C 
downregulation by HIV-1 adapts to host HLA genotype. PLoS pathogens, 14(9), e1007257. 

This Article is brought to you for free and open access. It has been accepted for inclusion in OHSU-PSU School of 
Public Health Faculty Publications and Presentations by an authorized administrator of PDXScholar. For more 
information, please contact pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/sph_facpub
https://pdxscholar.library.pdx.edu/sph_facpub
https://pdxscholar.library.pdx.edu/sph
https://pdxscholar.library.pdx.edu/sph_facpub?utm_source=pdxscholar.library.pdx.edu%2Fsph_facpub%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/933?utm_source=pdxscholar.library.pdx.edu%2Fsph_facpub%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/998?utm_source=pdxscholar.library.pdx.edu%2Fsph_facpub%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/sph_facpub/126
mailto:pdxscholar@pdx.edu


Authors Authors 
Nathaniel D. Batchel, Gisele Umviligihozo, Suzanne Pickering, Talia Mota, Hua Liang, Gregory Q. Del Prete, 
Pramita Chatterjee, Guinevere Q. Lee, Rasmi Thomas, Mark A. Brockman, Stuart Neil, Mary Carrington, 
Bosco M. Bwana, David Bangsberg, and multiple additional authors 

This article is available at PDXScholar: https://pdxscholar.library.pdx.edu/sph_facpub/126 

https://pdxscholar.library.pdx.edu/sph_facpub/126


RESEARCH ARTICLE
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Abstract

HIV-1 can downregulate HLA-C on infected cells, using the viral protein Vpu, and the

magnitude of this downregulation varies widely between primary HIV-1 variants. The selec-

tion pressures that result in viral downregulation of HLA-C in some individuals, but preserva-

tion of surface HLA-C in others are not clear. To better understand viral immune evasion

targeting HLA-C, we have characterized HLA-C downregulation by a range of primary HIV-1

viruses. 128 replication competent viral isolates from 19 individuals with effective anti-

retroviral therapy, show that a substantial minority of individuals harbor latent reservoir

virus which strongly downregulates HLA-C. Untreated infections display no change in

HLA-C downregulation during the first 6 months of infection, but variation between viral

quasispecies can be detected in chronic infection. Vpu molecules cloned from plasma of

195 treatment naïve individuals in chronic infection demonstrate that downregulation of

HLA-C adapts to host HLA genotype. HLA-C alleles differ in the pressure they exert for
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downregulation, and individuals with higher levels of HLA-C expression favor greater viral

downregulation of HLA-C. Studies of primary and mutant molecules identify 5 residues in

the transmembrane region of Vpu, and 4 residues in the transmembrane domain of HLA-C,

which determine interactions between Vpu and HLA. The observed adaptation of Vpu-medi-

ated downregulation to host genotype indicates that HLA-C alleles differ in likelihood of

mediating a CTL response that is subverted by viral downregulation, and that preservation

of HLA-C expression is favored in the absence of these responses. Finding that latent reser-

voir viruses can downregulate HLA-C could have implications for HIV-1 cure therapy

approaches in some individuals.

Author summary

HLA-C is a member of the major histocompatibility complex class-I (MHC-I) family of

molecules which are integral to many responses of innate and adaptive immunity. HIV-1

can downregulate the expression level of HLA-C on infected cells, using the viral protein

Vpu, but the magnitude of HLA-C downregulation varies widely between primary HIV

viruses. This provides an opportunity to identify opposing pressures on HLA-C expres-

sion in infected human individuals. We find that viral downregulation of HLA-C associ-

ates with both host and virus genotype, defining allelic differences in HLA-C and Vpu

that will help to identify the specific immune responses which result in viral downregula-

tion or preservation of HLA-C. These responses could represent candidates for immune

therapy, given their demonstrated effects in vivo. We also find that HIV-1 viruses from

the latent reservoir of some individuals can downregulate HLA-C, indicating that in cer-

tain individuals HIV-1 cure will require the removal of virus that is able to downregulate

HLA-C. The unique role of HLA-C, exerting selection pressures that result in variable

modulation of its expression, may make it possible for immunotherapies to achieve

enhanced efficacy if both of the opposing pressures on HLA-C expression could be estab-

lished in the same individual.

Introduction

Human Leukocyte Antigen class-I (HLA-I) molecules present peptides from intracellular pro-

teins at the cell surface. Classical HLA-I molecules are highly polymorphic and expressed from

three loci, HLA-A,—B and—C, which differ in some respects. Polymorphism is most pro-

nounced for HLA-B, and HLA-A/B are expressed at around 10-fold higher levels than HLA-C

at the cell surface [1,2]. In the event of HIV-1 infection, HLA-A/B/C proteins can all present

viral peptides which are recognized by CD8+ T cells, and result in the triggering of effector

responses including target cell killing. Several lines of evidence provide unambiguous support

for a critical role of CD8+ T cell responses in partial control of HIV-1 infection: the emergence

of cytotoxic T lymphocytes (CTL) coincides with reduction in viral load after acute infection

[3–5], HLA-I alleles associate with outcomes of HIV-1 infection or viral sequence adaptation

[6–9], and CTL can eliminate infected cells in vitro [10]. Many pathogens evade CTLs by dis-

rupting HLA expression, but this can incur recognition by innate immune cells. Natural Killer

(NK) cells are regulated by inhibitory receptors for self HLA-I molecules, such as inhibitory

killer immunoglobulin-like receptors (KIR). Cells with decreased HLA expression fail to ligate

these inhibitory receptors, resulting in NK activation and cytotoxicity [11]. Associations

HLA-C downregulation by HIV-1 adapts to host HLA genotype
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between KIR alleles and viral load provide evidence that NK cells can influence the outcome of

HIV-1 infection in vivo, and NK cells can be observed to respond to HIV-1 infected cells in

vitro [12–14].

Faced with these challenges, HIV-1 demonstrates sophisticated manipulation of HLA-I

molecules, in which both the locus specificity and magnitude of downregulation appears to be

important. It has long been known that HLA-A/B, but not HLA-C molecules, are downregu-

lated by the Nef protein of HIV-1 [15–17]. Downregulation of HLA-A/B is well-established to

subvert CTL mediated host immunity in vitro and in vivo [18,19]. The clinical importance of

Nef is confirmed by rare forms of HIV-1 that lack part of Nef, which do not cause AIDS when

infecting humans [20,21]. Although downregulated by around 5-fold on infected primary

cells, HLA-A/B are not removed entirely from the surface of infected cells [2]. This may main-

tain some inhibition of NK cells, although other receptor-ligand interactions during infection

can also clearly influence NK cell responses [22–25].

We recently found that HLA-C can be downregulated by the Vpu protein of HIV-1, and

this observation has already been replicated by 3 independent groups [26–29]. Vpu is neces-

sary and sufficient for HLA-C downregulation, but Vpu does not affect HLA-A/B. Downregu-

lation of HLA-C by Vpu occurs in primary cells infected with primary HIV-1 clones.

Transmitted/founder viruses, viruses from chronic infection, and representatives of all sub-

types of HIV-1 are capable of downregulating HLA-C [26]. This supports a biologically rele-

vant role for downregulation of HLA-C by HIV-1, and the finding is consistent with evidence

accumulated over the past decade for a role of HLA-C expression level in HIV-1 disease. Early

genome-wide association studies identified a strong effect of a variant marking HLA-C in the

outcome of HIV-1 infection [8,9]. Unlike HLA-A/B for which individual alleles associate with

HIV-1 viral load, associations at the HLA-C locus implicated large groups of alleles. It was

found that host HLA-C alleles vary in expression level under normal conditions, and that

HLA-C expression level as a continuous variable correlated inversely with HIV-1 viral load

[30,31]. Higher HLA-C expression may be disadvantageous for the virus due to more potent

CTL responses, as both HIV-specific CTL and viral escape mutation associate more strongly

with HLA-C alleles that are expressed at higher levels [31,32].

A key difference between HLA-C downregulation by Vpu and the modulation of HLA-A/B

by Nef, is that the former varies much more frequently between HIV-1 viruses. Indeed, down-

regulation of HLA-C by HIV-1 had escaped detection for so long because the widely-studied

lab-adapted strain NL4-3 does not downregulate HLA-C. In the initial report of HLA-C down-

regulation by Vpu, 15 infectious molecular clones showed a continuous distribution in ability

to downregulate HLA-C, in contrast to almost identical levels of HLA-A downregulation [26].

A comprehensive screen of 360 primary Nef variants found some variability in downregulation

of HLA-A, but that the magnitude of this function was on average well-preserved [33]. This

suggests that a similar level of HLA downregulation provides optimal evasion of HLA-A/B

mediated immunity across individuals. Responses that target HLA-C differ much more

between individuals in the selection pressure they exert on HLA expression level. Targeting of

HLA-A/B and HLA-C by separate viral proteins, and their contrasting patterns of downregula-

tion between individuals, emphasizes differences in the biological role of these HLA molecules

in HIV-1 infection.

The specific selection pressures which favor viral downregulation of HLA-C in some indi-

viduals, but HLA-C preservation in others, are not known. In contrast to HLA-A/B, the physi-

ological significance of HLA-C restricted CTL is less clear. HLA-C restricted CTL responses

can be detected, and viral escape mutations associating with HLA-C alleles are observed [34–

38]. However, these mutations are not necessarily deleterious for the virus, and unlike for

HLA-A/B individual HLA-C alleles do not strongly associate with HIV-1 viral load [7,39].

HLA-C downregulation by HIV-1 adapts to host HLA genotype
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Viral downregulation of HLA-C is also more likely than downregulation of HLA-A/B, to

increase infected cell susceptibility to NK cell cytotoxicity. This is because inhibitory KIR2DL

receptors which recognize self HLA-C alleles are present in all individuals, unlike KIR3DL

which bind only a subset of HLA-A/B allotypes that are absent in many individuals [40]. In

vitro experiments have provided evidence consistent with HLA-C downregulation inhibiting

CTL but activating NK cells. An HLA-C�03 restricted CTL clone, which recognizes an Env

epitope, showed decreased inhibition of an NL4-3 virus mutated so that its Vpu was able to

downregulate HLA-C [26]. KIR2DL2+ NK cells showed increased inhibition of the virus

JR-CSF compared to its mutant lacking Vpu [27]. In both of these in vitro approaches, the

small effect and analysis of single epitopes or effectors limits generalization to a physiological

role of HLA-C downregulation in CTL or NK function. The variation in HLA-C downregula-

tion between primary HIV-1 viruses provides an opportunity to identify the selection pres-

sures acting on HLA-C expression in human individuals.

To identify what leads to differential HLA-C downregulation by virus from different infec-

tions, it is necessary to expand the number and type of primary viruses for which this pheno-

type has been studied. To date 15 infectious molecular clones and viruses from six

transmission pairs, have been measured for ability to downregulate HLA-C [26,27,29]. This

study characterizes HLA-C downregulation by 128 viruses from the latent reservoir of 19 anti-

retroviral therapy (ART)-suppressed individuals, 41 samples from 9 individuals with untreated

infection, and cloned Vpu molecules from a further 195 chronically infected individuals span-

ning four viral subtypes. Adaptation of HLA-C downregulation to host genotypic variants is

identified, that indicates selection pressures involved in the viral manipulation of HLA-C.

Results

HIV-1 reservoir viruses can downregulate HLA-C

In virally suppressed individuals adhering to effective ART, a reservoir of infected cells results

in viral rebound if ART is discontinued [41]. This viral reservoir is the subject of intense inter-

est as a barrier to the cure of HIV-1 [42]. We have characterized the ability to downregulate

HLA-C for 128 inducible infectious HIV-1 isolates, from peripheral blood of 19 ART-sup-

pressed individuals. Cultures were generated for quantitative viral outgrowth assays (QVOA),

with limiting dilutions of donor CD4+ T lymphocytes stimulated with PHA, and induced viral

isolates infected co-cultured Molt-4 T cells [43]. In these conditions viral isolates represent

clonal outgrowths with negligible mutation in the two weeks of in vitro culture [44]. HLA-C

downregulation by each viral isolate was quantified by comparing flow cytometry staining of

HLA-C, between infected and uninfected Molt-4 cells within the same culture well (Fig 1A).

Isolates varied widely in their ability to downregulate HLA-C, ranging from no effect to robust

downregulation (Fig 1B). For viruses showing the strongest downregulation of HLA-C, this

was of a magnitude comparable to that observed for the downregulation of HLA-B when pri-

mary CD4+ T cells are infected with HIV-1 in vitro [2,45]. 19 individuals were studied and of

these, the viral isolates of 15 individuals demonstrated no or low ability to downregulate

HLA-C, whereas in 4 individuals we observed downregulation of HLA-C by multiple viral iso-

lates (Fig 1C).

HLA-C downregulation in untreated HIV-1 infection

Given the variation in HLA-C downregulation between primary viruses from different indi-

viduals and between multiple viral isolates from the reservoir of an individual (Fig 1C) [26],

we investigated if HLA-C downregulation changed longitudinally during early untreated

infection. Using previously described paired primary infectious molecular clones from

HLA-C downregulation by HIV-1 adapts to host HLA genotype
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individuals, we compared HLA-C downregulation between a transmitted/founder virus and a

representative virus from the same individual 6 months after infection [46,47]. Primary CD4

+ T cells were infected in vitro and HLA-C downregulation determined by flow cytometry,

comparing HLA-C staining on infected versus uninfected CD4 cells within the same culture

well (Fig 2A). For 3 individuals studied, there was no difference in the HLA-C downregulation

by the transmitted compared to 6 month virus. This included viruses with HLA-C downregu-

lation which was weak (CH040), moderate (CH162), and strong (CH058) (Fig 2B).

To investigate HLA-C downregulation later in infection, we studied cloned Vpu mole-

cules generated from the plasma of 6 untreated individuals. Cloned Vpu genes were

expressed by transfection in HeLa cells using a Rev-dependent vector, and HLA-C downre-

gulation quantified by flow cytometry comparing staining of transfected versus untrans-

fected cells within a culture well (Fig 2C and 2D). Vpu-mediated downregulation of HLA-C

measured by transfection of HeLa cells, correlates robustly with HLA-C downregulation by

primary HIV-1 viruses (S1 Fig). For one donor sampled at 1, 4 and 10 years post-infection,

the 5 most frequent Vpu sequence variants observed at each time-point were studied, and

showed variation in HLA-C downregulation between the viral quasi-species present at all

timepoints (Fig 2E). Phylogenetic analysis has shown that in this individual a single virus

from one timepoint gives rise to all of the quasispecies present at the next, indicating that in

this individual persistent diversification in viral downregulation of HLA-C occurs (S2 Fig)

[48]. HLA-C downregulation was characterized for 3 further donors where multiple quasi-

species were tested at a single timepoint (Fig 2F–2H), and 2 further donors where dominant

Vpu species were tested from longitudinal timepoints spanning 2 and 4 years (Fig 2I and 2J).

Together this analysis of 41 viruses from 9 individuals shows robust changes in HLA-C

downregulation in longitudinal infection are not readily observed, but that variation between

quasi-species is detected in some individuals which could result in adaptation of downregu-

lation in chronic infection.

Fig 1. Inducible infectious HIV-1 reservoir viruses can downregulate HLA-C. (A) Viral isolates were generated from ART-suppressed individuals and infected

co-cultured Molt-4 cells, where HLA-C downregulation was determined by comparing HLA-C staining between uninfected and infected cells, discriminated by

intracellular staining for Gag. (B) Representative staining of Molt-4 cells in cultures infected with viral isolates that preserve or downregulate HLA-C. HLA-C

staining is shown for infected (red) and uninfected cells (black) compared to an isotype control stain (grey). (C) HLA-C downregulation observed for 128 isolates

from 19 individuals. Statistical analyses are unpaired t tests.

https://doi.org/10.1371/journal.ppat.1007257.g001

HLA-C downregulation by HIV-1 adapts to host HLA genotype
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Fig 2. HLA-C downregulation in untreated HIV-1 infection. (A) Infectious molecular clones were assessed for ability to downregulate HLA-C for 3 individuals:

CH040, 162, 058. Representative staining is shown for primary CD4+ cells infected in vitro, with HLA-C staining compared between infected and uninfected cells

within a culture. (B) For the 3 individuals infectious molecular clones of both transmitted/founder viruses and those 6 months after infection were tested. HLA-C

staining is shown for infected (red) and uninfected cells (black) compared to an isotype control stain (grey). (C) For ART-naïve individuals multiple cloned Vpu

molecules were measured for ability to downregulate HLA-C by transfection of HeLa cells, with transfected cells in a culture identified by co-transfection of a GFP

expression plasmid. (D) Staining for HLA-C is shown for Vpu clones with differential downregulation, showing transfected (red) and untransfected cells (black)

compared to an isotype control (grey). (E) HLA-C downregulation is shown for 15 Vpu clones from one individual sampled at 3 timepoints over 10 years. (F-H)

HLA-C downregulation observed for multiple clones from a single timepoint for 3 individuals. (I,J) HLA-C downregulation observed for dominant Vpu clones

from longitudinal timepoints for 2 individuals.

https://doi.org/10.1371/journal.ppat.1007257.g002

HLA-C downregulation by HIV-1 adapts to host HLA genotype
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HLA-C downregulation adapts to host HLA genotype

To identify the characteristics of infections in which HIV-1 differentially modulates HLA-C,

we measured the ability of Vpu from 195 different infected individuals of the BC HOMER and

UARTO cohorts to downregulate HLA-C. In all cases participants were ART naïve and in the

chronic stage of infection, and HLA genotypes were known for 186 of the individuals. For

each individual a single Vpu sequence was cloned from plasma, expressed by transfection in

Molt-4 cells, and HLA-C downregulation quantified by flow cytometry. Vpu-mediated down-

regulation of HLA-C measured by transfection of Molt-4 cells, correlates robustly with HLA-C

downregulation by primary HIV-1 viruses (S1 Fig). The observed distribution showed a natu-

ral threshold at approximately 6-fold downregulation of HLA-C, where in 117 of the infections

Vpu downregulated HLA-C by<6-fold, and in 69 of the infections Vpu downregulated

HLA-C>6-fold (Fig 3A). Subsequent categorical analyses used this threshold to classify Vpu

molecules as strong, or weak downregulators of HLA-C. When individuals were stratified by

common alleles of the classical HLA-I loci, the frequency of Vpu clones that downregulate

HLA-C strongly varied significantly in association with host HLA-C allotype (p = 0.0009), but

not with HLA-A (p = 0.05) or HLA-B (p = 0.28) (Fig 3B). At the extreme ends of this spectrum,

only 1 out of 15 Vpu clones from individuals carrying HLA-C�17 was capable of downregulat-

ing HLA-C strongly, in contrast to 11 out of 14 Vpu clones from individuals carrying

HLA-C�14. This suggests immune responses which drive the virus to downregulate HLA-C,

vary in their frequency between individuals with different HLA-C alleles.

Inhibition of NK cells, mediated by KIR binding to HLA-C, may exert selection pressure on

HLA-C expression. All HLA-C alleles resolve into two groups, C1 and C2, based upon a

dimorphism at positions 77 and 80 which determines their binding to inhibitory two-domain

KIR [40]. However, we found no difference in the frequency of Vpu clones that downregulated

HLA-C strongly when individuals were grouped by presence of C1 versus C2 alleles (Fig 3C).

This suggests that inhibition of NK cells may not be a significant factor in the selection pres-

sures that influence Vpu-mediated downregulation of HLA. HLA-C alleles differ in their sur-

face protein expression level on peripheral blood lymphocytes, enabling HLA-C expression

level to be inferred for individuals on the basis of their HLA-C genotype [30,31]. For 186 Vpu

molecules, the observed HLA-C downregulation showed a positive correlation with inferred

HLA-C expression level in the host prior to infection (r = 0.27, p = 0.0005) (Fig 3D). This indi-

cates that the higher the HLA-C expression level of an individual that is infected with HIV-1,

the greater the downregulation of HLA-C demonstrated by the viral Vpu that adapts to this

individual.

To maximize statistical power our primary analyses combined individuals from the BC

HOMER and UARTO cohorts. To rule out confounding by the substantial differences between

these cohorts, for example in ethnicity and sex ratio, analyses were repeated stratified by

cohort. Fig 3B showed the frequency of Vpu clones that downregulate HLA-C strongly, varied

in association with HLA-C allotype. This association was not significant in BC HOMER and

UARTO participants separately (p = 0.053 and 0.23 respectively) but plots of alleles with n�5

in both cohorts show these do typically have similar effects. For example HLA-C�14 has the

highest frequency of Vpu clones that downregulate HLA-C strongly in both cohorts;

HLA-C�04, 06 and 08 are intermediate; and HLA-C�03 and 07 are among the lowest in both

cohorts S3A and S3B Fig). Fig 3D showed that the magnitude of HLA-C downregulation

observed for a Vpu clone, correlated with HLA-C expression level prior to infection inferred

from host HLA-C genotype. This correlation was significant in both BC HOMER (p = 0.008)

and UARTO participants (p = 0.002) with highly similar correlation coefficients (S3C and S3D

Fig). The total of 195 Vpu clones studied here also included viruses from the 4 major HIV-1
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group M subtypes. Both viral ability to downregulate HLA-C and variation in this phenotype

between primary viruses was observed within each subtype, consistent with prior study of 14

primary infectious molecular clones [26]. In this larger dataset we detect significant difference

in the frequency of HLA-C downregulation between subtypes. Vpu clones from subtype A and

Fig 3. Downregulation of HLA-C shows adaptation to host HLA genotype. (A) For 186 individuals a single Vpu clone from chronic untreated infection was

measured for ability to downregulate HLA-C by transfection of Molt-4 cells. The distribution of HLA-C downregulation is shown, with a threshold of 6-fold used

to define 69 strongly downregulating (black) and 117 weakly downregulating Vpu clones (grey). (B) The proportion of Vpu clones that downregulate HLA-C

strongly is shown when individuals are stratified by the presence of common alleles of each of the HLA-A,—B, and—C loci. The number of individuals in each

group is shown above each plot and statistical analysis is by chi square tests. (C) HLA-C alleles can be grouped as C1 or C2 according to their differential binding of

KIR2D receptors, and the proportion of Vpu clones that strongly downregulate HLA-C is shown for individuals when grouped by these genotypes. (D) HLA-C

alleles differ in expression level and can be inferred for an individual from the HLA-C genotype. HLA-C expression level and the observed HLA-C downregulation

by Vpu are plotted for 186 individuals. (E) For the subset of individuals where viral adaptation to host HLA-C alleles could be quantified (n = 72), the correlation

between host HLA-C allele-specific viral sequence adaptation and observed downregulation of HLA-C by Vpu was determined. For 10 HLA-C alleles this

correlation is plotted against the proportion of individuals with that HLA-C allele in which Vpu downregulates HLA-C. Correlations were determined using two-

tailed Spearman analyses.

https://doi.org/10.1371/journal.ppat.1007257.g003
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B viruses more frequently downregulated HLA-C strongly than those from subtypes C or D

(S4 Fig).

Viral adaptation to HLA-C correlates with observed HLA-C

downregulation

Given that the proportion of Vpu clones that downregulate HLA-C differs significantly based

on host HLA-C genotype (Fig 3B), we hypothesized that that among individuals with an

HLA-C allele that strongly selects for viral downregulation of HLA-C, there would be a direct

correlation between the extent of viral adaptation to that HLA-C allele, and the observed

HLA-C downregulation by Vpu. In contrast, such a relationship would not be observed in

individuals carrying an HLA-C allele which does not select for viral downregulation of

HLA-C. To assess this, we used a published HLA adaptation metric to quantify the extent of

HIV-1 adaptation to host HLA-C alleles [49]. The strength of correlation between viral adapta-

tion to host HLA-C and observed downregulation of HLA-C by Vpu was then determined for

each HLA-C allele (S5 Fig). Consistent with our hypothesis, a significant positive correlation

was observed between a given Vpu’s ability to downregulate HLA-C in individuals expressing

HLA-C�08 (an allele that strongly selects for viral downregulation of HLA-C), but not in indi-

viduals expressing HLA-C�07 (an allele which does not select for viral downregulation of

HLA-C). Across HLA-C alleles, the strength of these correlations associates directly with the

variation between HLA-C alleles in selection pressure for HLA-C downregulation, shown by

the frequency of Vpu clones that downregulate HLA-C in individuals with that HLA-C allele

(r = 0.68, p = 0.03) (Fig 3E). Thus, the variation in HLA-C downregulation observed by viruses

with different degrees of adaptation to an HLA-C allele, supports the finding that Vpu-medi-

ated downregulation adapts to host HLA-C genotype.

Variation in the Vpu transmembrane region determines downregulation of

HLA-C

For a small number of paired Vpu molecules that differentially downregulate HLA-C,

sequence variants which explain the differences in HLA-C downregulation have been identi-

fied. For example, downregulation of HLA-C by Vpu from WITO but not NL4-3 is primarily

explained by the sequence differences at positions 4 and 5 of Vpu [26]. However, these posi-

tions are not sufficient to predict HLA-C downregulation in natural Vpu sequences, indicating

other residues also play a role. Using the nearly 200 Vpu clones from different individuals that

were characterized for ability to downregulate HLA-C, we identified Vpu sequence variants

which account for variation in HLA-C downregulation in this population of primary viruses.

Vpu is an approximately 80 amino acid protein with a large cytoplasmic region, a transmem-

brane domain, and a short N-terminal stalk. Representative sequences of primary Vpu mole-

cules that were observed to downregulate, or not to downregulate HLA-C, are shown aligned

to Vpu from NL4-3 (Fig 4A). At each Vpu residue, amino acid polymorphism was tested for

association with the observed downregulation of HLA-C for 191 Vpu clones. A multiple linear

regression model identified 5 positions at which the residues indicated associated indepen-

dently with HLA-C downregulation (Fig 4B). The strongest effects are presence of glutamic

acid at position 5, or a glycine or threonine at position 16, which when present result in Vpu

molecules which downregulate HLA-C more strongly. An alanine at position 15 associated

with weaker downregulation of HLA-C. The frequency of different amino acids observed at

each of these 5 positions is detailed in S6 Fig. These five positions remained independently sig-

nificant when viral subtype is included as a covariate (S1 Table), and in analyses stratified by
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Fig 4. Variation in the Vpu transmembrane region is responsible for the range of HLA-C downregulation exhibited by primary HIV-1 viruses. (A) Sequence

of representative Vpu clones that weakly (clone 1), or strongly downregulate HLA-C (clones 2–4), are shown aligned to Vpu from NL4-3. (B) A multiple linear

regression model using 191 of the primary Vpu clones identifies 5 positions of Vpu at which the residues indicated associate independently with HLA-C

downregulation. (C) These positions were each confirmed to influence HLA-C downregulation using single residue mutants of Vpu. HLA-C staining is shown for

cells transfected with primary Vpu clones (red), single residue mutants (black), and untransfected cells (grey). (D) HLA-C staining for cells transfected with a Vpu

constructed to have all 5 residues associated with HLA-C downregulation (red), or that with no residues associating with HLA-C downregulation (black), is shown

compared to untransfected control (light grey). (E) HLA-C downregulation predicted by the model in panel B, compared to that observed for each of the 191 Vpu
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viral subtype or cohort each residue except for serine at position 24 remains significant (S2

and S3 Tables).

Each of these 5 Vpu positions was confirmed to impact HLA-C downregulation, in the

direction indicated, in the context of primary Vpu sequences compared to single amino acid

mutants (Fig 4C). For example, a primary Vpu clone with proline at position 3 downregulated

HLA-C strongly, but a mutant constructed with serine, the next most common residue at posi-

tion 3, showed reduced ability to downregulate HLA-C. Although this population analysis

identified 5 positions of importance, individual primary Vpu sequences carried no more than

3 of the residues detected to associate with HLA-C downregulation, in various combinations.

When we generated a mutant Vpu with the variants that associate with greater HLA-C down-

regulation at all 5 of the positions implicated, this molecule demonstrated negligible downre-

gulation of HLA-C, suggesting that some of these residues may not be compatible with one

another (Fig 4D). The multiple linear regression model defined in Fig 4B, when used to predict

HLA-C downregulation for each Vpu clone, explains 40% of the observed variation in HLA-C

downregulation for these Vpu molecules (Fig 4E). A plot of the residuals between observed

and predicted HLA-C downregulation confirms linear regression analysis is appropriate (S7

Fig). When highlighted on the NMR structure of Vpu, the 5 positions implicated in HLA-C

downregulation cluster in the transmembrane and N-terminal regions of the molecule (Fig

4F) [50]. These 5 positions were also observed to vary in the longitudinal Vpu clones which

showed variation in HLA-C downregulation (S2 Fig). Together these results suggest the trans-

membrane domain of Vpu is responsible for interaction with HLA-C, and that primary viruses

exploit multiple alternative sequences which are able to downregulate HLA-C.

The transmembrane domain of HLA mediates interaction with Vpu

Analyses of HLA chimeras also indicate the transmembrane domain of HLA-C molecules is

responsible for interaction with Vpu. HEK 293T cells were transfected with Flag-tagged con-

structs of Vpu from a primary virus, 2_87, which was previously shown to downregulate

HLA-C, or from NL4-3 which does not downregulate HLA-C [26]. Cells were co-transfected

with HA-tagged constructs of either HLA-A or HLA-C. Flag immunoprecipitation followed

by western blotting with anti-Flag or anti-HA mAb, detected precipitated Vpu and associated

HLA respectively. Vpu from 2_87 co-precipitated HLA-C, in contrast to lanes using Vpu from

NL4-3 or the HLA-A molecule, showing an interaction between primary Vpu and HLA-C

consistent with our cellular observations (Fig 5A). Experiments were repeated using chimeras

between HLA-A and HLA-C, where the primary Vpu co-precipitated specifically chimeras 2

and 3 with transmembrane domains from HLA-C, but not chimeras 1 and 4 lacking HLA-C

transmembrane sequence (Fig 5B and 5C). This indicates the transmembrane domain of

HLA-C mediates interaction with Vpu. Alignment of HLA transmembrane domain sequences

identified a 4 residue sequence, LAVL, which is conserved in HLA-C molecules which we have

found downregulated by Vpu, but not in HLA-A/B which are unaffected by Vpu (Fig 5D)

[26]. It was confirmed the primary Vpu could co-precipitate HLA chimera 5, comprised

entirely of HLA-A with just these 4 transmembrane residues substituted from HLA-C, but not

the reciprocal chimera 6 (Fig 5B–5D). Thus, studies of mutant HLA-I molecules implicate 4

residues in the transmembrane domain of HLA-C, that contribute to the interaction with Vpu.

clones. (F) An NMR structure of Vpu, with N-terminal and transmembrane regions highlighted, shows the location of the 5 Vpu positions at which primary

sequence variations associate with HLA-C downregulation (green).

https://doi.org/10.1371/journal.ppat.1007257.g004
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Discussion

Until recently it was believed that HIV-1 Nef subverted both CTL and NK cell immunity by

downregulating the dominant CTL ligands HLA-A and -B, but preserving expression of

HLA-C and HLA-E which serve as ligands for KIR2DL and NKG2A receptors that inhibit NK

cells [16,18]. This understanding was modified by our finding that primary strains of HIV-1

can also downregulate HLA-C using the viral Vpu protein [26]. A major difference between

the viral modulation of HLA-A/B compared to HLA-C, is that most HIV-1 strains downregu-

late HLA-A/B relatively well whereas HLA-C downregulation varies widely. The consequences

resulting from HIV-1 downregulating HLA-C on infected cells in some individuals but not

Fig 5. Transmembrane domain residues of HLA mediate the interaction with Vpu. (A) 293T cells were transfected with Flag-tagged constructs of Vpu from a

primary virus 2_87, Vpu from NL4-3, or GFP as a negative control. Cells were co-transfected with HA-tagged constructs of HLA from the A or C loci, or HA-

tagged β-TrCP as a positive control. Flag immunoprecipitation was followed by western blotting with anti-Flag or anti-HA antibody, and blots of the lysate prior to

immunoprecipitation are also shown. (B) Chimeras 1–6 were constructed with the regions exchanged between HLA-A and HLA-C shown. (C) Co-

immunoprecipitations were repeated using Vpu from 2_87 and the chimeric HLA constructs. (D) Sequences of the transmembrane domain of representative

HLA-A and HLA-B alleles, 3 alleles which represent the transmembrane sequences of all common HLA-C alleles, and the chimeric constructs 5 and 6. Complete

sequences for all HLA constructs are detailed in S8 Fig.

https://doi.org/10.1371/journal.ppat.1007257.g005
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others are unclear. Variation between HIV-1 viruses provides an opportunity to identify selec-

tion pressures in human individuals which may be relevant. In this study we have character-

ized HLA-C downregulation for a wide range of primary viruses. We demonstrate that HIV-1

viruses from the latent reservoir of certain individuals downregulate HLA-C, that different

quasispecies members can vary widely in their ability to downregulate HLA-C during chronic

infection, and that viral downregulation of HLA-C shows a striking adaptation to the HLA

genotype of the host.

In a screen of 128 replication competent viral isolates from limiting dilution outgrowth

assays of 19 individuals treated with effective ART, 4 individuals harbored multiple viral iso-

lates that downregulated HLA-C. These viruses are representative of the latent viral reservoir

with the ability to seed new infection when ART is ceased [41]. Consequently, it will be neces-

sary to clear reservoir viruses that are able to downregulate HLA-C to cure HIV-1 in certain

individuals. This complicates some shock and kill strategies, which have proposed to use

HLA-C restricted effectors as this HLA was previously thought to be preserved on infected

cells [51,52]. It may also provide new opportunities for individualized therapy although such

approaches, if ultimately developed, would be limited in scalability at least initially. Characteri-

zation of the CTL responses in the 4 individuals in which HIV-1 downregulates HLA-C may

identify CTL epitopes that could represent candidates for expansion and treatment as immune

therapies, due to their in vivo selection pressure suggested by this study. The unique role of

HLA-C, exerting selection pressures that result in variable modulation of its expression, may

make it possible for immunotherapies to achieve enhanced efficacy if both of the opposing

pressures on HLA-C expression level could be established in the same individual.

In vitro infections of primary CD4+ T cells with transmitted/founder viruses, and virus

from the same individual after 6 months of untreated infection, showed no change in HLA-C

downregulation for 3 individuals. Analyses of 35 Vpu clones from 6 untreated individuals in

chronic infection detected little longitudinal change in HLA-C downregulation, but confirmed

variation between viral quasi-species present at a timepoint in several individuals, which could

result in adaptation to host HLA genotype. These results indicate HLA-C downregulation by

HIV-1 is not frequently affected by early innate immune pressures during acute infection

[53,54]. A screen of Vpu molecules from nearly 200 chronically infected ART naïve individu-

als, found that in approximately one third of the infections viruses downregulated HLA-C

strongly. Host HLA-C genotype was the strongest corollary of HLA-C downregulation identi-

fied. Viruses from individuals with HLA-C alleles such as C�07, generally downregulated

HLA-C only weakly, whereas viruses from individuals with other alleles such as C�14 were far

more likely to downregulate HLA-C strongly.

This differential downregulation of HLA-C is unlikely to be attributable to viral adaptation

to the susceptibility of different HLA-C alleles to downregulation by Vpu. This is because pri-

mary HIV-1 viruses which downregulate HLA-C have been used to infect CD4+ cells from dif-

ferent individuals in vitro, and showed downregulation which was broadly similar across

HLA-C types [26,27]. Further, the 4 HLA transmembrane residues found to be required for

interaction with Vpu are conserved in all HLA-C alleles. We therefore interpret the association

between downregulation and host HLA-C genotype to represent viral adaptation to differences

in immune responses which are mediated by HLA-C alleles. It is well established that downre-

gulation of HLA-A/B by Nef subverts CTL responses, so it seems likely that certain CTL

responses are also the selection pressure resulting in HLA-C downregulation [18,19]. Consistent

with this idea there is both in vitro and in vivo evidence that lower HLA-C expression levels can

decrease the efficacy or frequency of HLA-C restricted CTL responses [26,31,32]. The variation

in adaptation to HLA-C alleles that we observed, suggests that HLA-C alleles differ in their like-

lihood of restricting CTL responses which the virus responds to by downregulating HLA-C.
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It is not clear what differentiates HLA-C alleles that are more likely to select for HLA-C

downregulation, although they tend to be expressed at higher levels. We observed a direct cor-

relation between the level of HLA-C expression by an individual prior to infection, and the

degree of downregulation observed following chronic infection. Although certain HLA-C

restricted CTL responses may be evaded by viral downregulation of HLA-C, in two thirds of

infections Vpu downregulated HLA-C only weakly. Thus, there appears to be some advantage

to the virus in preserving HLA-C expression in most individuals. Grouping HLA-C alleles

based on differential KIR binding did not result in differences in the frequency of Vpu mole-

cules that downregulate HLA-C strongly. This might be clarified by KIR typing but suggests

that inhibition of NK cells may not be a significant factor in the selection pressures that influ-

ence viral downregulation of HLA-C, because the KIR bound by these groups of HLA-C alleles

differ functionally, and these HLA-C allele groups do associate with other outcomes influenced

by NK cells [40,55–57]. Other reasons why the virus might preserve HLA-C include a possible

cost to replication efficiency of using Vpu to downregulate HLA-C. Vpu has multiple func-

tions such as antagonizing CD4 and tetherin to promote virion release from infected cells, and

these may be impaired when Vpu is used to downregulate HLA-C [58,59]. Interactions

between different conformations of HLA-C and Env have also been reported to influence

virion infectivity, and could represent another mechanism impacted by HLA-C downregula-

tion [60]. That magnitude of downregulation is part of the viral adaptation to host HLA-C

alleles, is supported by the variation observed in HLA-C downregulation by viruses with differ-

ent degrees of adaptation to host HLA-C alleles.

Molecular characterization using primary virus derived Vpu sequences and chimeric HLA

constructs identified 5 positions in the Vpu N-terminal stalk and transmembrane domain, and

4 residues in the HLA transmembrane domain, which are important in the interaction

required for downregulation of HLA-C. The 5 positions of Vpu are all found on a similar face

of the transmembrane/extracellular region of the molecule, consistent with residues at these

sites promoting or disrupting a binding site. The 4 residues of the HLA transmembrane identi-

fied to be important are not present in any common HLA-A or—B alleles, but are conserved

in all HLA-C alleles. The HLA-E transmembrane sequence differs from all classical HLA alleles

in these 4 positions, so it will be interesting to determine if Vpu from different primary viruses

can variably modulate HLA-E in addition to HLA-C [61]. Significantly, the Vpu variants iden-

tified are polymorphic in primary Vpu sequences, raising the possibility of predicting HLA-C

downregulaton by primary virus from the Vpu sequence alone. This could identify preliminary

characteristics of infections in which HIV-1 does or does not downregulate HLA-C for experi-

mental validation, although additional effects of HIV-1 on HLA may occur in vivo. For exam-

ple Vpu can suppress NF-kb activity to inhibit transcription from all HLA loci [62]. Variation

between primary viruses in downregulation of HLA-C represents an opportunity to identify

specific cellular immune responses that exert selection pressure on HLA expression in vivo.

Comparison of cellular responses between individuals in which HIV-1 downregulates versus

preserves HLA-C, has potential to identify specific CTL epitopes useful for HIV-1 therapy, and

to improve understanding of the differential role of HLA-C molecules between infected

individuals.

Methods

Ethics statement

Samples from HIV-1 infected individuals were used from the following existing collections.

PBL from the Reservoir Characterization Support Section of the BELIEVE consortium,

approved by the George Washington University Committee on Human Research (021750).
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Vpu and HLA genotypes from the BC HOMER and UARTO studies, approved by the Simon

Fraser University Research ethics board (2016s0393) and the University of British Columbia-

Providence Health Care Research ethics board (H11-01642 and H08-00962). All donors pro-

vided written informed consent and samples were de-identified for the present study.

Detection and prediction of HLA-C expression

The mouse IgG2b monoclonal antibody DT9 was used in flow cytometry analyses to detect

HLA-C [63]. This mAb has been shown to bind all alleles of HLA-C, but no common HLA-A/

B alleles [30]. DT9 also recognizes HLA-E but this antigen is expressed at much lower levels

than HLA-C on lymphocytes [2]. That the decreased DT9 binding of primary CD4+ cells

upon HIV-1 infection reflects downregulation of HLA-C, has been confirmed by similar

decreases in the staining of 3 different mAbs which recognize independent HLA-C epitopes

but do not detect HLA-E [26]. Healthy individuals vary in their HLA-C expression level on

PBL, and this has been shown to be a function of HLA-C genotype, with an average expression

level for each allele defined (S4 Table). A sum of the average expression level of each HLA-C

allele has previously been shown to predict HLA-C expression level for unrelated individuals

of both European and African American ethnicity [31].

HLA-C downregulation by inducible infectious HIV-1 reservoir isolates

QVOA were performed using a previously described protocol, with slight modifications [43].

Briefly, CD4+ T-cells from ART suppressed individuals were cultured at limiting dilutions,

with 12 replicates per dilution, and stimulated with IL-2, PHA and irradiated allogeneic feeder

cells from HIV-uninfected donors in the presence of Molt-4 cells [64]. Dilutions were chosen

to minimize the probability that any given dilution will have all positive or all negative wells.

After 14 days of culture, wells were screened for outgrowth of a viral isolate by ELISA for p24

(NCI Frederick). The following day, for the dilution with fewest CD4+ T cells that yielded

wells with detectable virus, positive cultures were assayed by flow cytometry. After staining

with mAb DT9 or an isotype control, detected by PE anti-mouse IgG (Sigma Aldrich), cells

were blocked with murine IgG and further stained with CD3-BV421 (Sony Biotechnology)

and Far Red Viability Dye (Thermofisher Scientific). Cells were then fixed and permeabilized

using BD Cytofix/Cytoperm (BD Biosciences) followed by staining of intracellular Gag with

KC57-FITC (Beckman Coulter). Staining was acquired using a SP6800 Spectral Cell Analyzer

(Sony Biotechnology) and analyzed using FlowJo (Tree Star). Molt-4 cells lack CD3 expres-

sion, which enabled discrimination from primary T cells, before the median fluorescence

intensity (MFI) of DT9 staining was compared between the HIV Gag+ (infected) and Gag-

(uninfected) Molt-4 populations.

HLA-C downregulation in primary cells infected with longitudinal viral

clones

Paired infectious molecular clones from the transmitter/founder and 6-month timepoints of

the same infected individual have been previously been described [46,47]. Single genome

amplification from plasma RNA at these timepoints was followed by phylogenetic analysis of

viral sequences to identify the transmitted virus and a biologically active 6 month consensus

virus. Plasmids containing these infectious molecular clones were expressed in HEK 293T

(ATCC, CRL-11268), used to infect primary CD4+ cells in vitro, and analyzed for HLA-C

downregulation by flow cytometry all as previously described [26]. Briefly, CD4+ cells were

magnetically selected, stimulated with anti-CD3/28 beads and IL-2 for 3–5 days, infected with

HIV-1 and cultured for a further 6 or 7 days. Cells were then incubated with mAb DT9 or
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isotype control, followed by PE-anti-mouse IgG (Sigma-Aldrich). Free secondary antibody-

binding sites were blocked with murine immunoglobulin before further staining with CD4-PB

(BioLegend), CD8-APC and CD3-APC.Cy7 (both from Becton Dickinson), and yellow fluo-

rescent reactive viability dye (Invitrogen). Cells were then fixed and permeabilized by incuba-

tion with paraformaldehyde and saponin (Becton Dickinson) before staining of HIV-1

intracellular Gag with KC57-FITC (Beckman Coulter). CD4 lymphocytes were discriminated

as CD3+, viability dye and CD8-, and the MFI of DT9 staining was compared between Gag

+ and Gag- populations.

Vpu genes cloned from primary viruses

Plasma-derived Vpu clones in a Rev-dependent CRV1 based vector have previously been

described for 14 longitudinally sampled, untreated, subtype B HIV-1 infections [48]. For 2

individuals from that study, long term non-progressors 1 and 5, multiple Vpu clones were

characterized here for ability to downregulate HLA-C (clones 1–15 and 26–28 respectively).

For 4 untreated subtype C infected individuals (CH596, CH492, CH256, CH694), for which

plasma sequencing has previously been described [53,65,66], Vpu clones were constructed in

the same vector and tested for HLA-C downregulation (clones 16–19, 20–25, 29–30 and 31–35

respectively). Sequences of these Vpu clones are given in S5 Table. Chronically infected ART-

naïve individuals have previously been described from the BC HOMER cohort with subtype B

infection [67,68] and the UARTO cohort with infections of subtypes A, C and D [69]. Overall,

25% of BC HOMER cohort participants reported they were men who have sex with men,

while 39% reported a history of injection drug use, and 92% of the BC HOMER participants in

this present study were male. 30% of the UARTO cohort samples included in this study were

male and this cohort comprises predominantly heterosexual individuals. To characterize

HLA-C downregulation a single plasma-derived Vpu sequence for 195 of these individuals,

was cloned into a bicistronic pSelRRE–Vpu vector that expresses Vpu and GFP [70]. Of these

195 clones, Vpu sequences were of subtypes A (n = 45), B (n = 75), C (n = 19) or D (n = 56).

Sequences of these Vpu clones are given in S6 Table. A panel of 14 infectious molecular clones

of HIV-1, including viruses of subtypes B, C and D, have previously been characterized for

ability to downregulate HLA-C when infecting primary CD4+ cells in vitro [26]. Vpu genes

from each of these viruses were also generated in the pSelRRE–Vpu expression vector. Synthetic

DNA sequences containing the desired Vpu sequence (Synthetic Genomics Inc) were inserted

into the plasmid digested with AscI and SacII using Gibson Assembly (New England Biolabs),

and chemically competent cells transformed according to manufacturer instructions. Trans-

formed cells were selected on zeocin agar plates (Invivogen), single colonies grown in TB with

Zeocin (Invivogen), plasmid extracted, and sequence verified using primer 5’-ACCTTGTTTA

TTGCAGCTT-3’ for Sanger sequencing (Integrated DNA Technologies).

HLA-C downregulation by transfected Vpu clones

HeLa cells (ATCC, CCL-2) were grown in RPMI 1640 with 10% FBS, penicillin-streptomycin,

and L-glutamine. Molt-4 cells were grown in the same media supplemented with 10mM

HEPES. The 35 Vpu clones obtained in CRV1 based vectors, representing multiple quasi-spe-

cies and longitudinal samples from 6 individuals, were assessed for ability to downregulate

HLA-C in HeLa cells as previously described [26]. Briefly, TransIT-HeLaMONSTER (Mirus)

was used to co-transfect HeLa with the CRV1 based vector containing Rev and primary Vpu

genes, and with an EGFP expressing plasmid [48]. After 24hrs trypsinized cells were incubated

with mAb DT9 or isotype control, followed by APC-conjugated anti-mouse IgG (BioLegend),

and staining results were acquired using a FACSCalibur flow cytometer (Becton Dickinson).
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The 195 Vpu clones derived in pSelRRE–Vpu vectors, from chronically infected UARTO and

BC HOMER cohort individuals, were assessed for ability to downregulate HLA-C in Molt-4

cells. Lipofectamine (ThermoFisher) was used according to manufacturer instructions to co-

transfect ~200,000 cells with the pSelRRE–Vpu plasmid containing GFP and primary Vpu

genes, and with the Rev expression plasmid pSel-Rev-ΔGFP previously described [70]. After

24hrs cells were stained with DT9 and an APC-conjugated secondary as above, and staining

results were acquired using a SP6800 Spectral Cell Analyzer (Sony Biotechnology). 14 Vpu

genes from HIV-1 infectious molecular clones were characterized for HLA-C downregulation

in both HeLa cells transfected using the Mirus reagent, and Molt-4 cells transfected using

Lipofectamine, as described above. All cytometry analysis was performed using FlowJo (Tree

Star). Vpu transfected cells were discriminated from untransfected cells by GFP fluorescence,

and the MFI of DT9 staining compared between these populations to calculate fold downregu-

lation of HLA-C.

Analysis of viral adaptation to host HLA-C genotype

Extent of viral sequence adaptation to host HLA-C genotype was determined for 72 subtype B-

infected individuals from the BC HOMER cohort for whom HLA-I genotypes were available,

using a published adaptation metric [49]. Briefly, a probabilistic model is used to compare the

expected HIV-1 sequence if evolving indefinitely in a host whose immune system targeted

solely viral epitopes restricted by the HLA allele in question, compared to if the virus was

evolving indefinitely in the absence of immune pressure. The resulting ratio of these two sce-

narios is scaled so that it ranges from −1 to +1, where the extremes denote zero and complete

adaptation to the HLA allele in question, respectively. This quantification of adaptation used

specifically the viral Nef sequence because of the high number of HLA-associated sequence

variants contained therein, and was restricted to HIV-1 subtype B as HLA-associated polymor-

phisms are extensively mapped for this subtype [38].

Identification of Vpu residues influencing HLA-C downregulation

Of the 195 Vpu clones from individuals chronically infected with HIV-1 that were character-

ized for ability to downregulate HLA-C, 4 were excluded due to substantial sequence length

polymorphism. The remaining 191 Vpu sequences were aligned and at every position of Vpu,

polymorphic variants were tested for association with HLA-C downregulation as a categorical

variable using Fisher’s exact test. Residues that differed with p<0.05 were then tested in a mul-

tiple linear regression analysis, identifying 5 positions with independently significant effects

on downregulation of HLA-C. These were confirmed experimentally using single amino acid

mutants of primary Vpu sequences generated by incorporating synthetic DNA sequences into

the pSelRRE–Vpu vector, as described above for the construction of Vpu genes from 14 infec-

tious molecular clones. HLA-C downregulation by mutant and primary Vpu clones was com-

pared by transfection of Molt-4 cells, also as described above.

Co-precipitation of chimeric HLA molecules with Vpu

A nine–amino acid HA epitope tag (YPYDVPDYA) was added to the N-terminus of

HLA-A�0201, HLA-C�0501, or 6 chimeras of these HLA. The HA tag was added to the mature

protein, by insertion just after the leader sequence, with addition of a second glycine-serine N-

terminal to the tag to reproduce the cleavage site of the HLA-I molecule as previously

described [71]. These constructs were synthesized by IDT with 5’ EcoRI and kozak sequences,

and 3’ NotI recognition site, and inserted by Gibson Assembly into a pcDNA3.1(+) vector

digested with EcoRI and NotI (all New England Biolabs). Transformed cells were selected with
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Ampicillin and clones sequenced with CMV3’F 5’-GGTAGGCGTGTACGGTGGGA-3’ and

BGH rev 5’-TAGAAGGCACAGTCGAGG-3’. Immunoprecipitation of Vpu and detection of

co-precipitated β-TrCP has been previously described [72]. This was repeated with an adapted

method substituting HLA for β-TrCP. Briefly, HEK 293T cells were co-transfected with the

HA-tagged HLA plasmid and Flag-tagged Vpu. 24 hours after transfection, cells were lysed in

buffer containing 50mM Tris-HCl pH7.5, 100mM NaCl, 1mM EDTA, 2mM DTT, 0.1% NP40

and complete protease inhibitors (Roche), immunoprecipitated with rabbit anti-Flag mono-

clonal antibody (Sigma) and protein G agarose beads, then analyzed by western blot using

mouse anti-Flag or anti-HA antibodies.

Statistical analyses

Differences in HLA-C downregulation between reservoir isolates were compared by unpaired

t tests. Variation in the frequency of Vpu clones that downregulate HLA-C strongly, between

individuals of different HLA genotypes, was analyzed by chi square tests. Linear regression

with Spearman analysis was used to determine correlations between observed HLA-C downre-

gulation and predicted HLA-C expression level for different individuals, and across HLA-C

alleles in terms of the frequency of Vpu clones that downregulate HLA-C, and the strength of

correlation between HLA-C allele specific adaptation and HLA-C downregulation. Multiple

linear regression models were used to analyze Vpu positions associating with downregulation

of HLA-C. Significance was based on a two-sided p value�0.05 throughout. All analyses were

performed in GraphPad Prism 6 or R version 3.4.3 statistical software packages [73].

Supporting information

S1 Fig. HLA-C downregulation quantified for 14 primary viruses, comparing transfection

of cloned Vpu molecules to in vitro infection of primary cells. (A) HeLa cells were trans-

fected with Vpu cloned from NL4-3 or a primary virus that downregulates HLA-C. HeLa pop-

ulations were then gated based on the expression of GFP, and the MFI of HLA-C staining

compared between GFP+ and GFP- cells from the same well. (B) Representative staining dem-

onstrating the Vpu clone from NL4-3 does not down-regulate HLA-C, whereas the Vpu clone

from the primary virus strongly downregulates HLA-C. (C) Comparison of HLA-C downre-

gulation measured for 14 primary viruses, when infecting primary CD4+ cells in vitro (x-axis)

[26] or cloned Vpu molecules are assayed by transfection (y-axis). (D-F) Replicate experiments

using transfection of Molt-4 cells.

(TIF)

S2 Fig. Vpu sequence information for the longitudinally sampled individual studied in Fig

2E. (A) A phylogenetic tree of 87 Vpu sequences previously obtained from this individual [48].

Sequences are shown from samples taken 1 (light blue), 4 (dark blue), or 10 (magenta) years

after seroconversion. The tree is rooted using NL4.3 and a consensus subtype B sequence

(black), and Vpu sequences tested for HLA-C downregulation are highlighted (boxed red). (B)

For the 15 Vpu molecules that were tested for HLA-C downregulation in Fig 2E, the N-termi-

nal sequences are shown. Vpu positions that were identified to contribute to HLA-C downre-

gulation in the analysis of Fig 4 are highlighted, with green and red marking residues that

associated with stronger and weaker downregulation of HLA-C respectively.

(TIF)

S3 Fig. Stratification by cohort of analyses indicating HLA-C downregulation adapts to

host HLA genotype. (A,B) Separately for BC HOMER and UARTO individuals, the propor-

tion of Vpu clones that downregulate HLA-C strongly is shown for HLA-C alleles with n�5 in
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both cohorts. The number of individuals in each group is shown above each plot. (C,D)

HLA-C expression level for an individual inferred from HLA-C genotype, and observed

HLA-C downregulation for Vpu from that individual, are plotted separately for BC HOMER

and UARTO individuals. Correlations were determined Spearman analyses.

(TIF)

S4 Fig. HIV-1 subtypes differ in their frequency of HLA-C downregulation. Data is shown

for 195 individuals from which HLA-C downregulation by a single Vpu clone from chronic

untreated infection was measured by transfection of Molt-4 cells. HLA-C downregulation is

observed more frequently for Vpu molecules from viral subtypes A and B, compared to sub-

types C and D, when analyzed by Fisher’s exact test.

(TIF)

S5 Fig. Correlations between viral sequence adaptation to host HLA-C and the observed

downregulation of HLA-C by Vpu. For 72 individuals with subtype B virus the extent of

HIV-1 adaptation to each HLA-C could be quantified from the proportion of Nef sequence

variants which associate with that HLA-C allele, which are observed in individual viral

sequences. The strength of correlation between this viral adaptation to host HLA-C, and the

observed downregulation of HLA-C by Vpu, was then determined for each HLA-C allele. (A)

Representative linear regression analyses for C�07 where in 29 individuals sequence adaptation

does not correlate with downregulation, or for C�08 where in 9 individuals sequence adapta-

tion does correlate with downregulation of HLA-C by Vpu. (B) For each HLA-C allele is

shown the number of individuals analyzed (n), the observed correlation between adaptation

and downregulation (R), and among the individuals included in this analysis the fraction of

the individuals with that allele for which Vpu demonstrated greater than 6-fold downregula-

tion of HLA-C in transfected Molt-4 cells.

(TIF)

S6 Fig. Vpu sequence variation observed at positions identified as important in downregu-

lation of HLA-C. 191 primary Vpu clones were analyzed in Fig 4 and identified residues at

Vpu positions 3, 5, 15, 16 and 24 which associated independently with HLA-C downregula-

tion. For each of these positions the frequency of all residues observed in this population of

191 primary Vpu sequences is shown, for Vpu molecules found to downregulate HLA-C

(black) and those that do not (grey).

(TIF)

S7 Fig. Residuals plot for predicted HLA-C downregulation. In Fig 4E a multiple linear

regression model was used to predict downregulation of HLA-C based on Vpu sequence at 5

positions. The residuals between observed and predicted HLA-C downregulation are shown

for all 191 Vpu clones in this analysis.

(TIF)

S8 Fig. Sequences of HA-tagged HLA constructs. Black text indicates sequence from HLA-A,

red indicates sequence from HLA-C, with green identifying the HA tag added at the N-termi-

nus after the leader peptide.

(TIF)

S1 Table. Multiple linear regression model including virus subtype as a covariate. Using

191 primary Vpu clones from chronic infection a multiple linear regression model identified

residues at 5 positions of Vpu affecting HLA-C downregulation (Fig 4B, shown on the left).

This analysis was repeated including viral subtype as a covariate (subtype A, B, C, or D) and all

HLA-C downregulation by HIV-1 adapts to host HLA genotype

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007257 September 4, 2018 19 / 25

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007257.s004
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007257.s005
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007257.s006
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007257.s007
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007257.s008
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007257.s009
https://doi.org/10.1371/journal.ppat.1007257


positions remain independently significant, shown on the right.

(DOCX)

S2 Table. Multiple linear regression model for viruses of each subtype. Using 191 primary

Vpu clones from chronic infection a multiple linear regression model identified residues at 5

positions of Vpu affecting HLA-C downregulation (Fig 4B, shown on the left). This analysis

was repeated separately for infections with viruses of different subtype (shown right). Blacked

box indicates n = 0.

(DOCX)

S3 Table. Multiple linear regression model for viruses of each cohort. Using 191 primary

Vpu clones from chronic infection a multiple linear regression model identified residues

at 5 positions of Vpu affecting HLA-C downregulation (Fig 4B, shown on the left). This

analysis was repeated separately for individuals of each of the two cohorts used (shown

right).

(DOCX)

S4 Table. Average expression level of HLA-C alleles. The average expression level for each

2-digit HLA-C allele is reported here, from previously described staining of peripheral blood

CD3+ cells from healthy donors analyzed by flow cytometry using the monoclonal antibody

DT9 [31]. MFI of DT9 staining was plotted twice for each donor, once for each 2-digit HLA-C

allele present, and the average MFI for each HLA-C allele is shown with N indicating the num-

ber of observations from which each average was determined.

(DOCX)

S5 Table. Amino acid sequences of the 35 Vpu clones analyzed from 6 individuals in Fig 2.

(DOCX)

S6 Table. Amino acid sequences of the single Vpu clones analyzed for 195 individuals in

Figs 3 and 4 and S3 Fig.

(DOCX)
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15. Schwartz O., Maréchal V., Le Gall S., Lemonnier F., and Heard J. M. 1996. Endocytosis of major histo-

compatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat. Med. 2: 338–42.

PMID: 8612235

16. Cohen G. B., Gandhi R. T., Davis D. M., Mandelboim O., Chen B. K., Strominger J. L., and Baltimore D.

1999. The selective downregulation of class I major histocompatibility complex proteins by HIV-1 pro-

tects HIV-infected cells from NK cells. Immunity 10: 661–671. PMID: 10403641

17. Specht A., Telenti A., Martinez R., Fellay J., Bailes E., Evans D. T., Carrington M., Hahn B. H., Gold-

stein D. B., and Kirchhoff F. 2010. Counteraction of HLA-C-Mediated Immune Control of HIV-1 by Nef.

J. Virol. 84: 7300–7311. https://doi.org/10.1128/JVI.00619-10 PMID: 20463068

18. Collins K. L., Chen B. K., Kalams S.a, Walker B. D., and Baltimore D. 1998. HIV-1 Nef protein protects

infected primary cells against killing by cytotoxic T lymphocytes. Nature 391: 397–401. https://doi.org/

10.1038/34929 PMID: 9450757

19. Swigut T., Alexander L., Morgan J., Lifson J., Mansfield K. G., Lang S., Johnson R. P., Skowronski J.,

and Desrosiers R. 2004. Impact of Nef-mediated downregulation of major histocompatibility complex

class I on immune response to simian immunodeficiency virus. J. Virol. 78: 13335–44. https://doi.org/

10.1128/JVI.78.23.13335-13344.2004 PMID: 15542684

20. Deacon N. J., Tsykin A., Solomon A., Smith K., Ludford-Menting M., Ellett A., Hooker D. J., McPhee D. A.,

Greenway A. L., Chatfield C., Lawson V. A., Crowe S., Maerz A., Sonza S., Learmont J., Sullivan J. S.,

Cunningham A., Dwyer D., Dowton D., and Mills J. 1995. Genomic Structure of an Attenuated Quasi Spe-

cies of HIV-1 from a Blood Transfusion Donor and Recipients. Science. 270: 988–991. PMID: 7481804

21. Kirchhoff F., Greenough T. C., Brettler D. B., Sullivan J. L., and Desrosiers R. C. 1995. Absence of

Intact nef Sequences in a Long-Term Survivor with Nonprogressive HIV-1 Infection. N. Engl. J. Med.

332: 228–232. https://doi.org/10.1056/NEJM199501263320405 PMID: 7808489

22. Fadda L., Körner C., Kumar S., van Teijlingen N. H., Piechocka-Trocha A., Carrington M., and Altfeld

M. 2012. HLA-Cw*0102-restricted HIV-1 p24 epitope variants can modulate the binding of the inhibitory

KIR2DL2 receptor and primary NK cell function. PLoS Pathog. 8: e1002805. https://doi.org/10.1371/

journal.ppat.1002805 PMID: 22807681

23. Shah A. H., Sowrirajan B., Davis Z. B., Ward J. P., Campbell E. M., Planelles V., and Barker E. 2010.

Degranulation of natural killer cells following interaction with HIV-1-infected cells is hindered by down-

modulation of NTB-A by Vpu. Cell Host Microbe 8: 397–409. https://doi.org/10.1016/j.chom.2010.10.

008 PMID: 21075351

24. Davis Z. B., Cogswell A., Scott H., Mertsching A., Boucau J., Wambua D., Le Gall S., Planelles V.,

Campbell K. S., and Barker E. 2016. A Conserved HIV-1-Derived Peptide Presented by HLA-E Renders

Infected T-cells Highly Susceptible to Attack by NKG2A/CD94-Bearing Natural Killer Cells. PLoS

Pathog. 12: e1005421. https://doi.org/10.1371/journal.ppat.1005421 PMID: 26828202
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