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AN ABSTRACT OF TIIE TIIESIS OF James D. Padgett for the Master of Science in 

Mechanical Engineering presented May 5, 1992. 

Title: Effectiveness of Additive Correction Multigrid in Numerical Heat Transfer Analysis 

when Implemented on an Intel IPSC2. 

APPROVED BY TIIE MEMBERS OF TIIE TIIESIS COMMITTEE 

Gerald Recktenwald 

.rzanowska-Jeske 

The effectiveness of the Additive Correction Multigrid (ACM) algorithm, a line-by

line Tri-diagonal Matrix Algorithm (TDMA), and simple Gauss-Seidel (GS) iteration in 

numerical heat transfer analysis is investigated on a conventional single processor computer 

and on a distributed memory parallel computer. The performance of these methods is 

studied by solving a two-dimensional, steady heat conduction problem. The execution time 



2 

of ACM on a single processor is proportional to the number of unknowns to the 1.5 

power. This is in contrast to the execution time of the TDMA for which the execution time 

is proportional to the number of unknowns to the 2.0 power. The GS , TDMA and ACM 

algorithms are adapted to a model IPSC2 Intel hypercube which has a 32 processing nodes 

each with 8 MBytes oflocal memory. Because GS is a local method, it has almost perfect 

speed up, but it also converges more slowly than TDMA, The TDMA, on the other hand, is 

affected by domain decomposition to a greater extent than GS. As the number of 

processors used to solve the problem is increased, the execution times for GS and TDMA 

are essentially equal. Solving the model problem with 32 processors on a 192x192 grid 

resulted in parallel efficiencies of 95%, 80% and 78% for the GS, TDMA, and ACM 

algorithms, respectively. Though the parallel efficiency of ACM was the lowest of the 

three, the parallel ACM algorithm required an order of magnitude less time to solve the 

model than either parallel GS or parallel TDMA without multigrid. 
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CHAPTER I 

INTRODUCTION 

The history of computational heat transfer analysis is closely tied to the 

development of computers. Prior to World War II, numerical methods were in their 

infancy and most calculations were done by hand [1]. Since that time numerical 

analysis has grown into its own field of science. Heat transfer, numerical analysis 

and computer science have become linked together. This research is an 

investigation of these three sciences. The numerical analysis aspect of this research 

is the investigation of a numerical method called Additive Correction Multigrid. 

This method has been implemented on a particular kind of parallel computer called a 

hypercube. The goal of the research was to determine how well Additive 

Correction Multigrid on a hypercube was suited to solving the elliptic equations that 

arise in heat transfer analysis. 

This chapter will first discuss the advantages and limitations of computational 

heat transfer. The second part of this chapter is a discussion of the necessity of 

supercomputers in some heat transfer problems along with a brief discussion of 

parallel computers. Finally there is a description of why elliptic problems are 

important and an identification of the specific contributions of this thesis. 

IMPORTANCE OF NUMERICAL 
ANALYSIS IN HEAT TRANSFER 

The best solution to a heat transfer problem would be an analytical solution to 

the governing equations without any simplifying assumptions. The solution would 

accurately describes the physical phenomenon. This is not possible because there is 



only a handful of closed solutions to the governing differential equations of heat 

transfer. 

Another alternative is to perform an experiment. That would require building a 

scale model, or analyzing the full scale problem. During that experiment the 

necessary data would have to be unobtrusively gathered. This is often times an 

expensive alternative because of the cost of building the model. However, 

sometimes a scale model is a better alternative because scale models have the 

capability of being more realistic than other alternatives [l]. Analyzing the full scale 

problem is sometimes preferable if the objective is limited, e.g., finding a single 

pressure drop. A disadvantage to scale models is that the cost can be prohibitive. 

Also, matching flow conditions in a model can be quite troublesome. 

A third alternative, which is investigated here, is to perform a numerical 

analysis. A numerical analysis models the problem by reducing the continuous 

governing equations to set of discrete equations. These nonlinear algebraic 

equations are then solved on a computer. The biggest advantage of a numerical 

solution is that it is often a low cost alternative for gaining a quantitative and 

qualitative solution to a problem. 

PRESENT LIMITATIONS OF NUMERICAL ANALYSIS 

The introduction of numerical solutions has not removed the need for analytical 

or experimental solutions. There are some important limitations to the use of 

numerical methods. When flows become turbulent, it is no longer possible to have 

a model that is completely free of empiricism [l], and the empirical models 

introduce additional difficulties. The results must be correlated with actual 

experimental data to test the validity of assumptions. Complex geometries are also 

difficult to model numerically. Examples of these would be internal pump flows or 
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air-fuel mixture flow through an engine head. Flows that are anisotropic such as 

cavitation or reacting flows are also difficult to model. 

The convection terms in the Navier Stokes equations are highly nonlinear. It is 

this nonlinearity that makes it difficult to solve some problems numerically. 

Nonlinear partial differential equation will also lend themselves to several solutions 

[17]. There is a required expertise that is needed to decide if the numerical result is 

physically realistic. There is no single numerical method that can be used to solve 

all partial differential equations. Each problem must be approached separately. The 

engineer must have a priori knowledge on how the software operates, on the 

physics involved and some knowledge about scientific computing. 

It should also be mentioned that the difference between these methods has 

become blurred. Experimental data might be used to find the velocity distribution. 

This distribution is then used to numerically solve the energy equation to find the 

heat transfer. All three methods will certainly continue to be used in the future. 

PRESENT LIMITATIONS OF ALGORITHMS AND MACIDNES 

Just a few years ago, computer memory was~rare commodity. Programmers 

spent a large portion of their time reducing the memory needs of their programs. 

Memory has become cheaper and more available on all platforms. One might think 

that memory concerns are over. What has happened is with the amount of 

increased available memory, there has been an increase in the size of problems that 

can be solved. The amount of data that is generated by these larger models is 

astounding. 

The time to solve these problems scales with problem size as 

r=N"t 
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where 'f is the solution time, N is the number of grid points and yis the rate of 

convergence. The numerical method that has been used in the past by this research 

group has a rate of convergence of r= 1.86. This rate of convergence is not 

uncommon with numerical solvers. Because of this, problems that require fine 

spatial resolution (or a large number of time steps) may be impractical to solve 

numerically with available desktop workstations. 

DIS1RIBUTED MEMORY COMPUTERS 

Many engineering problems can be solved with present workstations. 

However, there are some problems that require the memory and computational 

power of a supercomputer. Some examples of these problems are weather, 

groundwater-pollutant mixing and turbulent mixing in a hypersonic jet engine. 

Unfortunately supercomputers are economically out of reach of many groups who 

wish to solve these problems. 

Recent advances in the architecture of supercomputers have significantly 

reduced the price of a particular type of supercomputer. Specifically, there have 

been advances in the area of parallel supercomputers. 

Shared vs. Distributed MemOiy 

4 

There are two types of parallel computers: shared and distributed memory. Both have 

multiple processors that access memory. The processors of a shared memory computer 

access the same block of memory. These processors can either access this memory over 

the same bus or through a switching network. A switching network allows several paths to 

the same memory. On a distributed memory computer, each processor only has direct 

access to its own piece of memory. If processor A needs data from processor B, processor 



B must stop what it is doing and explicitly send a message to processor A. Likewise 

processor A will have to stop what it is doing to receive the message. 

5 

There is certainly great debate of which paradigm is better. Shared memory computers 

are easier to program but there is a limit on how many processors they can efficiently have. 

If the shared memory machine is using a bus based system, this bus becomes a bottleneck 

that limits the speed at which processors can access memory [19]. Switching networks 

attempt to avoid this memory access bottleneck by providing many different paths to 

memory while maintaining a single address space. The disadvantage with switching 

networks is that multiple memory references can attempt to access the same memory path. 

Again, this causes bottlenecks that limit the speed of memory access. Because of these 

inherent limits, typical shared memory systems are limited to the tens of processors. 

Distributed memory computers are more difficult to program because data must be 

explicitly sent between processors. However, distributed memory computers can have 

number of processors in the tens of thousands. Distributed memory computers were 

chosen for this research because of the possibility to scale to this many processors in the 

future. The computer that was used in this research is the Intel IPSC2. The IPSC2 is a 

distributed memory computer based on the i386 microprocessor and the i387 coprocessor. 

The machine used in this research had 32 processors, each with 8Mbytes of RAM. 

Hypercubes 

Each processor in the IPSC2 is part of a larger entity called a node. Each node contains 

the processor, 8Mbytes of memory, and the electronics that are necessary to perform 

message communication. The message passing electronics are called a Direct Connect 

module. These modules control message sending, receiving, and routing [9]. 

The IPSC2 is called a hypercube. In a hypercube each node is not directly connected to 

every other node. Instead, each node is connected to nodes in which the binary 
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representation of their address differ by one bit. As an example, consider the eight node 

hypercube in Figure 1. It has nodes numbered 0 to 7, or in binary form 000 to 111. In 

this arrangement, node 010 (2) is connected to 110 (6), 000 (0), and 011 (3). Node 010 is 

not connected to node 100 (4). ff information needs to be transmitted from node 000 to 

100 it must be routed through other nodes. The user specifies the address of the processor 

to which a message is to be sent. The details of the routing are transparent to the user. 

The hypercube configuration is quite useful. By not using some of the connections, it 

can be made into a mesh or a ring as shown in Figure 1. 

The physical problem is solved on a distributed memory computer by using a domain 

decomposition method. In this method, the physical domain is broken up into pieces and 

each piece is given to a processor. The hypercube configuration that is used is a mesh. 

The physical domain is broken up into pieces that match the shape of the hypercube mesh. 

Each domain piece is given to the corresponding node in the hypercube mesh. This 

ensures that adjacent domain pieces are owned by nodes that are adjacent in the hypercube. 

LITERATURE REVIEW 

There has been a lot of work done using multigrid methods and hypercube computers. 

It is necessary to mention some of the work used as a starting point for this thesis. 

Parallel CFD 

Braaten [2] implemented the SIMPLER algorithm of Patankar on the Intel IPSCl, 

solving two dimensional viscous fluid flow. Braaten found that with a straightforward 

domain decomposition scheme, the speed up per iteration approached 100% as the grid size 

was increased. However, the parallel efficiency dropped off as the number of processors 

increased because of a poorer solution to the pressure correction equation. Braaten 

corrected this parallel efficiency drop off by implementing a global block correction 
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111 
001 ......- I .,., 

011 

110 
000 .....- ...... 

I 010 \ 

000 001 101 100 000 001 101 100 

010 011 111 110 010 011 111 110 

Ring Mesh 

Fif:"ure 1. The hypercube configuration for eight nodes (top). The 
hypercube can also be configured as a ring (bottom left), or a mesh (bottom 
right). 

procedure. The addition of global block correction gave a convergence rate equivalent to 

the serial algorithm. 

Multigrid Methods 

Brandt [3] was the first to describe multigrid methods. As the name implies, multigrid 

methods find the solution to a fine grid problem with the aid of multiple grid levels. These 

multiple grid levels are of increasing coarseness. These coarser levels are usually 

constructed so that the coarse grid points are coincident with a regular subset of the fine 

grids. Brandt developed two types of multigrid, Correction Storage (CS) and Full 

Approximation Storage (FAS). The coarser grids of CS hold only the corrections to the 

next finest level. The coarser grids of FAS hold the correction plus the values of the finer 

grid. Brandt states that FAS is better for nonlinear problems. The operation of going from 

a fine level to a coarse level is called restriction. The operation of going from a coarse level 

7 



to a fine level is called interpolation. Brandt's multigrid method has generalized 

interpolation and restriction operations. 
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Jespersen [13] gives a good introduction to multigrid methods. Jespersen implements a 

CS scheme to solve Poisson's equation with uniform grids. This scheme uses a uniform 

weighting interpolation and restriction operations. Jespersen analyzed the effect of grid 

cycling on computational efficiency. He mentions that multigrid methods can be expanded 

to finite element analysis but that is not developed. 

Miller and Schmidt [ 16] paper is a further exploration of Brandt's work. They found 

that weighted injection schemes did little to aid convergence and nothing to aid accuracy. 

This work is unconventional in that the relaxation procedure is done after the interpolation 

operations. 

Hutchinson and Raithby [12] extend the Additive Correction method that was derived 

by Settari and Aziz [21]. Hutchinson and Raithby develop an additive multigrid scheme 

based on the finite difference grid description of Patankar [17]. They analyze the 

effectiveness of additive correction multigrid on the solution of anisotropic problems. Our 

research is the application of this additive correction multigrid method on distributed 

memory computers, specifically the IPSC2. 

Vanka [22] developed the Block Implicit Multigrid Method (BLIMM). BLIMM is a 

FAS method that is designed to solve the Navier Stokes Equations. BLIMM solves the 

coupled momentum-continuity equations as opposed to the conventional segregated 

solution strategy that relies on pressure correction techniques [ 17]. BLIMM has shown 

great promise on serial machines. The next area of our research is to implement BLIMM 

on distributed memory computers. 
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Multi&rid Methods on Distributed Memory Computers 

Multigrid methods have been implemented on distributed memory computers. Chan 

and Tuminaro [8] implement a CS scheme on the Intel Ipsc 1 and the Caltech Mark II 

Hypercube. They used a higher order finite difference scheme for the solution of 

hyperbolic problems and a parallel preconditioned conjugate gradient method for the 

solution of elliptic problems. They studied the effect of various cycling schemes on parallel 

performance. 

Briggs et al. [4] developed a CS strategy that is similar to our own except in the domain 

decomposition. Their method requires some of the processors to 'sleep' at coarser grid 

levels. They asserted that the performance loss is negligible because of the low 

computational cost of relaxing a coarse grid. They also concluded that idle processors were 

even less of concern for large problems where the number of control volumes was much 

greater than the number of processors. 

Hart and McCormick [11] propose the Asynchronous Fast Adaptive Composite 

(AFAC) grid method as an alternative to the more conventional multigrid algorithms. In 

this method domain decomposition is not used and different grid levels are concurrently 

relaxed. Their results showed good performance for most combinations of grid levels and 

problem sizes. This method was not chosen because it requires sophisticated data and grid 

management to support the concurrent solving of multiple grids. 

ELLIPTIC PROBLEMS 

Elliptic problems arise in the solution to the Navier Stokes equations. The 

pressure field for incompressible flow and the steady heat equation are both elliptic. 

When the SIMPLE and SIMPLER algorithms of Patankar [ 17] are used to simulate 

incompressible flow, the solution to the pressure field must be refined far compared 



to the other fields. Thus an iterative solver will spend a large portion of its time 

refining the pressure field. 

An important characteristic of elliptic problems is that a small disturbance in one 

part of the domain has some effect everywhere in the domain [10]. This 

characteristic makes the solution of elliptic problems inefficient when a domain 

decomposition method is used [2]. ACM has shown great promise on serial 

machines when solving elliptic problems. The focus of this research is to develop 

Additive Correction Multigrid (ACM) on the Intel IPSC2 using a domain 

decomposition method. 

CONTRIBUTIONS OF THIS THESIS 

10 

Hutchinson and Raithby [12] applied a multigrid method to the conservative finite 

difference control volume method of Patankar [17]. This multigrid scheme was based on 

the Additive Correction method developed by Settari and Aziz [21]. This thesis is a 

continuation of the work of Hutchinson and Raithby by applying their additive correction 

multigrid algorithm to the IPSC2. Additive Correction Multigrid has been demonstrated to 

be an efficient distributed memory algorithm. 

This thesis is the first work that has been done by this research group in the area of 

parallel processing. The first phase of this research group's goals has been accomplished. 

It has allowed this research group to become familiar with parallel programming and it has 

created a grid description that will allow future modeling of the convective and unsteady 

terms of the advection-diffusion equation. The next phase of this research is to implement 

the BLIMM method of V anka [22] on the IPSC line of hypercubes. 



CHAPTER II 

DISCRETIZATION METHOD 

INTRODUCTION 

This chapter has three parts. The first part is a description of the partial differential 

equations that govern heat transfer. In the second part, a generalized grid description of a 

continuous domain is presented. This grid description allows computer modeling of 

Cartesian, orthogonal and non-orthogonal coordinate systems. This grid description is 

general enough to allow the modeling of many engineering problems. The third part of this 

chapter develops the control volume finite difference method. This method allows the heat 

equation to be modeled within the grid description previously presented. 

DIFFERENTIAL EQUATIONS 

Advection Diffusion EQuation 

The equations that govern heat and mass transfer have the general form of the 

advection-diffusion equation [ 17] 

a 
() t (p<p) + V·(pu<p) = V·(r"' V <p) + b (2.1) 

where tis the independent time, pis the fluid density, <pis the dependent variable, u is the 

velocity vector, r <pis the diffusion coefficient, and b<p is the source term. This equation 

consists of four terms: the unsteady, the convective, the diffusive and the source term 

respectively. This research is concerned with the solution of elliptic problems. It is the 

diffusive and the source term that are elliptic. Thus the PDEs that contain the advective and 
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unsteady portion of this equation are not analyzed in this research. For a description of 

these. the reader is directed to White [23]. 

Heat EQ.uation 

The equation that governs conductive heat transfer in a solid is the heat equation. The 

convective term vanishes, the dependent variable is temperature and the diffusive 

coefficient is the material conductivity 

ar 
peat = V · (k VT) + b (2.2) 

where Tis the temperature. c is the material heat capacity, k is the conductivity, and bis the 

distributed heat source. 

For steady heat conduction with uniform conductivity, Equation 2.2 reduces to 

Poison's equation. 

2 
kVT+b=O (2.3) 

All of the model problems that are investigated in this thesis are governed by Equation 

2.3. 

DISCRETIZATION 

When solving a heat transfer problem, one must first perform an analysis on the 

problem, hopefully reducing the governing PDE through relevant and accurate 

assumptions. If at this point a satisfactory analytical solution cannot be made, a numerical 

solution can be used. 

A numerical solution is not an exact solution to the PDE. A finite difference 

approximation reduces the continuous PDE to a discrete set of algebraic equations. The 
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solution to the discrete algebraic equations does approach the solution of the PDE as the 

number of grid points approaches infinity if the method is consistent [ 6]. Thus, it makes 

sense to solve a relatively fine grid to maintain the characteristics of the PD Es. For very 

fine grids it becomes unrealistic to solve this set of discrete equations with a direct method. 

An iterative method is more practical to use. 

Discretization Ap_proximations 

A numerical solution requires looking at the domain as a discrete set of control volumes 

rather than a continuum. The following assumptions are made about individual control 

volumes [17]: 

• The values of the scalar properties in the center of the control volume are the values 

of that property throughout the control volumes 

• Any distributed heat source in the control volume is assumed to be uniformly 

distributed throughout the control volume 

• The scalar properties can be discontinuous at control volume boundaries 

• Fluxes are uniformly distributed over the face of a control volume, and are normal 

to that control volume face 

• Fluxes between control volumes are conserved 

• Sum of fluxes into a control volume must equal the amount of mass that is 

amassing there 

Finite Difference Grid 

Figure 2 is a discretized domain in 2-D Cartesian coordinates. We define the i indices 

to go in the x direction and the j indices to go in the y direction. The black dots in Figure 2 

are the centers for each control volume. Notice that there are dots on the boundaries. 

These are boundary control volumes that have no thickness. In all problems the solver 

assumes that the problem has Dirichlet boundary conditions. That might appear to be a 



tremendous limitation but Neumann and Mixed boundary conditions can be modeled by 

assuming Dirichlet conditions. The procedure for implementing Neumann and Mixed 

boundary conditions is described in Patankar [ 17]. 
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Figure 2. Two dimensional rectangular discretized domain, in Cartesian 
coordinates. 
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Define N to be the number of control volumes for which the value is not known. These 

would be the internal control volumes in Figure 2, because the boundary control volumes 

are assumed to have Dirichlet conditions imposed. 

N= (ml -2)(£1 -2) (2.4) 

This implementation is not restricted to Cartesian coordinate systems. The above grid 

variables can be put into orthogonal coordinate systems such as axisymmetric and polar as 

shown in Figure 3. Non-orthogonal coordinate systems can also be modeled. The only 

restrictions are that shared control volume boundaries be the same size for the two control 

volumes that share them and that the grid is structured. 
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Polar Coordinates 
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Figure 3. Two dimensional Polar and Axisymmetric discretized grid. 

CONTROL VOLUME FINITE DIFFERENCE METHOD 

The method that is chosen for discretizing the domain is the conservative control 
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volume finite differencing. This method is chosen because it is a conservative method and 

thus well suited for the heat equation. Its drawback is that it is difficult to implement on 

complex geometries. Finite element analysis is better suited for complex geometries. The 

finite element method is not investigated in this research. 

This method is general enough that it also can model the convective and unsteady terms 

of Equation 2.1. Since this research is only concerned with the diffusive and source term, 

the discretization of the convective and unsteady terms is not included. The reader is 

directed to Patankar [ 17] or Anderson et al [ 1] for the description of how to discretize the 

convective and unsteady terms. 

Central Differencing 

As an example, look at the PDE for steady 2-dimensional heat conduction. The 

conductivity and the distributed heat source vary spatially only. The variable <pis used 

instead of T for generality. 



16 

a ( a"'} a f a"'} ax\,kax + ay\kay + b(x,y) = o (2.5) 

here the b is the distributed heat source. What is needed now is to represent equation 2.5 

with a set of algebraic equations. 

A single control volume in the grid that was described in Figure 2 is shown in Figure 4. 
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e •E ~y 
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Figure 4. A single control volume from Figure 1. 

The upper case letters E, W, N and Sare the centers of the control volumes that are east, 

west, north and south of the center control volume, respectively. The lower case letters 

refer to quantities that are defined at control volume boundaries. In the case of 2-D heat 

conduction the only relevant values at the boundaries are the heat fluxes. If convective 

transport is present, the fluid velocities are also defined at the boundaries [17]. 
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The grid is not necessarily uniform. A uniform grid would be one in which all control 

volumes have the same width and the same height. The conductivity and source term may 

vary throughout the domain. However, the conductivity and the source term in a single 

control volume are uniform throughout the control volume. 

Integrate Equation 2.5 over a single control volume. 

f[Mk~:) +~k~;)}w+ f bdo/; a (2.6) 

v v 

where do/= dx dy, and V = fl.x.6.y. But since Vis the volume per unit depth of the control 

volume and the function <pis defined to be continuous inside that control volume, the 

integral can be broken up and the order of integration can be changed to get 

n e e n n e 

ff ix\k ~: ~xdy +ff ~k ~:~ydx +ff bdydx = O (2.7) 

s w w s s w 

Since the source term is defined to be uniformly distributed throughout the control volume 

its integral becomes b6.x6.y. Now take the first term in this equation and evaluate the 

integral 

}j b(~:)dxdy= f n(f Mk~:)dx}y 
; f[(k~:).- (k~:)} 

(2.8) 



18 

and by the assumption that the fluxes are uniformly distributed over the control volume 

faces, Equation 2.8 is integrated to get 

=[(k~=t- (k~:)J~y (2.9) 

Similarly the second term in 2.8 can be integrated to get 

=[(k~;t - (k~;)J~x (2.10) 

Each term in these equations can be discretized to a five point stencil using a Taylor series 

expansion. This expansion will give an approximation that is accurate to O(~x2) or O(~y2) 

depending on the term. The details of the Taylor series expansion can be found in [17][6]. 

The Series expansions lead to 

(
ke o<p) = ke( <pp - <fJE) 

axe OXe 
(2.11) 

(
kw acp) =kw( <pp - <pw) 

ax w 8xw 
(2.12) 

(
kn o<p) =kn( <f'N - <pp) 

oy n 8yn 
(2.13) 

(
ks o<p) = ks( <ps - <pp) 

oy s Bys 
(2.14) 
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where ke is an equivalent conductivity between the center control volume and the east 

control volume. Insert Equations 2.11to2.14 into 2.9 and 2.10 and assemble to obtain 

where 

aPq>p = aE<fJE +aw q>w + aN<fJN + as<ps + b 

aE = kel'!..x 
OXe 

aW = kw!'!..x 

OXw 

aN = knl'!..Y 

Byn 

s ksl'!..Y a=--
Bys 

aP = aE + aw + aN + as 

(2.15) 

This is the finite difference approximation for the single control volume in Figure 4. 

Obviously there is a similar equation for each control volume in the domain. To keep track 

of which control volume is being ref erred to, use a two dimensional array that is the same 

size as the domain. Each coefficient in equations 2.15 is stored in its own array. In 

addition, the source term and the <p field have their own arrays. When an arbitrary i,j 

control volume in Figure 2 is being referenced, the finite difference equation is 

afJ'PiJ = a}J<tJi-IJ + afJ<pi+IJ + alJ'PiJ-I + diJ'PiJ+1+ biJ (2.16) 

Interface Conductivity 

Up to this point there has been no mention about adjacent control volumes with 

different conductivities. In Figure 5 the aE coefficient spans both the center control volume 

and the east control volume. If the east and center control volumes have different 

conductivities, the definition of ke needs some consideration. A simple arithmetic mean of 
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kE and kp will lead to erroneous results if the conductivities are orders of magnitude apart 

[17]. 

kp 

Pe 

ox ---e- ---
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kE 

qe • E 

1-. OXe+ 

ox -1 e 

Figure 5. Interface between two control volumes of different conductivity. 

What is important is that the flux qe is correct. That is, the value we choose to use for 

ke must reflect the physics that is involved between these two conductivities. The system 

in Figure 5 can be viewed as two thermal resistances in a series. ke is just the conductivity 

part of the equivalent thermal resistance. The equivalent thermal resistance is the sum of 

the two adjacent thermal resistances 

~=~+~ 
ke f1.y kE f1.y kp f1.y 

or 

ke = Oe kE kP 

kE Oe- + kp Oe+ 
(2.17) 

If the interface is midway between the two control volumes the equation for the interface 

conductivity becomes 



k = 2kEkP 
e kE + kp 

Equation 2.18 is known as the harmonic mean of kp and kE. 
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(2.18) 



CHAPTER III 

ADDITIVECORRECTIONMULTIGRID 

INTRODUCTION 

This Chapter first describes a simple method for solving the difference equations called 

Gauss Seidel. This method has been in use for a long time and is often considered 

antiquated. A second method is presented to solve multiple dimensional problems using 

the tridiagonal matrix algorithm as shown by Patankar [17]. This is the numerical solver 

that has been used up to this point by this research group. The tridiagonal matrix solver 

has been aided with a simple multigrid scheme called Block Correction. Block Correction 

is also described in this chapter. 

The additive correction multigrid method that was developed by Hutchinson and 

Raithby is presented [12]. This method is implemented with the grid cycling scheme that 

was presented by McCormick [5]. 

GAUSS SEIDEL 

In the previous chapter, the continuous domain was broken up into discrete control 

volumes. Recall that each control volume has an algebraic equation that links it to its 

immediate neighbors. Now the challenge is to develop a method to solve these resulting 

algebraic equations. A simple method, which is called Jacobi, is to take Equation 2.16 and 

solve for 'PiJ· 

'PiJ = (a}J'Pi-lJ + dfJ'Pi+lJ +afJ'PiJ-1 +afJ'PiJ+i+ biJ)lafJ (3.1) 
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Equation 3.1 can be applied to every control volume in the domain. A loop might start 

at the south west corner of Figure 2 and move to the north east corner, applying Equation 

3.1 to every control volume. The updated values for <i'ij are stored in an intermediate 

array. After the method has completed an entire sweep, one sweep going from the south 

west corner to the north east corner, the values of in the intermediate array are put into the <p 

array. Note that every new value for </)ij depends only on old values of its neighbors. 

Holding this intermediate array for the updated <p field is clumsy and requires extra 

memory. Another way to solve this problem is to eliminate the need for the update array. 

Instead, change the <p field as the method proceeds. This method, which is called Gauss 

Seidel (GS), changes </)ij based on values of its neighbors just like Jacobi. In the GS 

method, the south and west neighbors have already been updated in the same sweep. 

Equation 3.2 is the finite difference equation for GS 

<fJiJ = (a}j<p;_IJ + aTJ<i'i+IJ +afJ<f';J-I +d!J<fJiJ+t+ biJ)lafJ (3.2) 

In Equation 3.2, the <p* term represents a value that has been previously updated in the 

same sweep. These two methods are beautiful in their simplicity, but they are ineffective at 

solving large problems. This is because GS and Jacobi are very good at reducing high 

frequency, local errors but very poor at reducing low frequency, global errors [5]. They 

are ineffective because information only passes between two control volumes for each 

sweep. So as the problem becomes large, it takes more sweeps to propagate information 

through the domain. GS is a little better because updated values for <i'ij are based on 

values that have been updated in the same sweep. Thus information has the possibility to 

travel more than one control volume per sweep. Because information travels a little faster 

with GS, GS converges a little more rapidly that Jacobi [6]. The application of one GS 

sweep is called a relaxation. 



24 

IDMA 

GS and Jacobi are local methods because each control volume update is based only on 

its nearest neighbors. A control volume in one part of the domain is not directly affected by 

things going on elsewhere in the domain. What is needed is a method that updates control 

volumes based on all or part of the other control volumes in the domain. A method that 

behaves this way is referred to as a global method. The global method that is used is the 

Tridiagonal Matrix Algorithm (IDMA) [17]. IDMA is also known as the Line Gauss 

Seidel (LGS) method, when applied to two and three dimensional problems. 

Take the discretized domain from Figure 2 and look at the ith column, as shown in 

Figure 6. Because of our finite difference approximations, the values of any control 

volume in that column depend on the values in the two control volumes on either side and 

the values of the control volumes to the north and south. What can be done is to artificially 

treat the value of the control volumes on the east and west of the ith column as if they were 

known. With this assumption, any control volume in the center column depends only on 

the values of the control volumes to the north and to the south, i.e., by assuming that the 

values on the i+ 1 and i-1 columns are known, the field is reduced to a one dimensional 

problem for the ith column. 

Since the values of the control volumes in the adjacent columns are known, they can be 

moved to the right hand side of the equation. This becomes the new source term. The 

finite difference equation becomes 

afj </)iJ - af,j <l'iJ-1 - adtJ <l'iJ+I= bi,j + a}J ~i-IJ + a5 ~+IJ 

,,..... 

(3.3) 

where </)iJ is an adjacent column that is assumed to be known. Apply this equation to every 

control volume in the ith column. The result is a set of linear equations. This set of 
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j 

1 
~i ~ The ith column 

Figure 6. The ith column of the discretized domain. 

equations can be put into the more familiar form Ax = b, where A is a tridiagonal matrix 

that looks like Figure 7. 

Fortunately, tridiagonal matrices are very simple and straight forward to solve [6] [18]. 

The reader should note that the tridiagonal matrix solver is a direct method to solving the 

system in Figure 7. After the ith column has been solved, boundary information has 

traveled immediately throughout that column. This is in contrast to GS in which 

information moves only one control volume every sweep through the entire domain. GS 

and TDMA are also referred to as point and line solvers respectively. GS is a specific 

implementation of TDMA. Instead of updating an entire column for TDMA, half a column 

can be updated, or a forth, or even a single control volume. When we apply Equation 3.3 

to a single control volume, the result is GS. 
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Fiiwre 7. Matrix Form of Equation 3.3 Applied to a single ith column of the 
discretized domain in Figure 6. 
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The way TDMA progresses is to start at the i = 2 column. That column is updated by 

using Equation 3.3 and the tridiagonal matrix solver. The TDMA then updates the next 

column. This progression continues until the L2 column is updated. The columns are then 

updated in reverse order. Columns i = 1 and i = Ll are not updated because the values 

there are assumed to be known. A similar progression is performed for the rows, going 
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from j = 2 to j = m2 and back again. One single application of all of these progressions are 

referred to as one IDMA relaxation. 

ADDITNE CORRECTION 

The coefficients of Equation 2.16 are held in separate arrays to minimize memory 

requirements. All of those coefficients could be held in a single array, and the system of 

equations would be in the form 

A<p= b (3.4) 

where A is a pentadiagonal matrix. In this system the aE, aW, etc coefficients are held in 

the A matrix. The <p field is held in the <p vector and the distributed source term is held in 

the b vector. 

This system should not be confused with the system in Figure 7, which is the system 

that was derived from applying a IDMA relaxation to an arbitrary ith column. It is possible 

to look at this system of equations in either 2.8 or 3.4 forms. Both forms are algebraically 

identical. The difference equations are sometimes easier to manipulate if they are in the 

form of Equation 3.4. 

Residual and Error 

TDMA and GS are iterative methods. This means that one of these algorithms is 

continually applied to the last best guess to the domain. The application of one of these 

methods will create a new best guess that is hopefully closer to actual solution. This 

iteration process continues until a satisfactory solution is achieved. To qualitatively 

evaluate what a satisfactory solution is, the residual and error must first be defined. 

Define the actual solution to the difference equations to be <p. The field <p is generally 

never known. All that is known is the last approximation to cp which is designated cp*. 
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Once an original guess to q>* is made, TDMA or GS is continually applied to the domain. 

Hopefully, each time, q>* gets closer to q>. If q>* is put into Equation 3.4, there will be 

"something" left over. This "something" is defined as the residual vector. 

R = b - Aq>* (3.5) 

The residual vector represents how far q>* is away from q>. A scalar measure of the size 

of the residual vector can be found by taking the Li norm of R 

L2 m2 ( ~ 
r = 11 R 112 = i~2 i ~ R7J) (3.6) 

where 

w * _p_ * _c: * _N * _p * 
Rij = aiJ'Pi-lJ + U{J'Pi+lJ + atJ'PiJ-1 + U{J'PiJ+t+ biJ - «iJ'PiJ 

The scalar residual will hence be referred to as simply the residual. 

Define the error to be the difference between q>* and q>. 

* e=q>-q> (3.7) 

The value of the error is not generally known because it depends on the exact solution to 

the difference equations. It is useful, however, in the development of additive correction 

and additive correction multigrid. 

Additive Correction 

Take Equation 3.7 and solve for q> and substitute into Equation 3.5 to get 

A(e + q>*) = b 

which can be rearranged to get 

Ae = b- Aq>* 



substituting the right hand side with Equation 3.5 to get 

Ae = R 
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(3.8) 

Equation 3.8 states that the distributed heat source b can be replaced by the residual 

vector that was calculated based on <p*. If this equation is solved, the result is the error to 

<p*, not the solution <p. The error is also be referred to as the correction to <p. Since the 

correction is now known, it can be added to <p* to get a better approximation to <p. 

BLOCK CORRECTION 

What has been described previously are methods to solve the two dimensional problem. 

It is possible to approximate the two dimensional problem as a one dimensional problem. 

The reason for doing this is that smaller problems (one dimensional in this case) are 

computational less burdensome to solve. The idea is to advance the solution while only 

paying a smaller computational price. The Block Correction Method (BC) advances the 

solution of the two dimensional problem by solving a one dimensional problem [21]. 

BC is a multigrid method. As the name implies, multigrid uses multiple grids to 

advance the solution of the <p field. In the BC method, two grids were used. The first grid 

is the grid that was developed to solve the <p field. The second grid is a 1-D grid that is 

used to calculate the correction to the <p field, see Figure 8. 

This second grid is constructed from the first grid. As shown in Figure 8, the x 

direction width of the control volumes in the correction grid (second grid) is the same as the 

width of the control volumes in the first grid. The y direction width of the control volumes 

in the correction grids are as long as the y dimension of the domain. A similar correction 

grid can be constructed for the row corrections. 



yl_lllllllllllllll 
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the q> values 

Fi~ure 8. Multiple grids used in the Block Correction Method. 

As with the IDMA method, take a single column in the domain in Figure 6. Assume 

that every control volume in that column can be expressed as the last estimate for that 

control volume plus some correction for that entire column. 
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* 'PiJ = 'PiJ + 'Pi (3.9) 

where <p;J is the last estimate of 'PiJ and <fii is the correction for the entire ith column. Take 

Equation 2. 16 

afJ'PiJ = a}J'Pi-lJ + afJ'Pi+lJ +alJ'PiJ-1 +afJ'PiJ+l + biJ 

and sum up over all the control volumes in the ith column. Then insert Equation 3.9 and 

get 
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m2 m2 

:L af/ <f';J+"iPi) 
~ w * -. 

= £.J ai/<f'i-1J+<f'1-1) 
j=2 j=2 

m2 
~ E * -. 

+ £.J aiJ< <f'i+1J+<f'1+1) 
j=2 

C3.10) 
m2 

+ :L ari<f';J_1+"iPi) 
j=2 

m2 m2 

+ L dfJC<p;J+I+<f'i)+ L biJ 
j=2 j=2 

If terms are collected, Equation 3.10 can be rewritten as 

[

m2 m2 m2 ] 

<f'i j~z Cc/()-j~z Cd/,j)-j~2 Car) 

m2 

= "iPi+l :L car) 
j= 2 

m2 m2 

+ <f'i-1 L Ca}j) + L CRiJ) 
j=2 j=2 

C3.11) 

where Rij is the residual for i,j control volume and is defined in equation 3.6. Equation 

3.11 is the equation for the ith column correction. There is a similar equation for each 

column in the domain. All these equations can be put into the Ax = b form, and again, A 

is a tridiagonal matrix. This system can be solved directly for all the <{Ji using the same 

tridiagonal matrix solver that is used in the TDMA algorithm. 

The 2-D problem for cp has been reduced to a 1-D problem for the correction for each 

column in the domain. A correction for all of the columns can be found directly. Each 

correction can be added to the last estimate for the entire column to get a better 

approximation to the solution. An equation similar to 3.11 can be developed for all the 



rows in the domain. One BC sweep is defined as one i direction sweep (updating the 

columns) and one j direction sweep (updating all the rows). 

ADDITIVECORRECTIONMULTIGRID 

Introduction 
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BC constructed correction grids in an inflexible way. In particular, one correction grid 

control volume was constructed from an entire row or column of q> grid control volumes. 

The derivation of Additive Correction Multigrid (ACM) is similar to BC except in the 

construction of the correction grid and the number of correction levels. 

Additive Correction Multigrid 

First construct a coarse grid from the fine grids of Figure 2. Capture at most n fine grid 

control volumes (in Figure 9, n = 4). The indices of the fine grid are i andj and go in the x 

and y direction respectively. Let the indices of the coarse grid be 1 and m, respectively. 

Figure 9 shows the coarse grid, bold lines, superimposed on the fine grid, fine lines. 

The equations for the coarse grids are developed from the fine grid equations. What 

will be done is to sum up all the fine grid control volumes that lie inside a single coarse grid 

control volume. To facilitate this, break up the fine grid coefficients into two pieces. For 

example, the east coefficient can be rewritten as afJ = afJ + afJ where afJ = 0 if 'Pi+ 1 J is 

outside the coarse grid block and afJ = 0 if 'Pi+ 1 J is inside the coarse grid block. This is 

possible because control volume finite element is a conservative method. Assume that n 

fine grid control volumes are captured inside a single coarse grid. Substitute the new 

definition for the coefficients into the difference Equation 2.16 and get 

_p -E -W -N -s 
UiJ'PiJ - aiJ'Pi+lJ - aiJ'Pi-lJ - «iJ'PiJ+l - «IJ'PiJ-1 

"'R "'W "'N "'S = <I{J</)i+lJ + aiJ'Pi-lJ + «iJ'PiJ+l + «IJ'PiJ-1 + biJ 
(3.12) 



j,m 
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x 

Figure 9. Coarse correction grid superimposed on the fine grid q> field. 
The bold lines denote coarse grid entities. 

If the n fine grid control volumes are summed up inside the single coarse grid control 

volume, the difference equation becomes 

2: viJ<f'iJ = 2: Caf;;<fJi+lJ + a}J<fJi-lJ + diJ<f'iJ+l + Ct7J<f'iJ-1 + biJ) 
n n 

where 

~~~~~ 
D~=~J-~-a~-~J-~ 
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(3.13) 

* As in the other solver techniques, the values for <f'iJ are never known. Instead define <l'i,j 

to be the present best guess to the solution and Oz,m to be the correction to the entire coarse 

grid control volume. That is, 81,m is the correction for all n control volumes that have been 

captured by the l,m coarse level control volume. They are related by 

<f'iJ = <f'~J + 0/,m (3.14) 



which can be inserted into Equations 3.12 to derive the difference equation for the coarse 

grid control volumes. 
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af.m81,m = af.m81-1,m + af.m81+1,m +ltf.m8l,m-1 +df.m81,m+1 + Rz,m (3.15) 

af.m = L DiJ -E L "'F. az = a;· ,m IJ 
-W ~"'W 
az,m = Li aiJ 

n n n 

- ~ "'E * "'W * 
Rz,m =Li (biJ + <IIJ'Pi+lJ + aiJ'Pi-lJ 

n 
"'N * "'S * *) + aiJ'PiJ+l + <IIJ'PiJ-1 - DiJ'PiJ 

(3.16) 

(3.17) 

Equation 3.15 can be solved to obtain a correction to Equation 2.16 using GS or 

TDMA. If the fine grid has N control volumes, the coarse grid will have approximately 

N/4 control volumes. So the work to compute a correction to the fine grid takes 

approximately one quarter of the computational effort of solving the fine grid. 

If the coarse grid is still to large, another grid can be constructed on top of it. ACM can 

be recursive, see Figure 10. Coarse levels are created until there is only one control 

volume in either the x or y direction. The generated grids are numbered from 1 (finest) to 

ML (coarsest). 

Brandt [3] and Briggs [5] both give rigorous description of why multigrid works. 

They both start by looking at the error. The error is the difference between the last estimate 

to the field and the exact solution. This error can be broken up with a Fourier analysis to a 

series of periodic functions with variable wavelengths. These functions are called modes. 

The wavelengths of error modes vary from the size of the grid spacing to the size of the 

domain. GS is slow to converge because it is only efficient at solving the error modes with 

wavelengths that are of the order of the grid spacing. Multigrid schemes work because 

these multiple grids allow efficient relaxing of all the modes of the problem. 



§ 
~ 
~ 

• 
• 
• 

level ML 

c:: 
0 ·p 
c..> .E ]..~~~~~~~----~~-------~--~---..~~~~~ 
<fl 

~ 
~ c:: ....... 

Fine Grid 

cp Field 

Figure 10. Recursive additive correction grids. Grid levels are labeled 
from 1 (finest) to ML (coarsest). The action of going from a finer level to a 
coarser level is called restriction. The action of going from a coarser level to 
a finer level is called interpolation. 

ACM Implementation 
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The restriction operation can be broken into two parts: restricting the coefficients and 

restricting the residual. Equations 3.16 and 3.17 are used to restrict the coefficients and the 

residual respectively. The action of going from a coarser to a finer level is called 

interpolation and is done via Equation 3.14. A relaxation operation is defined as a single 

TDMA sweep. GS is not used to relax the field because it converges slower than TDMA. 



A Simple ACM cycle 

Imagine a simple ACM progression that contains only two levels. Level one would 

hold the temperature field. The second level would hold the correction to the temperature 

field. A single cycle would be organized as follows: 

Begin Simple ACM cycle: 
restrict coefficients to level 2 

restrict residual to level 2 

relax level 2 Sc times 

interpolate correction to level 1 

relax level 1 Sf times 
end Simple ACM cycle 

Level two could be relaxed to machine accuracy. At first that might seem to be a 

reasonable thing to do since the computational effort on the second grid will be about a 

forth compared to level one. However, what is generally done is to only advance the 

solution on level two by a small amount. Miller and Schmidt [16] found that multigrid 
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schemes were the most computationally efficient if the residual at each level was reduced by 

approximately one half. They also found that the optimal residual reduction amount was 

problem dependent 

V and F cycles 

McCormick [15] defines two methods for cycling through the domain called F and V 

cycles. These cycles use all the grids. A V cycle progresses as 

Begin V cycle(N) 
forn=ltoN-1 

restrict residual to level n+ 1 
relax level n+ 1 Sc times 

end for 

forn=N-ltol 
interpolate correction to level n 

endfor 
relax level 1 Sf times 

end V cycle 



Multiple V cycles can be applied until the residual, Equation 3.6, is reduced by a user 

specified amount £. Call this progression an ACM V cycle 

Begin ACM V cycles: 
ro = scalar residual of level 1 
Ynew = 10 *YO 
1=1 

for n = 1 to ML 
restrict coefficients to level n + 1 

end for 

while ( rnewfro) > E 
V cycle (ML) 
l=l+l 
r new = scalar residual oflevel 1 

end while 

end ACM V cycles 

There is another cycling scheme that is defined by McCormick [15] is the F cycle. 

Begin F cycle: 
ro = scalar residual of level 1 
Ynew = 10 * ro 
I= 1 

forn = 1 to ML 
restrict coefficients to level n + 1 

end for 

while ( Ynewfro) > E 
form=2tOML 

V cycle (m) 
endfor 
1=1+1 
rnew = scalar residual of level 1 

end while 
endF cycle 

Both of F and V cycles are shown in Figure 11. 
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It should be noted that each grid level is relaxed by doing a predetermined number of 

sweeps. The fine level is relaxed Sr times and all other levels are relaxed Sc times. What 

would be ideal is to reduce the residual on all levels by an optimal amount [16]. An optimal 

amount is not known but can be approximated [16]. To reduce the residual by the optimal 
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amount requires calculating the residual at each level, each time that level is relaxed. This is 

not done because calculating the residual requires a lot of work compared to the effort of 

relaxing a small amount. So what is gained by having an optimal procedure is lost by 

monitoring the residual. 



CHAPTER IV 

SERIAL RES UL TS 

INTRODUCTION 

As discussed in Chapter I elliptic problems are of particular importance in numerical 

heat transfer analysis. Because of their importance, the bulk of this research is directed at 

their solution. The first strategy of this research was to implement ACM on serial 

machines. Serial machines are more familiar than parallel computers and the environment 

is better for code development. All the results discussed in this Chapter were obtained on a 

Tektronix XD/88 workstation. After the code was successfully implemented on a serial 

machine, it was moved to an Intel model IPSC2 hypercube. The second strategy, 

implementation of ACM on parallel machines, is discussed in Chapter V. 

This chapter has three parts. The first part is the description of model problems that are 

used for comparison of serial and parallel results. The second part is a description on how 

the code was verified for physical reality. The final part is an analysis of how anisotropic 

problems affect ACM, TDMA and BC performance. 

MODEL PROBLEMS 

Model Problem #1 

One way to indicate the consistency of ACM is to arbitrarily create an algebraic cp field. 

This cp field is arbitrary because it does not necessarily correspond to any physical process 

although it is an exact solution to the Poisson equation. This field can be put into the 

Poisson equation to derive the distributed source term. This source term is used in the 

finite difference equations. The cp field that was chosen is 



<p(x,y) = x(l - x2) y(l - y) 

defined on 

n = { (x,y): O~,y~l} 

which is called model problem #1. 

This field is chosen because of its elliptic behavior and its convenient Dirichlet 

boundary conditions. If this equation is put into the heat equation, the result is 

2 V <p = -[2(x - x3) + 6x(y - y2)] 

with boundary conditions 

<p=O on an 

which gives the source term. 

Model Problem #2 
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(4.1) 

(4.2) 

The focus of this research is the effectiveness of ACM solving elliptic problems on 

distributed memory parallel computers. To gage this effectiveness on several platforms, a 

model problem has been chosen. This problem is steady 2-D heat conduction in a square 

region as shown in Figure 12. This problem is referred to as model problem #2. The units 

are arbitrary. This problem was chosen because of its elliptic nature and its convenient 

Dirichlet Boundary conditions. 

Model Problem #3 

The problem that Kelk:ar [14] used to test the efficiency of BC and TDMA on 

anisotropic fields is heat conduction in a flat media with square embedded heat generating 

rods. The conduction is two dimensional with Dirichlet boundary conditions. This 

problem is referred to as model problem #3 and is shown in Figure 13. Figure 14 is an 

enlargement of the computational domain. On the computational domain, the east, west 
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Figure 12. Model Elliptic problem #2. 

and south boundaries are adiabatic due to symmetry. Kelkar defined the ratio of the 

conductivities to be 

k1 c=-
k1 

where ki and k1 are the thermal conductivities of the two regions in Figure 14. 
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Figure 13. Physical description of model problem #3. 
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Figure 14. The computational domain of model problem #3. 

VERIFICATION OF CODE 

The accuracy of the ACM code was verified with a global energy balance and by 

numerically solving model problem# 1 and comparing the result with the analytical 
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solution. An energy balance is done by summing up the heat transfer from all non

adiabatic boundaries. This amount must equal the amount that is input as a distributed heat 

source. The energy must balance because control volume finite difference is a conservative 

method [17]. ACM has shown itself to have an exact energy balance for model problem #1 

and all other problems that were solved. 

One question to ask, is how well do these difference equations approximate the solution 

to the PDE. A method is called consistent if the iterated solution approaches the actual 

solution as the number of control volumes approaches infinity [6]. Rather than formally 

prove consistency, it is indicated by experiment. 

Now the numerical solution that uses Equation 4.2 as a source term will have 

intermediate field value of cp* as the numerical solution progresses. The actual analytical 
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solution is defined as <p. The difference between these two fields are reduced to a 

normalized scalar value, e, by taking the L2 norm of the difference and dividing by the Lz 

norm of the exact field. 

.L 

II q/ - <p 112 
e- -

- II <p 112 -

m2 L2 ( )2 
j~2 i~2 <p;J - </JiJ 

m2 L2 

I I (<fJiJ)
2 

(4.3) 

j=2i=2 

The scalar value e is a normalized value for the difference between the iterated and exact 

field. This was done for several grid sizes and the results are shown in Figure 15. It can 

be seen from Figure 15 that the normalized error flattens out after a certain number of 

iterations. This is the point at which the iterated solution reaches the solution to the discrete 

finite difference equations to within machine accuracy. As the grid size is made finer, this 

flat part occurs at a smaller value because the difference equations approach the exact 

solution. This indicates consistency for the ACM. 

COMPUTATIONAL RESULTS 

The execution time of ACM can be measured in work units. A work unit is defined as 

the time it takes to do a single relaxation on the finest level. Brandt [3] proved that with an 

optimal implementation of a multigrid scheme, the number of work units to solve a problem 

is independent of problem size. The execution time of a basic TDMA solver can also be 

measured in work units. With a TDMA solver, the work units will be the number of 

IDMA relaxations that were required to solve the problem. The work units of IDMA and 

ACM solving model problem #2 are compared for various grid sizes in Figure 16. 
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Figure 15. The L2 Norm of the difference between the numerical and exact 
solution of Equation 4.2 using ACM, V cycles. I is the number of V cycles 
performed. 

The ACM line should be flat if the number of work units is independent of problem 

size. However, the number of work units does increase slightly with problem size, 

indicating that ACM is a sub-optimal form of multigrid. There are two reasons why it is 

not optimal. The first is that the residual reduction is not monitored on each level. The 

reduction of the residual at each of these levels is not the optimal amount. The second 

reason is that the ACM interpolation scheme is not weighted. However, the ACM line is 

close to being flat compared to the TOMA line. The loss of optimality is fairly negligible 

when compared with the improvement over basic TOMA. 
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Figure 16. Work Unit convergence rate of ACM and TDMA, solving model 
problem#2. 

The use of work units as a measure of computational efficiency is not as tangible as 
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actual wall clock time. The time to solve the problem and how well that execution time 

scales with problem size is the most practical measure of computational efficiency. The fact 

that the number of work units for ACM should be independent of problem size means that 

the execution time of ACM should be linear in problem size. This is true if the operational 

count to do one relaxation on the finest grid is proportional to problem size. The time to do 

one TDMA relaxation is essentially linearly proportional to problem size. Figure 16 is 

replotted in Figure 17 except with the ordinate measured in execution time. 
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Figure 17 shows that the execution time of ACM is proportional to N with an exponent 

of 1.5. If the ACM was optimal, this exponent should be 1. The TDMA scales as N 

squared. The decrease of an exponent of 0.5 might not seem impressive until it is noticed 

that the execution time of ACM is more that an order of magnitude lower that the TDMA for 

N = 10,000. Thus, ACM is very efficient compared to TDMA for large N. 

The next issue to investigate is the effect of ACM cycling scheme on execution time. F 

and V cycling schemes were used to solve model problem #2. The execution times are 

shown in Figure 18. 

Figure 18 indicates that there is not a large difference between using V and F cycles. V 

cycles are favored over the use F cycles because one or two F cycles will drive the solution 

to machine error. This is actually unwanted for nonlinear problems. With nonlinear 
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problems, the finite difference coefficients are a function of the <p field. A nonlinear 

problem is solved by iterating the <p field a small amount and then recalculating the 

coefficients. After the coefficients are recalculated, the field is advanced again. It turns out 

to be inefficient to advance the solution very far between coefficient updates. Simply, F 
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Fi~ure 18. Rate of convergence of ACM using V and F cycles solving 
model problem 2. 

cycles do too much work per iteration for nonlinear problems. 

Anisotropic Problems 

Heat conduction in materials with large differences in thermal conductivities occur quite 

often in engineering practice. The convergence of TDMA deteriorates rapidly with an 



increase in the differences in conductivity. This property of TDMA is investigated by 

Kelkar [14]. Kelkar also describes how the application of BC significantly increases the 

convergence rate of TDMA. Since BC is an additive correction method, it would be 

expected that ACM should perform well on anisotropic problems. 
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Two values of c were used, c = 1.0 and c = 1.0 x 10s, for model problem #3. As can 

be seen from Figure 19, when c = 1.0 (the material is isotropic) TDMA and ACM 

converge. The convergence of TDMA is aided with the addition of BC. The ACM still 

drives to the solution more rapidly than TDMA or TDMA with BC. 
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Figure 19. Convergence of model problem #3 when c = 1.0 for ACM, 
TDMA and TDMA with BC. Solved on a 31 x 31 grid. 

However, as shown in Figure 19, the TDMA algorithm stalls when c increases by 

orders of magnitude. When a BC is added to every fifth TDMA relaxation, the solution 
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converges. Still, the ACM drives to the solution faster. ACM solved both problems in the 

same number of iterations. This is also true for the TDMA with BC. 
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Fi~ure 20. Convergence of model problem #3 when c = 1.0 x 10s for 
ACM, TDMA and TDMA with BC. Solved on a 31 x 31 grid. 

A grid size of 31 x 31 was intentionally chosen so that some of the coarse grid control 

volumes would be constructed from both materials. It might be expected that these coarse 

grid control volumes would return a correction that would not accurately represent the 

gradient at the material interface. This may in fact be the case, but the relaxer on the finest 

level is able to fix that gradient. If the fine grid field is close to the solution, then the 

residual that gets restricted will be small. Thus the correction that will be interpolated will 

be small. It appears that ACM (and BC) will not return a correction that will divert the field 

away from the solution. 



CHAPTERV 

PARALLEL RESULTS 

INTRODUCTION 

This chapter has four parts. The first part is a grid description that defines how the 

finite difference grid is solved on the IPSC2 with domain decomposition. The second part 

is a description of the parallel implementation of TDMA and GS, along with computational 

results. The third part is a description of the parallel implementation of ACM, along with 

computational results. The final part is a discussion of possible areas of future research. 

All results in this chapter are obtained by solving model problem #2. 

The goal of the research is to solve Equation 2.16 over a physical domain using domain 

decomposition. Domain decomposition requires that data is distributed among the 

processor nodes used to solve the problem. In this chapter the terms global and local will 

be used to distinguish between the entire data set and the data resident in the memory of a 

single node, respectively. The domain that is distributed on a single node will be referred 

as that node's subdomain. 

GRID DESCRIPTION 

Globally, the grid is the same as that described in Chapter II. The domain 

decomposition occurs along control volume boundaries as shown in Figure 21. The light 

lines denote control volume boundaries and the bold lines are the node's subdomain 

boundaries. In Figure 21, node 0 owns the control volumes inside its subdomain, and no 

other. 
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Figure 21. Domain decomposition of the Cartesian Grid that was presented 
in Chapter III. 

Handling Boundaries 

The solvers that were presented in Chapter III assume that boundary control volumes 

are known. These solvers never update the values of the boundaries, instead boundary 

updates are done between relaxations. See Patankar [ 17] for a description of handling 

more complex boundary condition types. 

51 

In Chapter ill, all the boundaries were "real". In a domain decomposition approach, 

there are now two types of boundaries, real and shared. Both boundary conditions are 

treated as Dirichlet. The difference is in the construction of the coefficients. In Figure 21, 

node 0 has a real west boundary and a shared east boundary. Figure 22 is a more detailed 

view of those boundaries. The distance from an adjacent control volume to the boundary 

control volume is different if the boundary is real or shared. This distance is longer for a 

shared boundary because that distance (8x8) extends past node O's boundary into node 1 's 

domain. Thus this longer distance will be used to construct the coefficients on that 

boundary. 
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Figure 22. Node O's east and west boundaries. 

Node 0 owns the control volumes on its western boundary. The western boundary 

control volumes are handled as "real" boundaries. Node O's eastern boundary control 

volumes are the first column of control volumes in the grid owned by node 2. Node 2 is 

able to change the value of the control volumes that node 0 thinks are its eastern boundary. 

After node 2 refines the value of node O's boundary values, node 2 will send them to node 

0. Likewise node 0 holds the control volumes that node 2 thinks is its western boundary 

control volumes. Node 0 updates these boundary values and sends them to node 2. Thus, 

it is a node's neighbors that update shared boundaries. 
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Gray Codin~ 

The hypercube can be configured as a mesh as seen in Figure 1. The domain 

decomposition can be done in such a way that the adjacent domain pieces are owned by 

nodes that are adjacent in the hypercube. This is called gray coding [7]. This is done 

because message passing is only necessary between pieces of the domain that are adjacent. 

If the hypercube is laid out in a gray code fashion, then messages will only be sent between 

nodes that are nearest neighbors on the hypercube. No messages will have to be routed 

through intermediate nodes. 

PARALLEL IMPLEMENTATIONS OF GS AND IDMA 

Swappin~ Boundaries 

Every node that has a shared boundary must send updated boundary information to the 

node that also shares that boundary. The action of updating boundary information is called 

a boundary swap. 

As the number of nodes increase the swapping of boundaries must be carefully 

orchestrated. A red-black scheme has been adopted. Nodes that are mapped along the 

same vertical line are either red or not red. Nodes that are mapped along the same 

horizontal lines are either black or not black. The domain that is broken among eight nodes 

looks like Figure 23. 

The squares in Figure 23 are subdomains and these should not be confused with 

domain control volumes. These subdomains are the node's pieces of the global domain. 

Each node can be both black or red. The scheme progresses as follows: first the east and 

west shared boundaries are swapped. 



~ re<l 

~black 

Figure 23. The node mapping for the red-black scheme for eight nodes. 

red send east 
not red send west 
re<l send west 
not red send east 

not red receive from west 
re<l receive from east 
not red receive from east 
red receive from west 

Then a similar swapping goes on in the north south direction. 

black send north 
not black send south 
black send south 
not black send north 

not black receive from south 
black receive from north 
not black receive from north 
black receive from south 
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After a boundary swap is complete<l, each processor with a shared boundary will have 

new values for that boundary. 

Parallel Performance 

Performance of a parallel algorithm is measure<l by spee<l up and parallel efficiency 

[19]. Speed up is defined as 

Su (m) = .!l_ 
't'm 

(5.1) 
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where i-1 is the time to solve the problem on one node and 't'n is the time to solve the 

problem on n nodes. Parallel efficiency is defined as 

1'/(m) = -3__ x 100 
m't'm 

(5.2) 

Execution time is also important in quantifying the performance of a parallel algorithm. 

In general, for a fixed number of finite difference control volumes, as the number of 

nodes increases, the parallel efficiency decreases. This loss of efficiency is because as the 

number of nodes increase, the size of each node's subdomain decreases. Each node 

spends a larger portion of its time in communication rather than in computation. 

GSandTDMA 

Parallel TDMA and GS versions are similar in implementation. After the hypercube has 

been allocated, each node is given its domain information. This domain information is the 

size of the domain, the node IDs of its neighbors and an initial guess for the field. Each 

node allocates the necessary memory to hold its piece of the domain. Then the execution of 

GS proceeds as 

Begin GS: 

end GS 

set ro equal the global value of the residual 
'new= lO*ro 

while (rnewf'O) > E 
for n = 1 to N8 

relax once with GS 
end for 

swap boundaries 
set r new equal the global value of the residual 

end while 
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Ns is the number of relaxations that are performed between boundary swaps. The TDMA 

implementation is analogous except that a TDMA relaxation is performed rather than a GS. 

After each boundary swap, each node calculates the value of the residual in its domain. 

The nodes then globally sum up these residuals. It is important that the global residual is 

calculated after the boundary swap. To illustrate why the order is important, look at Figure 

22. Node O's eastern boundary is the first column in node 2's domain. Both node 0 and 

node 2 have a copy of the values in that column. Node 0 cannot change those values but 

node 2 can. Node 2 changes those values during a relaxation operation. The only time 

both nodes have the same version of those values is immediately after a boundary swap. 

For the global residual to be correct, each node must calculate the residual after a boundary 

swap. 

Swaps versus Domain Relaxin~ 

Between boundary swaps, a certain number of relaxations are performed. The optimal 

number of relaxations between boundary swaps is investigated here. Figure 24 is the 

speedup of the parallel version of GS, solving model problem #2. The different curves 

represent various values of Ns The top dotted line represents the line of perfect speed-up 

which is never attained. 

Figure 24 shows that it is important to do a minimal amount of work between boundary 

swaps. What happens is that the values for the shared boundaries are erroneous until the 

solution is finally obtained. If a number of relaxations are performed between boundary 

swaps, a lot of computational work is wasted refining the field based on bad shared 

boundary values. 

Computation versus Communication 

Figure 24 shows another important aspect of parallel programming. The speedup for 

this problem was poor. With 32 processors the best speed up is 12.4. That gives a parallel 
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Figure 24. Parallel GS on a 48 x 48 grid solved on the IPSC2. The 
problem being solved is model problem #1. 
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efficiency of 38.8 percent. This poor performance is because the problem is too small for 

the number of processors used. The time to communicate is quite large compared to the 

time to execute processor instructions. The time to communicate is proportional to the 

length of the domain. The time to relax the grid is proportional to the area of the node's 

domain. By solving a larger problem the ratio of area to length is increased. Thus, the 

ratio of computation time to communication time will decrease. The number of processors 

used should be based on the size of the problem. The domain was broken up so that each 

piece of the domain is as square as possible. This will maximize the ratio of domain area to 

domain length. Despite the loss of parallel efficiency the 32 node solution with Rs = 1 took 

the least amount of wall clock time. 

Model problem #2 was solved again on the IPSC2, but this time on a 192 x 192 grid 

and with TDMA. There was one relaxation per boundary swap. Figure 25 shows that for 
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large problems, GS parallelizes almost perfectly. This is because GS is a local method. 

Each control volume is updated by its neighbors only. GS is almost immune to the effect 

of domain decomposition. The TDMA has poorer speedup. The loss of parallel efficiency 

for the TDMA is because it is a global method. A TDMA relaxation updates an entire 

column or row. If it is done on one node, this column or row spans the entire domain. 

One TDMA relaxation will cause information that reflects both boundaries to travel through 

the domain. By implementing domain decomposition, this boundary to boundary 

information transfer is severed. The TDMA relaxations are now done on columns or rows 

that touch shared boundaries. The TDMA refinements are less accurate because shared 

boundaries may not be accurate. Thus domain decomposition affects the parallel efficiency 

of global methods to a greater extent. 
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Figure 25. Model problem #2 solved with parallel GS and TDMA on a 192 
x 192 grid. These results are from a 32 node IPSC2. 
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Table I is a summary of the execution times for the runs that were made in Figure 25. 

Both TDMA and GS took a very long to solve the problem. On one node, the TDMA was 

20 percent faster than GS. As the number of nodes increased, the domain decomposition 

took its effect on execution time of the TOMA. At 32 processors, the execution times were 

approximately equal for TDMA and GS. 

On serial machines it makes sense to use TDMA over GS because for single 

processors, TOMA is much more efficient. Table I shows that for model problem #1, the 

benefit of TDMA is lost due to domain decomposition. So for larger number of 

processors, it would be worth investigating GS as a relaxer. 

Another issue that was not investigated in this research is the application of these 

methods on a hypercube with cache memory and vector processing, specifically the i860 

which is the next generation of Intel hypercube. The GS can be written in a one 

dimensional data structure so it should vectorize well and take advantage of cache memory 

[20]. GS might offer significant performance over TOMA for these machines. 

TABLE I 

EXECUTION TIME FOR PARALLEL GS AND TDMA, SOLVING 
MODEL PROBLEM #2ON1HE IPSC2 WITH A 192 X 192 GRID 

GS IDMA 
Num. Nodes Time (hrs) Su Time (hrs) Su 

1 25.7 1 20.4 1 
2 12.9 2 11.2 1.8 
4 6.2 4 5.8 3.6 
8 3.3 7.7 3.1 6.7 
16 1.7 15.2 1.6 12.8 
32 0.89 29.0 .88 23.3 
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PARALLEL IMPLEMENTATIONS OF ACM 

Parallel Grid Definition of ACM 

The grid definition for ACM is the same as for the serial implementation. The fine grid 

is distributed among the nodes like GS and TDMA. Each processor constructs all higher 

grid levels from the finest grid level. In other words, each node owns the coarse level 

grids that are constructed from its fine level control volumes as depicted in Figure 26. The 

boundaries of the all coarse grids occur at the same place in the domain as the fine grids. 

Coarse grids are constructed until there is only one control volume in the x or y direction, 

in each subdomain. TDMA is used as the relaxer. 

Each node was given the same number of fine grid control volumes. This was done so 

that the nodes would construct the same number of coarse grid levels. Giving each node 

the same size problem insured load balancing among the nodes. 

The parallel version of ACM progresses like its serial counterpart. It can either perform 

F or V cycles with a predefined number of relaxations at each level. A predefined number 

of relaxations insured that no processor would finish first and be idle. No relaxing is done 

after an interpolation except at the finest level. 

What constitutes a relaxation operation is different from the serial ACM. It was found 

that the best convergence from GS and TDMA occurs when one relaxation is done between 

boundary swaps. Because of this, one relaxation operation now refers to the application of 

a single IDMA relaxation operation and a boundary swap. 

There are two values that affect the ACM execution. These values are the number of 

relaxations done on the fine level and the number of relaxations that are done on all the 

other levels. The optimal number of relaxations depend on the number of nodes. This is 

because there is an optimal amount for which the residual should be reduced on every level. 

As the problem is solved on a larger number of nodes, it takes a greater number of 

relaxations to reduce the residual by this amount. 



Figure 26. Grid description of parallel ACM. Each node owns all coarse 
level control volumes that are coincident on its fine grid control volumes. 

The definition of speedup is based on the fastest time for a single processors. To 

compute the speedup of ACM, it is necessary to make several runs for each number of 

nodes. The number of relaxations between boundary swaps on each grid is varied for 

these runs. The best execution time for each set of nodes can then be compared. 
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The speed up for ACM running V cycles on the 192 x 192 problem are shown in 

Figure 27. It can be seen that the speedup are about the same as the TDMA. Table II has 

the wall clock time for ACM, TDMA and GS all solving the 192 x 192 problem. The 

execution time of ACM is more than an order of magnitude lower than the TDMA or GS. 

TABLE II 

EXECUTION TIME FOR PARALLEL GS, ACM AND TDMA, 
SOLVING MODEL PROBLEM #2 ON THE IPSC2 ON A 192 X 192 

GRID 

Execution Time (hrs) 
Num. Nodes GS IDMA ACM 

1 25.7 20.4 1.9 
2 12.9 11.2 1.0 
4 6.2 5.8 .62 
8 3.3 3.1 .30 
16 1.7 1.6 .15 
32 0.89 .88 .092 
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Figure 27. Parallel ACM on a 192 x 192 grid solved on the IPSC2. The 
problem being solved is model problem #1. 

Global Levels 

To allow information to travel through the domain more quickly, a global level was 

added. This level is constructed from all the coarsest levels of all the nodes. Each node 

takes a turn globally broadcasting its field information to all the other nodes. Each node 

receives this information and constructs a global problem. This new level is a global 

version of the correction that was on each node's coarsest level. Each node relaxes this 

global problem the same number of times. Then each node takes its portion of the 

correction and interpolates it to the next finest level. 
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The hope was that having every processor solve a global level would help negate some 

of the loss of parallel efficiency due to domain decomposition. The number of control 

volumes in this coarse level is low, of the order of the number of processors. 



Implementing this global level did decrease the number of iterations required to solve the 

problem, however it also increased the required execution time. 
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This method did not work because of communication overhead. The time required to 

communicate a message is very long compared to the time required to execute an 

instruction. The problem with this algorithm is that each processor had to stop execution 

and take turns sending its subdomain to all the other nodes. This overhead outweighed the 

benefits of a global solution. Using this algorithm on larger grids did not help. The reason 

is that as the problem size increased, the global level occurred at a higher level. Thus, the 

correction made at the coarsest level did not greatly affect the refinement on the finest level. 

Adjusting the transition level between the domain decomposition levels and the global 

level did not help either. A lower global level meant that each node had to broadcast a 

larger field. This increased communication cost, and again outweighed the better correction 

that was gained. 

AREAS OF FURTHER RESEARCH 

The global level approach mentioned above did decrease the number of iterations 

required to solve the problem This global level injected a correction that reflected the 

global error. The idea was correct but the implementation was poor. What is needed is an 

efficient communication scheme that allows each processor to gain the global information. 

Another approach would be to create a global TDMA algorithm. This global algorithm 

would solve the global problem without each node having to have the entire field in 

memory. This method would certainly entail idle processors and global communication. 

Thus, a global TDMA relaxation would have to be judiciously used to refine the solution. 

Another area for future research is to solve hyperbolic and parabolic problems. This 

would be done by adding the unsteady and advective terms of the advection-diffusion 



equation. A grid description is described by Patankar [17]. This research group plans to 

do this in the immediate future. 
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In practice, it is unreasonable to expect the user to make multiple runs to see which is 

the optimal number of relaxations for the particular number of nodes to be used. On the 

serial code it was acceptable to execute the code by performing a predefined amount of 

relaxing at each level. The number of relaxations that gave good performance did not 

change much with problem size. However, the convergence of parallel ACM is strongly 

affected by the number of relaxations performed. One way to solve this problem would be 

to use an adaptive technique. The program would monitor residual reduction on the first 

cycle. The program would find the number of relaxations that were required to reduce the 

residual at each level by a user specified amount. Subsequent cycles would use these 

without further residual monitoring. This methods would allow larger grids to be solved 

without consideration to the amount of work to be done on each level. 



CHAPTER VI 

SUMMARY 

SERIAL RES UL TS 

This research analyzed the performance of ACM on elliptic problems. A model 

problem was devised so that cross platform performance could be evaluated. This model 

problem was two dimensional heat conduction with a distributed heat source. The 

governing partial differential equation is Poisson's equation. 

Brandt [3] introduced multigrid methods. ACM is a subset of these methods. Brandt 

showed that an optimal implementation of multigrid would give an execution time 

(measured in work units) that is independent of problem size. ACM gives a slight increase 

in work units as the problem size increases. This is due to the suboptimal implementation 

of ACM. The suboptimal implementation is because there is a predetermined amount of 

relaxing done on each level and the interpolation scheme is not weighted. 

F and V cycle schemes were investigated in this research. For the model problem, V 

cycles gave slightly better performance of F cycles. V cycles are recommended for 

nonlinear problems because F cycles drive the residual to machine error in a few iterations. 

For nonlinear problems, the finest field need only be relaxed a small amount between 

coefficient updates. 

The execution time of ACM was compared to TDMA. It was found that the execution 

time of TDMA scaled as the number of unknowns to a power of 2.0. The ACM scaled 

with an exponent of 1.5. This decrease of 0.5 translate into the execution time of ACM 

being more than an order of magnitude lower than the TDMA for large problems. 



66 

TDMA fails to solve anisotropic problems were the material conductivities differ by 

orders of magnitude. Kelkar [14] found that the application of BC fixed that problem. The 

physical problem that Kelkar modeled was reproduced. It was found that ACM was also 

able to solve this problem. This is expected because BC is a multigrid method. The 

relative execution time between ACM and TDMA with BC was unchanged when the 

problem became anisotropic. 

PARALLEL RESULTS 

A domain decomposition strategy was chosen to solve the discrete problem on a 

distributed memory parallel computer. In a domain decomposition method, the discrete 

domain is broken up into pieces and each piece is given to a processor. The grid is broken 

up in such a way that a node's shared boundary control volumes are internal control 

volumes in its neighbor's domain. This means that it is a node's neighbor who updates the 

value of these control volumes. After the neighbor has updated these control volumes, 

their value is sent to the node. The process of doing this is called a boundary swap. 

The global residual is found by having each control volume find the residual in its piece 

of the domain. A global summation operation is then performed to find the total global 

residual. Two processors will each have a version of the value of the boundary control 

volumes. The only time these two versions are the same is immediately after a boundary 

swap. Thus, the global residual calculation must be performed after a boundary swap to be 

correct. 

TMDA and GS was adapted to hypercubes. Each processor does a certain number of 

TDMA or GS relaxations on the domain. A boundary swap is then performed. It was 

found that for the best performance, a minimal amount of relaxations should be performed 

between boundary swaps. For both TDMA and GS, this minimal amount was one 



relaxation. The combination of one IDMA or GS relaxation and a boundary swap will 

hence be referred to a relaxation operation. 
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It was found that the GS parallelizes almost perfectly. That is, GS has almost perfect 

speed up. This is because GS is a local method. A control volume's update only depends 

on neighbor control volumes. Thus, GS is unaffected by domain decomposition. 

Unfortunately, it is because GS is a local method, that it is slow to converge on large 

problems. 

IDMA is a global method. TDMA updates entire columns of control volumes. On a 

single processor computer these columns span the entire domain and boundary information 

travels immediately through the entire column. When a domain decomposition strategy is 

adopted on a parallel computer, this boundary to boundary communication is severed. 

Boundary to boundary information must now travel from one processor to another during a 

boundary swap. Thus global methods are affected by domain decomposition. 

The time to communicate messages between processors is significant compared to the 

time of computation. It is important to minimize the ratio of communication to 

computation. This ratio is minimized in two ways. First, each processor's piece of the 

domain should be as square as possible. Second, only large problems should be solved on 

these machines. The second method may seem to be a severe restriction. But the reader 

should be reminded that it is only large problems that require the computational power of a 

supercomputer. 

ACM is a global method and thus does not give perfect speed up. There is a loss of 

parallel efficiency that is due to the domain decomposition. The speed up of ACM is 

comparable to IDMA but ACM gives execution times that are more that an order of 

magnitude lower that TDMA. Because the speed up of ACM is good, it appears that it will 

also run well on a larger number of processors. 
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In an attempt to minimize the loss of parallel efficiency due to domain decomposition, a 

global level was added. This global level is constructed at the coarsest level. It is a global 

version of the coarsest level. Each processor solved the same problem concurrently. Each 

processor then interpolated the correction back down to lower levels. This method 

achieved the desired affect of giving a number of iterations that was almost independent of 

the number of processors. However, the cost of communication was high because of poor 

implementation. This method holds promise for future research. 

It was found on serial machines that continually monitoring the residual reduction is 

very inefficient because of the computational cost relative to relaxing. It was assumed that 

this would be the case for the parallel ACM. The current implementation of ACM does a 

predefined number of relaxations on each grid level. Doing a predetermined amount of 

work was not a large concern of serial machines. This was because the execution time was 

almost independent of problem size for a constant amount of relaxing on each level. 

However, the execution time of the parallel ACM is strongly affected by the number of 

processors for the same amount of relaxing on each level. The current implementation of 

ACM is weak because of this. One way to fix this problem would be to use an adaptive 

scheme that monitors the residual reduction on each level on the first ACM cycle. The 

number of relaxations required to reduce the residual by optimal amount would be found on 

all levels. This number of relaxations would be used with out further residual monitoring. 

ACM has been found to be an efficient method for the solving of elliptic problems on 

distributed memory machines. Future distributed memory machine can be expected to be 

more computationally powerful and to have much faster communication rates. The 

software that allows one to take advantage of these hardware advances is lagging behind. 

It is hoped that this research has somewhat filled that void. 
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