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Abstract 

Over the past five decades, exponential advances in device integration in 

microelectronics for memory and computation applications have been observed. These 

advances are closely related to miniaturization in integrated circuit technologies. However, 

this miniaturization is reaching the physical limit (i.e., the end of Moore’s Law). This 

miniaturization is also causing a dramatic problem of heat dissipation in integrated circuits. 

Additionally, approaching the physical limit of semiconductor devices in fabrication 

process increases the delay of moving data between computing and memory units hence 

decreasing the performance. The market requirements for faster computers with lower 

power consumption can be addressed by new emerging technologies such as memristors. 

Memristors are non-volatile and nanoscale devices and can be used for building memory 

arrays with very high density (extending Moore’s law). Memristors can also be used to 

perform stateful logic operations where the same devices are used for logic and memory, 

enabling in-memory logic. In other words, memristor-based stateful logic enables a new 

computing paradigm of combining calculation and memory units (versus von Neumann 

architecture of separating calculation and memory units). This reduces the delays between 

processor and memory by eliminating redundant reloading of reusable values. In addition, 

memristors consume low power hence can decrease the large amounts of power dissipation 

in silicon chips hitting their size limit.    

The primary focus of this research is to develop the circuit implementations for logic 

computations based on memristors. These implementations significantly improve the 

performance and decrease the power of digital circuits. This dissertation demonstrates in-
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memory computing using novel memristive logic gates, which we call volistors (voltage-

resistor gates). Volistors capitalize on rectifying memristors, i.e., a type of memristors with 

diode-like behavior, and use voltage at input and resistance at output. In addition, 

programmable diode gates, i.e., another type of logic gates implemented with rectifying 

memristors are proposed. In programmable diode gates, memristors are used only as 

switches (unlike volistor gates which utilize both memory and switching characteristics of 

the memristors). The programmable diode gates can be used with CMOS gates to increase 

the logic density. As an example, a circuit implementation for calculating logic functions 

in generalized ESOP (Exclusive-OR-Sum-of-Products) form and multilevel XOR network 

are described. As opposed to the stateful logic gates, a combination of both proposed logic 

styles decreases the power and improves the performance of digital circuits realizing two-

level logic functions Sum-of-Products or Product-of-Sums.   

This dissertation also proposes a general 3-dimentional circuit architecture for in-

memory computing. This circuit consists of a number of stacked crossbar arrays which all 

can simultaneously be used for logic computing. These arrays communicate through 

CMOS peripheral circuits.  
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Chapter 1  

Background 

1.1 INTRODUCTION 

The exponential advances in microelectronics over the past five decades are unlikely to 

continue for the next decade due to physical limitations. The density of transistors in each 

square centimeter has already exceeded 100 Million.  The heat dissipation and memory 

access delay are the main problems in these ultra-dense microcomputers. The computing 

research community have been challenged to find variables other than charge or voltage, 

devices, and architectures that enable the integration to go far beyond the limits of 

conventional microelectronics technology [1]. In 2008, researchers in Hewlett Packard 

Labs [2] connected the theory of memristor [3] to the thin film devices (TiO2). Memristors 

and memristive devices [4] are two terminal nanoscale devices whose characteristics are 

explained by the relation between magnetic-flux (𝜑) and charge (q). Memristors and 

memristive devices are non-volatile devices that can be used for in-memory computing. 

Therefore, memristors can perform advanced computing paradigms of combining 

calculation and memory units. Unlike traditional computing paradigms, which separate 

calculation from memory, in new computing paradigms there is no problem of memory 

access delay and power crisis as one that exists in digital integrated circuits. However, 

using this new paradigm of logic computation requires executing long sequences of logic 

operations, which in turn increases the power consumption and complicates the control of 

the circuit. In this dissertation, this problem is addressed. Multiple solutions are proposed 

to decrease the number of in-memory logical operations. The proposed techniques also 
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decrease the power dissipation when compared to other memristive in-memory computing 

approaches.  

In addition to digital computing, memristors enable analog computing, e.g., in 

neuromorphic applications. However, this dissertation only focuses on digital memristive 

computing, i.e., memristors are used as binary switches with memory ability.  

In this chapter, the theory of memristors, the practical memristors, models and 

applications of memristors are briefly described. The goals of this research are also defined.   

1.2 MEMRISTOR: THE MISSING CIRCUIT ELEMENT  

The circuit elements R, C, L, and M can be functions of v, i, q, and φ in their defining 

equations. For example, a charge-controlled memristor is defined as a single-valued 

function M (q) [2]. In 1971, Leon Chua reasoned that there should be another fundamental 

 

Fig. 1.1. Four fundamental passive circuit elements [Redrawn from 2]. 
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passive circuit element in addition to the resistor, capacitor, and inductor. He called this 

new element “memristor”, short for memory-resistor [3]. His reasoning was based on 

symmetry arguments where he noted that the number of equations connecting pairs of 

circuit variables (electrical current i, voltage v, charge q, and magnetic-flux 𝜑) are six. Two 

equations (out of six) are dq = i and dφ = v (Faraday’s law of induction). Other (four) 

equations connect pairs of circuit variables via circuit elements. However, before Chua’s 

invention, there were only three known circuit element R, L, and C. Chua reasoned the 

existence of another circuit element (memristor), which links flux and charge as dφ=Mdq 

where M is the memristance of memristor (Fig. 1.1). Note that M is a function of charge, 

yielding a nonlinear element. If M were a constant, it would be identical to R. The basic 

definition of a current-controlled memristor is shown in (1.1) and (1.2) where w is the state 

variable, which is the charge, and R is a state-dependent resistance.   

                                           𝑣 = 𝑅(𝑤)𝑖                                                                        (1.1) 

                                           
𝑑𝑤

𝑑𝑡
= 𝑖                                                                                 (1.2) 

The memristor concept was generalized in 1976 by Chua and Kang to include a much 

broader class of non-linear dynamic systems called memristive system [4]. A memristive 

device is a two-terminal passive device whose resistance is a function of state variable w 

and the voltage v (or current i) and not on the charge or the flux, directly. The current-

controlled time-invariant memristive devices are described by (1.3) and (1.4).  

𝑣 = 𝑅(𝑤, 𝑖)𝑖                                                                      (1.3)                                                                                                      

𝑑𝑤

𝑑𝑡
= 𝑓(𝑤, 𝑖)                                                           (1.4) 
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Note that Equation (1.4) is a general case of (1.2) where 𝑓(𝑤, 𝑖) = 𝑖. The i-v 

characteristic of a memristor or a memristive device looks like a pinched hysteresis loop 

(bow tie) crossing the origin. Fig. 1.2 shows the hysteresis behavior of a memristor for a 

rectangular pulse input.   

1.3 THE MISSING MEMRISTOR IS FOUND 

After three decades of Chua’s invention, in 2008, HP (Hewlett Packard) researchers 

demonstrated a simple analytical example of a memristor. In this example, the memristor’s 

resistance (also called memristance) arises under external voltage bias where solid-state 

electronic and ionic transport are coupled. This model is known as linear ion drift model.  

1.3.1 Linear ion drift model 

The HP example of memristor is shown in Fig. 1.3a. The device consists of a thin 

semiconductor film of thickness D sandwiched between two metal contacts, particularly 

Pt-TiO2-Pt. The semiconductor has two regions: one with high concentration of dopants 

(i.e., oxygen vacancies of TiO2, denoted TiO2-x) and another with zero dopant (which is 

 

Fig. 1.2. i-v characteristic of the memristor for a rectangular pulse input. (Left) Input voltage applied across 

the memristor. (Right) hysteresis behavior of the memristor.  
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only oxide region TiO2). An external voltage bias across the device can drift the charged-

dopants yielding a variable resistance. In other words, the device is analogous to two 

variable resistors connected in series as shown in Fig. 1.3b where w (t) represents the state 

variable and 0 ≤ w (t) ≤ D. The resistance is RON when w (t) = D, and the resistance is ROFF 

when w (t) = 0. Equation (1.5) and (1.6) explain the HP model of memristor where 𝜇𝑉 is 

the average ion (vacancies) mobility. Note that Equation (1.5) and (1.6) are derived for the 

simplest cases of ohmic electronic conduction and linear ion drift in a uniform field with 

average ion mobility 𝜇𝑉. 

𝑣(𝑡) = (𝑅𝑂𝑁
𝑤(𝑡)

𝐷
+ 𝑅𝑂𝐹𝐹 (1 −

𝑤(𝑡)

𝐷
)) 𝑖(𝑡)                                (1.5) 

                                                  
𝑑𝑤

𝑑𝑡
= 𝜇𝑉

𝑅𝑂𝑁

𝐷
𝑖(𝑡)                                                                       (1.6) 

To keep w (t) within the interval [0, D], it is required to multiply 
𝑑𝑤

𝑑𝑡
 by window function 

as used in [5-7].              

                  

         

text

ROFF

RON

RON (w/D) ROFF (D-w)/D

Undoped

Doped

 

                                       (a)                                                                                (b) 

Fig. 1.3. (a) Structure of the HP example of memristor. (b) Circuit equivalent. [Redrawn from 2]  
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  1.3.2 Non-linear ion drift model 

Although the linear ion drift model shows the basic device behaviors, there is a 

significant mismatch between the i-v characteristics of this model and that shown in 

experiments [8-9]. The linear ion drift model does not represent the non-linear dependence 

between  
𝑑𝑤

𝑑𝑡
 and 𝑖(𝑡). A number of non-linear ion drift models, which is desired for logic 

computations, have been proposed. Three examples of non-linear ion drift models are 

discussed below.  

1) Lehtonen et al. model 

Lehtonen et al. [10-11] proposed a model based on experimental results shown in [8] 

where the i-v relation is explained by (1.7).  

         𝑖(𝑡) = 𝑤(𝑡)𝑛𝛽 sinh(𝛼𝑣(𝑡)) + 𝜒[exp (𝛾𝑣(𝑡) − 1]                                          (1.7) 

The 𝛼, 𝛽, and 𝛾 are experimental fitting parameters, and n determines the influence of 

𝑤(𝑡) on 𝑖(𝑡). The state variable, 𝑤, is normalized within interval [0, 1]. When the device 

is in the on-state (𝑤 ≈ 1), 𝑖(𝑡) ≈ 𝑤(𝑡)𝑛𝛽 sinh(𝛼𝑣(𝑡)). When the device is in the off-state 

(𝑤 ≈ 0), 𝑖(𝑡) ≈ 𝜒[exp (𝛾𝑣(𝑡) − 1]. The model assumes: 1) asymmetric switching 

behavior, and 2) the non-linear dependence between 
𝑑𝑤

𝑑𝑡
 and 𝑣(𝑡) as explained by (1.8) 

where 𝑎 is a constant, 𝑚 is an odd constant, and 𝑓(𝑤) is a windows function.  

                                                      
𝑑𝑤

𝑑𝑡
= 𝑎. 𝑓(𝑤). 𝑣(𝑡)𝑚                                           (1.8) 
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2) Simmons tunnel barrier model 
 

Pickett at el. [12] showed a mathematic definition of non-linear memristive devices, 

known as Simmons tunnel barrier model. This model was derived from experimental 

results of dynamic testing protocols applied to Pt-TiO2-Pt devices. The model shows that 

the energy required to switch a metal-oxide-metal device decreases exponentially with 

increasing current through the device.  Fig. 1.4 shows the scheme of memristive device 

used to derive the tunnel barrier model. The Simmons tunnel barrier width [13] (which is 

the width of the undoped oxide region) represents the state variable w, and RS represents 

the electroformed channel resistor of a few hundred ohms resistance. In this model, the 

velocity of the oxygen vacancy drift (dw/dt) is explained by (1.9) where foff, fon, ioff, ion, aoff, 

aon, 𝑏, and wc are fitting parameters. Parameters foff and fon influence the magnitude of dw/dt 

where fon is an order of magnitude larger than foff. Parameters ioff and ion are effectively 

limiting the threshold currents. When i < ioff or i < ion, dw/dt is negligible. Parameters aoff 

and aon set upper and lower bounds for w and the model does not require a window function. 

  
𝑑𝑤

𝑑𝑡
= 𝑓𝑜𝑓𝑓 sinh (

𝑖

𝑖𝑜𝑓𝑓
) exp [− exp (

w−a𝑜𝑓𝑓

𝑤𝑐
−
|𝑖|

𝑏
) −

𝑤

𝑤𝑐
]    (off-switch)    i > 0                 

   
𝑑𝑤

𝑑𝑡
= 𝑓𝑜𝑛 sinh (

𝑖

𝑖𝑜𝑛
) exp [− exp (−

w−a𝑜𝑛

𝑤𝑐
−
|𝑖|

𝑏
) −

𝑤

𝑤𝑐
]    (on-switch)      i < 0                (1.9) 

The experimental results show the on and off switching behaviors are asymmetric, i.e., the 

on-switching is significantly faster than the off-switching. In addition, the switching energy 

decreases exponentially with the current through the device. 
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3) TEAM mod 

TEAM [14], short for ThrEshold Adaptive Memristive Model, assumes no change in 

state variable w when the current is between the thresholds, 𝑖𝑜𝑛 < 𝑖 < 𝑖𝑜𝑓𝑓. In addition, a 

polynomial dependence rather than exponential dependence is assumed. In this model 

memristors have adaptive nonlinearity and threshold currents. Therefore, Equation (1.9) is 

rewritten as shown in (1.10) where koff and kon are fitting parameters, aoff and aon are adaptive 

nonlinear parameters, ioff and ion are threshold currents, and w is the state variable, which 

represents the effective electric tunnel width. Note that koff is a positive constant while kon 

is a negative constant. The state variable w is within the interval [won, woff]. 

           

( )
( 1) exp[ exp( )], 0

( )
0,

( )
( 1) exp[ exp( )], 0

off

on

a off

off off

off c

on off

a on
on on

on c

w ai t
k i i

i w
dw t

i i i
dt

w ai t
k i i

i w


   




  
 
     


                                  (1.10)   

 

Fig. 1.4. The schematic of memristive device realized using tunnel barrier where w and Rs represent the 

state variable and the electroformed channel resistor, respectively [Redrawn from 12]. 
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1.4 APPLICATIONS 

The primary use of memristors is for memory application where memristors are 

considered as emerging non-volatile technologies. The characteristics of memristors such 

as their small size, non-volatility (memristors remember their resistances when powered 

off), high endurance (the number of write cycles exceed 109 and it can reach up to 1015 

while the device remains reliable), low switching delay (sub-nanosecond-few tens of 

nanoseconds), low switching energy (0.1-1pJ), as well as being passive devices make them 

ideal candidates for memory use. The generic structure for memristive memory is a 

crossbar array [15]. The crossbar arrays can be stacked creating a three-dimensional 

memory architecture [16-17]. In addition to memory use of memristors, there are many 

proposals to use the memristors for computations [18-30], neuromorphic circuits and 

machine learning applications [31-34].  

Memristors may have different roles during logic computation. For example, 

memristors can serve only as logic gates [22], [24], [27]. In this approach, logic values are 

voltage signals. In another approach, memristors serve only as configurable switches in 

FPGA-like circuits to realize routing networks [35-36]. Similar to the previous approach, 

here, the logic values are voltage signals, as well. Memristors can also be used to perform 

stateful logic. In this approach, memristors simultaneously serve as gates and latches [18-

20], [23], [25], [28]. Computations based on stateful logic are usually performed in crossbar 

memory arrays. This unconventional approach to logic computations is performed in non 

von-Neumann computer architectures.   
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1.5 RESEARCH GOALS AND METHODES 

In this dissertation, the capabilities and limitations of logic computations based on 

memristors are studied. Multiple approaches are proposed to decrease the computational 

delays in non von-Neumann computer architectures. For example, a small hybrid CMOS-

memristive circuits is designed for fast implementation of generalized exclusive OR-Sum-

of-Products functions. The complexity of memristive circuits performing in-memory 

computations is also studied. A general circuit architecture is proposed. The proposed 

circuit architecture simplifies the datapath and reduces the size and computational delay. 

In addition, a novel 3-dimentioal circuit architecture for in-memory computing is proposed.  

1.6 RESEARCH STRUCTURE  

This dissertation is organized as follows. Chapter 1 is a review of memristor theory, 

practical memristors, memristor models, applications, and the contributions in this 

dissertation. Chapter 2 reviews multiple design choices for logic computations based on 

memristors. In addition, the generic circuit structures for logic computations with 

memristors and their capabilities and potential problems are explained. Chapter 3 describes 

volistors (voltage-resistor logic gates), i.e., new logic gates based on rectifying memristors. 

Chapter 4 describes programmable diode logic gates, i.e., new logic gates based on 

rectifying memristors. Chapter 5 shows a generic CMOS-memristive circuit structure for 

in-memory computing called mPLD-XOR, i.e., memristive Programmable Logic Device 

connected to XOR circuits. Multiple implementation examples using mPLD-XOR are 

explained. Chapter 6 shows implementation example of multi-input XOR logic function 

using a combination of volistor XNOR gates, programmable diode AND gates, and CMOS 
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buffers. Chapter 7 describes design constraints of volistors in crossbar arrays. In addition, 

a novel implementation of mPLA (memristive Programmable Logic Array) for realizing 

two-level OR-AND functions based on programmable diode ORs and volistor ANDs is 

proposed. Chapter 8 shows an example of a three-dimensional memristive array for in-

memory computing. Chapter 9 summarizes the achievements and journal publications and 

concludes this dissertation.  
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Chapter 2             

Memristive Stateful Logic Gates 

In today’s computer architectures, a key problem limiting system speed is the amount 

of time spent moving data between the processor and memory. A way to address this 

problem is to have memory within the calculation circuit. The invention of memristors, the 

fourth passive circuit element, opens the door for changing the computing paradigms of 

separating calculation from memory. Memristors, as non-volatile devices, enable stateful 

logic (in-memory computing), hence saving time spent moving data between memory and 

processor. This chapter describes design choices for stateful logic, which affect the size, 

power, complexity, and delay of the circuits.  

2.1 INTRODUCTION 

Leon Chua postulated the existence of memristor as the fourth passive circuit element 

based on symmetry arguments in 1971[3]. In 2008, memristor was clearly experimentally 

demonstrated in Hewlett Packard Laboratories [2]. This two-terminal device is a thin 

semiconductor film sandwiched between two metal contacts. Memristor is non-volatile, i.e. 

it retains its memristance until a subsequent voltage toggles its resistance state. In other 

words, memristor is a voltage-controlled device whose resistance (memristance) depends 

on its voltage history. Memristors are ideal candidate for building memories due to their 

non-volatility, scalability (down to 5nm) [38-39], high endurance (up to 1012 cycles) [40], 

long-term retention (10 years) [41], and fast READ/WRITE speed (below 200ps) [42]. 

More importantly, memristors are computational memories and enable stateful logic [20], 

hence saving time spent shuttling data between memory and processor. In stateful logic, the 
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resistance states of memristors represent logic values. Fig. 2.1 illustrates the zero-crossing 

characteristic of a typical memristor in i-v plane. The programming voltage VSET switches 

the memristor on, i.e., programs the device to LRS (Low Resistance State), and the 

programming voltage VCLEAR switches the memristor off, i.e., programs the device to HRS 

(High Resistance State). In this dissertation, the memristor is considered as a bistable linear 

switch, which exhibits either LRS, indicating logic state ‘1’, or HRS, indicating logic state 

‘0’. VCLOSE and VOPEN are positive and negative threshold voltages, respectively. The 

memristor retains its state when applied voltage v across the memristor is smaller than the 

threshold voltages (VOPEN < v < VCLOSE). However, when v < VOPEN (e.g., v = VCLEAR) or v > 

VCLOSE (e.g., v = VSET), the memristor is programmed to HRS or LRS, respectively, after 

some delay, Δt. The threshold and programming voltages are shown in Fig. 2.1. Note that a 

 1  Closed  0  Open

VOPEN

VSET
VCLEAR

VCLOSE

V

I

VCOND

 

Fig. 2.1. Idealized hysteretic behavior of the memristor in the i-v plane. VCLOSE and VOPEN are threshold 

voltages, and VSET and VCLEAR are programming voltages. 
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programming voltage is any value within a particular range as shown in Fig. 2.1. Memristors 

are compatible with CMOS technology [43], and logic computing with hybrid CMOS-

memristor circuits can be quite beneficial (see Chapter 5).  

This chapter is organized in the following order. Section 2.1 describes a memristor-based 

circuit architecture. Section 2.2 explores some stateful logic gates realized with typical 

memristors. The same logic gates are realized with rectifying memristors, i.e., memristors 

with diode-like behavior, as described in Section 2.3. In Section 2.4, the implementation of 

multi-input multi-output stateful gates are explained, and in Section 2.5, IMPLY Stateful 

Diagram (ISD) and its extension for logic synthesize is described. A generic two-

dimensional crossbar structure and its potential problems are discussed in Section 2.6 and 

2.7. Section 2.8 concludes the chapter. 

2.2 CROSSBAR ARCHITECTURE  

Memristors are non-volatile computational memories. A single switch can only perform 

primitive operations TRUE and FALSE. When the switch is open, the application of VSET 

across the device closes the switch realizing logic operation TRUE. When the switch is 

closed, the application of VCLEAR across the device opens the switch realizing logic operation 

FALSE. However, a basic logic operation such as material implication (IMPLY) requires 

two memristive switches [20]. Fig. 2.2 illustrates a one-dimensional programmable circuit 

known as crossbar or crossbar array. In this array, two memristive switches P and Q are 

electrically connected through the wire W, which is grounded through load resistor RG. 

Inputs are the resistance states of P and Q, whereas the output is the new state of switch Q.   
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Stateful logic gates are performed by two operations, namely, READ and WRITE. These 

operations are realized simultaneously. For example, in stateful IMPLY operation, the 

READ operation is performed by applying VCOND to P, where 0V <VCOND <VCLOSE, and the 

WRITE operation is performed by applying VPROG to Q, where VPROG = VSET. The READ 

operation drives the wire W to either ≈ VCOND or to ≈ 0V, depending on the state of P. The 

WRITE operation may toggle the state of Q, depending on the initial states of both P and 

Q.  The state of P remains unchanged during the operations.   

Let LRS (also denoted by RCLOSED) represents logic ‘1’, and HRS (also denoted by ROPEN) 

represents logic ‘0’. It is the case that ROPEN ≫ RCLOSED. Since the correct operation of the 

circuit requires VW (the voltage on W) to be either ≈ 0V or ≈ VCOND, care must be taken to 

ensure ROPEN / RG >> 1 and RG / RCLOSED >> 1. Assuming these inequalities are satisfied, RG 

can be set as the geometric means of ROPEN and RCLOSED, i.e., RG = √ (ROPEN × RCLOSED).  

A flow of current through Q could disturb the WRITE operation. If this current raises VW in 

a time interval shorter than the switching time of Q, the WRITE operation will be disturbed. 

Therefore, the RC delay of the circuit should be larger than the switching delay of memristor 

Q.  However, a large RC delay slows down the circuit operation.  The use of external CMOS 

circuitry—a keeper circuit— can help to improve the speed and accuracy of the circuit 

operation [44]; however the area overhead would present another challenge.  

A better way to suppress the current through Q would be to use the rectifying memristive 

switches [15], [45], [46], elaborated in Section 2.3, with the circuit configuration of 0V 

< VCOND < VCLOSE and VOPEN < VPROG < 0V.  This circuit architecture suppresses the current 

through Q during the WRITE operation and enables the converse nonimplication operation 
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(CNIMP), also known as inhibition operation (INH or INHIBIT), without additional CMOS 

circuitry [25]. A two-input INH gate computes 𝑝𝑞̅ or 𝑝̅𝑞 where p and q are the inputs. 

2.3 RECTIFYING MEMRISTORS  

The rectifying memristors are resistive switches with intrinsic diode-like behavior with 

a large resistive ratio of 3-6 orders of magnitude, e.g., 103 ≤ ROPEN/ RCLOSED ≤ 106 [15] and 

[45-46]. The rectifying memristors suppress the current below 0.1 pA, when reverse biased 

[45]. Memristors with a diode-like behavior can perform reliable logic operations without 

any need for keeper circuits.  

A crossbar array of rectifying memristors can be used to perform stateful INH operations 

with voltage scheme 0V < VCOND < VCLOSE and VOPEN < VPROG < 0V. This voltage scheme 

sets P forward biased and Q reverse biased and thus suppresses the current through the 

target memristor, Q. As a result, VW remains unchanged ensuring that the WRITE operation 

VCOND VPROG

RG

P Q

W

 

Fig. 2.2. Schematic diagram of a 1 × 2 crossbar array. The instant application of voltage pulses VCOND and 

VPROG to switches P and Q, respectively, may toggle the logical state of Q depending on the initial state of P 

and Q.  
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is performed correctly. This voltage configuration is used to perform stateful INH 

operations without any need for keeper circuits, as elaborated in Section 2.5.  

A simplified model for rectifying memristor is described by (2.1) and (2.2) [47]. In 

Equation (2.1), R represents the resistance of the rectifying memristor; 𝑠 is the state variable 

normalized between 0 and 1; 𝑣 is the applied voltage across the memristor; ROPEN represents 

the resistance when the memristor is in HRS; RCLOSED represents the resistance when the 

memristor is in LRS. For convenience, ROPEN is also used for reverse biased memristor. 

The typical values of ROPEN and RCLOSED, which are shown in Table 2.1, are chosen based 

on empirical results reported in [15]. The dynamic behavior of the state variable 𝑠 is 

described by (2.2) where 𝑣𝐶𝐿𝑂𝑆𝐸 is a positive threshold voltage; 𝑣𝑂𝑃𝐸𝑁 is a negative 

threshold voltage; VSET is a positive programming voltage; and VCLEAR is a negative 

programming voltage. In addition, α is a positive constant related to the programming rate 

of a memristor. In this dissertation, α is assumed to be 125 ×107 (Vs)-1 as used in [47]. 

 

                   𝑅 = {
𝑅𝑂𝑃𝐸𝑁 (

𝑅𝐶𝐿𝑂𝑆𝐸𝐷

𝑅𝑂𝑃𝐸𝑁
 )
𝑠

       𝑣 ≥ 0

𝑅𝑂𝑃𝐸𝑁                            𝑣 < 0
                                            (2.1)           

                               
𝑑𝑠

𝑑𝑡
= {
𝛼(𝑣 − 𝑣𝐶𝐿𝑂𝑆𝐸)       𝑣 ≥ 𝑣𝐶𝐿𝑂𝑆𝐸
𝛼(𝑣 − 𝑣𝑂𝑃𝐸𝑁)        𝑣 ≤ 𝑣𝑂𝑃𝐸𝑁
 0                              𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

                                                    (2.2) 

Table 2.1 

Memristor’s spice model parameters [47] 

Parameter Value 

ROPEN 500MΩ 

RCLOSED 500KΩ 

𝒗𝑪𝑳𝑶𝑺𝑬 1V 

𝒗𝑶𝑷𝑬𝑵 -1V 

VSET 1.2V 

VCLEAR -1.2V 

α 125 × 107 (V. s)−1 
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With this value of α, the state transition in a memristor initially in HRS is 4 ns when the 

applied voltage across the memristor is v = VSET. Comparable programming rates have been 

reported in [40] and [42], as well. Substituting all related values in (2.2) results in 

0.2 1.2

0.2 1.2

0

v
ds

v
dt

elsewhere








   



 

and thus,  

0.2 1.2

0.2 s 1.2

1.2 1.2

init

init

init

T s v

s T v

s v







 

  


    
   

 

where sinit and s+ are the initial and next states of the memristor, and T+ and T־ are the 

switching delays (from HRS to LRS and from LRS to HRS, respectively). T+ and T־ are 

assumed to be equal though, in general, they might be different. The solution for (2.2) is  

1 1.2

0 1.2

1 1init

v

s v

s v






  
   

 

Fig. 2.3. Characteristics of a rectifying memristor. (Left) The i-v characteristic of rectifying memristor. 

(Right) The s-v characteristic of rectifying memristor. The diagrams are depicted using the LTspice simulator 

and the memristor model in [47]. 
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Fig. 2.3 shows the i-v characteristic of a rectifying memristor. It also shows the s-v 

characteristic of a memristor where s remains unchanged when vOPEN ≤ v ≤ vCLOSE. Table 2.1 

shows the parameters of the memristor as used in [47]. The SPICE model used to plot 

Fig. 2.3 is also explained in [47].  

 

2.4 STATEFUL LOGIC GATES REALIZED WITH TYPICAL MEMRISTORS 

Now that the basic circuit design concepts have been discussed, the question becomes 

what types of stateful logic gates can be realized given specific design choices. In this 

section, designs with typical memristors are discussed, and in Section 2.5 designs based on 

rectifying memristors is discussed. All polarity combinations of VCOND and VPROG are applied 

to a 1 × 2 crossbar array of typical memristors to examine what types of logic operations 

can be realized by the circuit. The same procedure is applied to a 1 × 2 crossbar array of 

rectifying memristors. 

1) Stateful AND gate 
 

 The stateful AND gate was proposed in [23]. A 1 × 2 crossbar array alone is not sufficient 

to implement the gate; a keeper circuit is required. The stateful AND gate requires VPROG < 

VOPEN < VCOND < 0V and VOPEN < VPROG –VCOND. With this voltage combination, the use of a 

keeper circuit is necessary. Without a keeper circuit, there is no logic operation, however, 

with a keeper circuit, there is a logic AND operation. Take, for example, the case where P 

and Q are both logic ‘0’, denoted as p, q = [0, 0] where p is the state of memristor P and q 

is the state of memristor Q. The READ operation drives word line W to ≈ 0V. After the 

WRITE operation, the voltage across Q is below VOPEN so Q remains ‘0’, as expected.  

Similarly, when P is ‘1’ the crossbar array behaves as expected, regardless of the state of Q. 
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However, in the case where p, q = [0, 1], the crossbar array does not exhibit the desired 

behavior. The READ operation drives W to ≈ 0V. Since RG >> RCLOSED of Q, the WRITE 

operation drops VPROG across RG and thus the voltage difference across Q is approximately 

0V. This is insufficient to change the state of Q. Therefore the AND function would operate 

incorrectly. Laiho et al. [44] proposed splitting the simultaneous READ/WRITE operations 

into consecutive operations. During the READ operation, the voltage drop on W is sampled 

by the keeper circuit. During the WRITE operation, the keeper circuit forces the sampled 

voltage onto W. Consequently, VPROG drops entirely across Q. That voltage drop is sufficient 

to toggle the state of Q to ‘0’, which is the desired behavior of AND gate. The area overhead 

of the keeper circuit is not the only obstacle that needs to be overcome; AND is not a 

universal gate. In order to have a functionally complete set of operations, inverter is also 

required. Inverter can be realized as a special case of the stateful IMP gate, explained below.  

2) Stateful IMP gate 

The stateful IMP gate was proposed in [19-20] and is defined as q+:= p→q = ¬p+q where 

‘→’ is the IMP (short for IMPLY) gate, and q+ is the new value of q, which is the output of 

the IMP gate. IMP gate can be implemented with a keeper circuit or without a keeper circuit 

if sufficient capacitance on W is assumed. With a keeper circuit, the crossbar array runs at 

full speed with the cost of increased area and power; in contrast, without a keeper circuit, 

the crossbar array runs slow, but it consumes less area and power.  The stateful IMP gate 

requires 0V < VCOND < VCLOSE < VPROG, and VPROG – VCOND < VCLOSE. Take, for example, the 

case where p, q= [0, 0]. The READ operation drives W to ≈ 0V. The WRITE operation 

causes a voltage drop sufficient to toggle the state of Q, which is the expected behavior, as 
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shown in Table 2.2. The circuit operates similarly for all combinations of p, q. Implication 

is functionally complete logic operation when coupled with the FALSE operation. Recall 

that the FALSE operation is implemented by VPROG = VCLEAR.  

3) Stateful OR gate 
 

Much like IMP, the stateful OR gate can be implemented with or without a keeper circuit, 

and the same power, speed, and area tradeoff applies. In practice, the use of a keeper circuit 

in parallel with voltage divider ensures the correct operation of the circuit. The stateful OR 

gate requires VOPEN < VCOND < 0V < VPROG < VCLOSE, and VCLOSE < VPROG –VCOND. With these 

control voltages, the circuit operates correctly. OR is not a universal gate. In order to have 

a functionally complete set of operations, inverter is also required.  

4) Additional stateful gate 

As discussed earlier in this section, different polarity combinations of VCOND and VPROG 

implement different logic operations. There remains one voltage combination to consider: 

VOPEN < VPROG < 0V < VCOND < VCLOSE, and VCOND – VPROG > VCLOSE. Assuming sufficient 

capacitance on W, this polarity combination of control voltages implements the OR gate 

with the output on P instead of Q. However, the use of a keeper in parallel with RG produces 

the INH gate. The stateful INH gate was proposed in [25] and is defined as q+:= p↛q = ¬p∙q 

where ‘↛’ is the INH gate. The truth table of INH logic is shown in Table 2.3. Take, for 

example, the case where p, q= [1, 1]. The READ operation drives W to ≈ VCOND. During the 

READ operation, the voltage on W is sampled by the keeper circuit. During the WRITE 

operation, the keeper circuit forces the sampled voltage onto W. Consequently, the voltage 

across Q becomes VPROG –VCOND. This voltage difference is sufficient to toggle the state of 

Q to ‘0’, which is the desired behavior of the INH gate. Inhibition is functionally complete 
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logic operation when coupled with the TRUE operation. Recall that the TRUE operation is 

implemented by VPROG =VSET. Similar to its use in the AND gate, the keeper circuit here 

splits READ/WRITE into two consecutive operations.  

In summary, a 1 × 2 crossbar array of typical memristors is sufficient to implement 

several useful logic gates as long as care is taken in the selection of load resistor RG. Which 

particular logic gate is implemented depends on the magnitude and polarity of the applied 

Table 2.2 

Truth table of the IMPLY operation  

q+:= p→q = ¬p + q 

In1 In2 Out 

p q q+:= p⟶q 

0 0 1 

0 1 1 

1 0 0 

1 1 1 

 

 

   

 

 

 

 

 

 

 

 

Table 2.3 

 Truth table of the INH operation  

q+: p↛q = (¬p) q 

In1 In2 Out 

p q q+:= p↛q 

0 0 0 

0 1 1 

1 0 0 

1 1 0 

 

   

 

 

 

 

 

 

 

 

Table 2.4 

 Logic gates realized by all possible voltage polarities and keeper/no-keeper circuit combinations 

Polarity Logic Function 

VCOND VPROG Sufficient capacitance on W With keeper circuit 

+ + q+:= p→q q+:= p→q 

- + q+:= OR (p, q) q+:= OR (p, q) 

+ - p+:= OR (p, q) q+:= p↛q 

- - No logic operation q+:= AND (p, q) 

Signs + and – denote positive and negative voltage values of VCOND and VPROG defined for each logic 

function in Section 2.4.  
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control voltages and on whether or not a keeper circuit is used. The circuit that provides 

these control voltages is called a driver. Drivers are different than keeper circuits as 

explained in Section 2.5 and 2.6. Keepers are auxiliary circuits required to perform reliable 

operations. As already discussed, Table 2.4 summarizes the logic gates realized by all 

possible voltage polarities and keeper/no-keeper circuit combinations. A 1 × 2 crossbar 

array of typical memristors without a keeper circuit enables only IMPLY and OR logic 

gates. When a keeper circuit is available, the memristors can realize all four operations: 

AND, OR, IMP, and INH.  Availability of more basic gates for synthesis allows for more 

efficient realization of many Boolean functions, but also calls for invention of new logic 

synthesis algorithms to synthesize arbitrary functions in new bases. 

2.5 STATEFUL LOGIC GATES WITH RECTIFYING MEMRISTORS 

This section explains which logic functions can be realized in a crossbar array of 

rectifying memristors. The application of all polarity combinations of VCOND and VPROG 

results in IMP and INH logic gates, as explained below. Table 2.5 summarizes the logic 

gates realized by all voltage polarities and keeper/no-keeper circuit combinations. 

1) Stateful IMP gate 

A stateful IMP gate is realized with the same polarity combinations of VCOND and VPROG 

described in a crossbar array with typical memristors, 0V < VCOND <VCLOSE < VPROG and 

VPROG –VCOND < VCLOSE. An IMP gate can be implemented with a keeper circuit or without 

a keeper circuit assuming sufficient capacitance on W. The same speed/power/area tradeoff 

imposed by a keeper circuit in a crossbar array with typical memristors also holds for a 

crossbar array with rectifying memristors.  
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2) Stateful INH gate 

A stateful INH gate is realized without a keeper circuit with the same polarity 

combination of VCOND and VPROG described in a crossbar array with typical memristors, 

VOPEN < VPROG < 0V < VCOND < VCLOSE and VCOND –VPROG > VCLOSE. This polarity combination 

always sets memristor Q reverse biased and thus suppresses the flow of current through Q. 

As a result, the crossbar array can be seen as a voltage divider made of memristor P and 

load resistor RG that controls the state of memristor Q—nearly no electrical current flows 

between the voltage divider and memristor Q, and the new state of Q (the gate’s output) is 

a function of its initial state and the output of the voltage divider, VW. Note that the diode-

like behavior of memristors simplifies the circuit operation and eliminates the need for a 

keeper circuit.  

Table 2.5 

 Logic gates realized by all polarity combinations in a crossbar array of rectifying memristors  

Polarities Logic Function 

VCOND VPROG 

+ + q+:= p→q 

+ - q+:= q↛p 

- + p+:= q↛p 

- - No logic operation 

Signs + and – denote positive and negative voltage values of VCOND and VPROG defined for each logic 

function in Section 2.5.  
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The stateful INH gate can also be realized with the same polarity combination of VCOND 

and VPROG described in a crossbar array with typical memristor for q+:= OR (p, q), i.e. VOPEN 

< VCOND < 0V < VPROG < VCLOSE, and VCLOSE < VPROG –VCOND. This configuration implements 

the INH gate with the output on P instead of Q. In other words, P is the target memristor 

whereas Q is the source memristor. No keeper is required for this circuit configuration, as 

well.  

There remains one voltage combination to consider: VPROG < VOPEN <VCOND < 0V and 

VOPEN < VPROG –VCOND. This circuit configuration produces no logic operation. Note that 

stateful OR and AND gate cannot be realized with a crossbar array of rectifying memristors 

without a keeper circuit. Fig. 2.4 illustrates a schematic diagram of a keeper circuit that 

enables all stateful logic gates [48]. During the READ operation, source memristors are 

driven with VCOND > 0V. During the WRITE operation, the keeper circuit forces 0V, VCOND, 

Read

VCOND

VW

W

RG

Read

VPROG

VW- VW

 

Fig. 2.4. Schematic of a keeper circuit [Redrawn from 48]. VW denotes the voltage on W. 
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or - VCOND onto W depending on the result of READ operation and the type of stateful 

operation. This keeper circuit can be used in a crossbar array with typical memristors and 

rectifying memristors. 

Table 2.6 summarizes the tradeoffs discussed in Section 2.4 and 2.5 for logic 

implementations in a crossbar array with typical and rectifying memristors. Among all 

design choices shown in Table 2.6, logic computations with rectifying memristors and 

stateful INH gates require no keeper circuits. In addition, INH logic with TRUE operation 

forms a complete set of logic gates. The use of rectifying memristors will also prevent the 

disturbance of the WRITE operation, as discussed in Section 2.2. The simplicity and area 

and power efficiency of the circuit are additional features of this particular design choice. 

The use of rectifying memristors also enables multi-input multi-output INH gates without 

additional CMOS circuitry, as discussed in Section 2.6. Rectifying memristors suppress 

leakage currents, known as sneak current paths, as explained in Section 2.8. The sneak 

current is an undesired phenomenon, which occurs in two-dimensional crossbar arrays, and 

it may disturb the READ and WRITE operations. We rely on rectifying memristors for logic 

computing for the all benefits mentioned above.  

Table 2.6 

Tradeoffs for logic implementations in a crossbar array of typical and rectifying memristors 

Crossbar array with Typical memristors Rectifying memristors 

Logic operation AND IMP OR INH IMP INH 

Complete logic set No 
with 

FALSE 
No 

with 
TRUE 

with  
FALSE 

with  
 TRUE 

Keeper                               Yes No 

Area/ power / complexity                      Potentially high                                    Potentially low 

Sneak current paths                              Larger Smaller 

 



27 

In summary, realization of stateful logic gates in one dimensional crossbar array of 

typical memristors and rectifying memristors are explained. The conditions for the 

correctness of the circuit operations are also studied.   

2.6 MULTI-INPUT MULTI-OUTPUT INH GATE  

A multi-input multi-output INH gate can be realized in a 1 × n crossbar array of 

rectifying memristors. Fig. 2.5 shows a 1 × 9 crossbar array for computing function 

        , , , , ,F OR a b c d OR a b c e    where M1-M5 are used as source memristors 

whose logical states represent input variables a, b, c, d, and e; memristors  M6 and M7 are 

auxiliary memristors, which store intermediate signals; and M8 and M9 are target 

memristors, which store the outputs,     . , .a b c d a b c e      . Function F is 

realized in three steps as described below.  

1) FALSE operation: Reset the memristors to HRS by connecting the vertical wires to 

VPROG < 0V, and the horizontal wire to VCOND > 0V. This step is realized in one clock 

cycle.  

2) Copy operation: Connect the input voltages to the vertical wires of the source 

memristors and VPROG to the horizontal wire to program (or copy the inputs into) the 

source memristors. At the same time, connect the vertical wires driving the auxiliary 

and target memristors to VCOND to set them to LRS. This step is realized in one clock 

cycles, as well.  
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3) INH operation: calculate 6d M and 7e M , sequentially. Then, calculate

  8, , ,OR a b c d M  and   9, , ,OR a b c e M  , the outputs of function F, 

sequentially. This step is realized in four clock cycles.  

The overall number of clock cycles for realizing function F is six. During each 

operation, wire W is set either to VCOND or VPROG or connected to RG. Also, vertical wires 

Bj (1 ≤ j ≤ 9) are connected either to VCOND or VPROG or terminated to high impedance, Z. 

A vertical wire connected to a nonparticipating memristor is terminated to Z. In realizing

6d M , wires B4 and B6 are simultaneously connected to VCOND and VPROG, respectively. 

Source memristor M4 and load resistor RG form a voltage divider whose output (the voltage 

on wire W) drives target memristor M6. If M4 is in LRS, then VW ≈ VCOND. Therefore, the 

voltage across M6 is approximately VCLEAR, which is sufficient to toggle the state of M6.  In 

contrast, if M4 is in HRS, then VW ≈ 0V. Therefore, the voltage across M6 is approximately 

VPROG, which is insufficient to toggle the state of M6. Likewise,   8, , ,OR a b c d M  is 

implemented by simultaneously connecting B1, B2, B3, and B6 to VCOND, B8 to VPROG, and W 

M1 M2 M9

Rg

...

VPROG

VCOND

W

B1 B2

M3

B3 B9

VPROGVCONDInputVPROGVCONDInput VPROGVCONDInput VPROGVCONDInput

Fig. 2.5. Schematic of a 1 × 9 crossbar array of rectifying memristors for computing function F.  
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to RG. Alternatively,   8, , ,OR a b c d M  can be calculated by implementing a sequence 

of INH gates, i.e., 8a M ,
8b M , and

8d M  . A stateful INH gate can be used to 

produce NOT and NOR gates as  1p p  and  ( , ) 1 ( , )OR p q NOR a b  , which 

requires programming the target memristors to logic ‘1’. Therefore, an arbitrary logic 

function can be realized based on logic NOR. 

Fig. 2.6 shows the schematic of memristive circuit proposed in this dissertation for 

calculating logic functions in a crossbar array. The circuit consists of crossbar memory 

array and crossbar computational array. The memory array stores the instructions and 

control signals whereas the computational array executes logic operations and stores the 

results. These crossbar arrays are connected through datapath. This circuit architecture 

enables in-memory computing as the computational array calculates logic functions and 

stores the outputs. The computational array are connected to CMOS drivers. The schematic 

of each driver is shown in Fig. 2.7. The drivers can connect the wires to 0V, VCOND, VPROG, 

or the Ground (GND) through RG. The circuit can realize any logic function with INH and 

TRUE operations without any keeper circuit. The crossbar memory array is driven by 

shifter. The output of the shifter in the first, second, and nth clock cycles are (v1, v2… vn) = 

(1, 0 … 0), (0, 1, 0 … 0), and (0…0, 1), respectively. Each column of the crossbar memory 

array stores the control signals required to perform one logical operation. The size of the 

crossbar memory array depends on the number of horizontal and vertical wires of the 

computational array, the number of logical operations (which is equal to the number of 

clock cycles) and the driver’s control signals. Hence, its size can be written as (3×l) * n 

where 3 is the driver’s signals, l is the sum of horizontal and vertical wires, and n is the 
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number of clock cycles. The size of the memory array dominates the area when large 

circuits are implemented. The computational delay depends on a synthesis approach for 

logic computations [49]. The power dissipations in memristive arrays are discussed in 

Chapter 3, 5, 6, and 7. 

In summary, stateful NOR gates is built from INH gates. A multi-input stateful NOR 

gate is realized either sequentially by cascading stateful INH gates or simultaneously by 

implementing all stateful INH gates in parallel. A multi-output stateful NOR gate can be 

realized by simultaneously driving several target memristors to VPROG.  
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Fig. 2.6. Schematic of memristive computing circuit including control and datapath units. 
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 2.7 EISD: EXTENDED IMP SEQUENTIAL DIAGRAM 

The IMP Sequential Diagram (ISD) [49] is used for analysis and synthesis of stateful 

logic circuits. In this notation, each horizontal wire represents the state of a memristor over 

the course of synthesis. Fig. 2.8 shows the symbolic diagram of the IMP gate where p and 

q are inverting and non-inverting inputs of the IMP gate, stored in source and target 

memristors P and Q, respectively. The output of IMP gate is the new state of Q, which is

p q  . 

 

 

Via between CMOS and nanowire

0V VCOND

VPROG RG

Fig. 2.7. (Left) Schematic of a computational array connected to CMOS drivers. (Right) Schematic of 

each driver circuitry.  

 

P     p

Q    q p IMP q = ¬ p+q
+

     p

 

Fig. 2.8. Symbolic diagram of a 2-input IMP gate in ISD notation. 
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Fig. 2.9 shows the ISD notation of NAND (p, q). The gate is implemented in three clock 

cycles. In the first clock cycle, the FALSE operation programs memristor R to HRS, i.e., 

r = 0; the symbolic diagram of the FALSE operation is shown as a rectangle with label ‘0’. 

In the second and third clock cycles, p r and q r are implemented. The new values 

of r over the course of operations are shown alongside wire R. There is no more operations 

defined in ISD, as IMP and FALSE form a complete set of logic gates. In this dissertation, 

the ISD notation is extended (Extended ISD or EISD) to include INH and TRUE 

operations, as well. Fig. 2.10 shows the symbolic diagram of the INH gate where p and q 

are inverting and non-inverting inputs, stored in source and target memristors P and Q, 

respectively. The output of the gate is the new state of Q, which is pq . 

P     p

     q

¬p+(¬q)= ¬ (p+q)
R    r +0

0

+
¬ p

      p

Q    q

 

Fig. 2.9. ISD of function NAND (p, q) where the output is stored as a new state of memristor R.  

 

P     p

Q    q ¬ pq
× 

       p

 

Fig. 2.10. Symbolic diagram of a two-input INH gate in EISD notation. 
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 Fig. 2.11 shows the EISD notation of function  ,OR p q r . This function is performed 

in two clock cycles. In the first clock cycle, the TRUE operation sets memristor R to 

logic ‘1’. The symbolic diagram of the TRUE operation is shown as a rectangle with label 

‘1’. In the second clock cycle, the INH operation is performed. The new values of r over 

the course of synthesis are shown alongside wire R. Memristors P, Q, and R in Fig. 2.11 

are rectifying memristors, hence enabling stateful INH gate with multiple fan-out without 

P     p

Q    q

¬ (p+q)
R    r

× 1

1

       p

      q

        

P     p

Q    q

¬ (p+q)
R    r × 1

1

       p

      q
 

Fig. 2.11. EISD of NOR gate. Different EISD notations for r = NOR (p, q) depending on source and 

target memristors locations. 
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Q    q

¬ (p+q)
R    r × 1

1

¬ (p+q)
S    s × 1

1

 

Fig. 2.12. EISD of multi-output function     , , ,OR p q r OR p q s   .  
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T1-T2     T3           T4         T5      T6          T7       T8      T9  

Fig. 2.13. EISD of      ( , ) 1 1XOR p q p q q p         . 
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a keeper circuit. Fig. 2.11 shows two different EISD notations for  ,OR p q r as 

different source and target memristors are chosen in each diagram for synthesizing the 

function. Fig. 2.12 shows the EISD of multi-output function

    , , ,OR p q r OR p q s   . Fig. 2.13 shows the EISD of function

     ( , ) 1 1XOR p q p q q p         . The diagram also shows the timing aspect 

of the circuit, e.g., at T4 (the fourth clock cycle) value p is copied into the bottom most 

memristor (wire). In the course of synthesis, it is not possible to READ from and WRITE 

to a memristor simultaneously. For example, the instant implementation of p q  and 

q p  requires reading from and writing to memristor P, hence, a copy of value p is stored 

in an auxiliary memristor to avid the issue. The synthesis delay is nine clock cycles. This 

XOR p XNOR  q

     

1

     1 XOR

XOR (p, q, r)

     1

     1 r

p

q
     

1
     

1
     1

 

(a) 

XOR p XNOR  q

     

1

     1

XOR

XOR (p, q, r)

     1

     1

p

q
     

1
     

1

     1

WR
r

 

(b) 

Fig. 2.14. EISD notation of XOR (p, q, r). (a) The XOR gate is implemented with 15 operations and five 

memristors. (b) The XOR gate is implemented with 16 operations and four memristors. The EISD shows 

the trade-off between the number of memristors and the operations. 
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delay includes that of initialization and programming step. The overall number of 

memristors used in this implementation is four. In EISD notation, gates and sub-circuits 

are shown by blocks to simplify the diagram. For example, Fig. 2.14 shows the EISD 

notation of a 3-input XOR gate realized as a cascade of 2-input XOR gates. Each XOR 

gate consists of a number of INH and TRUE operations, as shown in Fig. 2.13. The 3-input 

XOR (p, q, r) is implemented with five memristors in 15 clock cycles (Fig. 2.14a).  

The EISD notation shows the tradeoff between the number of memristors and the 

number of stateful gates. For example, the 3-input XOR gate can also be realized in 16 

clock cycles and four memristors, i.e., by writing input r into the memristor P after 

calculating p XNOR q, as shown in Fig. 2.12b. The rectangle with label WR indicates 

writing input r into memristor P. Note that the WRITE operation is performed by 

connecting one terminal of the memristor to input r and the other terminal to VPROG.  

In summary, ISD is a notation used for analyzing and synthesizing stateful circuits and 

shows the tradeoff between the number of memristors and the number of clock cycles 

(logic operations). The proposed EISD generalizes the ISD notation.  

2.8 TWO-DIMENSIONAL CROSSBAR ARRAY 

Two-dimensional self-aligned crossbar arrays are regular structures with very high 

density. Fig. 2.15 shows a 3 × 3 memristor crossbar array. At each junction, an area between 

two perpendicular wires, one memristor is located. Each wire of the crossbar array is 

connected to a CMOS driver, and each memristor is uniquely accessible. A stack of crossbar 

arrays formed on CMOS layers creates a three-dimensional memristive array. CMOL 

(CMOS-MOLECULE SCALE DEVICE) [20] is one example of 3D memristive arrays. The 
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primary use of the 3D arrays (three-dimensional crossbar arrays) is for memory 

applications. In this dissertation, the focus is mainly on logic calculations in two-

dimensional crossbar arrays, or simply crossbar arrays.  

Despite the simplicity, regularity, and high density of the crossbar arrays, there are some 

potential problems such as half-select problem and sneak current paths limiting the size of 

these arrays and disturbing their operations. For example, suppose that the crossbar array, 

shown in Fig. 2.15 consists of non-rectifying memristors. Programming the upper right 

corner memristor to LRS requires driving the right-most vertical wire to VSET and the 

uppermost horizontal wire to 0V. This configuration half-selects the right-most column 

memristors, i.e., only one terminal of each half-select memristor is driven by VSET while the 

other terminal is floated (terminated to Z) [50]. Similarly, the uppermost row memristors 

connected to 0V are half-selected, as well. The half-select memristors may cause sneak path 

problem. The sneak path, as shown by a red-dash lines in Fig. 2.16, may inadvertently toggle 

the state of a memristor or disturb the READ and WRITE operations. For example, 

memristor M is intended for measuring the response. A current path through memristors 

other than memristor M is a sneak path current. Fig. 2. 16 shows the dominant sneak path 

current, which follows through half-select memristors in LRS.  
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Fig. 2.15. A 3×3 crossbar array of non-rectifying memristors. 

 

Fig. 2.16. Half-select problem may cause sneak current paths. The green dash-line represents the desired 

current path whereas the red dash-lined represents an undesired sneak current path. 
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                                                  (a)                                                                   (b) 

Fig. 2.17. (a) The sneak path disturbs the READ and WRITE operations. (b) The circuit equivalent of 

the crossbar array with sneak current path. 



38 

Fig. 2.17a shows how a sneak path disturbs the READ and WRITE operation. Suppose 

that the upper left corner memristor P is driven by VCOND and the upper right corner 

memristor Q is driven by VPROG implementing :q p q   . This operation falsely results 

in q = 0 due to the sneak path problem. The green dash-line in Fig. 2.17a illustrates the 

desired current path through memristor P whereas the red dash-line represents an undesired 

sneak current path. The sneak path disturbs the READ operation since it adds up a parallel 

resistance to memristor P, hence increasing the voltage on the uppermost wire. This voltage 

increase disturbs the WRITE operation, as well, since it decreases the voltage difference 

across memristor Q and makes it insufficient to toggle the state of Q. Fig. 2.17b shows the 

circuit equivalence to the crossbar array while implementing :q p q   . Note that the 

sneak path crosses through the reverse biased LRS memristors, as shown in Fig. 2.17b.  

The sneak current paths can be suppressed by connected the crossbar wires to proper 

voltage values. For example, Fig. 2.18a shows a voltage scheme for a reliable READ 

operation. In this scheme, the left-most vertical wire is set to VCOND while other vertical 

wires of the crossbar array are grounded. The current through memristor P is fed to a sense 

amplifier, which acts as a current-to-voltage converter. The output of the amplifier 

determines the state of memristor P. This voltage scheme suppresses the sneak paths and 

enables a reliable READ operation. However, this voltage scheme may cause a power 

dissipation in other left-most column memristors depending on their resistance states. 

Fig. 2.18b shows another voltage scheme for a reliable WRITE operation [51].  In this 

scheme, the vertical and horizontal wires connected to memristor P are set to VSET and 0V, 

respectively, while other crossbar wires are connected to VSET/2. This biasing scheme limits 
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the sneak paths and enables a reliable WRITE operation. However, this scheme may also 

cause a power dissipation in other left-most column memristors of the crossbar array. There 

are other techniques that can be used to improve the READ and WRITE operations as 

studied in [51-53]. The use of rectifying memristors is our design choice to limit the sneak 

paths in crossbar arrays. Rectifying memristors limits reverse biased currents, which cause 

the sneak path currents, below 10–13 A. Studies show that the diode-like behavior of the 

rectifying memristors effectively improves the read operation performance of a large scale 

crossbar memory array without cell-selectors [54].  

In addition to the sneak current paths, a nonzero resistance of wires could be another 

challenge for reliable READ and WRITE operations [55-56]. This resistance degrades the 

voltage along the wires and causes unequal voltage drops across the memristors. When all 

memristors on a selected column are at LRS, the farthest memristor from the driver is the 

0V

0V

P

VCOND 0V 0V

0V

VSET/2

VSET/2

P

VSET VSET/2 VSET/2

0V

 

                                                         (a) (b) 

Fig. 2.18. Biasing schemes for READ and WRITE operation. These schemes limit the sneak path currents. 
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worst-case selected memristor, which sees the largest voltage degradation during the 

WRITE operation (Fig. 2.19). The fidelity of the READ operation depends on the state of a 

selected memristor as well as the states of other memristors in the crossbar array. The worst 

performance of the READ and WRITE operations occurs under following circuit 

circumstances [55]: 1) when a selected memristor is in LRS, other memristors of a selected 

column are in HRS, and other crossbar memristors are in LRS, the READ operation has the 

worst performance, and 2) when a selected memristor is in HRS while other memristors of 

the crossbar array are in LRS, the READ and WRITE operation have the worst performance. 

The maximum size of a crossbar array is determined based on the worst READ and WRITE 

performance of memristors. To maximize the size of a crossbar array, the power 

consumption should be minimized. This can be done by increasing the resistive values of 

RCLOSED and ROPEN while keeping the ROPEN/RCLOSED ratio sufficiently large, as suggested in 

The farthest 

memristor from the 

driver

Symbolic 

drivers

...

...

...

...

...

.

.

.

 

Fig. 2.19. The effect of nonzero resistance of wires on the READ and WRITE operations.  
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[55]. However, this solution may increase the RC delay during a READ and WRITE 

operation. In contrast to the previous works [55-56], recently, Youn et al. showed different 

examples of the worst read scenarios in the crossbar arrays [57].  

Fig. 2.20 shows the schematic of the memristor circuit proposed in this dissertation for 

computing logic functions in a two-dimensional array. A driver circuit connected to each 

wire of the crossbar array is shown in Fig. 2.7. These drivers enable row and column 

operations in the computational crossbar array [47] and [74]. The complexity and 

computational delay (measured as the number of clock cycles) of the circuit are related to 

logic synthesis approaches used to realize functions. The size of the crossbar memory array 

depends on the size of the computational array, the number of control signals used for 
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Fig. 2.20. Schematic of the complete memristor crossbar array. The driver circuitries are illustrated in 

Fig.  2.7. 
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driving each wire of the computational crossbar array, and the size of the circuit realized in 

computational array. See Chapter 3, 5, 6, and 7 for power analysis of memristor circuits.  

In summary, the limitations of the cross array and the potential solutions are discussed. 

In addition, a new general memristor circuit structure for logic computing in two-

dimensional array is proposed. 

 2.9 LOGIC COMPUTATIONS IN A CROSSBAR ARRAY 

This section explains how to calculate logic functions in a crossbar array of rectifying 

memristors with INH and TRUE gates. An implementation of 3-input XOR gate in the Sum-

of-Products (SOP) form, i.e., ( , , )XOR p q r pqr pqr pqr pq r     is explained in the 

following three steps.  

1) Initialization: This step sets the memristors to logic ‘1’. Setting the memristors with 

random states to logic ‘1’ may increase the power dissipation in the crossbar array. 

Instead, if the memristors were logic ‘0’, their programming to logic ‘1’ would 

decrease the power dissipation. Furthermore, programming the memristors to logic 

‘0’ requires small amounts of power as memristors are set reversely biased. Therefore, 

this step is realized with two consecutive FALSE and TRUE operations in two clock 

cycles. The entries of the symbolic matrix, shown in Fig. 2.21 represent the logic 

values stored in each memristor of the crossbar. The label on top of the arrow indicates 

the number of operations required for the initialization. 
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2) Mapping: This step shows how to map the XOR gate into the crossbar memristors. 

Suppose that the bottommost row memristors of the crossbar array store inputs p, q, 

and r (Fig. 2.22a). The columns of the crossbar array are programmed one by one 

using multi-output INH gates. For example, the left-most column memristors of the 

crossbar array are programmed using two consecutive INH gates
31 41( , )p m m and

31 11 21( , )m m m where mij shows the state of a memristor at intersection row i and 

column j. The results of the inhibition operations are shown in Fig. 2.22b and 2.22c. 

Similarly, other columns are programmed as shown in Fig. 2.22d.  The total number 
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Fig. 2.22.   Symbolic matrices illustrate the steps of computing XOR (p, q, r) with INH gates. The 

number of operations (clock cycles) to implement the XOR gate is 11. 
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Fig. 2.21. Symbolic matrix. The entities show the values of the crossbar memristors. 
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of clock cycles for programming the columns is twice of the number of inputs, which 

is six.  

3) Calculation: This step explains how to calculate the XOR gate in the SOP form. First, 

the products (minterms) are implemented with four multi-input INH gates

  1,( ) 1, ( ) 1p q r p q r p q r           , and ( ) 1p q r   where each INH 

gate is applied to one row of the crossbar array. The products are simultaneously 

calculated and stored in the right-most column memristors as shown in Fig. 2.22e. 

Next operation is to sum the products by two consecutive INH gates as

(( ) 1) 1pqr pqr pqr pq r      . The first INH gate calculates logical NOR of 

the products, which is equivalent to the logical XNOR of the inputs, and the second 

INH gate inverts the output of the first INH gate producing XOR (p, q, r). Fig, 2.22f 

shows the outputs of the INH gates.   

The synthesis approach used for the XOR gate is similar to that proposed in [25] except 

that cited approach [25] uses a combination of INH and IMP gates for synthesis. This 

combination of logic gates decreases the delay but increase the complexity. There are two 

types of operations, known as row and column operations, realized in crossbar arrays. Row 

operations are applied to row memristors and column operations to column memristors. For 

example, in step 3, the products (minterms) are implemented with row operations and the 

sum (OR gate) with column operations. The INH gates used in row operations are realized 

with VCOND > 0V and VPROG < 0V. However, opposite polarity of VCOND and VPROG is required 

for implementing the INH gates in column operations.   
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One disadvantage of stateful logic computations is that stateful operations are 

sequential, hence a long sequence of operations are required to perform a logic function. 

With alternative circuit approaches, proposed in Chapter 3 and 4, a 3-inupt XOR gate can 

be implemented with only three clock cycles as described in Chapter 5. 

In summary, a 3-input XOR gate is implemented in a crossbar array of rectifying 

memristors with multiple INH gates. The size of the crossbar array is 6 × 4 and the total 

number of clock cycles is 11.  

  2.10 SUMMARY  

This chapter explained the basic memristor crossbar structure. The sneak path problem 

and some solutions were discussed. In addition, EISD notation was explained. Multiple 

design choices for stateful logic circuits were reviewed. Rectifying memristors are 

desirable for logic computations due to power and area saving benefits. This chapter also 

described a new general circuit structure which enables in-memory computing. 
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Chapter 3 

Memristive Volistor Logic Gates 

This chapter introduces a novel volistor logic gate [29], which uses voltage as input and 

resistance as output. Volistors rely on the diode-like behavior of rectifying memristors. 

This chapter shows how to realize the first logic level, counted from the input, of any 

Boolean function with volistor gates in a memristor crossbar network. Unlike stateful logic, 

there is no need to store the inputs as resistance, and computation is performed directly. 

The fan-in and fan-out of volistor gates are large and different from traditional memristor 

circuits. Compared to a solely memristive stateful logic, a combination of volistors and 

stateful inhibition gates can significantly reduce the number of operations required to 

calculate arbitrary multi-output Boolean functions. The power consumption of volistor 

logic is computed and compared with the power consumption of stateful logic using 

simulation results—when implemented in a 1 × 8 or an 8 × 1 crossbar array, volistors 

consume significantly less power. 

3.1 INTRODUCTION  

The stateful logic computations with memristors is an area of active research. Borghetti 

et al. [20] proposed realizing the stateful logic via material implication (IMP). In classical 

memristive stateful circuits, logic signals utilize resistance on input and output. In other 

words, the previous resistance state of a memristor affects the operations. In contrast, 

volistors do not use the previous resistance state in calculations. Other stateful logic gates 

have been proposed as well, e.g., INH, AND, etc. In stateful logic, values are encoded by 

resistance states of memristors. The stateful logic is usually performed in a generic crossbar 
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array. One key disadvantage of stateful logic is that a long sequence of operations is 

required to implement an arbitrary Boolean function. 

This chapter introduces a new concept in memristor logic, call volistor logic. Unlike a 

stateful logic gate, a volistor (voltage-resistor) gate has voltage-based input and resistance-

based output. Therefore, volistors (volistor gates) can be used for first (possibly complex) 

level of logic implementation. It is always assumed that negated inputs are available as 

voltage signals. Volistors are implemented in generic crossbar arrays of rectifying 

memristors. Logic synthesis methods with volistors are different from classical logic 

synthesis. Multi-input multi-output volistor gates, implemented in a 1 × 8 crossbar array, 

dissipate less power than corresponding stateful logic gates. The output of a volistor gate 

is stored as a resistance state of a target memristor. The correct functionality requires 

initializing the target memristor to LRS. With different coding schemes, either a volistor 

OR and NAND logic set or a volistor NOR and AND logic set can be realized in the same 

crossbar array. For instance, if the closed state of a memristor encodes logic ‘0’ and the 

open state of a memristor encodes logic ‘1’, the set of OR and NAND operations is 

implemented. The reverse encoding scheme implements the NOR and AND logic set. With 

volistor logic, crossbar drivers need to supply only three voltage levels ,v v  and 0V. In 

addition, the drivers must be capable of connecting arbitrary wires in the crossbar to either 

high impedance (Z) or grounding these wires through load resistors RG. Clearly, volistor 

logic cannot implement arbitrary logical structures such as SOP, i.e., the volistor network 

layer cannot implement every Boolean function. However, a combination of a volistor 
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NOR and AND with stateful INH, or their dual logic of volistor OR and NAND with 

stateful IMP, can both be used to realize arbitrary multi-output Boolean functions.  

This chapter is organized as follows. In Section 3.2, volistor gates are introduced. In 

Section 3.3, the synthesis of arbitrary Boolean functions is explained. In Section 3.4, the 

power consumption of volistor gates is computed and compared with stateful logic. 

Section 3.5 is a summary and conclusion of the chapter.  

3.2 VOLISTOR LOGIC 

In this section, volistor logic is introduced. The key idea behind volistor logic is that 

inputs are voltages and outputs are resistances. This is a significant change from the way 

the voltage drivers are used in stateful logic; however, the target memristor is still used as 

a memory element where the output is stored. The basic volistor logic gates are: inverter, 

n-input NOR, and n-input AND, and their duals inverter, n-input OR, and n-input NAND. 

The following subsections describe the basic architecture required for logic computations 

and the basic logic gates.  

3.2.1 Crossbar Structure  

The basic circuit structures for volistor logic computations are the 1 × 2 crossbar array 

and 2 × 1 crossbar array depicted in Fig. 3.1. Just as in stateful IMP, S denotes the source 

memristor and T the target memristor. The wire B1 connected to source memristor S 

conveys input signal VS. Let v+ = 0.6 V and v0.6– = ־ V. The logical coding scheme for VS 

is defined as follows: v+ encodes logic ‘1’ denoted vs = 1, and 0V encodes logic ‘0’ denoted 
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vs = 0. The wire B2 connected to target memristor T carries a bias voltage, VT = v־. 

Memristor T acts as a switch whose resistance state t represents the output of the crossbar 

array. When T is open, its high-resistivity state encodes logic ‘0’, i.e. t = 0. When T is 

closed, its low-resistivity state encodes logic ‘1’, t = 1. This interpretation of the resistivity 

state of T is used for performing the NOR/AND logic set; another interpretation is 

discussed in Section 3.2.5. Prior to logic computation, both memristors S and T must be 

closed. To unconditionally close a memristor, it must be forward biased by VSET.  The 1 

× 2 crossbar array must satisfy (3.1). In particular, VT is selected such that VT-VS equals 

VCLEAR when VS = v+. 
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                                                           (3.1) 

Each wire must be either driven by one of the voltages v+, 0, and VT, or terminated with 

high impedance Z or grounded by load resistor RG. All these connections are realized with 
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Fig. 3.1. Crossbar arrays. (a) 1 × 2 crossbar array. (b) 2 × 1 crossbar array. The inset shows the symbolic 

diagram of a memristor. The flow of current into the device, as shown above, increases the resistance. 
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CMOS switches shown symbolically in Fig. 3.2. RG is defined as geometric mean of 

RCLOSED and ROPEN, i.e., √ (RCLOSED × ROPEN) = 15MΩ. The crossbar array operates by the 

simultaneous application of VS and VT to S and T, respectively. Since VS > VT, current must 

flow through the memristors. However, the application of these voltages forward biases S 

and reverse biases T, thus suppressing the flow of current. This means that VW ≈ VS where 

VW is the voltage on wire W. If Vs = v+, the voltage across T will toggle that memristor, i.e., 

the new state of target memristor T becomes t = 0.  

The other basic structure for volistor logic is 2 × 1 crossbar array depicted in Fig 3.1b. 

In this crossbar array, the logical coding scheme for VS is defined as follows: v־ encodes 

logic ‘1’ denoted vs = 1, and 0V encodes logic ‘0’ denoted vs = 0. The 2 × 1 crossbar array 

must satisfy (3.2). In particular, VT is selected such that S T CLEARV V V  when
SV v . 

                                                   
0 T CLOSE

S T CLEAR

V V V

V V V

 


 
                                                    (3.2) 

The crossbar arrays shown in Fig. 3.1 can be scaled to 1 × n and n × 1 arrays, allowing 

for multi-input multi-output volistor logic gates. The 1 × n and n × 1 crossbar arrays must 

Z

RG

VS

VT Wire

 

Fig. 3.2. Symbolic illustration of a driver circuit connected to each wire. 
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satisfy (3.1) and (3.2), respectively. These arrays implement wired-OR function where the 

voltage on wire W denotes logical OR of inputs. 

3.2.2 Volistor NOT gate in a one-dimensional array 

An inverter is the simplest gate to realize in volistor logic; the symbolic diagram is 

shown in Fig. 3.3a. Take, for example, the case where (vs, t) = (1, 1), i.e., vs = 1 and t = 1. 

Both source and target memristors are initially closed. Volistor NOT can be realized in 

either a 1 × 2 or 2 × 1 crossbar array. When realized in a 1 × 2 array, VT must be a negative 

voltage, VS must be greater than or equal to 0V, per (3.2), and horizontal wire W must be 

connected to high impedance Z. Setting W to Z allows VS to manifest on W. Based on 

Ohm’s law, current should flow through the array, since VS -VT > 0V. However, memristor 

T is reverse biased and thus suppresses the flow of current. In this case, the voltage drop 

across S is 1.2 mV, i.e., the voltage on W equals 599 mV. The voltage drop across T is -

1.198 V, which is sufficient to open memristor T. This is the desired behavior of the inverter  

V RVIN ROUT

V

V
R ROUT

VIN1

VIN2

V

V
R ROUT

VIN1

VIN2

V

R
R ROUT

VIN

RIN

(a) (b) (c)

(d)
 

Fig. 3.3. Symbolic notations for volistor logic gates. (a) Volistor NOT. (b) two-input volistor NOR gate. (c) 

two-input volistor AND gate. (d) mixed-input NOR gate. Inside the gates, symbols V and R denote whether 

a signal is a voltage-based or resistance-based, respectively. 
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W

VS VT 

S T

Z VT 

X T

VT Z

T X

VT Z

T X

 

(a) 

                    (b)                                     (c)                                        (d)                                        (e) 

Fig. 3.4. Behavior of volistor NOT. (a) 1 × 8 crossbar array implementing a four-output NOT and showing 

arbitrary nature of the locations of source memristors S and target memristors T. The contribution of each 

memristor is determined by the voltage driver, to which it is connected. Wire W is connected to Z.  (b) The 

operation of a one-output NOT in a 1 × 2 array. VW stabilizes at ≈ 600 mV indicating 𝑣𝑠= ‘1’ manifesting on 

W. In addition, t1 toggles to ‘0’.  (c) The operation of a 63-output NOT in a 1 × 64 array. VW stabilizes and t 

toggles as in b. (d) The operation of a one-output NOT in a 1 × 2 array. VW stabilizes at ≈ 0V indicating vs = 

‘0’ manifesting on W. As a result, t remains ‘1’. (e) VW stabilizes as in d. 

 

function, i.e., (vs, t) = (1, 0). Given the parameters introduced in Section 2.3, the switching 

delay of volistor NOT is 4.044 ns as shown in Fig. 3.4b.  

Volistor NOT may be extended to a multiple fan-out function realized in arrays 1 × n or 

n × 1. The multi-output NOT function stores
sv in up to n-1 target memristors in any 

arbitrary location in the array. The role of each memristor is determined by its driver, i.e., 

source memristors are driven by VS and target memristors by VT. Interestingly, this means 

that a memristor’s function is independent of its position in the crossbar array. Fig. 3.4a 

shows a 4-output volistor NOT gate implemented in a 1 × 8 array. Source memristor S is 

driven by VS and target memristors T by VT. Memristors X are terminated to Z and do not 
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take part in the circuit’s operation. The proper operation of a 63-output NOT gate with 

vs = 1 implemented in a 1 × 64 array and simulated in LTspice is depicted in Fig. 3.4c. VW 

is 528.881 mV, and all 63 target memristors are switched off successfully in 6.223 ns. 

Fig. 3.4d shows the desired behavior of volistor NOT implemented in a 1 × 2 array when 

vs = 0. VW is -599.4 μV, and the target switch remains closed. Fig. 3.4e shows the behavior 

of a 63-output volistor NOT implemented in a 1 × 64 array when vs = 0. This results in 

VW = -35.559 mV, and all target switches remaining closed. Table 3.1 summarizes these 

configurations and their effects on VW. A NOT with an arbitrary fan-out can be realized in 

one pulse. NOT gate is explained for completeness. As negated inputs are available at no 

additional cost, volistor NOT is not practically useful. In this chapter, all volistor gates 

appear only at the input layer.                                                                                                  

3.2.3 Volistor NOR gate in a one-dimensional array 

The second basic gate in volistor logic is NOR. Fig. 3.3b shows the symbolic diagram 

of a two-input volistor NOR gate. Since 1 × n arrays have been previously discussed, in 

this subsection, n × 1 arrays are considered. Take, for example, a two-input NOR gate 

where (vs1, vs2, t) = (1, 0, 1). This requires the application of input data to S1 and S2 and VT 

Table 3.1 

Implementation of multi-output volistor not gate 

Crossbar 

Array 
𝑣𝑠 # Outputs 

VW 

( mV) 

Td 

(ns) 
Fig. 3.4 

1 × 2 1 1 598.8 4.065 b 

1 × 64 1 63 528.9 6.223 c 

1 × 2 0 1 -0.6 Not applicable d 

1 × 64 0 63 -35.6 Not applicable e 
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to T. Since the gate is realized in a 3 × 1 crossbar array, Equation (3.2) requires VT > 0V 

and VS ≤ 0V. Based on Ohm’s Law, current should flow through the crossbar array since 

VT-VS > 0. However, S2 and T are both reverse biased and thus suppress the flow of current. 

The voltage drop across S1 is 1.8 mV, i.e. VW = - 598.2 mV. The voltage drop across T is 

- 1.198V, which is sufficient to open T. Recall that all memristors are initially closed. The 

gate is realized by implementing a wired-OR, i.e., the voltage on W is the logical OR of vs1 

and vs2. The output of the gate is the new state of switch T, either open or closed. Table 3.2 

shows VW and Td for various combinations of inputs of a single-output volistor NOR gate, 

W

VS1 

VS2 

S1

S2

VT 

T

Z

 

Fig. 3.5. A 3×1 crossbar array used to implement a two-input volistor NOR. 

 
Table 3.2 

Implementation of multi-input single-output volistor NOR gate 

Crossbar 

Array 

Number of Inputs 

 at Logic VW 

(mV) 

Td 

(ns) 
 ‘0’  ‘1’ 

3 × 1 

0 2 -599.4 4.048 

1 1 -598.2 4.068 

2 0 0.3 
Not 

applicable 

64 × 1 

63 0 0.0 
Not 

applicable 

0 63 -600 4.04 

50 13 -597.6 4.08 
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implemented in a 3 × 1 and a 64 × 1 crossbar array. Note that with more logic ‘1’ inputs, 

the value of VW approaches VS and the switching delay Td gets shorter.  

3.2.4 Volistor AND gate in a one-dimensional array 

The third basic gate in volistor logic is AND. This gate is realized as NOR with negated 

literals of the desired product applied to the crossbar array. For example, the desired 

product 𝑎̅𝑏𝑐 ̅ is realized by applying
1 2 3( , , ) (1,0,1)s s sv v v  to the memristors. As a result, 

the voltage across T is sufficient to toggle t to ‘0’, i.e., t = a b c  . According to the De 

Morgan’s law a b c abc   , which is the desired result. The AND gate can be scaled to 

perform multi-input multi-output operations. The details are the same as described for 

volistor NOR. It is assumed that negated inputs are always available at the same cost as the 

non-negated inputs. 

3.2.5 Volistor OR and NAND gates in a one-dimensional array 

In all volistor logic gates discussed above, the logical coding scheme of memristive 

switch T is defined as follows: an open switch encodes logic ‘0’, and a closed switch 

encodes logic ‘1’. This scheme allows direct implementation of volistor NOR/AND; 

however, it blocks direct implementation of volistor OR/NAND, i.e., two consecutive 

operations must be performed. To realize OR/NAND gates directly, the logical coding 

scheme of memristive switches T must be reversed, the open switch encodes logic ‘1’ and 

the closed switch encodes logic ‘0’. This scheme allows a direct realization of volistor OR 

in the same manner as volistor NOR described in Section 3.2.3. Likewise, volistor NAND 

is realized by applying negated input logic values to the crossbar array, in the same manner 
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as the volistor AND described in Section 3.2.4. Circuit designers could select one of the 

encoding schemes for the entire system or create a hybrid system with several partitions. 

Each partition is encoded by one of the encoding schemes. Partitions with different 

schemes are connected through inverters.  

3.2.6 Mixed-input logic gates in a one-dimensional array 

Inputs on standard volistor gates are voltages; however, as shown in Fig. 3.3d, 

implementing gates with mixed-inputs is possible using a hybrid of stateful and volistor 

logic where some inputs are represented by resistances and some by voltages. Fig. 3.6 

depicts a three-input NOR gate implemented in a 1 × 4 crossbar array where (s, vs2, vs3, t) 

= (0, 0, 1, 1). Recall that the members of the first tuple are resistances and voltages while 

the members of the second tuple are the logic values that they represent. Specifically, s is 

the resistive logic value stored in S1 and is to be interpreted as logic ‘0’. Assume s has been 

set in a previous operation, and any memristors with voltage inputs have been already set 

to RCLOSED. As in stateful logic, W is grounded through RG, and VCOND is applied to S1 where 

VCOND = v+. As in volistor logic, input data are applied to memristors S2 and S3, and bias 

voltage VT is applied to memristor T. Equation (3.2) requires VT =v־ and VS ≥ 0V. With this 

W

VCOND VS1 

S1 S2

VS2 VT

S3 T

RG

 

Fig. 3.6. Mixed input NOR. The implementation of a three-input one-output NOR gate. The resistive input 

is stored in S1and the voltage inputs are applied to S2 and S3. The output is stored in memristor T. 
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configuration, s manifests as a voltage on W, and the circuit operates in the same manner 

as volistor NOR. Translation between logical encoding schemes is accomplished in the 

same manner as described in Section 3.2.5. Volistor AND gate may be realized with one 

extra step since input resistances would need to be negated. 

3.3 HYBRID APPROACH TO SYNTHESIZE  BOOLEAN FUNCTIONS IN CROSSBAR ARRAYS  

In theory, every single-output Boolean function of n variables can be realized in a one-

dimensional crossbar array with n source memristors and two auxiliary memristors [58] 

where the auxiliary memristors may act as source or target memristors. However, this 

realization leads to a long sequence of pulses (clock cycles). To avoid this long sequence 

of pulses, multi-output Boolean functions can be realized in a crossbar network.  

In this section, we show how to implement arbitrary Boolean functions in a crossbar 

network utilizing a combination of stateful, volistor and mixed input gates. This generic 

network structure can be used to implement logic functions in several forms such as SOP, 

POS (Product-of-Sum), TANT (Three level AND NOT Network with True inputs) [59], 

and ESOP. TANT architecture requires non-inverted inputs, but here, a generalized TANT 

with no restriction on the input polarity is considered. Stateful operations are realized solely 

with NOR and NOT. The stateful NOT gate is implemented by the INH gate with non-

inverting input set to constant 1. And, the stateful NOR gate is implemented by cascading 

INH gates and setting the non-inverted input of the first gate of the cascade to constant 1, 

e.g., ( 1) (1. ).a b b a a b      . 
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3.3.1 Hybrid computation in a one-dimensional array 

The simplest structure to perform memristive logic computation is a one-dimensional 

crossbar array. In this structure, computations can be performed by either solely stateful 

logic or by a combination of mixed input, stateful, and volistor logic. The first approach is 

potentially slow since a long sequence of operations needs to be implemented. However, 

the second approach, which we call hybrid approach, has the potential to reduce the number 

of required operations.  We assume a SOP with λ single literal degenerate products and γ 

products with more than one literal; thus the SOP is the OR of λ+ γ inputs. The given SOP 

function requires a four step process to be computed by the second approach: 

1) TRUE: Set the memristors to closed states. In a 1 × n array, this requires driving all 

vertical wires by v+ > 0V and horizontal wire by v0 > ־V. For an n × 1 array, the bias 

voltages should be swapped. This step is realized in one pulse.  

2) AND: Implement γ volistor AND gates to compute all γ products of literals. This step 

requires a total of γ pulses.  

3) NOR: Perform a stateful NOR operation on λ+ γ arguments. This includes the λ single 

literal variables, which are supplied as voltages, and the γ products from the previous 

step, which are stored as resistances. This step requires one pulse.  

4) NOT: Negate the result of the previous step. This step requires one pulse.  

Example 3.1. The following example describes the hybrid approach in a crossbar array 

for Boolean function f ab ab c   . This function can be realized in a 1 × 4 array in five 

consecutive operations, i.e., one for TRUE, two for AND, one for NOR, and one for NOT, 
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as shown in Fig. 3.7. The first operation sets the memristive switches Mi to closed states. 

This operation is achieved by driving vertical wires Bi to v+ and horizontal wire W to v־. 

The second operation calculates ab by connecting B1 and B2 to voltage signals
a

V and
b

V

encoding literals a and b . The output is stored in M4. Similarly, the third operation 

calculates ab  by driving B1 and B2 to voltage signals
aV and bV  encoding literals a and b. 

The output is stored in M3. The fourth operation calculates ( , , )NOR ab ab c utilizing mixed-

input logic. This operation is realized by connecting W to the GND through RG, B3 and B4 

to v+, VC to B1 and B2 to v־ where voltage signal VC encodes literal c. The result of the NOR 

gate is stored in M2. Currently, the logic value of M2 is f ; hence, the last operation is to 

invert f  to obtain f. This step is implemented by connecting W to the GND through RG and 

driving B1 to v־ and B2 to v+. The value of f is stored in M1. Since M3 and M4 do not take 

part in the last computation, B3 and B4 are terminated to Z. Fig. 3.7b summarizes the circuit 

configuration during each operation.  
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As illustrated in Example 3.1, any SOP function can be realized in γ+3 operations with 

at least γ+1+λ memristors in a one-dimensional crossbar array. In Example 3.1, λ = 1, so 

we used four memristors. As a matter of proper operation, all target memristors Ti must be 

initially closed. Further, if any of the inputs are logic ‘1’, inputs must be driving a closed 

source memristor, Si. If all such Si are open, the electrical characteristics of the memristor 

may prevent proper manifestation of the input voltage on the common wire. Therefore, all 

memristors should be initially closed. The state resistance of a memristor may only change 

when driven by VT. Therefore, a target memristor may be used as a source memristor, i.e., 

driven by VS in subsequent operations with no risk of changing its state. This reuse allows 

for compact logic implementations. However, this reuse potentially results in all source 

memristors being open, so any subsequent logic ‘1’ inputs have no closed memristor to 

W

B1 B2

M1 M2

B3 B4

M3 M4

 

(a) 

Operation Step 
Memristors’ Drivers Logic State of Memristors Mi 

W B1 B2 B3 B4 M1 M2 M3 M4 

1 TRUE v־ v+ v+ v+ v+ 1 1 1 1 

2  

AND 

 

Z a
V  

b
V  Z v1 1 1 ־ ab 

3 Z Va Vb v ־ Z 1 1 ab  ab 

4 NOR RG Vc v־ v+ v+ 1 𝑓 ̅ ab  ab 

5 NOT RG v־ v+ Z Z 𝑓 𝑓 ̅ ab  ab 

(b) 

Fig. 3.7. Example of logic computation based on hybrid approach in a crossbar array. (a) 1 × 4 crossbar 

array used to implement SOP function f. (b) Circuit configuration during each step. The total number of 

consecutive operations (pulses) to realize f is 5. 
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drive. Therefore, the number of memristors in the array should be more than the number 

of products, i.e., extra memristors should be provided as dedicated targets.  

3.3.2 Hybrid computation in a two-dimensional array   

The crossbar array can be scaled into a two-dimensional crossbar array of size m × n. 

With this structure, in a single volistor operation, a product of literals can be created and 

copied to an arbitrary column memristor or row memristor simultaneously, i.e., each row 

in an m × n crossbar can be thought of as a 1 × n crossbar array and each column can be 

thought of as an m × 1 crossbar array. The multi-output capability of crossbar arrays 

discussed earlier allows this arbitrary copying in any dimension. Fig. 3.10 depicts target 

memristors as multi-input volistor gates whose outputs are the states of the corresponding 

memristors. Using the multi-output property, any combination of NOR/AND gates can be 

copied to any number of arbitrary locations in a single column. One operation is required 

 

                             (a)                                          (b)                                         (c) 

Fig. 3.8. Crossbar array. (a) Crossbar array is divided into three sections; gates in section 1 are implemented 

with volistors but in section 2 and 3 are realized with stateful NOR. (b) The stateful approach realizes two 

logic levels. (c) However, the hybrid approach realizes three logic levels with the same implementation 

cost of the stateful approach. Li is the number of logic level.  
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for each gate type. The entire crossbar array can be populated with an arbitrary combination 

of gates in, worst case, 2n operations where n is the number of vertical wires. Populating 

the crossbar in this manner is the first step (after initialization) in an approach that combines 

the use of volistor, mixed-input and stateful logic in the same crossbar array to produce 

logic computations.  

Example 3.2. As a means of discussing this hybrid approach, take for example, the 

implementation of function f ab cd A B A AB      . This requires the same four-

step process described in Section 3.3.1 and is illustrated in Fig. 3.9. The matrices represent 

the logic values stored in each memristor of the crossbar. Voltages applied to the horizontal 

and vertical wires are indicated by the values shown to the left of and on top of the matrices. 

The arrows between matrices indicate the number of operations required to move to the 

next matrix. Fig. 3.9a shows the crossbar after initialization; the voltages to achieve this 

state are not shown. Fig. 3.9b shows the result of computing the first product with volistor 

AND. Fig. 3.9c shows the computation of the other product, which is also realized with 

volistor AND. Fig. 3.9d shows stateful logic being used to compute B ab cd  . In this 

step, v+, v־, and RG are equal to VCOND, VPROG, and the load resistor in stateful logic. 

Fig. 3.9e shows the implementation of a mixed NOR gate on resistance-based signal B

and voltage-based signal A producing the desired function f.  

With the hybrid approach, the use of stateful IMP can be avoided. This simplifies driver 

circuit, removes the need for a keeper circuit [10], and simplifies crossbar initialization. 

The stateful approach also requires a step to store the inputs in the crossbar, however, since 
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the hybrid approach uses voltages as inputs, no storage step is required. The main 

advantage is that for the same cost (number of operations and memristors), the hybrid 

approach produces one additional level of logic versus the stateful approach. The hybrid 

approach uses the efficiency of volistors to implement the first level of logic, which is 

usually most complex. 

Fig. 3.8a depicts a crossbar array divided into three sections. In stateful logic, the 

memristors in section 1 store inputs; the memristors in section 2 store the first-level logic 

outputs, and the memristor in section 3 stores the output of the second-level logic. In the 

hybrid approach, since inputs are voltages, the memristors in section 1 store the outputs of 

the first-level logic; the memristors in section 2 store the outputs of the second-level logic, 

and the memristor in section 3 stores the output of the third-level logic. With the same 

number of operations and the same number of memristors, the stateful approach produces 

only two-level logic while the hybrid approach produces three-level logic as shown in 

Fig. 3.8c. However, since in volistor logic the inputs are voltages, there can be only one set 

of inputs applied to the crossbar at any given moment, and therefore, only one output can 

be computed at a time. In stateful logic, inputs are stored as resistances. Therefore, each 

row or column can be thought of as a distinct set of inputs capable of simultaneously 

producing distinct outputs, with the restriction that all outputs implement the same type of 

stateful gate, e.g., all the four NOR gates as shown in block 2 of Fig. 3.8a.  In the next 

subsection, we use the hybrid approach in a crossbar network which provides a means of 

achieving different outputs in parallel using volistor logic. 
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Fig. 3.9. Symbolic matrices illustrate the steps of computing f ab cd A   based on the hybrid approach. 

(a) Initialization step. (b) Computing ab with volistor AND. (c) Computing cd  with volistor AND. (d) 

Computing ab cd with stateful NOR. (e) Computing f with mixed-input NOR. 

        

3.3.3 Hybrid computation in a crossbar network 

In a single crossbar array using volistor logic, there is a limited form of parallelism, i.e., 

only identical gates with identical inputs can be produced in a single step. To overcome 

this limitation, a network of many individual crossbars can be used. Each individual 

crossbar can have as many copies as necessary of a single gate with identical inputs. This 

structure allows two or more separate crossbars to simultaneously calculate the first logic 
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Table 3.3 

Multiple logic structures and their De-Morgan’s equivalences 

# Logical Form De Morgan’s Equivalent 
Example 

 
#of Pulses 

1 AND-OR (SOP) AND-NOR-NOT Fig. 3.10a 3 

2 OR-AND (POS) NOR-NOR Fig. 3.10b 2 

3 NAND-NAND-NAND AND-NOR-NOR-NOT Fig. 3.10c 4 

4 AND-XOR (ESOP) AND-NOT-NOR-NOR Fig. 3.10d 4 

5 NAND-AND-XOR AND-NOR-NOT-NOR-NOR Fig. 3.10e 5 

6 AND-XOR-OR AND-NOT-NOR-NOR-NOR-NOT Fig. 3.10f 7 
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level of an arbitrary Boolean function. Additional logic levels can be achieved with stateful 

operations, mixed input gates, or both. The first level volistor operations can be NOR or 

AND. Table 3.3 shows different forms of Boolean functions that are well suited to this 

hybrid approach. Next, we present detailed examples for cases 2 and 5.   

Example 3.3. POS implementation  

Take an EXOR function of three variables

( )( )( )( )f a b c a b c a b c a b c a b c            as an example. The De Morgan 

equivalent expression is ( ) ( ) ( ) ( )a b c a b c a b c a b c w x y z               .  

The function is implemented in four crossbar arrays communicating through control 

circuitry capable of making and breaking connection between vertical adjacent crossbars 

arrays (Fig. 3.10). These interconnections are not further discussed in this chapter. 

Executing f is a three-step procedure.  

1) Initialize each crossbar array with all memristors set to closed state by driving vertical 

wires with v+ and horizontal wires with v־. 

2) Simultaneously compute volistor NOR of each maxterm in a separate crossbar 

column (Fig. 3.10a) as described in Section 3.2.3.  

3) Perform a stateful NOR on logic values computed in step 2 (Fig. 3.10b).  
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                                                          (a)                     (b) 

Fig. 3.10. Implementation of POS function f in a crossbar network. The function is realized in a two-step 

process. (a) Realizing the first logic level of function f in separate crossbars. This step produces four NOR 

gates. (b) Realizing the second logic level of function f in a 16 × 1 crossbar array. This step produces the 

output of the POS function. The interconnections and voltages applied to the wires show the network 

configuration in each step. 
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            (a)                                            (b)                                                     (c) 

 

                (d)                                                                                (e) 

     VL                     SL               SL                    SL                     SL                SL

  1p                         1p                1p                       1p                    1p                 1p  

                                                                           (f) 

Fig. 3.11. Implementation of Boolean functions in different logic structures based on the hybrid 

approach. (a) Example of a SOP function.  (b) Example of a POS function. (c) Example of a three level 

sum of products of sums. (d) Example of an XOR of two products. (e) Example of a NAND-AND-XOR 

logic function. (f) Example of an AND-XOR-OR logic function. ‘P’ stands for pulse (operation), e.g., 

1p indicates one pulse for implementing a logic level. VL and SL stand for volistor and stateful logic 

operations. In all circuits, only the first logic level is implemented with volistor gates. 
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Executing f with a solely stateful approach would require two steps plus the overhead 

of setting up each input. This input overhead is directly proportional to the number of inputs 

for each gate. Volistor logic has no such input overhead; a multi-input gate and a single-

input gate are both produced in the same number of steps. However, the solely stateful 

approach can be executed in two steps in a single crossbar, while the hybrid approach 

would require more steps if performed in a single crossbar.  

Example 3.4. NAND-AND-XOR implementation       

Take the function . . .f e abed cd ae b  as an example. The De Morgan equivalent of 

function f is

1 2 1 2 1 2.

f e ab cd ae b e ae cd cd ae b e x y z b e x y y z b

w w w w o o

                      

    

  

Executing f is the six-step procedure depicted in Fig. 3.12. In each step, all outputs are 

computed simultaneously.   

1) Perform the initialization as in Example 3.3. 

2) Compute the products x, y and z. y is computed twice to enable a simultaneous 

computation in step 3 (Fig. 3.12a).  

3) Using mixed input gates as described in Section 3.2.6, compute w1 and w2 where 

e
V and

b
V are input voltage and x, y, and z are input resistances. This step realizes 

the NOR logic level (Fig. 3.12b).  
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4) Produce 1w and 2w This performs two stateful NOT gates in the third logic level 

(Fig. 3.12c). 

5) Produce o2 and o1 using the outputs from steps 3 and 4 (Fig. 3.12d). This step realizes 

the fourth logic level, NOR (Fig. 3.12b).  

6) Produce f from o2 and o1. This produces the fifth logic level, NOR (Fig. 3.12e). 

Executing f with the solely stateful approach would require six steps plus the input setup 

overhead.  

Note that NAND-AND-XOR circuits are a new concept in logic synthesis. These 

circuits are a generalization of the PSE circuits introduced in [60] where only one argument 

of the AND layer is a NAND and others are literals.  In PSE circuits, every output is 

exclusive-OR of Product-Sum-EXOR). 
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Fig. 3.12. Realization of NAND-AND-XOR function f. The function is realized in a six-step process in four 

crossbar arrays. (a) The first logic level is realized with volistors; (b) the second logic level is realized with 

mixed-input gates; (c)-(e) the other logic levels are realized with stateful logic. Wires are set to 0V, v+, or v־ 

or connected to GND through load resistor RG or to Z. In each step, the operation is depicted by symbolic 

gates, and the results are shown as outputs of the gates. 

 

3.4 VOLISTOR LOGIC POWR CONSUMPTION  

Power measurements are made in LTspice IV using the same model mentioned in 

Section 2.3. The average power consumption of each individual element of a 1 × n crossbar 

array (n ≤ 64) is estimated over a 10 ns interval beginning with the application of the driver 

voltages v+= 0.6V, v0.6- =־V and 0V, which are applied for 8 ns. Let the power consumed 

in a source memristor set to logic ‘1’ be denoted PS1, the power consumed in a source 

memristor set to logic ‘0’ be denoted PS0, the power consumed in a target memristor be 

denoted PT, and the power consumed in load resistor RG be denoted PRG. Let PS = PS0+ PS1.  

The superscripts SL and VL are used to indicate power consumptions during stateful and 

volistor logic, respectively. For example, 
0

SL

SP is the power consumed by a source 

memristor set to logic ‘0’ when SL is performed, and VL

SP is the power consumed in source 

memristors when volistor logic is performed. Table 3.4 describes the power consumption 

in each crossbar element where VW and
WV are the voltages on the horizontal wire during 

VL and SL operations, respectively. Note that the resistive effect of wires is neglected 

compared to RCLOSED = 500 KΩ. For example, the resistance of a relatively large width wire 

of diameter 120 nm used in a 32 × 32 crossbar array is at most 30 KΩ when implemented 

with relatively high resistance p-doped Si [61]. In other words, the resistance of each 

horizontal or vertical wire of the crossbar is about 1 KΩ, which is negligible compared to 

RCLOSED. The power consumed by volistor logic in a crossbar array is entirely due to the 
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leakage through the reverse biased memristors as there is no direct path to ground. 

However, when volistor logic is performed in a crossbar array, there is an additional power 

consumption in memristors not taking part in the operations. This is true for stateful logic, 

as well. Since the power consumption in both cases is similar, and we are only interested 

in comparing SL and VL, this additional power is not discussed.  

In this section, the power consumption in a crossbar array for S1 > 0 and S1 = 0 is 

analyzed separately. For ease of reference, let S1 and S0 denote the numbers of source 

memristors set to vs = 1 and vs = 0, respectively; T denotes the number of target memristors; 

PSL and PVL denote the total power consumption in memristors and in load resistor RG 

during SL and VL operations, respectively; and Td denotes the switching delay—the time 

required to completely switch from the close state to open state. 
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Table 3.5 

Power consumption, switching delay, and power ratio in a 1 × 8 crossbar array 

(S1,  S0 , T) Circuit 

Realization 

PS1 

(nW) 

 

PS0 

(nW) 

PT 

(nW) 

PRG 

(nW) 

Td 

(ns) 

Pavg 

(nW) 

𝑃𝑆𝐿
𝑃𝑉𝐿

 

(2, 2, 1) SL 0.168 0.168 

e-3 

2.192 17.946 4.239 20.474 6.13 

VL 2.224 

e-3 

0.555 2.226 0 4.044 3.340 

(2, 3, 1) SL 0.168 0.168 

e-3 

2.192 17.947 4.239 20.476 5.254 

VL 3.471 

e-3 

0.555 2.225 0 4.044 3.897 

(2, 4, 1) SL 0.168 0.168 

e-3 

2.192 17.947 4.239 20.476 4.601 

VL 4.993 

e-3 

0.554 2.224 0 4.054 4.450 

(2, 4, 2) SL 0.187 0.187 

e-3 

2.190 17.911 4.227 22.666 3.397 

VL 8.868 

e-3 

0.553 2.221 0 4.064 6.672 

(2, 3, 3) SL 0.207 0.207 

e-3 

2.187 17.876 4.288 24.645 2.955 

VL 11.22 

e-3 

0.553 2.220 0 4.073 8.341 

(2, 2, 4) SL 0.229 0.229 

e-3 

2.185 17.838 4.288 27.036 2.701 

VL 0.014 0.552 2.219 0 4.083 10.008 

S0 and S1 denote the numbers of source memristors set to logic ‘0’ and logic ‘1’, respectively; T denotes 

the number of target memristors. PS0 and PS1 are the power consumptions in a source memristor set to logic 

‘0’ and logic ‘1’, respectively. PT is the power consumption in a target memristor, and PRG is the power 

consumption in load resistor RG. Pavg denotes the average power consumption in the crossbar array. Td 

denotes the switching delay. PSL and PVL indicate the power consumptions during SL and VL operations, 

respectively.  

 

Table 3.4 

Power consumption in each crossbar element 

Logical  Operation PS0 PS1 PT PRG 

VL 
(VW)

2

𝑅𝑂𝑃𝐸𝑁
 

(𝑣+ − 𝑉𝑊)
2

𝑅𝑂𝑃𝐸𝑁 × 10
−3

 

 

(𝑣+ + 𝑉𝑊)
2

𝑅𝑂𝑃𝐸𝑁
 0 

SL 
(𝑣+ − 𝑉̈𝑊)

2

𝑅𝑂𝑃𝐸𝑁
 

(𝑣+ − 𝑉̈𝑊)
2

𝑅𝑂𝑃𝐸𝑁 × 10
−3

 

 

(𝑣+ + 𝑉̈𝑊)
2

𝑅𝑂𝑃𝐸𝑁
 

𝑉̈𝑊
2

𝑅𝑂𝑃𝐸𝑁
× 10√10 
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3.4.1 Power analysis and switching delay in a 1 × 8 crossbar array for S1 > 0 

Table 3.5 compares the power consumed by each element switching delay Td and the 

overall power consumption in memristors and load resistor RG ( )SL

VL

P

P
for various 

combinations of S1, S0 and T during SL and VL operations. The simulation results shown 

in Table 3.5 are summarized as follows.  

1) In SL and VL, PT is approximately 2 nW, i.e., changes to high/low composition of 

inputs slightly affects the power consumed by any individual T. This is expected 

given the characteristics of the rectifying memristors and considering that VW≈ VS. 

2) The largest contributor to the power consumption in SL is RG—it consumes 

approximately eight times more power than the next most power hungry circuit 

element. In VL, there is no RG component.   

3) The minor contributors to the power consumption in SL is
0 0

SL

SS P . 

4) The major contributors to the power consumption in VL are determined by S0 and T.  

5) For any combination of S1, S0, and T, 2SL

VL

P

P
 . The lower bound of SL

VL

P

P
is obtained 

for (S1, S0, T) = (1, 0, 7), which is 2.129. 

6)   For any combination of S1, S0, and T, Td is approximately equal in both SL and VL.  

7) The general power relation between all circuit elements is

0 1 1 0

SL VL SL VL

S S S S T RGP P P P P P     .  
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In a 1 × 8 crossbar array, for any combination of S1, S0, and T, where S1 > 0, the power 

ratio can be approximated based on the properties shown below. The proofs of these 

properties can be found in the appendix.  

Property 1. When S1 > 0, the power consumption in a target memristor during VL 

operation can be approximated as shown by (3.3). 

                                                 𝑃𝑇
𝑉𝐿 ≈ 4 × 𝑃𝑆0

𝑉𝐿                                                                       (3.3) 

Property 2. When S1 > 0, the power consumption in load resistor RG can be 

approximated as shown by (3.4). 

                                                𝑃𝑅𝐺 ≈ 8 × 𝑃𝑇
𝑆𝐿                                                                      (3.4) 

Property 3. When S1 > 0, the power consumption in source memristors during SL 

operation is considerably smaller than the overall power consumption in target memristors 

and load resistor RG as shown by (3.5).  

                                                      
𝑃𝑆
𝑆𝐿

𝑃𝑆𝐿−𝑃𝑆
𝑆𝐿 ≪ 1                                              (3.5) 

Property 4. The power consumption in source memristors driven by logic ‘1’ during 

VL operation is considerably smaller than the overall power consumption in source 

memristors driven by logic ‘0’ and target memristors as shown by (3.6). 

𝑆1×𝑃𝑆1
𝑉𝐿

𝑃𝑉𝐿−𝑆1×𝑃𝑆1
𝑉𝐿 ≪ 1                                                  (3.6)    

According to (3.5) and (3.6) 

𝑃𝑆𝐿
𝑃𝑉𝐿

≈
𝑇 × 𝑃𝑇 + 𝑃𝑅𝐺

𝑆0 × 𝑃𝑆0
𝑉𝐿 + 𝑇 × 𝑃𝑇
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And according to (3.3) and (3.4) 

𝑇 × 𝑃𝑇 + 𝑃𝑅𝐺

𝑆0 × 𝑃𝑆0
𝑉𝐿 + 𝑇 × 𝑃𝑇

≈
𝑇 × 𝑃𝑇 + 8 × 𝑃𝑇

𝑆0 ×
𝑃𝑇
4 + 𝑇 × 𝑃𝑇

 

Therefore, for any combination of S1, S0, and T where S1 > 0,  

                                                     
𝑃𝑆𝐿

𝑃𝑉𝐿
≈

𝑇+8

𝑇+
𝑆0
4

                                                                               (3.7) 

Note that the lower bound of (3.7) is larger than 2, therefore 𝑇 +
𝑆0

2
< 8.  

In terms of switching delay, volistor gates perform slightly faster than stateful gates. 

The switching delay in both SL and VL operations corresponds to the voltage drop across 

the target memristors. This voltage drop is minimum when (S1, S0, T) = (1, 0, 7) where Td 

is 4.136 ns and 4.477 ns for VL and SL, respectively. This voltage drop is maximum for 

(S1, S0, T) = (7, 0, 1) where Td is 4.030 ns and 4.089 ns for VL and SL, respectively. Note 

that the increase of S1 reduces the delay in both SL and VL operations. 

3.4.2 Power analysis in a 1 × 8 crossbar array for S1 = 0 

Table 3.6 shows the power consumption in a 1 × 8 crossbar array during VL and SL 

operations. The simulation results show 
𝑃𝑆𝐿

𝑃𝑉𝐿
>1 for (S1, S0, T) = (0, S0, 1) and varied S0 

between 1 and 7. The increase of S0 has minor effect on PVL as shown in Table 3.6. 

Property 5. When S1 = 0, the power consumption in source memristors driven by 

logic ‘0’ during VL operation is considerably smaller than the overall power consumption 

in target memristors as shown by (3.8).  
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 𝑆0×𝑃𝑆0

𝑉𝐿

𝑇×𝑃𝑇
𝑉𝐿 ≪ 1                                                                          (3.8) 

For a larger crossbar array, Equation (3.8) is still valid. For example, the upper bound 

of 
𝑃𝑆0
𝑉𝐿

𝑃𝑇
𝑉𝐿 in a 1 × 64 crossbar array obtained for (S0, T) = (63, 1) is 1.229 × 10-5 ≪ 1. Note that 

when S1 = 0, 𝑃𝑇
𝑆𝐿 ≠ 𝑃𝑇

𝑉𝐿 and the increase of S0 increases 
𝑃𝑆𝐿

𝑃𝑉𝐿
 as shown in Table 3.6. In a 

1 n  crossbar array, the power consumption in memristors during SL operation is the same 

for (S1, S0, T) = (0, n-k, k) and (0, k, n-k) (1 ≤ k < n) as shown in Table 3.7. In other words, 

the voltage on wire W is symmetrical for (S0, T) = (n-k, k) and (k, n-k). For example, for 

(S0, T) = (2, 6), 
WV = -51.096 mV whereas for (S0, T) = (6, 2), 

WV = 51.096 mV. For both 

combinations, PSL = 4.246 nW, as shown in Table 3.7.  

 

Table 3.6 

Calculating 
𝑝𝑠𝑙

𝑝𝑣𝑙
 in a 1 × 8 crossbar array for S1= 0 and S0 varied between 1 to 7 

(S1, S0, T) 
Circuit 

Realization 

PS0 

(nW) 

PT 

(nW) 

PRG 

(nW) 

Pavg 

(nW) 

𝑃𝑆𝐿
𝑃𝑉𝐿

 

(0, 1, 1) 

SL 0.558 0.558 0 1.116 

2.004 
VL 

0.556 

e-3 
0.556 0 0.557 

(0, 2, 1) 

SL 0.527 0.589 0.014 1.657 

2.975 
VL 

0.139 

e-3 
0.557 0 0.557 

(0, 4, 1) 

SL 0.474 0.648 0.114 2.658 

4.772 
VL 

0.035 

e-3 
0.557 0 0.557 

(0, 7, 1) 

SL 0.407 0.731 0.392 3.58 

6.427 
VL 

0.011 

e-3 
0.557 0 0.557 
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Note that SL

VL

P

P
increases when S0 approaches n. Recall that in SL operation source 

memristors are connected to v+ whereas in VL operation source memristors are connected 

to 0V (since S1 = 0). In addition, the power consumption in source memristors during VL 

operation is very small as shown by (3.8). Therefore, the increase of S0 only slightly affects 

PVL. In contrast, the power consumption in source memristors and load resistor RG during 

SL operation can significantly increase the SL

VL

P

P
 ratio.  

When S0 = T, during SL operation W Wv V v V    , and thus, 0W RGV P V  . In this 

case, 2SL

VL

P

P
 . For example, in a 1 × 8 crossbar array for (S0, T) = (4, 4), 2.113SL

VL

P

P
 and 

Table 3.7 

Calculating 
𝑝𝑠𝑙

𝑝𝑣𝑙
 in a 1 × 8 cross point array for S1 = 0 and varied S0 and T 

(S1, S0, T) 
Circuit 

Realization 

PS0 

(nW) 

PT 

(nW) 

PRG 

(nW) 

Pavg 

(nW) 

𝑃𝑆𝐿
𝑃𝑉𝐿

 

(0, 7, 1) 

SL 0.407 0.731 0.392 3.972 

6.427 
VL 

0.011 

e-3 
0.557 0 0.557 

(0, 6, 2) 

SL 0.455 0.671 0.174 4.246 

3.811 
VL 

0.062 

e-3 

0.55

7 
0 1.114 

(0, 5, 3) 

SL 0.505 0.613 0.044 4.408 

2.636 
VL 

0.200 

e-3 
0.557 0 1.672 

(0, 4, 4) 

SL 0.588 0.558 0 4.704 

2.113 
VL 

0.556 

e-3 
0.556 0 2.226 

(0, 3, 5) 
SL 0.613 0.505 0.044 4.408 

1.582 
VL 0.002 0.556 0 2.786 

(0, 2, 6) 
SL 0.671 0.455 0.174 4.246 

1.267 
VL 0.005 0.554 0 3.352 

(0, 1, 7) 
SL 0.731 0.407 0.392 3.972 

1.025 
VL 0.027 0.550 0 3.877 
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in a 1 × 64 crossbar array for (S0, T) = (32, 32), 2.005SL

VL

P

P
 . In a 1 × 8 crossbar array, for 

any combination of S0 and T, 1SL

VL

P

P
 . The lower bound of SL

VL

P

P
, which is 1.025, is obtained 

for (S0, T) =  (1, 7). This combination maximizes PVL while minimizes PSL as shown in 

Table 3.7.  However, in a larger crossbar array, 
SL

VL

P

P
can be smaller than one. For given S0, 

Table 3.8 shows the minimum value of T, for which 1SL

VL

P

P
 . A further increase of T results 

in a further decrease of SL

VL

P

P
. The power analysis in a 1 × 64 crossbar array for S1 > 0 is 

shown in Section 3.4.3.   

Table 3.8 

Calculating 
𝑝𝑠𝑙

𝑝𝑣𝑙
 in a 1 × 64 crossbar array when S1 = 0 

(S1, S0, T) 
Circuit 

Realization 

PS0 

(nW) 

PT 

(nW) 

PRG 

(nW) 

Pavg 

(nW) 

𝑃𝑆𝐿
𝑃𝑉𝐿

 

(0, 1, 8) 
SL 0.757 0.388 0.508 4.369 

0.987 
VL 0.035 0.549 0 4.427 

(0, 2, 12) 
SL 0.818 0.347 0.830 6.63 

0.997 
VL 0.020 0.551 0 6.652 

(0, 3, 16) 
SL 0.869 0.315 1.147 8.794 

0.990 
VL 0.016 0.552 0 8.88 

(0, 4, 20) 
SL 0.912 0.290 1.447 10.895 

0.982 
VL 0.014 0.552 0 11.096 

(0, 5, 23) 
SL 0.933 0.278 1.601 12.66 

0.992 
VL 0.012 0.552 0 12.756 

(0, 6, 26) 
SL 0.951 0.268 1.742 14.416 

0.998 
VL 0.010 0.553 0 14.438 

(0, 7, 30) 
SL 0.982 0.253 1.987 16.451 

0.987 
VL 0.010 0.553 0 16.66 

Nonparticipant memristors in computations are terminated to high impedance Z. 
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3.4.3 Power analysis and switching delay in a 1 × 64 crossbar arrays for S1 > 0 

Table 3.9-Table 3.12 show the power consumption and switching delay in SL and VL 

for various combinations of S1, S0, and T, where S1 > 0. Our simulation results show that 

the first four observations stated for a 1 × 8 crossbar array in Section 3.4.1 still hold. 

However, unlike the last two observations, the following is observed.  

1) The main contributors to SL

VL

P

P
are S0, T, and PRG. For example, holding T constant 

while increasing S0, as shown in Table 3.9, decreases SL

VL

P

P
. In contrast, holding S0 

constant while increasing T, as shown in Table 3.10, bring SL

VL

P

P
close to 1. 

2) The switching delay Td in VL is slightly shorter than in SL when 1SL

VL

P

P
 and is equal 

to or a bit longer than in SL when 1SL

VL

P

P
 . 

In a 1 × 64 crossbar array, for any combination of S1, S0, and T, where S1 > 0, Equation 

(3.3), (3.5), and (3.6) hold, and since 7.078 ≤ SL

VL

P

P
≤ 8.328, Equation (3.4) can approximate 

the relation between PRG and 𝑃𝑇
𝑆𝐿 during SL operation. As a result, SL

VL

P

P
can still be 

approximated by (3.7). All derivations are in the same manner as shown in the appendix.  

When S0 > 33, a VL operation consumes more power than SL operation as shown in 

Table 3.9. In this case, the increase of T brings SL

VL

P

P
close to 1, as predicted by (3.7) and 

shown in Table 10. Conversely, when S0 < 33, VL operations consume less power than SL 
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operations, and the increase of T brings SL

VL

P

P
close to 1, as shown in Table 3.12. Note that 

the increase of S1 slightly affects SL

VL

P

P
as shown in Table 3.11. In terms of delay, volistors 

perform faster than stateful gates when 1SL

VL

P

P
 , however, when 1SL

VL

P

P
 , the switching 

delay in both operations is almost the same; when 1SL

VL

P

P
 , stateful gates perform faster 

than volistors. In other words, the switching delay is determined by the voltage drop across 

the target memristors. A logic gate operates faster when the voltage drop across the target 

memristors is larger. The stateful gates are faster as S0 increases while S1 decreases 

(Table 3.9) but slower for constant S0 with varied T from 1 to 57 (Table 3.12). Table 3.9 

shows 1SL

VL

P

P
 when S0 > 33, regardless of value S1. Table 3.11 reinforces our conclusion 

that S1 has almost no effect on SL

VL

P

P
. As S0 increases while S1 decreases, it can be seen that 

1 1

VL SL

S SP P and larger Td in VL than in SL (Table 3.9). Table 3.10 shows how the increase 

of T affects SL

VL

P

P
when S0 > 33. The increase of T brings SL

VL

P

P
close to 1. For all combinations, 

Td is larger for VL and is associated with the large S0. Table 3.11 shows how the increase 

of S1 affects SL

VL

P

P
when S0 (>33) and T are constant at 40 and 1, respectively. The increase 

of S1 has a minor effect on SL

VL

P

P
, i.e., 0.856SL

VL

P

P
for all combinations shown in Table 3.11. 
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Although the increase of S1 has almost no effect on SL

VL

P

P
, it decreases the delay in both SL 

and VL operations. Table 3.12 shows how the increase of T affects SL

VL

P

P
when S1 and S0 are 

kept constant at 1 and 6, respectively.  For all combinations,
0 0

5.2RG

VL

S

P

S P



. However, the 

increase of T brings SL

VL

P

P
close to 1, reducing the effect of 

0 0

RG

VL

S

P

S P
significantly as 

predicted by (3.7).  As a result, realizing a multi-input multi-output gate in a small crossbar 

array, e.g. 1 × 8, with VL is more power efficient than with SL. This conclusion is 

consistent with (3.7) and the results shown in Table 3.5. The increase of T increases 
1

SL

SP

more than
1

SL

SP and thus causes longer Td in SL. 

As a summary, in a 1 × 8 crossbar array, the power consumption in SL is larger than in 

VL, and also volistors operate slightly faster. In a 1 × 64 crossbar array, when S1 > 0, the 

majority of the power consumption in VL corresponds to
0 0

VL

S TS P T P    and in SL 

corresponds to RG TP T P  as shown by (3.3) through (3.6). Therefore, SL

VL

P

P
can be 

estimated by (3.7). In a 1 × 64 crossbar array, a multi-input volistor gate consumes less 

power than a multi-input stateful gate, unless the majority of inputs are logic ‘0’. When 

S1=0, a multi-input volistor gate consumes less power than a multi- input stateful gate. 

Recall that the majority of the power consumption in VL for S1 = 0 is VL

TT P as shown by 

(3.8). However, in SL operation, the power consumption in each circuit element depends 

on the combination of S0 and T.  In a 1 × 64 crossbar array, for S1 > 0, a logic gate with 
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large fan-out consumes the same power regardless of the implementation approach, SL or 

VL. Chapter 4 introduces another memristive logic gates, which we call programmable 

diode gates. The programmable diode gates use voltage as input and output and capitalize 

on rectifying memristors. The mix of volistor and programmable diode gates can further 

reduce the number of pulses for computing logic function. 

 

 

Table 3.9 

Delay and power comparisons in a 1 × 64 crossbar array for varied S1 and S0 ≥ 33 

(S1, S0, T) 
Circuit  

Realization 

PS1 

(nW) 

PS0 

(nW) 

PT 

(nW) 

PRG 

(nW) 

Td 

(ns) 

Pavg 

(nW) 

𝑃𝑆𝐿
𝑃𝑉𝐿

 

(30, 33, 1) 
SL 0.770e-3 0.770e-6 2.228 18.541 4.041 20.792 

1.009 
VL 0.757e-3 0.556 2.228 0 4.041 20.599 

(29, 34, 1) 
SL 0.824e-3 0.824e-6 2.227 18.539 4.042 20.767 

0.982 
VL 0.857e-3 0.556 2.227 0 4.034 21.156 

(25, 38, 1) 

 

SL 1.107e-3 1.107e-6 2.227 18.533 4.044 20.760 
0.885 

VL 1.423e-3 0.558 2.227 0 4.048 23.467 

(13, 44, 1) 
SL 0.004 4.069e-6 2.224 18.484 4.060 20.760 

0.778 
VL 0.007 0.554 2.222 0 4.072 26.689 

(1, 62, 1) 
SL 0.579 0.579e-3 2.159 17.406 4.470 20.18 

0.583 
VL 2.021 0.492 2.098 0 4.907 34.623 

Table 3.10 

Delay and power comparisons in a 1 × 64 crossbar array for constant S1 and S0 and varied T 

(S1, S0, T) 
Circuit 

Realization 

PS1 

(nW) 

PS0 

(nW) 

PT 

(nW) 

PRG 

(nW) 

Td 

(ns) 

Pavg 

(nW) 

𝑃𝑆𝐿
𝑃𝑉𝐿

 

(1, 40, 1) 
SL 0.603 0.603e-3 2.157 17.383 4.461 20.167 

0.856 
VL 0.908 0.513 2.141 0 4.575 23.569 

(1, 40, 4) 
SL 0.821 0.821e-3 2.145 17.187 4.543 26.621 

0.888 
VL 1.179 0.507 2.129 0 4.665 29.975 

(1, 40, 8) 
SL 1.161 1.161e-3 2.130 16.928 4.65 35.175 

0.914 
VL 1.592 0.5 2.113 0 4.780 38.496 

(1, 40, 16) 
SL 2.005 2.005e-3 2.098 16.421 4.895 52.074 

0.943 
VL 2.592 0.484 2.081 0 5.049 55.248 
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3.5 SUMMARY AND CONCLUSION 

Volistors capitalize on the characteristics of rectifying memristors to allow voltages to 

be used directly as inputs. Hence, there is no need to store the inputs as resistance in 

memristors. This eliminates the use of RG to read out the inputs in the first logic level and 

thus eliminates the most power-hungry circuit element in stateful logic. There is no static 

power in our circuits. The switching power consumed by volistor logic in a crossbar array 

is entirely due to the leakage through the reverse biased rectifying memristor, as there is 

no direct path to the ground. Using volistors at the first level provides NOR and AND 

Table 3.11 

Delay and power comparisons in a 1 × 64 cross point array for varied S1 and S0 > 33 

(𝑆1,  S0 , T) 
Circuit 

Realization 

PS1 

(nW) 

PS0 

(nW) 

PT 

(nW) 

PRG 

(nW) 

Td 

(ns) 

Pavg 

(nW) 

𝑃𝑆𝐿
𝑃𝑉𝐿

 

(1, 40, 1) 
SL 0.603 0.603e-3 2.157 17.383 4.468 20.167 

0.856 
VL 0.908 0.513 2.141 0 4.585 23.569 

(5, 40, 1) 
SL 0.027 0.027e-3 2.215 18.326 4.122 20.677 

0.850 
VL 0.039 0.548 2.212 0 4.140 24.327 

(10, 40, 1) 
SL 0.007 0.007e-3 2.223 18.456 4.080 20.749 

0.849 
VL 0.010 0.553 2.221 0 4.079 24.441 

(20, 40, 1) 
SL 1.727e-3 1.727e-6 2.226 18.52 4.057 20.781 

0.849 
VL 0.002 0.555 2.226 0 4.064 24.466 

 
Table 3.12 

Delay and power comparisons in a 1 × 64 crossbar array for varied T 

(S1,  S0 , T) 
Circuit 

Realization 

PS1 

(nW) 

PS0 

(nW) 

PT 

(nW) 

PRG 

(nW) 

Td 

(ns) 

Pavg 

(nW) 

𝑃𝑆𝐿
𝑃𝑉𝐿

 

(1, 6, 1) 
SL 0.643 0.643e-3 2.155 17.345 4.454 20.147 

3.636 
VL 0.035 0.549 2.212 0 4.103 5.541 

(1, 6, 5) 
SL 0.960 0.96e-3 2.139 17.074 4.571 28.735 

2.002 
VL 0.140 0.54 2.195 0 4.223 14.355 

(1, 6, 15) 
SL 2.020 2.020e-3 2.098 16.420 4. 874 49.922 

1.383 
VL 0.693 0.519 2.152 0 4.474 36.087 

(1, 6, 30) 
SL 4.247 4.247e-3 2.040 15.482 5.411 80.954 

1.192 
VL 2.263 0.489 2.090 0 4.942 67.897 

(1, 6, 57) 
SL 10.069 10.069e-3 1.94 13.925 6.681 134.634 

1.096 
VL 7.104 0.439 1.985 0 6.026 122.883 
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directly, which provides flexibility sufficient to remove the need for IMP in stateful logic. 

This removes the need for keeper circuitry. An additional advantage is that the first-level 

volistor logic can have as many inputs as the number of available memristors in the 

crossbar array within a single operation. However, inputs set to 0V incur a higher power 

penalty than the inputs set to v+ or v־.  The two-dimensional, multi-output property of 

volistors provides for both a large fan-out (at the cost of increased power consumption) 

and for a great flexibility in the placement of calculation results. Using multiple crossbars 

in a network can provide another sort of parallelization, leading to pipelined architectures. 

Several different first-level volistor operations can be computed in separate crossbars at 

the same time, greatly speeding up what is typically the most complex level of 

implementing Boolean functions. Subsequent logic levels can be accomplished in 

connected crossbars in an approach that uses mixed input gates and stateful INH. A hybrid 

approach of volistors and stateful INH can be used to compute logic faster, with less power 

and with simpler external control circuitry than a solely stateful approach. 

 

 

 

 

 

 

 



86 

Chapter 4 

Memristive Programmable Diode Logic Gates 

This chapter introduces a novel implementation for memristive diode AND/OR gates. 

4.1 IMPLEMENTATION APPROACH   

The programmable memristive diode gates rely on diode-like behavior of rectifying 

memristors and use voltage as input and output. Fig. 4.1a shows the schematic of a two–

input memristive programmable diode OR gate. The proper operation of the diode OR gate 

requires initializing the memristors to LRS. In addition, input voltage levels v must satisfy 

0V ≤ v ≤ VCLOSE where VCLOSE is a positive threshold voltage (see Fig. 2.3). This voltage 

constraint is to ensure that the resistance states of rectifying memristors remain unchanged 

as described by (2.2). The input voltage levels are defined as 0V and 1V encoding logic ‘0’ 

and ‘1’, respectively. Assuming that memristors M1 and M2 in Fig. 4.1a are connected to a 

high and low input voltages, respectively, the behavior of the diode OR gate can be 

described by ( )OPEN CLOSEDv R R i    where v is the input voltage difference, and i is 

the current through memristors, which is suppressed below 0.1 pA by the reverse biased 

memristor M2. Therefore, the voltage across forward biased memristor M1 is very small, 

and the output is almost V(in1). The behavior of an n-input programmable diode OR can 

be shown by (4.1) where j and k are the numbers of memristors connected to low and high 

input voltages, respectively.  

                                    {
Δ𝑣 = (

𝑅𝑂𝑃𝐸𝑁

𝑗
+
𝑅𝐶𝐿𝑂𝑆𝐸𝐷

𝑘
) × 𝑖

𝑛 = 𝑗 + 𝑘
                                                  (4.1) 
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While all memristors are initialized to LRS, some of them exhibit HRS. For example, target 

memristors are always reverse biased and exhibit HRS.  

The diode OR gate without output load operates in the range of 3-ps. However, to be 

realistic the behavior of a diode NOR gate, i.e., a diode OR gate connected to a CMOS 

inverter, is shown in Fig. 4.1b where VS1 and VS2 are the inputs and VOUT is the output. 

Connecting the common wire of the diode OR gate (i.e., W) to a CMOS inverter causes 

unequal RC delays during the charge and precharge intervals. During the charge interval, 

memristors are forward biased and the RC delay is in the range of 100-ps. However, during 

the precharge interval, memristors are reverse biased, and the RC delay is in the range of 

125 ns. For large diode NORs, this delay reduces to a few nanoseconds as shown in 

Fig. 4.1c. Fig.  4.1d shows the schematic of a 100-input diode NOR gate. The behavior of 

the gate is shown in Fig. 4.1e where half of the inputs are the same as VS1 and the other half 

as VS2. The precharge delay is in the range of 2 ns. In addition, the use of a pull-down 

network further decreases the precharge delay. Fig. 4.1f shows the schematic of a two-

input diode NOR gate with pull-down transistor connected to wire W. The behavior of the 

NOR gate is shown in Fig. 4.1g where signal Ctrl controls the pull-down transistor. The 

precharge delay of the gate is in the range of 125-ps. 

The memristors of diode OR gate, which are initialized to LRS, act as binary switches 

while maintaining their resistance states. A memristor driven by the high input voltage acts 

as a closed switch, while a memristor driven by the low input voltage acts as an open 

switch. Clearly, this role cannot be played by non-rectifying memristors. 
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Similar to the diode OR gate, a programmable diode AND gate can be implemented 

with rectifying memristors. Fig. 4.2a shows the schematic of a two–input programmable 

diode AND gate. Fig. 4.2b illustrates the behavior of the diode NAND gate (i.e., diode 

AND gate connected to a CMOS inverter). Fig. 4.2c shows the relation between the size 

(the number of inputs) and RC delay of the diode NAND gate during the charge interval. 

Fig. 4.2d shows the schematic of a 100-input diode NAND gate. Fig. 4.2e illustrates the 

behavior of the 100-input diode NAND gate where half of the inputs are the same as VS1 

and the other half as VS2. Fig. 4.2f shows the schematic of a two-input diode NAND with 

pull-up resistor connected to wire W. The behavior of the NAND gate is shown in Fig. 4.2g. 

Note that the RC delay during the charge interval depends on the value of pull-up resistor 

Rp, e.g., for Rp = 1.25 MΩ, this delay is in the range of 400-ps.  

The i-v characteristic of a rectifying memristor can be modeled as a 1D1R (1 Diode in 

series with 1 Resistive RAM) structure incorporated into a single two-terminal device [45]. 

A LRS memristor in reverse biased situation acts as an open switch and exhibits high 

resistance state. Therefore, a rectifying memristor reduces the reverse bias leakage and 

allows to implement diode gates with many inputs as shown in Fig. 4.1d and Fig. 4.2d. 

Clearly, the PN junction or Schottky diode in CMOS process does not act as open switches 

when reverse biased and cannot take the role of the rectifying memristors in large diode 

gates used in the mPLD-XOR (see Chapter 5). 

In Chapter 5, we design an mPLD-XOR (memristive programmable device connected to 

an XOR plane) using a mix of volistor NOTs and programmable diode gates for realizing 
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ESOP functions. This combination of logic gates reduces the computation delay 

significantly as shown in Chapter 5. 

 

 

 

 

Fig. 4.1. Memristive programmable diode OR gate. (a) A schematic of a two-input diode OR gate 

implemented with rectifying memristors. (b) The behavior of a two-input diode NOR gate. (c) The relation 

between the size of a diode NOR gate and its RC delay during the precharge interval. (d) A schematic of a 

100-input diode NOR gate. (e) The behavior of 100-input diode NOR gate. (f) A schematic of a two-input 

diode NOR with pull-down transistor. (g) The behavior of two-input diode NOR with pull-down transistor. 
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Fig. 4.2. Memristive programmable diode AND gate. (a) A schematic of a two-input diode AND gate 

implemented with rectifying memristors. (b) The behavior of a two-input diode NAND gate. (c) Relation 

between the size and RC delay of a diode NAND gate during the charge interval. (d) A schematic of a 

100-input diode NAND gate. (e) The behavior of 100-input diode NAND gate. (f) A schematic diagram 

of a two-input diode NAND gate with pull-up resistor. (g) The behavior of two-input diode NAND with 

pull-up resistor. 
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Chapter 5 

A Time-Efficient CMOS-Memristive Programmable Circuit Realizing Logic 

Functions in Generalized AND-XOR Structures 

This chapter describes a CMOS-memristive Programmable Logic Device connected to 

CMOS XOR gates (mPLD-XOR) for realizing multi-output functions well-suited for two-

level {NAND, AND, NOR, OR}-XOR based design. This structure is a generalized form 

of AND-XOR logic where any combination of NAND, AND, NOR, OR, and literals can 

replace the AND level. For mPLD-XOR, the computational delay measured as the number 

of clock cycles equals the maximum number of inputs to any output XOR gate of a function 

assuming that the number of XOR gates is large enough to calculate the outputs of the 

function simultaneously. The input levels of functions are implemented with novel 

programmable diode gates, which rely on the diode-like behavior of rectifying memristors, 

and the output levels of functions are realized with CMOS modulo-two counters. As an 

example, the circuit implementation of a 3-bit adder and 3-bit multiplier are presented. The 

size and performance of the implemented circuits are estimated and compared with that of 

the equivalent circuits realized with stateful logic gates. Adding a feedback circuit to the 

mPLD-XOR allows the implementation of a multilevel XOR logic network with any 

combination of sums, products, XORs, and literals at the input of any XOR gate. The 

mPLD-XOR with a feedback can reduce the size and number of computational steps (clock 

cycles) in realizing logic functions, which makes it well suited for use in communication 

and parallel computing systems where fast arithmetic operations are demanding. 
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5.1 INTRODUCTION 

In today’s computer architecture, a key problem limiting system speed is the amount of 

time spent on moving data between the processor and memory. A way to address this 

problem is to have memory within the calculation circuit. The invention of memristors [2-

3] opens the door for changing the computing paradigms of separating calculation from 

memory. Memristors, as non-volatile devices, enable stateful logic [20], [25], [28], hence, 

saving time spent in moving the data between memory and processor. They also save power 

and time in memory refresh. One approach is to use memristor-based stateful logic. The 

basic operations of IMPLY and FALSE can be implemented in stateful logic.  They form 

a complete logic set and can implement any logic function in any logic system such as 

AND-OR or SOP, AND-XOR or ESOP, TANT or Three-level-AND-NOT-Network with 

True inputs [59], AND-OR-XOR Three-Level Networks [64], and so on.  

Alternatively, our motivation in this work is to realize arithmetic and communication 

functions in ESOP form. The ESOP realization of such functions decreases the number of 

products and literals compared to their realizations in SOP form [65]. The key point in 

realizing such functions in ESOP form is to implement multi-input XOR gates, which has 

been a challenge in conventional CMOS technology, i.e., a multi-input XOR gate is slow, 

consumes large amounts of power, and occupies larger areas compared to other 

combinational gates. Realizing a multi-input XOR gate with stateful logic would also 

require a long sequence of stateful operations or a large number of memristors. This 

disadvantage is due to the fact that XOR gates are only available in two logic levels (such 

as NAND-OR) when implemented with IMPLY and FALSE operations. Consequently, 
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realizing an n-input XOR gate requires realizing an exponential number of products, i.e., 

2n-1. Implementation examples of multi-input XOR gate based on stateful logic are shown 

in [25] and [66]. An n-input XOR of literals can be implemented in the same manner 

described in [25] in a (2n – 1 + 1) × (n + 1) crossbar array on the order of 2n computational 

steps. It can also be realized in the NAND-OR synthesis method [66] in a 1 × 2n crossbar 

array in almost 2n– 1 computational steps.  

In addition to the computational crossbar arrays considered in [25] and [66], there are 

crossbar arrays used as Resistive Random Access Memory (ReRAM) [67] to store control 

data required for driving the computational arrays. While in this chapter we used the 

ReRAM for control storage, in general it can have other uses. The size of a ReRAM is 

determined by the number of control bits used for driving the computational array per clock 

cycle and the number of clock cycles for realizing a function. For example, the size of 

ReRAM for driving a (2n –1 + 1) × (n + 1) computational array can be estimated ((2n-1 + 1) 

+ (n + 1)) × 𝛼 × m where 𝛼 is the number of control bits for driving each wire of the 

computational array per clock cycle, and m is the number of computational steps.  

This chapter proposes a memristive programmable PLA-like circuit for realizing multi-

output functions well-suited for two-level {NOR, AND, NAND, OR}-XOR design. This 

circuit is called mPLD-XOR, which is memristor-based Programmable Logic Device 

connected to a CMOS modulo-two counters. The computational delay of the mPLD-XOR 

measured as the number of clock cycles equals the maximum number of inputs to any 

output XOR gates of a multi-output function, assuming that the number of modulo-two 

counters is large enough to calculate the XOR gates of the function simultaneously. The 



94 

size of each computational array in mPLD-XOR is at most 1 × 2n where n equals the 

number of primary inputs. The control data required for driving the computational arrays 

are stored in ReRAM whose size depends on the number of primary inputs n, the number 

of computational steps m, and the number of outputs of the function, as described in 

Section 5.5.  

The mPLD-XOR approach has some advantages over the stateful approach. In the 

stateful approach, one would first calculate a function by populating the inputs in a 

computational array and then implement stateful gates. As a result, to calculate the function 

for a new set of inputs, the computational array must be cleared (by the FALSE operation), 

the new set of inputs must be populated, and the stateful gates must be implemented again. 

In this process, most of the computational steps are assigned for populating the inputs in 

the computational array [25]. While in mPLD-XOR implementation, this long process does 

not exist since the circuit uses voltage as input. In addition, the computational arrays are 

programmed only once for calculating a multi-output function for any new set of inputs, as 

described in Chapter 4. And the XOR gates are realized in CMOS modulo-two counters as 

described in Section 5.3.  

The mPLD-XOR implements multi-output functions in generalized ESOP forms, i.e., 

two-level structures where input levels consist of any combination of NAND, AND, NOR, 

OR, and literals, and output levels are made of only XOR gates. Input levels are 

implemented using novel programmable diode gates. These programmable gates, which 

rely on rectifying memristors [45-46], have no practical limit on the number of inputs, as 

described in Chapter 4. The output levels are realized in CMOS memory, i.e., modulo-two 
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counters, and permanently stored in resistive memory using volistor NOT gate [29]. The 

generalized ESOP structures are good candidates for arithmetic and communication 

applications.  

This chapter is organized as follows. In Section 5.2, a generalization to the ESOP 

structure is introduced. In Section 5.3, the mPLD-XOR for realizing circuits in the 

generalized ESOP structure is proposed, followed by a brief description of mPLD-XOR 

read and write configuration in Section 5.4. Section 5.5 shows how to implement a 3-bit 

adder and 3-bit multiplier in the mPLD-XOR. In addition, the size and performance of the 

circuits are estimated and compared to their corresponding circuits realized with stateful 

logic operations. In Section 5.6, power, area, and delay of the programmable diode gates 

and mPLD-XOR are evaluated and compared to previously proposed memristive logic 

styles for N-bit addition operation. Section 5.7 concludes the chapter.  

5.2 A GENERALIZED ESOP STRUCTURE 

Arithmetic functions are well-suited for ESOP-based design. These functions are 

implemented with a smaller number of products, interconnections, and literals than their 

counterparts implemented in AND-OR based design [65] and [68-69]. Table 5.1 shows the 

number of products and literals of benchmark functions implemented in SOP and ESOP 

based designs using the Quine-McCluskey algorithm for multi-output functions [70] and 

the EXMIN2 algorithm [68], respectively. The numbers clearly show the advantage of 

ESOP based design over SOP design for arithmetic functions.  
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In two-level AND-XOR networks, realizing multi-input XOR gates is essential. A 

multi-input XOR gate can be implemented as a cascade (or a tree) of two-input XOR gates. 

However, using a traditional CMOS technology, this approach results in a slow XOR gate 

[71]. In this study, we use the hybrid CMOS-memristive technology and propose a 

memristive programmable logic device connected to modulo-two counters (mPLD-XOR) 

to realize multi-output functions in ESOP based design. The mPLD-XOR can implement 

the XOR gates with a practically unlimited number of fan-in, which is an advantage over 

existing technologies (except quantum reversible circuits). The mPLD-XOR also allows 

the implementation of logic functions in two–level {NAND, AND, NOR, OR}-XOR based 

Table 5.1 

Number of products and literals of benchmark functions [65] 

 Number of Products Number of 

Literals 

 In Out SOP ESOP SOP ESOP 

5xp1 7 10 63 32 278 120 

9sym 9 1 84 51 504 372 

addm4 9 8 189 91 1225 521 

adr3 6 4 31 15 116 44 

adr4 8 5 75 31 340 112 

clip 9 5 117 67 631 402 

cm82a 5 3 23 13 80 33 

f51m 8 8 76 32 326 112 

inc8 8 9 37 15 100 43 

life 9 1 84 49 672 311 

log8 8 8 123 104 730 550 

mlp4 8 8 121 62 736 305 

nrm4 8 5 120 69 716 391 

rd53 5 3 31 14 140 39 

rd73 7 3 127 35 756 134 

rd84 8 4 255 59 1774 267 

rdm8 8 8 76 32 325 112 

rot8 8 5 57 36 305 197 

sqr8 8 16 180 112 1068 546 

squar5 5 8 25 20 95 57 

z4 7 4 59 29 252 111 
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design, which is a generalized ESOP logic design. Fig. 5.1a shows the schematic of a two-

level {NAND, AND, NOR, OR}-XOR structure. The mPLD-XOR implements the input 

level of functions using OR and NOT gates, i.e., NAND is realized as NOT-OR using De 

Morgan law, ¬(ab) = (¬a) + (¬b), NOR as OR-NOT, and AND as NOT-OR-NOT, as 

shown in Fig. 5.1b. Note that ¬a denotes the negation of variable a. Inverters at the input 

of XOR gates can be moved to the outputs.  If the number of inverters is odd, the outputs 

must be inverted , i.e., ¬a ⨁ b= ¬(a ⨁ b) (output F2 in Fig.  5.1c). If the number of inverters 

is even, the outputs are non-inverted, i.e., (¬a) ⨁ (¬b) = a ⨁ b (output F1 in Fig. 5.1c). 

Fig. 5.2 shows an example of a single-output function (G1) in the generalized ESOP 

structure and its logical equivalence (G2) as implemented using mPLD-XOR. 

 
                                             (a)                                             (b)                                              (c) 

Fig. 5.1. (a) Schematic of {NAND, AND, NOR, OR}-XOR logic structure. (b) Logical equivalence of 

{NAND, AND, NOR, OR}-XOR structure as realized in mPLD-XOR. (c) mPLD-XOR realizes functions in 

NOT-OR-XOR-NOT logic structure. 
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Fig. 5.2. Function G1 is implemented as its logical equivalence, G2. 
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5.3 THE MPLD-XOR: CIRCUIT STRUCTURE AND FUNCTIONALITY 

The programmable diode logic gates introduced in Chapter 4 are used in a new circuit 

structure called mPLD-XOR to realize multi-output functions in {NAND, AND, NOR, 

OR}–XOR based-design. Fig. 5.3 shows the schematic of the mPLD-XOR. The device 

consists of ReRAM connected to CMOS drivers, memristive programmable diode OR 

gates connected to CMOS-memristive drivers, and CMOS modulo-two counters. The 

ReRAM is a crossbar array of rectifying memristors, which stores all control data required 

to drive the circuit. Inputs are applied to the programmable diode OR gates through CMOS-

memristive drivers controlled by data stored in ReRAM. The output of each programmable 

diode OR gate is applied to a modulo-two counter, which acts as a parity circuit (or a T 

flip-flop). The counter is functionally equivalent to an XOR gate with an arbitrary number 

of inputs. The output of the counter is applied to a crossbar array through a transmission 

gate and stored as a state of a memristor, as illustrated in Fig. 5.8 in Section 5.5. The 

assertion of signal CLR resets the counter and makes it available for calculating another 

output of a function. Fig. 5.4 includes the symbolic diagram of a modulo-two counter as a 

D flip-flop where D = ¬Q. The counter is clocked by an l-input programmable diode OR 

gate. The circuit implements an n-input single-output function in {NAND, AND, NOR, 

OR}–XOR design. Inputs Ini where i ∈ {1,⋯ , 𝑛} and their complements are applied to a 

1 × l programmable diode OR through CMOS-memristive drivers where l = 2n. The drivers 

consist of 3-input programmable diode AND gates connected to CMOS buffers. When 

CLK is high, a combination of inputs determined by high Cj where j ∈ {1,⋯ , 𝑙} is 
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propagated to the diode OR gate; Cj are control signals stored in each column of ReRAM 

and applied to the AND gates at the positive edge of signal CLK. 
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Fig. 5.3. Schematic of the mPLD-XOR.  
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Fig. 5.4. Schematic of an mPLD-XOR for realizing an n-input single-output function with l lines diode OR 

where l=2n to allow for inputs complemented. Ini are the primary inputs where i ∈ {1,⋯ , 𝑛}, and Cj are the 

control signals stored in ReRAM where j ∈ {1,⋯ , 𝑙}. The output of the circuit is Q or Q̅ depending on the 

function being implemented. 
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The output of the circuit is Q, the current state of the counter (or ¬Q depending on the 

function being implemented) and is available after m clock cycles where m also denotes 

the number of XOR terms, i.e., m-input XOR of sums, products, or literals. 

Fig. 5.5 shows the schematic of ReRAM with reference resistors Rg. The ReRAM is 

connected to CMOS drivers made of an m-bit shifter. The output of the shifter, (Q1, Q2… 

Qm), at the first, second, and mth clock cycle is (1, 0, …, 0), (0, 1, 0, …, 0), and (0, 0, …, 

0, 1), respectively, where logic ‘1’ and ‘0’ denote high and low voltage levels and are 

defined as 0.6V and 0V. The programmable circuit shown in Fig. 5.4 is scalable, and it can 

be a base of future memristive programmable fabrics to realize large arithmetic circuits and 

circuits with high XOR component. Examples of multi-output mPLD-XOR circuits are 

shown in Section 5.5.  
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Fig. 5.5. Schematic of ReRAM of the mPLD-XOR shown in Fig. 5.3 with the reference resistor Rg. 
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The circuit in Fig. 5.4 is designed using a 50nm TSMC process BSIM4 models where 

the number of inputs is 32, and the size of ReRAM is 64 × 16. For this example, all of the 

inputs Ini are assigned a value of ‘0’.¬Ini represent the outputs of inverters with input Ini.  

The ReRAM memristors are programmed as shown in Fig. 5.5. The pale shaded 

memristors are in HRS, and clear ones are in LRS. Fig. 5.6 shows the simulation results 

where V(clk) represents the clock cycle, V(a2) represents the output of the second AND 

gate, V(k) represents the output of the programmable diode OR, and V(q) represents the 

output of the modulo-two counter (see Fig. 5.4).  During the first clock cycle, column 1 of 

the ReRAM is connected to ‘1’ to read the control data. Since all memristors are in HRS, 

none of the inputs are applied to the programmable diode OR. At the second clock cycle, 

column 2 is set to ‘1’ and inputs ¬Ini are applied to the diode OR. During the second, third, 

and fourth clock cycles, the high voltage of V(k) toggles the counter three times. As a 

result, the output of the counter remains high. The simulation results in Fig. 5.6 are based 

on Rg = 1 MΩ, RP = 3.5 MΩ, VP =0.6 V, and input voltages defined as 0V and 0.6V where 

RP is a pull-up resistor used in diode AND gates and is connected to voltage VP.  

Fig. 5.6. Simulation results of the single-output mPLD-XOR shown in Fig. 5.4 with the ReRAM 

configuration shown in Fig. 5.5. 

 



102 

5.4 PROGRAMMING THE MPLD-XOR 

The general writing to ReRAM is described in several papers [15] and [57]. This 

description is provided as a refresher or a brief example. As with any programmable logic 

device, the mPLD-XOR must be programmed to realize a logic function. Programming the 

ReRAM is an m +1 step process where m equals the number of columns in ReRAM. The 

first step in this process is to initialize the ReRAM to HRS. Fig. 5.7a shows the voltage 

scheme for this initialization step. In this scheme, memristors are reverse biased and 

consume minimum amounts of power. The next steps are to program all columns of 

ReRAM one after another. Fig. 5.7b shows the voltage scheme for programming the right-

most column of ReRAM. In this scheme, only the column being programmed consumes 

power. The amount of this power depends on the number of memristors being programmed 

to LRS.  Programming the diode gates in mPLD-XOR requires applying VSET across each 

memristor. In this programming step, memristors are forward biased and consume large 

amounts of power. However, this programming step is performed only once since the 

memristors maintain their resistance states during logical operations. The results of our 

simulations show that the sneak path current during the read operation is small due to the 

diode-like behavior of the memristors. For example, the sneak path current is between 80-

pA and 240-pA depending upon its location in the array, which is small enough that it has 

no negative impact on memristors in sneak path during the read operation. More analysis 

about the sneak path current during the read operation can be found in [54]. For vary large 

crossbar arrays, Opamp threshold logic can be used for the read operation [72]. In addition, 
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using asymmetric voltage scheme further decreases the leakage power during the 

programming [46]. 

5.5 IMPLEMENTATION EXAMPLES IN THE MPLD-XOR 

In previous sections, the generic fabric of the mPLD-XOR and the programming of the 

device were explained. As described in Section 5.3, the mPLD-XOR can implement any 

logic functions. As an example, this section shows how a 3-bit adder and a 3-bit multiplier 

are mapped into this fabric. The size and performance of these circuits are also estimated. 

For comparison purposes, the same adder and multiplier are also implemented with stateful 

gates, and the size and performance of the circuits are estimated. Our calculations show 

that the size of ReRAM and the number of computational steps for realizing a 3-bit adder 

in the mPLD-XOR circuit to the stateful circuit are 280:957 and 8:29, respectively. For a 

3-bit multiplier, these ratios are 564:5720 and 12:65, respectively. In both approaches, the 

. . .
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                                                 (a)                                                                    (b) 

Fig. 5.7. Programming the ReRAM. (a) Initializing the ReRAM to HRS (or logic ‘0’). (b) Programming the 

right-most column of the ReRAM. 
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size of ReRAM (including CMOS drivers) dominates the area when large circuits are 

implemented. The implementation details can be found in Section 5.5.1 and Section 5.5.2.   

0 0 0

1 1 1 0 0

2 2 2 1 1 1 0 0 1 0 0
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

    
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                        (5.1)                                                                                                                                     

5.5.1 A 3-BIT ADDER 

Below we illustrate how a 3-bit adder can be realized in a simplified generic mPLD-XOR 

fabric, where inputs in a complementary form only are applied to the circuit. This 

simplification decreases the amount of the data stored in ReRAM to half. The size of 

ReRAM in mPLD-XOR is 64 × 16. And the number of modulo-two counters is three, 

which allows the calculation of three single-output functions simultaneously. The 

schematic of the mPLD-XOR for realizing the adder is shown in Fig. 5.8. Inputs are ai and 

bi where i ∈ {0, 1, 2}, and outputs are S0, S1, S2, and Co as described by (5.1). Instructions 

for realizing the adder are loaded in the ReRAM. Note that performing any logic function 

requires loading the corresponding instructions in the ReRAM.  
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Fig. 5.9 shows a part of ReRAM divided into sub-ReRAMs, each of which stores the 

instructions to calculate a 1-bit output, except the sub-ReRAM shown in Fig. 5.9a, which 

stores control data for driving the CMOS sub-circuits. The size of sub-ReRAMs is 35 × 8. 

Once an output of mPLD-XOR is calculated, it is stored as a state of a memristor using 

volistor NOT gate [29]. Volistor NOT uses voltage as input and resistance as output. To 

describe the operation of a volistor NOT gate, consider the circuit shown in Fig. 4.1a. Let 

us assume that an input voltage is applied to memristor M1, and a negative bias defined as 

– 0.6V is applied to memristor M2. When the input is ‘1’ (0.6V), the voltage across 

memristor M2 is –1.2V (i.e., VCLEAR) which is sufficient to toggle the state of memristor M2 

to HRS (logic ‘0’). When the input is ‘0’ (0V), the state of memristor M2 remains at LRS 

(logic ‘1’). Memristor M1 is called ‘source memristor’ since it is driven by the input, and 

memristor M2 is called ‘target memristor’ since it stores the output. Regardless of the input 

value, the state of the source memristor remains at LRS while the state of the target 

memristor may toggle to HRS depending on the input. Note that the role of each memristor 

is determined by the voltage applied to the memristor. The proper operation of the volistor 

NOT requires initializing memristors M1 and M2 to LRS. The crossbar array at the bottom 

right of the mPLD-XOR in Fig. 5.8 is used to store the outputs of the counters using volistor 

NOT. The crossbar memristors connected to the dual-rail outputs of the counters via 

transmission gates act as source memristors (SM), and the crossbar memristors connected 

to TM drivers act as target memristors (TM). The TM drivers are built with a CMOS shifter 

with output voltage levels of 0V and –0.6V. The transmission gates connect the outputs of 

the counters to the source memristors only when the outputs have been calculated. The 
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transmission gates are controlled by signals Pi and ¬Pi where i ∈{1, …, 2j} and j equals 

the number of counters, which is 3 (see Fig. 5.8). Recall that each counter has two outputs, 

Q and ¬Q, and thus, at the output of each counter two transmission gates are required.  

The first column of sub-ReRAM in Fig. 5.9a stores control data for initializing the 

CMOS sub-circuits of the mPLD-XOR, e.g., by asserting signals CLRi where i ∈ {1, 2, 3} 

to reset all modulo-two counters, or by asserting signals Pi and ¬Pi where i ∈ {1, …, 6} to 

disconnect the modulo-two counters connected to the crossbar array via transmission gates. 

Once an output of the adder is calculated, signal Ctrl is asserted to store the output in a 

target memristor. For example, upon the first assertion of signal Ctrl, the first output (S0) 

is stored in the left-most target memristor of the crossbar array, as shown in the bottom 

right of Fig. 5.8. In this operation, the outputs of TM drivers, (o1, o2, o3, o4), equals (–0.6V, 

0V, 0V, 0V). Ultimately all outputs will be stored in target memristors TM. Each column 

of sub-ReRAMs in Fig. 5.9b to Fig. 5.9d controls the primary inputs applied to each 

programmable diode OR gate for realizing an XOR term such as NAND, AND, NOR, OR, 

or literal. (In particular, each row of the sub-ReRAMs controls 1-bit input during 

computational steps where inputs are shown as a red vertical bus close to the sub-

ReRAMs). The process of realizing the 3-bit adder are described below. 

1) Initialization  

CMOS sub-circuits are initialized in the first clock cycle by asserting the control signals 

stored in the first column of the ReRAM.  
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2) Calculating S0  

Sum bit S0 is calculated in the second and third clock cycles by driving the second and 

third columns of the crossbar array shown in Fig. 5.9b. In the third clock cycle, S0 is 

available at the non-inverted output of XOR1. At this moment, ¬S0 is applied to a source 

memristor via a transmission gate to store S0 in the left-most target memristor of the 

crossbar array. In this operation, signals P2 and Ctrl stored in the third column of the 

crossbar array shown in Fig. 5.9a are applied to the related transmission gate and TM 

drivers, respectively. In the fourth clock cycle, signal CLR1 is asserted to clear the output 

of the XOR1 for the next use.  

3) Calculating S2  

Sum bit S2 is calculated in five clock cycles, as shown in Fig. 5.9c. In clock cycle number 

six, S2 is available at the inverted output of XOR2. At this moment, ¬S2 is applied to a 

source memristor, and S2 is stored next to S0. This operation requires asserting signals P3 

and Ctrl, which are stored in column number six of the crossbar array shown in Fig. 5.9a.  

4) Calculating S1  

Sum bit S1 is calculated in three clock cycles, as shown in Fig. 5.9b.  In clock cycle 

number seven, S1 is available at the inverted output of XOR1. Simultaneously, ¬S1 is 

applied to a source memristor to store S1 next to S2 by asserting signals P1 and Ctrl, 

stored in column number seven of the crossbar array shown in Fig. 5.9a. 

5) Calculating Co 

Carry bit Co is calculated in seven clock cycles, as shown in Fig. 5.9d. In clock cycle 

number eight, Co is available at the inverted output of XOR3. At this moment, ¬Co is 
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applied to a source memristor to store Co next to S1 by asserting signals P5 and Ctrl, 

stored in column number eight of the crossbar array in Fig. 5.9a.  

In summary, a 3-bit adder is realized in eight clock cycles in a 35 × 8 sub-ReRAM. 

The mPLD-XOR can be designed by programmable diode AND gates instead of diode 

OR gates to realize logic functions in PPRM (Positive Polarity Reed-Miller) expressions 

that is AND-XOR expressions with uncomplemented literals only, as in (5.1). This 

realization also requires changing the diode AND gates used in CMOS-memristive drivers 

with diode OR gates. In addition, the control data stored in ReRAM must be substituted 

with their complements. In the AND-type mPLD-XOR, inputs in positive polarity are 

applied to the circuit, and there is no need for input CMOS inverters.  

Using memristor-based stateful IMPLY gates, a 3-bit adder can be implemented with 

the NAND-OR logic structure [66] using (5.2). In this implementation, multi-input IMPLY 

gates are utilized. The process of realizing a 3-bit adder in a 3 × 8 computational array is 

shown in Fig. 5.10. More details can be found in [73]. 

The matrix shown in Fig. 5.10a is analogous to a 3 × 8 crossbar array where entities of 

the matrix represent the states of corresponding memristors. Inputs ai and bi where i ∈ {0, 

1, 2} are populated in the computational array shown in Fig. 5.10a. In step a, the auxiliary 

memristors are initialized to HRS denoted by logic ‘0’ in one clock cycle. In step b, copies 

of complementary inputs are stored in the third and fourth columns using stateful 

1 1

1 1 1 1 1

( ( , ), ( , ), ( , ))

( ( , , ), ( , , ), ( , , ), ( , , ))

i i i

i i i i i
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Fig. 5.9.  Schematic diagram of sub-ReRAMs. Sub-ReRAM (a) stores the control data for driving CMOS 

sub-circuits of the mPLD-XOR. Sub-ReRAMs (b)-(d) store control data for realizing S0 and S1, S2, and 

Co, respectively. The number of clock cycles for calculating an output is shown in parenthesis, e.g., (#8). 

The size of sub-ReRAMs is 35 × 8. 
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IMPLY gates. This step is realized in two clock cycles. In step c, carry bit c1 is calculated 

and stored in the right-most memristor of the first row. Also, a copy of ¬c1 is stored in the 

right-most memristor of the second row. In step d, c1 and ¬c1 are copied to new locations, 

as shown in Fig. 5.10d. The right-most columns are cleared to be used in step e. In step e, 

sum bit s0 is calculated and stored in the right-most memristor of the first row. The 

following steps, f through j, are illustrated in Fig. 5.10. 

The number of computational steps is 29, and the size of ReRAM is estimated to be c 

× m where c is the number of control bits driving the 3 × 8 crossbar array per computational 

step, and m is the number of computational steps, which is 29. The number of control bits 

driving each wire cannot be smaller than three since each wire needs to be connected to 

multiple voltage levels, grounded through a reference resistor, or terminated to high 

impedance. Assuming that each wire is driven by three control bits, the size of ReRAM 

can be estimated 33 × 29. 

In the mPLD-XOR, the number of control bits for driving each wire of the 

computational arrays is one only since each wire must be connected to either ‘0’ or ‘1’ for 

computing logic. In other words, there is no need to terminate the wires to high impedance 

or to ground them through reference resistors. Moreover, the memristors maintain their 

resistance states during logic calculations and don’t need to be initialized repeatedly. 

Therefore, no additional voltage levels are required for implementing logic in mPLD-XOR. 

The programmable diode gates have simple drivers, which in turn decrease the size of 

ReRAM. The size of ReRAM and the number of computational steps for realizing the adder 

in mPLD-XOR circuit to the stateful circuit are 280:957 and 8:29, respectively. 
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5.5.2 A 3-BIT MULTIPLIER 

A 3-bit multiplier can be realized with the mPLD-XOR shown in Fig. 5.8. This requires 

loading the instructions of the multiplier in ReRAM, which occupy 35 × 40 of the ReRAM 

size. The number of clock cycles (computational steps) for this realization is 40. Adding 

feedback CMOS D flip-flops to the mPLD-XOR can improve the size and performance of 

the circuit. For example, the multiplier can be implemented in twelve clock cycles with 

instructions which occupy 47 × 12 of the ReRAM size. The enhanced mPLD-XOR can 

a0 b0 0 0 0 0 0 0    a0 b0 ¬a0 ¬b0 0 0 0 0 

a1 b1 0 0 0 0 0 0    a1 b1 ¬a1 ¬b1 0 0 0 0 

a2 b2 0 0 0 0 0 0    a2 b2 ¬a2 ¬b2 0 0 0 0 

 

                  (a) 1 FALSE                                 (b) 2 IMPs 

 

a0 b0 ¬a0 ¬b0 0 0 0   c1    a0 b0 ¬a0 ¬b0 0 0 0 0 

a1 b1 ¬a1 ¬b1 0 0 0 ¬c1    a1 b1 ¬a1 ¬b1 c1 ¬c1 0 0 

a2 b2 ¬a2 ¬b2 0 0 0 0    a2 b2 ¬a2 ¬b2 0 0 0 0 

 

        (c) 2 IMPs                   (d) 2 IMPs + 1 FALSE 

 

a0 b0 ¬a0 ¬b0 0 0 0 s0    a0 b0 ¬a0 ¬b0 0 0 0   s0 

a1 b1 ¬a1 ¬b1 c1 ¬c1 0 0    a1 b1 ¬a1 ¬b1 c1 ¬c1 0   c2 

a2 b2 ¬a2 ¬b2 0 0 0 0    a2 b2 ¬a2 ¬b2 0 0 0 ¬c2 

                

   (e) 2 IMPs                                            (f) 4 IMPs 

 

 

a0 b0 ¬a0 ¬b0 0 0 0 s0    a0 b0 ¬a0 ¬b0 0 0 0 s0 

a1 b1 ¬a1 ¬b1 c1 ¬c1 0 0    a1 b1 ¬a1 ¬b1 c1 ¬c1 0 s1 

a2 b2 ¬a2 ¬b2 c2 ¬c2 0 0    a2 b2 ¬a2 ¬b2 c2 ¬c2 0 0 

      

                    (g) 2 IMPs + 1 FALSE                                                                (h) 4 IMPs 

a0 b0 ¬a0 ¬b0 0 0 0 s0    a0 b0 ¬a0 ¬b0 0 0 0 s0 

a1 b1 ¬a1 ¬b1 0 0 0 s1    a1 b1 ¬a1 ¬b1 0 0 0 s1 

a2 b2 ¬a2 ¬b2 c2 ¬c2 c3 s2    a2 b2 ¬a2 ¬b2 0 0 c3 s2 

               

     (i)  7 IMPs                                   (j) 1 FALSE 

Fig. 5.10. (a)- (j) The computational steps for realizing a 3-bit adder with stateful gates. The total number of 

IMP and FALSE operations is 29. In each step, the numbers of operations are shown.   
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store the output of each counter in a D flip-flop and make it available as a primary input 

(Fig. 5.11). This feedback also makes a counter available for calculating another output. 

The feedback D flip-flops are clocked by signal Sigi where i ∈ {1, 2, 3}. Adding the 

feedback to the mPLD-XOR allows the implementation of a multilevel XOR logic network 

with any combination of sums, products, XORs, and literals at the input of any XOR gate. 

Fig. 5.11 shows the schematic of a 3-bit multiplier as realized with the mPLD-XOR with 

feedback D flip-flops. In this realization, internal signals IP0, IC0, IC1, and IC2 in Fig. 

5.12 are calculated, stored in D flip-flops, and used to implement the next levels of the 

circuit.  

If the multiplier is implemented with stateful IMPLY gates, the number of computational 

steps will be 65. Fig. 5.13 shows the initial states of the crossbar memristors for realizing 

the multiplier. Assuming that each wire of the crossbar array is driven by three control bits, 

the size of ReRAM is estimated to be 66 × 65. 
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Fig. 5.11. Schematic of mPLD-XOR for realizing a 3-bit multiplier. In this implementation, the number of 

computational steps is 12, and instructions occupy 47 × 12 of the ReRAM size. 
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In summary, the size of ReRAM and the number of computational steps for realizing the 

3-bit multiplier in mPLD-XOR circuit to the stateful circuit are 564:4290 and 12:65, 

respectively. 

 

P1

P2

IP0

IC0

P3

IC1

P4

IC2

P5

P6

a2 b2    a1 b1   a0  b0 

 

Fig. 5.12. Schematic diagram of a 3-bit multiplier in a six-level-XOR-network structure with any 

combination of sums, products, XORs, and literals at the input of any XOR gate. This circuit is implemented 

with the mPLD-XOR with feedback circuit. The internal signals are stored in the memory cells to decrease 

the size of the ReRAM. 

 

 

¬𝑎0 ¬𝑎1 ¬𝑎2 ¬𝑏0 ¬𝑏1 ¬𝑏2 0 0 0 0 0 0 0 0 0 0
¬𝑎0 ¬𝑎1 ¬𝑎2 ¬𝑏0 ¬𝑏1 ¬𝑏2 0 0 0 0 0 0 0 0 0 0
¬𝑎0 ¬𝑎1 ¬𝑎2 ¬𝑏0 ¬𝑏1 ¬𝑏2 0 0 0 0 0 0 0 0 0 0
¬𝑎0 ¬𝑎1 ¬𝑎2 ¬𝑏0 ¬𝑏1 ¬𝑏2 0 0 0 0 0 0 0 0 0 0
¬𝑎0 ¬𝑎1 ¬𝑎2 ¬𝑏0 ¬𝑏1 ¬𝑏2 0 0 0 0 0 0 0 0 0 0
¬𝑎0 ¬𝑎1 ¬𝑎2 ¬𝑏0 ¬𝑏1 ¬𝑏2 0 0 0 0 0 0 0 0 0 0

 

Fig. 5.13. 6 × 16 crossbar array for implementing a 3-bit multiplier with stateful logic gates. The matrix 

elements denote initial states of crossbar memristors.  
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5.6 EVALUATION AND COMPARISON OF DIFFERENT LOGIC STYLES 

An extensive comparison of different architectures is beyond the scope of this chapter, 

however, to get some level of comparison, here are some published numbers for other 

memristive styles of logic gates. The following is the direct comparison between a 

published threshold logic example [72], MAGIC NOR example [28], and our 

implementation and as such does not include the driving circuitry to the memristive array 

(see Table 5.2). The minimum and maximum power dissipations of 2, 10, and 100-input 

diode NAND/NOR gates were calculated. The same power calculation was also done for 

multi-input stateful NOR gates realized with rectifying memristors using converse non-

implication gates (CNIMP) [25]. The simulation was performed in LTspice using 50nm 

TSMC process BSIM4 models and the memristor model explained by (2.1) and (2.2). The 

power dissipation and delay are calculated when a square pulse with 10ns time period and 

a 50% duty cycle is applied. The initial states of memristors realizing the CNIMP NOR 

gates are assumed to be ‘0’ (HRS). There are two steps for performing the stateful NOR 

gate. The first step is programming the memristors, and the second step is performing the 

logic. Most of the gate power consumption is related to the programming step (mapping 

the gate into the memristors), which must be performed repeatedly for computing different 

logic functions. The initial states of the memristors in the diode gates are assumed to be ‘1’ 

(LRS). In contrast to the stateful gates, memristors in the diode gates maintain their 

resistance states during logic operations. Table 5.2 includes the power consumption of a 2-

input MAGIC NOR gate based on published numbers [74]. This power does not include 

the programming step where the programming of a memristor to HRS and LRS consumes 
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26.35 uW and 169 uW, respectively [74]. The power consumption of a 10 and 100-input 

MAGIC NORs is estimated by scaling the power consumption of a 2-input MAGIC NOR. 

For example, the power consumption of a 10-input MAGIC NOR is estimated to be 5× the 

power consumption of a 2-input MAGIC NOR, which is about 29.75 uW-313.85 uW. In 

terms of area, the numbers of memristors in all logic styles shown in Table 5.2 are similar, 

however, their CMOS parts are different. For instance, the output of a diode gate is 

connected to a CMOS inverter and a pull-up resistor (or a pull-down transistor). However, 

the output of a memristive resistance divider in a threshold gate is connected to an Opamp 

threshold circuit. In our simulation, it is assumed that Vdd = 1V, VCOND = 0.6V, and VPROG 

= –0.6 V where VCOND and VPROG are voltage signals used to perform the CNIMP NOR 

gates. Also inputs applied to the diode gates are defined as 0V and 1V.   

Fig. 5.14 shows the area and delay of an N-bit adder realized with multiple approaches. 

The area and delay of the mPLD-XOR are explained by (5.3) and (5.4), respectively, where 

MN is the number of diode OR memristors, and DN is the number of clock cycles.  

M1=4, M2=10, M3=15, M4=21, M5=27, and MN=MN-1+4 for N>5.                                                                                      

(5.3) 

D1=3, DN=DN-1+3 if (N-1 mod 3) ≠2, and DN=DN-1+2 if (N-1 mod 3) =2.                                                                            

(5.4) 

Equation (5.3) and (5.4) are derived for an mPLD-XOR with three modulo-two counters 

and feedback D flip-flops. In all approaches, only the numbers of auxiliary (computational) 

memristors are considered since the number of source and target memristors are equal. The 

mPLD-XOR is 1.31× faster in average over the length of addition than the FBLC approach 
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[75], the second fastest approach shown in Fig. 5.14. In addition, the mPLD-XOR is 1.49× 

more area efficient in average than the IMPLY Parallel approach [76], the second most 

area efficient approach shown in Fig. 5.14. 

 

 

 

 

 

 

 

 

 

Fig. 5.14. Area and delay comparisons of an N-bit Adder realized with multiple approaches. 
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Note that the number of memristors utilized in the FBLC approach increases dramatically 

[77] compared to other approaches, and thus it is not included in the graph (Fig. 5.14).  

A 16-bit adder is also implemented in the mPLD-XOR with three modulo-two counters 

and feedback D flip-flops where vectors A=01010101and B=00110011 are used as inputs. 

The adder is performed in 42 clock cycles each of 4 ns period and 50% duty cycle. The 

average power consumption is about 17 uW based on our SPICE simulations where 97% 

of this power is consumed in CMOS parts of the circuit. The same adder is also 

implemented in Xilinx Artix-7 FPGA XC7A100T (28nm technology). The Xilinx vivado 

is used to estimate the data path delay and power consumption. The longest data path delay 

of the FPGA is estimated 7.798 ns. The total active circuit power is 416 mW. In terms of 

energy, the mPLD-XOR circuit consumes 2.678 pJ to implement the 16-bit adder while 

the Xilinx FPGA consumes 3.244 nJ for realizing the adder.  

Table 5.2 

Comparison of circuit implementation using diode gates with that of other logic style 

Logic Style 
Logic 

Function 

Power Dissipation (uW) 
   Delay 

2-inputs 10-inputs 100-inputs 

Programmable 

Diode logic 

NOR 
0.055- 

0.158 

0.055-

0.165 

0.055- 

0.245 
< 0.2ns 

NAND 
0.426- 

0.638 

0.446-

0.680 

0.437- 

0.880 
<0.50ns 

Threshold logic 

[72] 

NOR NP 10.6 11.49 0.60us 

NAND NP 9.2 10.09 0.45us 

CNIMP NOR 
0.457- 

1.381 

0.459-

5.028 

0.466-

64.053 
2 cycles (20ns) 

MAGIC [74] NOR 
5.95- 

62.77 
NP NP 1 cycle (1.3ns) 

NP: Not provided by the related papers 
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5.7 CONCLUSION 

The mPLD-XOR relies on the characteristics of rectifying memristors to allow voltages 

to be used directly as inputs. The mPLD-XOR is designed to implement multi-output 

functions well suited for XOR of sums or products structure such as arithmetic and 

communication functions. The input levels of such functions are realized with novel 

programmable diode gates and the output levels with CMOS modulo-two counters. The 

number of computational steps for calculating a multi-output function equals the maximum 

number of inputs to any output XOR gate when the number of modulo-two counters is 

large enough to calculate the outputs simultaneously. A 3-bit adder and a 3-bit multiplier 

are implemented with mPLD-XOR, and the size and performance of each circuit were 

compared with the implementation of stateful gates. The size of ReRAM and the number 

of clock cycles for realizing the adder in mPLD-XOR approach to the stateful approach are 

280:957 and 8:29 respectively. For the 3-bit multiplier, these ratios are 564:4290 and 12:65. 

Adding feedback circuits to mPLD-XOR, as shown in Fig. 5.11, allows the implementation 

of a multilevel XOR logic network with any combination of sums, products, XORs, and 

literals at the input of any XOR gate. The mPLD-XOR with feedback circuit has the 

potential to decrease the number of computational steps and the size of ReRAM. In 

realizing the 3-bit multiplier, the size of ReRAM and the number of computational steps in 

mPLD-XOR with a feedback circuit to the mPLD-XOR without a feedback circuit are 

564:1400 and 12:40, respectively. A 16-bit adder is also implemented in the mPLD-XOR 

and Xilinx Artix-7 FPGA XC7A100T. The power consumption of the mPLD-XOR is 

smaller than the Artix-7 FPGA, but the mPLD-XOR performs slower. In addition, the size 
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and delay comparisons of an N-bit adder realized with multiple approaches show that the 

mPLD-XOR adder is more area-delay efficient. This chapter presents examples 

demonstrating the benefits of using mPLD-XOR for realizing logic functions. 
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Chapter 6 

Multi-Input Volistor XNOR Gates 

A novel approach utilizing the emerging memristor process technology is introduced 

for realizing a 2-input primitive memristive XNOR gate based on volistor logic. The 

volistor XNOR gate uses voltage as input and resistance as output and capitalizes on the 

diode-like behavior of rectifying memristors. The XNOR gate is used as a building block 

of multi-input XNOR gates. The delay and the size of the N-input XNOR gate are small 

compared to other memristive XNOR gates, i.e., the gate is implemented with eight 

memristors of two crossbar arrays in 2N-1 clock cycles. The average power consumption 

of an 8-input volistor XNOR gate is calculated and compared with its counterpart realized 

with CMOS technology. Comparisons and simulation results show the benefit of the 

proposed XNOR gate in terms of delay, area, and power. More importantly, the XNOR 

gate combines memory and logic operations and enables in-memory computing. 

6.1 INTRODUCTION 

The ESOP realization of arithmetic functions has some advantages over the SOP 

realization of the functions [65], [99]. In general, the ESOP realization of arithmetic 

functions decreases the number of products and literals. In addition, ESOP circuits have 

better testability and have a use in cryptography and communication circuits. The key point 

in realizing such circuits is to implement multi-input XOR/XNOR gates, which has been a 

challenge in many technologies. For example, in conventional CMOS technology, multi-

input XOR are slow, consume large amounts of power, and occupy larger areas compared 

to other combinational gates. This chapter describes a novel approach for realizing a multi-
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input resistive XNOR gate. There are multiple approaches for realizing a two-input 

primitive memristive XOR/XNOR gate [62], [89], [100]-[101] depending on how inputs 

and output signals are expressed. For example, in [89], both inputs and output are expressed 

as resistance whereas in [100], inputs are expressed as voltage and only the output is 

expressed as resistance. In [62], a mix of voltage and resistance is used to express the 

inputs, and only resistance is used to express the output. And, in [101] and [102], both 

inputs and output are expressed as voltage.  

This chapter describes a new implementation of an XNOR gate based on volistors [29] 

and memristive diode gates [37]. The proposed XNOR gate uses voltage as input and 

resistance as output. Power, area, and delay comparisons are made against XNOR 

implementations with memristive and CMOS technologies.  

The chapter is organized in the following order. Section 6.2 provides a quick review of 

the characteristics of rectifying memristors, volistors, and memristive diode gates. 

Section 6.3 describes the implementation of a two-input volistor XNOR gate, and 

Section 6.4 shows the implementation of a multi-input XNOR gate based on the proposed 

two-input volistor XNOR gate. The multi-input XNOR circuits are compared with their 

counterparts realized with CMOS and memristive technologies. Section 6.5 summarizes 

concludes the chapter. 



122 

6.2 REVIEW OF RECTIFYING MEMRISTORS, VOLISTORS, AND PROGRAMMABLE DIODE 

GATES  

This description provides a brief review of the characteristics of the rectifying 

memristors, volistors, and memristive diode gates as these logic gates are used in realizing 

the XNOR gate.  

6.2.1 Rectifying memristors  

Fig. 6.1 shows the i-v characteristic of rectifying memristors [15], [45]-[46]. A 

rectifying memristor exhibits approximately a linear i-v characteristic when it is forward 

biased. The slope of this relation is much greater for the RCLOSED than for the ROPEN. 

However, the current through the memristor can be disregarded when it is reverse biased. 

VCLOSE and VOPEN are threshold voltages, and VSET and VCLEAR are programming voltages. 

The inset in Fig. 6.1 shows the symbolic diagram of the memristor and explains the 

polarities. We assume that RCLOSED denotes logic ‘1’ and ROPEN denotes logic ‘0’. 

 

 

Fig. 6.1. The i–v characteristic of a rectifying memristor and its symbolic diagram. The flow of current into 

the device, as shown above, decreases the resistance. 
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 6.2.2 Volistor logic 

Volistors capitalize on the diode-like behavior of rectifying memristors and utilize 

voltage as input and resistance as output. Fig. 6.2a shows a 2-input volistor NOR gate with 

input voltages Vin1 and Vin2 and output resistance t (i.e., the state of memristor T). 

Memristor T is connected to a bias voltage VT (< 0V) to store the output. The circuit operates 

properly under three conditions: 1) utilizing rectifying memristors, 2) initializing the 

memristors to RCLOSED, and 3) selecting proper input and bias voltages that satisfy (6.1) 

when input voltage Vin is high (see Fig. 6.1 for VCLEAR and VOPEN). 

                                                         
0OPEN T

T in CLEAR

V V V

V V V

 


 
                                                   (6.1) 

While realizing the NOR gate, the voltage on wire WOR remains unchanged for the reason 

that memristor T is reverse biased and allows approximately no current through the device. 

(Note that memristor T is connected to negative voltage VT). In this implementation, the 

source memristors (connected to Vin1 and Vin2) maintain their resistance states. In contrast 

to most of the stateful gates, there is no need for grounding WOR through a reference resistor 

for implementing the gate.  

6.2.3 Memristive diode logic 

Memristive diode gates utilize voltage as input and output. Fig. 6.2b shows a 2-input 

diode AND gate where Vin1 and Vin2 are the input voltages and VAND (the voltage on wire 

WAND) is the output voltage. This circuit operates properly under three conditions: 1) 

utilizing rectifying memristors, 2) initializing the memristors to RCLOSED, and 3) selecting 

proper input voltages that satisfy (6.2) to ensure that memristors maintain their resistance 
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states. 

                                                      0 in OPENV V V                                          (6.2) 

The circuit in Fig. 6.2b operates with no state transitions in memristors. For example, 

when inputs are different, the memristor connected to a high input voltage is reverse biased 

(see the polarities of the memristors) and suppresses the current below 10-13 A [45]. In 

addition, the voltage across the reverse biased memristor is insufficient to toggle the state 

of the memristor as determined by (6.2). This implementation requires no reference resistor 

as the gate relies on the diode-like behavior of the memristors. In contrast to the previous 

work [27], this is a significantly different implementation of structurally similar but 

conceptually different logic gates. 

6.3 TWO-INPUT VOLISTOR XNOR GATE 

Fig. 6.3a shows the schematic of the 2-input volistor XNOR gate. Although the circuit 

WAND

Vin1 

RCLOSED

Vin2 

RCLOSED

WOR

Vin1 VT 

RCLOSED T

Vin2 

RCLOSED

                       

                         (a)                                                    (b) 

Fig. 6.2. Implementation of memristive gates. (a) Implementation of two-input volistor NOR gate. (b) 

Implementation of a 2-input programmable diode AND gate. 
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has a similar structure as diode AND gate, it operates with different conditions. First, the 

inputs have different voltage levels: 0V and |VCLEAR|. Therefore, inputs are meant to be 

destructive to the states of memristors. Second, the output is defined as a state transition 

in memristors S1 and S2. State transition ‘1’ denotes that no state transition occurs in 

memristor S1 and S2, and state transition ‘0’ denotes that a state transition occurs in either 

S1 or S2. As a result, there is no predetermined target (output) memristor. There are three 

operations to realize the XNOR gate in the following order: setting, write, and read as 

described below.  

6.3.1 Setting operation 

Memristors S1 and S2 must be initialized to logic ‘1’ (RCLOSED). 

6.3.2 Write operation  

The write operation computes and stores the output of the XNOR gate. Fig. 6.3b shows 

the behavior of the XNOR gate. If the inputs are equal, no state transition occurs in S1 or 

Vin1

Vin2

S1

S2

High 

Impedance 

WXNOR          

                                               (a)                                                 (b) 

Fig. 6.3. Volistor XNOR gate. (a) Schematic of 2-input volistor XNOR gate. (b) Behavior of volistor 

XNOR gate.  
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1 1 1 
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S2. However, if the inputs are different, the state of a memristor connected to the high input 

voltage toggles to ROPEN (logic ‘0’). The output can be accessed anytime by reading the 

nonvolatile states of S1 and S2 as explained below.  

6.3.3 Read operation 

The output is read-out as AND (s1, s2) where s1 and s2 are the state variables of 

memristors S1 and S2. This operation is performed by a memristive diode AND gate. The 

read operation requires connecting wire WXNOR to VREAD (< VCLOSE) and wires Win1 and Win2 

to the GND through pull-down resistors, RG. The voltage on WAND shows the output of 

XNOR gate (Fig. 6.4). Table 6.1 explains the configuration of XNOR circuit during setting, 

write, and read operations. 

6.3.4 Circuit simulation 

The XNOR gate is simulated in LTspice using 50nm TSMC process BSIM models and 

VREAD

S1

S2

High Impedance

Diode AND 

Volistor XNOR

RON

RON

WXNOR WAND

Win1

Win2

 Load 

VOUT R

2Vdd3Vdd/2

XNOR

2

1

3 4

VOUT

 

Fig. 6.4. Read operation. Non-destructive voltage VREAD is applied to the volistor XNOR gate to read the 

output. The inset shows the symbolic diagram of the XNOR gate.  
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the memristor model used in [47]. The parameters of the memristors are shown in Table 

6.2. Signals are square pulse width with 5 ns time period and 100% duty cycle. In addition, 

inputs are defined as 0V and 1.25V, and VREAD is defined as 0.7V. A load buffer is connected 

to WAND and the simulation was conducted for Vdd = 0.6V, R = 1MΩ, and RG = 5MΩ (see 

Fig. 6.4). Fig. 6.5 shows the behavior of the circuit during setting, write, and read 

operations, assuming that initial states of S1 and S2 are logic ‘0’. Fig. 6.5a shows the 

behavior of the XNOR circuit assuming that Vin1 and Vin2 are logic ‘1’ and logic ‘0’, 

respectively. The write operation toggles s1. Therefore, VAND and VOUT during the read 

operation are ‘0’, demonstrating that a state transition has occurred in either S1 or S2 during 

the write operation. Note that the output during setting and write operations is irrelevant. 

Fig. 6.5b shows the behavior of the XNOR circuit assuming that Vin1 and Vin2 are logic ‘1’. 

Table 6.1 

XNOR configuration 

Operation 
Wires 

Win1 Win2 WXNOR WAND 

Setting 0V 0V VSET 0V 

Write Vin1 Vin2 Z VDSEL 

Read RG RG VREAD Z 

 
Voltage VDSEL is used to deselect a column during the write operation where VDSEL = VREAD. RG is a load 

resistor, and Z denotes high impedance. 
 

Table 6.2 

Memristor Parameters 

Parameter Value Parameter Value 

RCLOSED 500 KΩ VCLOSE 1 V 

ROPEN 500 MΩ VOPEN -1 V 

VSET 1.2 V Switching 

delay 4 ns 
VCLEAR -1.2 V 
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Under this combination of inputs, s1 and s2 remain unchanged. Therefore, VAND and VOUT 

during the read operation are ‘1’, demonstrating that no state transition has occurred in S1 

and S2 during the write operation. Our simulation results show the proper operation of the 

circuit for other inputs combinations, as well.  

The average power consumption of the circuit during setting, write, and read operations 

is 1.98 uW. This power is consumed in four CMOS drivers, four memristors, and two load 

resistors RG connected to Win1 and Win2 through two transistors. Each CMOS driver consists 

of two transistors and two control signals. (The size of the transistors, W/L ratio, is 8/1.) 

Table 6.3 shows the average power consumptions of the circuit for different values of Vin1, 

Vin2, s1, and s2.  

Table 6.4 compares multiple memristive XOR/XNOR circuits proposed in the literature 

with the volistor XNOR circuit. In all circuits, except for [101] and [102], the output is 

stored as a nonvolatile state of a memristor. Among the circuits shown in Table 6.4, only 

 

            Setting ↔ Write ↔ Read         Setting ↔ Write ↔ Read 

                                                               (a)                                            (b) 

Fig. 6.5. XNOR Circuit Simulations. The initial states are (s1, s2) = (0, 0). (a) The circuit behavior when 

inputs are (Vin1, Vin2) = (1, 0). (b) The circuit behavior when inputs are (Vin1, Vin2) = (1, 0). The outputs, VAND 

and VOUT, are relevant only during the read operation.  
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the heterogeneous memristive XNOR circuit [89] and the proposed volistor XNOR circuit 

can be realized in programmable memristor crossbar arrays whereas other XOR/XNOR 

circuits [62], [100]-[102] are application-specific integrated circuits (ASIC). The volistor 

XNOR gate is slightly faster than heterogeneous memristive XNOR gate for two reasons: 

first, inputs are voltage signals. Therefore, there is no need for programming the source 

memristors to represent the inputs. Second, memristors are of the same type. Therefore, 

unlike [89], there is no additional delay for output buffering. For multi-input XNOR gate, 

volistor XNOR is faster than heterogeneous memristive XNOR as explained in the next 

Table 6.3 

Average power consumption of a two-input volistor XNOR gate during the setting, write, and read 

operations (values are in micro joules) 

Inputs  

(Vin1, Vin2) 

Initial states of memristor S1 and S2 

00 01/10 11 

00 1.93 2.16 2.80 

01/10 1.60 1.83 2.46 

11 1.31 1.54 2.17 

 

 
 

Table 6.4 

Multiple realizations of 2-input primitive XOR/XNOR gates based on memristors 

Realization 

approach 

Input/ output 

type 

Delay* 

 

Memristors/ 

Transistor 

Computing  

in crossbar  

Computing 

Voltages 

[102] {V}/{V} 1 3 M + 3 T NO 2 

[91] {V}/{V} 1 2 M + AVS  NO 4 

[62] {V, R}/{R} 2** 2 M + 3 T NO 4 

[100] {V}/{R} 1 1 M + 4 T NO 3 

This work {V}/{R} 2 4 M YES 4 

[89] {R}/{R} 3** 4 M 
YES 4 

 

V and R denote voltage and resistance.  

AVS denote Analog Voltage Summator. 

* Delay is measured as the number of clock cycles. 

**Writing the inputs into the source memristors is not counted.  
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section. The proposed volistor based circuit makes XNOR a primitive gate similar to the 

IMPLY and CNIMP gates [25]. 

6.4 N-INPUT VOLISTOR XNOR GATE 

An N-input XNOR gate is widely used in arithmetic, security, testing, and 

communication circuits. This gate can be implemented by cascading 2-input volistor 

XNOR gates in two crossbar arrays. Fig. 6.6 shows a block diagram of an N-input XNOR 

gate that consists of 2-input XNOR gates XNOR1 and XNOR2 connected through CMOS 

switches. The XNOR gate is configured as a function of signals 1-7, X, Y, and Z. (See 

Fig. 6.4 to identify the terminals). Table 6.5 explains the operation of the circuit. For 

example, in the first clock cycle, XNOR1 and XNOR2 are set to logic ‘1’. In the second 

clock cycle, XNOR1 implements XNOR (Vin1, Vin2). In the third clock cycle, XNOR2 

realizes XNOR (Vin1, Vin2, Vin3), and in the fourth clock cycle, XNOR1 is set to logic ‘1’ to 

calculate XNOR (Vin1, Vin2, Vin3, Vin4) in next clock cycle. This process continues until an 

N-input XNOR gate is realized. In each clock cycle, a combination of control or input 

signals is applied to the circuit to perform a particular operation. For example, in the first 

clock cycle, signals XYZ are set to ‘110’, terminals 1, 2, 4, 5, and 7 are set to 0V, and 

2

1

XNOR1 XNOR2VOUT1 VOUT2

5

Y

Z

3 4 6 7

X

 

Fig. 6.6. Schematic diagram of a multi-input volistor XNOR gate. 
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terminals 3 and 6 are set to VSET. In particular, during the write operation, VDSEL is applied 

to terminal 4 or terminal 7 to keep the states of AND gate unchanged. The computational 

delay of the circuit is 2N-1. Table 6.5 also shows the state of XNOR1 and XNOR2 as a 

function of multiple signals. When XNOR1 (or XNOR2) is in state ‘-’, it waits for XNOR2 

(or XNOR1) to complete the setting or write operation. In clock cycle number seven, 

Table 6.5 

Multi-input XNOR circuit configuration 

   

cyc 

Terminals and Signals XYX State of XNORs  

# 

Fan-

in 
1 2 3 4 5 6 7 X Y Z 

XNOR

1 

XNOR

2 

1 0 V 0 V VSET 0V 0V VSET 0 V ‘1’ ‘1’ ‘0’ Setting Setting  

2 Vin1 Vin2 Z VDSEL 0V Z 0 V ‘1’ ‘0’ ‘0’ Write -  

3 Z Z VREAD Z Vin3 Z VDSEL ‘0’ ‘1’ ‘0’ Read Write 2 

4 0 V 0 V VSET 0V 0 V Z 0V ‘1’ ‘1’ ‘0’ Setting -  

5 Vin4 VOUT2 Z VDSEL Z VREAD Z ‘0’ ‘0’ ‘1’ Write Read 3 

6 0 V 0V Z 0V 0 V VSET 0V ‘1’ ‘1’ ‘0’ - Setting  

7 Z Z VREAD Z Vin5 Z VDSEL ‘0’ ‘1’ ‘0’ Read Write 4 

8 0 V 0V VSET 0V 0V Z 0V ‘1’ ‘1’ ‘0’ Setting -  

*cyc denotes the number of clock cycles 

The table explains the sequential realization of the multi-input XNOR gate. Columns are control and 

input signals applied to XNOR1 and XNOR2.  

 
Table 6.6 

Multiple logic circuits of n-input XOR/XNOR memristive gates 

Approach 

Input/ 

output 

type 

Delay** 
Memristors/ 

Transistor 

[89] 

(Optimized area) 
{R}/ {R} 4N-5 N+2 M 

[89] 

(Optimized delay) 
{R}/ {R} 3N-3 2N M 

[25] {R}/ {R} 2N+C* (2N-1 +1) × (N+1) M 

This work {V}/{R} 2N-1 8 M  

Hybrid 

XOR*** 
{V}/{R} N-1 

1 M+ 

(f(N)=f(N-1)+4, f(2)=4, N≥2) T** 

Hybrid 

XNOR **** 

 

{V}/{V} 

 

1 

 

(3 M+3 T) × (N-1) 

* C is a constant number [25]. 

** Delay is measured is the number of clock cycles during the computations. In [89], the number of clock 

cycles required to program the source memristors to represent the inputs is not counted.     

*** In [100], the realization of only two-input resistive XOR gate is shown. We predicted the delay and 

resources required for realizing an N-input XOR gate by cascading the XOR gates.  

**** In [102], the realization of the XNOR gate for only N = 2 and 3 is shown. We estimate the delay and 

the size of the circuit for realizing an N-input XNOR as shown in the table. 
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XNOR1 and XNOR2 repeat their states during the third clock cycle. Table 6.6 summarizes 

the size and delay comparisons of multiple N-input memristive XOR/XNOR circuits. The 

proposed N-input volistor XNOR circuit is small and relatively fast. The average power 

consumption of an 8-input volistor XNOR gate is 20.97 uW including that of dissipated in 

CMOS peripheral parts in Fig. 6.4 and 6.6. This average power is calculated for 25 random 

input vectors. Most of this power is consumed during the setting operation, which is 

performed with a voltage larger than VSET (i.e., 1.4V). The XNOR gate shows a large noise 

margin, as well. For the random input vectors, the XNOR perceives any resistive value 

larger than 85% ROPEN as ROPEN and any resistive value smaller than 115% RCLOSED as 

RCLOSED. Unfortunately, the proposed XNOR gate does not enable parallel computation in 

crossbar arrays. An 8-input XNOR gate was also synthesized using Synopsys design 

compiler with 45nm TSMC library. The average power consumption of the gate is 29.3 uW 

assuming that inputs are read from registers (D flip-flops) operating at the clock speed of 

5ns. The design compiler realizes the 8-input XNOR gate using three 2-input XNOR gates 

and two 1-bit full adders. The proposed XNOR gate is smaller and consumes less power 

than its CMOS counterpart.     

6.5 SUMMARY AND CONCLUSION 

This chapter describes the implementation of a 2-input primitive volistor XNOR gate. 

In addition, the realization of a multi-input XNOR gate based on the primitive XNOR is 

explained. The simulation results confirm the proper operation of the XNOR gate. Volistor 

XNOR gates enable a resistive computation of arithmetic and communication circuits that 

use multi-input XNOR gates in programmable memristive circuits. The computational 
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delay of the XNOR circuit is small compared to other programmable memristive XNOR 

gates. In addition, the power and area comparisons show the benefits of the volistor XNOR 

gate over the CMOS XNOR gate.  
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Chapter 7 

Volistor Logic Gates in Crossbar Arrays of Rectifying Memristors 

This chapter introduces new implementations for volistors and programmable diode 

gates in crossbar arrays of rectifying memristors. Volistors use voltage as input and 

resistance as output and rely on the diode-like behavior of rectifying memristors. The 

design constraints of volistors are explained. These constraints determine the size of the 

crossbar array and the voltage levels for logic functions implementations. This chapter 

shows that volistors can be cascaded in crossbar arrays with other memristive gates such 

as programmable diode gates. An implementation example of AND-NOR PLA based on 

hybrid programmable diode gates and volistors in a crossbar array is explained. The hybrid 

PLA circuit reduces both area and computational delay. The hybrid PLA circuit is 

compared to other memristive PLA (mPLA) circuits realized with stateful gates, 

complementary resistive switches (CRS) based gates, and Boolean gates. The outcomes 

show the benefit of the hybrid PLA circuit in terms of both size and delay. 

7.1 INTRODUCTION  

Memristors are the fourth passive basic elements in addition to resistors, capacitors, and 

conductors [3]. Memristors are two-terminal, non-volatile, and nanoscale devices. These 

devices with fast switching ability can be integrated with transistors [43] and can be scaled 

down to less than 10 nm [83] where the size of the transistor is hitting the physical limit. 

Memristors can be used for memory applications [15], [40], [84] and for digital and analog 

computations [18], [85]-[86]. Memristive digital gates can be divided into three categories. 

In the first category, the resistance states of memristors represent logic values [20], [25], 
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[28], [87]-[89]. This type of gates are known as stateful. In the second category, a 

combination of resistance (states of memristors) and voltage signals represents logic values 

[29], [62], [90]. And in the third category, voltage signals represent the input and output 

values [24], [27], [32], [33], [37], [72], [91]-[93]. The stateful gates are sequential gates, 

but their realization in parallel can reduce the delay [47], [77]-[78]. The stateful gates are 

usually realized in crossbar arrays, however, their realization in structures other than 

traditional crossbar arrays is possible [94]. In the second category, gates are designed to 

exploit the voltage-based input (or output) of CMOS gates and resistor-based input (or 

output) of stateful gates. The realization of logic gates using the Akers array [90], two-

input XOR gate [62], and volistor gates [29] are just a few examples of the second type of 

gates. Some of these gates can be realized in crossbar arrays such as the volistors explained 

in this chapter. The third category of memristive gates is beneficial to extend Moore’s law 

when CMOS scaling becomes problematic. A few examples of this type of gates are 

memristive fuzzy logic gates [24], memristive-ratioed logic gates [27], memristive 

programmable diode gates [37], Boolean logic gates [91], memristive threshold gates [33] 

and [72], memristive stochastic gates [92]-[93], memristive reservoir gates [32], etc. These 

gates are not necessarily realized in standard crossbar arrays.  

This chapter explains how rectifying memristors [15], [45]-[46] improve logic 

operations. We propose a novel approach for implementing volistor gates in crossbar 

arrays. Volistors depend on rectifying memristors (i.e., memristors with intrinsic diode-

like behavior) and use voltage as input and resistance as output. In addition, we derive the 

design constraints for volistor gates. These constraints determine the size of the crossbar 

arrays and the voltage values for realizing the gates. There are two different 
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implementation approaches for volistor gates. In the first approach, volistors use voltage 

as input and resistance as output. However, in the second approach, volistors use a mix of 

voltage and resistance as input and resistance as output. The second approach realizes, what 

we call, input-volistor gates (i.e., input-voltage-resistor and output-resistor gates). 

Volistors show some beneficial features. First, volistors enable in-memory computing. 

Second, the fan-in and fan-out of volistor gates are large. For example, implementing a 64-

input (output) volistor gate without an auxiliary circuit [44] is not a challenge (see Section 

7.6). Third, the voltage-based inputs of volistor gates (in contrast to the resistance-based 

inputs of stateful gates) results in a smaller and faster memristive circuits (see Section 

7.7.3). And fourth, volistors and other memristive gates can be cascaded in crossbar array 

to decrease the delay. For example, AND-NOR functions can be realized in two clock 

cycles by cascading volistors and programmable diode gates [37] in crossbar arrays (see 

Section 7.7).  

The rest of this chapter is organized as follows. In Section 7.2, the structure of memristive 

circuit for realizing volistor gates is introduced. Section 7.3 provides a quick review of 

volistor gates realized in one-dimensional array, whereas Section 7.4 describes the 

implementation of volistor gates and Section 7.5 explain the implementation of input-

volistor gates in crossbar arrays. Section 7.6 shows the design constraints of volistors. 

Section 7.7 shows an implementation example of an AND-NOR function based on 

programmable diode gates and volistors. The size and delay of the circuit are also compared 

to equivalent memristive circuits implemented with other memristive gates. Section 7.8 

concludes the paper. 
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7.2 CIRCUIT STRUCTURE FOR VOLISTOR LOGIC GATES 

This section shows a general new circuit structure for logic operations based on volistors, 

programmable diode gates, stateful gates, etc. Fig. 7.1 illustrates this new circuit structure. 

The circuit consists mainly of a computational array and memory array forming our 

proposed approach to in-memory computing enabled by memristor technology. The 

computational array is a network of sub-crossbar arrays that implements arbitrary logic 

operations and store logic values. These sub-crossbar arrays communicate through 

columns and rows of pass transistors. The computational array and the pass transistors are 

driven by peripheral circuits. These peripheral circuits are controlled by nearby big 

memristor memory array, which stores the instructions and control signals. The x columns 

of the memory array are controlled by an x-bit shifter. The output of the shifter 
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Fig. 7.1.  General circuit structure for logic computations based on volistor and stateful gates. 
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1 2( , , , )xQ Q Q  at the first, second, and xth clock cycle is (1,0, ,0), (0,1,0, ,0), and 

(0, ,0,1), respectively, where logic ‘1’ and ‘0’ denote high and low-voltage levels. There 

is a relatively small crossbar array that stores a number of k-bit vectors of inputs and their 

complements. This input array is connected to the upper peripheral circuits, as illustrated 

in Fig. 7.1. In this chapter, we assume that the inputs applied to the computational array 

satisfy 0
inl inh CLOSE

V v v V    where inlv  and 
inhv  are low and high input voltages, 

respectively, and are chosen 0V and 0.6V .  

Let the size of each sub-crossbar array be A B . The size of resistive memory is 

(( ) ) nA B C S C       where  is the number of control signals applied to each 

CMOS driver that is connected to a row of the crossbar arrays,  is the number of control 

signals applied to each CMOS driver that is connected to a column of the crossbar arrays, 

C is the number of sub-crossbar arrays, S is the number of pass transistors, and Cn is the 

computational delay measured as the number of clock cycles. Here, we assume that 5   

and 6  . As a result, the memory bus width is (5 6 )W A B C S    . In addition, each 

CMOS driver that controls a horizontal or vertical wire consists of five or six transistors, 

respectively. Table 7.1 shows the voltage levels used in the circuit in Fig. 7.1 where 

inhv v   and inhv v   . The circuit in Fig. 7.1 performs NOR, AND, INH (inhibition), and 

Table 7.1 

Voltage levels required during the operations  

Operation Required Voltage Levels 

Initialization 0V, VSET 

Execution VCLEAR, v0 ,־V, v+, |VCLEAR| 

Read v0 ,־V, v+ 
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COPY gates among other types of logic gates. Each of these gates (except for COPY) has 

multiple implementations depending on inputs locations (Table 7.2). For example, NOR 

operation can be applied to either the inputs located in the input array (case 1) or the inputs 

located in both the input array and computational array (case 2). Let input voltages inlv  and 

inhv  encode logic ‘0’ and logic ‘1’, and  input resistances 
OPENR  and 

CLOSEDR  encode logic 

‘0’ and logic ‘1’, respectively. Section 7.3 provides a quick review of volistor gates and 

input-volistor gates realized in one-dimensional arrays and shows the limitations of volistor 

logic gates. 

7.3 REVIEW OF VOLISTOR GATES IN ONE-DIMENSIONAL ARRAYS  

Volistors capitalize on diode-like behavior of rectifying memristors and use voltage as 

input and resistance as output [29]. The input voltages of volistor gates eliminate the need 

for reference resistors, the most power-hungry circuit elements in stateful IMPLY gate 

[20], AND gate [88], CNIMP (Converse Non-Implication) gate [25], etc. Section 7.3.1 

reviews the implementation of volistor NOR gate and its limitations, and Section 7.3.2 

reviews the implementation of input-volistor NOR gate (which uses a mix of voltage and 

resistance as input and resistance as output). 

Table 7.2 

Volistor operations and their input locations 

Case 

Inputs Locations Gates 

Input  

Array 

Computational 

Array  
NOR AND INH COPY 

1          

2           

3           
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7.3.1 Volistor NOR gate 

Volistor NOR gate was introduced in [29]. This implementation approach has the inputs 

stored in the input array. Fig. 7.2 shows the schematic of an n-input volistor NOR gate 

realized in a 1 ( 1)n   memristive array with the voltages specified in (7.1).  

            

0

0

inl inh CLOSE

OPEN T

T inh CLEAR

V v v V

V V V

V v V

  

 

 







                                         

(7.1 )

(7.1 )

(7.1 )

a

b

c

 

The role of each memristive switch is determined by its driving voltage such as v+, v־, etc. 

Memristive switches S are set to closed state and connected to input voltages vin1-vinn. The 

target memristive switch (which stores the output) is connected to voltage VT. Volistor 

NOR is implemented in two clock cycles. In the first clock cycle, switch T is set closed. 

And in the second clock cycle, NOR gate is implemented. Though memristive switches are 

set closed, some of them act as open switches. For example, memristive switch T is always 

reverse biased and acts as an open switch. During the operation, all switches S remain 

closed. However, the state of switch T may be changed to open (programmed to HRS).The 

diode-like behavior of memristors allows the implementation of volistor gates that have 

multiple fan-out without auxiliary circuits [44]. When at least one of the inputs is high, the 

voltage on wire wm is approximately vinh. Therefore, the voltage across switch T is close to
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CLEARV . This voltage is large enough to toggle the state of T to open. When inputs are low, 

switch T remains closed. Equation (7.1a) shows the range of input voltages. The values of 

VT and 
inhv  are chosen in such a way that they satisfy (7.1b) and (7.1c). In Fig. 7.2, input 

voltages are selected by peripheral circuits and applied to the closed memristive switches, 

S. This implementation approach is best suited for circuits that require large fan-out. 

Fig. 7.3 illustrates this limitation where the circuit implements a three-input NOR gate with 

a fan-out of three, but it is unable to realize multiple NOR gates with different arguments. 

In Section 7.4.1, we show how to implement multiple NOR gates with different arguments 

in parallel.  

7.3.2 Input-volistor NOR gate 

Input-volistor NOR gate was introduced in [29]. This implementation approach has the 

inputs distributed in both input array and computational array (Table 7.2). Fig. 7.4a shows 
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Fig. 7.3.  Implementation of a three-input volistor NOR gate with a fan-out of three. The source memristors 

are in LRS. Horizontal wires are connected to high impedance Z. 
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Fig. 7.2.  Schematic of an n-input volistor NOR gate realized in a 1 × (n + 1) memristive array. 
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the schematic of the two-input-volistor NOR gate with input voltage va, input resistance rb, 

and output resistance rT, as such rb and rT denote the logical states of S2 and T, respectively. 

Input va is applied to memristor S1 initialized to LRS, voltage v+ is applied to memristor S2, 

and voltage VT is applied to memristor T. The circuit operates with the voltages specified 

in (7.1). An n-input-volistor NOR gate is realized in a 1 × (n + 1) memristive array. The 

correct operation of volistor NOR may require grounding wm through reference resistor Rg 

when n ≥ 8 (Fig. 7.4b). The need for Rg appears when all of the inputs are logic ‘0’, and 

most of the inputs are resistances. Fig. 7.4b illustrates an n-input-volistor NOR circuit with 

n-1 input resistance at logic ‘0’ (HRS) and one input voltage at logic ‘0’ ( inlv ). For this 

combination of inputs, the circuit must satisfy (7.1) where 

(( 1) 1) / ( )m T gw n v V n N


      and OPEN gg
N R R . For v+ = 0.6V, VT = -0.6V, and 

Rg=√ (ROPRN × RCLOSED), Equation (7.2) is simplified to n < 74. In fact, the use of reference 

resistor Rg allows to increase the size of the input-volistor NOR gate from n < 8 to n < 74. 

v+va VT

S1

rb

wm

TS2 

rT

 
   (a) 

v+vinl VT

S1

wm

TS2 

v+

S3 

v+

Sn 

...

   LRS   HRS

Rg

 
  (b) 

Fig. 7.4.  (a) Schematic of two-input-volistor NOR gate. Inputs are va and rb, and the output is rT. (b) 

Schematic of an n-input-volistor NOR gate where all of the inputs are logic ‘0’. 
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When n < 8, the circuit can operate without Rg where )(( 1) ( 1)
m T

w n v V n
     . 

    
m T OPEN

w V V                                                     (7.2) 

7.4 VOLISTOR GATES IN TWO-DIMENSIONAL ARRAYS 

This section explains the implementation of improved volistor NOR, volistor AND, and 

volistor COPY gates in crossbar arrays and show how to deselect a volistor gate in a 

crossbar array.  

7.4.1 Improved volistor NOR gate 

In a single crossbar array, identical gates with identical inputs are a limited form of 

parallelism that can be realized using volistor logic (Fig. 7.3). This limitation could be 

resolved by permanently disabling specific memristors in the crossbar array that leaves 

those memristors in permanent HRS [18], [75]. This approach would result in an 

application-specific integrated circuit, different than our general concept of a 

programmable mPLA. As an alternative, in our approach, the rectifying memristors are 

programmed to HRS taking the role of memristors in permanent HRS. Recall that the 

rectifying memristors have relatively large ROPEN and ROPEN/RCLOSED ratio. Consequently, 

input voltages can be disconnected by programming the source memristors to HRS. This 

technique allows to implement multiple volistor NOR gates in parallel in a crossbar array. 
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For example, the crossbar array shown in Fig. 7.5 implements Tm = NOR (a, b, c) on wire   

and Tm+1 = NOR (¬a, ¬b, ¬c) = AND (a, b, c) on wm+1. The source memristors on wm+2 are 

programmed to HRS to disconnect the inputs. The gates can be executed for any input 

vector [va, vb, vc] in two clock cycles as the inputs are voltage signals and the source 

memristors retain their resistance states. In contrast, the implementations of stateful logic 

gates require programming the source memristors for any input vector of literals, because 

the resistance states of source memristors represent the input values. In stateful gates, 

programming the source memristors takes more clock cycles (e.g. 2n  where n is the 

number of inputs [25]) than in volistors where the programming takes only a single cycle. 

In stateful logic, we would apply a voltage of v+/2 (v2/־) to those rows which are not used 

in the current operation of the crossbar array [95]. This would prevent the target memristors 

in these “deselected” rows from changing states. In contrast, in our circuit shown in 

Fig. 7.1, to deselect a row of volistor NOR or any other row in a crossbar array, a 

conventional v+/2 scheme cannot be used. Section 7.4.2 shows how to deselect a volistor 

gate in a crossbar array.  

   LRS   HRS

Tm = NOR (a, b, c)S SS S S S

...

Tm+1 = NOR (¬ a, ¬ b, ¬ c)S SS S S

...

Tm+2 = 1S SS S S S
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..
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..
.

..
.

..
.

..
.

..
.

..
.

S

va v¬ a vb v¬ b vc v¬ c VT

wm

wm+1

wm+2

 
Fig. 7.5.  Implementation example of multiple volistor NOR gates in a crossbar array. The circuit 

implements Tm = NOR (a, b, c) on wm and Tm+1 = NOR (¬a, ¬b, ¬c) on wm+1. Source memristors on wm + 2 

are in HRS to disconnect the input voltages. 
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7.4.2 Deselect of volistor gates in crossbar arrays 

To deselect a volistor gate in a crossbar array, a write scheme such as setting unused 

rows (columns) to v+/2 or v+/3 has problems. Such a write scheme might largely decrease 

the voltage levels on wires and corrupt the circuit operation. Take, for example, the circuits 

shown in Fig. 7.6 where inputs va, vb, and vc equal vinl. The circuit shown in Fig. 7.6a is 

programmed to implement Tm= NOR (¬a, b, c) while preventing the implementation of 

Tm+1 = NOR (¬a, ¬b, ¬c) by connecting wm+1 to v+/2. However, the flow of current through 

memristor M decreases the voltage on wc and thus the voltage on wire wm which would 

corrupt the implementation of Tm = NOR (¬a, b, c). In contrast, we use CMOS switches to 

solve the deselect problem of volistor gates in crossbar arrays. In Fig. 7.6b, the v+ scheme 
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Fig. 7.6.  Deselecting a volistor gate in a crossbar array. (a) Traditional approach for deselecting a volistor 

gate by v+/2 scheme might disturb the circuit operation. (b) Our approach for deselecting a volistor gate is 

to use pass transistors and v+ scheme to ensure the correct operation of the circuit. 
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sets the memristors on wire wm+1 reverse biased and suppresses the electric current through 

the memristors. In addition, the pass transistor on wm+1 prevents any state transition in 

memristor Tm+1. Fig. 7.7 shows four sub-crossbar arrays connected through pass transistors. 

Each row or column of two adjacent arrays can implement one volistor gate where the 

source and target memristors are connected through a pass transistor. When a pass 

transistor is switched off, the gate is deselected. 
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Fig. 7.7.  Example of four sub-crossbar arrays (A, B, C, and D) connected by a column and row of pass 

transistors. 
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7.4.3 Volistor AND gate 

The new implementation approach of volistor AND gates has the input values stored in a 

computational array (Table 7.2).  Fig. 7.8a illustrates the implementation of Tm = AND (a, 

b, c) using the voltages specified in (7.3). Row wm-1 is connected to v־ to read out the input 

resistances (a, b, and c). The voltages on vertical wires wn-2, wn, and wn+2 correspond to the 
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Fig. 7.8.  Implementation of volistor AND gate with input resistances stored in a computational array. (a) 

Realization of Tm=AND (a, b, c) where inputs are located on row wm-1 (b) Realization of Tn = AND (a, b, c) 

where inputs are located on column wn-1. 
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inputs. The output of the AND gate is the resistance state of memristor Tm connected to 

horizontal wire wm. Memristor Tm is driven by voltage VT. The other memristors on 
m

w  are 

not part of the AND gate and are connected to v־ in order to minimize the effect of the 

sneak current paths. Horizontal wires except for wm-1 and wm are connected to the GND. 

The pass transistors are switched off, except for the one that is connected to Tm. If the inputs 

were located in a column of the crossbar array, the AND gate would be implemented using 

the voltages specified in (7.4). Fig. 7.8b illustrates the implementation of Tn = AND (a, b, 

c) where inputs a, b, and c are located in column wn-1 and the output is stored in memristor 

Tn. A two-input AND gate was simulated in a 9 × 9 crossbar array using 50 nm TSMC 

process and the SPICE model of the rectifying memristor [47]. The simulation results show 

the correct operation of the AND gate for all input combinations. Note that volistor AND 

gate can also be implemented using input complements stored in the input array in the same 

manner of implementing volistor NOR gate shown in Section 7.4.1. 
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7.4.4 Volistor COPY gate 

Fig. 7.9 shows how to copy a logic value in computational array. In Fig. 7.9a, value a in 

row wm-1 is transferred to memristor Tm located in row wm using the voltages specified in 

(7.3). In Fig. 7.9b, value a in column wn-1 is transferred to Tn locate in column wn using the 

voltages specified in (7.4). Our simulation results show the proper operation of the circuit 

realizing the COPY operation in a 9 × 9 crossbar array.  
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Fig. 7.9.  Volistor COPY Operation. (a) COPY value a on vm-1 to memristor Tm on vm (b) COPY value a on 

wn-1 to memristor Tn on wn.  
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In Section 7.5, the input-volistor INH gate and input-volistor AND gate are proposed. 

These logic gates use a mix of voltage and resistance as input and resistance as output.  

7.5 INPUT-VOLISTOR GATES IN TWO-DIMENSIONAL ARRAYS 

The implementation of input-volistor INH requires having the inputs distributed in both 

the input array and computational array. However, the implementation of input-volistor 

AND gate requires having the inputs distributed in two different columns (rows) of 

adjacent sub-crossbar arrays (Table 7.2).  

7.5.1 Input-volistor INH gate  

By definition, a INH b= (¬a) b, which also equals ¬ ((¬a) IMPLY (¬b)). The INH gate 

is implemented with two memristors, as shown in Fig. 7.10, where va is the input voltage 

and rb is the input resistance. Input va is applied to source memristor S initialized to LRS, 

and input rb is the initial state of memristor T. The output is the new resistance state of 

memristor T. The INH gate is implemented using the voltages specified in (7.1). Our 

simulation results confirm the correct operation of the INH gate for all input combinations. 

INH along with constant ‘1’ form a functionally complete set of logic gates. The input-

volistor IHN is implemented similar to input-volistor NOR. The difference is that in input-

VTva

S T

wr

rb

 
Fig. 7.10.  Schematic of input-volistor INH gate. Inputs are va and rb, and the output is (¬a) b, which updates 

resistance state rb of memristor T. 
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volistor NOR, the output is separated than inputs whereas in input-volistor INH, the output 

is represented on the same memristor as one of the inputs. 

7.5.2 Input-volistor AND gate  

The input-volistor AND gate is implemented similar to the volistor AND gate (Fig. 7.8 

The difference is that in input-volistor AND the output is represented on the same 

memristor as one of the inputs whereas in volistor AND the output is separated than inputs.  

In Section 7.6, the design constraints for implementing volistor gates in crossbar arrays 

are discussed. 

7.6 DESIGN CONSTRAINTS OF VOLISTOR GATES IN CROSSBAR ARRAYS 

Volistors operate in crossbar arrays under some constraints. These constraints determine 

the size of computational array and the range of voltage levels for implementing the gates. 

The constraints are obtained under the assumption of having the primary inputs and their 

complements stored in the input array. In addition, it is assumed that v+ = vinh, v־ = -vinh, 

and Rg = √ (ROPEN×RCLOSED) where Rg is the reference resistor. Moreover, the pass 

transistors connecting the sub-crossbar arrays are chosen such that rds << RCLOSED ˂˂ ROPEN 

where rds is the drain-source resistance of a pass transistor. The constraints are explained 

for each volistor gate as follows.   

7.6.1 Design constraints of improved volistor NOR gate  

Constraint 1 to Constraint 3 must be satisfied for the improved volistor NOR gates, 

realized in two m × n sub-crossbar arrays.  

Constraint 1. If all of the NOR’s inputs are logic ‘0’, the closed state of target memristive 
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switch must remain closed. In other words, Equation (7.2) should be satisfied where

(( 0.5) ) / 2m Tv n v V n    . Fig. 7.11 shows the VT-n relation for the applied inputs. This 

VT-n relation is denoted by ‘lower_all_0’ and shows the lower bound of VT.  

Constraint 2. If one of the NOR’s inputs is logic ‘1’, the closed state of target memristive 

switch must toggle to open. In other words, Equation (7.5) should be satisfied where

(( 1.5) ) / ( 2 1)m Tv N n v V N n       and /OPEN CLOSEDN R R . Substituting vm in 

(7.5) results in (7.6), which determines the range of VT. Fig. 7.11 shows the VT-n relations 

for the applied inputs. These relations are denoted by ‘lower_1’ and ‘upper_1’ and show 

the boundaries of VT.  

  2CLEAR OPEN CLEARm TV V v V V                                             (7.5) 

 
( 1.5)

2 2
T CLEAR

N n v
V V

N n

  
 

 
                                        (7.6a) 

  

                           
( 1.5) ( 2 1) 2

2 2

CLEAR OPEN

T

N n v N n V V
V

N n

       


 
               (7.6b) 

  

Constraint 3. If all of the NOR’s inputs are logic ‘1’, the closed state of target memristive 

switch must toggle to open. In other words, Equation (7.5) should be satisfied where

( ( 0.5) ) / ( ( 0.5) ( 0.5))Tvm N n v V N n n         . Fig. 7.11 shows the VT-n relations 

for the applied inputs. These relations are denoted by ‘lower_all_1’ and ‘upper_all_1’ and 

show the lower and upper bound of VT. 
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The shaded area in Fig. 7.11 shows the range of VT for realizing i-input volistor NOR 

gates for any combination of inputs where i ≤ n - 1. Note that the resistive effect of the 

wires is negligible as the resistance of the wires is very small compared to RCLOSED = 

500 KΩ. For example, the resistive value of a relatively large width wire of diameter 

120 nm used in a 32 × 32 crossbar array is at most 30 KΩ when implemented with relatively 

high resistance p-doped Si [61]. In other words, the resistive value of each wire is about 

1 KΩ, which is very small compared to RCLOSED.  

Fig. 7.12b shows the simulation results of three 50-input volistor NOR gates realized in 

a 3 × 101 crossbar array where inputs are (0, 0, …, 0), (1, 0… 0), and (1, 1, …, 1). The 

state transition delay in target memristors depends on the number of vinh applied to each 

NOR gate. The longest delay occurs when only one of the inputs is high. In this case, the 

delay is 4.67 ns, which is 11.75% longer than a 4 ns transition delay in LRS memristor 

connected to VCLEAR (Fig. 7.12a).  

 
Fig. 7.11.  VT-n relations of multiple volistor NOR gates realized in two m × n crossbar arrays. The 

shaded area shows the range of VT for implementing i -input volistor NOR gates where i ≤ n - 1. 
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When volistor AND is realized with input complements, the constraints of volistor NOR 

gate are applied to volistor AND. Recall the implementation example of Tm+1 = AND (a, b, 

c) realized as Tm+1 = NOR (¬a, ¬b, ¬c) in Section 7.4.1.  

7.6.2 Design constraints of input-volistor NOR gate 

Constraint 4 to Constraint 6 must be satisfied for the input-volistor NOR gates, realized 

in two m × n sub-crossbar arrays.  

Constraint 4. If all of the NOR’s inputs are logic ‘0’, the closed state of target memristive 

switch must remain unchanged. In other words, Equation (7.2) should be satisfied where

((2 2) ) ( 2 )m T gv n v V N n


    and g OPEN gN R R . Note that vm is derived under the 

assumption that all inputs are resistances, except for a single input, which is voltage. 

Among all combinations of low inputs, this combination maximizes wm. Substituting wm in 

(7.2) results in (7.7). Fig. 7.13 shows the VT-n relation for the applied inputs. This relation 

is denoted by ‘lower_all_0’ and shows the lower bound of VT.  

              
                                 (a)                                                              (b) 

Fig. 7.12.  (a) State transition delay in LRS memristor connected to VCLEAR. (b) Simulation results of three 

50-input volistor NOR gates executed in a 3 ×101 crossbar array where 0 × vinh, 1 × vinh, and 50 × vinh show 

the number of high inputs applied to each volistor NOR gate. Also, v1, v2, and v3 denote the voltages on 

horizontal wires w1, w2 and w3 of volistor NOR gates. And T1, T2, and T3 are the memristances (resistance 

states) of target memristors denoting the outputs. 
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                                (( 1) (2 ) (2 ) ) ( 2 1)OPENT g gV n v n N V N n


                               (7.7) 

Constraint 5. If one of the NOR’s inputs is logic ‘1’, the closed state of target memristive 

switch must toggle to open. In other words, Equation (7.5) should be satisfied where

( 1)

2 1 ( ) ( ) 1(2 1) 1
T

m
g g

n v V v
w

N N n n N N

  
 

    
. Note that wm is derived under the assumption 

that the high input is resistance while all other inputs are voltages. Among all combinations 

of inputs (for which only one input is logic ‘1’), this combination of inputs minimizes wm. 

Fig. 7.13 shows the VT-n relations for the applied inputs. These relations are denoted by 

‘lower_1’ and ‘upper_1’ and show the lower and upper bounds of VT.  

Constraint 6. If all of the NOR’s inputs are logic ‘1’, the closed state of target memristive 

switch must toggle to open. In other words, Equation (7.5) should be satisfied where

(2 2) 2(( ) ( ))( ) 11 2 1 (2 2)m
gg

VTv

N N n
v

N N n




   




. Note that wm is derived under the 

assumption that all inputs are resistances, except for a single input, which is voltage. 

Among all combinations of high voltage-resistance inputs, this combination maximizes vm. 

Fig. 7.13 shows the VT-n relations for the applied inputs. These relations are denoted by 

‘lower_all_1’ and ‘upper_all_1’ and show the boundaries of VT. The shaded area in 

Fig. 7.13 shows the range of VT for realizing an i-input-volistor NOR gate for any 

combination of inputs where i ≤ 2n - 2. The input-volistor NOR gate is realized in a smaller 

computational array than the array used for volistor NOR gate. The small number of inputs 
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is an outcome of Constraint 4. Therefore, realizing both types of volistor NOR gate requires 

small sub-crossbar arrays. 

7.6.3 Design constraints of input-volistor AND gate 

Constraint 7 to Constraint 9 must be satisfied for the volistor AND (and input-volistor) 

gates, realized in two m × n sub-crossbar arrays.  

Constraint 7. If all of the AND’s inputs are logic ‘1’, the close state of target memristive 

switch must remain closed. Therefore, Constraint (7.8) should be satisfied where vn is the 

voltage on wire wn (see Fig. 7.8) and equals ( (2 1) ) ( (2 1) 1)TN m v V N m       . Fig. 

7.14 shows the VT-m relation for the applied inputs. This relation is denoted by 

‘upper_all_1’ and it shows the upper bound of VT. 

                                                            n T OPENv V v                                (7.8) 

Constraint 8. If one of the AND’s inputs is logic ‘0’ while all other inputs are logic ‘1’ 

the closed state of target memristive switch must toggle to open. In other words, Equation 

(7.9) should be satisfied where ((2 2) ) ( 2 1)n Tv m v V N m      . Fig. 7.14 illustrates 

 
Fig. 7.13.  VT–n relations of multiple input-volistor NOR gates realized in two m × n crossbar arrays. The 

shaded area shows the range of VT for implementing i-input-volistor NOR gates where i ≤ 2n - 2. 
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the VT-m relations for the applied inputs. These relations are denoted by ‘upper_1L’ and 

‘lower_1L’ and show the upper and lower bounds of VT, respectively.  

 2CLEAR OPEN n T CLEARV V v V V                                 (7.9) 

Constraint 9. If all of the AND’s inputs are logic ‘0’, Equation (7.9) should be satisfied 

where ( (2 1) 1)n Tv V N m    . Fig. 7.14 shows the VT-m relations for the applied inputs. 

These relations are denoted by ‘upper_all_0’ and ‘lower_all_0’ and show the boundaries 

of VT. Fig. 7.14 shows the range of VT for realizing an i-input volistor AND gate for any 

combination of inputs where 2 1i m  .  

In summary, all volistor gates can be realized in small sub-crossbar arrays. The size of a 

sub-crossbar array depends on characteristics of the rectifying memristors summarized in 

Table 6.2. 

7.7 IMPLEMENTATION EXAMPLE AND COMPARISONS 

Volistors can be cascaded with programmable diode gates in the computational array. 

We propose a programmable memristive PLA-like circuit (mPLA) for realizing two-level 

multi-output functions well-suited for OR-AND based design. The computational delay of 

 
Fig. 7.14.  VT-m relations of multiple volistor AND gates realized in two m × n crossbar arrays. The shaded 

area shows the range of VT for realizing i-input volistor AND gates where i ≤ 2m-1. 
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the mPLA is two clock cycles. In the first clock cycle, the target memristors are initialized 

to LRS, and in the second clock cycle, functions are implemented. The mPLA uses voltage 

as input and resistance as output and maintains the states of the source memristors during 

the operations. Therefore, calculating a function for a new combination of inputs would 

still require two clock cycles. The input levels of functions are implemented with 

programmable diode OR gates, and the output levels are realized with volistor AND gates. 

In Section 7.7.1, a quick review of memristive programmable diode gates is provided. In 

addition, we show how to improve the programmable diode gates for parallel computing 

in crossbar arrays. In Section 7.7.2, the programmable mPLA circuit for realizing an 

arbitrary POS function based on hybrid diode gates and volistors is introduced. And in 

Section 7.7.3, the implementations of POS functions with multiple memristive gates 

(proposed in the literature) are compared to our implementation approach. 

7.7.1 Memristive programmable diode gates 

The memristive programmable diode gates capitalize on rectifying memristors and use 

voltage as input and output. The diode gates are realized in a one-dimensional memristive 

array. The proper operation of the gates requires programming the memristors to LRS. Let 

us focus on the programmable diode OR gate. An n-input diode OR gate is implemented 

in a 1 × n memristive array (see Fig. 7.2) using the voltages specified in (7.1). Inputs are 

vin1-vinn and the output is vm, the voltage on wire wm. And, memristors maintain their states 

during the operations. Inputs are selected by peripheral circuits and applied to the 

memristive array. The implementation of diode gates can be improved similar to the 
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volistor gates by programming the memristors to HRS or LRS to disconnect or select an 

input voltage, respectively. 

7.7.2 Realization of a multi-output AND-OR function in the mPLA 

Fig. 7.15 shows the schematic of mPLA for realizing an arbitrary multi-output POS 

function. The mPLA consists of two sub-crossbar arrays, A and B, connected through pass 

transistors. Sums are realized with diode ORs (e.g., OR 1, OR 2, OR 3) and the products 

are implemented with volistor ANDs (e.g., AND n-1, AND n). Inputs are vin1-vinn, and 

outputs are the new states of the target memristors (e.g., Tn- 1 and Tn). To deselect an output, 

the corresponding AND gate is connected to 0V (e.g., AND n-2), and the relevant pass 

transistor is switched off. Memristors in crossbar array A maintain their resistance states. 
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Fig. 7.15.  Schematic of the mPLA for realizing a multi-output POS function. 
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As a result, calculating the function for another combination of inputs would only require 

programming the target memristors to LRS and realizing the function.  

A single-output OR-AND function can be realized in a single crossbar array. In this 

realization, the size of the crossbar array can be as large as 512 × 512, and the only circuit 

constraint to satisfy is to have the inputs and their complements stored in the input memory. 

In realizing a single-output OR-AND function, all memristors of volistor AND are 

initialized to LRS. To disconnect an input of AND gate, the corresponding horizontal 

wired-OR is connected to v+. In Section 7.7.3, we compare the realization of an arbitrary 

OR-AND function (or AND-NOR function, when negated inputs are used for realizing the 

functions) based on the hybrid approach, and other memristive approaches. 

7.7.3 Comparisons of the mPLA implementations 

An extensive comparison of different mPLA implementations is beyond the scope of this 

dissertation. However, to get some level of comparison, the implementations of proposed 

mPLA and other hypothetical mPLAs are evaluated. This evaluation takes into account the 

delay and the size of the memory array. The memory array and its CMOS peripheral circuit 

dominate the circuit area. Thereby, the size of memory array is used for estimating the size 

of the memristive circuit. An n-input single-output AND-NOR function is implemented in 

multiple mPLA circuits for comparison. 

1) mPLA circuit based on stateful IMPY-CNIMP gates 

An n-input AND-NOR function can be implemented using IMPLY and CNIMP (INH) 

operations [25] in an ( 1) ( 1)m n    crossbar array. The size of memory array, which 

stores the instructions and control signals, equals nW C . The delay is estimated to be
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2 5nC n  based on the published data. In addition, the size of memory bus width equals 

4 ( 2)W m n     as each wire is driven by four control signals [47]. Therefore, the size 

of memory array is 4 ( 2) (2 5)m n n     .  

2) mPLA circuit based on stateful NOR-NOT gates 

An n-input AND-NOR function can be realized based on stateful NOR and NOT gates 

[28] in an ( 1) ( 1)m n   crossbar array. We estimate the delay to be n + 4 clock cycles. 

Mapping the function into the crossbar array is performed similar to the approach explained 

in [96], i.e., one clock cycle for initializing the memristors to HRS, n + 1 cycles for 

programming n + 1 columns of the crossbar array, and two clock cycles for realizing a 

function—one cycle for realizing m stateful AND gates (NORs with negated inputs) and 

the other cycle for realizing a single NOR gate. We estimate the width of memory bus to 

be 3 ( 1) 5 ( 1)W m n      , as each horizontal wire is controlled by three signals to be 

connected to 0 , HSV V  and
0V , and each vertical wire is controlled by five signals to be 

connected to 
0,0 , ,CLEAR VSV V V V  and SETV where ,HS VSV V  and 

0V  are used to deselect a row, 

to deselect a column, and to realize a gate, respectively. Therefore, the size of the memory 

array ( )nW C  is (5 3 8) ( 4).n m n      

3) mPLA circuit based on CRS-CMOS gates 

An n-input AND-NOR function can be implemented using CRS-CMOS gates [97] in two 

crossbar arrays of m × n (for realizing the AND gates) and 1 × m (for realizing a NOR 

gate). The delay is estimated to be n + 3 that is two cycles for initializing the CRS cells of 

each crossbar to HRS/LRS state, n cycles for mapping the function into AND crossbar, and 

one cycle for implementing the function. We estimate the width of memory bus to be 
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2 3 ( 1) ( 1)W m n m        as each horizontal wire of the AND crossbar is controlled 

by two signals to be connected to 0V and VHS (a non-destructive positive voltage) and each 

vertical wire is controlled by three signals to be connected to , , ,th n RV V  and ,th pV  (i.e., a 

destructive negative voltage, a non-destructive positive voltage which is equal to 
HSV , and 

a destructive positive voltage, respectively). In addition, each wire of the NOR crossbar is 

controlled by one signal to be connected to either 0V or ,th nV  (during the initialization step). 

Note that VHS is applied to deselect a row in the AND crossbar and VR is applied to 

implement AND gates. Therefore, the size of the memory array ( )nW C  is 

(3 3 4) ( 3).m n n     

4) mPLA circuit based on Boolean gates  

An n-input NAND-AND function (or equivalently AND-NOR function) can be 

implemented with the Boolean AND, NAND, and COPY gates in an ( 1) (2 1)m n    

crossbar array [75]. The delay is five clock cycles. That is one cycle for the initialization 

of the memristors to HRS, one cycle for copying the inputs and their complements to the 

crossbar, one cycle for mapping the function into the crossbar, and two cycles for realizing 

the function [75]. We estimate the width of the memory bus to be 4 ( 2 2)W m n     as 

each horizontal wire is controlled by four signals to be connected to 0 ,V  HSV , SETV , and 

reference resistor gR , and each vertical wire is controlled by four signals to be connected 

to CLEARV , whV , SETV , and gR where Vwh = VHS. Vwh is used for implementing the gates, 

whereas VHS is used for deselecting a row. Therefore, the size of memory array ( )nW C  

is 20 ( 2 2)m n   .              
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5) mPLA circuit based on hybrid gates  

In the hybrid circuit, an n-input AND-NOR function can be implemented with hybrid 

diode OR and volistor AND gates in an (m + 1) × (2n + 1) crossbar array. The outputs of 

diode ORs represent logical NAND of input complements, (i.e., OR (¬a, ¬b) = NAND (a, 

b)). Therefore, the mPLA can realize NAND-AND functions (or equivalently AND-NOR 

functions). The delay of the mPLA is two clock cycles. In addition, the width of memory 

bus is 5 ( 1) 6 (2 1)W m n      . Therefore, the size of the memory array is

24 10 22n m  . 

6) Other circuits  

There is another type of mPLA circuits, which use voltage as input and output, e.g., [98]. 

This type of mPLA was not used for in-memory computing, thereby, it is not compared to 

other mPLAs mentioned above.  

Fig. 7.16 compares the percentage increase in the memory array for each approach. The 

memory percentage increase is defined as 
( ) ( )

( ) 100
( )

A x A hyb
F x

A hyb


   where ( )A x  is the 

size of memory array and x{1, 2, 3, 4} corresponds to the stateful IMPLY-CNIMP based 

mPLA, stateful NOR-NOT based mPLA, CRS-CMOS based mPLA, and Boolean based 

mPLA, respectively. In addition, ( )A hyb  is the size of memory array in our hybrid based 

mPLA. The minimum increase in the memory array occurs in the Boolean based mPLA 

for n = 8 and it is 95%. The Boolean based mPLA has the second smallest memory array 

size after the hybrid based mPLA. In all mPLA circuits, m is assumed 2n-1, i.e., the 

maximum number of minterms of function.  
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There are major differences between the implementation approaches shown in Fig. 7.16. 

For example, each mPLA has a different delay that affect the size of a memory array 

(Table 7.3). In the Boolean based mPLA, the design is ASIC, i.e., some of the memristors 

are in permanent HRS for realizing a specific function [75]. However, while authors 

discussed that the number of voltage levels for logic operations is only three, they did not 

discuss the size of a computational array. The hybrid circuit requires five voltage levels for 

initialization and function implementation ( , ,0 , ,CLEAR SETV v V v V 
), which results in a 

wider memory bus width. Despite its wider memory bus width, the size of the memory 

array in the hybrid mPLA is smaller than in other mPLAs (Fig. 7.16). The multiple voltage 

levels used in the hybrid mPLA allow to cascade multiple types of memristive gates such 

as stateful INH (NOR/NOT) gates [25], [98] and programmable memristive diode gates 

 
Fig. 7.16.  Area estimation of memory array. The graphs show the maximum size of memory arrays in each 

mPLA circuit. 
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Table 7.3 

Delay of multiple mPLA circuits 

Circuit Delay 

IMPLY-CNIMP based 

mPLA 

2n+5 

NOR-NOT based mPLA n+4 

CRS-CMOS based mPLA n+4 

Boolean based mPLA 5 

Hybrid based mPLA 2 
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with volistors. In fact, it is necessary to cascade volistors and other memristive gates to 

implement multilevel logic functions. Note that the size of the computational array in each 

mPLA is a function of n (the number of literals).  

7.8 CONCLUSION 

Logic operations with rectifying memristors reduce the negative effect of sneak current 

paths in crossbar arrays and enable volistor gates. Volistors make in-memory computing 

possible. We showed how to realize multiple volistor gates in parallel in crossbar arrays. 

In addition, the constraints for realizing volistor gates were explained. These constraints 

determine the size of the computational array and the voltage levels required for 

implementing the gates. An implementation example of programmable mPLA based on 

hybrid volistor and memristive diode gates was explained. The size and delay of the hybrid 

mPLA were compared to those of different mPLAs. In the hybrid mPLA, the delay is only 

two clock cycles and the size of the memory array is smaller than those of other mPLA 

circuits. The mPLA example shows the benefit of our new memristive circuit approaches.  
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Chapter 8 

Memristive Circuit Architectures 

Memristors are passive elements, and hence, memristive circuits require CMOS 

supplementary circuits for gain and signal restorations. Different circuit architectures for 

interfacing memristors and CMOS driving circuitries were proposed, e.g. CMOL [20] and 

[39] and demultiplexer [83-85] architectures. This chapter shows examples of two and 

three-dimensional CMOS-memristive circuit architectures describing the interface circuits 

between the CMOS and memristive parts. In three dimensional circuit example, a stack of 

two-dimensional crossbar arrays is utilized for parallel computing where the crossbars 

communicate via peripheral CMOS circuits.  

8.1 CIRCUIT ARCHITECTURE FOR MEMRISTORS 

 Fig. 8.1 shows a block diagram of a 2D (two-dimensional) crossbar circuit for logic 

computations based on volistors and stateful gates. The computations take place in 

computational array connected to CMOS drivers shown as small rectangles. The memory 

arrays in Fig. 8.1 store the instructions and control signals. The same CMOS drivers shown 

in Fig. 2.7 can be used in Fig. 8.1. Each wire of the computational array is controlled by 

three or four signals stored in a memory array. The crossbar arrays are fabricated on top of 

the CMOS layer and can be scaled into 3D (three-dimensional) array as illustrated in 

Fig. 8.2. The 3D arrays have more complicated drivers than 2D arrays. The drivers in 3D 

arrays shown in Fig. 8.2 must be capable of moving data vertically between the 

computational arrays. The number of control signals of each driver depends on the number 

of computational arrays s in the stack. For example, the number of control signals for 
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driving each wire of the 3D array could be s + 4. Fig. 8.3 shows the schematic of the CMOS 

driver when s = 5. The driver is capable of setting each wire to 0V, VCOND, VPROG, or 

connecting the wire to the GND through load resistor Rg or terminating the wire to high 

impedance. In addition, it is capable of connecting two parallel wires of any two 

computational arrays. In Fig. 8.3, terminal 13 is the output terminal of the driver. Each of 

terminal 5 - terminal 8 is connected to a wire of a different computational array. Other 

terminals, 1 - 4 and 9 - 12, are driven by control signals stored in a memory array. Fig. 8.4 

illustrates a stack of four computational arrays and their drivers. The arrays communicate 

through the CMOS drivers. Fig. 8.5 shows which and how wires of multiple computational 

arrays are connected. 

 

Memory Array
Computational 

Array

Memory Array

Memory Array

Memory Array

 

Fig 8.1. Bock diagram of a memristive circuit for logic computations (upper view). Logical operations are 

implemented in the computational array. The memory arrays store the instructions. Memory arrays and 

computational array communicate through CMOS drivers shown as small rectangles.  
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Fig. 8.2. Block diagram of a 3D memristive array (top side view). 
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     Fig. 8.3. (a) Schematic of a single CMOS driver in Fig. 8.2. (b) Driver’s circuitry. 
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Fig. 8.4. Schematic of four stacked computational arrays and their CMOS drivers (bird view). Outputs of the 

stacked computational arrays are beneath the memory arras. The memory arrays are not shown in this figure. 

 

Fig. 8.5a shows terminals 5-8 and 13 of four stacked CMOS drivers (bird view) and 

how the black output wires of the drivers communicate through the terminals. The black 

parallel wires are belong to four stacked computational arrays. Fig. 8.5b shows terminals 

5-8 and 13 of four stacked CMOS drivers (side view) when only the connections of the 

most bottom driver are illustrated. Fig. 8.5c shows all the connections of Fig. 8.5b. The 

three-dimensional circuit shown in Fig. 8.4 enables parallel computing where all 

computational arrays can process simultaneously. Note that the driver shown in Fig. 8.2 

can be modified to allow performing hybrid volistor and stateful logic gates as shown in 

Fig. 8.6. The complexity of the driver is increased by one additional control signal (14), 
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which allows for selecting between volistor and stateful logic operations. The total number 

of transistors used in this driver is s + 19. 
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13   5    6    7    8

Wire

Four stacked 

CMOS drivers

 

                   (a)                                                                                     (b) 

 

                                                                    (c) 

Fig. 8.5. (a) Schematic of driver’s interconnections with computational arrays shown in Fig. 8.2 (bird view) 

(b) Four stacked CMOS drivers (Bird view). (c) Schematic of four stacked CMOS drivers which shows 

how four wires of four stacked computational arrays communicate through the drivers (side view). 
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 Fig. 8.6. CMOS driver for logic computing with hybrid volistor and stateful logic operations.  
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Chapter 9  

Summary, Conclusion, Achievements and Future Work 

9.1 SUMMARY AND CONCLUSION 

The research reported in this dissertation focused on one particular problem: How to 

improve logic computations based on memristor technology in non von-Neumann 

architectures. To proceed with this goal, multiple design choices for logic computations 

were studied. We found that the use of rectifying memristors (over non-rectifying 

memristors) is desirable for logic computations due to the power and area saving benefits, 

as described in Section 2.5. Using the rectifying memristors with a particular bias scheme 

produce converse non-implication gates which forms a functionally complete set of logic 

gates with TRUE operation. The ISD notation for logic analysis and synthesis with IMPLY 

gates is extended to EISD to enable logic synthesis with IMPLY and INH gates. 

Capitalizing on the characteristics of rectifying memristors, a particular realization of logic 

gates called volistors were introduced. Volistors allow voltages to be used directly as 

inputs. This eliminates the need for a reference resistor to read out the inputs in the first 

logic level and thus eliminates the most power-hungry circuit element in most of the 

stateful gates. Using multiple crossbars in a network provides parallelization, leading to 

pipelined architectures. Several different first-level volistor operations can be computed in 

separate crossbars at the same time, speeding up what is typically the most complex level 

of implementing Boolean functions. Subsequent logic levels can be accomplished in 

connected crossbars in an approach that uses mixed input gates and stateful NOR. This 
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hybrid approach with volistors and stateful INH NOR can be used to compute logic faster, 

with less power than a solely stateful approach.  

A programmable diode logic gate is another logic computing style proposed in this 

dissertation. The programmable diode gates also rely on rectifying memristors to allow 

voltages to be used directly as inputs. A memristive PLA-like circuit called mPLD-XOR 

was proposed using the programmable diode gates. The mPLD-XOR is designed to 

implement multi-output functions well suited for XOR of sums or products structure such 

as arithmetic and communication functions. The input levels of such functions are realized 

with programmable diode gates and the output levels with CMOS modulo-two counters. 

The number of computational steps for calculating a multi-output function equals the 

maximum number of inputs to any output XOR gate when the number of modulo-two 

counters is large enough to calculate the outputs simultaneously. A 3-bit adder and 3-bit 

multiplier were implemented using the mPLD-XOR, and the size and performance of each 

circuit were compared with the implementation of stateful gates. The size of ReRAM and 

the number of clock cycles for realizing the adder in mPLD-XOR approach to the stateful 

approach are 280:957 and 8:29 respectively. For the 3-bit multiplier, these ratios are 

564:4290 and 12:65. Adding feedback circuits to mPLD-XOR, as shown in Fig. 5.11, 

allows the implementation of a multilevel XOR logic network with any combination of 

sums, products, XORs, and literals at the input of any XOR gate. The mPLD-XOR with 

feedback circuit has the potential to decrease the number of computational steps and the 

size of ReRAM. In realizing the 3-bit multiplier, the size of ReRAM and the number of 

computational steps in mPLD-XOR with a feedback circuit to the mPLD-XOR without a 



174 

feedback circuit are 564:1400 and 12:40, respectively. A 16-bit adder is also implemented 

in the mPLD-XOR and Xilinx Artix-7 FPGA XC7A100T. The power consumption of the 

mPLD-XOR is smaller than the Artix-7 FPGA but performs slower. In addition, the size 

and delay comparisons of an N-bit adder realized with multiple approaches show that the 

mPLD-XOR adder is more area-delay efficient.  

A new approach for realizing a two-input XNOR logic gate was proposed. The 

realization of a multi-input XNOR gate using the 2-input volistor XNOR gate was also 

described. Volistor XNOR gates enable a resistive computation of arithmetic and 

communication circuits that use multi-input XNOR gates. The computational delay of the 

N-input XNOR gate is 2N-1. Comparisons were made for power, area, and delay evaluation 

demonstrating the benefits of the volistor XNOR gate. 

New implementation approach for multiple volistor gates in crossbar arrays was 

proposed. In addition, the constraints for realizing volistor gates were described. These 

constraints determine the size of the computational array and the voltage levels required 

for implementing the gates. An implementation example of programmable mPLA based 

on hybrid volistor and memristive diode gates was explained. In the hybrid mPLA, the 

delay is only two clock cycles and the size of the memory array is smaller than those of 

other mPLA circuits.  

Example of a three-dimensional memristive circuit was shown. The interface between 

CMOS and memristive circuits were designed. The circuit allows for parallel computing.    

In conclusion, the problem of communication and memory access in von Neumann 

architectures potentially can be solved using memristive technology. Memristors can be 
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used simultaneously as storage and processing elements enabling in-memory computing 

architectures. In this dissertation, multiple approaches for logic computations were 

proposed to increase computational efficiency. Examples were presented demonstrating 

the benefits of the proposed approaches.  

In future work, the three-dimensional circuit structure proposed in Chapter 8 will be 

investigated for logic computations. The computation efficiency and energy dissipation 

will be evaluated, and the possibility of replicating the circuit and connecting multiple such 

circuits will be studied.   

9.2 ACHIEVEMENTS AND PUBLICATIONS 

This dissertation shows novel logic styles (techniques for logic computations) based on 

memristors. These techniques can be effectively used in FPGA-like circuits to decrease the 

computational delays (compared with fully stateful logic approaches). These new 

techniques are capable of decreasing the power dissipation by eliminating the frequently 

need for the programming step in stateful logic approaches. The programming step is 

usually the most power-hungry step in stateful logic approaches. The proposed techniques 

in this dissertation can be used together to implement two-level logic functions (SOP and 

POS) in just one clock cycle. The new approaches enable in-memory computing in non 

von-Neumann architectures. A complete example of hybrid CMOS-memristive circuit 

including control and datapath are shown. The circuit (mPLD-XOR) is capable of realizing 

generalized ESOP functions. The mPLD-XOR is designed with a very simple control and 

datapath compared to other proposed hybrid CMOS-memristive circuit structures [78]. The 

main contributions in this dissertation are published in journal papers as mentioned below. 
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APPENDIX Power Properties  

 

Property 1. When S1 > 0, the power consumption in a target memristor during VL operation can be 

approximated as shown in (3.3). 

𝑃𝑇
𝑉𝐿 ≈ 4 × 𝑃𝑆0

𝑉𝐿                                                                    (3.3) 

Proof: The power consumption in a target memristor during VL operation is 𝑃𝑇
𝑉𝐿 =

(𝑉𝑊−𝑣
−)2

𝑅𝑂𝑃𝐸𝑁
=
(𝑉𝑊+𝑣

+)2

𝑅𝑂𝑃𝐸𝑁
, 

and the power consumption in a source memristor set to logic ‘0’ during VL operation is  𝑃𝑆0
𝑉𝐿 =

𝑉𝑊
2

𝑅𝑂𝑃𝐸𝑁
 .  

Substituting 𝑃𝑇
𝑉𝐿  and 𝑃𝑆0

𝑉𝐿  in (3.3) results in 

𝑃𝑇
𝑉𝐿

𝑃𝑆0
𝑉𝐿 =

(𝑉𝑊+𝑣
+)
2

𝑉𝑊
2 . 

Let 𝑣+ = 𝑉𝑊 + 𝜀, then 

  
𝑃𝑇
𝑉𝐿

𝑃𝑆0
𝑉𝐿 = [

2𝑉𝑊 + 𝜀

𝑉𝑊
]
2

= [2 +
𝜀

𝑉𝑊
]
2

 

The minimum and maximum values of  
𝑃𝑇
𝑉𝐿

𝑃𝑆0
𝑉𝐿 are calculated for (S1, S0, T) = (6, 1, 1) and (1, 1, 6), 

respectively. The crossbar array is simulated for these combinations obtaining 4.002 ≤
𝑃𝑇
𝑉𝐿

𝑃𝑆0
𝑉𝐿 ≤ 4.052. 

Therefore, for any combination of S1, S0, and T where S1 > 0, 𝑃𝑇
𝑉𝐿 ≈ 4 × 𝑃𝑆0

𝑉𝐿 .  

 

Property 2. When S1 > 0, the power consumption in load resistor RG can be approximated as shown in 

(3.4). 

𝑃𝑅𝐺 ≈ 8 × 𝑃𝑇
𝑆𝐿                                                                    (3.4) 

Proof: The power consumption in load resistor RG is 𝑃𝑅𝐺 =
𝑉̈𝑊

2

𝑅𝐺
, and the power consumption in a target 

memristor during SL operation is 𝑃𝑇
𝑆𝐿 =

(𝑉̈𝑊−𝑣
−)2

𝑅𝑂𝑃𝐸𝑁
=
(𝑉̈𝑊+𝑣

+)2

𝑅𝑂𝑃𝐸𝑁
.  

Substituting 𝑃𝑅𝐺  and 𝑃𝑇
𝑆𝐿  in (3.4) results in, 

𝑃𝑅𝐺

𝑃𝑇
𝑆𝐿 =

𝑉̈𝑊
2

𝑅𝐺
×

𝑅𝑂𝑃𝐸𝑁

(𝑉̈𝑊+𝑣
+)2
=
𝑅𝑂𝑃𝐸𝑁

𝑅𝐺
×

1

[
𝑉̈𝑊+𝑣+

𝑉̈𝑊
]
2. 

Let 𝑣+ = 𝑉̈𝑊 + 𝜀.̈ As a result, 

𝑃𝑅𝐺

𝑃𝑇
𝑆𝐿 =

𝑅𝑂𝑃𝐸𝑁

𝑅𝐺
×

1

[
2𝑉̈𝑊+𝜀̈

𝑉̈𝑊
]
2 =

𝑅𝑂𝑃𝐸𝑁

𝑅𝐺
×

1

[2+
𝜀̈

𝑉̈𝑊
]
2. 

The minimum and maximum values of  
𝑃𝑅𝐺

𝑃𝑇
𝑆𝐿  are calculated for (S1, S0, T) = (7, 0, 1) and (1, 0, 7), 

respectively. The crossbar array is simulated for these combinations obtaining 7.542 ≤
𝑃𝑅𝐺

𝑃𝑇
𝑆𝐿 ≤ 7.866. 

Therefore, for any combination of S1, S0, and T where S1 > 0, 𝑃𝑅𝐺 ≈ 8 × 𝑃𝑇
𝑆𝐿. 

𝑃𝑇
𝑉𝐿  and 𝑃𝑇

𝑆𝐿 in (3.3) and (3.4) can be substituted by PT as the power consumption in a target memristor 

during SL and VL operations is approximately equal to 2 nW.  
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Property 3. When S1 > 0, the power consumption in source memristors during SL operation is 

significantly smaller than the total power consumption in target memristors and load resistor RG as shown in 

(3.5).  

𝑃𝑆
𝑆𝐿

𝑃𝑆𝐿−𝑃𝑆
𝑆𝐿 ≪ 1                                                (3.5) 

Proof: The simulation results show that the power consumption in source memristors during SL operation 

( 𝑃𝑆
𝑆𝐿) is negligible when compared to the power consumption in target memristors and load resistor RG. The 

power consumption in source memristors set to logic ‘1’ is 1000 times larger than the power consumption in 

source memristors set to logic ‘0’ since 

𝑃𝑆1
𝑆𝐿

𝑃𝑆0
𝑆𝐿 =

(𝑣+ − 𝑉̈𝑊)
2

𝑅𝐶𝐿𝑂𝑆𝐸𝐷
×

𝑅𝑂𝑃𝐸𝑁

(𝑣+ − 𝑉̈𝑊)
2
= 103 

Substituting 𝑃𝑆1
𝑆𝐿 = 103 × 𝑃𝑆0

𝑆𝐿  to 
𝑃𝑆
𝑆𝐿

𝑃𝑆𝐿−𝑃𝑆
𝑆𝐿 results in 

 
(𝑆1 × 10

3 + 𝑆0) × 𝑃𝑆0
𝑆𝐿

𝑃𝑆𝐿 − 𝑃𝑆
𝑆𝐿  

Substituting 𝑃𝑆𝐿 − 𝑃𝑆
𝑆𝐿  with T × PT + PRG or its equivalent (T + 8) × PT in 

(𝑆1×10
3+𝑆0)×𝑃𝑆0

𝑆𝐿

𝑃𝑆𝐿−𝑃𝑆
𝑆𝐿   results in 

(𝑆1×10
3+𝑆0)

(𝑇+8)×
𝑃𝑇

𝑃𝑆0
𝑆𝐿

. 

 It is required to compute the minimum value of 
𝑃𝑇

𝑃𝑆0
𝑆𝐿 to verify 

(𝑆1×10
3+𝑆0)

(𝑇+8)×
𝑃𝑇

𝑃𝑆0
𝑆𝐿

 ≪ 1. The 
𝑃𝑇

𝑃𝑆0
𝑆𝐿 ratio is equal to 

(𝑉̈𝑊−𝑣
−)2

𝑅𝑂𝑃𝐸𝑁
×

𝑅𝑂𝑃𝐸𝑁

(𝑣+−𝑉̈𝑊)
2  or  

𝑃𝑇

𝑃𝑆0
𝑆𝐿 = (

2𝑉̈𝑊

𝜀̈
+ 1)2  

substituting 𝑣+ = 𝑉̈𝑊 + 𝜀̈. The minimum value of 
𝑃𝑇

𝑃𝑆0
𝑆𝐿 is obtained for (S1, S0, T) = (1, 1, 6). For this 

combination, 
𝑉̈𝑊

𝜀̈
=21.949 and thus 

(𝑆1×10
3+𝑆0)

(𝑇+8)×
𝑃𝑇

𝑃𝑆0
𝑆𝐿

=0.036, which is considerably smaller than 1 and proves (3.5). 

The immediate consequence of (3.5) is used for deriving (3.7). 

 

Property 4. The power consumption in source memristors connected to logic ‘1’ during VL operation is 

considerably smaller than the total power consumption in source memristors connected to logic ‘0’ and target 

memristors as shown in (3.6). 

𝑆1×𝑃𝑆1
𝑉𝐿

𝑃𝑉𝐿−𝑆1×𝑃𝑆1
𝑉𝐿 ≪ 1                                                        (3.6)   

  

Proof: The simulation results show that the power consumption in source memristors set to logic ‘1’ 

during VL operation is negligible when compared to the power consumption in all memristors. In other 

words, 

𝑆1 × 𝑃𝑆1
𝑉𝐿

𝑃𝑉𝐿 − 𝑆1 × 𝑃𝑆1
𝑉𝐿 =

𝑆1 × 𝑃𝑆1
𝑉𝐿

𝑆0 × 𝑃𝑆0
𝑉𝐿 + 𝑇 × 𝑃𝑇

≪ 1 

With the substitution of (3.3), 
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𝑆1 × 𝑃𝑆1

𝑉𝐿

𝑆0 × 𝑃𝑆0
𝑉𝐿 + 𝑇 × 𝑃𝑇

≈
𝑆1 × 𝑃𝑆1

𝑉𝐿

𝑆0 ×
𝑃𝑇
4
+ 𝑇 × 𝑃𝑇

=
𝑆1

𝑃𝑇
𝑃𝑆1
𝑉𝐿 (

𝑆0
4
+ 𝑇)

≪ 1 

The minimum value of 
𝑃𝑇

𝑃𝑆1
𝑉𝐿 is required to verify 

𝑆1×𝑃𝑆1
𝑉𝐿

𝑃𝑉𝐿−𝑆1×𝑃𝑆1
𝑉𝐿 ≪ 1 and obtained for the (S1, S0, T) = (1, 0, 7) 

𝑃𝑇

𝑃𝑆1
𝑉𝐿 =

(2𝑉𝑊 + 𝜀)
2

𝑅𝑂𝑃𝐸𝑁
×

𝑅𝐶𝐿𝑂𝑆𝐸𝐷
(𝑣+ − 𝑉𝑊)

2
= 10−3 × (

2𝑉𝑊
𝜀
+ 1)2 

where 𝜀 = 𝑣+ − 𝑉𝑊.The minimum value of  
𝑉𝑊

𝜀
 is 70.929, based on our simulation results, and thus 

𝑃𝑇

𝑃𝑆1
𝑉𝐿 =20.409. Therefore, 

𝑆1×𝑃𝑆1
𝑉𝐿

𝑃𝑉𝐿−𝑆1×𝑃𝑆1
𝑉𝐿 ≈0.007, which is significantly smaller than 1 and proves (3.6). The 

immediate consequence of (3.6) is used for deriving 3.7). 

 

Property 5. When S1 = 0, the power consumption in source memristors connected to logic ‘0’ during VL 

operation is considerably smaller than the power consumption in target memristors as shown in (3.8).  

        
 𝑆0×𝑃𝑆0

𝑉𝐿

𝑇×𝑃𝑇
𝑉𝐿 ≪ 1                                                                        (3.8) 

Proof: Our simulation results show that the power consumption in memristors during VL operation 

approximately equals to the power consumption in target memristors when S1= 0. Moreover, the 
 𝑆0×𝑃𝑆0

𝑉𝐿

𝑇×𝑃𝑇
𝑉𝐿  ratio 

equals 

 𝑆0
𝑇
×

 𝑉𝑊
2

𝑅𝐶𝐿𝑂𝑆𝐸𝐷
×

𝑅𝑂𝑃𝐸𝑁
( 𝑉𝑊 + 𝑣

+)2
= 103(

 𝑆0
𝑇
) ×

1

(1 +
𝑣+

 𝑉𝑊
)2

 

The upper bound of 
𝑃𝑆0
𝑉𝐿

𝑃𝑇
𝑉𝐿 is obtained for (S0, T) = (7, 1) where VW = - 75.417 μV. As a result, 

𝑃𝑆0
𝑉𝐿

𝑃𝑇
𝑉𝐿 =1.106×10−4, which is considerably smaller than 1 and proves (3.8). Note that for a larger crossbar 

array, such as 1 × 64, Equation (3.8) still holds where the upper bound of 
𝑃𝑆0
𝑉𝐿

𝑃𝑇
𝑉𝐿, obtained for (S0, T) = (63, 1), 

equals 1.229 × 101 >> 5־.  
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