
Portland State University
PDXScholar

Dissertations and Theses Dissertations and Theses

6-6-2018

New Approaches for Memristive Logic Computations
Muayad Jaafar Aljafar
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized
administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Recommended Citation
Aljafar, Muayad Jaafar, "New Approaches for Memristive Logic Computations" (2018). Dissertations and Theses. Paper 4372.

10.15760/etd.6256

https://pdxscholar.library.pdx.edu/?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4372&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4372&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4372&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4372&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4372&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds/4372?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4372&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.15760/etd.6256
mailto:pdxscholar@pdx.edu

New Approaches for Memristive Logic Computations

by

Muayad Jaafar Aljafar

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Dissertation Committee:
Marek A. Perkowski, Chair

John M. Acken
Xiaoyu Song
Steven Bleiler

Portland State University
2018

© 2018 Muayad Jaafar Aljafar

i

Abstract

Over the past five decades, exponential advances in device integration in

microelectronics for memory and computation applications have been observed. These

advances are closely related to miniaturization in integrated circuit technologies. However,

this miniaturization is reaching the physical limit (i.e., the end of Moore’s Law). This

miniaturization is also causing a dramatic problem of heat dissipation in integrated circuits.

Additionally, approaching the physical limit of semiconductor devices in fabrication

process increases the delay of moving data between computing and memory units hence

decreasing the performance. The market requirements for faster computers with lower

power consumption can be addressed by new emerging technologies such as memristors.

Memristors are non-volatile and nanoscale devices and can be used for building memory

arrays with very high density (extending Moore’s law). Memristors can also be used to

perform stateful logic operations where the same devices are used for logic and memory,

enabling in-memory logic. In other words, memristor-based stateful logic enables a new

computing paradigm of combining calculation and memory units (versus von Neumann

architecture of separating calculation and memory units). This reduces the delays between

processor and memory by eliminating redundant reloading of reusable values. In addition,

memristors consume low power hence can decrease the large amounts of power dissipation

in silicon chips hitting their size limit.

The primary focus of this research is to develop the circuit implementations for logic

computations based on memristors. These implementations significantly improve the

performance and decrease the power of digital circuits. This dissertation demonstrates in-

ii

memory computing using novel memristive logic gates, which we call volistors (voltage-

resistor gates). Volistors capitalize on rectifying memristors, i.e., a type of memristors with

diode-like behavior, and use voltage at input and resistance at output. In addition,

programmable diode gates, i.e., another type of logic gates implemented with rectifying

memristors are proposed. In programmable diode gates, memristors are used only as

switches (unlike volistor gates which utilize both memory and switching characteristics of

the memristors). The programmable diode gates can be used with CMOS gates to increase

the logic density. As an example, a circuit implementation for calculating logic functions

in generalized ESOP (Exclusive-OR-Sum-of-Products) form and multilevel XOR network

are described. As opposed to the stateful logic gates, a combination of both proposed logic

styles decreases the power and improves the performance of digital circuits realizing two-

level logic functions Sum-of-Products or Product-of-Sums.

This dissertation also proposes a general 3-dimentional circuit architecture for in-

memory computing. This circuit consists of a number of stacked crossbar arrays which all

can simultaneously be used for logic computing. These arrays communicate through

CMOS peripheral circuits.

iii

Dedication

Seek knowledge from the cradle to the grave, Prophet Muhammad.

To Noor, with love

To Mustafa and Murtaza

To my parents

iv

Acknowledgements

I would like to thank my advisor, Dr. Marek Perkowski. He has been supportive since

the days I began to learn about the basics of this research. My dissertation committee

guided me through all these years. Thank you to John Acken, Xiaoyu Song and Steven

Bleiler. Specially, I thank Dr. John Acken for patient guidance, encouragement and advice.

I thank my family. Their support has been unconditional all these years; they have given

up many things for my success; they have cherished with me every great moment and

supported me whenever I needed it.

Last and certainly not least, I thank the higher committee for education development in

Iraq (HCED-Iraq) for their generous support.

v

Table of Contents

Abstract i

Dedication iii

Acknowledgements iv

List of Tables viii

List of Figures ix

List of Abbreviations xvi

Chapter 1 Background 1

1.1 Introduction 1

1.2 Memristor: The Missing Circuit Element 2

1.3 The Missing Memristor is Found 4

1.3.1 Linear ion drift model 4

1.3.2 Non-linear ion drift model 6

1.4 Applications 9

1.5 Research Goals and Methods 10

1.6 Research Structure 10

Chapter 2 Memristive Stateful Logic Gates 12

2.1 Introduction 12

2.2 Crossbar Architecture 14

2.3 Rectifying Memristors 16

2.4 Stateful Logic Gates Realized with Typical Memristors 19

2.5 Stateful Logic Gates with Rectifying Memristors 23

2.6 Two-Input Multi-Output INH Gate 27

2.7 EISD: Extended IMP Sequential Diagram 31

2.8 Multi-Dimensional Crossbar Array 35

2.9 Logic Computations in a Crossbar Array 42

2.10 Conclusion 45

Chapter 3 Memristive Volistor Logic Gates 46

3.1 Introduction 46

3.2 Volistor Logic 48

3.2.1 Crossbar Structure 48

3.2.2 Volistor NOT gate in a one-dimensional array 51

3.2.3 Volistor NOR gate in a one-dimensional array 53

3.2.4 Volistor AND gate in one-dimensional array 55

3.2.5 Volistor OR and NAND gates one-dimensional array 55

3.2.6 Mixed-input logic gates in one-dimensional array 56

3.3 Hybrid Approach to Synthesize Boolean Functions in Crossbar Arrays 57

3.3.1 Hybrid computation in a one-dimensional array 58

vi

3.3.2 Hybrid computation in a two-dimensional array 61

3.3.3 Hybrid computation in a crossbar network 64

3.4 Volistor Logic Power Consumption 71

3.4.1 Power analysis and switching delay in a 1 × 8 crossbar array for S1 > 0 74

3.4.2 Power analysis in a 1 × 8 crossbar array for S1 = 0 76

3.4.3 Power analysis and switching delay in a 1×64 Crossbar Arrays for S1 > 0 80

3.5 Summary and Conclusion 84

Chapter 4 Memristive Programmable Diode Logic Gates 86

4.1 Implementation Approach 86

Chapter 5 A Time-Efficient CMOS-Memristive Programmable Circuit Realizing Logic

Functions in Generalized AND-XOR Structures 91

5.1 Introduction 92

5.2 A Generalized ESOP Structure 95

5.3 The mPLD-XOR: Circuit Structure and Functionality 98

5.4 Programming the mPLD-XOR 102

5.5 Implementation Example in the mPLD-XOR 103

5.5.1 A 3-bit adder 104

5.5.2 A 3-bit multiplier 111

5.6 Evaluation and Comparison of Different Logic Styles 114

5.7 Conclusion 117

Chapter 6 Multi-Input Volistor XNOR Gates 120

6.1 Introduction 120

6.2 Review of Rectifying Memristors, Volistors, and Programmable Diode Gates 122

6.2.1 Rectifying memristors 122

6.2.2 Volistor logic 123

6.2.3 Memristive diode logic 123

6.3 Two-Input Volistor XNOR Gate 124

6.3.1 Setting operation 125

6.3.2 Write operation 125

6.3.3 Read operation 126

6.3.4 Circuit simulation 126

6.4 N-input Volistor XNOR Gate 130

6.5 Summary and Conclusion 132

Chapter 7 Volistor Logic Gates in Crossbar Arrays of Rectifying Memristors 134

7.1 Introduction 134

7.2 Circuit Structure for Volistor Logic Gates 137

7.3 Review of Volistor Gates in One-Dimensional Arrays 139

7.3.1 Volistor NOR gate 140

7.3.2 Input-volistor NOR gate 141

7.4 Volistor Gates in Two-Dimensional Arrays 143

vii

7.4.1 Improved volistor NOR gate 143

7.4.2 Deselect of volistor NOR gate 145

7.4.3 Volistor AND gate 147

7.4.4 Volistor COPY gate 149

7.5 Input-Volistor Gates in Two-Dimensional Arrays 150

7.5.1 Input-volistor INH gate 150

7.5.2 Input-volistor AND gate 151

7.6 Design Constraints of Volistor gates in Crossbar Arrays 151

7.6.1 Design constraints of improved volistor NOR gate 151

7.6.2 Design constraints of input-volistor NOR gate 154

7.6.3 Design constraints of input-volistor AND gate 156

7.7 Implementation Example and Comparisons 157

7.7.1 Memristive programmable diode gates 158

7.7.2 Realization of a multi-output AND-OR function in the mPLA 159

7.7.3 Comparisons of the mPLA implementations 160

7.8 Conclusion 165

Chapter 8 Memristive Circuit Architectures 166

8.1 Memristive Circuit Architecture for Logic Computations 166

Chapter 9 Summary, Conclusion, Achievements, and Future Work 172

9.1 Summary and conclusion 172

9.2 Achievements and publications 175

Terminal References 177

Appendix Power Properties 184

viii

List of Tables

Table 2.1. Memristor’s SPICE model parameters [47] 17

Table 2.2. Truth table of the IMPLY operation, q+:= p→q = ¬p + q 22

Table 2.3. Truth table of the INHIBIT operation q+: p↛q = (¬p) q 22

Table 2.4. Logic gates realized by all possible voltage polarities and keeper/no

keeper circuit combinations

22

Table 2.5. Logic gates realized by all possible polarity combinations in a crossbar

array of rectifying memristors

24

Table 2.6. Tradeoffs for logic implementations in a crossbar array of typical and

rectifying memristors

26

Table 3.1. Implementation of multi-output volistor NOT gate 53

Table 3.2. Implementation of multi-input single-output volistor NOR gate 54

Table 3.3. Multiple logic structures and their De-Morgan’s equivalences 64

Table 3.4. Power consumption in each crossbar element 73

Table 3.5. Power consumption, switching delay, and power ration in a 1 × 8

crossbar array

73

Table 3.6. Calculating
𝑃𝑆𝐿

𝑃𝑉𝐿
 in a 1 × 8 crossbar array for S1 = 0 and S0 varied from 1

to 7

77

Table 3.7. Calculating
𝑃𝑆𝐿

𝑃𝑉𝐿
 in a 1 × 8 crossbar array for S1 = 0 and varied S0 and T 78

Table 3.8. Calculating
𝑃𝑆𝐿

𝑃𝑉𝐿
 in a 1 × 8 crossbar array when S1 = 0 79

Table 3.9. Delay and power comparisons in a 1 × 64 crossbar array for varied S1

and S0 ≥ 33

83

Table 3.10. Delay and power comparisons in a 1 × 64 crossbar array for constant

S1 and varied T

83

Table 3.11. Delay and power comparisons in a 1 × 64 crossbar array for varied S1

and S0 > 33

84

Table 3.12. Delay and power comparisons in a 1 × 64 crossbar array for varied T 84

Table 5.1. Number of products and literals of benchmark functions [65] 96

Table 5.2. Comparison of circuit implementation using diode gates with that of

other logics styles

117

Table 6.1. XNOR configuration 127

Table 6.2. Memristor Parameters 127

Table 6.3. Average power consumption of a two-input XNOR gate during setting,

write, and read operations (values are in micro joules)

129

Table 6.4. Multiple realizations of 2-input primitive memristive XOR/XNOR

gates

129

Table 6.5. Multi-input XNOR circuit configuration 131

Table 6.6. Different logic circuits of n-input XOR/XNOR memristive gates 131

Table 7.1 Voltage levels required during the operations 138

Table 7.2 Volistor operations and their input locations 139

Table 7.3 Delay of multiple mPLA circuits

164

ix

List of Figures

Figure 1.1. Four fundamental passive circuit elements [Redrawn from 2]. 2

Figure 1.2. i-v characteristic of the memristor for a rectangular pulse input. (Left)

Input voltage applied across the memristor. (Right) hysteresis

behavior of the memristor.

 4

Figure 1.3. (a) Structure of the HP example of memristor. (b) Circuit equivalent.

[Redrawn from 2]

 5

Figure 1.4. The schematic of memristive device realized using tunnel barrier

where w and Rs represent the state variable and the electroformed

channel resistor [Redrawn from 12].

 8

Figure 2.1. Idealized hysteretic behavior of the memristor in the i-v plane. VCLOSE

and VOPEN are threshold voltages, and VSET and VCLEAR are

programming voltages.

 13

Figure 2.2. Schematic diagram of a 1 × 2 crossbar array. The instant application

of voltage pulses VCOND and VPROG to switches P and Q,

respectively, may toggle the logic state of Q depending on the initial

state of P and Q.

 16

Figure 2.3. Characteristics of a rectifying memristor. (Left) The i-v characteristic

of the memristor. (Right) The s-v characteristic of a memristor. The

diagrams are depicted using the LTspice simulator and the

memristor model in [47].

 18

Figure 2.4. Schematic of a keeper circuit [Redrawn from 48]. VW denotes the

voltage on W.

 25

Figure 2.5. Schematic of a 1 × 9 crossbar array of rectifying memristors for

computing function F.

 28

Figure 2.6. Schematic of memristive computing circuit including control and

datapath units.

 30

Figure 2.7. (Left) Schematic of a computational array connected to driver

circuitries. (Right) Schematic of each driver circuitry.

 31

Figure 2.8. Symbolic diagram of a 2-input IMP gate in ISD notation. 31

Figure 2.9. ISD of function NAND (p, q) where the output is stored as a new state

of memristor R.

 32

Figure 2.10. Symbolic diagram of a two-input INH gate in EISD notation. 32

Figure 2.11. EISD of NOR gate. Different EISD notations for r = NOR (p, q)

depending on source and target memristors locations.

 33

Figure 2.12. EISD of multi-output function {OR {𝑝, 𝑞} ↛ 𝑟,OR {𝑝, 𝑞} ↛ 𝑠}. 33

Figure 2.13. EISD of XOR (p, q) = [[(p↛q) + (q↛p)] ↛1] ↛1. 33

Figure 2.14. EISD notation of XOR (p, q, r). (a) The XOR gate is implemented

with 15 operations and five memristors. (b) The XOR gate is

implemented with 16 operations and four memristors. The EISD

shows the trade-off between the number of memristors and the

operations.

 34

x

Figure 2.15. A 3 × 3 crossbar array of non-rectifying memristors. 37

Figure 2.16. Half-select problem may cause sneak current paths. The green dash-

line represents the desired current path whereas the red dash-lined

represents an undesired sneak current path.

 37

Figure 2.17. (a) The sneak path disturbs the READ and WRITE operations. (b)

The circuit equivalent of the crossbar array with sneak path

phenomenon.

 37

Figure 2.18. Biasing schemes for READ and WRITE operation. These schemes

limit the sneak path currents.

 39

Figure 2.19. The effect of nonzero resistance of wires on the READ and WRITE

operations.

 40

Figure 2.20. Schematic of the complete memristor crossbar array. The driver

circuitries are illustrated in Fig. 2.7.

 41

Figure 2.21. Symbolic matrix. The entities show the values of the crossbar

memristors.

 43

Figure 2.22. Symbolic matrices illustrate the steps of computing XOR (p, q, r) with

INH gates. The number of operations (clock cycles) to implement

the XOR gate is 11.

 43

Figure 3.1. Crossbar arrays. (a) 1 × 2 crossbar array. (b) 2 × 1 crossbar array. The

inset shows the symbolic diagram of a memristor. The flow of

current into the device, as shown above, increases the resistance.

 49

Figure 3.2. Symbolic illustration of a driver circuit connected to each wire. 50

Figure 3.3. Symbolic notations for volistor logic gates. (a) Volistor NOT. (b) two-

input volistor NOR gate. (c) two-input volistor AND gate. (d)

mixed-input NOR gate. Inside the gates, symbols V and R denote

whether a signal is a voltage-based or resistance-based,

respectively.

 51

Figure 3.4. Volistor NOT behavior. (a) 1 × 8 crossbar array implementing a four-

output NOT and showing arbitrary nature of the locations of source

memristors S and target memristors T. The contribution of each

memristor is determined by the voltage driver, to which it is

connected. Wire W is connected to Z. (b) The operation of a one-

output NOT in a 1 × 2 array. VW stabilizes at ≈ 600 mV indicating

𝑣𝑠= ‘1’ manifesting on W. In addition, t1 toggles to ‘0’. (c) The

operation of a 63-output NOT in a 1 × 64 array. VW stabilizes and t

toggles as in b. (d) The operation of a one-output NOT in a 1 × 2

array. VW stabilizes at ≈ 0V indicating 𝑣𝑠= ‘0’ manifesting on W. As

a result, t remains ‘1’. (e) VW stabilizes as in d.

 52

Figure 3.5. A 3 × 1 crossbar array used to implement a two-input volistor NOR. 54

Figure 3.6. Mixed input NOR. The implementation of a three-input one-output

NOR gate. The resistive input is stored in S1 and the voltage inputs

are applied to S2 and S3. The output is stored in memristor T.

 56

Figure 3.7. Example of logic computation based on hybrid approach in a crossbar

array. (a) 1 × 4 crossbar array used to implement SOP function f.

 60

xi

(b) Circuit configuration to implement each step. The total number

of consecutive operations (pulses) to realize f is 5.

Figure 3.8. Crossbar array. (a) Crossbar array is divided into three sections; gates

in section 1 are implemented with volistors but in section 2 and 3

are realized with stateful NOR. (b) The stateful approach realizes

two logic levels. (c) However, the hybrid approach realizes three

logic levels with the same implementation cost of the stateful

approach. Li is the number of logic level.

 61

Figure 3.9. Symbolic matrices illustrate the steps of computing f ab cd A  

based on the hybrid approach. (a) Initialization step. (b) Computing

ab with volistor AND. (c) Computing cd with volistor AND. (d)

Computing ab cd with stateful NOR. (e) Computing f with

mixed-input NOR.

 64

Figure 3.10. Implementation of POS function f in a crossbar network. The function

is realized in a two-step process. (a) Realizing the first logic level

of function f in separate crossbars. This step produces four NOR

gates. (b) Realizing the second logic level of function f in a 16 × 1

crossbar array. This step produces the output of the POS function.

The interconnections and voltages applied to the wires show the

network configuration in each step.

 66

Figure 3.11. Implementation of Boolean functions in different logic structures

based on the hybrid approach. (a) Example of a SOP function. (b)

Example of a POS function. (c) Example of a three level sum of

products of sums. (d) Example of an XOR of two products. (e)

Example of a NAND-AND-XOR logic function. (f) Example of an

AND-XOR-OR logic function. ‘P’ stands for pulse (operation),

e.g., 1p indicates one pulse for implementing a logic level. VL and

SL stand for volistor and stateful logic operations. In all circuits,

only the first logic level is implemented with volistor gates.

 67

Figure 3.12. Realization of NAND-AND-XOR function f. The function is realized

in a six-step process in four crossbar arrays. (a) The first logic level

is realized with volistors; (b) the second logic level is realized with

mixed-input gates; (c)-(e) the other logic levels are realized with

stateful logic. Wires are set to 0V, v+, or v־ or connected to GND

through load resistor RG or to Z. In each step, the operation is

depicted by symbolic gates, and the results are shown as outputs of

the gates.

 71

Figure 4.1. Memristive programmable diode OR gate. (a) A schematic of a two-

input diode OR gate implemented with rectifying memristors. (b)

The behavior of a two-input diode NOR gate. (c) The relation

between the size of a diode NOR gate and its RC delay during the

precharge interval. (d) A schematic of a 100-input diode NOR gate.

(e) The behavior of 100-input diode NOR gate. (f) A schematic of

 89

xii

a two-input diode NOR with pull-down transistor. (g) The behavior

of two-input diode NOR with pull-down transistor.

Figure 4.2. Memristive programmable diode AND gate. (a) A schematic of a two-

input diode AND gate implemented with rectifying memristors. (b)

The behavior of a two-input diode NAND gate. (c) Relation

between the size and RC delay of a diode NAND gate during the

charge interval. (d) A schematic of a 100-input diode NAND gate.

(e) The behavior of 100-input diode NAND gate. (f) A schematic

diagram of a two-input diode NAND gate with pull-up resistor. (g)

The behavior of two-input diode NAND with pull-up resistor.

 90

Figure 5.1. (a) Schematic of {NAND, AND, NOR, OR}-XOR logic structure. (b)

Logical equivalence of {NAND, AND, NOR, OR}-XOR structure

as realized in mPLD-XOR. (c) mPLD-XOR realizes functions in

NOT-OR-XOR-NOT logic structure.

 97

Figure 5.2. Function G1 is implemented as its logical equivalence, G2. 97

Figure 5.3. Schematic of the mPLD-XOR. 99

Figure 5.4. Schematic of an mPLD-XOR for realizing an n-input single-output

function with l lines diode OR where l=2n to allow for inputs

complemented. Ini are the primary inputs where i ∈ {1,⋯ , 𝑛}, and

Cj are the control signals stored in ReRAM where j ∈ {1,⋯ , 𝑙}.

The output of the circuit is Q or Q̅ depending on the function being

implemented.

 99

Figure 5.5. Schematic of ReRAM of the mPLD-XOR shown in Figure 5.3 with

the reference resistor Rg.

100

Figure 5.6. Simulation results of the single-output mPLD-XOR shown in Figure

5.4 with the ReRAM configuration shown in Figure 5.5.

101

Figure 5.7. Programming the ReRAM. (a) Initializing the ReRAM to HRS (or

logic ‘0’). (b) Programming the right-most column of the ReRAM.

103

Figure 5.8. Generic fabric of the mPLD-XOR programmed for realizing a 3-bit

adder. The grey rectangles correspond to memristive arrays, the

white rectangles correspond to hybrid CMOS-memristive circuits,

and the rest of the blocks correspond to CMOS circuits.

104

Figure 5.9. Schematic diagram of sub-ReRAMs. Sub-ReRAM (a) stores the

control data for driving CMOS sub-circuits of the mPLD-XOR.

Sub-ReRAMs (b)-(d) store control data for realizing S0 and S1, S2,

and Co, respectively. The number of clock cycles for calculating an

output is shown in parenthesis, e.g., (#8). The size of sub-ReRAMs

is 35 × 8.

109

Figure 5.10. (a)-(j) The computational steps for realizing a 3-bit adder with stateful

gates. The total number of IMP and FALSE operations is 29. In

each step, the numbers of operations are shown.

111

Figure 5.11. Schematic of mPLD-XOR for realizing a 3-bit multiplier. In this

implementation, the number of computational steps is 12, and

instructions occupy 47 × 12 of the ReRAM size.

112

xiii

Figure 5.12. Schematic diagram of a 3-bit multiplier in a six-level-XOR-network

structure with any combination of sums, products, XORs, and

literals at the input of any XOR gate. This circuit is implemented

with the mPLD-XOR with feedback circuit. The internal signals are

stored in the memory cells to decrease the size of the ReRAM.

113

Figure 5.13. 6 × 16 crossbar array used to implement a 3-bit multiplier with

stateful logic gates. The matrix elements denote initial states of

crossbar memristors.

113

Figure 5.14. Area and delay comparisons of an N-bit Adder realized with multiple

approaches.

116

Figure 6.1. The i–v characteristic of a rectifying memristor and its symbolic

diagram. The flow of current into the device, as shown above,

decreases the resistance.

122

Figure 6.2. Implementation of memristive gates. (a) Implementation of two-input

volistor NOR gate. (b) Implementation of a 2-input programmable

diode AND gate.

124

Figure 6.3. Volistor XNOR gate. (a) Schematic of 2-input volistor XNOR gate.

(b) Behavior of volistor XNOR gate.

125

Figure 6.4. Read operation. Non-destructive voltage VREAD is applied to the

volistor XNOR gate to read the output. The inset shows the

symbolic diagram of the XNOR gate.

126

Figure 6.5. XNOR Circuit Simulation. The initial states are (s1, s2) = (0, 0). (a)

The circuit behavior when inputs are (Vin1, Vin2) = (1, 0). (b) The

circuit behavior when inputs are (Vin1, Vin2) = (1, 0). The outputs,

VAND and VOUT, are relevant only during the read operation.

128

Figure 6.6. Schematic diagram of a multi-input volistor XNOR gate. 130

Figure 7.1. General circuit structure for logic computations based on volistor and

stateful gates.

137

Figure 7.2. Schematic of an n-input volistor NOR gate realized in a 1 × (n+1)

memristive array.

141

Figure 7.3. Implementation of a three-input volistor NOR gate with a fan-out of

three. The source memristors are in LRS. Horizontal wires are

connected to high impedance Z.

141

Figure 7.4. (a) Schematic of two-input-volistor NOR gate. Inputs are va and rb,

and the output is rT. (b) Schematic of an n-input-volistor NOR gate

where all of the inputs are logic ‘0’.

142

Figure 7.5. Implementation example of multiple volistor NOR gates in a crossbar

array. The circuit implements Tm = NOR (a, b, c) on wm and Tm+1 =

NOR (¬a, ¬b, ¬c) on wm+1. Source memristors on wm + 2 are in HRS

to disconnect the input voltages.

144

Figure 7.6. Deselecting a volistor gate in a crossbar array. (a) Traditional approach

for deselecting a volistor gate by v+/2 scheme might disturb the

circuit operation. (b) Our approach for deselecting a volistor gate is

to use pass transistors and v+ scheme to ensure the correct operation

of the circuit.

145

xiv

Figure 7.7. Example of four sub-crossbar arrays (A, B, C, and D) connected by a

column and row of pass transistors.

146

Figure 7.8. Implementation of volistor AND gate with input resistances stored in

a computational array. (a) Realization of Tm=AND (a, b, c) where

inputs are located on row wm-1 (b) Realization of Tn = AND (a, b, c)

where inputs are located on column wn-1.

147

Figure 7.9. Volistor COPY Operation. (a) COPY value a on vm-1 to memristor Tm

on vm (b) COPY value a on wn-1 to memristor Tn on wn.

149

Figure 7.10. Schematic of input-volistor INH gate. Inputs are va and rb, and the

output is (¬a) b, which updates resistance state rb of memristor T.

150

Figure 7.11. VT-n relations of multiple volistor NOR gates realized in two m × n

crossbar arrays. The shaded area shows the range of VT for

implementing i-input volistor NOR gates where i ≤ n - 1.

153

Figure 7.12. (a) State transition delay in LRS memristor connected to VCLEAR. (b)

Simulation results of three 50-input volistor NOR gates executed in

a 3×101 crossbar array where 0 × vinh, 1 × vinh, and 50 × vinh show

the number of high inputs applied to each volistor NOR gate. Also,

v1, v2, and v3 denote the voltages on horizontal wires w1, w2 and w3

of volistor NOR gates. And T1, T2, and T3 are the memristances

(resistance states) of target memristors denoting the outputs.

154

Figure 7.13. VT–n relations of multiple input-volistor NOR gates realized in two

m × n crossbar arrays. The shaded area shows the range of VT for

implementing i-input-volistor NOR gates where i ≤ 2n-2.

156

Figure 7.14. VT-m relations of multiple volistor AND gates realized in two m × n

crossbar arrays. The shaded area shows the range of VT for realizing

i-input volistor AND gates where i ≤ 2m - 1.

157

Figure 7.15. Schematic of the mPLA for realizing a multi-output POS function. 159

Figure 7.16. Area estimation of memory array. The graphs show the maximum

size of memory arrays in each mPLA circuit.

164

Figure 8.1. Bock diagram of a memristive circuit for logic computations (upper

view). Logical operations are implemented in the computational

array. The memory arrays store the instructions. Memory arrays

and computational array communicate through CMOS drivers

shown as small rectangles.

167

Figure 8.2. Block diagram of a 3D memristive array (top side view). 168

Figure 8.3. (Left) Schematic of a single CMOS driver in Fig. 8.2. (Right) Driver’s

circuitry.

168

Figure 8.4. Schematic of four stacked computational arrays and their CMOS

drivers (bird view). Outputs of the stacked computational arrays are

beneath the memory arras. The memory arrays are not shown in this

figure.

169

xv

Figure 8.5. (a) Schematic of driver’s interconnections with computational arrays

shown in Fig. 8.2 (bird view) (b) Four stacked CMOS drivers (Bird

view). (c) Schematic of four stacked CMOS drivers which shows

how four wires of four stacked computational arrays communicate

through the drivers (side view).

170

Figure 8.6. CMOS driver for logic computing with hybrid volistor and stateful

logic operations.

171

xvi

List of Abbreviations

Symbol Definition

ASIC Application-Specific Integrated Circuit

3D Array 3-Dimenstional crossbar Array

CMOL CMOS-Molecular scale device

ESOP Exclusive-or-Sum-of-Products

GND Ground node

LRS Low resistance state of a memristor

HRS High resistance state of a memristor

Memristor Memory-resistor

POS Product-of-Sums

PPRM Positive Polarity Reed-Miller

VCOND or

VREAD

Applied to source memristors during the READ operation in stateful

logic

VCLOSE Positive threshold voltage for programming a memristor to LRS

VOPEN Negative threshold voltage for programming a memristor to HRS

VSET Positive programming voltage for abrupt resistance switching (form

HRS to LRS)

VCLEAR Negative programming voltage for abrupt resistance switching (form

LRS to HRS)

VPROG Applied to target memristors while executing stateful gates

VW Voltage on wire W

VS Input voltage applied to a source memristor while executing volistors

VT Applied to a target memristor while executing volistors

VL Volistor logic

SL Stateful logic

PS0 Average power consumption in a source memristor connected to logic

‘0’ (in VL) or set to HRS (in SL)

PS1 Average power consumption in a source memristor connected to logic

‘1’ (in VL) or set to LRS (in SL)

PS Average power consumption in a source memristors during SL or VL

PT Average power consumption in a target memristor

RG Load resistor

PRG Average power consumption in load resistor RG

𝑃𝑆0
𝑊𝐿 PS0 (average power consumption in source memristors set to ‘0’) during

VL

𝑃𝑆1
𝑊𝐿 PS1 (average power consumption in source memristors set to ‘1’) during

VL

𝑃𝑆
𝑊𝐿 PS (average power consumption in source memristors) during VL

𝑃𝑆0
𝑆𝐿 PS0 (average power consumption in source memristors in HRS) during

SL

xvii

𝑃𝑆1
𝑆𝐿 PS1 (average power consumption in source memristors in LRS) during

SL

𝑃𝑆
𝑆𝐿 PS (average power consumption in source memristors) during SL

SOP Sum-of-Products

S0 Number of source memristors in logic ‘0’

S1 Number of source memristors in logic ‘1’

TANT Three-level AND NOT Network with True inputs

Td Switching delay in a memristor

Volistor Voltage-resistor

Z High impedance

1

Chapter 1

Background

1.1 INTRODUCTION

The exponential advances in microelectronics over the past five decades are unlikely to

continue for the next decade due to physical limitations. The density of transistors in each

square centimeter has already exceeded 100 Million. The heat dissipation and memory

access delay are the main problems in these ultra-dense microcomputers. The computing

research community have been challenged to find variables other than charge or voltage,

devices, and architectures that enable the integration to go far beyond the limits of

conventional microelectronics technology [1]. In 2008, researchers in Hewlett Packard

Labs [2] connected the theory of memristor [3] to the thin film devices (TiO2). Memristors

and memristive devices [4] are two terminal nanoscale devices whose characteristics are

explained by the relation between magnetic-flux (𝜑) and charge (q). Memristors and

memristive devices are non-volatile devices that can be used for in-memory computing.

Therefore, memristors can perform advanced computing paradigms of combining

calculation and memory units. Unlike traditional computing paradigms, which separate

calculation from memory, in new computing paradigms there is no problem of memory

access delay and power crisis as one that exists in digital integrated circuits. However,

using this new paradigm of logic computation requires executing long sequences of logic

operations, which in turn increases the power consumption and complicates the control of

the circuit. In this dissertation, this problem is addressed. Multiple solutions are proposed

to decrease the number of in-memory logical operations. The proposed techniques also

2

decrease the power dissipation when compared to other memristive in-memory computing

approaches.

In addition to digital computing, memristors enable analog computing, e.g., in

neuromorphic applications. However, this dissertation only focuses on digital memristive

computing, i.e., memristors are used as binary switches with memory ability.

In this chapter, the theory of memristors, the practical memristors, models and

applications of memristors are briefly described. The goals of this research are also defined.

1.2 MEMRISTOR: THE MISSING CIRCUIT ELEMENT

The circuit elements R, C, L, and M can be functions of v, i, q, and φ in their defining

equations. For example, a charge-controlled memristor is defined as a single-valued

function M (q) [2]. In 1971, Leon Chua reasoned that there should be another fundamental

Fig. 1.1. Four fundamental passive circuit elements [Redrawn from 2].

3

passive circuit element in addition to the resistor, capacitor, and inductor. He called this

new element “memristor”, short for memory-resistor [3]. His reasoning was based on

symmetry arguments where he noted that the number of equations connecting pairs of

circuit variables (electrical current i, voltage v, charge q, and magnetic-flux 𝜑) are six. Two

equations (out of six) are dq = i and dφ = v (Faraday’s law of induction). Other (four)

equations connect pairs of circuit variables via circuit elements. However, before Chua’s

invention, there were only three known circuit element R, L, and C. Chua reasoned the

existence of another circuit element (memristor), which links flux and charge as dφ=Mdq

where M is the memristance of memristor (Fig. 1.1). Note that M is a function of charge,

yielding a nonlinear element. If M were a constant, it would be identical to R. The basic

definition of a current-controlled memristor is shown in (1.1) and (1.2) where w is the state

variable, which is the charge, and R is a state-dependent resistance.

 𝑣 = 𝑅(𝑤)𝑖 (1.1)

𝑑𝑤

𝑑𝑡
= 𝑖 (1.2)

The memristor concept was generalized in 1976 by Chua and Kang to include a much

broader class of non-linear dynamic systems called memristive system [4]. A memristive

device is a two-terminal passive device whose resistance is a function of state variable w

and the voltage v (or current i) and not on the charge or the flux, directly. The current-

controlled time-invariant memristive devices are described by (1.3) and (1.4).

𝑣 = 𝑅(𝑤, 𝑖)𝑖 (1.3)

𝑑𝑤

𝑑𝑡
= 𝑓(𝑤, 𝑖) (1.4)

4

Note that Equation (1.4) is a general case of (1.2) where 𝑓(𝑤, 𝑖) = 𝑖. The i-v

characteristic of a memristor or a memristive device looks like a pinched hysteresis loop

(bow tie) crossing the origin. Fig. 1.2 shows the hysteresis behavior of a memristor for a

rectangular pulse input.

1.3 THE MISSING MEMRISTOR IS FOUND

After three decades of Chua’s invention, in 2008, HP (Hewlett Packard) researchers

demonstrated a simple analytical example of a memristor. In this example, the memristor’s

resistance (also called memristance) arises under external voltage bias where solid-state

electronic and ionic transport are coupled. This model is known as linear ion drift model.

1.3.1 Linear ion drift model

The HP example of memristor is shown in Fig. 1.3a. The device consists of a thin

semiconductor film of thickness D sandwiched between two metal contacts, particularly

Pt-TiO2-Pt. The semiconductor has two regions: one with high concentration of dopants

(i.e., oxygen vacancies of TiO2, denoted TiO2-x) and another with zero dopant (which is

Fig. 1.2. i-v characteristic of the memristor for a rectangular pulse input. (Left) Input voltage applied across

the memristor. (Right) hysteresis behavior of the memristor.

5

only oxide region TiO2). An external voltage bias across the device can drift the charged-

dopants yielding a variable resistance. In other words, the device is analogous to two

variable resistors connected in series as shown in Fig. 1.3b where w (t) represents the state

variable and 0 ≤ w (t) ≤ D. The resistance is RON when w (t) = D, and the resistance is ROFF

when w (t) = 0. Equation (1.5) and (1.6) explain the HP model of memristor where 𝜇𝑉 is

the average ion (vacancies) mobility. Note that Equation (1.5) and (1.6) are derived for the

simplest cases of ohmic electronic conduction and linear ion drift in a uniform field with

average ion mobility 𝜇𝑉.

𝑣(𝑡) = (𝑅𝑂𝑁
𝑤(𝑡)

𝐷
+ 𝑅𝑂𝐹𝐹 (1 −

𝑤(𝑡)

𝐷
)) 𝑖(𝑡) (1.5)

𝑑𝑤

𝑑𝑡
= 𝜇𝑉

𝑅𝑂𝑁

𝐷
𝑖(𝑡) (1.6)

To keep w (t) within the interval [0, D], it is required to multiply
𝑑𝑤

𝑑𝑡
 by window function

as used in [5-7].

text

ROFF

RON

RON (w/D) ROFF (D-w)/D

Undoped

Doped

 (a) (b)

Fig. 1.3. (a) Structure of the HP example of memristor. (b) Circuit equivalent. [Redrawn from 2]

6

 1.3.2 Non-linear ion drift model

Although the linear ion drift model shows the basic device behaviors, there is a

significant mismatch between the i-v characteristics of this model and that shown in

experiments [8-9]. The linear ion drift model does not represent the non-linear dependence

between
𝑑𝑤

𝑑𝑡
 and 𝑖(𝑡). A number of non-linear ion drift models, which is desired for logic

computations, have been proposed. Three examples of non-linear ion drift models are

discussed below.

1) Lehtonen et al. model

Lehtonen et al. [10-11] proposed a model based on experimental results shown in [8]

where the i-v relation is explained by (1.7).

 𝑖(𝑡) = 𝑤(𝑡)𝑛𝛽 sinh(𝛼𝑣(𝑡)) + 𝜒[exp (𝛾𝑣(𝑡) − 1] (1.7)

The 𝛼, 𝛽, and 𝛾 are experimental fitting parameters, and n determines the influence of

𝑤(𝑡) on 𝑖(𝑡). The state variable, 𝑤, is normalized within interval [0, 1]. When the device

is in the on-state (𝑤 ≈ 1), 𝑖(𝑡) ≈ 𝑤(𝑡)𝑛𝛽 sinh(𝛼𝑣(𝑡)). When the device is in the off-state

(𝑤 ≈ 0), 𝑖(𝑡) ≈ 𝜒[exp (𝛾𝑣(𝑡) − 1]. The model assumes: 1) asymmetric switching

behavior, and 2) the non-linear dependence between
𝑑𝑤

𝑑𝑡
 and 𝑣(𝑡) as explained by (1.8)

where 𝑎 is a constant, 𝑚 is an odd constant, and 𝑓(𝑤) is a windows function.

𝑑𝑤

𝑑𝑡
= 𝑎. 𝑓(𝑤). 𝑣(𝑡)𝑚 (1.8)

7

2) Simmons tunnel barrier model

Pickett at el. [12] showed a mathematic definition of non-linear memristive devices,

known as Simmons tunnel barrier model. This model was derived from experimental

results of dynamic testing protocols applied to Pt-TiO2-Pt devices. The model shows that

the energy required to switch a metal-oxide-metal device decreases exponentially with

increasing current through the device. Fig. 1.4 shows the scheme of memristive device

used to derive the tunnel barrier model. The Simmons tunnel barrier width [13] (which is

the width of the undoped oxide region) represents the state variable w, and RS represents

the electroformed channel resistor of a few hundred ohms resistance. In this model, the

velocity of the oxygen vacancy drift (dw/dt) is explained by (1.9) where foff, fon, ioff, ion, aoff,

aon, 𝑏, and wc are fitting parameters. Parameters foff and fon influence the magnitude of dw/dt

where fon is an order of magnitude larger than foff. Parameters ioff and ion are effectively

limiting the threshold currents. When i < ioff or i < ion, dw/dt is negligible. Parameters aoff

and aon set upper and lower bounds for w and the model does not require a window function.

𝑑𝑤

𝑑𝑡
= 𝑓𝑜𝑓𝑓 sinh (

𝑖

𝑖𝑜𝑓𝑓
) exp [− exp (

w−a𝑜𝑓𝑓

𝑤𝑐
−
|𝑖|

𝑏
) −

𝑤

𝑤𝑐
] (off-switch) i > 0

𝑑𝑤

𝑑𝑡
= 𝑓𝑜𝑛 sinh (

𝑖

𝑖𝑜𝑛
) exp [− exp (−

w−a𝑜𝑛

𝑤𝑐
−
|𝑖|

𝑏
) −

𝑤

𝑤𝑐
] (on-switch) i < 0 (1.9)

The experimental results show the on and off switching behaviors are asymmetric, i.e., the

on-switching is significantly faster than the off-switching. In addition, the switching energy

decreases exponentially with the current through the device.

8

3) TEAM mod

TEAM [14], short for ThrEshold Adaptive Memristive Model, assumes no change in

state variable w when the current is between the thresholds, 𝑖𝑜𝑛 < 𝑖 < 𝑖𝑜𝑓𝑓. In addition, a

polynomial dependence rather than exponential dependence is assumed. In this model

memristors have adaptive nonlinearity and threshold currents. Therefore, Equation (1.9) is

rewritten as shown in (1.10) where koff and kon are fitting parameters, aoff and aon are adaptive

nonlinear parameters, ioff and ion are threshold currents, and w is the state variable, which

represents the effective electric tunnel width. Note that koff is a positive constant while kon

is a negative constant. The state variable w is within the interval [won, woff].

()
(1) exp[exp()], 0

()
0,

()
(1) exp[exp()], 0

off

on

a off

off off

off c

on off

a on
on on

on c

w ai t
k i i

i w
dw t

i i i
dt

w ai t
k i i

i w


   




  
 
     


 (1.10)

Fig. 1.4. The schematic of memristive device realized using tunnel barrier where w and Rs represent the

state variable and the electroformed channel resistor, respectively [Redrawn from 12].

9

1.4 APPLICATIONS

The primary use of memristors is for memory application where memristors are

considered as emerging non-volatile technologies. The characteristics of memristors such

as their small size, non-volatility (memristors remember their resistances when powered

off), high endurance (the number of write cycles exceed 109 and it can reach up to 1015

while the device remains reliable), low switching delay (sub-nanosecond-few tens of

nanoseconds), low switching energy (0.1-1pJ), as well as being passive devices make them

ideal candidates for memory use. The generic structure for memristive memory is a

crossbar array [15]. The crossbar arrays can be stacked creating a three-dimensional

memory architecture [16-17]. In addition to memory use of memristors, there are many

proposals to use the memristors for computations [18-30], neuromorphic circuits and

machine learning applications [31-34].

Memristors may have different roles during logic computation. For example,

memristors can serve only as logic gates [22], [24], [27]. In this approach, logic values are

voltage signals. In another approach, memristors serve only as configurable switches in

FPGA-like circuits to realize routing networks [35-36]. Similar to the previous approach,

here, the logic values are voltage signals, as well. Memristors can also be used to perform

stateful logic. In this approach, memristors simultaneously serve as gates and latches [18-

20], [23], [25], [28]. Computations based on stateful logic are usually performed in crossbar

memory arrays. This unconventional approach to logic computations is performed in non

von-Neumann computer architectures.

10

1.5 RESEARCH GOALS AND METHODES

In this dissertation, the capabilities and limitations of logic computations based on

memristors are studied. Multiple approaches are proposed to decrease the computational

delays in non von-Neumann computer architectures. For example, a small hybrid CMOS-

memristive circuits is designed for fast implementation of generalized exclusive OR-Sum-

of-Products functions. The complexity of memristive circuits performing in-memory

computations is also studied. A general circuit architecture is proposed. The proposed

circuit architecture simplifies the datapath and reduces the size and computational delay.

In addition, a novel 3-dimentioal circuit architecture for in-memory computing is proposed.

1.6 RESEARCH STRUCTURE

This dissertation is organized as follows. Chapter 1 is a review of memristor theory,

practical memristors, memristor models, applications, and the contributions in this

dissertation. Chapter 2 reviews multiple design choices for logic computations based on

memristors. In addition, the generic circuit structures for logic computations with

memristors and their capabilities and potential problems are explained. Chapter 3 describes

volistors (voltage-resistor logic gates), i.e., new logic gates based on rectifying memristors.

Chapter 4 describes programmable diode logic gates, i.e., new logic gates based on

rectifying memristors. Chapter 5 shows a generic CMOS-memristive circuit structure for

in-memory computing called mPLD-XOR, i.e., memristive Programmable Logic Device

connected to XOR circuits. Multiple implementation examples using mPLD-XOR are

explained. Chapter 6 shows implementation example of multi-input XOR logic function

using a combination of volistor XNOR gates, programmable diode AND gates, and CMOS

11

buffers. Chapter 7 describes design constraints of volistors in crossbar arrays. In addition,

a novel implementation of mPLA (memristive Programmable Logic Array) for realizing

two-level OR-AND functions based on programmable diode ORs and volistor ANDs is

proposed. Chapter 8 shows an example of a three-dimensional memristive array for in-

memory computing. Chapter 9 summarizes the achievements and journal publications and

concludes this dissertation.

12

Chapter 2

Memristive Stateful Logic Gates

In today’s computer architectures, a key problem limiting system speed is the amount

of time spent moving data between the processor and memory. A way to address this

problem is to have memory within the calculation circuit. The invention of memristors, the

fourth passive circuit element, opens the door for changing the computing paradigms of

separating calculation from memory. Memristors, as non-volatile devices, enable stateful

logic (in-memory computing), hence saving time spent moving data between memory and

processor. This chapter describes design choices for stateful logic, which affect the size,

power, complexity, and delay of the circuits.

2.1 INTRODUCTION

Leon Chua postulated the existence of memristor as the fourth passive circuit element

based on symmetry arguments in 1971[3]. In 2008, memristor was clearly experimentally

demonstrated in Hewlett Packard Laboratories [2]. This two-terminal device is a thin

semiconductor film sandwiched between two metal contacts. Memristor is non-volatile, i.e.

it retains its memristance until a subsequent voltage toggles its resistance state. In other

words, memristor is a voltage-controlled device whose resistance (memristance) depends

on its voltage history. Memristors are ideal candidate for building memories due to their

non-volatility, scalability (down to 5nm) [38-39], high endurance (up to 1012 cycles) [40],

long-term retention (10 years) [41], and fast READ/WRITE speed (below 200ps) [42].

More importantly, memristors are computational memories and enable stateful logic [20],

hence saving time spent shuttling data between memory and processor. In stateful logic, the

13

resistance states of memristors represent logic values. Fig. 2.1 illustrates the zero-crossing

characteristic of a typical memristor in i-v plane. The programming voltage VSET switches

the memristor on, i.e., programs the device to LRS (Low Resistance State), and the

programming voltage VCLEAR switches the memristor off, i.e., programs the device to HRS

(High Resistance State). In this dissertation, the memristor is considered as a bistable linear

switch, which exhibits either LRS, indicating logic state ‘1’, or HRS, indicating logic state

‘0’. VCLOSE and VOPEN are positive and negative threshold voltages, respectively. The

memristor retains its state when applied voltage v across the memristor is smaller than the

threshold voltages (VOPEN < v < VCLOSE). However, when v < VOPEN (e.g., v = VCLEAR) or v >

VCLOSE (e.g., v = VSET), the memristor is programmed to HRS or LRS, respectively, after

some delay, Δt. The threshold and programming voltages are shown in Fig. 2.1. Note that a

 1 Closed 0 Open

VOPEN

VSET
VCLEAR

VCLOSE

V

I

VCOND

Fig. 2.1. Idealized hysteretic behavior of the memristor in the i-v plane. VCLOSE and VOPEN are threshold

voltages, and VSET and VCLEAR are programming voltages.

14

programming voltage is any value within a particular range as shown in Fig. 2.1. Memristors

are compatible with CMOS technology [43], and logic computing with hybrid CMOS-

memristor circuits can be quite beneficial (see Chapter 5).

This chapter is organized in the following order. Section 2.1 describes a memristor-based

circuit architecture. Section 2.2 explores some stateful logic gates realized with typical

memristors. The same logic gates are realized with rectifying memristors, i.e., memristors

with diode-like behavior, as described in Section 2.3. In Section 2.4, the implementation of

multi-input multi-output stateful gates are explained, and in Section 2.5, IMPLY Stateful

Diagram (ISD) and its extension for logic synthesize is described. A generic two-

dimensional crossbar structure and its potential problems are discussed in Section 2.6 and

2.7. Section 2.8 concludes the chapter.

2.2 CROSSBAR ARCHITECTURE

Memristors are non-volatile computational memories. A single switch can only perform

primitive operations TRUE and FALSE. When the switch is open, the application of VSET

across the device closes the switch realizing logic operation TRUE. When the switch is

closed, the application of VCLEAR across the device opens the switch realizing logic operation

FALSE. However, a basic logic operation such as material implication (IMPLY) requires

two memristive switches [20]. Fig. 2.2 illustrates a one-dimensional programmable circuit

known as crossbar or crossbar array. In this array, two memristive switches P and Q are

electrically connected through the wire W, which is grounded through load resistor RG.

Inputs are the resistance states of P and Q, whereas the output is the new state of switch Q.

15

Stateful logic gates are performed by two operations, namely, READ and WRITE. These

operations are realized simultaneously. For example, in stateful IMPLY operation, the

READ operation is performed by applying VCOND to P, where 0V <VCOND <VCLOSE, and the

WRITE operation is performed by applying VPROG to Q, where VPROG = VSET. The READ

operation drives the wire W to either ≈ VCOND or to ≈ 0V, depending on the state of P. The

WRITE operation may toggle the state of Q, depending on the initial states of both P and

Q. The state of P remains unchanged during the operations.

Let LRS (also denoted by RCLOSED) represents logic ‘1’, and HRS (also denoted by ROPEN)

represents logic ‘0’. It is the case that ROPEN ≫ RCLOSED. Since the correct operation of the

circuit requires VW (the voltage on W) to be either ≈ 0V or ≈ VCOND, care must be taken to

ensure ROPEN / RG >> 1 and RG / RCLOSED >> 1. Assuming these inequalities are satisfied, RG

can be set as the geometric means of ROPEN and RCLOSED, i.e., RG = √ (ROPEN × RCLOSED).

A flow of current through Q could disturb the WRITE operation. If this current raises VW in

a time interval shorter than the switching time of Q, the WRITE operation will be disturbed.

Therefore, the RC delay of the circuit should be larger than the switching delay of memristor

Q. However, a large RC delay slows down the circuit operation. The use of external CMOS

circuitry—a keeper circuit— can help to improve the speed and accuracy of the circuit

operation [44]; however the area overhead would present another challenge.

A better way to suppress the current through Q would be to use the rectifying memristive

switches [15], [45], [46], elaborated in Section 2.3, with the circuit configuration of 0V

< VCOND < VCLOSE and VOPEN < VPROG < 0V. This circuit architecture suppresses the current

through Q during the WRITE operation and enables the converse nonimplication operation

16

(CNIMP), also known as inhibition operation (INH or INHIBIT), without additional CMOS

circuitry [25]. A two-input INH gate computes 𝑝𝑞̅ or 𝑝̅𝑞 where p and q are the inputs.

2.3 RECTIFYING MEMRISTORS

The rectifying memristors are resistive switches with intrinsic diode-like behavior with

a large resistive ratio of 3-6 orders of magnitude, e.g., 103 ≤ ROPEN/ RCLOSED ≤ 106 [15] and

[45-46]. The rectifying memristors suppress the current below 0.1 pA, when reverse biased

[45]. Memristors with a diode-like behavior can perform reliable logic operations without

any need for keeper circuits.

A crossbar array of rectifying memristors can be used to perform stateful INH operations

with voltage scheme 0V < VCOND < VCLOSE and VOPEN < VPROG < 0V. This voltage scheme

sets P forward biased and Q reverse biased and thus suppresses the current through the

target memristor, Q. As a result, VW remains unchanged ensuring that the WRITE operation

VCOND VPROG

RG

P Q

W

Fig. 2.2. Schematic diagram of a 1 × 2 crossbar array. The instant application of voltage pulses VCOND and

VPROG to switches P and Q, respectively, may toggle the logical state of Q depending on the initial state of P

and Q.

17

is performed correctly. This voltage configuration is used to perform stateful INH

operations without any need for keeper circuits, as elaborated in Section 2.5.

A simplified model for rectifying memristor is described by (2.1) and (2.2) [47]. In

Equation (2.1), R represents the resistance of the rectifying memristor; 𝑠 is the state variable

normalized between 0 and 1; 𝑣 is the applied voltage across the memristor; ROPEN represents

the resistance when the memristor is in HRS; RCLOSED represents the resistance when the

memristor is in LRS. For convenience, ROPEN is also used for reverse biased memristor.

The typical values of ROPEN and RCLOSED, which are shown in Table 2.1, are chosen based

on empirical results reported in [15]. The dynamic behavior of the state variable 𝑠 is

described by (2.2) where 𝑣𝐶𝐿𝑂𝑆𝐸 is a positive threshold voltage; 𝑣𝑂𝑃𝐸𝑁 is a negative

threshold voltage; VSET is a positive programming voltage; and VCLEAR is a negative

programming voltage. In addition, α is a positive constant related to the programming rate

of a memristor. In this dissertation, α is assumed to be 125 ×107 (Vs)-1 as used in [47].

 𝑅 = {
𝑅𝑂𝑃𝐸𝑁 (

𝑅𝐶𝐿𝑂𝑆𝐸𝐷

𝑅𝑂𝑃𝐸𝑁
)
𝑠

 𝑣 ≥ 0

𝑅𝑂𝑃𝐸𝑁 𝑣 < 0
 (2.1)

𝑑𝑠

𝑑𝑡
= {
𝛼(𝑣 − 𝑣𝐶𝐿𝑂𝑆𝐸) 𝑣 ≥ 𝑣𝐶𝐿𝑂𝑆𝐸
𝛼(𝑣 − 𝑣𝑂𝑃𝐸𝑁) 𝑣 ≤ 𝑣𝑂𝑃𝐸𝑁
 0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 (2.2)

Table 2.1

Memristor’s spice model parameters [47]

Parameter Value

ROPEN 500MΩ

RCLOSED 500KΩ

𝒗𝑪𝑳𝑶𝑺𝑬 1V

𝒗𝑶𝑷𝑬𝑵 -1V

VSET 1.2V

VCLEAR -1.2V

α 125 × 107 (V. s)−1

18

With this value of α, the state transition in a memristor initially in HRS is 4 ns when the

applied voltage across the memristor is v = VSET. Comparable programming rates have been

reported in [40] and [42], as well. Substituting all related values in (2.2) results in

0.2 1.2

0.2 1.2

0

v
ds

v
dt

elsewhere








   



and thus,

0.2 1.2

0.2 s 1.2

1.2 1.2

init

init

init

T s v

s T v

s v







 

  


    
   

where sinit and s+ are the initial and next states of the memristor, and T+ and T־ are the

switching delays (from HRS to LRS and from LRS to HRS, respectively). T+ and T־ are

assumed to be equal though, in general, they might be different. The solution for (2.2) is

1 1.2

0 1.2

1 1init

v

s v

s v






  
   

Fig. 2.3. Characteristics of a rectifying memristor. (Left) The i-v characteristic of rectifying memristor.

(Right) The s-v characteristic of rectifying memristor. The diagrams are depicted using the LTspice simulator

and the memristor model in [47].

19

Fig. 2.3 shows the i-v characteristic of a rectifying memristor. It also shows the s-v

characteristic of a memristor where s remains unchanged when vOPEN ≤ v ≤ vCLOSE. Table 2.1

shows the parameters of the memristor as used in [47]. The SPICE model used to plot

Fig. 2.3 is also explained in [47].

2.4 STATEFUL LOGIC GATES REALIZED WITH TYPICAL MEMRISTORS

Now that the basic circuit design concepts have been discussed, the question becomes

what types of stateful logic gates can be realized given specific design choices. In this

section, designs with typical memristors are discussed, and in Section 2.5 designs based on

rectifying memristors is discussed. All polarity combinations of VCOND and VPROG are applied

to a 1 × 2 crossbar array of typical memristors to examine what types of logic operations

can be realized by the circuit. The same procedure is applied to a 1 × 2 crossbar array of

rectifying memristors.

1) Stateful AND gate

 The stateful AND gate was proposed in [23]. A 1 × 2 crossbar array alone is not sufficient

to implement the gate; a keeper circuit is required. The stateful AND gate requires VPROG <

VOPEN < VCOND < 0V and VOPEN < VPROG –VCOND. With this voltage combination, the use of a

keeper circuit is necessary. Without a keeper circuit, there is no logic operation, however,

with a keeper circuit, there is a logic AND operation. Take, for example, the case where P

and Q are both logic ‘0’, denoted as p, q = [0, 0] where p is the state of memristor P and q

is the state of memristor Q. The READ operation drives word line W to ≈ 0V. After the

WRITE operation, the voltage across Q is below VOPEN so Q remains ‘0’, as expected.

Similarly, when P is ‘1’ the crossbar array behaves as expected, regardless of the state of Q.

20

However, in the case where p, q = [0, 1], the crossbar array does not exhibit the desired

behavior. The READ operation drives W to ≈ 0V. Since RG >> RCLOSED of Q, the WRITE

operation drops VPROG across RG and thus the voltage difference across Q is approximately

0V. This is insufficient to change the state of Q. Therefore the AND function would operate

incorrectly. Laiho et al. [44] proposed splitting the simultaneous READ/WRITE operations

into consecutive operations. During the READ operation, the voltage drop on W is sampled

by the keeper circuit. During the WRITE operation, the keeper circuit forces the sampled

voltage onto W. Consequently, VPROG drops entirely across Q. That voltage drop is sufficient

to toggle the state of Q to ‘0’, which is the desired behavior of AND gate. The area overhead

of the keeper circuit is not the only obstacle that needs to be overcome; AND is not a

universal gate. In order to have a functionally complete set of operations, inverter is also

required. Inverter can be realized as a special case of the stateful IMP gate, explained below.

2) Stateful IMP gate

The stateful IMP gate was proposed in [19-20] and is defined as q+:= p→q = ¬p+q where

‘→’ is the IMP (short for IMPLY) gate, and q+ is the new value of q, which is the output of

the IMP gate. IMP gate can be implemented with a keeper circuit or without a keeper circuit

if sufficient capacitance on W is assumed. With a keeper circuit, the crossbar array runs at

full speed with the cost of increased area and power; in contrast, without a keeper circuit,

the crossbar array runs slow, but it consumes less area and power. The stateful IMP gate

requires 0V < VCOND < VCLOSE < VPROG, and VPROG – VCOND < VCLOSE. Take, for example, the

case where p, q= [0, 0]. The READ operation drives W to ≈ 0V. The WRITE operation

causes a voltage drop sufficient to toggle the state of Q, which is the expected behavior, as

21

shown in Table 2.2. The circuit operates similarly for all combinations of p, q. Implication

is functionally complete logic operation when coupled with the FALSE operation. Recall

that the FALSE operation is implemented by VPROG = VCLEAR.

3) Stateful OR gate

Much like IMP, the stateful OR gate can be implemented with or without a keeper circuit,

and the same power, speed, and area tradeoff applies. In practice, the use of a keeper circuit

in parallel with voltage divider ensures the correct operation of the circuit. The stateful OR

gate requires VOPEN < VCOND < 0V < VPROG < VCLOSE, and VCLOSE < VPROG –VCOND. With these

control voltages, the circuit operates correctly. OR is not a universal gate. In order to have

a functionally complete set of operations, inverter is also required.

4) Additional stateful gate

As discussed earlier in this section, different polarity combinations of VCOND and VPROG

implement different logic operations. There remains one voltage combination to consider:

VOPEN < VPROG < 0V < VCOND < VCLOSE, and VCOND – VPROG > VCLOSE. Assuming sufficient

capacitance on W, this polarity combination of control voltages implements the OR gate

with the output on P instead of Q. However, the use of a keeper in parallel with RG produces

the INH gate. The stateful INH gate was proposed in [25] and is defined as q+:= p↛q = ¬p∙q

where ‘↛’ is the INH gate. The truth table of INH logic is shown in Table 2.3. Take, for

example, the case where p, q= [1, 1]. The READ operation drives W to ≈ VCOND. During the

READ operation, the voltage on W is sampled by the keeper circuit. During the WRITE

operation, the keeper circuit forces the sampled voltage onto W. Consequently, the voltage

across Q becomes VPROG –VCOND. This voltage difference is sufficient to toggle the state of

Q to ‘0’, which is the desired behavior of the INH gate. Inhibition is functionally complete

22

logic operation when coupled with the TRUE operation. Recall that the TRUE operation is

implemented by VPROG =VSET. Similar to its use in the AND gate, the keeper circuit here

splits READ/WRITE into two consecutive operations.

In summary, a 1 × 2 crossbar array of typical memristors is sufficient to implement

several useful logic gates as long as care is taken in the selection of load resistor RG. Which

particular logic gate is implemented depends on the magnitude and polarity of the applied

Table 2.2

Truth table of the IMPLY operation

q+:= p→q = ¬p + q

In1 In2 Out

p q q+:= p⟶q

0 0 1

0 1 1

1 0 0

1 1 1

Table 2.3

 Truth table of the INH operation

q+: p↛q = (¬p) q

In1 In2 Out

p q q+:= p↛q

0 0 0

0 1 1

1 0 0

1 1 0

Table 2.4

 Logic gates realized by all possible voltage polarities and keeper/no-keeper circuit combinations

Polarity Logic Function

VCOND VPROG Sufficient capacitance on W With keeper circuit

+ + q+:= p→q q+:= p→q

- + q+:= OR (p, q) q+:= OR (p, q)

+ - p+:= OR (p, q) q+:= p↛q

- - No logic operation q+:= AND (p, q)

Signs + and – denote positive and negative voltage values of VCOND and VPROG defined for each logic

function in Section 2.4.

23

control voltages and on whether or not a keeper circuit is used. The circuit that provides

these control voltages is called a driver. Drivers are different than keeper circuits as

explained in Section 2.5 and 2.6. Keepers are auxiliary circuits required to perform reliable

operations. As already discussed, Table 2.4 summarizes the logic gates realized by all

possible voltage polarities and keeper/no-keeper circuit combinations. A 1 × 2 crossbar

array of typical memristors without a keeper circuit enables only IMPLY and OR logic

gates. When a keeper circuit is available, the memristors can realize all four operations:

AND, OR, IMP, and INH. Availability of more basic gates for synthesis allows for more

efficient realization of many Boolean functions, but also calls for invention of new logic

synthesis algorithms to synthesize arbitrary functions in new bases.

2.5 STATEFUL LOGIC GATES WITH RECTIFYING MEMRISTORS

This section explains which logic functions can be realized in a crossbar array of

rectifying memristors. The application of all polarity combinations of VCOND and VPROG

results in IMP and INH logic gates, as explained below. Table 2.5 summarizes the logic

gates realized by all voltage polarities and keeper/no-keeper circuit combinations.

1) Stateful IMP gate

A stateful IMP gate is realized with the same polarity combinations of VCOND and VPROG

described in a crossbar array with typical memristors, 0V < VCOND <VCLOSE < VPROG and

VPROG –VCOND < VCLOSE. An IMP gate can be implemented with a keeper circuit or without

a keeper circuit assuming sufficient capacitance on W. The same speed/power/area tradeoff

imposed by a keeper circuit in a crossbar array with typical memristors also holds for a

crossbar array with rectifying memristors.

24

2) Stateful INH gate

A stateful INH gate is realized without a keeper circuit with the same polarity

combination of VCOND and VPROG described in a crossbar array with typical memristors,

VOPEN < VPROG < 0V < VCOND < VCLOSE and VCOND –VPROG > VCLOSE. This polarity combination

always sets memristor Q reverse biased and thus suppresses the flow of current through Q.

As a result, the crossbar array can be seen as a voltage divider made of memristor P and

load resistor RG that controls the state of memristor Q—nearly no electrical current flows

between the voltage divider and memristor Q, and the new state of Q (the gate’s output) is

a function of its initial state and the output of the voltage divider, VW. Note that the diode-

like behavior of memristors simplifies the circuit operation and eliminates the need for a

keeper circuit.

Table 2.5

 Logic gates realized by all polarity combinations in a crossbar array of rectifying memristors

Polarities Logic Function

VCOND VPROG

+ + q+:= p→q

+ - q+:= q↛p

- + p+:= q↛p

- - No logic operation

Signs + and – denote positive and negative voltage values of VCOND and VPROG defined for each logic

function in Section 2.5.

25

The stateful INH gate can also be realized with the same polarity combination of VCOND

and VPROG described in a crossbar array with typical memristor for q+:= OR (p, q), i.e. VOPEN

< VCOND < 0V < VPROG < VCLOSE, and VCLOSE < VPROG –VCOND. This configuration implements

the INH gate with the output on P instead of Q. In other words, P is the target memristor

whereas Q is the source memristor. No keeper is required for this circuit configuration, as

well.

There remains one voltage combination to consider: VPROG < VOPEN <VCOND < 0V and

VOPEN < VPROG –VCOND. This circuit configuration produces no logic operation. Note that

stateful OR and AND gate cannot be realized with a crossbar array of rectifying memristors

without a keeper circuit. Fig. 2.4 illustrates a schematic diagram of a keeper circuit that

enables all stateful logic gates [48]. During the READ operation, source memristors are

driven with VCOND > 0V. During the WRITE operation, the keeper circuit forces 0V, VCOND,

Read

VCOND

VW

W

RG

Read

VPROG

VW- VW

Fig. 2.4. Schematic of a keeper circuit [Redrawn from 48]. VW denotes the voltage on W.

26

or - VCOND onto W depending on the result of READ operation and the type of stateful

operation. This keeper circuit can be used in a crossbar array with typical memristors and

rectifying memristors.

Table 2.6 summarizes the tradeoffs discussed in Section 2.4 and 2.5 for logic

implementations in a crossbar array with typical and rectifying memristors. Among all

design choices shown in Table 2.6, logic computations with rectifying memristors and

stateful INH gates require no keeper circuits. In addition, INH logic with TRUE operation

forms a complete set of logic gates. The use of rectifying memristors will also prevent the

disturbance of the WRITE operation, as discussed in Section 2.2. The simplicity and area

and power efficiency of the circuit are additional features of this particular design choice.

The use of rectifying memristors also enables multi-input multi-output INH gates without

additional CMOS circuitry, as discussed in Section 2.6. Rectifying memristors suppress

leakage currents, known as sneak current paths, as explained in Section 2.8. The sneak

current is an undesired phenomenon, which occurs in two-dimensional crossbar arrays, and

it may disturb the READ and WRITE operations. We rely on rectifying memristors for logic

computing for the all benefits mentioned above.

Table 2.6

Tradeoffs for logic implementations in a crossbar array of typical and rectifying memristors

Crossbar array with Typical memristors Rectifying memristors

Logic operation AND IMP OR INH IMP INH

Complete logic set No
with

FALSE
No

with
TRUE

with
FALSE

with
 TRUE

Keeper Yes No

Area/ power / complexity Potentially high Potentially low

Sneak current paths Larger Smaller

27

In summary, realization of stateful logic gates in one dimensional crossbar array of

typical memristors and rectifying memristors are explained. The conditions for the

correctness of the circuit operations are also studied.

2.6 MULTI-INPUT MULTI-OUTPUT INH GATE

A multi-input multi-output INH gate can be realized in a 1 × n crossbar array of

rectifying memristors. Fig. 2.5 shows a 1 × 9 crossbar array for computing function

        , , , , ,F OR a b c d OR a b c e    where M1-M5 are used as source memristors

whose logical states represent input variables a, b, c, d, and e; memristors M6 and M7 are

auxiliary memristors, which store intermediate signals; and M8 and M9 are target

memristors, which store the outputs,     . , .a b c d a b c e      . Function F is

realized in three steps as described below.

1) FALSE operation: Reset the memristors to HRS by connecting the vertical wires to

VPROG < 0V, and the horizontal wire to VCOND > 0V. This step is realized in one clock

cycle.

2) Copy operation: Connect the input voltages to the vertical wires of the source

memristors and VPROG to the horizontal wire to program (or copy the inputs into) the

source memristors. At the same time, connect the vertical wires driving the auxiliary

and target memristors to VCOND to set them to LRS. This step is realized in one clock

cycles, as well.

28

3) INH operation: calculate 6d M and 7e M , sequentially. Then, calculate

  8, , ,OR a b c d M  and   9, , ,OR a b c e M  , the outputs of function F,

sequentially. This step is realized in four clock cycles.

The overall number of clock cycles for realizing function F is six. During each

operation, wire W is set either to VCOND or VPROG or connected to RG. Also, vertical wires

Bj (1 ≤ j ≤ 9) are connected either to VCOND or VPROG or terminated to high impedance, Z.

A vertical wire connected to a nonparticipating memristor is terminated to Z. In realizing

6d M , wires B4 and B6 are simultaneously connected to VCOND and VPROG, respectively.

Source memristor M4 and load resistor RG form a voltage divider whose output (the voltage

on wire W) drives target memristor M6. If M4 is in LRS, then VW ≈ VCOND. Therefore, the

voltage across M6 is approximately VCLEAR, which is sufficient to toggle the state of M6. In

contrast, if M4 is in HRS, then VW ≈ 0V. Therefore, the voltage across M6 is approximately

VPROG, which is insufficient to toggle the state of M6. Likewise,   8, , ,OR a b c d M  is

implemented by simultaneously connecting B1, B2, B3, and B6 to VCOND, B8 to VPROG, and W

M1 M2 M9

Rg

...

VPROG

VCOND

W

B1 B2

M3

B3 B9

VPROGVCONDInputVPROGVCONDInput VPROGVCONDInput VPROGVCONDInput

Fig. 2.5. Schematic of a 1 × 9 crossbar array of rectifying memristors for computing function F.

29

to RG. Alternatively,   8, , ,OR a b c d M  can be calculated by implementing a sequence

of INH gates, i.e., 8a M ,
8b M , and

8d M  . A stateful INH gate can be used to

produce NOT and NOR gates as  1p p  and  (,) 1 (,)OR p q NOR a b  , which

requires programming the target memristors to logic ‘1’. Therefore, an arbitrary logic

function can be realized based on logic NOR.

Fig. 2.6 shows the schematic of memristive circuit proposed in this dissertation for

calculating logic functions in a crossbar array. The circuit consists of crossbar memory

array and crossbar computational array. The memory array stores the instructions and

control signals whereas the computational array executes logic operations and stores the

results. These crossbar arrays are connected through datapath. This circuit architecture

enables in-memory computing as the computational array calculates logic functions and

stores the outputs. The computational array are connected to CMOS drivers. The schematic

of each driver is shown in Fig. 2.7. The drivers can connect the wires to 0V, VCOND, VPROG,

or the Ground (GND) through RG. The circuit can realize any logic function with INH and

TRUE operations without any keeper circuit. The crossbar memory array is driven by

shifter. The output of the shifter in the first, second, and nth clock cycles are (v1, v2… vn) =

(1, 0 … 0), (0, 1, 0 … 0), and (0…0, 1), respectively. Each column of the crossbar memory

array stores the control signals required to perform one logical operation. The size of the

crossbar memory array depends on the number of horizontal and vertical wires of the

computational array, the number of logical operations (which is equal to the number of

clock cycles) and the driver’s control signals. Hence, its size can be written as (3×l) * n

where 3 is the driver’s signals, l is the sum of horizontal and vertical wires, and n is the

30

number of clock cycles. The size of the memory array dominates the area when large

circuits are implemented. The computational delay depends on a synthesis approach for

logic computations [49]. The power dissipations in memristive arrays are discussed in

Chapter 3, 5, 6, and 7.

In summary, stateful NOR gates is built from INH gates. A multi-input stateful NOR

gate is realized either sequentially by cascading stateful INH gates or simultaneously by

implementing all stateful INH gates in parallel. A multi-output stateful NOR gate can be

realized by simultaneously driving several target memristors to VPROG.

3

Crossbar Memory Array

Shifter

.

Computational Array

Driver Circuitry

3

3

3

3

3

v1

v2

vk

v(n-1)

vn

.

Fig. 2.6. Schematic of memristive computing circuit including control and datapath units.

31

 2.7 EISD: EXTENDED IMP SEQUENTIAL DIAGRAM

The IMP Sequential Diagram (ISD) [49] is used for analysis and synthesis of stateful

logic circuits. In this notation, each horizontal wire represents the state of a memristor over

the course of synthesis. Fig. 2.8 shows the symbolic diagram of the IMP gate where p and

q are inverting and non-inverting inputs of the IMP gate, stored in source and target

memristors P and Q, respectively. The output of IMP gate is the new state of Q, which is

p q  .

Via between CMOS and nanowire

0V VCOND

VPROG RG

Fig. 2.7. (Left) Schematic of a computational array connected to CMOS drivers. (Right) Schematic of

each driver circuitry.

P p

Q q p IMP q = ¬ p+q
+

 p

Fig. 2.8. Symbolic diagram of a 2-input IMP gate in ISD notation.

32

Fig. 2.9 shows the ISD notation of NAND (p, q). The gate is implemented in three clock

cycles. In the first clock cycle, the FALSE operation programs memristor R to HRS, i.e.,

r = 0; the symbolic diagram of the FALSE operation is shown as a rectangle with label ‘0’.

In the second and third clock cycles, p r and q r are implemented. The new values

of r over the course of operations are shown alongside wire R. There is no more operations

defined in ISD, as IMP and FALSE form a complete set of logic gates. In this dissertation,

the ISD notation is extended (Extended ISD or EISD) to include INH and TRUE

operations, as well. Fig. 2.10 shows the symbolic diagram of the INH gate where p and q

are inverting and non-inverting inputs, stored in source and target memristors P and Q,

respectively. The output of the gate is the new state of Q, which is pq .

P p

 q

¬p+(¬q)= ¬ (p+q)
R r +0

0

+
¬ p

 p

Q q

Fig. 2.9. ISD of function NAND (p, q) where the output is stored as a new state of memristor R.

P p

Q q ¬ pq
×

 p

Fig. 2.10. Symbolic diagram of a two-input INH gate in EISD notation.

33

 Fig. 2.11 shows the EISD notation of function  ,OR p q r . This function is performed

in two clock cycles. In the first clock cycle, the TRUE operation sets memristor R to

logic ‘1’. The symbolic diagram of the TRUE operation is shown as a rectangle with label

‘1’. In the second clock cycle, the INH operation is performed. The new values of r over

the course of synthesis are shown alongside wire R. Memristors P, Q, and R in Fig. 2.11

are rectifying memristors, hence enabling stateful INH gate with multiple fan-out without

P p

Q q

¬ (p+q)
R r

× 1

1

 p

 q

P p

Q q

¬ (p+q)
R r × 1

1

 p

 q

Fig. 2.11. EISD of NOR gate. Different EISD notations for r = NOR (p, q) depending on source and

target memristors locations.

P p

Q q

¬ (p+q)
R r × 1

1

¬ (p+q)
S s × 1

1

Fig. 2.12. EISD of multi-output function     , , ,OR p q r OR p q s   .

 p

 q

 1

 1
×

× ×

×

1

1

×
¬ p

p ¬qp

¬pq

XNOR (p, q)

× XOR (p, q)

T1-T2 T3 T4 T5 T6 T7 T8 T9

Fig. 2.13. EISD of      (,) 1 1XOR p q p q q p         .

34

a keeper circuit. Fig. 2.11 shows two different EISD notations for  ,OR p q r as

different source and target memristors are chosen in each diagram for synthesizing the

function. Fig. 2.12 shows the EISD of multi-output function

    , , ,OR p q r OR p q s   . Fig. 2.13 shows the EISD of function

     (,) 1 1XOR p q p q q p         . The diagram also shows the timing aspect

of the circuit, e.g., at T4 (the fourth clock cycle) value p is copied into the bottom most

memristor (wire). In the course of synthesis, it is not possible to READ from and WRITE

to a memristor simultaneously. For example, the instant implementation of p q and

q p requires reading from and writing to memristor P, hence, a copy of value p is stored

in an auxiliary memristor to avid the issue. The synthesis delay is nine clock cycles. This

XOR p XNOR q

1

 1 XOR

XOR (p, q, r)

 1

 1 r

p

q

1

1
 1

(a)

XOR p XNOR q

1

 1

XOR

XOR (p, q, r)

 1

 1

p

q

1

1

 1

WR
r

(b)

Fig. 2.14. EISD notation of XOR (p, q, r). (a) The XOR gate is implemented with 15 operations and five

memristors. (b) The XOR gate is implemented with 16 operations and four memristors. The EISD shows

the trade-off between the number of memristors and the operations.

35

delay includes that of initialization and programming step. The overall number of

memristors used in this implementation is four. In EISD notation, gates and sub-circuits

are shown by blocks to simplify the diagram. For example, Fig. 2.14 shows the EISD

notation of a 3-input XOR gate realized as a cascade of 2-input XOR gates. Each XOR

gate consists of a number of INH and TRUE operations, as shown in Fig. 2.13. The 3-input

XOR (p, q, r) is implemented with five memristors in 15 clock cycles (Fig. 2.14a).

The EISD notation shows the tradeoff between the number of memristors and the

number of stateful gates. For example, the 3-input XOR gate can also be realized in 16

clock cycles and four memristors, i.e., by writing input r into the memristor P after

calculating p XNOR q, as shown in Fig. 2.12b. The rectangle with label WR indicates

writing input r into memristor P. Note that the WRITE operation is performed by

connecting one terminal of the memristor to input r and the other terminal to VPROG.

In summary, ISD is a notation used for analyzing and synthesizing stateful circuits and

shows the tradeoff between the number of memristors and the number of clock cycles

(logic operations). The proposed EISD generalizes the ISD notation.

2.8 TWO-DIMENSIONAL CROSSBAR ARRAY

Two-dimensional self-aligned crossbar arrays are regular structures with very high

density. Fig. 2.15 shows a 3 × 3 memristor crossbar array. At each junction, an area between

two perpendicular wires, one memristor is located. Each wire of the crossbar array is

connected to a CMOS driver, and each memristor is uniquely accessible. A stack of crossbar

arrays formed on CMOS layers creates a three-dimensional memristive array. CMOL

(CMOS-MOLECULE SCALE DEVICE) [20] is one example of 3D memristive arrays. The

36

primary use of the 3D arrays (three-dimensional crossbar arrays) is for memory

applications. In this dissertation, the focus is mainly on logic calculations in two-

dimensional crossbar arrays, or simply crossbar arrays.

Despite the simplicity, regularity, and high density of the crossbar arrays, there are some

potential problems such as half-select problem and sneak current paths limiting the size of

these arrays and disturbing their operations. For example, suppose that the crossbar array,

shown in Fig. 2.15 consists of non-rectifying memristors. Programming the upper right

corner memristor to LRS requires driving the right-most vertical wire to VSET and the

uppermost horizontal wire to 0V. This configuration half-selects the right-most column

memristors, i.e., only one terminal of each half-select memristor is driven by VSET while the

other terminal is floated (terminated to Z) [50]. Similarly, the uppermost row memristors

connected to 0V are half-selected, as well. The half-select memristors may cause sneak path

problem. The sneak path, as shown by a red-dash lines in Fig. 2.16, may inadvertently toggle

the state of a memristor or disturb the READ and WRITE operations. For example,

memristor M is intended for measuring the response. A current path through memristors

other than memristor M is a sneak path current. Fig. 2. 16 shows the dominant sneak path

current, which follows through half-select memristors in LRS.

37

RCLOSED

ROPEN

VSET

0V

Z

Z

Half-Select Memristors

ZZ

Fig. 2.15. A 3×3 crossbar array of non-rectifying memristors.

Fig. 2.16. Half-select problem may cause sneak current paths. The green dash-line represents the desired

current path whereas the red dash-lined represents an undesired sneak current path.

Z

Z

VTRUEZZ

M

RG Z

Z

VPROGZVCOND

P Q

RG

VPROGVCOND

3RCLOSED
P Q

 (a) (b)

Fig. 2.17. (a) The sneak path disturbs the READ and WRITE operations. (b) The circuit equivalent of

the crossbar array with sneak current path.

38

Fig. 2.17a shows how a sneak path disturbs the READ and WRITE operation. Suppose

that the upper left corner memristor P is driven by VCOND and the upper right corner

memristor Q is driven by VPROG implementing :q p q   . This operation falsely results

in q = 0 due to the sneak path problem. The green dash-line in Fig. 2.17a illustrates the

desired current path through memristor P whereas the red dash-line represents an undesired

sneak current path. The sneak path disturbs the READ operation since it adds up a parallel

resistance to memristor P, hence increasing the voltage on the uppermost wire. This voltage

increase disturbs the WRITE operation, as well, since it decreases the voltage difference

across memristor Q and makes it insufficient to toggle the state of Q. Fig. 2.17b shows the

circuit equivalence to the crossbar array while implementing :q p q   . Note that the

sneak path crosses through the reverse biased LRS memristors, as shown in Fig. 2.17b.

The sneak current paths can be suppressed by connected the crossbar wires to proper

voltage values. For example, Fig. 2.18a shows a voltage scheme for a reliable READ

operation. In this scheme, the left-most vertical wire is set to VCOND while other vertical

wires of the crossbar array are grounded. The current through memristor P is fed to a sense

amplifier, which acts as a current-to-voltage converter. The output of the amplifier

determines the state of memristor P. This voltage scheme suppresses the sneak paths and

enables a reliable READ operation. However, this voltage scheme may cause a power

dissipation in other left-most column memristors depending on their resistance states.

Fig. 2.18b shows another voltage scheme for a reliable WRITE operation [51]. In this

scheme, the vertical and horizontal wires connected to memristor P are set to VSET and 0V,

respectively, while other crossbar wires are connected to VSET/2. This biasing scheme limits

39

the sneak paths and enables a reliable WRITE operation. However, this scheme may also

cause a power dissipation in other left-most column memristors of the crossbar array. There

are other techniques that can be used to improve the READ and WRITE operations as

studied in [51-53]. The use of rectifying memristors is our design choice to limit the sneak

paths in crossbar arrays. Rectifying memristors limits reverse biased currents, which cause

the sneak path currents, below 10–13 A. Studies show that the diode-like behavior of the

rectifying memristors effectively improves the read operation performance of a large scale

crossbar memory array without cell-selectors [54].

In addition to the sneak current paths, a nonzero resistance of wires could be another

challenge for reliable READ and WRITE operations [55-56]. This resistance degrades the

voltage along the wires and causes unequal voltage drops across the memristors. When all

memristors on a selected column are at LRS, the farthest memristor from the driver is the

0V

0V

P

VCOND 0V 0V

0V

VSET/2

VSET/2

P

VSET VSET/2 VSET/2

0V

 (a) (b)

Fig. 2.18. Biasing schemes for READ and WRITE operation. These schemes limit the sneak path currents.

40

worst-case selected memristor, which sees the largest voltage degradation during the

WRITE operation (Fig. 2.19). The fidelity of the READ operation depends on the state of a

selected memristor as well as the states of other memristors in the crossbar array. The worst

performance of the READ and WRITE operations occurs under following circuit

circumstances [55]: 1) when a selected memristor is in LRS, other memristors of a selected

column are in HRS, and other crossbar memristors are in LRS, the READ operation has the

worst performance, and 2) when a selected memristor is in HRS while other memristors of

the crossbar array are in LRS, the READ and WRITE operation have the worst performance.

The maximum size of a crossbar array is determined based on the worst READ and WRITE

performance of memristors. To maximize the size of a crossbar array, the power

consumption should be minimized. This can be done by increasing the resistive values of

RCLOSED and ROPEN while keeping the ROPEN/RCLOSED ratio sufficiently large, as suggested in

The farthest

memristor from the

driver

Symbolic

drivers

...

...

...

...

...

.

.

.

Fig. 2.19. The effect of nonzero resistance of wires on the READ and WRITE operations.

41

[55]. However, this solution may increase the RC delay during a READ and WRITE

operation. In contrast to the previous works [55-56], recently, Youn et al. showed different

examples of the worst read scenarios in the crossbar arrays [57].

Fig. 2.20 shows the schematic of the memristor circuit proposed in this dissertation for

computing logic functions in a two-dimensional array. A driver circuit connected to each

wire of the crossbar array is shown in Fig. 2.7. These drivers enable row and column

operations in the computational crossbar array [47] and [74]. The complexity and

computational delay (measured as the number of clock cycles) of the circuit are related to

logic synthesis approaches used to realize functions. The size of the crossbar memory array

depends on the size of the computational array, the number of control signals used for

3

Crossbar Memory Array

Shifter

. . .

. . .

Computational

Array

Driver

Circuitry

3

3

3

3

v1

v2

vk

v(n-1)

vn

3

. . .

.
.
.

3

. . .

3

Fig. 2.20. Schematic of the complete memristor crossbar array. The driver circuitries are illustrated in

Fig. 2.7.

42

driving each wire of the computational crossbar array, and the size of the circuit realized in

computational array. See Chapter 3, 5, 6, and 7 for power analysis of memristor circuits.

In summary, the limitations of the cross array and the potential solutions are discussed.

In addition, a new general memristor circuit structure for logic computing in two-

dimensional array is proposed.

 2.9 LOGIC COMPUTATIONS IN A CROSSBAR ARRAY

This section explains how to calculate logic functions in a crossbar array of rectifying

memristors with INH and TRUE gates. An implementation of 3-input XOR gate in the Sum-

of-Products (SOP) form, i.e., (, ,)XOR p q r pqr pqr pqr pq r    is explained in the

following three steps.

1) Initialization: This step sets the memristors to logic ‘1’. Setting the memristors with

random states to logic ‘1’ may increase the power dissipation in the crossbar array.

Instead, if the memristors were logic ‘0’, their programming to logic ‘1’ would

decrease the power dissipation. Furthermore, programming the memristors to logic

‘0’ requires small amounts of power as memristors are set reversely biased. Therefore,

this step is realized with two consecutive FALSE and TRUE operations in two clock

cycles. The entries of the symbolic matrix, shown in Fig. 2.21 represent the logic

values stored in each memristor of the crossbar. The label on top of the arrow indicates

the number of operations required for the initialization.

43

2) Mapping: This step shows how to map the XOR gate into the crossbar memristors.

Suppose that the bottommost row memristors of the crossbar array store inputs p, q,

and r (Fig. 2.22a). The columns of the crossbar array are programmed one by one

using multi-output INH gates. For example, the left-most column memristors of the

crossbar array are programmed using two consecutive INH gates
31 41(,)p m m and

31 11 21(,)m m m where mij shows the state of a memristor at intersection row i and

column j. The results of the inhibition operations are shown in Fig. 2.22b and 2.22c.

Similarly, other columns are programmed as shown in Fig. 2.22d. The total number

1 1 1 1

1 1 1 1
2

1 1 1 1

1 1 1 1

1p q r

 
 
 
 
 
 




1 1 1 1

1 1 1 1
1

1 1 1

1 1 1

1

p

p

p q r

 
 
 
 
 
 




1 1 1

1 1 1
1

1 1 1

1 1 1

1

p

p

p

p

p q r

 
 
 
 
 
 




1

1
4

1

1

1

p q r

p q r

p q r

p q r

p q r

 
 
 
 
 
 




 (a) (b) (c) (d)

1

1

p q r pqr

p q r pqr

p q r pqr

p q r pq r

p q r

 
 
 
 
 
 




 2

0 0 0

p q r pqr

p q r pqr

p q r pqr

p q r pq r

p q r XNR

XOR

 
 
 
 

 
 
 
 



 (e) (f)

Fig. 2.22. Symbolic matrices illustrate the steps of computing XOR (p, q, r) with INH gates. The

number of operations (clock cycles) to implement the XOR gate is 11.

1 1 1 1

1 1 1 1
2

1 1 1 1

1 1 1 1

1 1 1 1

 
 
 
 
 
 




Fig. 2.21. Symbolic matrix. The entities show the values of the crossbar memristors.

44

of clock cycles for programming the columns is twice of the number of inputs, which

is six.

3) Calculation: This step explains how to calculate the XOR gate in the SOP form. First,

the products (minterms) are implemented with four multi-input INH gates

  1,() 1, () 1p q r p q r p q r           , and () 1p q r   where each INH

gate is applied to one row of the crossbar array. The products are simultaneously

calculated and stored in the right-most column memristors as shown in Fig. 2.22e.

Next operation is to sum the products by two consecutive INH gates as

(() 1) 1pqr pqr pqr pq r      . The first INH gate calculates logical NOR of

the products, which is equivalent to the logical XNOR of the inputs, and the second

INH gate inverts the output of the first INH gate producing XOR (p, q, r). Fig, 2.22f

shows the outputs of the INH gates.

The synthesis approach used for the XOR gate is similar to that proposed in [25] except

that cited approach [25] uses a combination of INH and IMP gates for synthesis. This

combination of logic gates decreases the delay but increase the complexity. There are two

types of operations, known as row and column operations, realized in crossbar arrays. Row

operations are applied to row memristors and column operations to column memristors. For

example, in step 3, the products (minterms) are implemented with row operations and the

sum (OR gate) with column operations. The INH gates used in row operations are realized

with VCOND > 0V and VPROG < 0V. However, opposite polarity of VCOND and VPROG is required

for implementing the INH gates in column operations.

45

One disadvantage of stateful logic computations is that stateful operations are

sequential, hence a long sequence of operations are required to perform a logic function.

With alternative circuit approaches, proposed in Chapter 3 and 4, a 3-inupt XOR gate can

be implemented with only three clock cycles as described in Chapter 5.

In summary, a 3-input XOR gate is implemented in a crossbar array of rectifying

memristors with multiple INH gates. The size of the crossbar array is 6 × 4 and the total

number of clock cycles is 11.

 2.10 SUMMARY

This chapter explained the basic memristor crossbar structure. The sneak path problem

and some solutions were discussed. In addition, EISD notation was explained. Multiple

design choices for stateful logic circuits were reviewed. Rectifying memristors are

desirable for logic computations due to power and area saving benefits. This chapter also

described a new general circuit structure which enables in-memory computing.

46

Chapter 3

Memristive Volistor Logic Gates

This chapter introduces a novel volistor logic gate [29], which uses voltage as input and

resistance as output. Volistors rely on the diode-like behavior of rectifying memristors.

This chapter shows how to realize the first logic level, counted from the input, of any

Boolean function with volistor gates in a memristor crossbar network. Unlike stateful logic,

there is no need to store the inputs as resistance, and computation is performed directly.

The fan-in and fan-out of volistor gates are large and different from traditional memristor

circuits. Compared to a solely memristive stateful logic, a combination of volistors and

stateful inhibition gates can significantly reduce the number of operations required to

calculate arbitrary multi-output Boolean functions. The power consumption of volistor

logic is computed and compared with the power consumption of stateful logic using

simulation results—when implemented in a 1 × 8 or an 8 × 1 crossbar array, volistors

consume significantly less power.

3.1 INTRODUCTION

The stateful logic computations with memristors is an area of active research. Borghetti

et al. [20] proposed realizing the stateful logic via material implication (IMP). In classical

memristive stateful circuits, logic signals utilize resistance on input and output. In other

words, the previous resistance state of a memristor affects the operations. In contrast,

volistors do not use the previous resistance state in calculations. Other stateful logic gates

have been proposed as well, e.g., INH, AND, etc. In stateful logic, values are encoded by

resistance states of memristors. The stateful logic is usually performed in a generic crossbar

47

array. One key disadvantage of stateful logic is that a long sequence of operations is

required to implement an arbitrary Boolean function.

This chapter introduces a new concept in memristor logic, call volistor logic. Unlike a

stateful logic gate, a volistor (voltage-resistor) gate has voltage-based input and resistance-

based output. Therefore, volistors (volistor gates) can be used for first (possibly complex)

level of logic implementation. It is always assumed that negated inputs are available as

voltage signals. Volistors are implemented in generic crossbar arrays of rectifying

memristors. Logic synthesis methods with volistors are different from classical logic

synthesis. Multi-input multi-output volistor gates, implemented in a 1 × 8 crossbar array,

dissipate less power than corresponding stateful logic gates. The output of a volistor gate

is stored as a resistance state of a target memristor. The correct functionality requires

initializing the target memristor to LRS. With different coding schemes, either a volistor

OR and NAND logic set or a volistor NOR and AND logic set can be realized in the same

crossbar array. For instance, if the closed state of a memristor encodes logic ‘0’ and the

open state of a memristor encodes logic ‘1’, the set of OR and NAND operations is

implemented. The reverse encoding scheme implements the NOR and AND logic set. With

volistor logic, crossbar drivers need to supply only three voltage levels ,v v  and 0V. In

addition, the drivers must be capable of connecting arbitrary wires in the crossbar to either

high impedance (Z) or grounding these wires through load resistors RG. Clearly, volistor

logic cannot implement arbitrary logical structures such as SOP, i.e., the volistor network

layer cannot implement every Boolean function. However, a combination of a volistor

48

NOR and AND with stateful INH, or their dual logic of volistor OR and NAND with

stateful IMP, can both be used to realize arbitrary multi-output Boolean functions.

This chapter is organized as follows. In Section 3.2, volistor gates are introduced. In

Section 3.3, the synthesis of arbitrary Boolean functions is explained. In Section 3.4, the

power consumption of volistor gates is computed and compared with stateful logic.

Section 3.5 is a summary and conclusion of the chapter.

3.2 VOLISTOR LOGIC

In this section, volistor logic is introduced. The key idea behind volistor logic is that

inputs are voltages and outputs are resistances. This is a significant change from the way

the voltage drivers are used in stateful logic; however, the target memristor is still used as

a memory element where the output is stored. The basic volistor logic gates are: inverter,

n-input NOR, and n-input AND, and their duals inverter, n-input OR, and n-input NAND.

The following subsections describe the basic architecture required for logic computations

and the basic logic gates.

3.2.1 Crossbar Structure

The basic circuit structures for volistor logic computations are the 1 × 2 crossbar array

and 2 × 1 crossbar array depicted in Fig. 3.1. Just as in stateful IMP, S denotes the source

memristor and T the target memristor. The wire B1 connected to source memristor S

conveys input signal VS. Let v+ = 0.6 V and v0.6– = ־ V. The logical coding scheme for VS

is defined as follows: v+ encodes logic ‘1’ denoted vs = 1, and 0V encodes logic ‘0’ denoted

49

vs = 0. The wire B2 connected to target memristor T carries a bias voltage, VT = v־.

Memristor T acts as a switch whose resistance state t represents the output of the crossbar

array. When T is open, its high-resistivity state encodes logic ‘0’, i.e. t = 0. When T is

closed, its low-resistivity state encodes logic ‘1’, t = 1. This interpretation of the resistivity

state of T is used for performing the NOR/AND logic set; another interpretation is

discussed in Section 3.2.5. Prior to logic computation, both memristors S and T must be

closed. To unconditionally close a memristor, it must be forward biased by VSET. The 1

× 2 crossbar array must satisfy (3.1). In particular, VT is selected such that VT-VS equals

VCLEAR when VS = v+.

0OPEN T

T S CLEAR

V V V

V V V

 


 
 (3.1)

Each wire must be either driven by one of the voltages v+, 0, and VT, or terminated with

high impedance Z or grounded by load resistor RG. All these connections are realized with

B1 B2

W

VS VT

S T

W

VS

VT

B1

B2

S

T

Increase of

resistance

i

 (a) (b)

Fig. 3.1. Crossbar arrays. (a) 1 × 2 crossbar array. (b) 2 × 1 crossbar array. The inset shows the symbolic

diagram of a memristor. The flow of current into the device, as shown above, increases the resistance.

50

CMOS switches shown symbolically in Fig. 3.2. RG is defined as geometric mean of

RCLOSED and ROPEN, i.e., √ (RCLOSED × ROPEN) = 15MΩ. The crossbar array operates by the

simultaneous application of VS and VT to S and T, respectively. Since VS > VT, current must

flow through the memristors. However, the application of these voltages forward biases S

and reverse biases T, thus suppressing the flow of current. This means that VW ≈ VS where

VW is the voltage on wire W. If Vs = v+, the voltage across T will toggle that memristor, i.e.,

the new state of target memristor T becomes t = 0.

The other basic structure for volistor logic is 2 × 1 crossbar array depicted in Fig 3.1b.

In this crossbar array, the logical coding scheme for VS is defined as follows: v־ encodes

logic ‘1’ denoted vs = 1, and 0V encodes logic ‘0’ denoted vs = 0. The 2 × 1 crossbar array

must satisfy (3.2). In particular, VT is selected such that S T CLEARV V V  when
SV v .

0 T CLOSE

S T CLEAR

V V V

V V V

 


 
 (3.2)

The crossbar arrays shown in Fig. 3.1 can be scaled to 1 × n and n × 1 arrays, allowing

for multi-input multi-output volistor logic gates. The 1 × n and n × 1 crossbar arrays must

Z

RG

VS

VT Wire

Fig. 3.2. Symbolic illustration of a driver circuit connected to each wire.

51

satisfy (3.1) and (3.2), respectively. These arrays implement wired-OR function where the

voltage on wire W denotes logical OR of inputs.

3.2.2 Volistor NOT gate in a one-dimensional array

An inverter is the simplest gate to realize in volistor logic; the symbolic diagram is

shown in Fig. 3.3a. Take, for example, the case where (vs, t) = (1, 1), i.e., vs = 1 and t = 1.

Both source and target memristors are initially closed. Volistor NOT can be realized in

either a 1 × 2 or 2 × 1 crossbar array. When realized in a 1 × 2 array, VT must be a negative

voltage, VS must be greater than or equal to 0V, per (3.2), and horizontal wire W must be

connected to high impedance Z. Setting W to Z allows VS to manifest on W. Based on

Ohm’s law, current should flow through the array, since VS -VT > 0V. However, memristor

T is reverse biased and thus suppresses the flow of current. In this case, the voltage drop

across S is 1.2 mV, i.e., the voltage on W equals 599 mV. The voltage drop across T is -

1.198 V, which is sufficient to open memristor T. This is the desired behavior of the inverter

V RVIN ROUT

V

V
R ROUT

VIN1

VIN2

V

V
R ROUT

VIN1

VIN2

V

R
R ROUT

VIN

RIN

(a) (b) (c)

(d)

Fig. 3.3. Symbolic notations for volistor logic gates. (a) Volistor NOT. (b) two-input volistor NOR gate. (c)

two-input volistor AND gate. (d) mixed-input NOR gate. Inside the gates, symbols V and R denote whether

a signal is a voltage-based or resistance-based, respectively.

52

W

VS VT

S T

Z VT

X T

VT Z

T X

VT Z

T X

(a)

 (b) (c) (d) (e)

Fig. 3.4. Behavior of volistor NOT. (a) 1 × 8 crossbar array implementing a four-output NOT and showing

arbitrary nature of the locations of source memristors S and target memristors T. The contribution of each

memristor is determined by the voltage driver, to which it is connected. Wire W is connected to Z. (b) The

operation of a one-output NOT in a 1 × 2 array. VW stabilizes at ≈ 600 mV indicating 𝑣𝑠= ‘1’ manifesting on

W. In addition, t1 toggles to ‘0’. (c) The operation of a 63-output NOT in a 1 × 64 array. VW stabilizes and t

toggles as in b. (d) The operation of a one-output NOT in a 1 × 2 array. VW stabilizes at ≈ 0V indicating vs =

‘0’ manifesting on W. As a result, t remains ‘1’. (e) VW stabilizes as in d.

function, i.e., (vs, t) = (1, 0). Given the parameters introduced in Section 2.3, the switching

delay of volistor NOT is 4.044 ns as shown in Fig. 3.4b.

Volistor NOT may be extended to a multiple fan-out function realized in arrays 1 × n or

n × 1. The multi-output NOT function stores
sv in up to n-1 target memristors in any

arbitrary location in the array. The role of each memristor is determined by its driver, i.e.,

source memristors are driven by VS and target memristors by VT. Interestingly, this means

that a memristor’s function is independent of its position in the crossbar array. Fig. 3.4a

shows a 4-output volistor NOT gate implemented in a 1 × 8 array. Source memristor S is

driven by VS and target memristors T by VT. Memristors X are terminated to Z and do not

53

take part in the circuit’s operation. The proper operation of a 63-output NOT gate with

vs = 1 implemented in a 1 × 64 array and simulated in LTspice is depicted in Fig. 3.4c. VW

is 528.881 mV, and all 63 target memristors are switched off successfully in 6.223 ns.

Fig. 3.4d shows the desired behavior of volistor NOT implemented in a 1 × 2 array when

vs = 0. VW is -599.4 μV, and the target switch remains closed. Fig. 3.4e shows the behavior

of a 63-output volistor NOT implemented in a 1 × 64 array when vs = 0. This results in

VW = -35.559 mV, and all target switches remaining closed. Table 3.1 summarizes these

configurations and their effects on VW. A NOT with an arbitrary fan-out can be realized in

one pulse. NOT gate is explained for completeness. As negated inputs are available at no

additional cost, volistor NOT is not practically useful. In this chapter, all volistor gates

appear only at the input layer.

3.2.3 Volistor NOR gate in a one-dimensional array

The second basic gate in volistor logic is NOR. Fig. 3.3b shows the symbolic diagram

of a two-input volistor NOR gate. Since 1 × n arrays have been previously discussed, in

this subsection, n × 1 arrays are considered. Take, for example, a two-input NOR gate

where (vs1, vs2, t) = (1, 0, 1). This requires the application of input data to S1 and S2 and VT

Table 3.1

Implementation of multi-output volistor not gate

Crossbar

Array
𝑣𝑠 # Outputs

VW

(mV)

Td

(ns)
Fig. 3.4

1 × 2 1 1 598.8 4.065 b

1 × 64 1 63 528.9 6.223 c

1 × 2 0 1 -0.6 Not applicable d

1 × 64 0 63 -35.6 Not applicable e

54

to T. Since the gate is realized in a 3 × 1 crossbar array, Equation (3.2) requires VT > 0V

and VS ≤ 0V. Based on Ohm’s Law, current should flow through the crossbar array since

VT-VS > 0. However, S2 and T are both reverse biased and thus suppress the flow of current.

The voltage drop across S1 is 1.8 mV, i.e. VW = - 598.2 mV. The voltage drop across T is

- 1.198V, which is sufficient to open T. Recall that all memristors are initially closed. The

gate is realized by implementing a wired-OR, i.e., the voltage on W is the logical OR of vs1

and vs2. The output of the gate is the new state of switch T, either open or closed. Table 3.2

shows VW and Td for various combinations of inputs of a single-output volistor NOR gate,

W

VS1

VS2

S1

S2

VT

T

Z

Fig. 3.5. A 3×1 crossbar array used to implement a two-input volistor NOR.

Table 3.2

Implementation of multi-input single-output volistor NOR gate

Crossbar

Array

Number of Inputs

 at Logic VW

(mV)

Td

(ns)
 ‘0’ ‘1’

3 × 1

0 2 -599.4 4.048

1 1 -598.2 4.068

2 0 0.3
Not

applicable

64 × 1

63 0 0.0
Not

applicable

0 63 -600 4.04

50 13 -597.6 4.08

55

implemented in a 3 × 1 and a 64 × 1 crossbar array. Note that with more logic ‘1’ inputs,

the value of VW approaches VS and the switching delay Td gets shorter.

3.2.4 Volistor AND gate in a one-dimensional array

The third basic gate in volistor logic is AND. This gate is realized as NOR with negated

literals of the desired product applied to the crossbar array. For example, the desired

product 𝑎̅𝑏𝑐 ̅ is realized by applying
1 2 3(, ,) (1,0,1)s s sv v v  to the memristors. As a result,

the voltage across T is sufficient to toggle t to ‘0’, i.e., t = a b c  . According to the De

Morgan’s law a b c abc   , which is the desired result. The AND gate can be scaled to

perform multi-input multi-output operations. The details are the same as described for

volistor NOR. It is assumed that negated inputs are always available at the same cost as the

non-negated inputs.

3.2.5 Volistor OR and NAND gates in a one-dimensional array

In all volistor logic gates discussed above, the logical coding scheme of memristive

switch T is defined as follows: an open switch encodes logic ‘0’, and a closed switch

encodes logic ‘1’. This scheme allows direct implementation of volistor NOR/AND;

however, it blocks direct implementation of volistor OR/NAND, i.e., two consecutive

operations must be performed. To realize OR/NAND gates directly, the logical coding

scheme of memristive switches T must be reversed, the open switch encodes logic ‘1’ and

the closed switch encodes logic ‘0’. This scheme allows a direct realization of volistor OR

in the same manner as volistor NOR described in Section 3.2.3. Likewise, volistor NAND

is realized by applying negated input logic values to the crossbar array, in the same manner

56

as the volistor AND described in Section 3.2.4. Circuit designers could select one of the

encoding schemes for the entire system or create a hybrid system with several partitions.

Each partition is encoded by one of the encoding schemes. Partitions with different

schemes are connected through inverters.

3.2.6 Mixed-input logic gates in a one-dimensional array

Inputs on standard volistor gates are voltages; however, as shown in Fig. 3.3d,

implementing gates with mixed-inputs is possible using a hybrid of stateful and volistor

logic where some inputs are represented by resistances and some by voltages. Fig. 3.6

depicts a three-input NOR gate implemented in a 1 × 4 crossbar array where (s, vs2, vs3, t)

= (0, 0, 1, 1). Recall that the members of the first tuple are resistances and voltages while

the members of the second tuple are the logic values that they represent. Specifically, s is

the resistive logic value stored in S1 and is to be interpreted as logic ‘0’. Assume s has been

set in a previous operation, and any memristors with voltage inputs have been already set

to RCLOSED. As in stateful logic, W is grounded through RG, and VCOND is applied to S1 where

VCOND = v+. As in volistor logic, input data are applied to memristors S2 and S3, and bias

voltage VT is applied to memristor T. Equation (3.2) requires VT =v־ and VS ≥ 0V. With this

W

VCOND VS1

S1 S2

VS2 VT

S3 T

RG

Fig. 3.6. Mixed input NOR. The implementation of a three-input one-output NOR gate. The resistive input

is stored in S1and the voltage inputs are applied to S2 and S3. The output is stored in memristor T.

57

configuration, s manifests as a voltage on W, and the circuit operates in the same manner

as volistor NOR. Translation between logical encoding schemes is accomplished in the

same manner as described in Section 3.2.5. Volistor AND gate may be realized with one

extra step since input resistances would need to be negated.

3.3 HYBRID APPROACH TO SYNTHESIZE BOOLEAN FUNCTIONS IN CROSSBAR ARRAYS

In theory, every single-output Boolean function of n variables can be realized in a one-

dimensional crossbar array with n source memristors and two auxiliary memristors [58]

where the auxiliary memristors may act as source or target memristors. However, this

realization leads to a long sequence of pulses (clock cycles). To avoid this long sequence

of pulses, multi-output Boolean functions can be realized in a crossbar network.

In this section, we show how to implement arbitrary Boolean functions in a crossbar

network utilizing a combination of stateful, volistor and mixed input gates. This generic

network structure can be used to implement logic functions in several forms such as SOP,

POS (Product-of-Sum), TANT (Three level AND NOT Network with True inputs) [59],

and ESOP. TANT architecture requires non-inverted inputs, but here, a generalized TANT

with no restriction on the input polarity is considered. Stateful operations are realized solely

with NOR and NOT. The stateful NOT gate is implemented by the INH gate with non-

inverting input set to constant 1. And, the stateful NOR gate is implemented by cascading

INH gates and setting the non-inverted input of the first gate of the cascade to constant 1,

e.g., (1) (1.).a b b a a b      .

58

3.3.1 Hybrid computation in a one-dimensional array

The simplest structure to perform memristive logic computation is a one-dimensional

crossbar array. In this structure, computations can be performed by either solely stateful

logic or by a combination of mixed input, stateful, and volistor logic. The first approach is

potentially slow since a long sequence of operations needs to be implemented. However,

the second approach, which we call hybrid approach, has the potential to reduce the number

of required operations. We assume a SOP with λ single literal degenerate products and γ

products with more than one literal; thus the SOP is the OR of λ+ γ inputs. The given SOP

function requires a four step process to be computed by the second approach:

1) TRUE: Set the memristors to closed states. In a 1 × n array, this requires driving all

vertical wires by v+ > 0V and horizontal wire by v0 > ־V. For an n × 1 array, the bias

voltages should be swapped. This step is realized in one pulse.

2) AND: Implement γ volistor AND gates to compute all γ products of literals. This step

requires a total of γ pulses.

3) NOR: Perform a stateful NOR operation on λ+ γ arguments. This includes the λ single

literal variables, which are supplied as voltages, and the γ products from the previous

step, which are stored as resistances. This step requires one pulse.

4) NOT: Negate the result of the previous step. This step requires one pulse.

Example 3.1. The following example describes the hybrid approach in a crossbar array

for Boolean function f ab ab c   . This function can be realized in a 1 × 4 array in five

consecutive operations, i.e., one for TRUE, two for AND, one for NOR, and one for NOT,

59

as shown in Fig. 3.7. The first operation sets the memristive switches Mi to closed states.

This operation is achieved by driving vertical wires Bi to v+ and horizontal wire W to v־.

The second operation calculates ab by connecting B1 and B2 to voltage signals
a

V and
b

V

encoding literals a and b . The output is stored in M4. Similarly, the third operation

calculates ab by driving B1 and B2 to voltage signals
aV and bV encoding literals a and b.

The output is stored in M3. The fourth operation calculates (, ,)NOR ab ab c utilizing mixed-

input logic. This operation is realized by connecting W to the GND through RG, B3 and B4

to v+, VC to B1 and B2 to v־ where voltage signal VC encodes literal c. The result of the NOR

gate is stored in M2. Currently, the logic value of M2 is f ; hence, the last operation is to

invert f to obtain f. This step is implemented by connecting W to the GND through RG and

driving B1 to v־ and B2 to v+. The value of f is stored in M1. Since M3 and M4 do not take

part in the last computation, B3 and B4 are terminated to Z. Fig. 3.7b summarizes the circuit

configuration during each operation.

60

As illustrated in Example 3.1, any SOP function can be realized in γ+3 operations with

at least γ+1+λ memristors in a one-dimensional crossbar array. In Example 3.1, λ = 1, so

we used four memristors. As a matter of proper operation, all target memristors Ti must be

initially closed. Further, if any of the inputs are logic ‘1’, inputs must be driving a closed

source memristor, Si. If all such Si are open, the electrical characteristics of the memristor

may prevent proper manifestation of the input voltage on the common wire. Therefore, all

memristors should be initially closed. The state resistance of a memristor may only change

when driven by VT. Therefore, a target memristor may be used as a source memristor, i.e.,

driven by VS in subsequent operations with no risk of changing its state. This reuse allows

for compact logic implementations. However, this reuse potentially results in all source

memristors being open, so any subsequent logic ‘1’ inputs have no closed memristor to

W

B1 B2

M1 M2

B3 B4

M3 M4

(a)

Operation Step
Memristors’ Drivers Logic State of Memristors Mi

W B1 B2 B3 B4 M1 M2 M3 M4

1 TRUE v־ v+ v+ v+ v+ 1 1 1 1

2

AND

Z a
V

b
V Z v1 1 1 ־ ab

3 Z Va Vb v ־ Z 1 1 ab ab

4 NOR RG Vc v־ v+ v+ 1 𝑓 ̅ ab ab

5 NOT RG v־ v+ Z Z 𝑓 𝑓 ̅ ab ab

(b)

Fig. 3.7. Example of logic computation based on hybrid approach in a crossbar array. (a) 1 × 4 crossbar

array used to implement SOP function f. (b) Circuit configuration during each step. The total number of

consecutive operations (pulses) to realize f is 5.

61

drive. Therefore, the number of memristors in the array should be more than the number

of products, i.e., extra memristors should be provided as dedicated targets.

3.3.2 Hybrid computation in a two-dimensional array

The crossbar array can be scaled into a two-dimensional crossbar array of size m × n.

With this structure, in a single volistor operation, a product of literals can be created and

copied to an arbitrary column memristor or row memristor simultaneously, i.e., each row

in an m × n crossbar can be thought of as a 1 × n crossbar array and each column can be

thought of as an m × 1 crossbar array. The multi-output capability of crossbar arrays

discussed earlier allows this arbitrary copying in any dimension. Fig. 3.10 depicts target

memristors as multi-input volistor gates whose outputs are the states of the corresponding

memristors. Using the multi-output property, any combination of NOR/AND gates can be

copied to any number of arbitrary locations in a single column. One operation is required

 (a) (b) (c)

Fig. 3.8. Crossbar array. (a) Crossbar array is divided into three sections; gates in section 1 are implemented

with volistors but in section 2 and 3 are realized with stateful NOR. (b) The stateful approach realizes two

logic levels. (c) However, the hybrid approach realizes three logic levels with the same implementation

cost of the stateful approach. Li is the number of logic level.

1 2

3

.

.

.

Hybrid

L1 L2

V
R

V

V
R

V

V
R

V

V
R

V

L3

Stateful

L1 L2

.

.

.

62

for each gate type. The entire crossbar array can be populated with an arbitrary combination

of gates in, worst case, 2n operations where n is the number of vertical wires. Populating

the crossbar in this manner is the first step (after initialization) in an approach that combines

the use of volistor, mixed-input and stateful logic in the same crossbar array to produce

logic computations.

Example 3.2. As a means of discussing this hybrid approach, take for example, the

implementation of function f ab cd A B A AB      . This requires the same four-

step process described in Section 3.3.1 and is illustrated in Fig. 3.9. The matrices represent

the logic values stored in each memristor of the crossbar. Voltages applied to the horizontal

and vertical wires are indicated by the values shown to the left of and on top of the matrices.

The arrows between matrices indicate the number of operations required to move to the

next matrix. Fig. 3.9a shows the crossbar after initialization; the voltages to achieve this

state are not shown. Fig. 3.9b shows the result of computing the first product with volistor

AND. Fig. 3.9c shows the computation of the other product, which is also realized with

volistor AND. Fig. 3.9d shows stateful logic being used to compute B ab cd  . In this

step, v+, v־, and RG are equal to VCOND, VPROG, and the load resistor in stateful logic.

Fig. 3.9e shows the implementation of a mixed NOR gate on resistance-based signal B

and voltage-based signal A producing the desired function f.

With the hybrid approach, the use of stateful IMP can be avoided. This simplifies driver

circuit, removes the need for a keeper circuit [10], and simplifies crossbar initialization.

The stateful approach also requires a step to store the inputs in the crossbar, however, since

63

the hybrid approach uses voltages as inputs, no storage step is required. The main

advantage is that for the same cost (number of operations and memristors), the hybrid

approach produces one additional level of logic versus the stateful approach. The hybrid

approach uses the efficiency of volistors to implement the first level of logic, which is

usually most complex.

Fig. 3.8a depicts a crossbar array divided into three sections. In stateful logic, the

memristors in section 1 store inputs; the memristors in section 2 store the first-level logic

outputs, and the memristor in section 3 stores the output of the second-level logic. In the

hybrid approach, since inputs are voltages, the memristors in section 1 store the outputs of

the first-level logic; the memristors in section 2 store the outputs of the second-level logic,

and the memristor in section 3 stores the output of the third-level logic. With the same

number of operations and the same number of memristors, the stateful approach produces

only two-level logic while the hybrid approach produces three-level logic as shown in

Fig. 3.8c. However, since in volistor logic the inputs are voltages, there can be only one set

of inputs applied to the crossbar at any given moment, and therefore, only one output can

be computed at a time. In stateful logic, inputs are stored as resistances. Therefore, each

row or column can be thought of as a distinct set of inputs capable of simultaneously

producing distinct outputs, with the restriction that all outputs implement the same type of

stateful gate, e.g., all the four NOR gates as shown in block 2 of Fig. 3.8a. In the next

subsection, we use the hybrid approach in a crossbar network which provides a means of

achieving different outputs in parallel using volistor logic.

64

Fig. 3.9. Symbolic matrices illustrate the steps of computing f ab cd A   based on the hybrid approach.

(a) Initialization step. (b) Computing ab with volistor AND. (c) Computing cd with volistor AND. (d)

Computing ab cd with stateful NOR. (e) Computing f with mixed-input NOR.

3.3.3 Hybrid computation in a crossbar network

In a single crossbar array using volistor logic, there is a limited form of parallelism, i.e.,

only identical gates with identical inputs can be produced in a single step. To overcome

this limitation, a network of many individual crossbars can be used. Each individual

crossbar can have as many copies as necessary of a single gate with identical inputs. This

structure allows two or more separate crossbars to simultaneously calculate the first logic

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1
→

𝑎𝑏̅ 1 1
 1 1 1

1 1 1
1 1 1

 1 1 1
 1 1 1

1 1 1
1 1 1

 1 1 1
 1 1 1

1 1 1
1 1 1

 1
→

𝑎𝑏̅ 1 𝑐̅𝑑̅
 1 1 1

1 1 1
1 1 1

 1 1 1
 1 1 1

1 1 1
1 1 1

 1 1 1
 1 1 1

1 1 1
1 1 1

 (a) (b) (c)

1
→

𝑎𝑏̅ 1 𝑐̅𝑑̅
 1 1 1

1 𝐵̅ 1
1 1 1

 1 1 1
 1 1 1

1 1 1
1 1 1

 1 1 1
 1 1 1

1 1 1
1 1 1

1
→

𝑎𝑏̅ 1 𝑐̅𝑑̅
 1 1 1

1 𝐵̅ 1
1 1 1

 1 1 1
 1 1 1

1 1 1
1 1 1

 1 1 1
 1 1 1

1 𝐴𝐵 1
1 1 1

 (d) (e)

 𝒗− 𝑽𝒂̅ 𝑽𝒃̅ 𝒁 𝒁 𝒁

𝒁
𝟎
𝟎
𝟎
𝟎
𝟎

𝒗+ 𝒁 𝒗+ 𝒁 𝒗− 𝒁 𝟎 𝟎 𝟎 𝟎 𝑹𝑮 𝟎
𝑹𝑮
𝟎
𝟎
𝟎
𝟎
𝟎

𝒗−

𝒁
𝒁
𝑽𝑨̅
𝒗+

𝒁

Table 3.3

Multiple logic structures and their De-Morgan’s equivalences

Logical Form De Morgan’s Equivalent
Example

#of Pulses

1 AND-OR (SOP) AND-NOR-NOT Fig. 3.10a 3

2 OR-AND (POS) NOR-NOR Fig. 3.10b 2

3 NAND-NAND-NAND AND-NOR-NOR-NOT Fig. 3.10c 4

4 AND-XOR (ESOP) AND-NOT-NOR-NOR Fig. 3.10d 4

5 NAND-AND-XOR AND-NOR-NOT-NOR-NOR Fig. 3.10e 5

6 AND-XOR-OR AND-NOT-NOR-NOR-NOR-NOT Fig. 3.10f 7

65

level of an arbitrary Boolean function. Additional logic levels can be achieved with stateful

operations, mixed input gates, or both. The first level volistor operations can be NOR or

AND. Table 3.3 shows different forms of Boolean functions that are well suited to this

hybrid approach. Next, we present detailed examples for cases 2 and 5.

Example 3.3. POS implementation

Take an EXOR function of three variables

()()()()f a b c a b c a b c a b c a b c            as an example. The De Morgan

equivalent expression is () () () ()a b c a b c a b c a b c w x y z               .

The function is implemented in four crossbar arrays communicating through control

circuitry capable of making and breaking connection between vertical adjacent crossbars

arrays (Fig. 3.10). These interconnections are not further discussed in this chapter.

Executing f is a three-step procedure.

1) Initialize each crossbar array with all memristors set to closed state by driving vertical

wires with v+ and horizontal wires with v־.

2) Simultaneously compute volistor NOR of each maxterm in a separate crossbar

column (Fig. 3.10a) as described in Section 3.2.3.

3) Perform a stateful NOR on logic values computed in step 2 (Fig. 3.10b).

66

 (a) (b)

Fig. 3.10. Implementation of POS function f in a crossbar network. The function is realized in a two-step

process. (a) Realizing the first logic level of function f in separate crossbars. This step produces four NOR

gates. (b) Realizing the second logic level of function f in a 16 × 1 crossbar array. This step produces the

output of the POS function. The interconnections and voltages applied to the wires show the network

configuration in each step.

𝑍

0

0

0

𝑍

0

0

0

𝑍

0

0

0

𝑍

0

0

0

𝑣− 𝑉𝑎 𝑉𝑏̅ 𝑉𝑐̅

𝑣− 𝑉𝑎 𝑉𝑏 𝑉𝑐

𝑣− 𝑉𝑎̅ 𝑉𝑏̅ 𝑉𝑐

𝑣− 𝑉𝑎̅ 𝑉𝑏 𝑉𝑐̅

𝑣−

0

0

0

𝑣−

0

0

0

𝑣−

0

0

0

𝑣−

0

0

𝑣+

 RG 0 0 0

w

x

y

z

w

x

y

z

f

67

 (a) (b) (c)

 (d) (e)

 VL SL SL SL SL SL

 1p 1p 1p 1p 1p 1p

 (f)

Fig. 3.11. Implementation of Boolean functions in different logic structures based on the hybrid

approach. (a) Example of a SOP function. (b) Example of a POS function. (c) Example of a three level

sum of products of sums. (d) Example of an XOR of two products. (e) Example of a NAND-AND-XOR

logic function. (f) Example of an AND-XOR-OR logic function. ‘P’ stands for pulse (operation), e.g.,

1p indicates one pulse for implementing a logic level. VL and SL stand for volistor and stateful logic

operations. In all circuits, only the first logic level is implemented with volistor gates.

VL SL SL

1p 1p 1p

VL SL

1p 1p

 VL SL SL SL

 1p 1p 1p 1p

 VL SL SL SL

 1p 1p 1p 1p

 VL SL SL SL SL

 1p 1p 1p 1p 1p

68

Executing f with a solely stateful approach would require two steps plus the overhead

of setting up each input. This input overhead is directly proportional to the number of inputs

for each gate. Volistor logic has no such input overhead; a multi-input gate and a single-

input gate are both produced in the same number of steps. However, the solely stateful

approach can be executed in two steps in a single crossbar, while the hybrid approach

would require more steps if performed in a single crossbar.

Example 3.4. NAND-AND-XOR implementation

Take the function . . .f e abed cd ae b  as an example. The De Morgan equivalent of

function f is

1 2 1 2 1 2.

f e ab cd ae b e ae cd cd ae b e x y z b e x y y z b

w w w w o o

                      

    

Executing f is the six-step procedure depicted in Fig. 3.12. In each step, all outputs are

computed simultaneously.

1) Perform the initialization as in Example 3.3.

2) Compute the products x, y and z. y is computed twice to enable a simultaneous

computation in step 3 (Fig. 3.12a).

3) Using mixed input gates as described in Section 3.2.6, compute w1 and w2 where

e
V and

b
V are input voltage and x, y, and z are input resistances. This step realizes

the NOR logic level (Fig. 3.12b).

69

4) Produce 1w and 2w This performs two stateful NOT gates in the third logic level

(Fig. 3.12c).

5) Produce o2 and o1 using the outputs from steps 3 and 4 (Fig. 3.12d). This step realizes

the fourth logic level, NOR (Fig. 3.12b).

6) Produce f from o2 and o1. This produces the fifth logic level, NOR (Fig. 3.12e).

Executing f with the solely stateful approach would require six steps plus the input setup

overhead.

Note that NAND-AND-XOR circuits are a new concept in logic synthesis. These

circuits are a generalization of the PSE circuits introduced in [60] where only one argument

of the AND layer is a NAND and others are literals. In PSE circuits, every output is

exclusive-OR of Product-Sum-EXOR).

70

 (a) (b)

 (c) (d)

 (e)

x

y

z

y

0

0

𝑣+

0

RG 0 0 0

0

0

𝑣+

0

RG 0 0 0

0

0

𝑣−

0

0

0

𝑣−

0

x

y

z

y

w1 w2

Z

0

0

0

𝑣− 0V V𝑎 V𝑏̅

Z

0

0

0

𝑣− 0V V𝑎̅ V𝑒̅

Z

0

0

0

𝑣− 0𝑉 𝑉𝑐 𝑉𝑑̅

Z

0

0

0

𝑣− 0𝑉 𝑉𝑐 𝑉𝑑̅

𝑣−

0

0

V𝑒̅

RG 0 0 0

𝑣−

0

0

V𝑏̅

RG 0 0 0

𝑣−

0

𝑣+

0

𝑣−

0

𝑣+

0

x

y

z

y

w1 w2

¬w2¬w1

0

0
RG

0

𝑣+ 0 0 0 𝑣+ 0 0 𝑣−

0

0
RG

0

x

y

z

y

w1 w2

¬w2¬w1

o2

o1

x

y

z

y

w1 w2

¬w2¬w1

o2

o1

f

0 0 0 RG

0

0

𝑣−

0

𝑣+

0

𝑣−

71

Fig. 3.12. Realization of NAND-AND-XOR function f. The function is realized in a six-step process in four

crossbar arrays. (a) The first logic level is realized with volistors; (b) the second logic level is realized with

mixed-input gates; (c)-(e) the other logic levels are realized with stateful logic. Wires are set to 0V, v+, or v־

or connected to GND through load resistor RG or to Z. In each step, the operation is depicted by symbolic

gates, and the results are shown as outputs of the gates.

3.4 VOLISTOR LOGIC POWR CONSUMPTION

Power measurements are made in LTspice IV using the same model mentioned in

Section 2.3. The average power consumption of each individual element of a 1 × n crossbar

array (n ≤ 64) is estimated over a 10 ns interval beginning with the application of the driver

voltages v+= 0.6V, v0.6- =־V and 0V, which are applied for 8 ns. Let the power consumed

in a source memristor set to logic ‘1’ be denoted PS1, the power consumed in a source

memristor set to logic ‘0’ be denoted PS0, the power consumed in a target memristor be

denoted PT, and the power consumed in load resistor RG be denoted PRG. Let PS = PS0+ PS1.

The superscripts SL and VL are used to indicate power consumptions during stateful and

volistor logic, respectively. For example,
0

SL

SP is the power consumed by a source

memristor set to logic ‘0’ when SL is performed, and VL

SP is the power consumed in source

memristors when volistor logic is performed. Table 3.4 describes the power consumption

in each crossbar element where VW and
WV are the voltages on the horizontal wire during

VL and SL operations, respectively. Note that the resistive effect of wires is neglected

compared to RCLOSED = 500 KΩ. For example, the resistance of a relatively large width wire

of diameter 120 nm used in a 32 × 32 crossbar array is at most 30 KΩ when implemented

with relatively high resistance p-doped Si [61]. In other words, the resistance of each

horizontal or vertical wire of the crossbar is about 1 KΩ, which is negligible compared to

RCLOSED. The power consumed by volistor logic in a crossbar array is entirely due to the

72

leakage through the reverse biased memristors as there is no direct path to ground.

However, when volistor logic is performed in a crossbar array, there is an additional power

consumption in memristors not taking part in the operations. This is true for stateful logic,

as well. Since the power consumption in both cases is similar, and we are only interested

in comparing SL and VL, this additional power is not discussed.

In this section, the power consumption in a crossbar array for S1 > 0 and S1 = 0 is

analyzed separately. For ease of reference, let S1 and S0 denote the numbers of source

memristors set to vs = 1 and vs = 0, respectively; T denotes the number of target memristors;

PSL and PVL denote the total power consumption in memristors and in load resistor RG

during SL and VL operations, respectively; and Td denotes the switching delay—the time

required to completely switch from the close state to open state.

73

Table 3.5

Power consumption, switching delay, and power ratio in a 1 × 8 crossbar array

(S1, S0 , T) Circuit

Realization

PS1

(nW)

PS0

(nW)

PT

(nW)

PRG

(nW)

Td

(ns)

Pavg

(nW)

𝑃𝑆𝐿
𝑃𝑉𝐿

(2, 2, 1) SL 0.168 0.168

e-3

2.192 17.946 4.239 20.474 6.13

VL 2.224

e-3

0.555 2.226 0 4.044 3.340

(2, 3, 1) SL 0.168 0.168

e-3

2.192 17.947 4.239 20.476 5.254

VL 3.471

e-3

0.555 2.225 0 4.044 3.897

(2, 4, 1) SL 0.168 0.168

e-3

2.192 17.947 4.239 20.476 4.601

VL 4.993

e-3

0.554 2.224 0 4.054 4.450

(2, 4, 2) SL 0.187 0.187

e-3

2.190 17.911 4.227 22.666 3.397

VL 8.868

e-3

0.553 2.221 0 4.064 6.672

(2, 3, 3) SL 0.207 0.207

e-3

2.187 17.876 4.288 24.645 2.955

VL 11.22

e-3

0.553 2.220 0 4.073 8.341

(2, 2, 4) SL 0.229 0.229

e-3

2.185 17.838 4.288 27.036 2.701

VL 0.014 0.552 2.219 0 4.083 10.008

S0 and S1 denote the numbers of source memristors set to logic ‘0’ and logic ‘1’, respectively; T denotes

the number of target memristors. PS0 and PS1 are the power consumptions in a source memristor set to logic

‘0’ and logic ‘1’, respectively. PT is the power consumption in a target memristor, and PRG is the power

consumption in load resistor RG. Pavg denotes the average power consumption in the crossbar array. Td

denotes the switching delay. PSL and PVL indicate the power consumptions during SL and VL operations,

respectively.

Table 3.4

Power consumption in each crossbar element

Logical Operation PS0 PS1 PT PRG

VL
(VW)

2

𝑅𝑂𝑃𝐸𝑁

(𝑣+ − 𝑉𝑊)
2

𝑅𝑂𝑃𝐸𝑁 × 10
−3

(𝑣+ + 𝑉𝑊)
2

𝑅𝑂𝑃𝐸𝑁
 0

SL
(𝑣+ − 𝑉̈𝑊)

2

𝑅𝑂𝑃𝐸𝑁

(𝑣+ − 𝑉̈𝑊)
2

𝑅𝑂𝑃𝐸𝑁 × 10
−3

(𝑣+ + 𝑉̈𝑊)
2

𝑅𝑂𝑃𝐸𝑁

𝑉̈𝑊
2

𝑅𝑂𝑃𝐸𝑁
× 10√10

74

3.4.1 Power analysis and switching delay in a 1 × 8 crossbar array for S1 > 0

Table 3.5 compares the power consumed by each element switching delay Td and the

overall power consumption in memristors and load resistor RG ()SL

VL

P

P
for various

combinations of S1, S0 and T during SL and VL operations. The simulation results shown

in Table 3.5 are summarized as follows.

1) In SL and VL, PT is approximately 2 nW, i.e., changes to high/low composition of

inputs slightly affects the power consumed by any individual T. This is expected

given the characteristics of the rectifying memristors and considering that VW≈ VS.

2) The largest contributor to the power consumption in SL is RG—it consumes

approximately eight times more power than the next most power hungry circuit

element. In VL, there is no RG component.

3) The minor contributors to the power consumption in SL is
0 0

SL

SS P .

4) The major contributors to the power consumption in VL are determined by S0 and T.

5) For any combination of S1, S0, and T, 2SL

VL

P

P
 . The lower bound of SL

VL

P

P
is obtained

for (S1, S0, T) = (1, 0, 7), which is 2.129.

6) For any combination of S1, S0, and T, Td is approximately equal in both SL and VL.

7) The general power relation between all circuit elements is

0 1 1 0

SL VL SL VL

S S S S T RGP P P P P P     .

75

In a 1 × 8 crossbar array, for any combination of S1, S0, and T, where S1 > 0, the power

ratio can be approximated based on the properties shown below. The proofs of these

properties can be found in the appendix.

Property 1. When S1 > 0, the power consumption in a target memristor during VL

operation can be approximated as shown by (3.3).

 𝑃𝑇
𝑉𝐿 ≈ 4 × 𝑃𝑆0

𝑉𝐿 (3.3)

Property 2. When S1 > 0, the power consumption in load resistor RG can be

approximated as shown by (3.4).

 𝑃𝑅𝐺 ≈ 8 × 𝑃𝑇
𝑆𝐿 (3.4)

Property 3. When S1 > 0, the power consumption in source memristors during SL

operation is considerably smaller than the overall power consumption in target memristors

and load resistor RG as shown by (3.5).

𝑃𝑆
𝑆𝐿

𝑃𝑆𝐿−𝑃𝑆
𝑆𝐿 ≪ 1 (3.5)

Property 4. The power consumption in source memristors driven by logic ‘1’ during

VL operation is considerably smaller than the overall power consumption in source

memristors driven by logic ‘0’ and target memristors as shown by (3.6).

𝑆1×𝑃𝑆1
𝑉𝐿

𝑃𝑉𝐿−𝑆1×𝑃𝑆1
𝑉𝐿 ≪ 1 (3.6)

According to (3.5) and (3.6)

𝑃𝑆𝐿
𝑃𝑉𝐿

≈
𝑇 × 𝑃𝑇 + 𝑃𝑅𝐺

𝑆0 × 𝑃𝑆0
𝑉𝐿 + 𝑇 × 𝑃𝑇

76

And according to (3.3) and (3.4)

𝑇 × 𝑃𝑇 + 𝑃𝑅𝐺

𝑆0 × 𝑃𝑆0
𝑉𝐿 + 𝑇 × 𝑃𝑇

≈
𝑇 × 𝑃𝑇 + 8 × 𝑃𝑇

𝑆0 ×
𝑃𝑇
4 + 𝑇 × 𝑃𝑇

Therefore, for any combination of S1, S0, and T where S1 > 0,

𝑃𝑆𝐿

𝑃𝑉𝐿
≈

𝑇+8

𝑇+
𝑆0
4

 (3.7)

Note that the lower bound of (3.7) is larger than 2, therefore 𝑇 +
𝑆0

2
< 8.

In terms of switching delay, volistor gates perform slightly faster than stateful gates.

The switching delay in both SL and VL operations corresponds to the voltage drop across

the target memristors. This voltage drop is minimum when (S1, S0, T) = (1, 0, 7) where Td

is 4.136 ns and 4.477 ns for VL and SL, respectively. This voltage drop is maximum for

(S1, S0, T) = (7, 0, 1) where Td is 4.030 ns and 4.089 ns for VL and SL, respectively. Note

that the increase of S1 reduces the delay in both SL and VL operations.

3.4.2 Power analysis in a 1 × 8 crossbar array for S1 = 0

Table 3.6 shows the power consumption in a 1 × 8 crossbar array during VL and SL

operations. The simulation results show
𝑃𝑆𝐿

𝑃𝑉𝐿
>1 for (S1, S0, T) = (0, S0, 1) and varied S0

between 1 and 7. The increase of S0 has minor effect on PVL as shown in Table 3.6.

Property 5. When S1 = 0, the power consumption in source memristors driven by

logic ‘0’ during VL operation is considerably smaller than the overall power consumption

in target memristors as shown by (3.8).

77

 𝑆0×𝑃𝑆0

𝑉𝐿

𝑇×𝑃𝑇
𝑉𝐿 ≪ 1 (3.8)

For a larger crossbar array, Equation (3.8) is still valid. For example, the upper bound

of
𝑃𝑆0
𝑉𝐿

𝑃𝑇
𝑉𝐿 in a 1 × 64 crossbar array obtained for (S0, T) = (63, 1) is 1.229 × 10-5 ≪ 1. Note that

when S1 = 0, 𝑃𝑇
𝑆𝐿 ≠ 𝑃𝑇

𝑉𝐿 and the increase of S0 increases
𝑃𝑆𝐿

𝑃𝑉𝐿
 as shown in Table 3.6. In a

1 n crossbar array, the power consumption in memristors during SL operation is the same

for (S1, S0, T) = (0, n-k, k) and (0, k, n-k) (1 ≤ k < n) as shown in Table 3.7. In other words,

the voltage on wire W is symmetrical for (S0, T) = (n-k, k) and (k, n-k). For example, for

(S0, T) = (2, 6),
WV = -51.096 mV whereas for (S0, T) = (6, 2),

WV = 51.096 mV. For both

combinations, PSL = 4.246 nW, as shown in Table 3.7.

Table 3.6

Calculating
𝑝𝑠𝑙

𝑝𝑣𝑙
 in a 1 × 8 crossbar array for S1= 0 and S0 varied between 1 to 7

(S1, S0, T)
Circuit

Realization

PS0

(nW)

PT

(nW)

PRG

(nW)

Pavg

(nW)

𝑃𝑆𝐿
𝑃𝑉𝐿

(0, 1, 1)

SL 0.558 0.558 0 1.116

2.004
VL

0.556

e-3
0.556 0 0.557

(0, 2, 1)

SL 0.527 0.589 0.014 1.657

2.975
VL

0.139

e-3
0.557 0 0.557

(0, 4, 1)

SL 0.474 0.648 0.114 2.658

4.772
VL

0.035

e-3
0.557 0 0.557

(0, 7, 1)

SL 0.407 0.731 0.392 3.58

6.427
VL

0.011

e-3
0.557 0 0.557

78

Note that SL

VL

P

P
increases when S0 approaches n. Recall that in SL operation source

memristors are connected to v+ whereas in VL operation source memristors are connected

to 0V (since S1 = 0). In addition, the power consumption in source memristors during VL

operation is very small as shown by (3.8). Therefore, the increase of S0 only slightly affects

PVL. In contrast, the power consumption in source memristors and load resistor RG during

SL operation can significantly increase the SL

VL

P

P
 ratio.

When S0 = T, during SL operation W Wv V v V    , and thus, 0W RGV P V  . In this

case, 2SL

VL

P

P
 . For example, in a 1 × 8 crossbar array for (S0, T) = (4, 4), 2.113SL

VL

P

P
 and

Table 3.7

Calculating
𝑝𝑠𝑙

𝑝𝑣𝑙
 in a 1 × 8 cross point array for S1 = 0 and varied S0 and T

(S1, S0, T)
Circuit

Realization

PS0

(nW)

PT

(nW)

PRG

(nW)

Pavg

(nW)

𝑃𝑆𝐿
𝑃𝑉𝐿

(0, 7, 1)

SL 0.407 0.731 0.392 3.972

6.427
VL

0.011

e-3
0.557 0 0.557

(0, 6, 2)

SL 0.455 0.671 0.174 4.246

3.811
VL

0.062

e-3

0.55

7
0 1.114

(0, 5, 3)

SL 0.505 0.613 0.044 4.408

2.636
VL

0.200

e-3
0.557 0 1.672

(0, 4, 4)

SL 0.588 0.558 0 4.704

2.113
VL

0.556

e-3
0.556 0 2.226

(0, 3, 5)
SL 0.613 0.505 0.044 4.408

1.582
VL 0.002 0.556 0 2.786

(0, 2, 6)
SL 0.671 0.455 0.174 4.246

1.267
VL 0.005 0.554 0 3.352

(0, 1, 7)
SL 0.731 0.407 0.392 3.972

1.025
VL 0.027 0.550 0 3.877

79

in a 1 × 64 crossbar array for (S0, T) = (32, 32), 2.005SL

VL

P

P
 . In a 1 × 8 crossbar array, for

any combination of S0 and T, 1SL

VL

P

P
 . The lower bound of SL

VL

P

P
, which is 1.025, is obtained

for (S0, T) = (1, 7). This combination maximizes PVL while minimizes PSL as shown in

Table 3.7. However, in a larger crossbar array,
SL

VL

P

P
can be smaller than one. For given S0,

Table 3.8 shows the minimum value of T, for which 1SL

VL

P

P
 . A further increase of T results

in a further decrease of SL

VL

P

P
. The power analysis in a 1 × 64 crossbar array for S1 > 0 is

shown in Section 3.4.3.

Table 3.8

Calculating
𝑝𝑠𝑙

𝑝𝑣𝑙
 in a 1 × 64 crossbar array when S1 = 0

(S1, S0, T)
Circuit

Realization

PS0

(nW)

PT

(nW)

PRG

(nW)

Pavg

(nW)

𝑃𝑆𝐿
𝑃𝑉𝐿

(0, 1, 8)
SL 0.757 0.388 0.508 4.369

0.987
VL 0.035 0.549 0 4.427

(0, 2, 12)
SL 0.818 0.347 0.830 6.63

0.997
VL 0.020 0.551 0 6.652

(0, 3, 16)
SL 0.869 0.315 1.147 8.794

0.990
VL 0.016 0.552 0 8.88

(0, 4, 20)
SL 0.912 0.290 1.447 10.895

0.982
VL 0.014 0.552 0 11.096

(0, 5, 23)
SL 0.933 0.278 1.601 12.66

0.992
VL 0.012 0.552 0 12.756

(0, 6, 26)
SL 0.951 0.268 1.742 14.416

0.998
VL 0.010 0.553 0 14.438

(0, 7, 30)
SL 0.982 0.253 1.987 16.451

0.987
VL 0.010 0.553 0 16.66

Nonparticipant memristors in computations are terminated to high impedance Z.

80

3.4.3 Power analysis and switching delay in a 1 × 64 crossbar arrays for S1 > 0

Table 3.9-Table 3.12 show the power consumption and switching delay in SL and VL

for various combinations of S1, S0, and T, where S1 > 0. Our simulation results show that

the first four observations stated for a 1 × 8 crossbar array in Section 3.4.1 still hold.

However, unlike the last two observations, the following is observed.

1) The main contributors to SL

VL

P

P
are S0, T, and PRG. For example, holding T constant

while increasing S0, as shown in Table 3.9, decreases SL

VL

P

P
. In contrast, holding S0

constant while increasing T, as shown in Table 3.10, bring SL

VL

P

P
close to 1.

2) The switching delay Td in VL is slightly shorter than in SL when 1SL

VL

P

P
 and is equal

to or a bit longer than in SL when 1SL

VL

P

P
 .

In a 1 × 64 crossbar array, for any combination of S1, S0, and T, where S1 > 0, Equation

(3.3), (3.5), and (3.6) hold, and since 7.078 ≤ SL

VL

P

P
≤ 8.328, Equation (3.4) can approximate

the relation between PRG and 𝑃𝑇
𝑆𝐿 during SL operation. As a result, SL

VL

P

P
can still be

approximated by (3.7). All derivations are in the same manner as shown in the appendix.

When S0 > 33, a VL operation consumes more power than SL operation as shown in

Table 3.9. In this case, the increase of T brings SL

VL

P

P
close to 1, as predicted by (3.7) and

shown in Table 10. Conversely, when S0 < 33, VL operations consume less power than SL

81

operations, and the increase of T brings SL

VL

P

P
close to 1, as shown in Table 3.12. Note that

the increase of S1 slightly affects SL

VL

P

P
as shown in Table 3.11. In terms of delay, volistors

perform faster than stateful gates when 1SL

VL

P

P
 , however, when 1SL

VL

P

P
 , the switching

delay in both operations is almost the same; when 1SL

VL

P

P
 , stateful gates perform faster

than volistors. In other words, the switching delay is determined by the voltage drop across

the target memristors. A logic gate operates faster when the voltage drop across the target

memristors is larger. The stateful gates are faster as S0 increases while S1 decreases

(Table 3.9) but slower for constant S0 with varied T from 1 to 57 (Table 3.12). Table 3.9

shows 1SL

VL

P

P
 when S0 > 33, regardless of value S1. Table 3.11 reinforces our conclusion

that S1 has almost no effect on SL

VL

P

P
. As S0 increases while S1 decreases, it can be seen that

1 1

VL SL

S SP P and larger Td in VL than in SL (Table 3.9). Table 3.10 shows how the increase

of T affects SL

VL

P

P
when S0 > 33. The increase of T brings SL

VL

P

P
close to 1. For all combinations,

Td is larger for VL and is associated with the large S0. Table 3.11 shows how the increase

of S1 affects SL

VL

P

P
when S0 (>33) and T are constant at 40 and 1, respectively. The increase

of S1 has a minor effect on SL

VL

P

P
, i.e., 0.856SL

VL

P

P
for all combinations shown in Table 3.11.

82

Although the increase of S1 has almost no effect on SL

VL

P

P
, it decreases the delay in both SL

and VL operations. Table 3.12 shows how the increase of T affects SL

VL

P

P
when S1 and S0 are

kept constant at 1 and 6, respectively. For all combinations,
0 0

5.2RG

VL

S

P

S P



. However, the

increase of T brings SL

VL

P

P
close to 1, reducing the effect of

0 0

RG

VL

S

P

S P
significantly as

predicted by (3.7). As a result, realizing a multi-input multi-output gate in a small crossbar

array, e.g. 1 × 8, with VL is more power efficient than with SL. This conclusion is

consistent with (3.7) and the results shown in Table 3.5. The increase of T increases
1

SL

SP

more than
1

SL

SP and thus causes longer Td in SL.

As a summary, in a 1 × 8 crossbar array, the power consumption in SL is larger than in

VL, and also volistors operate slightly faster. In a 1 × 64 crossbar array, when S1 > 0, the

majority of the power consumption in VL corresponds to
0 0

VL

S TS P T P   and in SL

corresponds to RG TP T P  as shown by (3.3) through (3.6). Therefore, SL

VL

P

P
can be

estimated by (3.7). In a 1 × 64 crossbar array, a multi-input volistor gate consumes less

power than a multi-input stateful gate, unless the majority of inputs are logic ‘0’. When

S1=0, a multi-input volistor gate consumes less power than a multi- input stateful gate.

Recall that the majority of the power consumption in VL for S1 = 0 is VL

TT P as shown by

(3.8). However, in SL operation, the power consumption in each circuit element depends

on the combination of S0 and T. In a 1 × 64 crossbar array, for S1 > 0, a logic gate with

83

large fan-out consumes the same power regardless of the implementation approach, SL or

VL. Chapter 4 introduces another memristive logic gates, which we call programmable

diode gates. The programmable diode gates use voltage as input and output and capitalize

on rectifying memristors. The mix of volistor and programmable diode gates can further

reduce the number of pulses for computing logic function.

Table 3.9

Delay and power comparisons in a 1 × 64 crossbar array for varied S1 and S0 ≥ 33

(S1, S0, T)
Circuit

Realization

PS1

(nW)

PS0

(nW)

PT

(nW)

PRG

(nW)

Td

(ns)

Pavg

(nW)

𝑃𝑆𝐿
𝑃𝑉𝐿

(30, 33, 1)
SL 0.770e-3 0.770e-6 2.228 18.541 4.041 20.792

1.009
VL 0.757e-3 0.556 2.228 0 4.041 20.599

(29, 34, 1)
SL 0.824e-3 0.824e-6 2.227 18.539 4.042 20.767

0.982
VL 0.857e-3 0.556 2.227 0 4.034 21.156

(25, 38, 1)

SL 1.107e-3 1.107e-6 2.227 18.533 4.044 20.760
0.885

VL 1.423e-3 0.558 2.227 0 4.048 23.467

(13, 44, 1)
SL 0.004 4.069e-6 2.224 18.484 4.060 20.760

0.778
VL 0.007 0.554 2.222 0 4.072 26.689

(1, 62, 1)
SL 0.579 0.579e-3 2.159 17.406 4.470 20.18

0.583
VL 2.021 0.492 2.098 0 4.907 34.623

Table 3.10

Delay and power comparisons in a 1 × 64 crossbar array for constant S1 and S0 and varied T

(S1, S0, T)
Circuit

Realization

PS1

(nW)

PS0

(nW)

PT

(nW)

PRG

(nW)

Td

(ns)

Pavg

(nW)

𝑃𝑆𝐿
𝑃𝑉𝐿

(1, 40, 1)
SL 0.603 0.603e-3 2.157 17.383 4.461 20.167

0.856
VL 0.908 0.513 2.141 0 4.575 23.569

(1, 40, 4)
SL 0.821 0.821e-3 2.145 17.187 4.543 26.621

0.888
VL 1.179 0.507 2.129 0 4.665 29.975

(1, 40, 8)
SL 1.161 1.161e-3 2.130 16.928 4.65 35.175

0.914
VL 1.592 0.5 2.113 0 4.780 38.496

(1, 40, 16)
SL 2.005 2.005e-3 2.098 16.421 4.895 52.074

0.943
VL 2.592 0.484 2.081 0 5.049 55.248

84

3.5 SUMMARY AND CONCLUSION

Volistors capitalize on the characteristics of rectifying memristors to allow voltages to

be used directly as inputs. Hence, there is no need to store the inputs as resistance in

memristors. This eliminates the use of RG to read out the inputs in the first logic level and

thus eliminates the most power-hungry circuit element in stateful logic. There is no static

power in our circuits. The switching power consumed by volistor logic in a crossbar array

is entirely due to the leakage through the reverse biased rectifying memristor, as there is

no direct path to the ground. Using volistors at the first level provides NOR and AND

Table 3.11

Delay and power comparisons in a 1 × 64 cross point array for varied S1 and S0 > 33

(𝑆1, S0 , T)
Circuit

Realization

PS1

(nW)

PS0

(nW)

PT

(nW)

PRG

(nW)

Td

(ns)

Pavg

(nW)

𝑃𝑆𝐿
𝑃𝑉𝐿

(1, 40, 1)
SL 0.603 0.603e-3 2.157 17.383 4.468 20.167

0.856
VL 0.908 0.513 2.141 0 4.585 23.569

(5, 40, 1)
SL 0.027 0.027e-3 2.215 18.326 4.122 20.677

0.850
VL 0.039 0.548 2.212 0 4.140 24.327

(10, 40, 1)
SL 0.007 0.007e-3 2.223 18.456 4.080 20.749

0.849
VL 0.010 0.553 2.221 0 4.079 24.441

(20, 40, 1)
SL 1.727e-3 1.727e-6 2.226 18.52 4.057 20.781

0.849
VL 0.002 0.555 2.226 0 4.064 24.466

Table 3.12

Delay and power comparisons in a 1 × 64 crossbar array for varied T

(S1, S0 , T)
Circuit

Realization

PS1

(nW)

PS0

(nW)

PT

(nW)

PRG

(nW)

Td

(ns)

Pavg

(nW)

𝑃𝑆𝐿
𝑃𝑉𝐿

(1, 6, 1)
SL 0.643 0.643e-3 2.155 17.345 4.454 20.147

3.636
VL 0.035 0.549 2.212 0 4.103 5.541

(1, 6, 5)
SL 0.960 0.96e-3 2.139 17.074 4.571 28.735

2.002
VL 0.140 0.54 2.195 0 4.223 14.355

(1, 6, 15)
SL 2.020 2.020e-3 2.098 16.420 4. 874 49.922

1.383
VL 0.693 0.519 2.152 0 4.474 36.087

(1, 6, 30)
SL 4.247 4.247e-3 2.040 15.482 5.411 80.954

1.192
VL 2.263 0.489 2.090 0 4.942 67.897

(1, 6, 57)
SL 10.069 10.069e-3 1.94 13.925 6.681 134.634

1.096
VL 7.104 0.439 1.985 0 6.026 122.883

85

directly, which provides flexibility sufficient to remove the need for IMP in stateful logic.

This removes the need for keeper circuitry. An additional advantage is that the first-level

volistor logic can have as many inputs as the number of available memristors in the

crossbar array within a single operation. However, inputs set to 0V incur a higher power

penalty than the inputs set to v+ or v־. The two-dimensional, multi-output property of

volistors provides for both a large fan-out (at the cost of increased power consumption)

and for a great flexibility in the placement of calculation results. Using multiple crossbars

in a network can provide another sort of parallelization, leading to pipelined architectures.

Several different first-level volistor operations can be computed in separate crossbars at

the same time, greatly speeding up what is typically the most complex level of

implementing Boolean functions. Subsequent logic levels can be accomplished in

connected crossbars in an approach that uses mixed input gates and stateful INH. A hybrid

approach of volistors and stateful INH can be used to compute logic faster, with less power

and with simpler external control circuitry than a solely stateful approach.

86

Chapter 4

Memristive Programmable Diode Logic Gates

This chapter introduces a novel implementation for memristive diode AND/OR gates.

4.1 IMPLEMENTATION APPROACH

The programmable memristive diode gates rely on diode-like behavior of rectifying

memristors and use voltage as input and output. Fig. 4.1a shows the schematic of a two–

input memristive programmable diode OR gate. The proper operation of the diode OR gate

requires initializing the memristors to LRS. In addition, input voltage levels v must satisfy

0V ≤ v ≤ VCLOSE where VCLOSE is a positive threshold voltage (see Fig. 2.3). This voltage

constraint is to ensure that the resistance states of rectifying memristors remain unchanged

as described by (2.2). The input voltage levels are defined as 0V and 1V encoding logic ‘0’

and ‘1’, respectively. Assuming that memristors M1 and M2 in Fig. 4.1a are connected to a

high and low input voltages, respectively, the behavior of the diode OR gate can be

described by ()OPEN CLOSEDv R R i    where v is the input voltage difference, and i is

the current through memristors, which is suppressed below 0.1 pA by the reverse biased

memristor M2. Therefore, the voltage across forward biased memristor M1 is very small,

and the output is almost V(in1). The behavior of an n-input programmable diode OR can

be shown by (4.1) where j and k are the numbers of memristors connected to low and high

input voltages, respectively.

 {
Δ𝑣 = (

𝑅𝑂𝑃𝐸𝑁

𝑗
+
𝑅𝐶𝐿𝑂𝑆𝐸𝐷

𝑘
) × 𝑖

𝑛 = 𝑗 + 𝑘
 (4.1)

87

While all memristors are initialized to LRS, some of them exhibit HRS. For example, target

memristors are always reverse biased and exhibit HRS.

The diode OR gate without output load operates in the range of 3-ps. However, to be

realistic the behavior of a diode NOR gate, i.e., a diode OR gate connected to a CMOS

inverter, is shown in Fig. 4.1b where VS1 and VS2 are the inputs and VOUT is the output.

Connecting the common wire of the diode OR gate (i.e., W) to a CMOS inverter causes

unequal RC delays during the charge and precharge intervals. During the charge interval,

memristors are forward biased and the RC delay is in the range of 100-ps. However, during

the precharge interval, memristors are reverse biased, and the RC delay is in the range of

125 ns. For large diode NORs, this delay reduces to a few nanoseconds as shown in

Fig. 4.1c. Fig. 4.1d shows the schematic of a 100-input diode NOR gate. The behavior of

the gate is shown in Fig. 4.1e where half of the inputs are the same as VS1 and the other half

as VS2. The precharge delay is in the range of 2 ns. In addition, the use of a pull-down

network further decreases the precharge delay. Fig. 4.1f shows the schematic of a two-

input diode NOR gate with pull-down transistor connected to wire W. The behavior of the

NOR gate is shown in Fig. 4.1g where signal Ctrl controls the pull-down transistor. The

precharge delay of the gate is in the range of 125-ps.

The memristors of diode OR gate, which are initialized to LRS, act as binary switches

while maintaining their resistance states. A memristor driven by the high input voltage acts

as a closed switch, while a memristor driven by the low input voltage acts as an open

switch. Clearly, this role cannot be played by non-rectifying memristors.

88

Similar to the diode OR gate, a programmable diode AND gate can be implemented

with rectifying memristors. Fig. 4.2a shows the schematic of a two–input programmable

diode AND gate. Fig. 4.2b illustrates the behavior of the diode NAND gate (i.e., diode

AND gate connected to a CMOS inverter). Fig. 4.2c shows the relation between the size

(the number of inputs) and RC delay of the diode NAND gate during the charge interval.

Fig. 4.2d shows the schematic of a 100-input diode NAND gate. Fig. 4.2e illustrates the

behavior of the 100-input diode NAND gate where half of the inputs are the same as VS1

and the other half as VS2. Fig. 4.2f shows the schematic of a two-input diode NAND with

pull-up resistor connected to wire W. The behavior of the NAND gate is shown in Fig. 4.2g.

Note that the RC delay during the charge interval depends on the value of pull-up resistor

Rp, e.g., for Rp = 1.25 MΩ, this delay is in the range of 400-ps.

The i-v characteristic of a rectifying memristor can be modeled as a 1D1R (1 Diode in

series with 1 Resistive RAM) structure incorporated into a single two-terminal device [45].

A LRS memristor in reverse biased situation acts as an open switch and exhibits high

resistance state. Therefore, a rectifying memristor reduces the reverse bias leakage and

allows to implement diode gates with many inputs as shown in Fig. 4.1d and Fig. 4.2d.

Clearly, the PN junction or Schottky diode in CMOS process does not act as open switches

when reverse biased and cannot take the role of the rectifying memristors in large diode

gates used in the mPLD-XOR (see Chapter 5).

In Chapter 5, we design an mPLD-XOR (memristive programmable device connected to

an XOR plane) using a mix of volistor NOTs and programmable diode gates for realizing

89

ESOP functions. This combination of logic gates reduces the computation delay

significantly as shown in Chapter 5.

Fig. 4.1. Memristive programmable diode OR gate. (a) A schematic of a two-input diode OR gate

implemented with rectifying memristors. (b) The behavior of a two-input diode NOR gate. (c) The relation

between the size of a diode NOR gate and its RC delay during the precharge interval. (d) A schematic of a

100-input diode NOR gate. (e) The behavior of 100-input diode NOR gate. (f) A schematic of a two-input

diode NOR with pull-down transistor. (g) The behavior of two-input diode NOR with pull-down transistor.

90

Fig. 4.2. Memristive programmable diode AND gate. (a) A schematic of a two-input diode AND gate

implemented with rectifying memristors. (b) The behavior of a two-input diode NAND gate. (c) Relation

between the size and RC delay of a diode NAND gate during the charge interval. (d) A schematic of a

100-input diode NAND gate. (e) The behavior of 100-input diode NAND gate. (f) A schematic diagram

of a two-input diode NAND gate with pull-up resistor. (g) The behavior of two-input diode NAND with

pull-up resistor.

91

Chapter 5

A Time-Efficient CMOS-Memristive Programmable Circuit Realizing Logic

Functions in Generalized AND-XOR Structures

This chapter describes a CMOS-memristive Programmable Logic Device connected to

CMOS XOR gates (mPLD-XOR) for realizing multi-output functions well-suited for two-

level {NAND, AND, NOR, OR}-XOR based design. This structure is a generalized form

of AND-XOR logic where any combination of NAND, AND, NOR, OR, and literals can

replace the AND level. For mPLD-XOR, the computational delay measured as the number

of clock cycles equals the maximum number of inputs to any output XOR gate of a function

assuming that the number of XOR gates is large enough to calculate the outputs of the

function simultaneously. The input levels of functions are implemented with novel

programmable diode gates, which rely on the diode-like behavior of rectifying memristors,

and the output levels of functions are realized with CMOS modulo-two counters. As an

example, the circuit implementation of a 3-bit adder and 3-bit multiplier are presented. The

size and performance of the implemented circuits are estimated and compared with that of

the equivalent circuits realized with stateful logic gates. Adding a feedback circuit to the

mPLD-XOR allows the implementation of a multilevel XOR logic network with any

combination of sums, products, XORs, and literals at the input of any XOR gate. The

mPLD-XOR with a feedback can reduce the size and number of computational steps (clock

cycles) in realizing logic functions, which makes it well suited for use in communication

and parallel computing systems where fast arithmetic operations are demanding.

92

5.1 INTRODUCTION

In today’s computer architecture, a key problem limiting system speed is the amount of

time spent on moving data between the processor and memory. A way to address this

problem is to have memory within the calculation circuit. The invention of memristors [2-

3] opens the door for changing the computing paradigms of separating calculation from

memory. Memristors, as non-volatile devices, enable stateful logic [20], [25], [28], hence,

saving time spent in moving the data between memory and processor. They also save power

and time in memory refresh. One approach is to use memristor-based stateful logic. The

basic operations of IMPLY and FALSE can be implemented in stateful logic. They form

a complete logic set and can implement any logic function in any logic system such as

AND-OR or SOP, AND-XOR or ESOP, TANT or Three-level-AND-NOT-Network with

True inputs [59], AND-OR-XOR Three-Level Networks [64], and so on.

Alternatively, our motivation in this work is to realize arithmetic and communication

functions in ESOP form. The ESOP realization of such functions decreases the number of

products and literals compared to their realizations in SOP form [65]. The key point in

realizing such functions in ESOP form is to implement multi-input XOR gates, which has

been a challenge in conventional CMOS technology, i.e., a multi-input XOR gate is slow,

consumes large amounts of power, and occupies larger areas compared to other

combinational gates. Realizing a multi-input XOR gate with stateful logic would also

require a long sequence of stateful operations or a large number of memristors. This

disadvantage is due to the fact that XOR gates are only available in two logic levels (such

as NAND-OR) when implemented with IMPLY and FALSE operations. Consequently,

93

realizing an n-input XOR gate requires realizing an exponential number of products, i.e.,

2n-1. Implementation examples of multi-input XOR gate based on stateful logic are shown

in [25] and [66]. An n-input XOR of literals can be implemented in the same manner

described in [25] in a (2n – 1 + 1) × (n + 1) crossbar array on the order of 2n computational

steps. It can also be realized in the NAND-OR synthesis method [66] in a 1 × 2n crossbar

array in almost 2n– 1 computational steps.

In addition to the computational crossbar arrays considered in [25] and [66], there are

crossbar arrays used as Resistive Random Access Memory (ReRAM) [67] to store control

data required for driving the computational arrays. While in this chapter we used the

ReRAM for control storage, in general it can have other uses. The size of a ReRAM is

determined by the number of control bits used for driving the computational array per clock

cycle and the number of clock cycles for realizing a function. For example, the size of

ReRAM for driving a (2n –1 + 1) × (n + 1) computational array can be estimated ((2n-1 + 1)

+ (n + 1)) × 𝛼 × m where 𝛼 is the number of control bits for driving each wire of the

computational array per clock cycle, and m is the number of computational steps.

This chapter proposes a memristive programmable PLA-like circuit for realizing multi-

output functions well-suited for two-level {NOR, AND, NAND, OR}-XOR design. This

circuit is called mPLD-XOR, which is memristor-based Programmable Logic Device

connected to a CMOS modulo-two counters. The computational delay of the mPLD-XOR

measured as the number of clock cycles equals the maximum number of inputs to any

output XOR gates of a multi-output function, assuming that the number of modulo-two

counters is large enough to calculate the XOR gates of the function simultaneously. The

94

size of each computational array in mPLD-XOR is at most 1 × 2n where n equals the

number of primary inputs. The control data required for driving the computational arrays

are stored in ReRAM whose size depends on the number of primary inputs n, the number

of computational steps m, and the number of outputs of the function, as described in

Section 5.5.

The mPLD-XOR approach has some advantages over the stateful approach. In the

stateful approach, one would first calculate a function by populating the inputs in a

computational array and then implement stateful gates. As a result, to calculate the function

for a new set of inputs, the computational array must be cleared (by the FALSE operation),

the new set of inputs must be populated, and the stateful gates must be implemented again.

In this process, most of the computational steps are assigned for populating the inputs in

the computational array [25]. While in mPLD-XOR implementation, this long process does

not exist since the circuit uses voltage as input. In addition, the computational arrays are

programmed only once for calculating a multi-output function for any new set of inputs, as

described in Chapter 4. And the XOR gates are realized in CMOS modulo-two counters as

described in Section 5.3.

The mPLD-XOR implements multi-output functions in generalized ESOP forms, i.e.,

two-level structures where input levels consist of any combination of NAND, AND, NOR,

OR, and literals, and output levels are made of only XOR gates. Input levels are

implemented using novel programmable diode gates. These programmable gates, which

rely on rectifying memristors [45-46], have no practical limit on the number of inputs, as

described in Chapter 4. The output levels are realized in CMOS memory, i.e., modulo-two

95

counters, and permanently stored in resistive memory using volistor NOT gate [29]. The

generalized ESOP structures are good candidates for arithmetic and communication

applications.

This chapter is organized as follows. In Section 5.2, a generalization to the ESOP

structure is introduced. In Section 5.3, the mPLD-XOR for realizing circuits in the

generalized ESOP structure is proposed, followed by a brief description of mPLD-XOR

read and write configuration in Section 5.4. Section 5.5 shows how to implement a 3-bit

adder and 3-bit multiplier in the mPLD-XOR. In addition, the size and performance of the

circuits are estimated and compared to their corresponding circuits realized with stateful

logic operations. In Section 5.6, power, area, and delay of the programmable diode gates

and mPLD-XOR are evaluated and compared to previously proposed memristive logic

styles for N-bit addition operation. Section 5.7 concludes the chapter.

5.2 A GENERALIZED ESOP STRUCTURE

Arithmetic functions are well-suited for ESOP-based design. These functions are

implemented with a smaller number of products, interconnections, and literals than their

counterparts implemented in AND-OR based design [65] and [68-69]. Table 5.1 shows the

number of products and literals of benchmark functions implemented in SOP and ESOP

based designs using the Quine-McCluskey algorithm for multi-output functions [70] and

the EXMIN2 algorithm [68], respectively. The numbers clearly show the advantage of

ESOP based design over SOP design for arithmetic functions.

96

In two-level AND-XOR networks, realizing multi-input XOR gates is essential. A

multi-input XOR gate can be implemented as a cascade (or a tree) of two-input XOR gates.

However, using a traditional CMOS technology, this approach results in a slow XOR gate

[71]. In this study, we use the hybrid CMOS-memristive technology and propose a

memristive programmable logic device connected to modulo-two counters (mPLD-XOR)

to realize multi-output functions in ESOP based design. The mPLD-XOR can implement

the XOR gates with a practically unlimited number of fan-in, which is an advantage over

existing technologies (except quantum reversible circuits). The mPLD-XOR also allows

the implementation of logic functions in two–level {NAND, AND, NOR, OR}-XOR based

Table 5.1

Number of products and literals of benchmark functions [65]

 Number of Products Number of

Literals

 In Out SOP ESOP SOP ESOP

5xp1 7 10 63 32 278 120

9sym 9 1 84 51 504 372

addm4 9 8 189 91 1225 521

adr3 6 4 31 15 116 44

adr4 8 5 75 31 340 112

clip 9 5 117 67 631 402

cm82a 5 3 23 13 80 33

f51m 8 8 76 32 326 112

inc8 8 9 37 15 100 43

life 9 1 84 49 672 311

log8 8 8 123 104 730 550

mlp4 8 8 121 62 736 305

nrm4 8 5 120 69 716 391

rd53 5 3 31 14 140 39

rd73 7 3 127 35 756 134

rd84 8 4 255 59 1774 267

rdm8 8 8 76 32 325 112

rot8 8 5 57 36 305 197

sqr8 8 16 180 112 1068 546

squar5 5 8 25 20 95 57

z4 7 4 59 29 252 111

97

design, which is a generalized ESOP logic design. Fig. 5.1a shows the schematic of a two-

level {NAND, AND, NOR, OR}-XOR structure. The mPLD-XOR implements the input

level of functions using OR and NOT gates, i.e., NAND is realized as NOT-OR using De

Morgan law, ¬(ab) = (¬a) + (¬b), NOR as OR-NOT, and AND as NOT-OR-NOT, as

shown in Fig. 5.1b. Note that ¬a denotes the negation of variable a. Inverters at the input

of XOR gates can be moved to the outputs. If the number of inverters is odd, the outputs

must be inverted , i.e., ¬a ⨁ b= ¬(a ⨁ b) (output F2 in Fig. 5.1c). If the number of inverters

is even, the outputs are non-inverted, i.e., (¬a) ⨁ (¬b) = a ⨁ b (output F1 in Fig. 5.1c).

Fig. 5.2 shows an example of a single-output function (G1) in the generalized ESOP

structure and its logical equivalence (G2) as implemented using mPLD-XOR.

 (a) (b) (c)

Fig. 5.1. (a) Schematic of {NAND, AND, NOR, OR}-XOR logic structure. (b) Logical equivalence of

{NAND, AND, NOR, OR}-XOR structure as realized in mPLD-XOR. (c) mPLD-XOR realizes functions in

NOT-OR-XOR-NOT logic structure.

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . .

F1 F2

Fig. 5.2. Function G1 is implemented as its logical equivalence, G2.

 ¬a

b

¬c

d

e

f

c

d

e

f

a

b

G1=G2

G1 G2

98

5.3 THE MPLD-XOR: CIRCUIT STRUCTURE AND FUNCTIONALITY

The programmable diode logic gates introduced in Chapter 4 are used in a new circuit

structure called mPLD-XOR to realize multi-output functions in {NAND, AND, NOR,

OR}–XOR based-design. Fig. 5.3 shows the schematic of the mPLD-XOR. The device

consists of ReRAM connected to CMOS drivers, memristive programmable diode OR

gates connected to CMOS-memristive drivers, and CMOS modulo-two counters. The

ReRAM is a crossbar array of rectifying memristors, which stores all control data required

to drive the circuit. Inputs are applied to the programmable diode OR gates through CMOS-

memristive drivers controlled by data stored in ReRAM. The output of each programmable

diode OR gate is applied to a modulo-two counter, which acts as a parity circuit (or a T

flip-flop). The counter is functionally equivalent to an XOR gate with an arbitrary number

of inputs. The output of the counter is applied to a crossbar array through a transmission

gate and stored as a state of a memristor, as illustrated in Fig. 5.8 in Section 5.5. The

assertion of signal CLR resets the counter and makes it available for calculating another

output of a function. Fig. 5.4 includes the symbolic diagram of a modulo-two counter as a

D flip-flop where D = ¬Q. The counter is clocked by an l-input programmable diode OR

gate. The circuit implements an n-input single-output function in {NAND, AND, NOR,

OR}–XOR design. Inputs Ini where i ∈ {1,⋯ , 𝑛} and their complements are applied to a

1 × l programmable diode OR through CMOS-memristive drivers where l = 2n. The drivers

consist of 3-input programmable diode AND gates connected to CMOS buffers. When

CLK is high, a combination of inputs determined by high Cj where j ∈ {1,⋯ , 𝑙} is

99

propagated to the diode OR gate; Cj are control signals stored in each column of ReRAM

and applied to the AND gates at the positive edge of signal CLK.

Memory

(ReRAM)

CMOS Memory Drivers

m

n primary inputs

(in dual-rail representation)

2n

C
M

O
S

-m
em

ri
st

iv
e

D
ri

v
er

s

k
p
ro

g
ra

m
m

ab
le

2
n

-i
n

p
u

t
d

io
d

e
O

R

k modulo-two

counters

2n

2n

k × 2n k

CLK

.
.
.

CLR

2n

k

Fig. 5.3. Schematic of the mPLD-XOR.

Inn

k

LRS LRS LRS

In1

. . .

Q

Q
SET

CLR

D

CLR

CLK

Cl

C2

C1

Programmable Diode OR Gate

Sequential XOR Gate

. . .

LRS

C(l-1)

.
.
.

al

a2

a1

a(l-1)ReRAM

o1o2o(l-1)ol

Fig. 5.4. Schematic of an mPLD-XOR for realizing an n-input single-output function with l lines diode OR

where l=2n to allow for inputs complemented. Ini are the primary inputs where i ∈ {1,⋯ , 𝑛}, and Cj are the

control signals stored in ReRAM where j ∈ {1,⋯ , 𝑙}. The output of the circuit is Q or Q̅ depending on the

function being implemented.

100

The output of the circuit is Q, the current state of the counter (or ¬Q depending on the

function being implemented) and is available after m clock cycles where m also denotes

the number of XOR terms, i.e., m-input XOR of sums, products, or literals.

Fig. 5.5 shows the schematic of ReRAM with reference resistors Rg. The ReRAM is

connected to CMOS drivers made of an m-bit shifter. The output of the shifter, (Q1, Q2…

Qm), at the first, second, and mth clock cycle is (1, 0, …, 0), (0, 1, 0, …, 0), and (0, 0, …,

0, 1), respectively, where logic ‘1’ and ‘0’ denote high and low voltage levels and are

defined as 0.6V and 0V. The programmable circuit shown in Fig. 5.4 is scalable, and it can

be a base of future memristive programmable fabrics to realize large arithmetic circuits and

circuits with high XOR component. Examples of multi-output mPLD-XOR circuits are

shown in Section 5.5.

C3

CLK

2n × m Crossbar array

C1

C2

C2n

Rg

Rg

Rg

CMOS Drivers

C4

Rg

HRS

LRS

1 2 3 4 m

. . .

.
.
.

Rg

Fig. 5.5. Schematic of ReRAM of the mPLD-XOR shown in Fig. 5.3 with the reference resistor Rg.

101

The circuit in Fig. 5.4 is designed using a 50nm TSMC process BSIM4 models where

the number of inputs is 32, and the size of ReRAM is 64 × 16. For this example, all of the

inputs Ini are assigned a value of ‘0’.¬Ini represent the outputs of inverters with input Ini.

The ReRAM memristors are programmed as shown in Fig. 5.5. The pale shaded

memristors are in HRS, and clear ones are in LRS. Fig. 5.6 shows the simulation results

where V(clk) represents the clock cycle, V(a2) represents the output of the second AND

gate, V(k) represents the output of the programmable diode OR, and V(q) represents the

output of the modulo-two counter (see Fig. 5.4). During the first clock cycle, column 1 of

the ReRAM is connected to ‘1’ to read the control data. Since all memristors are in HRS,

none of the inputs are applied to the programmable diode OR. At the second clock cycle,

column 2 is set to ‘1’ and inputs ¬Ini are applied to the diode OR. During the second, third,

and fourth clock cycles, the high voltage of V(k) toggles the counter three times. As a

result, the output of the counter remains high. The simulation results in Fig. 5.6 are based

on Rg = 1 MΩ, RP = 3.5 MΩ, VP =0.6 V, and input voltages defined as 0V and 0.6V where

RP is a pull-up resistor used in diode AND gates and is connected to voltage VP.

Fig. 5.6. Simulation results of the single-output mPLD-XOR shown in Fig. 5.4 with the ReRAM

configuration shown in Fig. 5.5.

102

5.4 PROGRAMMING THE MPLD-XOR

The general writing to ReRAM is described in several papers [15] and [57]. This

description is provided as a refresher or a brief example. As with any programmable logic

device, the mPLD-XOR must be programmed to realize a logic function. Programming the

ReRAM is an m +1 step process where m equals the number of columns in ReRAM. The

first step in this process is to initialize the ReRAM to HRS. Fig. 5.7a shows the voltage

scheme for this initialization step. In this scheme, memristors are reverse biased and

consume minimum amounts of power. The next steps are to program all columns of

ReRAM one after another. Fig. 5.7b shows the voltage scheme for programming the right-

most column of ReRAM. In this scheme, only the column being programmed consumes

power. The amount of this power depends on the number of memristors being programmed

to LRS. Programming the diode gates in mPLD-XOR requires applying VSET across each

memristor. In this programming step, memristors are forward biased and consume large

amounts of power. However, this programming step is performed only once since the

memristors maintain their resistance states during logical operations. The results of our

simulations show that the sneak path current during the read operation is small due to the

diode-like behavior of the memristors. For example, the sneak path current is between 80-

pA and 240-pA depending upon its location in the array, which is small enough that it has

no negative impact on memristors in sneak path during the read operation. More analysis

about the sneak path current during the read operation can be found in [54]. For vary large

crossbar arrays, Opamp threshold logic can be used for the read operation [72]. In addition,

103

using asymmetric voltage scheme further decreases the leakage power during the

programming [46].

5.5 IMPLEMENTATION EXAMPLES IN THE MPLD-XOR

In previous sections, the generic fabric of the mPLD-XOR and the programming of the

device were explained. As described in Section 5.3, the mPLD-XOR can implement any

logic functions. As an example, this section shows how a 3-bit adder and a 3-bit multiplier

are mapped into this fabric. The size and performance of these circuits are also estimated.

For comparison purposes, the same adder and multiplier are also implemented with stateful

gates, and the size and performance of the circuits are estimated. Our calculations show

that the size of ReRAM and the number of computational steps for realizing a 3-bit adder

in the mPLD-XOR circuit to the stateful circuit are 280:957 and 8:29, respectively. For a

3-bit multiplier, these ratios are 564:5720 and 12:65, respectively. In both approaches, the

. . .

VOPEN

VCLOSE

.
.
.

VOPEN

VCLOSE

0V

LRS

LRS

. . . .
.
.

 (a) (b)

Fig. 5.7. Programming the ReRAM. (a) Initializing the ReRAM to HRS (or logic ‘0’). (b) Programming the

right-most column of the ReRAM.

104

size of ReRAM (including CMOS drivers) dominates the area when large circuits are

implemented. The implementation details can be found in Section 5.5.1 and Section 5.5.2.

0 0 0

1 1 1 0 0

2 2 2 1 1 1 0 0 1 0 0

2 2 2 1 1 2 1 0 0 2 1 0 0 2 1 1 2 1 0 0 2 1 0 0o

S a b

S a b a b

S a b a b a a b b a b

C a b a a b a a a b a b a b b a b b a a b b b a b

 


  


    
       

 (5.1)

5.5.1 A 3-BIT ADDER

Below we illustrate how a 3-bit adder can be realized in a simplified generic mPLD-XOR

fabric, where inputs in a complementary form only are applied to the circuit. This

simplification decreases the amount of the data stored in ReRAM to half. The size of

ReRAM in mPLD-XOR is 64 × 16. And the number of modulo-two counters is three,

which allows the calculation of three single-output functions simultaneously. The

schematic of the mPLD-XOR for realizing the adder is shown in Fig. 5.8. Inputs are ai and

bi where i ∈ {0, 1, 2}, and outputs are S0, S1, S2, and Co as described by (5.1). Instructions

for realizing the adder are loaded in the ReRAM. Note that performing any logic function

requires loading the corresponding instructions in the ReRAM.

6

CLR1, CLR2, CLR3

6

6

ReRAM

Source Memristors

(SM)

Target Memristors

(TM)

P1, ¬P1, , P6, ¬P6

2

3

TM DriversCtrl, CLR0

12 ¬ P1, P1

 ¬ P4, P4

o1 o2 o3 o4

Q

Q
SET

CLR

D6-input

Diode OR

Q

Q
SET

CLR

D
6-input

Diode OR

Q

Q
SET

CLR

D6-input

Diode OR

 6Hybrid

Driver

Hybrid

Driver

Hybrid

Driver

 6

 6

 6

 6

 6

 6

6-bit

Complementary

Inputs

Computing

S1

Computing S2

Computing CO

Control of CMOS

Circuits

Memory Drivers

8

CLK

RST

¬P2, P2

 ¬ P3, P3

 ¬ P6, P6

¬ P5, P5

Computing

S0

Fig. 5.8. Generic fabric of the mPLD-XOR programmed for realizing a 3-bit adder. The grey rectangles

correspond to memristive arrays, the white rectangles correspond to hybrid CMOS-memristive circuits, and

the rest of the blocks correspond to CMOS circuits.

105

Fig. 5.9 shows a part of ReRAM divided into sub-ReRAMs, each of which stores the

instructions to calculate a 1-bit output, except the sub-ReRAM shown in Fig. 5.9a, which

stores control data for driving the CMOS sub-circuits. The size of sub-ReRAMs is 35 × 8.

Once an output of mPLD-XOR is calculated, it is stored as a state of a memristor using

volistor NOT gate [29]. Volistor NOT uses voltage as input and resistance as output. To

describe the operation of a volistor NOT gate, consider the circuit shown in Fig. 4.1a. Let

us assume that an input voltage is applied to memristor M1, and a negative bias defined as

– 0.6V is applied to memristor M2. When the input is ‘1’ (0.6V), the voltage across

memristor M2 is –1.2V (i.e., VCLEAR) which is sufficient to toggle the state of memristor M2

to HRS (logic ‘0’). When the input is ‘0’ (0V), the state of memristor M2 remains at LRS

(logic ‘1’). Memristor M1 is called ‘source memristor’ since it is driven by the input, and

memristor M2 is called ‘target memristor’ since it stores the output. Regardless of the input

value, the state of the source memristor remains at LRS while the state of the target

memristor may toggle to HRS depending on the input. Note that the role of each memristor

is determined by the voltage applied to the memristor. The proper operation of the volistor

NOT requires initializing memristors M1 and M2 to LRS. The crossbar array at the bottom

right of the mPLD-XOR in Fig. 5.8 is used to store the outputs of the counters using volistor

NOT. The crossbar memristors connected to the dual-rail outputs of the counters via

transmission gates act as source memristors (SM), and the crossbar memristors connected

to TM drivers act as target memristors (TM). The TM drivers are built with a CMOS shifter

with output voltage levels of 0V and –0.6V. The transmission gates connect the outputs of

the counters to the source memristors only when the outputs have been calculated. The

106

transmission gates are controlled by signals Pi and ¬Pi where i ∈{1, …, 2j} and j equals

the number of counters, which is 3 (see Fig. 5.8). Recall that each counter has two outputs,

Q and ¬Q, and thus, at the output of each counter two transmission gates are required.

The first column of sub-ReRAM in Fig. 5.9a stores control data for initializing the

CMOS sub-circuits of the mPLD-XOR, e.g., by asserting signals CLRi where i ∈ {1, 2, 3}

to reset all modulo-two counters, or by asserting signals Pi and ¬Pi where i ∈ {1, …, 6} to

disconnect the modulo-two counters connected to the crossbar array via transmission gates.

Once an output of the adder is calculated, signal Ctrl is asserted to store the output in a

target memristor. For example, upon the first assertion of signal Ctrl, the first output (S0)

is stored in the left-most target memristor of the crossbar array, as shown in the bottom

right of Fig. 5.8. In this operation, the outputs of TM drivers, (o1, o2, o3, o4), equals (–0.6V,

0V, 0V, 0V). Ultimately all outputs will be stored in target memristors TM. Each column

of sub-ReRAMs in Fig. 5.9b to Fig. 5.9d controls the primary inputs applied to each

programmable diode OR gate for realizing an XOR term such as NAND, AND, NOR, OR,

or literal. (In particular, each row of the sub-ReRAMs controls 1-bit input during

computational steps where inputs are shown as a red vertical bus close to the sub-

ReRAMs). The process of realizing the 3-bit adder are described below.

1) Initialization

CMOS sub-circuits are initialized in the first clock cycle by asserting the control signals

stored in the first column of the ReRAM.

107

2) Calculating S0

Sum bit S0 is calculated in the second and third clock cycles by driving the second and

third columns of the crossbar array shown in Fig. 5.9b. In the third clock cycle, S0 is

available at the non-inverted output of XOR1. At this moment, ¬S0 is applied to a source

memristor via a transmission gate to store S0 in the left-most target memristor of the

crossbar array. In this operation, signals P2 and Ctrl stored in the third column of the

crossbar array shown in Fig. 5.9a are applied to the related transmission gate and TM

drivers, respectively. In the fourth clock cycle, signal CLR1 is asserted to clear the output

of the XOR1 for the next use.

3) Calculating S2

Sum bit S2 is calculated in five clock cycles, as shown in Fig. 5.9c. In clock cycle number

six, S2 is available at the inverted output of XOR2. At this moment, ¬S2 is applied to a

source memristor, and S2 is stored next to S0. This operation requires asserting signals P3

and Ctrl, which are stored in column number six of the crossbar array shown in Fig. 5.9a.

4) Calculating S1

Sum bit S1 is calculated in three clock cycles, as shown in Fig. 5.9b. In clock cycle

number seven, S1 is available at the inverted output of XOR1. Simultaneously, ¬S1 is

applied to a source memristor to store S1 next to S2 by asserting signals P1 and Ctrl,

stored in column number seven of the crossbar array shown in Fig. 5.9a.

5) Calculating Co

Carry bit Co is calculated in seven clock cycles, as shown in Fig. 5.9d. In clock cycle

number eight, Co is available at the inverted output of XOR3. At this moment, ¬Co is

108

applied to a source memristor to store Co next to S1 by asserting signals P5 and Ctrl,

stored in column number eight of the crossbar array in Fig. 5.9a.

In summary, a 3-bit adder is realized in eight clock cycles in a 35 × 8 sub-ReRAM.

The mPLD-XOR can be designed by programmable diode AND gates instead of diode

OR gates to realize logic functions in PPRM (Positive Polarity Reed-Miller) expressions

that is AND-XOR expressions with uncomplemented literals only, as in (5.1). This

realization also requires changing the diode AND gates used in CMOS-memristive drivers

with diode OR gates. In addition, the control data stored in ReRAM must be substituted

with their complements. In the AND-type mPLD-XOR, inputs in positive polarity are

applied to the circuit, and there is no need for input CMOS inverters.

Using memristor-based stateful IMPLY gates, a 3-bit adder can be implemented with

the NAND-OR logic structure [66] using (5.2). In this implementation, multi-input IMPLY

gates are utilized. The process of realizing a 3-bit adder in a 3 × 8 computational array is

shown in Fig. 5.10. More details can be found in [73].

The matrix shown in Fig. 5.10a is analogous to a 3 × 8 crossbar array where entities of

the matrix represent the states of corresponding memristors. Inputs ai and bi where i ∈ {0,

1, 2} are populated in the computational array shown in Fig. 5.10a. In step a, the auxiliary

memristors are initialized to HRS denoted by logic ‘0’ in one clock cycle. In step b, copies

of complementary inputs are stored in the third and fourth columns using stateful

1 1

1 1 1 1 1

((,), (,), (,))

((, ,), (, ,), (, ,), (, ,))

i i i

i i i i i

c NAND OR a b OR a c OR b c

s NAND OR a b c OR a b c OR a b c OR a b c

 

    

      


      
 (5.2)

109

Ctrl

CLR0

CLR1

CLR2

CLR3

P1

¬ P1

P2

¬ P2

P3

¬ P3

P4

¬ P4

P5

¬ P5

P6

¬ P6

LRS

HRS

 1 2 3 4 5 6 7 8

Control of

CMOS Switches

 (a) (b)

LRS

HRS

¬ a0

¬ b0

¬ a1

¬ b1

¬ a2

¬ b2

 1 2 3 4 5 6 7 8

6-bit inputs
Computing S2(#6)

LRS

HRS

¬ a0

¬ b0

¬ a1

¬ b1

¬ a2

¬ b2

 1 2 3 4 5 6 7 8

6-bit inputs
Computing C0 (#8)

 (c) (d)

Fig. 5.9. Schematic diagram of sub-ReRAMs. Sub-ReRAM (a) stores the control data for driving CMOS

sub-circuits of the mPLD-XOR. Sub-ReRAMs (b)-(d) store control data for realizing S0 and S1, S2, and

Co, respectively. The number of clock cycles for calculating an output is shown in parenthesis, e.g., (#8).

The size of sub-ReRAMs is 35 × 8.

LRS

HRS

¬ a0

¬ b0

¬ a1

¬ b1

¬ a2

¬ b2

 1 2 3 4 5 6 7 8

6-bit inputs

Computing

S0(#3) and S1(#7)

110

IMPLY gates. This step is realized in two clock cycles. In step c, carry bit c1 is calculated

and stored in the right-most memristor of the first row. Also, a copy of ¬c1 is stored in the

right-most memristor of the second row. In step d, c1 and ¬c1 are copied to new locations,

as shown in Fig. 5.10d. The right-most columns are cleared to be used in step e. In step e,

sum bit s0 is calculated and stored in the right-most memristor of the first row. The

following steps, f through j, are illustrated in Fig. 5.10.

The number of computational steps is 29, and the size of ReRAM is estimated to be c

× m where c is the number of control bits driving the 3 × 8 crossbar array per computational

step, and m is the number of computational steps, which is 29. The number of control bits

driving each wire cannot be smaller than three since each wire needs to be connected to

multiple voltage levels, grounded through a reference resistor, or terminated to high

impedance. Assuming that each wire is driven by three control bits, the size of ReRAM

can be estimated 33 × 29.

In the mPLD-XOR, the number of control bits for driving each wire of the

computational arrays is one only since each wire must be connected to either ‘0’ or ‘1’ for

computing logic. In other words, there is no need to terminate the wires to high impedance

or to ground them through reference resistors. Moreover, the memristors maintain their

resistance states during logic calculations and don’t need to be initialized repeatedly.

Therefore, no additional voltage levels are required for implementing logic in mPLD-XOR.

The programmable diode gates have simple drivers, which in turn decrease the size of

ReRAM. The size of ReRAM and the number of computational steps for realizing the adder

in mPLD-XOR circuit to the stateful circuit are 280:957 and 8:29, respectively.

111

5.5.2 A 3-BIT MULTIPLIER

A 3-bit multiplier can be realized with the mPLD-XOR shown in Fig. 5.8. This requires

loading the instructions of the multiplier in ReRAM, which occupy 35 × 40 of the ReRAM

size. The number of clock cycles (computational steps) for this realization is 40. Adding

feedback CMOS D flip-flops to the mPLD-XOR can improve the size and performance of

the circuit. For example, the multiplier can be implemented in twelve clock cycles with

instructions which occupy 47 × 12 of the ReRAM size. The enhanced mPLD-XOR can

a0 b0 0 0 0 0 0 0 a0 b0 ¬a0 ¬b0 0 0 0 0

a1 b1 0 0 0 0 0 0 a1 b1 ¬a1 ¬b1 0 0 0 0

a2 b2 0 0 0 0 0 0 a2 b2 ¬a2 ¬b2 0 0 0 0

 (a) 1 FALSE (b) 2 IMPs

a0 b0 ¬a0 ¬b0 0 0 0 c1 a0 b0 ¬a0 ¬b0 0 0 0 0

a1 b1 ¬a1 ¬b1 0 0 0 ¬c1 a1 b1 ¬a1 ¬b1 c1 ¬c1 0 0

a2 b2 ¬a2 ¬b2 0 0 0 0 a2 b2 ¬a2 ¬b2 0 0 0 0

 (c) 2 IMPs (d) 2 IMPs + 1 FALSE

a0 b0 ¬a0 ¬b0 0 0 0 s0 a0 b0 ¬a0 ¬b0 0 0 0 s0

a1 b1 ¬a1 ¬b1 c1 ¬c1 0 0 a1 b1 ¬a1 ¬b1 c1 ¬c1 0 c2

a2 b2 ¬a2 ¬b2 0 0 0 0 a2 b2 ¬a2 ¬b2 0 0 0 ¬c2

 (e) 2 IMPs (f) 4 IMPs

a0 b0 ¬a0 ¬b0 0 0 0 s0 a0 b0 ¬a0 ¬b0 0 0 0 s0

a1 b1 ¬a1 ¬b1 c1 ¬c1 0 0 a1 b1 ¬a1 ¬b1 c1 ¬c1 0 s1

a2 b2 ¬a2 ¬b2 c2 ¬c2 0 0 a2 b2 ¬a2 ¬b2 c2 ¬c2 0 0

 (g) 2 IMPs + 1 FALSE (h) 4 IMPs

a0 b0 ¬a0 ¬b0 0 0 0 s0 a0 b0 ¬a0 ¬b0 0 0 0 s0

a1 b1 ¬a1 ¬b1 0 0 0 s1 a1 b1 ¬a1 ¬b1 0 0 0 s1

a2 b2 ¬a2 ¬b2 c2 ¬c2 c3 s2 a2 b2 ¬a2 ¬b2 0 0 c3 s2

 (i) 7 IMPs (j) 1 FALSE

Fig. 5.10. (a)- (j) The computational steps for realizing a 3-bit adder with stateful gates. The total number of

IMP and FALSE operations is 29. In each step, the numbers of operations are shown.

112

store the output of each counter in a D flip-flop and make it available as a primary input

(Fig. 5.11). This feedback also makes a counter available for calculating another output.

The feedback D flip-flops are clocked by signal Sigi where i ∈ {1, 2, 3}. Adding the

feedback to the mPLD-XOR allows the implementation of a multilevel XOR logic network

with any combination of sums, products, XORs, and literals at the input of any XOR gate.

Fig. 5.11 shows the schematic of a 3-bit multiplier as realized with the mPLD-XOR with

feedback D flip-flops. In this realization, internal signals IP0, IC0, IC1, and IC2 in Fig.

5.12 are calculated, stored in D flip-flops, and used to implement the next levels of the

circuit.

If the multiplier is implemented with stateful IMPLY gates, the number of computational

steps will be 65. Fig. 5.13 shows the initial states of the crossbar memristors for realizing

the multiplier. Assuming that each wire of the crossbar array is driven by three control bits,

the size of ReRAM is estimated to be 66 × 65.

9

CLR1, CLR2, CLR3

9

9

ReRAM

Source Memristors

(SM)

Target Memristors

(TM)

P1, ¬P1, , P6, ¬P6

2

3

Ctrl, CLR0

12 ¬ P1, P1

 ¬ P4, P4

o1 o2 o3 o4 o5 o6

Q

Q
S ET

C LR

D
9-input

Diode OR

Q

Q
S ET

C LR

D
9-input

Diode OR

Q

Q
S ET

C LR

D9-input

Diode OR

9Hybrid

Driver

Hybrid

Driver

Hybrid

Driver

9

9

9

9

9

9

6-bit

Complementary

Inputs

Computing

IP0, P4,and P5

Computing

 IC0, IC1, P1, and P6

Computing

P2, P3, and IC2

CMOS Circuits

Memory Drivers

12

CLK

RST

¬P2, P2
 ¬ P3, P3

 ¬ P6, P6

¬ P5, P5

Q

Q
SET

CLR

D

33

Internal Signals

 (IC0, IC1, IC2, IP0)

Sig1, Sig2, Sig3

TM Drivers

Fig. 5.11. Schematic of mPLD-XOR for realizing a 3-bit multiplier. In this implementation, the number of

computational steps is 12, and instructions occupy 47 × 12 of the ReRAM size.

113

In summary, the size of ReRAM and the number of computational steps for realizing the

3-bit multiplier in mPLD-XOR circuit to the stateful circuit are 564:4290 and 12:65,

respectively.

P1

P2

IP0

IC0

P3

IC1

P4

IC2

P5

P6

a2 b2 a1 b1 a0 b0

Fig. 5.12. Schematic diagram of a 3-bit multiplier in a six-level-XOR-network structure with any

combination of sums, products, XORs, and literals at the input of any XOR gate. This circuit is implemented

with the mPLD-XOR with feedback circuit. The internal signals are stored in the memory cells to decrease

the size of the ReRAM.

¬𝑎0 ¬𝑎1 ¬𝑎2 ¬𝑏0 ¬𝑏1 ¬𝑏2 0 0 0 0 0 0 0 0 0 0
¬𝑎0 ¬𝑎1 ¬𝑎2 ¬𝑏0 ¬𝑏1 ¬𝑏2 0 0 0 0 0 0 0 0 0 0
¬𝑎0 ¬𝑎1 ¬𝑎2 ¬𝑏0 ¬𝑏1 ¬𝑏2 0 0 0 0 0 0 0 0 0 0
¬𝑎0 ¬𝑎1 ¬𝑎2 ¬𝑏0 ¬𝑏1 ¬𝑏2 0 0 0 0 0 0 0 0 0 0
¬𝑎0 ¬𝑎1 ¬𝑎2 ¬𝑏0 ¬𝑏1 ¬𝑏2 0 0 0 0 0 0 0 0 0 0
¬𝑎0 ¬𝑎1 ¬𝑎2 ¬𝑏0 ¬𝑏1 ¬𝑏2 0 0 0 0 0 0 0 0 0 0

Fig. 5.13. 6 × 16 crossbar array for implementing a 3-bit multiplier with stateful logic gates. The matrix

elements denote initial states of crossbar memristors.

114

5.6 EVALUATION AND COMPARISON OF DIFFERENT LOGIC STYLES

An extensive comparison of different architectures is beyond the scope of this chapter,

however, to get some level of comparison, here are some published numbers for other

memristive styles of logic gates. The following is the direct comparison between a

published threshold logic example [72], MAGIC NOR example [28], and our

implementation and as such does not include the driving circuitry to the memristive array

(see Table 5.2). The minimum and maximum power dissipations of 2, 10, and 100-input

diode NAND/NOR gates were calculated. The same power calculation was also done for

multi-input stateful NOR gates realized with rectifying memristors using converse non-

implication gates (CNIMP) [25]. The simulation was performed in LTspice using 50nm

TSMC process BSIM4 models and the memristor model explained by (2.1) and (2.2). The

power dissipation and delay are calculated when a square pulse with 10ns time period and

a 50% duty cycle is applied. The initial states of memristors realizing the CNIMP NOR

gates are assumed to be ‘0’ (HRS). There are two steps for performing the stateful NOR

gate. The first step is programming the memristors, and the second step is performing the

logic. Most of the gate power consumption is related to the programming step (mapping

the gate into the memristors), which must be performed repeatedly for computing different

logic functions. The initial states of the memristors in the diode gates are assumed to be ‘1’

(LRS). In contrast to the stateful gates, memristors in the diode gates maintain their

resistance states during logic operations. Table 5.2 includes the power consumption of a 2-

input MAGIC NOR gate based on published numbers [74]. This power does not include

the programming step where the programming of a memristor to HRS and LRS consumes

115

26.35 uW and 169 uW, respectively [74]. The power consumption of a 10 and 100-input

MAGIC NORs is estimated by scaling the power consumption of a 2-input MAGIC NOR.

For example, the power consumption of a 10-input MAGIC NOR is estimated to be 5× the

power consumption of a 2-input MAGIC NOR, which is about 29.75 uW-313.85 uW. In

terms of area, the numbers of memristors in all logic styles shown in Table 5.2 are similar,

however, their CMOS parts are different. For instance, the output of a diode gate is

connected to a CMOS inverter and a pull-up resistor (or a pull-down transistor). However,

the output of a memristive resistance divider in a threshold gate is connected to an Opamp

threshold circuit. In our simulation, it is assumed that Vdd = 1V, VCOND = 0.6V, and VPROG

= –0.6 V where VCOND and VPROG are voltage signals used to perform the CNIMP NOR

gates. Also inputs applied to the diode gates are defined as 0V and 1V.

Fig. 5.14 shows the area and delay of an N-bit adder realized with multiple approaches.

The area and delay of the mPLD-XOR are explained by (5.3) and (5.4), respectively, where

MN is the number of diode OR memristors, and DN is the number of clock cycles.

M1=4, M2=10, M3=15, M4=21, M5=27, and MN=MN-1+4 for N>5.

(5.3)

D1=3, DN=DN-1+3 if (N-1 mod 3) ≠2, and DN=DN-1+2 if (N-1 mod 3) =2.

(5.4)

Equation (5.3) and (5.4) are derived for an mPLD-XOR with three modulo-two counters

and feedback D flip-flops. In all approaches, only the numbers of auxiliary (computational)

memristors are considered since the number of source and target memristors are equal. The

mPLD-XOR is 1.31× faster in average over the length of addition than the FBLC approach

116

[75], the second fastest approach shown in Fig. 5.14. In addition, the mPLD-XOR is 1.49×

more area efficient in average than the IMPLY Parallel approach [76], the second most

area efficient approach shown in Fig. 5.14.

Fig. 5.14. Area and delay comparisons of an N-bit Adder realized with multiple approaches.

0

2000

4000

6000

8000

10000

12000

14000

0 200 400 600 800 1000

L
A

T
E

N
C

Y
 (

#
 C

Y
C

L
E

S
)

LENGTH OF ADDITION (N)

MAGIC conv. Latency Opt [74]

MAGIC Trans. II [74]

IMPLY Parallel [76]

FBLC [77]

mPLD-XOR

0

2000

4000

6000

8000

10000

12000

14000

0 200 400 600 800 1000

A
R

E
A

 (
#

 A
U

X
IL

L
A

R
Y

M

E
M

R
IS

T
O

R
S

)

LENGTH OF ADDITION (N)

MAGIC Trans. II [74]

MAGIC conv. Latency Opt

[74]

IMPLY Parallel [76]

mPLD-XOR

117

Note that the number of memristors utilized in the FBLC approach increases dramatically

[77] compared to other approaches, and thus it is not included in the graph (Fig. 5.14).

A 16-bit adder is also implemented in the mPLD-XOR with three modulo-two counters

and feedback D flip-flops where vectors A=01010101and B=00110011 are used as inputs.

The adder is performed in 42 clock cycles each of 4 ns period and 50% duty cycle. The

average power consumption is about 17 uW based on our SPICE simulations where 97%

of this power is consumed in CMOS parts of the circuit. The same adder is also

implemented in Xilinx Artix-7 FPGA XC7A100T (28nm technology). The Xilinx vivado

is used to estimate the data path delay and power consumption. The longest data path delay

of the FPGA is estimated 7.798 ns. The total active circuit power is 416 mW. In terms of

energy, the mPLD-XOR circuit consumes 2.678 pJ to implement the 16-bit adder while

the Xilinx FPGA consumes 3.244 nJ for realizing the adder.

Table 5.2

Comparison of circuit implementation using diode gates with that of other logic style

Logic Style
Logic

Function

Power Dissipation (uW)
 Delay

2-inputs 10-inputs 100-inputs

Programmable

Diode logic

NOR
0.055-

0.158

0.055-

0.165

0.055-

0.245
< 0.2ns

NAND
0.426-

0.638

0.446-

0.680

0.437-

0.880
<0.50ns

Threshold logic

[72]

NOR NP 10.6 11.49 0.60us

NAND NP 9.2 10.09 0.45us

CNIMP NOR
0.457-

1.381

0.459-

5.028

0.466-

64.053
2 cycles (20ns)

MAGIC [74] NOR
5.95-

62.77
NP NP 1 cycle (1.3ns)

NP: Not provided by the related papers

118

5.7 CONCLUSION

The mPLD-XOR relies on the characteristics of rectifying memristors to allow voltages

to be used directly as inputs. The mPLD-XOR is designed to implement multi-output

functions well suited for XOR of sums or products structure such as arithmetic and

communication functions. The input levels of such functions are realized with novel

programmable diode gates and the output levels with CMOS modulo-two counters. The

number of computational steps for calculating a multi-output function equals the maximum

number of inputs to any output XOR gate when the number of modulo-two counters is

large enough to calculate the outputs simultaneously. A 3-bit adder and a 3-bit multiplier

are implemented with mPLD-XOR, and the size and performance of each circuit were

compared with the implementation of stateful gates. The size of ReRAM and the number

of clock cycles for realizing the adder in mPLD-XOR approach to the stateful approach are

280:957 and 8:29 respectively. For the 3-bit multiplier, these ratios are 564:4290 and 12:65.

Adding feedback circuits to mPLD-XOR, as shown in Fig. 5.11, allows the implementation

of a multilevel XOR logic network with any combination of sums, products, XORs, and

literals at the input of any XOR gate. The mPLD-XOR with feedback circuit has the

potential to decrease the number of computational steps and the size of ReRAM. In

realizing the 3-bit multiplier, the size of ReRAM and the number of computational steps in

mPLD-XOR with a feedback circuit to the mPLD-XOR without a feedback circuit are

564:1400 and 12:40, respectively. A 16-bit adder is also implemented in the mPLD-XOR

and Xilinx Artix-7 FPGA XC7A100T. The power consumption of the mPLD-XOR is

smaller than the Artix-7 FPGA, but the mPLD-XOR performs slower. In addition, the size

119

and delay comparisons of an N-bit adder realized with multiple approaches show that the

mPLD-XOR adder is more area-delay efficient. This chapter presents examples

demonstrating the benefits of using mPLD-XOR for realizing logic functions.

120

Chapter 6

Multi-Input Volistor XNOR Gates

A novel approach utilizing the emerging memristor process technology is introduced

for realizing a 2-input primitive memristive XNOR gate based on volistor logic. The

volistor XNOR gate uses voltage as input and resistance as output and capitalizes on the

diode-like behavior of rectifying memristors. The XNOR gate is used as a building block

of multi-input XNOR gates. The delay and the size of the N-input XNOR gate are small

compared to other memristive XNOR gates, i.e., the gate is implemented with eight

memristors of two crossbar arrays in 2N-1 clock cycles. The average power consumption

of an 8-input volistor XNOR gate is calculated and compared with its counterpart realized

with CMOS technology. Comparisons and simulation results show the benefit of the

proposed XNOR gate in terms of delay, area, and power. More importantly, the XNOR

gate combines memory and logic operations and enables in-memory computing.

6.1 INTRODUCTION

The ESOP realization of arithmetic functions has some advantages over the SOP

realization of the functions [65], [99]. In general, the ESOP realization of arithmetic

functions decreases the number of products and literals. In addition, ESOP circuits have

better testability and have a use in cryptography and communication circuits. The key point

in realizing such circuits is to implement multi-input XOR/XNOR gates, which has been a

challenge in many technologies. For example, in conventional CMOS technology, multi-

input XOR are slow, consume large amounts of power, and occupy larger areas compared

to other combinational gates. This chapter describes a novel approach for realizing a multi-

121

input resistive XNOR gate. There are multiple approaches for realizing a two-input

primitive memristive XOR/XNOR gate [62], [89], [100]-[101] depending on how inputs

and output signals are expressed. For example, in [89], both inputs and output are expressed

as resistance whereas in [100], inputs are expressed as voltage and only the output is

expressed as resistance. In [62], a mix of voltage and resistance is used to express the

inputs, and only resistance is used to express the output. And, in [101] and [102], both

inputs and output are expressed as voltage.

This chapter describes a new implementation of an XNOR gate based on volistors [29]

and memristive diode gates [37]. The proposed XNOR gate uses voltage as input and

resistance as output. Power, area, and delay comparisons are made against XNOR

implementations with memristive and CMOS technologies.

The chapter is organized in the following order. Section 6.2 provides a quick review of

the characteristics of rectifying memristors, volistors, and memristive diode gates.

Section 6.3 describes the implementation of a two-input volistor XNOR gate, and

Section 6.4 shows the implementation of a multi-input XNOR gate based on the proposed

two-input volistor XNOR gate. The multi-input XNOR circuits are compared with their

counterparts realized with CMOS and memristive technologies. Section 6.5 summarizes

concludes the chapter.

122

6.2 REVIEW OF RECTIFYING MEMRISTORS, VOLISTORS, AND PROGRAMMABLE DIODE

GATES

This description provides a brief review of the characteristics of the rectifying

memristors, volistors, and memristive diode gates as these logic gates are used in realizing

the XNOR gate.

6.2.1 Rectifying memristors

Fig. 6.1 shows the i-v characteristic of rectifying memristors [15], [45]-[46]. A

rectifying memristor exhibits approximately a linear i-v characteristic when it is forward

biased. The slope of this relation is much greater for the RCLOSED than for the ROPEN.

However, the current through the memristor can be disregarded when it is reverse biased.

VCLOSE and VOPEN are threshold voltages, and VSET and VCLEAR are programming voltages.

The inset in Fig. 6.1 shows the symbolic diagram of the memristor and explains the

polarities. We assume that RCLOSED denotes logic ‘1’ and ROPEN denotes logic ‘0’.

Fig. 6.1. The i–v characteristic of a rectifying memristor and its symbolic diagram. The flow of current into

the device, as shown above, decreases the resistance.

123

 6.2.2 Volistor logic

Volistors capitalize on the diode-like behavior of rectifying memristors and utilize

voltage as input and resistance as output. Fig. 6.2a shows a 2-input volistor NOR gate with

input voltages Vin1 and Vin2 and output resistance t (i.e., the state of memristor T).

Memristor T is connected to a bias voltage VT (< 0V) to store the output. The circuit operates

properly under three conditions: 1) utilizing rectifying memristors, 2) initializing the

memristors to RCLOSED, and 3) selecting proper input and bias voltages that satisfy (6.1)

when input voltage Vin is high (see Fig. 6.1 for VCLEAR and VOPEN).

0OPEN T

T in CLEAR

V V V

V V V

 


 
 (6.1)

While realizing the NOR gate, the voltage on wire WOR remains unchanged for the reason

that memristor T is reverse biased and allows approximately no current through the device.

(Note that memristor T is connected to negative voltage VT). In this implementation, the

source memristors (connected to Vin1 and Vin2) maintain their resistance states. In contrast

to most of the stateful gates, there is no need for grounding WOR through a reference resistor

for implementing the gate.

6.2.3 Memristive diode logic

Memristive diode gates utilize voltage as input and output. Fig. 6.2b shows a 2-input

diode AND gate where Vin1 and Vin2 are the input voltages and VAND (the voltage on wire

WAND) is the output voltage. This circuit operates properly under three conditions: 1)

utilizing rectifying memristors, 2) initializing the memristors to RCLOSED, and 3) selecting

proper input voltages that satisfy (6.2) to ensure that memristors maintain their resistance

124

states.

 0 in OPENV V V  (6.2)

The circuit in Fig. 6.2b operates with no state transitions in memristors. For example,

when inputs are different, the memristor connected to a high input voltage is reverse biased

(see the polarities of the memristors) and suppresses the current below 10-13 A [45]. In

addition, the voltage across the reverse biased memristor is insufficient to toggle the state

of the memristor as determined by (6.2). This implementation requires no reference resistor

as the gate relies on the diode-like behavior of the memristors. In contrast to the previous

work [27], this is a significantly different implementation of structurally similar but

conceptually different logic gates.

6.3 TWO-INPUT VOLISTOR XNOR GATE

Fig. 6.3a shows the schematic of the 2-input volistor XNOR gate. Although the circuit

WAND

Vin1

RCLOSED

Vin2

RCLOSED

WOR

Vin1 VT

RCLOSED T

Vin2

RCLOSED

 (a) (b)

Fig. 6.2. Implementation of memristive gates. (a) Implementation of two-input volistor NOR gate. (b)

Implementation of a 2-input programmable diode AND gate.

125

has a similar structure as diode AND gate, it operates with different conditions. First, the

inputs have different voltage levels: 0V and |VCLEAR|. Therefore, inputs are meant to be

destructive to the states of memristors. Second, the output is defined as a state transition

in memristors S1 and S2. State transition ‘1’ denotes that no state transition occurs in

memristor S1 and S2, and state transition ‘0’ denotes that a state transition occurs in either

S1 or S2. As a result, there is no predetermined target (output) memristor. There are three

operations to realize the XNOR gate in the following order: setting, write, and read as

described below.

6.3.1 Setting operation

Memristors S1 and S2 must be initialized to logic ‘1’ (RCLOSED).

6.3.2 Write operation

The write operation computes and stores the output of the XNOR gate. Fig. 6.3b shows

the behavior of the XNOR gate. If the inputs are equal, no state transition occurs in S1 or

Vin1

Vin2

S1

S2

High

Impedance

WXNOR

 (a) (b)

Fig. 6.3. Volistor XNOR gate. (a) Schematic of 2-input volistor XNOR gate. (b) Behavior of volistor

XNOR gate.

 Vin1 Vin2 State

Transition

0 0 1

0 1 0

1 0 0

1 1 1

126

S2. However, if the inputs are different, the state of a memristor connected to the high input

voltage toggles to ROPEN (logic ‘0’). The output can be accessed anytime by reading the

nonvolatile states of S1 and S2 as explained below.

6.3.3 Read operation

The output is read-out as AND (s1, s2) where s1 and s2 are the state variables of

memristors S1 and S2. This operation is performed by a memristive diode AND gate. The

read operation requires connecting wire WXNOR to VREAD (< VCLOSE) and wires Win1 and Win2

to the GND through pull-down resistors, RG. The voltage on WAND shows the output of

XNOR gate (Fig. 6.4). Table 6.1 explains the configuration of XNOR circuit during setting,

write, and read operations.

6.3.4 Circuit simulation

The XNOR gate is simulated in LTspice using 50nm TSMC process BSIM models and

VREAD

S1

S2

High Impedance

Diode AND

Volistor XNOR

RON

RON

WXNOR WAND

Win1

Win2

 Load

VOUT R

2Vdd3Vdd/2

XNOR

2

1

3 4

VOUT

Fig. 6.4. Read operation. Non-destructive voltage VREAD is applied to the volistor XNOR gate to read the

output. The inset shows the symbolic diagram of the XNOR gate.

127

the memristor model used in [47]. The parameters of the memristors are shown in Table

6.2. Signals are square pulse width with 5 ns time period and 100% duty cycle. In addition,

inputs are defined as 0V and 1.25V, and VREAD is defined as 0.7V. A load buffer is connected

to WAND and the simulation was conducted for Vdd = 0.6V, R = 1MΩ, and RG = 5MΩ (see

Fig. 6.4). Fig. 6.5 shows the behavior of the circuit during setting, write, and read

operations, assuming that initial states of S1 and S2 are logic ‘0’. Fig. 6.5a shows the

behavior of the XNOR circuit assuming that Vin1 and Vin2 are logic ‘1’ and logic ‘0’,

respectively. The write operation toggles s1. Therefore, VAND and VOUT during the read

operation are ‘0’, demonstrating that a state transition has occurred in either S1 or S2 during

the write operation. Note that the output during setting and write operations is irrelevant.

Fig. 6.5b shows the behavior of the XNOR circuit assuming that Vin1 and Vin2 are logic ‘1’.

Table 6.1

XNOR configuration

Operation
Wires

Win1 Win2 WXNOR WAND

Setting 0V 0V VSET 0V

Write Vin1 Vin2 Z VDSEL

Read RG RG VREAD Z

Voltage VDSEL is used to deselect a column during the write operation where VDSEL = VREAD. RG is a load

resistor, and Z denotes high impedance.

Table 6.2

Memristor Parameters

Parameter Value Parameter Value

RCLOSED 500 KΩ VCLOSE 1 V

ROPEN 500 MΩ VOPEN -1 V

VSET 1.2 V Switching

delay 4 ns
VCLEAR -1.2 V

128

Under this combination of inputs, s1 and s2 remain unchanged. Therefore, VAND and VOUT

during the read operation are ‘1’, demonstrating that no state transition has occurred in S1

and S2 during the write operation. Our simulation results show the proper operation of the

circuit for other inputs combinations, as well.

The average power consumption of the circuit during setting, write, and read operations

is 1.98 uW. This power is consumed in four CMOS drivers, four memristors, and two load

resistors RG connected to Win1 and Win2 through two transistors. Each CMOS driver consists

of two transistors and two control signals. (The size of the transistors, W/L ratio, is 8/1.)

Table 6.3 shows the average power consumptions of the circuit for different values of Vin1,

Vin2, s1, and s2.

Table 6.4 compares multiple memristive XOR/XNOR circuits proposed in the literature

with the volistor XNOR circuit. In all circuits, except for [101] and [102], the output is

stored as a nonvolatile state of a memristor. Among the circuits shown in Table 6.4, only

 Setting ↔ Write ↔ Read Setting ↔ Write ↔ Read

 (a) (b)

Fig. 6.5. XNOR Circuit Simulations. The initial states are (s1, s2) = (0, 0). (a) The circuit behavior when

inputs are (Vin1, Vin2) = (1, 0). (b) The circuit behavior when inputs are (Vin1, Vin2) = (1, 0). The outputs, VAND

and VOUT, are relevant only during the read operation.

129

the heterogeneous memristive XNOR circuit [89] and the proposed volistor XNOR circuit

can be realized in programmable memristor crossbar arrays whereas other XOR/XNOR

circuits [62], [100]-[102] are application-specific integrated circuits (ASIC). The volistor

XNOR gate is slightly faster than heterogeneous memristive XNOR gate for two reasons:

first, inputs are voltage signals. Therefore, there is no need for programming the source

memristors to represent the inputs. Second, memristors are of the same type. Therefore,

unlike [89], there is no additional delay for output buffering. For multi-input XNOR gate,

volistor XNOR is faster than heterogeneous memristive XNOR as explained in the next

Table 6.3

Average power consumption of a two-input volistor XNOR gate during the setting, write, and read

operations (values are in micro joules)

Inputs

(Vin1, Vin2)

Initial states of memristor S1 and S2

00 01/10 11

00 1.93 2.16 2.80

01/10 1.60 1.83 2.46

11 1.31 1.54 2.17

Table 6.4

Multiple realizations of 2-input primitive XOR/XNOR gates based on memristors

Realization

approach

Input/ output

type

Delay*

Memristors/

Transistor

Computing

in crossbar

Computing

Voltages

[102] {V}/{V} 1 3 M + 3 T NO 2

[91] {V}/{V} 1 2 M + AVS NO 4

[62] {V, R}/{R} 2** 2 M + 3 T NO 4

[100] {V}/{R} 1 1 M + 4 T NO 3

This work {V}/{R} 2 4 M YES 4

[89] {R}/{R} 3** 4 M
YES 4

V and R denote voltage and resistance.

AVS denote Analog Voltage Summator.

* Delay is measured as the number of clock cycles.

**Writing the inputs into the source memristors is not counted.

130

section. The proposed volistor based circuit makes XNOR a primitive gate similar to the

IMPLY and CNIMP gates [25].

6.4 N-INPUT VOLISTOR XNOR GATE

An N-input XNOR gate is widely used in arithmetic, security, testing, and

communication circuits. This gate can be implemented by cascading 2-input volistor

XNOR gates in two crossbar arrays. Fig. 6.6 shows a block diagram of an N-input XNOR

gate that consists of 2-input XNOR gates XNOR1 and XNOR2 connected through CMOS

switches. The XNOR gate is configured as a function of signals 1-7, X, Y, and Z. (See

Fig. 6.4 to identify the terminals). Table 6.5 explains the operation of the circuit. For

example, in the first clock cycle, XNOR1 and XNOR2 are set to logic ‘1’. In the second

clock cycle, XNOR1 implements XNOR (Vin1, Vin2). In the third clock cycle, XNOR2

realizes XNOR (Vin1, Vin2, Vin3), and in the fourth clock cycle, XNOR1 is set to logic ‘1’ to

calculate XNOR (Vin1, Vin2, Vin3, Vin4) in next clock cycle. This process continues until an

N-input XNOR gate is realized. In each clock cycle, a combination of control or input

signals is applied to the circuit to perform a particular operation. For example, in the first

clock cycle, signals XYZ are set to ‘110’, terminals 1, 2, 4, 5, and 7 are set to 0V, and

2

1

XNOR1 XNOR2VOUT1 VOUT2

5

Y

Z

3 4 6 7

X

Fig. 6.6. Schematic diagram of a multi-input volistor XNOR gate.

131

terminals 3 and 6 are set to VSET. In particular, during the write operation, VDSEL is applied

to terminal 4 or terminal 7 to keep the states of AND gate unchanged. The computational

delay of the circuit is 2N-1. Table 6.5 also shows the state of XNOR1 and XNOR2 as a

function of multiple signals. When XNOR1 (or XNOR2) is in state ‘-’, it waits for XNOR2

(or XNOR1) to complete the setting or write operation. In clock cycle number seven,

Table 6.5

Multi-input XNOR circuit configuration

cyc

Terminals and Signals XYX State of XNORs

Fan-

in
1 2 3 4 5 6 7 X Y Z

XNOR

1

XNOR

2

1 0 V 0 V VSET 0V 0V VSET 0 V ‘1’ ‘1’ ‘0’ Setting Setting

2 Vin1 Vin2 Z VDSEL 0V Z 0 V ‘1’ ‘0’ ‘0’ Write -

3 Z Z VREAD Z Vin3 Z VDSEL ‘0’ ‘1’ ‘0’ Read Write 2

4 0 V 0 V VSET 0V 0 V Z 0V ‘1’ ‘1’ ‘0’ Setting -

5 Vin4 VOUT2 Z VDSEL Z VREAD Z ‘0’ ‘0’ ‘1’ Write Read 3

6 0 V 0V Z 0V 0 V VSET 0V ‘1’ ‘1’ ‘0’ - Setting

7 Z Z VREAD Z Vin5 Z VDSEL ‘0’ ‘1’ ‘0’ Read Write 4

8 0 V 0V VSET 0V 0V Z 0V ‘1’ ‘1’ ‘0’ Setting -

*cyc denotes the number of clock cycles

The table explains the sequential realization of the multi-input XNOR gate. Columns are control and

input signals applied to XNOR1 and XNOR2.

Table 6.6

Multiple logic circuits of n-input XOR/XNOR memristive gates

Approach

Input/

output

type

Delay**
Memristors/

Transistor

[89]

(Optimized area)
{R}/ {R} 4N-5 N+2 M

[89]

(Optimized delay)
{R}/ {R} 3N-3 2N M

[25] {R}/ {R} 2N+C* (2N-1 +1) × (N+1) M

This work {V}/{R} 2N-1 8 M

Hybrid

XOR***
{V}/{R} N-1

1 M+

(f(N)=f(N-1)+4, f(2)=4, N≥2) T**

Hybrid

XNOR ****

{V}/{V}

1

(3 M+3 T) × (N-1)

* C is a constant number [25].

** Delay is measured is the number of clock cycles during the computations. In [89], the number of clock

cycles required to program the source memristors to represent the inputs is not counted.

*** In [100], the realization of only two-input resistive XOR gate is shown. We predicted the delay and

resources required for realizing an N-input XOR gate by cascading the XOR gates.

**** In [102], the realization of the XNOR gate for only N = 2 and 3 is shown. We estimate the delay and

the size of the circuit for realizing an N-input XNOR as shown in the table.

132

XNOR1 and XNOR2 repeat their states during the third clock cycle. Table 6.6 summarizes

the size and delay comparisons of multiple N-input memristive XOR/XNOR circuits. The

proposed N-input volistor XNOR circuit is small and relatively fast. The average power

consumption of an 8-input volistor XNOR gate is 20.97 uW including that of dissipated in

CMOS peripheral parts in Fig. 6.4 and 6.6. This average power is calculated for 25 random

input vectors. Most of this power is consumed during the setting operation, which is

performed with a voltage larger than VSET (i.e., 1.4V). The XNOR gate shows a large noise

margin, as well. For the random input vectors, the XNOR perceives any resistive value

larger than 85% ROPEN as ROPEN and any resistive value smaller than 115% RCLOSED as

RCLOSED. Unfortunately, the proposed XNOR gate does not enable parallel computation in

crossbar arrays. An 8-input XNOR gate was also synthesized using Synopsys design

compiler with 45nm TSMC library. The average power consumption of the gate is 29.3 uW

assuming that inputs are read from registers (D flip-flops) operating at the clock speed of

5ns. The design compiler realizes the 8-input XNOR gate using three 2-input XNOR gates

and two 1-bit full adders. The proposed XNOR gate is smaller and consumes less power

than its CMOS counterpart.

6.5 SUMMARY AND CONCLUSION

This chapter describes the implementation of a 2-input primitive volistor XNOR gate.

In addition, the realization of a multi-input XNOR gate based on the primitive XNOR is

explained. The simulation results confirm the proper operation of the XNOR gate. Volistor

XNOR gates enable a resistive computation of arithmetic and communication circuits that

use multi-input XNOR gates in programmable memristive circuits. The computational

133

delay of the XNOR circuit is small compared to other programmable memristive XNOR

gates. In addition, the power and area comparisons show the benefits of the volistor XNOR

gate over the CMOS XNOR gate.

134

Chapter 7

Volistor Logic Gates in Crossbar Arrays of Rectifying Memristors

This chapter introduces new implementations for volistors and programmable diode

gates in crossbar arrays of rectifying memristors. Volistors use voltage as input and

resistance as output and rely on the diode-like behavior of rectifying memristors. The

design constraints of volistors are explained. These constraints determine the size of the

crossbar array and the voltage levels for logic functions implementations. This chapter

shows that volistors can be cascaded in crossbar arrays with other memristive gates such

as programmable diode gates. An implementation example of AND-NOR PLA based on

hybrid programmable diode gates and volistors in a crossbar array is explained. The hybrid

PLA circuit reduces both area and computational delay. The hybrid PLA circuit is

compared to other memristive PLA (mPLA) circuits realized with stateful gates,

complementary resistive switches (CRS) based gates, and Boolean gates. The outcomes

show the benefit of the hybrid PLA circuit in terms of both size and delay.

7.1 INTRODUCTION

Memristors are the fourth passive basic elements in addition to resistors, capacitors, and

conductors [3]. Memristors are two-terminal, non-volatile, and nanoscale devices. These

devices with fast switching ability can be integrated with transistors [43] and can be scaled

down to less than 10 nm [83] where the size of the transistor is hitting the physical limit.

Memristors can be used for memory applications [15], [40], [84] and for digital and analog

computations [18], [85]-[86]. Memristive digital gates can be divided into three categories.

In the first category, the resistance states of memristors represent logic values [20], [25],

135

[28], [87]-[89]. This type of gates are known as stateful. In the second category, a

combination of resistance (states of memristors) and voltage signals represents logic values

[29], [62], [90]. And in the third category, voltage signals represent the input and output

values [24], [27], [32], [33], [37], [72], [91]-[93]. The stateful gates are sequential gates,

but their realization in parallel can reduce the delay [47], [77]-[78]. The stateful gates are

usually realized in crossbar arrays, however, their realization in structures other than

traditional crossbar arrays is possible [94]. In the second category, gates are designed to

exploit the voltage-based input (or output) of CMOS gates and resistor-based input (or

output) of stateful gates. The realization of logic gates using the Akers array [90], two-

input XOR gate [62], and volistor gates [29] are just a few examples of the second type of

gates. Some of these gates can be realized in crossbar arrays such as the volistors explained

in this chapter. The third category of memristive gates is beneficial to extend Moore’s law

when CMOS scaling becomes problematic. A few examples of this type of gates are

memristive fuzzy logic gates [24], memristive-ratioed logic gates [27], memristive

programmable diode gates [37], Boolean logic gates [91], memristive threshold gates [33]

and [72], memristive stochastic gates [92]-[93], memristive reservoir gates [32], etc. These

gates are not necessarily realized in standard crossbar arrays.

This chapter explains how rectifying memristors [15], [45]-[46] improve logic

operations. We propose a novel approach for implementing volistor gates in crossbar

arrays. Volistors depend on rectifying memristors (i.e., memristors with intrinsic diode-

like behavior) and use voltage as input and resistance as output. In addition, we derive the

design constraints for volistor gates. These constraints determine the size of the crossbar

arrays and the voltage values for realizing the gates. There are two different

136

implementation approaches for volistor gates. In the first approach, volistors use voltage

as input and resistance as output. However, in the second approach, volistors use a mix of

voltage and resistance as input and resistance as output. The second approach realizes, what

we call, input-volistor gates (i.e., input-voltage-resistor and output-resistor gates).

Volistors show some beneficial features. First, volistors enable in-memory computing.

Second, the fan-in and fan-out of volistor gates are large. For example, implementing a 64-

input (output) volistor gate without an auxiliary circuit [44] is not a challenge (see Section

7.6). Third, the voltage-based inputs of volistor gates (in contrast to the resistance-based

inputs of stateful gates) results in a smaller and faster memristive circuits (see Section

7.7.3). And fourth, volistors and other memristive gates can be cascaded in crossbar array

to decrease the delay. For example, AND-NOR functions can be realized in two clock

cycles by cascading volistors and programmable diode gates [37] in crossbar arrays (see

Section 7.7).

The rest of this chapter is organized as follows. In Section 7.2, the structure of memristive

circuit for realizing volistor gates is introduced. Section 7.3 provides a quick review of

volistor gates realized in one-dimensional array, whereas Section 7.4 describes the

implementation of volistor gates and Section 7.5 explain the implementation of input-

volistor gates in crossbar arrays. Section 7.6 shows the design constraints of volistors.

Section 7.7 shows an implementation example of an AND-NOR function based on

programmable diode gates and volistors. The size and delay of the circuit are also compared

to equivalent memristive circuits implemented with other memristive gates. Section 7.8

concludes the paper.

137

7.2 CIRCUIT STRUCTURE FOR VOLISTOR LOGIC GATES

This section shows a general new circuit structure for logic operations based on volistors,

programmable diode gates, stateful gates, etc. Fig. 7.1 illustrates this new circuit structure.

The circuit consists mainly of a computational array and memory array forming our

proposed approach to in-memory computing enabled by memristor technology. The

computational array is a network of sub-crossbar arrays that implements arbitrary logic

operations and store logic values. These sub-crossbar arrays communicate through

columns and rows of pass transistors. The computational array and the pass transistors are

driven by peripheral circuits. These peripheral circuits are controlled by nearby big

memristor memory array, which stores the instructions and control signals. The x columns

of the memory array are controlled by an x-bit shifter. The output of the shifter

...
...
...
...

...

...

...

...
...
...
...

...

...

...

...

..
.

..
.

..
.

..
.

...

..
.

..
.

..
.

..
.

Control Circuits

C
o

n
tro

l C
ircu

its

Input Array

(Inputs and their Complements)

Computational Array

Memory Array

(Instructions and Control Signals)

x

CMOS Memory Drivers

k

Memory Drivers

Fig. 7.1. General circuit structure for logic computations based on volistor and stateful gates.

138

1 2(, , ,)xQ Q Q at the first, second, and xth clock cycle is (1,0, ,0), (0,1,0, ,0), and

(0, ,0,1), respectively, where logic ‘1’ and ‘0’ denote high and low-voltage levels. There

is a relatively small crossbar array that stores a number of k-bit vectors of inputs and their

complements. This input array is connected to the upper peripheral circuits, as illustrated

in Fig. 7.1. In this chapter, we assume that the inputs applied to the computational array

satisfy 0
inl inh CLOSE

V v v V   where inlv and
inhv are low and high input voltages,

respectively, and are chosen 0V and 0.6V .

Let the size of each sub-crossbar array be A B . The size of resistive memory is

(()) nA B C S C       where  is the number of control signals applied to each

CMOS driver that is connected to a row of the crossbar arrays,  is the number of control

signals applied to each CMOS driver that is connected to a column of the crossbar arrays,

C is the number of sub-crossbar arrays, S is the number of pass transistors, and Cn is the

computational delay measured as the number of clock cycles. Here, we assume that 5 

and 6  . As a result, the memory bus width is (5 6)W A B C S    . In addition, each

CMOS driver that controls a horizontal or vertical wire consists of five or six transistors,

respectively. Table 7.1 shows the voltage levels used in the circuit in Fig. 7.1 where

inhv v  and inhv v   . The circuit in Fig. 7.1 performs NOR, AND, INH (inhibition), and

Table 7.1

Voltage levels required during the operations

Operation Required Voltage Levels

Initialization 0V, VSET

Execution VCLEAR, v0 ,־V, v+, |VCLEAR|

Read v0 ,־V, v+

139

COPY gates among other types of logic gates. Each of these gates (except for COPY) has

multiple implementations depending on inputs locations (Table 7.2). For example, NOR

operation can be applied to either the inputs located in the input array (case 1) or the inputs

located in both the input array and computational array (case 2). Let input voltages inlv and

inhv encode logic ‘0’ and logic ‘1’, and input resistances
OPENR and

CLOSEDR encode logic

‘0’ and logic ‘1’, respectively. Section 7.3 provides a quick review of volistor gates and

input-volistor gates realized in one-dimensional arrays and shows the limitations of volistor

logic gates.

7.3 REVIEW OF VOLISTOR GATES IN ONE-DIMENSIONAL ARRAYS

Volistors capitalize on diode-like behavior of rectifying memristors and use voltage as

input and resistance as output [29]. The input voltages of volistor gates eliminate the need

for reference resistors, the most power-hungry circuit elements in stateful IMPLY gate

[20], AND gate [88], CNIMP (Converse Non-Implication) gate [25], etc. Section 7.3.1

reviews the implementation of volistor NOR gate and its limitations, and Section 7.3.2

reviews the implementation of input-volistor NOR gate (which uses a mix of voltage and

resistance as input and resistance as output).

Table 7.2

Volistor operations and their input locations

Case

Inputs Locations Gates

Input

Array

Computational

Array
NOR AND INH COPY

1   

2    

3    

140

7.3.1 Volistor NOR gate

Volistor NOR gate was introduced in [29]. This implementation approach has the inputs

stored in the input array. Fig. 7.2 shows the schematic of an n-input volistor NOR gate

realized in a 1 (1)n  memristive array with the voltages specified in (7.1).

0

0

inl inh CLOSE

OPEN T

T inh CLEAR

V v v V

V V V

V v V

  

 

 







(7.1)

(7.1)

(7.1)

a

b

c

The role of each memristive switch is determined by its driving voltage such as v+, v־, etc.

Memristive switches S are set to closed state and connected to input voltages vin1-vinn. The

target memristive switch (which stores the output) is connected to voltage VT. Volistor

NOR is implemented in two clock cycles. In the first clock cycle, switch T is set closed.

And in the second clock cycle, NOR gate is implemented. Though memristive switches are

set closed, some of them act as open switches. For example, memristive switch T is always

reverse biased and acts as an open switch. During the operation, all switches S remain

closed. However, the state of switch T may be changed to open (programmed to HRS).The

diode-like behavior of memristors allows the implementation of volistor gates that have

multiple fan-out without auxiliary circuits [44]. When at least one of the inputs is high, the

voltage on wire wm is approximately vinh. Therefore, the voltage across switch T is close to

141

CLEARV . This voltage is large enough to toggle the state of T to open. When inputs are low,

switch T remains closed. Equation (7.1a) shows the range of input voltages. The values of

VT and
inhv are chosen in such a way that they satisfy (7.1b) and (7.1c). In Fig. 7.2, input

voltages are selected by peripheral circuits and applied to the closed memristive switches,

S. This implementation approach is best suited for circuits that require large fan-out.

Fig. 7.3 illustrates this limitation where the circuit implements a three-input NOR gate with

a fan-out of three, but it is unable to realize multiple NOR gates with different arguments.

In Section 7.4.1, we show how to implement multiple NOR gates with different arguments

in parallel.

7.3.2 Input-volistor NOR gate

Input-volistor NOR gate was introduced in [29]. This implementation approach has the

inputs distributed in both input array and computational array (Table 7.2). Fig. 7.4a shows

 LRS HRS

S S S

S S S

S S S

..
.

..
.

..
.

..
.

...

...

...

va vb vc VT

v1

w2

w2

Z

Z

Z

T1=NOR (a, b, c)

T2=NOR (a, b, c)

T3=NOR (a, b, c)

Fig. 7.3. Implementation of a three-input volistor NOR gate with a fan-out of three. The source memristors

are in LRS. Horizontal wires are connected to high impedance Z.

VTvinnvin2vin1

...

S SS T

wm

Fig. 7.2. Schematic of an n-input volistor NOR gate realized in a 1 × (n + 1) memristive array.

142

the schematic of the two-input-volistor NOR gate with input voltage va, input resistance rb,

and output resistance rT, as such rb and rT denote the logical states of S2 and T, respectively.

Input va is applied to memristor S1 initialized to LRS, voltage v+ is applied to memristor S2,

and voltage VT is applied to memristor T. The circuit operates with the voltages specified

in (7.1). An n-input-volistor NOR gate is realized in a 1 × (n + 1) memristive array. The

correct operation of volistor NOR may require grounding wm through reference resistor Rg

when n ≥ 8 (Fig. 7.4b). The need for Rg appears when all of the inputs are logic ‘0’, and

most of the inputs are resistances. Fig. 7.4b illustrates an n-input-volistor NOR circuit with

n-1 input resistance at logic ‘0’ (HRS) and one input voltage at logic ‘0’ (inlv). For this

combination of inputs, the circuit must satisfy (7.1) where

((1) 1) / ()m T gw n v V n N


      and OPEN gg
N R R . For v+ = 0.6V, VT = -0.6V, and

Rg=√ (ROPRN × RCLOSED), Equation (7.2) is simplified to n < 74. In fact, the use of reference

resistor Rg allows to increase the size of the input-volistor NOR gate from n < 8 to n < 74.

v+va VT

S1

rb

wm

TS2

rT

 (a)

v+vinl VT

S1

wm

TS2

v+

S3

v+

Sn

...

 LRS HRS

Rg

 (b)

Fig. 7.4. (a) Schematic of two-input-volistor NOR gate. Inputs are va and rb, and the output is rT. (b)

Schematic of an n-input-volistor NOR gate where all of the inputs are logic ‘0’.

143

When n < 8, the circuit can operate without Rg where)((1) (1)
m T

w n v V n
     .

m T OPEN

w V V  (7.2)

7.4 VOLISTOR GATES IN TWO-DIMENSIONAL ARRAYS

This section explains the implementation of improved volistor NOR, volistor AND, and

volistor COPY gates in crossbar arrays and show how to deselect a volistor gate in a

crossbar array.

7.4.1 Improved volistor NOR gate

In a single crossbar array, identical gates with identical inputs are a limited form of

parallelism that can be realized using volistor logic (Fig. 7.3). This limitation could be

resolved by permanently disabling specific memristors in the crossbar array that leaves

those memristors in permanent HRS [18], [75]. This approach would result in an

application-specific integrated circuit, different than our general concept of a

programmable mPLA. As an alternative, in our approach, the rectifying memristors are

programmed to HRS taking the role of memristors in permanent HRS. Recall that the

rectifying memristors have relatively large ROPEN and ROPEN/RCLOSED ratio. Consequently,

input voltages can be disconnected by programming the source memristors to HRS. This

technique allows to implement multiple volistor NOR gates in parallel in a crossbar array.

144

For example, the crossbar array shown in Fig. 7.5 implements Tm = NOR (a, b, c) on wire

and Tm+1 = NOR (¬a, ¬b, ¬c) = AND (a, b, c) on wm+1. The source memristors on wm+2 are

programmed to HRS to disconnect the inputs. The gates can be executed for any input

vector [va, vb, vc] in two clock cycles as the inputs are voltage signals and the source

memristors retain their resistance states. In contrast, the implementations of stateful logic

gates require programming the source memristors for any input vector of literals, because

the resistance states of source memristors represent the input values. In stateful gates,

programming the source memristors takes more clock cycles (e.g. 2n where n is the

number of inputs [25]) than in volistors where the programming takes only a single cycle.

In stateful logic, we would apply a voltage of v+/2 (v2/־) to those rows which are not used

in the current operation of the crossbar array [95]. This would prevent the target memristors

in these “deselected” rows from changing states. In contrast, in our circuit shown in

Fig. 7.1, to deselect a row of volistor NOR or any other row in a crossbar array, a

conventional v+/2 scheme cannot be used. Section 7.4.2 shows how to deselect a volistor

gate in a crossbar array.

 LRS HRS

Tm = NOR (a, b, c)S SS S S S

...

Tm+1 = NOR (¬ a, ¬ b, ¬ c)S SS S S

...

Tm+2 = 1S SS S S S

...

..
.

..
.

..
.

..
.

..
.

..
.

..
.

S

va v¬ a vb v¬ b vc v¬ c VT

wm

wm+1

wm+2

Fig. 7.5. Implementation example of multiple volistor NOR gates in a crossbar array. The circuit

implements Tm = NOR (a, b, c) on wm and Tm+1 = NOR (¬a, ¬b, ¬c) on wm+1. Source memristors on wm + 2

are in HRS to disconnect the input voltages.

145

7.4.2 Deselect of volistor gates in crossbar arrays

To deselect a volistor gate in a crossbar array, a write scheme such as setting unused

rows (columns) to v+/2 or v+/3 has problems. Such a write scheme might largely decrease

the voltage levels on wires and corrupt the circuit operation. Take, for example, the circuits

shown in Fig. 7.6 where inputs va, vb, and vc equal vinl. The circuit shown in Fig. 7.6a is

programmed to implement Tm= NOR (¬a, b, c) while preventing the implementation of

Tm+1 = NOR (¬a, ¬b, ¬c) by connecting wm+1 to v+/2. However, the flow of current through

memristor M decreases the voltage on wc and thus the voltage on wire wm which would

corrupt the implementation of Tm = NOR (¬a, b, c). In contrast, we use CMOS switches to

solve the deselect problem of volistor gates in crossbar arrays. In Fig. 7.6b, the v+ scheme

 LRS HRS

Tm

...

...

..
.

..
.

..
.

..
.

..
.

..
.

..
.

va v¬ a vb v¬ b vc v¬ c VT

wm

wm+1

Z

v+/2

Tm+1

wc

M

(a)

 LRS HRS

Tm S SS S S S

...

...

..
.

..
.

..
.

..
.

..
.

..
.

..
.

va v¬ a vb v¬ b vc v¬ c VT

wm

wm+1

Z

v+

wc

Tm+1

v+= vinh
(b)

Fig. 7.6. Deselecting a volistor gate in a crossbar array. (a) Traditional approach for deselecting a volistor

gate by v+/2 scheme might disturb the circuit operation. (b) Our approach for deselecting a volistor gate is

to use pass transistors and v+ scheme to ensure the correct operation of the circuit.

146

sets the memristors on wire wm+1 reverse biased and suppresses the electric current through

the memristors. In addition, the pass transistor on wm+1 prevents any state transition in

memristor Tm+1. Fig. 7.7 shows four sub-crossbar arrays connected through pass transistors.

Each row or column of two adjacent arrays can implement one volistor gate where the

source and target memristors are connected through a pass transistor. When a pass

transistor is switched off, the gate is deselected.

...

...

...

...
...
...
...

...
...
...
...

...
...
...
...

...

...

...

...

..
.

..
.

..
.

..
.

...
...
...
...

..
.

..
.

..
.

..
.

...

A

B

C

D

Fig. 7.7. Example of four sub-crossbar arrays (A, B, C, and D) connected by a column and row of pass

transistors.

147

7.4.3 Volistor AND gate

The new implementation approach of volistor AND gates has the input values stored in a

computational array (Table 7.2). Fig. 7.8a illustrates the implementation of Tm = AND (a,

b, c) using the voltages specified in (7.3). Row wm-1 is connected to v־ to read out the input

resistances (a, b, and c). The voltages on vertical wires wn-2, wn, and wn+2 correspond to the

 LRS HRS

wm-1

a

v-
v-

b c

v-

...vREAD

..
.

..
. ..
.

..
.

..
.

..
.

wm

S SS S S S

...Z

Tm-1

..
.

VT

Tm

vOPEN < vREAD = v- < 0V

 VT VCLEAR

RgRgRg

wm+1

...

S SS S S S
Tm+1

wn-2 wn wn+2

Input Row

AND Row

(a)

LRS

HRS

b

...

a

...

...

..
.

vREA

D

..
.

Z

...VT

c

...

wnwn-1

Tn

S

S

S

S

0 V < vREAD = v+
 <VCLOSE

VT |VCLEAR|

v+

Rg

Rg

Rg

..
.

wn+1

S

S

S

S

Input Column AND Column

(b)

Fig. 7.8. Implementation of volistor AND gate with input resistances stored in a computational array. (a)

Realization of Tm=AND (a, b, c) where inputs are located on row wm-1 (b) Realization of Tn = AND (a, b, c)

where inputs are located on column wn-1.

148

inputs. The output of the AND gate is the resistance state of memristor Tm connected to

horizontal wire wm. Memristor Tm is driven by voltage VT. The other memristors on
m

w are

not part of the AND gate and are connected to v־ in order to minimize the effect of the

sneak current paths. Horizontal wires except for wm-1 and wm are connected to the GND.

The pass transistors are switched off, except for the one that is connected to Tm. If the inputs

were located in a column of the crossbar array, the AND gate would be implemented using

the voltages specified in (7.4). Fig. 7.8b illustrates the implementation of Tn = AND (a, b,

c) where inputs a, b, and c are located in column wn-1 and the output is stored in memristor

Tn. A two-input AND gate was simulated in a 9 × 9 crossbar array using 50 nm TSMC

process and the SPICE model of the rectifying memristor [47]. The simulation results show

the correct operation of the AND gate for all input combinations. Note that volistor AND

gate can also be implemented using input complements stored in the input array in the same

manner of implementing volistor NOR gate shown in Section 7.4.1.

0

OPEN

T CLEAR

V v V

V V


 







 (3)

0

CLOSE

T CLEAR

V v V

V V


 







 (4)

149

7.4.4 Volistor COPY gate

Fig. 7.9 shows how to copy a logic value in computational array. In Fig. 7.9a, value a in

row wm-1 is transferred to memristor Tm located in row wm using the voltages specified in

(7.3). In Fig. 7.9b, value a in column wn-1 is transferred to Tn locate in column wn using the

voltages specified in (7.4). Our simulation results show the proper operation of the circuit

realizing the COPY operation in a 9 × 9 crossbar array.

 LRS HRS

wm-1

a

v-

...vREAD

..
.

..
.

..
.

wm

S S S

...Z

Tm-1

..
.

VT

Tm

vOPEN < vREAD = v- < 0 V

 VT VCLEAR

Rg

wm+

1 ...

S S S
Tm+1

wn-2 wn

v-

(a)

LRS HRS

...
..
.

vREA

D

..
.

Z

...VT

a

...

wnwn-1

Tn

S

S

0 V < vREAD = v+
 <VCLOSE

VT |VCLEAR|

v+

Rg

..
.

wn+1

S

S

(b)

Fig. 7.9. Volistor COPY Operation. (a) COPY value a on vm-1 to memristor Tm on vm (b) COPY value a on

wn-1 to memristor Tn on wn.

150

In Section 7.5, the input-volistor INH gate and input-volistor AND gate are proposed.

These logic gates use a mix of voltage and resistance as input and resistance as output.

7.5 INPUT-VOLISTOR GATES IN TWO-DIMENSIONAL ARRAYS

The implementation of input-volistor INH requires having the inputs distributed in both

the input array and computational array. However, the implementation of input-volistor

AND gate requires having the inputs distributed in two different columns (rows) of

adjacent sub-crossbar arrays (Table 7.2).

7.5.1 Input-volistor INH gate

By definition, a INH b= (¬a) b, which also equals ¬ ((¬a) IMPLY (¬b)). The INH gate

is implemented with two memristors, as shown in Fig. 7.10, where va is the input voltage

and rb is the input resistance. Input va is applied to source memristor S initialized to LRS,

and input rb is the initial state of memristor T. The output is the new resistance state of

memristor T. The INH gate is implemented using the voltages specified in (7.1). Our

simulation results confirm the correct operation of the INH gate for all input combinations.

INH along with constant ‘1’ form a functionally complete set of logic gates. The input-

volistor IHN is implemented similar to input-volistor NOR. The difference is that in input-

VTva

S T

wr

rb

Fig. 7.10. Schematic of input-volistor INH gate. Inputs are va and rb, and the output is (¬a) b, which updates

resistance state rb of memristor T.

151

volistor NOR, the output is separated than inputs whereas in input-volistor INH, the output

is represented on the same memristor as one of the inputs.

7.5.2 Input-volistor AND gate

The input-volistor AND gate is implemented similar to the volistor AND gate (Fig. 7.8

The difference is that in input-volistor AND the output is represented on the same

memristor as one of the inputs whereas in volistor AND the output is separated than inputs.

In Section 7.6, the design constraints for implementing volistor gates in crossbar arrays

are discussed.

7.6 DESIGN CONSTRAINTS OF VOLISTOR GATES IN CROSSBAR ARRAYS

Volistors operate in crossbar arrays under some constraints. These constraints determine

the size of computational array and the range of voltage levels for implementing the gates.

The constraints are obtained under the assumption of having the primary inputs and their

complements stored in the input array. In addition, it is assumed that v+ = vinh, v־ = -vinh,

and Rg = √ (ROPEN×RCLOSED) where Rg is the reference resistor. Moreover, the pass

transistors connecting the sub-crossbar arrays are chosen such that rds << RCLOSED ˂˂ ROPEN

where rds is the drain-source resistance of a pass transistor. The constraints are explained

for each volistor gate as follows.

7.6.1 Design constraints of improved volistor NOR gate

Constraint 1 to Constraint 3 must be satisfied for the improved volistor NOR gates,

realized in two m × n sub-crossbar arrays.

Constraint 1. If all of the NOR’s inputs are logic ‘0’, the closed state of target memristive

152

switch must remain closed. In other words, Equation (7.2) should be satisfied where

((0.5)) / 2m Tv n v V n    . Fig. 7.11 shows the VT-n relation for the applied inputs. This

VT-n relation is denoted by ‘lower_all_0’ and shows the lower bound of VT.

Constraint 2. If one of the NOR’s inputs is logic ‘1’, the closed state of target memristive

switch must toggle to open. In other words, Equation (7.5) should be satisfied where

((1.5)) / (2 1)m Tv N n v V N n       and /OPEN CLOSEDN R R . Substituting vm in

(7.5) results in (7.6), which determines the range of VT. Fig. 7.11 shows the VT-n relations

for the applied inputs. These relations are denoted by ‘lower_1’ and ‘upper_1’ and show

the boundaries of VT.

 2CLEAR OPEN CLEARm TV V v V V    (7.5)

(1.5)

2 2
T CLEAR

N n v
V V

N n

  
 

 
 (7.6a)

(1.5) (2 1) 2

2 2

CLEAR OPEN

T

N n v N n V V
V

N n

       


 
 (7.6b)

Constraint 3. If all of the NOR’s inputs are logic ‘1’, the closed state of target memristive

switch must toggle to open. In other words, Equation (7.5) should be satisfied where

((0.5)) / ((0.5) (0.5))Tvm N n v V N n n         . Fig. 7.11 shows the VT-n relations

for the applied inputs. These relations are denoted by ‘lower_all_1’ and ‘upper_all_1’ and

show the lower and upper bound of VT.

153

The shaded area in Fig. 7.11 shows the range of VT for realizing i-input volistor NOR

gates for any combination of inputs where i ≤ n - 1. Note that the resistive effect of the

wires is negligible as the resistance of the wires is very small compared to RCLOSED =

500 KΩ. For example, the resistive value of a relatively large width wire of diameter

120 nm used in a 32 × 32 crossbar array is at most 30 KΩ when implemented with relatively

high resistance p-doped Si [61]. In other words, the resistive value of each wire is about

1 KΩ, which is very small compared to RCLOSED.

Fig. 7.12b shows the simulation results of three 50-input volistor NOR gates realized in

a 3 × 101 crossbar array where inputs are (0, 0, …, 0), (1, 0… 0), and (1, 1, …, 1). The

state transition delay in target memristors depends on the number of vinh applied to each

NOR gate. The longest delay occurs when only one of the inputs is high. In this case, the

delay is 4.67 ns, which is 11.75% longer than a 4 ns transition delay in LRS memristor

connected to VCLEAR (Fig. 7.12a).

Fig. 7.11. VT-n relations of multiple volistor NOR gates realized in two m × n crossbar arrays. The

shaded area shows the range of VT for implementing i -input volistor NOR gates where i ≤ n - 1.

154

When volistor AND is realized with input complements, the constraints of volistor NOR

gate are applied to volistor AND. Recall the implementation example of Tm+1 = AND (a, b,

c) realized as Tm+1 = NOR (¬a, ¬b, ¬c) in Section 7.4.1.

7.6.2 Design constraints of input-volistor NOR gate

Constraint 4 to Constraint 6 must be satisfied for the input-volistor NOR gates, realized

in two m × n sub-crossbar arrays.

Constraint 4. If all of the NOR’s inputs are logic ‘0’, the closed state of target memristive

switch must remain unchanged. In other words, Equation (7.2) should be satisfied where

((2 2)) (2)m T gv n v V N n


    and g OPEN gN R R . Note that vm is derived under the

assumption that all inputs are resistances, except for a single input, which is voltage.

Among all combinations of low inputs, this combination maximizes wm. Substituting wm in

(7.2) results in (7.7). Fig. 7.13 shows the VT-n relation for the applied inputs. This relation

is denoted by ‘lower_all_0’ and shows the lower bound of VT.

 (a) (b)

Fig. 7.12. (a) State transition delay in LRS memristor connected to VCLEAR. (b) Simulation results of three

50-input volistor NOR gates executed in a 3 ×101 crossbar array where 0 × vinh, 1 × vinh, and 50 × vinh show

the number of high inputs applied to each volistor NOR gate. Also, v1, v2, and v3 denote the voltages on

horizontal wires w1, w2 and w3 of volistor NOR gates. And T1, T2, and T3 are the memristances (resistance

states) of target memristors denoting the outputs.

155

 ((1) (2) (2)) (2 1)OPENT g gV n v n N V N n


       (7.7)

Constraint 5. If one of the NOR’s inputs is logic ‘1’, the closed state of target memristive

switch must toggle to open. In other words, Equation (7.5) should be satisfied where

(1)

2 1 () () 1(2 1) 1
T

m
g g

n v V v
w

N N n n N N

  
 

    
. Note that wm is derived under the assumption

that the high input is resistance while all other inputs are voltages. Among all combinations

of inputs (for which only one input is logic ‘1’), this combination of inputs minimizes wm.

Fig. 7.13 shows the VT-n relations for the applied inputs. These relations are denoted by

‘lower_1’ and ‘upper_1’ and show the lower and upper bounds of VT.

Constraint 6. If all of the NOR’s inputs are logic ‘1’, the closed state of target memristive

switch must toggle to open. In other words, Equation (7.5) should be satisfied where

(2 2) 2(() ())() 11 2 1 (2 2)m
gg

VTv

N N n
v

N N n




   




. Note that wm is derived under the

assumption that all inputs are resistances, except for a single input, which is voltage.

Among all combinations of high voltage-resistance inputs, this combination maximizes vm.

Fig. 7.13 shows the VT-n relations for the applied inputs. These relations are denoted by

‘lower_all_1’ and ‘upper_all_1’ and show the boundaries of VT. The shaded area in

Fig. 7.13 shows the range of VT for realizing an i-input-volistor NOR gate for any

combination of inputs where i ≤ 2n - 2. The input-volistor NOR gate is realized in a smaller

computational array than the array used for volistor NOR gate. The small number of inputs

156

is an outcome of Constraint 4. Therefore, realizing both types of volistor NOR gate requires

small sub-crossbar arrays.

7.6.3 Design constraints of input-volistor AND gate

Constraint 7 to Constraint 9 must be satisfied for the volistor AND (and input-volistor)

gates, realized in two m × n sub-crossbar arrays.

Constraint 7. If all of the AND’s inputs are logic ‘1’, the close state of target memristive

switch must remain closed. Therefore, Constraint (7.8) should be satisfied where vn is the

voltage on wire wn (see Fig. 7.8) and equals ((2 1)) ((2 1) 1)TN m v V N m       . Fig.

7.14 shows the VT-m relation for the applied inputs. This relation is denoted by

‘upper_all_1’ and it shows the upper bound of VT.

 n T OPENv V v  (7.8)

Constraint 8. If one of the AND’s inputs is logic ‘0’ while all other inputs are logic ‘1’

the closed state of target memristive switch must toggle to open. In other words, Equation

(7.9) should be satisfied where ((2 2)) (2 1)n Tv m v V N m      . Fig. 7.14 illustrates

Fig. 7.13. VT–n relations of multiple input-volistor NOR gates realized in two m × n crossbar arrays. The

shaded area shows the range of VT for implementing i-input-volistor NOR gates where i ≤ 2n - 2.

157

the VT-m relations for the applied inputs. These relations are denoted by ‘upper_1L’ and

‘lower_1L’ and show the upper and lower bounds of VT, respectively.

 2CLEAR OPEN n T CLEARV V v V V    (7.9)

Constraint 9. If all of the AND’s inputs are logic ‘0’, Equation (7.9) should be satisfied

where ((2 1) 1)n Tv V N m    . Fig. 7.14 shows the VT-m relations for the applied inputs.

These relations are denoted by ‘upper_all_0’ and ‘lower_all_0’ and show the boundaries

of VT. Fig. 7.14 shows the range of VT for realizing an i-input volistor AND gate for any

combination of inputs where 2 1i m  .

In summary, all volistor gates can be realized in small sub-crossbar arrays. The size of a

sub-crossbar array depends on characteristics of the rectifying memristors summarized in

Table 6.2.

7.7 IMPLEMENTATION EXAMPLE AND COMPARISONS

Volistors can be cascaded with programmable diode gates in the computational array.

We propose a programmable memristive PLA-like circuit (mPLA) for realizing two-level

multi-output functions well-suited for OR-AND based design. The computational delay of

Fig. 7.14. VT-m relations of multiple volistor AND gates realized in two m × n crossbar arrays. The shaded

area shows the range of VT for realizing i-input volistor AND gates where i ≤ 2m-1.

158

the mPLA is two clock cycles. In the first clock cycle, the target memristors are initialized

to LRS, and in the second clock cycle, functions are implemented. The mPLA uses voltage

as input and resistance as output and maintains the states of the source memristors during

the operations. Therefore, calculating a function for a new combination of inputs would

still require two clock cycles. The input levels of functions are implemented with

programmable diode OR gates, and the output levels are realized with volistor AND gates.

In Section 7.7.1, a quick review of memristive programmable diode gates is provided. In

addition, we show how to improve the programmable diode gates for parallel computing

in crossbar arrays. In Section 7.7.2, the programmable mPLA circuit for realizing an

arbitrary POS function based on hybrid diode gates and volistors is introduced. And in

Section 7.7.3, the implementations of POS functions with multiple memristive gates

(proposed in the literature) are compared to our implementation approach.

7.7.1 Memristive programmable diode gates

The memristive programmable diode gates capitalize on rectifying memristors and use

voltage as input and output. The diode gates are realized in a one-dimensional memristive

array. The proper operation of the gates requires programming the memristors to LRS. Let

us focus on the programmable diode OR gate. An n-input diode OR gate is implemented

in a 1 × n memristive array (see Fig. 7.2) using the voltages specified in (7.1). Inputs are

vin1-vinn and the output is vm, the voltage on wire wm. And, memristors maintain their states

during the operations. Inputs are selected by peripheral circuits and applied to the

memristive array. The implementation of diode gates can be improved similar to the

159

volistor gates by programming the memristors to HRS or LRS to disconnect or select an

input voltage, respectively.

7.7.2 Realization of a multi-output AND-OR function in the mPLA

Fig. 7.15 shows the schematic of mPLA for realizing an arbitrary multi-output POS

function. The mPLA consists of two sub-crossbar arrays, A and B, connected through pass

transistors. Sums are realized with diode ORs (e.g., OR 1, OR 2, OR 3) and the products

are implemented with volistor ANDs (e.g., AND n-1, AND n). Inputs are vin1-vinn, and

outputs are the new states of the target memristors (e.g., Tn- 1 and Tn). To deselect an output,

the corresponding AND gate is connected to 0V (e.g., AND n-2), and the relevant pass

transistor is switched off. Memristors in crossbar array A maintain their resistance states.

LRS HRS

OR 3

OR 2

OR 1

..
.

..
.

v¬in1

...VT

c2c1

0 V vin < VCLOSE

VT |VCLEAR|

..
.

c3

...

...

...

0 V Zvin1 v¬in2vin2 Z

..
.

..
.

..
.

..
.

cn-1cn-2

Tn-1

cn

..
.

..
.

..
.

..
.

..
.

..
.

..
.

c4

A
N

D
 n

A
N

D
 n

-1

Tn

v3

v2

v1

A

B

A
N

D
 n

- 2

Fig. 7.15. Schematic of the mPLA for realizing a multi-output POS function.

160

As a result, calculating the function for another combination of inputs would only require

programming the target memristors to LRS and realizing the function.

A single-output OR-AND function can be realized in a single crossbar array. In this

realization, the size of the crossbar array can be as large as 512 × 512, and the only circuit

constraint to satisfy is to have the inputs and their complements stored in the input memory.

In realizing a single-output OR-AND function, all memristors of volistor AND are

initialized to LRS. To disconnect an input of AND gate, the corresponding horizontal

wired-OR is connected to v+. In Section 7.7.3, we compare the realization of an arbitrary

OR-AND function (or AND-NOR function, when negated inputs are used for realizing the

functions) based on the hybrid approach, and other memristive approaches.

7.7.3 Comparisons of the mPLA implementations

An extensive comparison of different mPLA implementations is beyond the scope of this

dissertation. However, to get some level of comparison, the implementations of proposed

mPLA and other hypothetical mPLAs are evaluated. This evaluation takes into account the

delay and the size of the memory array. The memory array and its CMOS peripheral circuit

dominate the circuit area. Thereby, the size of memory array is used for estimating the size

of the memristive circuit. An n-input single-output AND-NOR function is implemented in

multiple mPLA circuits for comparison.

1) mPLA circuit based on stateful IMPY-CNIMP gates

An n-input AND-NOR function can be implemented using IMPLY and CNIMP (INH)

operations [25] in an (1) (1)m n   crossbar array. The size of memory array, which

stores the instructions and control signals, equals nW C . The delay is estimated to be

161

2 5nC n  based on the published data. In addition, the size of memory bus width equals

4 (2)W m n    as each wire is driven by four control signals [47]. Therefore, the size

of memory array is 4 (2) (2 5)m n n     .

2) mPLA circuit based on stateful NOR-NOT gates

An n-input AND-NOR function can be realized based on stateful NOR and NOT gates

[28] in an (1) (1)m n   crossbar array. We estimate the delay to be n + 4 clock cycles.

Mapping the function into the crossbar array is performed similar to the approach explained

in [96], i.e., one clock cycle for initializing the memristors to HRS, n + 1 cycles for

programming n + 1 columns of the crossbar array, and two clock cycles for realizing a

function—one cycle for realizing m stateful AND gates (NORs with negated inputs) and

the other cycle for realizing a single NOR gate. We estimate the width of memory bus to

be 3 (1) 5 (1)W m n      , as each horizontal wire is controlled by three signals to be

connected to 0 , HSV V and
0V , and each vertical wire is controlled by five signals to be

connected to
0,0 , ,CLEAR VSV V V V and SETV where ,HS VSV V and

0V are used to deselect a row,

to deselect a column, and to realize a gate, respectively. Therefore, the size of the memory

array ()nW C is (5 3 8) (4).n m n   

3) mPLA circuit based on CRS-CMOS gates

An n-input AND-NOR function can be implemented using CRS-CMOS gates [97] in two

crossbar arrays of m × n (for realizing the AND gates) and 1 × m (for realizing a NOR

gate). The delay is estimated to be n + 3 that is two cycles for initializing the CRS cells of

each crossbar to HRS/LRS state, n cycles for mapping the function into AND crossbar, and

one cycle for implementing the function. We estimate the width of memory bus to be

162

2 3 (1) (1)W m n m       as each horizontal wire of the AND crossbar is controlled

by two signals to be connected to 0V and VHS (a non-destructive positive voltage) and each

vertical wire is controlled by three signals to be connected to , , ,th n RV V and ,th pV (i.e., a

destructive negative voltage, a non-destructive positive voltage which is equal to
HSV , and

a destructive positive voltage, respectively). In addition, each wire of the NOR crossbar is

controlled by one signal to be connected to either 0V or ,th nV (during the initialization step).

Note that VHS is applied to deselect a row in the AND crossbar and VR is applied to

implement AND gates. Therefore, the size of the memory array ()nW C is

(3 3 4) (3).m n n   

4) mPLA circuit based on Boolean gates

An n-input NAND-AND function (or equivalently AND-NOR function) can be

implemented with the Boolean AND, NAND, and COPY gates in an (1) (2 1)m n  

crossbar array [75]. The delay is five clock cycles. That is one cycle for the initialization

of the memristors to HRS, one cycle for copying the inputs and their complements to the

crossbar, one cycle for mapping the function into the crossbar, and two cycles for realizing

the function [75]. We estimate the width of the memory bus to be 4 (2 2)W m n    as

each horizontal wire is controlled by four signals to be connected to 0 ,V HSV , SETV , and

reference resistor gR , and each vertical wire is controlled by four signals to be connected

to CLEARV , whV , SETV , and gR where Vwh = VHS. Vwh is used for implementing the gates,

whereas VHS is used for deselecting a row. Therefore, the size of memory array ()nW C

is 20 (2 2)m n   .

163

5) mPLA circuit based on hybrid gates

In the hybrid circuit, an n-input AND-NOR function can be implemented with hybrid

diode OR and volistor AND gates in an (m + 1) × (2n + 1) crossbar array. The outputs of

diode ORs represent logical NAND of input complements, (i.e., OR (¬a, ¬b) = NAND (a,

b)). Therefore, the mPLA can realize NAND-AND functions (or equivalently AND-NOR

functions). The delay of the mPLA is two clock cycles. In addition, the width of memory

bus is 5 (1) 6 (2 1)W m n      . Therefore, the size of the memory array is

24 10 22n m  .

6) Other circuits

There is another type of mPLA circuits, which use voltage as input and output, e.g., [98].

This type of mPLA was not used for in-memory computing, thereby, it is not compared to

other mPLAs mentioned above.

Fig. 7.16 compares the percentage increase in the memory array for each approach. The

memory percentage increase is defined as
() ()

() 100
()

A x A hyb
F x

A hyb


  where ()A x is the

size of memory array and x{1, 2, 3, 4} corresponds to the stateful IMPLY-CNIMP based

mPLA, stateful NOR-NOT based mPLA, CRS-CMOS based mPLA, and Boolean based

mPLA, respectively. In addition, ()A hyb is the size of memory array in our hybrid based

mPLA. The minimum increase in the memory array occurs in the Boolean based mPLA

for n = 8 and it is 95%. The Boolean based mPLA has the second smallest memory array

size after the hybrid based mPLA. In all mPLA circuits, m is assumed 2n-1, i.e., the

maximum number of minterms of function.

164

There are major differences between the implementation approaches shown in Fig. 7.16.

For example, each mPLA has a different delay that affect the size of a memory array

(Table 7.3). In the Boolean based mPLA, the design is ASIC, i.e., some of the memristors

are in permanent HRS for realizing a specific function [75]. However, while authors

discussed that the number of voltage levels for logic operations is only three, they did not

discuss the size of a computational array. The hybrid circuit requires five voltage levels for

initialization and function implementation (, ,0 , ,CLEAR SETV v V v V 
), which results in a

wider memory bus width. Despite its wider memory bus width, the size of the memory

array in the hybrid mPLA is smaller than in other mPLAs (Fig. 7.16). The multiple voltage

levels used in the hybrid mPLA allow to cascade multiple types of memristive gates such

as stateful INH (NOR/NOT) gates [25], [98] and programmable memristive diode gates

Fig. 7.16. Area estimation of memory array. The graphs show the maximum size of memory arrays in each

mPLA circuit.

0

10

20

30

40

50

60

8 16 32 64

A
re

a
p

er
ce

n
ta

g
e

in
cr

ea
se

×
1

0
0

n

F(4) F(3) F(2) F(1)

Table 7.3

Delay of multiple mPLA circuits

Circuit Delay

IMPLY-CNIMP based

mPLA

2n+5

NOR-NOT based mPLA n+4

CRS-CMOS based mPLA n+4

Boolean based mPLA 5

Hybrid based mPLA 2

165

with volistors. In fact, it is necessary to cascade volistors and other memristive gates to

implement multilevel logic functions. Note that the size of the computational array in each

mPLA is a function of n (the number of literals).

7.8 CONCLUSION

Logic operations with rectifying memristors reduce the negative effect of sneak current

paths in crossbar arrays and enable volistor gates. Volistors make in-memory computing

possible. We showed how to realize multiple volistor gates in parallel in crossbar arrays.

In addition, the constraints for realizing volistor gates were explained. These constraints

determine the size of the computational array and the voltage levels required for

implementing the gates. An implementation example of programmable mPLA based on

hybrid volistor and memristive diode gates was explained. The size and delay of the hybrid

mPLA were compared to those of different mPLAs. In the hybrid mPLA, the delay is only

two clock cycles and the size of the memory array is smaller than those of other mPLA

circuits. The mPLA example shows the benefit of our new memristive circuit approaches.

166

Chapter 8

Memristive Circuit Architectures

Memristors are passive elements, and hence, memristive circuits require CMOS

supplementary circuits for gain and signal restorations. Different circuit architectures for

interfacing memristors and CMOS driving circuitries were proposed, e.g. CMOL [20] and

[39] and demultiplexer [83-85] architectures. This chapter shows examples of two and

three-dimensional CMOS-memristive circuit architectures describing the interface circuits

between the CMOS and memristive parts. In three dimensional circuit example, a stack of

two-dimensional crossbar arrays is utilized for parallel computing where the crossbars

communicate via peripheral CMOS circuits.

8.1 CIRCUIT ARCHITECTURE FOR MEMRISTORS

 Fig. 8.1 shows a block diagram of a 2D (two-dimensional) crossbar circuit for logic

computations based on volistors and stateful gates. The computations take place in

computational array connected to CMOS drivers shown as small rectangles. The memory

arrays in Fig. 8.1 store the instructions and control signals. The same CMOS drivers shown

in Fig. 2.7 can be used in Fig. 8.1. Each wire of the computational array is controlled by

three or four signals stored in a memory array. The crossbar arrays are fabricated on top of

the CMOS layer and can be scaled into 3D (three-dimensional) array as illustrated in

Fig. 8.2. The 3D arrays have more complicated drivers than 2D arrays. The drivers in 3D

arrays shown in Fig. 8.2 must be capable of moving data vertically between the

computational arrays. The number of control signals of each driver depends on the number

of computational arrays s in the stack. For example, the number of control signals for

167

driving each wire of the 3D array could be s + 4. Fig. 8.3 shows the schematic of the CMOS

driver when s = 5. The driver is capable of setting each wire to 0V, VCOND, VPROG, or

connecting the wire to the GND through load resistor Rg or terminating the wire to high

impedance. In addition, it is capable of connecting two parallel wires of any two

computational arrays. In Fig. 8.3, terminal 13 is the output terminal of the driver. Each of

terminal 5 - terminal 8 is connected to a wire of a different computational array. Other

terminals, 1 - 4 and 9 - 12, are driven by control signals stored in a memory array. Fig. 8.4

illustrates a stack of four computational arrays and their drivers. The arrays communicate

through the CMOS drivers. Fig. 8.5 shows which and how wires of multiple computational

arrays are connected.

Memory Array
Computational

Array

Memory Array

Memory Array

Memory Array

Fig 8.1. Bock diagram of a memristive circuit for logic computations (upper view). Logical operations are

implemented in the computational array. The memory arrays store the instructions. Memory arrays and

computational array communicate through CMOS drivers shown as small rectangles.

168

Fig. 8.2. Block diagram of a 3D memristive array (top side view).

0V VCOND

VPROG Rg

1

2

3

4

5

7

8

6

9

10

12

13

11

 (a) (b)

 Fig. 8.3. (a) Schematic of a single CMOS driver in Fig. 8.2. (b) Driver’s circuitry.

Mux1

Mux2

Vias

Pad

Swiching

Driver

Toward a computational array

Toward a memory array

169

Fig. 8.4. Schematic of four stacked computational arrays and their CMOS drivers (bird view). Outputs of the

stacked computational arrays are beneath the memory arras. The memory arrays are not shown in this figure.

Fig. 8.5a shows terminals 5-8 and 13 of four stacked CMOS drivers (bird view) and

how the black output wires of the drivers communicate through the terminals. The black

parallel wires are belong to four stacked computational arrays. Fig. 8.5b shows terminals

5-8 and 13 of four stacked CMOS drivers (side view) when only the connections of the

most bottom driver are illustrated. Fig. 8.5c shows all the connections of Fig. 8.5b. The

three-dimensional circuit shown in Fig. 8.4 enables parallel computing where all

computational arrays can process simultaneously. Note that the driver shown in Fig. 8.2

can be modified to allow performing hybrid volistor and stateful logic gates as shown in

Fig. 8.6. The complexity of the driver is increased by one additional control signal (14),

...

..
.

4

4

CMOS

Driver

..
.

Instructions and

control signals

170

which allows for selecting between volistor and stateful logic operations. The total number

of transistors used in this driver is s + 19.

3

4

13 5 6 7 8

Wire

Four stacked

CMOS drivers

 (a) (b)

 (c)

Fig. 8.5. (a) Schematic of driver’s interconnections with computational arrays shown in Fig. 8.2 (bird view)

(b) Four stacked CMOS drivers (Bird view). (c) Schematic of four stacked CMOS drivers which shows

how four wires of four stacked computational arrays communicate through the drivers (side view).

171

0V

Rg

1

2

3

12

5

7

8

6

9

10

11

13

inputVCOND

¬ inputVPROG

14

14

 Fig. 8.6. CMOS driver for logic computing with hybrid volistor and stateful logic operations.

172

Chapter 9

Summary, Conclusion, Achievements and Future Work

9.1 SUMMARY AND CONCLUSION

The research reported in this dissertation focused on one particular problem: How to

improve logic computations based on memristor technology in non von-Neumann

architectures. To proceed with this goal, multiple design choices for logic computations

were studied. We found that the use of rectifying memristors (over non-rectifying

memristors) is desirable for logic computations due to the power and area saving benefits,

as described in Section 2.5. Using the rectifying memristors with a particular bias scheme

produce converse non-implication gates which forms a functionally complete set of logic

gates with TRUE operation. The ISD notation for logic analysis and synthesis with IMPLY

gates is extended to EISD to enable logic synthesis with IMPLY and INH gates.

Capitalizing on the characteristics of rectifying memristors, a particular realization of logic

gates called volistors were introduced. Volistors allow voltages to be used directly as

inputs. This eliminates the need for a reference resistor to read out the inputs in the first

logic level and thus eliminates the most power-hungry circuit element in most of the

stateful gates. Using multiple crossbars in a network provides parallelization, leading to

pipelined architectures. Several different first-level volistor operations can be computed in

separate crossbars at the same time, speeding up what is typically the most complex level

of implementing Boolean functions. Subsequent logic levels can be accomplished in

connected crossbars in an approach that uses mixed input gates and stateful NOR. This

173

hybrid approach with volistors and stateful INH NOR can be used to compute logic faster,

with less power than a solely stateful approach.

A programmable diode logic gate is another logic computing style proposed in this

dissertation. The programmable diode gates also rely on rectifying memristors to allow

voltages to be used directly as inputs. A memristive PLA-like circuit called mPLD-XOR

was proposed using the programmable diode gates. The mPLD-XOR is designed to

implement multi-output functions well suited for XOR of sums or products structure such

as arithmetic and communication functions. The input levels of such functions are realized

with programmable diode gates and the output levels with CMOS modulo-two counters.

The number of computational steps for calculating a multi-output function equals the

maximum number of inputs to any output XOR gate when the number of modulo-two

counters is large enough to calculate the outputs simultaneously. A 3-bit adder and 3-bit

multiplier were implemented using the mPLD-XOR, and the size and performance of each

circuit were compared with the implementation of stateful gates. The size of ReRAM and

the number of clock cycles for realizing the adder in mPLD-XOR approach to the stateful

approach are 280:957 and 8:29 respectively. For the 3-bit multiplier, these ratios are

564:4290 and 12:65. Adding feedback circuits to mPLD-XOR, as shown in Fig. 5.11,

allows the implementation of a multilevel XOR logic network with any combination of

sums, products, XORs, and literals at the input of any XOR gate. The mPLD-XOR with

feedback circuit has the potential to decrease the number of computational steps and the

size of ReRAM. In realizing the 3-bit multiplier, the size of ReRAM and the number of

computational steps in mPLD-XOR with a feedback circuit to the mPLD-XOR without a

174

feedback circuit are 564:1400 and 12:40, respectively. A 16-bit adder is also implemented

in the mPLD-XOR and Xilinx Artix-7 FPGA XC7A100T. The power consumption of the

mPLD-XOR is smaller than the Artix-7 FPGA but performs slower. In addition, the size

and delay comparisons of an N-bit adder realized with multiple approaches show that the

mPLD-XOR adder is more area-delay efficient.

A new approach for realizing a two-input XNOR logic gate was proposed. The

realization of a multi-input XNOR gate using the 2-input volistor XNOR gate was also

described. Volistor XNOR gates enable a resistive computation of arithmetic and

communication circuits that use multi-input XNOR gates. The computational delay of the

N-input XNOR gate is 2N-1. Comparisons were made for power, area, and delay evaluation

demonstrating the benefits of the volistor XNOR gate.

New implementation approach for multiple volistor gates in crossbar arrays was

proposed. In addition, the constraints for realizing volistor gates were described. These

constraints determine the size of the computational array and the voltage levels required

for implementing the gates. An implementation example of programmable mPLA based

on hybrid volistor and memristive diode gates was explained. In the hybrid mPLA, the

delay is only two clock cycles and the size of the memory array is smaller than those of

other mPLA circuits.

Example of a three-dimensional memristive circuit was shown. The interface between

CMOS and memristive circuits were designed. The circuit allows for parallel computing.

In conclusion, the problem of communication and memory access in von Neumann

architectures potentially can be solved using memristive technology. Memristors can be

175

used simultaneously as storage and processing elements enabling in-memory computing

architectures. In this dissertation, multiple approaches for logic computations were

proposed to increase computational efficiency. Examples were presented demonstrating

the benefits of the proposed approaches.

In future work, the three-dimensional circuit structure proposed in Chapter 8 will be

investigated for logic computations. The computation efficiency and energy dissipation

will be evaluated, and the possibility of replicating the circuit and connecting multiple such

circuits will be studied.

9.2 ACHIEVEMENTS AND PUBLICATIONS

This dissertation shows novel logic styles (techniques for logic computations) based on

memristors. These techniques can be effectively used in FPGA-like circuits to decrease the

computational delays (compared with fully stateful logic approaches). These new

techniques are capable of decreasing the power dissipation by eliminating the frequently

need for the programming step in stateful logic approaches. The programming step is

usually the most power-hungry step in stateful logic approaches. The proposed techniques

in this dissertation can be used together to implement two-level logic functions (SOP and

POS) in just one clock cycle. The new approaches enable in-memory computing in non

von-Neumann architectures. A complete example of hybrid CMOS-memristive circuit

including control and datapath are shown. The circuit (mPLD-XOR) is capable of realizing

generalized ESOP functions. The mPLD-XOR is designed with a very simple control and

datapath compared to other proposed hybrid CMOS-memristive circuit structures [78]. The

main contributions in this dissertation are published in journal papers as mentioned below.

176

[1] Aljafar, M., Long, P., & Perkowski, M. (2016). Memristor-Based Volistor Gates

Compute Logic with Low Power Consumption. BioNanoScience, 6(3), 214-234.

[2] Aljafar, M. J., Perkowski, M. A., Acken, J. M. & Tan, R. A Time-Efficient CMOS-

Memristive Programmable Circuit Realizing Logic Functions in Generalized AND-

XOR Structures. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, PP (99), 1-14.

[3] Aljafar, M. J., Perkowski, M. A. & Acken, J. M. Memristor-based Multi-Input

Volistor XNOR Gate for Arithmetic Circuits. Submitted for journal publication.

[4] Aljafar, M. J., Perkowski, M. A. & Acken, J. M. Volistor Logic Operations in

Crossbar Array of Rectifying Memristors. Submitted for journal publication.

177

TERMINAL REFERENCES

[1] International Technology Roadmap for Semiconductors (ITRS). Emerging Research

Devices. ITRS technical report

<http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_ERD.pdf>

(2009).

[2] Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing

memristor found. Nature, 453(7191), 80.

[3] Chua, L. (1971). Memristor-the missing circuit element. IEEE Transactions on circuit

theory, 18(5), 507-519.

[4] Chua, L. O., & Kang, S. M. (1976). Memristive devices and systems. Proceedings of

the IEEE, 64(2), 209-223.

[5] Joglekar, Y. N., & Wolf, S. J. (2009). The elusive memristor: properties of basic

electrical circuits. European Journal of Physics, 30(4), 661.

[6] Biolek, Z., Biolek, D., & Biolkova, V. (2009). SPICE Model of Memristor with

Nonlinear Dopant Drift. Radioengineering, 18(2).

[7] Prodromakis, T., Peh, B. P., Papavassiliou, C., & Toumazou, C. (2011). A versatile

memristor model with nonlinear dopant kinetics. IEEE transactions on electron

devices, 58(9), 3099-3105.

[8] Yang, J. J., Pickett, M. D., Li, X., Ohlberg, D. A., Stewart, D. R., & Williams, R. S.

(2008). Memristive switching mechanism for metal/oxide/metal nanodevices. Nature

nanotechnology, 3(7), 429-433.

[9] Strukov, D. B., & Williams, R. S. (2009). Exponential ionic drift: fast switching and

low volatility of thin-film memristors. Applied Physics A: Materials Science &

Processing, 94(3), 515-519.

[10] Lehtonen, E., & Laiho, M. (2010, February). CNN using memristors for

neighborhood connections. In Cellular Nanoscale Networks and Their Applications

(CNNA), 2010 12th International Workshop on (pp. 1-4). IEEE.

[11] Lehtonen, E., Poikonen, J., Laiho, M., & Lu, W. (2011, May). Time-dependency

of the threshold voltage in memristive devices. In Circuits and Systems (ISCAS), 2011

IEEE International Symposium on (pp. 2245-2248). IEEE.

[12] Pickett, M. D., Strukov, D. B., Borghetti, J. L., Yang, J. J., Snider, G. S., Stewart,

D. R., & Williams, R. S. (2009). Switching dynamics in titanium dioxide memristive

devices. Journal of Applied Physics, 106(7), 074508.

[13] Simmons, J. G. (1963). Generalized formula for the electric tunnel effect between

similar electrodes separated by a thin insulating film. Journal of applied physics, 34(6),

1793-1803.

[14] Kvatinsky, S., Friedman, E. G., Kolodny, A., & Weiser, U. C. (2013). TEAM:

Threshold adaptive memristor model. IEEE Transactions on Circuits and Systems I:

Regular Papers, 60(1), 211-221.

[15] Kim, K. H., Gaba, S., Wheeler, D., Cruz-Albrecht, J. M., Hussain, T., Srinivasa,

N., & Lu, W. (2011). A functional hybrid memristor crossbar-array/CMOS system for

data storage and neuromorphic applications. Nano letters, 12(1), 389-395.

178

[16] Likharev, K. K., & Strukov, D. B. (2006). CMOL: Devices, circuits, and

architectures. In Introducing Molecular Electronics (pp. 447-477). Springer Berlin

Heidelberg.

[17] Strukov, D. B., & Williams, R. S. (2009). Four-dimensional address topology for

circuits with stacked multilayer crossbar arrays. Proceedings of the National Academy

of Sciences, 106(48), 20155-20158.

[18] Snider, G. (2005). Computing with hysteretic resistor crossbars. Applied Physics

A: Materials Science & Processing, 80(6), 1165-1172.

[19] Kuekes, P. (2008, November). Material implication: Digital logic with memristors.

In Memristor and memristive systems symposium (Vol. 21).

[20] Borghetti, J., Snider, G. S., Kuekes, P. J., Yang, J. J., Stewart, D. R., & Williams,

R. S. (2010). ‘Memristive’switches enable ‘stateful’logic operations via material

implication. Nature, 464(7290), 873-876.

[21] Pershin, Y. V., & Di Ventra, M. (2010). Practical approach to programmable analog

circuits with memristors. IEEE Transactions on Circuits and Systems I: Regular

Papers, 57(8), 1857-1864.

[22] Linn, E., Rosezin, R., Kügeler, C., & Waser, R. (2010). Complementary resistive

switches for passive nanocrossbar memories. Nature materials, 9(5), 403.

[23] Shin, S., Kim, K., & Kang, S. M. (2011). Reconfigurable stateful NOR gate for

large-scale logic-array integrations. IEEE Transactions on Circuits and Systems II:

Express Briefs, 58(7), 442-446.

[24] Klimo, M., & Such, O. (2011). Memristors can implement fuzzy logic. arXiv

preprint arXiv:1110.2074.

[25] Lehtonen, E., Poikonen, J. H., & Laiho, M. (2012, August). Applications and

limitations of memristive implication logic. In Cellular Nanoscale Networks and Their

Applications (CNNA), 2012 13th International Workshop on (pp. 1-6). IEEE.

[26] Rose, G. S., Rajendran, J., Manem, H., Karri, R., & Pino, R. E. (2012). Leveraging

memristive systems in the construction of digital logic circuits. Proceedings of the

IEEE, 100(6), 2033-2049.

[27] Kvatinsky, S., Wald, N., Satat, G., Kolodny, A., Weiser, U. C., & Friedman, E. G.

(2012, August). MRL—memristor ratioed logic. In Cellular Nanoscale Networks and

Their Applications (CNNA), 2012 13th International Workshop on (pp. 1-6). IEEE.

[28] Kvatinsky, S., Belousov, D., Liman, S., Satat, G., Wald, N., Friedman, E. G., &

Weiser, U. C. (2014). MAGIC—Memristor-aided logic. IEEE Transactions on

Circuits and Systems II: Express Briefs, 61(11), 895-899.

[29] Aljafar, M., Long, P., & Perkowski, M. (2016). Memristor-Based Volistor Gates

Compute Logic with Low Power Consumption. BioNanoScience, 6(3), 214-234.

[30] Gaba, S., Sheridan, P., Zhou, J., Choi, S., & Lu, W. (2013). Stochastic memristive

devices for computing and neuromorphic applications. Nanoscale, 5(13), 5872-5878.

[31] Kim, H., Sah, M. P., Yang, C., & Chua, L. O. (2010, February). Memristor-based

multilevel memory. In Cellular nanoscale networks and their applications (CNNA),

2010 12th international workshop on (pp. 1-6). IEEE.

[32] Bürger, J., & Teuscher, C. (2013, July). Variation-tolerant computing with

memristive reservoirs. In Proceedings of the 2013 IEEE/ACM International

Symposium on Nanoscale Architectures (pp. 1-6). IEEE Press.

179

[33] Gao, L., Alibart, F., & Strukov, D. B. (2013). Programmable CMOS/memristor

threshold logic. IEEE Transactions on Nanotechnology, 12(2), 115-119.

[34] Maan, A. K., Jayadevi, D. A., & James, A. P. (2017). A survey of memristive

threshold logic circuits. IEEE transactions on neural networks and learning

systems, 28(8), 1734-1746.

[35] Strukov, D. B., & Likharev, K. K. (2005). CMOL FPGA: a reconfigurable

architecture for hybrid digital circuits with two-terminal

nanodevices. Nanotechnology, 16(6), 888.

[36] Xia, Q., Robinett, W., Cumbie, M. W., Banerjee, N., Cardinali, T. J., Yang, J. J.,

& Snider, G. S. (2009). Memristor− CMOS hybrid integrated circuits for

reconfigurable logic. Nano letters, 9(10), 3640-3645.

[37] Aljafar, M. J., Perkowski, M. A., Acken, J. M. & Tan, R. A Time-Efficient

CMOS-Memristive Programmable Circuit Realizing Logic Functions in Generalized

AND-XOR Structures. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, PP (99), 1-14.

[38] Govoreanu, B., Kar, G. S., Chen, Y. Y., Paraschiv, V., Kubicek, S., Fantini, A., &

Jossart, N. (2011, December). 10× 10nm 2 Hf/HfO x crossbar resistive RAM with

excellent performance, reliability and low-energy operation. In Electron Devices

Meeting (IEDM), 2011 IEEE International (pp. 31-6). IEEE.

[39] Li, K. S., Ho, C., Lee, M. T., Chen, M. C., Hsu, C. L., Lu, J. M., & Lin, C. Y. (2014,

June). Utilizing Sub-5 nm sidewall electrode technology for atomic-scale resistive

memory fabrication. In VLSI Technology (VLSI-Technology): Digest of Technical

Papers, 2014 Symposium on (pp. 1-2). IEEE.

[40] Lee, M. J., Lee, C. B., Lee, D., Lee, S. R., Chang, M., Hur, J. H., & Chung, U. I.

(2011). A fast, high-endurance and scalable non-volatile memory device made from

asymmetric Ta2O5-x/TaO2-x bilayer structures. Nature materials, 10(8), 625.

[41] Wei, Z., Takagi, T., Kanzawa, Y., Katoh, Y., Ninomiya, T., Kawai, K., &

Miyanaga, R. (2012, May). Retention model for high-density ReRAM. In Memory

Workshop (IMW), 2012 4th IEEE International (pp. 1-4). IEEE.

[42] Torrezan, A. C., Strachan, J. P., Medeiros-Ribeiro, G., & Williams, R. S. (2011).

Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology, 22(48),

485203.

[43] Borghetti, J., Li, Z., Straznicky, J., Li, X., Ohlberg, D. A., Wu, W., & Williams, R.

S. (2009). A hybrid nanomemristor/transistor logic circuit capable of self-

programming. Proceedings of the National Academy of Sciences, 106(6), 1699-1703.

[44] Laiho, M., & Lehtonen, E. (2010, May). Cellular nanoscale network cell with

memristors for local implication logic and synapses. In Circuits and Systems (ISCAS),

Proceedings of 2010 IEEE International Symposium on (pp. 2051-2054). IEEE.

[45] Kim, K. H., Hyun Jo, S., Gaba, S., & Lu, W. (2010). Nanoscale resistive memory

with intrinsic diode characteristics and long endurance. Applied Physics Letters, 96(5),

053106.

[46] Kim, K. M., Zhang, J., Graves, C., Yang, J. J., Choi, B. J., Hwang, C. S., &

Williams, R. S. (2016). Low-Power, Rectifying, and Forming-Free Memristor with an

Asymmetric Programing Voltage for a High-Density Crossbar Application. Nano

letters, 16(11), 6724-6732.

180

[47] Lehtonen, E., Tissari, J., Poikonen, J., Laiho, M., & Koskinen, L. (2014). A cellular

computing architecture for parallel memristive stateful logic. Microelectronics

Journal, 45(11), 1438-1449.

[48] Lehtonen, E., Poikonen, J. H., & Laiho, M. (2014). Memristive stateful logic.

In Memristor Networks (pp. 603-623). Springer International Publishing.

[49] Raghuvanshi, A., & Perkowski, M. (2014, November). Logic synthesis and a

generalized notation for memristor-realized material implication gates. In Proceedings

of the 2014 IEEE/ACM International Conference on Computer-Aided Design (pp. 470-

477). IEEE Press.

[50] Xu, C., Dong, X., Jouppi, N. P., & Xie, Y. (2011, March). Design implications of

memristor-based RRAM cross-point structures. In Design, Automation & Test in

Europe Conference & Exhibition (DATE), 2011 (pp. 1-6). IEEE.

[51] Chen, Y. C., Chen, C. F., Chen, C. T., Yu, J. Y., Wu, S., Lung, S. L., & Lu, C. Y.

(2003, December). An access-transistor-free (0T/1R) non-volatile resistance random

access memory (RRAM) using a novel threshold switching, rectifying chalcogenide

device. In Electron Devices Meeting, 2003. IEDM'03 Technical Digest. IEEE

International (pp. 37-4). IEEE.

[52] Flocke, A., & Noll, T. G. (2007, September). Fundamental analysis of resistive

nano-crossbars for the use in hybrid Nano/CMOS-memory. In Solid State Circuits

Conference, 2007. ESSCIRC 2007. 33rd European (pp. 328-331). IEEE.

[53] Zidan, M. A., Eltawil, A. M., Kurdahi, F., Fahmy, H. A., & Salama, K. N. (2014).

Memristor multiport readout: A closed-form solution for sneak paths. IEEE

Transactions on Nanotechnology, 13(2), 274-282.

[54] Gao, Y., Kavehei, O., Al-Sarawi, S. F., Ranasinghe, D. C., & Abbott, D. (2016).

Read operation performance of large selectorless cross-point array with rectifying

memristive device. INTEGRATION, the VLSI journal, 54, 56-64.

[55] Liang, J., & Wong, H. S. P. (2010). Cross-point memory array without cell

selectors—Device characteristics and data storage pattern dependencies. IEEE

Transactions on Electron Devices, 57(10), 2531-2538.

[56] Chen, A. (2013). A comprehensive crossbar array model with solutions for line

resistance and nonlinear device characteristics. IEEE Transactions on Electron

Devices, 60(4), 1318-1326.

[57] Youn, Y., Kim, K., Sim, J. Y., Park, H. J., & Kim, B. (2017). Investigation on the

Worst Read Scenario of a ReRAM Crossbar Array. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems.

[58] Lehtonen, E., Poikonen, J. H., & Laiho, M. (2010). Two memristors suffice to

compute all Boolean functions. Electronics letters, 46(3), 239-240.

[59] Gimpel, J. F. (1967). The minimization of TANT networks. IEEE Transactions on

Electronic Computers, (1), 18-38.

[60] Perkowski, M., Fiszer, R., Kerntopf, P., & Lukac, M. (2012, August). An approach

to synthesis of reversible circuits for partially specified functions. In Nanotechnology

(IEEE-NANO), 2012 12th IEEE Conference on (pp. 1-6). IEEE.

[61] Jo, S. H., Kim, K. H., & Lu, W. (2009). High-density crossbar arrays based on a Si

memristive system. Nano letters, 9(2), 870-874.

181

[62] Shin, S., Kim, K., & Kang, S. M. (2012). Memristive XOR for resistive

multiplier. Electronics letters, 48(2), 78-80.

[63] Wilkinson, R. H. (1963). A method of generating functions of several variables

using analog diode logic. IEEE Transactions on Electronic Computers, (2), 112-129.

[64] Debnath, D., & Sasao, T. (1997, January). An optimization of AND-OR-EXOR

three-level networks. In Design Automation Conference, 1997. Proceedings of the

ASP-DAC'97 Asia and South Pacific (pp. 545-550). IEEE.

[65] Debnath, D., & Sasao, T. (1998, February). A heuristic algorithm to design AND-

OR-EXOR three-level networks. In Design Automation Conference 1998. Proceedings

of the ASP-DAC'98. Asia and South Pacific (pp. 69-74). IEEE.

[66] Lehtonen, E., Poikonen, J., & Laiho, M. (2012, May). Implication logic synthesis

methods for memristors. In Circuits and Systems (ISCAS), 2012 IEEE International

Symposium on (pp. 2441-2444). IEEE.

[67] Akinaga, H., & Shima, H. (2010). Resistive random access memory (ReRAM)

based on metal oxides. Proceedings of the IEEE, 98(12), 2237-2251.

[68] Sasao, T. (1993). EXMIN2: a simplification algorithm for exclusive-OR-sum-of-

products expressions for multiple-valued-input two-valued-output functions. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 12(5),

621-632.

[69] Sasao, T., & Besslich, P. (1990). On the complexity of mod-2l sum PLA's. IEEE

Transactions on Computers, 39(2), 262-266.

[70] Muroga, S. (1979). Logic design and switching theory.

[71] Weste, N. H., & Eshraghian, K. (1985). Principles of CMOS VLSI design (Vol.

188). New York: Addison-Wesley.

[72] James, A. P., Francis, L. R. V., & Kumar, D. S. (2014). Resistive threshold

logic. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(1), 190-

195.

[73] Lehtonen, E., Poikonen, J. H., Tissari, J., Laiho, M., & Koskinen, L. (2015).

Recursive algorithms in memristive logic arrays. IEEE Journal on Emerging and

Selected Topics in Circuits and Systems, 5(2), 279-292.

[74] Talati, N., Gupta, S., Mane, P., & Kvatinsky, S. (2016). Logic design within

memristive memories using memristor-aided loGIC (MAGIC). IEEE Transactions on

Nanotechnology, 15(4), 635-650.

[75] Xie, L., Du Nguyen, H. A., Taouil, M., Hamdioui, S., & Bertels, K. (2015,

October). Fast Boolean logic mapped on memristor crossbar. In Computer Design

(ICCD), 2015 33rd IEEE International Conference on (pp. 335-342). IEEE.

[76] Kvatinsky, S., Satat, G., Wald, N., Friedman, E. G., Kolodny, A., & Weiser, U. C.

(2014). Memristor-based material implication (IMPLY) logic: Design principles and

methodologies. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 22(10), 2054-2066.

[77] Du Nguyen, H. A., Xie, L., Taouil, M., Nane, R., Hamdioui, S., & Bertels, K.

(2017). On the Implementation of Computation-in-Memory Parallel Adder. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems.

[78] Rahman, K. C., Hammerstrom, D., Li, Y., Castagnaro, H., & Perkowski, M. A.

(2016). Methodology and design of a massively parallel memristive stateful IMPLY

182

logic-based reconfigurable architecture. IEEE Transactions on Nanotechnology, 15(4),

675-686.

[79] Chen, Y., Jung, G. Y., Ohlberg, D. A., Li, X., Stewart, D. R., Jeppesen, J. O., ... &

Williams, R. S. (2003). Nanoscale molecular-switch crossbar

circuits. Nanotechnology, 14(4), 462.

[80] DeHon, A. (2003). Array-based architecture for FET-based, nanoscale

electronics. IEEE Transactions on Nanotechnology, 2(1), 23-32.

[81] Zhong, Z., Wang, D., Cui, Y., Bockrath, M. W., & Lieber, C. M. (2003). Nanowire

crossbar arrays as address decoders for integrated nanosystems. Science, 302(5649),

1377-1379.

[82] Adam, G. C., Hoskins, B. D., Prezioso, M., & Strukov, D. B. (2016). Optimized

stateful material implication logic for three-dimensional data manipulation. Nano

Research, 9(12), 3914-3923.

[83] Yang, J. J., Strukov, D. B., & Stewart, D. R. (2013). Memristive devices for

computing. Nature nanotechnology, 8(1), 13.

[84] Eshraghian, K., Cho, K. R., Kavehei, O., Kang, S. K., Abbott, D., & Kang, S. M.

S. (2011). Memristor MOS content addressable memory (MCAM): Hybrid architecture

for future high performance search engines. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 19(8), 1407-1417.

[85] Di Ventra, M., Pershin, Y. V., & Chua, L. O. (2009). Circuit elements with

memory: memristors, memcapacitors, and meminductors. Proceedings of the

IEEE, 97(10), 1717-1724.

[86] Jo, S. H., Chang, T., Ebong, I., Bhadviya, B. B., Mazumder, P., & Lu, W. (2010).

Nanoscale memristor device as synapse in neuromorphic systems. Nano letters, 10(4),

1297-1301.

[87] Rosezin, R., Linn, E., Kugeler, C., Bruchhaus, R., & Waser, R. (2011). Crossbar

logic using bipolar and complementary resistive switches. IEEE Electron Device

Letters, 32(6), 710-712.

[88] Kim, K., Shin, S., & Kang, S. M. (2011). Field programmable stateful logic

array. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 30(12), 1800-1813.

[89] Lebdeh, M. A., Abunahla, H., Mohammad, B., & Al-Qutayri, M. (2017). An

Efficient Heterogeneous Memristive xnor for In-Memory Computing. IEEE

Transactions on Circuits and Systems I: Regular Papers, 64(9), 2427-2437.

[90] Levy, Y., Bruck, J., Cassuto, Y., Friedman, E. G., Kolodny, A., Yaakobi, E., &

Kvatinsky, S. (2014). Logic operations in memory using a memristive Akers

array. Microelectronics Journal, 45(11), 1429-1437.

[91] Papandroulidakis, G., Vourkas, I., Vasileiadis, N., & Sirakoulis, G. C. (2014).

Boolean logic operations and computing circuits based on memristors. IEEE

Transactions on Circuits and Systems II: Express Briefs, 61(12), 972-976.

[92] Knag, P., Lu, W., & Zhang, Z. (2014). A native stochastic computing architecture

enabled by memristors. IEEE Transactions on Nanotechnology, 13(2), 283-293.

183

[93] Naous, R., & Salama, K. N. (2016, August). Approximate computing with

stochastic memristors. In CNNA 2016; 15th International Workshop on Cellular

Nanoscale Networks and their Applications; Proceedings of (pp. 1-2). VDE.

[94] Guckert, L., & Swartzlander, E. E. (2017). MAD gates—memristor logic design

using driver circuitry. IEEE Transactions on Circuits and Systems II: Express

Briefs, 64(2), 171-175.

[95] Luo, Y., Collier, C. P., Jeppesen, J. O., Nielsen, K. A., DeIonno, E., Ho, G., ... &

Heath, J. R. (2002). Two‐Dimensional Molecular Electronics

Circuits. ChemPhysChem, 3(6), 519-525.

[96] Thangkhiew, P. L., Gharpinde, R., & Datta, K. (2018). Efficient Mapping of

Boolean Functions to Memristor Crossbar Using MAGIC NOR Gates. IEEE

Transactions on Circuits and Systems I: Regular Papers.

[97] Wang, X., Li, S., & Zeng, Z. (2018). Configurable Logic Operations Using Hybrid

CRS-CMOS Cells. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems.

[98] Lee, K. H., Lee, S. J., Kim, S. M., & Cho, K. (2013). Memristor-Based

Programmable Logic Array (PLA) and Analysis as Memristive Networks. Journal of

nanoscience and nanotechnology, 13(5), 3265-3269.

[99] Sasao, T. (1993). FPGA design by generalized functional decomposition. In Logic

synthesis and optimization (pp. 233-258). Springer, Boston, MA.

[100] Zhou, Y., Li, Y., Xu, L., Zhong, S., Xu, R., & Miao, X. (2016). A hybrid memristor‐

CMOS XOR gate for nonvolatile logic computation. physica status solidi (a), 213(4),

1050-1054.

[101] Singh, A. (2017, May). Memristor based XNOR for high speed area efficient 1-bit

full adder. In Computing, Communication and Automation (ICCCA), 2017

International Conference on (pp. 1549-1553). IEEE.

184

APPENDIX Power Properties

Property 1. When S1 > 0, the power consumption in a target memristor during VL operation can be

approximated as shown in (3.3).

𝑃𝑇
𝑉𝐿 ≈ 4 × 𝑃𝑆0

𝑉𝐿 (3.3)

Proof: The power consumption in a target memristor during VL operation is 𝑃𝑇
𝑉𝐿 =

(𝑉𝑊−𝑣
−)2

𝑅𝑂𝑃𝐸𝑁
=
(𝑉𝑊+𝑣

+)2

𝑅𝑂𝑃𝐸𝑁
,

and the power consumption in a source memristor set to logic ‘0’ during VL operation is 𝑃𝑆0
𝑉𝐿 =

𝑉𝑊
2

𝑅𝑂𝑃𝐸𝑁
 .

Substituting 𝑃𝑇
𝑉𝐿 and 𝑃𝑆0

𝑉𝐿 in (3.3) results in

𝑃𝑇
𝑉𝐿

𝑃𝑆0
𝑉𝐿 =

(𝑉𝑊+𝑣
+)
2

𝑉𝑊
2 .

Let 𝑣+ = 𝑉𝑊 + 𝜀, then

𝑃𝑇
𝑉𝐿

𝑃𝑆0
𝑉𝐿 = [

2𝑉𝑊 + 𝜀

𝑉𝑊
]
2

= [2 +
𝜀

𝑉𝑊
]
2

The minimum and maximum values of
𝑃𝑇
𝑉𝐿

𝑃𝑆0
𝑉𝐿 are calculated for (S1, S0, T) = (6, 1, 1) and (1, 1, 6),

respectively. The crossbar array is simulated for these combinations obtaining 4.002 ≤
𝑃𝑇
𝑉𝐿

𝑃𝑆0
𝑉𝐿 ≤ 4.052.

Therefore, for any combination of S1, S0, and T where S1 > 0, 𝑃𝑇
𝑉𝐿 ≈ 4 × 𝑃𝑆0

𝑉𝐿 .

Property 2. When S1 > 0, the power consumption in load resistor RG can be approximated as shown in

(3.4).

𝑃𝑅𝐺 ≈ 8 × 𝑃𝑇
𝑆𝐿 (3.4)

Proof: The power consumption in load resistor RG is 𝑃𝑅𝐺 =
𝑉̈𝑊

2

𝑅𝐺
, and the power consumption in a target

memristor during SL operation is 𝑃𝑇
𝑆𝐿 =

(𝑉̈𝑊−𝑣
−)2

𝑅𝑂𝑃𝐸𝑁
=
(𝑉̈𝑊+𝑣

+)2

𝑅𝑂𝑃𝐸𝑁
.

Substituting 𝑃𝑅𝐺 and 𝑃𝑇
𝑆𝐿 in (3.4) results in,

𝑃𝑅𝐺

𝑃𝑇
𝑆𝐿 =

𝑉̈𝑊
2

𝑅𝐺
×

𝑅𝑂𝑃𝐸𝑁

(𝑉̈𝑊+𝑣
+)2
=
𝑅𝑂𝑃𝐸𝑁

𝑅𝐺
×

1

[
𝑉̈𝑊+𝑣+

𝑉̈𝑊
]
2.

Let 𝑣+ = 𝑉̈𝑊 + 𝜀.̈ As a result,

𝑃𝑅𝐺

𝑃𝑇
𝑆𝐿 =

𝑅𝑂𝑃𝐸𝑁

𝑅𝐺
×

1

[
2𝑉̈𝑊+𝜀̈

𝑉̈𝑊
]
2 =

𝑅𝑂𝑃𝐸𝑁

𝑅𝐺
×

1

[2+
𝜀̈

𝑉̈𝑊
]
2.

The minimum and maximum values of
𝑃𝑅𝐺

𝑃𝑇
𝑆𝐿 are calculated for (S1, S0, T) = (7, 0, 1) and (1, 0, 7),

respectively. The crossbar array is simulated for these combinations obtaining 7.542 ≤
𝑃𝑅𝐺

𝑃𝑇
𝑆𝐿 ≤ 7.866.

Therefore, for any combination of S1, S0, and T where S1 > 0, 𝑃𝑅𝐺 ≈ 8 × 𝑃𝑇
𝑆𝐿.

𝑃𝑇
𝑉𝐿 and 𝑃𝑇

𝑆𝐿 in (3.3) and (3.4) can be substituted by PT as the power consumption in a target memristor

during SL and VL operations is approximately equal to 2 nW.

185

Property 3. When S1 > 0, the power consumption in source memristors during SL operation is

significantly smaller than the total power consumption in target memristors and load resistor RG as shown in

(3.5).

𝑃𝑆
𝑆𝐿

𝑃𝑆𝐿−𝑃𝑆
𝑆𝐿 ≪ 1 (3.5)

Proof: The simulation results show that the power consumption in source memristors during SL operation

(𝑃𝑆
𝑆𝐿) is negligible when compared to the power consumption in target memristors and load resistor RG. The

power consumption in source memristors set to logic ‘1’ is 1000 times larger than the power consumption in

source memristors set to logic ‘0’ since

𝑃𝑆1
𝑆𝐿

𝑃𝑆0
𝑆𝐿 =

(𝑣+ − 𝑉̈𝑊)
2

𝑅𝐶𝐿𝑂𝑆𝐸𝐷
×

𝑅𝑂𝑃𝐸𝑁

(𝑣+ − 𝑉̈𝑊)
2
= 103

Substituting 𝑃𝑆1
𝑆𝐿 = 103 × 𝑃𝑆0

𝑆𝐿 to
𝑃𝑆
𝑆𝐿

𝑃𝑆𝐿−𝑃𝑆
𝑆𝐿 results in

(𝑆1 × 10

3 + 𝑆0) × 𝑃𝑆0
𝑆𝐿

𝑃𝑆𝐿 − 𝑃𝑆
𝑆𝐿

Substituting 𝑃𝑆𝐿 − 𝑃𝑆
𝑆𝐿 with T × PT + PRG or its equivalent (T + 8) × PT in

(𝑆1×10
3+𝑆0)×𝑃𝑆0

𝑆𝐿

𝑃𝑆𝐿−𝑃𝑆
𝑆𝐿 results in

(𝑆1×10
3+𝑆0)

(𝑇+8)×
𝑃𝑇

𝑃𝑆0
𝑆𝐿

.

 It is required to compute the minimum value of
𝑃𝑇

𝑃𝑆0
𝑆𝐿 to verify

(𝑆1×10
3+𝑆0)

(𝑇+8)×
𝑃𝑇

𝑃𝑆0
𝑆𝐿

 ≪ 1. The
𝑃𝑇

𝑃𝑆0
𝑆𝐿 ratio is equal to

(𝑉̈𝑊−𝑣
−)2

𝑅𝑂𝑃𝐸𝑁
×

𝑅𝑂𝑃𝐸𝑁

(𝑣+−𝑉̈𝑊)
2 or

𝑃𝑇

𝑃𝑆0
𝑆𝐿 = (

2𝑉̈𝑊

𝜀̈
+ 1)2

substituting 𝑣+ = 𝑉̈𝑊 + 𝜀̈. The minimum value of
𝑃𝑇

𝑃𝑆0
𝑆𝐿 is obtained for (S1, S0, T) = (1, 1, 6). For this

combination,
𝑉̈𝑊

𝜀̈
=21.949 and thus

(𝑆1×10
3+𝑆0)

(𝑇+8)×
𝑃𝑇

𝑃𝑆0
𝑆𝐿

=0.036, which is considerably smaller than 1 and proves (3.5).

The immediate consequence of (3.5) is used for deriving (3.7).

Property 4. The power consumption in source memristors connected to logic ‘1’ during VL operation is

considerably smaller than the total power consumption in source memristors connected to logic ‘0’ and target

memristors as shown in (3.6).

𝑆1×𝑃𝑆1
𝑉𝐿

𝑃𝑉𝐿−𝑆1×𝑃𝑆1
𝑉𝐿 ≪ 1 (3.6)

Proof: The simulation results show that the power consumption in source memristors set to logic ‘1’

during VL operation is negligible when compared to the power consumption in all memristors. In other

words,

𝑆1 × 𝑃𝑆1
𝑉𝐿

𝑃𝑉𝐿 − 𝑆1 × 𝑃𝑆1
𝑉𝐿 =

𝑆1 × 𝑃𝑆1
𝑉𝐿

𝑆0 × 𝑃𝑆0
𝑉𝐿 + 𝑇 × 𝑃𝑇

≪ 1

With the substitution of (3.3),

186

𝑆1 × 𝑃𝑆1

𝑉𝐿

𝑆0 × 𝑃𝑆0
𝑉𝐿 + 𝑇 × 𝑃𝑇

≈
𝑆1 × 𝑃𝑆1

𝑉𝐿

𝑆0 ×
𝑃𝑇
4
+ 𝑇 × 𝑃𝑇

=
𝑆1

𝑃𝑇
𝑃𝑆1
𝑉𝐿 (

𝑆0
4
+ 𝑇)

≪ 1

The minimum value of
𝑃𝑇

𝑃𝑆1
𝑉𝐿 is required to verify

𝑆1×𝑃𝑆1
𝑉𝐿

𝑃𝑉𝐿−𝑆1×𝑃𝑆1
𝑉𝐿 ≪ 1 and obtained for the (S1, S0, T) = (1, 0, 7)

𝑃𝑇

𝑃𝑆1
𝑉𝐿 =

(2𝑉𝑊 + 𝜀)
2

𝑅𝑂𝑃𝐸𝑁
×

𝑅𝐶𝐿𝑂𝑆𝐸𝐷
(𝑣+ − 𝑉𝑊)

2
= 10−3 × (

2𝑉𝑊
𝜀
+ 1)2

where 𝜀 = 𝑣+ − 𝑉𝑊.The minimum value of
𝑉𝑊

𝜀
 is 70.929, based on our simulation results, and thus

𝑃𝑇

𝑃𝑆1
𝑉𝐿 =20.409. Therefore,

𝑆1×𝑃𝑆1
𝑉𝐿

𝑃𝑉𝐿−𝑆1×𝑃𝑆1
𝑉𝐿 ≈0.007, which is significantly smaller than 1 and proves (3.6). The

immediate consequence of (3.6) is used for deriving 3.7).

Property 5. When S1 = 0, the power consumption in source memristors connected to logic ‘0’ during VL

operation is considerably smaller than the power consumption in target memristors as shown in (3.8).

 𝑆0×𝑃𝑆0

𝑉𝐿

𝑇×𝑃𝑇
𝑉𝐿 ≪ 1 (3.8)

Proof: Our simulation results show that the power consumption in memristors during VL operation

approximately equals to the power consumption in target memristors when S1= 0. Moreover, the
 𝑆0×𝑃𝑆0

𝑉𝐿

𝑇×𝑃𝑇
𝑉𝐿 ratio

equals

 𝑆0
𝑇
×

 𝑉𝑊
2

𝑅𝐶𝐿𝑂𝑆𝐸𝐷
×

𝑅𝑂𝑃𝐸𝑁
(𝑉𝑊 + 𝑣

+)2
= 103(

 𝑆0
𝑇
) ×

1

(1 +
𝑣+

 𝑉𝑊
)2

The upper bound of
𝑃𝑆0
𝑉𝐿

𝑃𝑇
𝑉𝐿 is obtained for (S0, T) = (7, 1) where VW = - 75.417 μV. As a result,

𝑃𝑆0
𝑉𝐿

𝑃𝑇
𝑉𝐿 =1.106×10−4, which is considerably smaller than 1 and proves (3.8). Note that for a larger crossbar

array, such as 1 × 64, Equation (3.8) still holds where the upper bound of
𝑃𝑆0
𝑉𝐿

𝑃𝑇
𝑉𝐿, obtained for (S0, T) = (63, 1),

equals 1.229 × 101 >> 5־.

	Portland State University
	PDXScholar
	6-6-2018

	New Approaches for Memristive Logic Computations
	Muayad Jaafar Aljafar
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1530297730.pdf.pxfcV

