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ABSTRACT  

The widespread use of solar energy has been limited in part by the issue of 

effective storage. Water splitting is a means of converting solar energy into chemical 

fuel, in the form of hydrogen gas. It can be performed through both photochemical and 

electrochemical processes, via the two half reactions of water oxidation and proton 

reduction. Electrochemically, the catalyst receives electrons from an external circuit, 

which can be coupled to a renewable source such as a solar cell. Photochemically, a 

light-absorbing molecule provides an excited electron to a catalyst, which either 

generates oxygen or hydrogen gas. The work described herein studies both 

photochemical and electrochemical proton reduction using two different systems made 

of inexpensive transition metal and organic components.  

Nickel pyridine 2-thiolate (Ni(PyS)3
−) (PyS=pyridinthiolate) has been 

demonstrated to have good stability and activity as a proton reduction catalyst. It is 

applied here as an electrocatalyst, due to the wealth of mechanistic information that can 

be obtained through electrochemical experiments. In our study of Ni(PyS)3
-, a previously 

proposed catalytic pathway was first supported through Density Functional Theory 

(DFT) computations. Thermodynamic properties of the molecular nickel compound 

were investigated through analysis of free energy changes along various reaction 

coordinates, spin states, localization of charge and geometry of the intermediates and 

transition states. An experimental and theoretical investigation of the effects of ligand 

modification on hydrogen production and the catalytic mechanisms was then undertaken.  
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Six derivatives of Ni(PyS)3
- were synthesized through uniform ligand 

modification to all three PyS- ligands using a series of electron rich or poor substituents. 

The physical properties of interest were investigated experimentally through 

electrochemical methods and UV-vis absorbance spectroscopy. Specifically, the desired 

properties for a hydrogen production catalyst are high proton affinity, quantified through 

the pKa, and low overpotential, quantified through E0. Each compound was also studied 

in depth using computational modeling of the various possible catalytic pathways. By 

combining the results of computational study with experimental results, mechanistic 

insight could be gained. Electron poor catalysts maintained the normal mechanism 

undergone by the unmodified Ni(PyS)3
- catalyst, but these compounds also yielded low 

electrochemical hydrogen production rates. The highest rate of hydrogen production was 

noted for the most electron rich catalyst, which was found to proceed through a unique 

mechanism. Ultimately, its unique mechanism was attributed to favorable changes to its 

physical properties.  

The same joint theoretical and experimental methodology has been used to study 

the effect of non-uniform ligand modification. Four heteroleptic compounds were 

selected for study, two containing electron poor ligands and two containing electron rich 

ligands in varied ratios. It was hypothesized that an appropriate ligand combination 

could target the desired properties necessary to increase hydrogen production rates. 

Catalysts were designed keeping in mind that more electron rich ligands were found to 

correlate with higher proton affinity, while electron poor ligands were found to promote 

lower overpotentials. By making heteroleptic compounds, these two physical properties 
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are targeted independently from one another. What is found is that not only do the 

electronics of each ligand influence physical properties, but the placement of each ligand 

matters as well. Due to the unique structural features of heteroleptic compounds, the 

effectiveness of hydrogen production varies greatly. Thorough computational and 

experiential analysis provides insight into the underlying factors that govern these 

variations.   

Finally, photochemical hydrogen production was performed using 

polyvinylpyrrolidone (PVP)-coated carbon quantum dots (CQDs) as a photosensitizer, 

and nickel nanoparticles (NiNPs) as a catalyst. Total hydrogen production by 

CQD/NiNP composites as a function of the amount of PVP coating was investigated as 

well as various mechanistic and photophysical properties. Hydrogen production was 

studied using a custom-made photoreactor and a quadrupole mass analyzer. Both 

fluorescence quantum yields and hydrogen production quantum yields were determined 

using a phosphoremeter with an integrating sphere. The mechanism of hydrogen 

production was probed using fluorescence spectroscopy as well. Finally, an investigation 

into whether or not CQDs are capable of performing upconversion, as has been 

previously noted in the literature, was undertaken. The fluorescence quantum yield of 

the CQDs was found to increase along with increased addition of PVP coating. It was 

also noted that composites with more PVP had decreased rates of hydrogen production, 

but it was sustained over a longer period of time. Duel hydrogen production mechanisms 

were also found to be possible.  
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CHAPTER 1  

INTRODUCTION 

 

1.1 Global consumption and production of energy 

Developing effective, inexpensive technologies to curb current global CO2 

production and preventing resulting climate change is a pressing contemporary scientific 

challenge.1–4 Since the advent of the industrial revolution in 1880, atmospheric CO2 

levels have been steadily on the rise, and mean global temperatures have followed.1,2,5–7 

Consequences of increased global temperature include rising sea levels, disappearance of 

fragile ecosystems, flooding of coastal land, ocean acidification and severe weather 

patterns.2,7–10 By 2050 the global population is expected to increase from 7 billion to 10 

billion, with most of the increase in population occurring in developing nations.11,12 With 

a rise in the GDP of poorer nations, coupled with growing population, an estimated 30 

terawatts of energy will be consumed annually (compared to 17 terawatts currently).3,13–15 

Currently 80% of the energy consumed globally is derived from fossil fuel sources such 

as oil, coal, peat and natural gas.16 If the bridge between current energy production and 

future energy needs is made through continued use of fossil fuels, climactic consequences 

will be significant. Using solar energy as a clean alternative to carbon based fuels is a 

viable solution as enough solar energy reaches the earth each hour to fuel our current 

energy needs for an entire year.3,17–20  
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1.2 Conversion of solar energy using photovoltaics 

 Currently, solar cells are the most widely adopted method for harnessing solar 

energy. Several types of solar cells exist, including crystalline silicon, organic polymer 

and Perovskite. These convert solar energy into electricity for immediate use. Silicon 

solar cells, which make up over 80% of existing solar cells, were invented in 1954.21 

Recently the market for silicon photovoltaics has grown 30-40% annually.20,22–24 

Currently, the efficiency of silicon solar cells is approaching the theoretical limit of 29%, 

with a recent 2017 report detailing a new maximum photoconversion efficiency of 26%, 

outperforming the prior maximum efficiency of 25.6% achieved in 2012.20,22,25 However, 

energy derived from fossil fuels is still less expensive than that derived from silicon solar 

cells.20,26 Advances in engineering are still required in order to reduce the cost of 

installation to $1/watt to make this energy conversion method competitive with current 

grid energy prices.27,28  

Organic polymer solar cells are a second class of solar cell which is made of 

electron donor and acceptor π-conjugated small molecule polymers.29,30 The first widely 

employable polymers for this application were synthesized in 2001-2003, although they 

have been investigated since the late 1990’s.31,32 Advantages of polymer solar cells are 

that the starting materials are inexpensive and benign and device fabrication requires mild 

conditions, unlike fabrication of silicon solar cells.33–35 Large-scale manufacturing is thus 

easier.29,36 Additionally, these devices are lightweight and flexible, making installation 

costs low.37 Currently, maximum efficiencies achieved for polymer solar cells are at 
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slightly over 10% and 15% for tandem devices.38–41 However, polymer stability must be 

improved before these devices can be widely adopted and additional research is required 

to get more consistent outputs from device fabrication.29,33  

The final type of solar cell that merits mention is Perovskite solar cells, made of 

mixed organic-inorganic halide perovskites. Perovskites are a family of materials whose 

structure is ABX3 where X is an anion, and A and B are cations. For photovoltaic 

applications, A, the larger cation, is typically methylammonium. X is typically iodine, 

although Br and Cl are also used. B is almost exclusively Pb. Perovskite cells show 

potential due to their broad absorption of solar light and ease of fabrication. They offer a 

good alternative to silicon and organic polymer solar cells as they have both low 

manufacturing cost and high efficiency.42 The first notably efficient Perovskite solar cells 

were constructed in 2012, by 2013 they had a confirmed maximum efficiency of 16.2% 

and by 2014 the confirmed maximum efficiency had increased to 17.9%.43,44 Current 

maximum efficiencies have reached 22.7%.45 However, almost all of these devices 

contain lead, and some have shown stability issues when exposed to moisture and rain 

ultraviolet light.43,45,46 Finally and most importantly, all energy conversion methods such 

as silicon solar cells, organic polymer solar cells and Perovskite solar cells have one 

major flaw. They cannot produce electricity without continuous solar irradiation, and do 

not provide a means of energy storage. Thus, energy produced from any of these solar 

cells must be stored via an external process in the form of potential energy in order to be 

used in the absence of solar irradiation.  
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1.3 Solar energy storage 

Three currently employed large-scale solar energy storage methods include 

pumped hydroelectric storage, compressed air storage and batteries. Pumped 

hydroelectric storage is the largest commercially available means of energy storage and 

uses off-peak hour grid electricity to transfer water from a lower to an upper reservoir, 

where it is then stored in the form of gravitational potential energy.47,48 At times of higher 

energy demand, draining the upper reservoir creates hydroelectric energy. The efficiency 

of this method is 87%, however geographical limitations make future facility 

development cost-prohibitive.49  

Compressed air energy storage (CAES) uses the same method of taking off-peak 

hour energy and converting it to potential energy. In this case, air is pumped into 

subterranean caves, usually salt, hard rock or limestone, then during peak hours the air is 

released to generate electricity.48,50 CAES is 70% efficient but is also limited by 

geographical availability.49,51 Finally, deep cycle batteries are a common method of 

storing solar energy. Lithium ion (Li-ion), sodium sulfur (NaS) and nickel cadmium 

(NiCd) batteries have an efficiency range of 70-80%, but each has its own 

shortcomings.52 Li-ion batteries are expensive and have short lifetimes, NaS batteries 

require operating temperatures of 300°C and NiCd batteries are large and have toxic 

components.49,52 An alternative energy storage method that converts solar energy into 

clean chemical fuel is thus favored. Additionally, a transportable chemical fuel would be 

more easily incorporated into existing infrastructure and could be more easily distributed 
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in developing nations. As such, scientists continue to research alternative solar energy 

storage methods, including those inspired by nature. 

1.4 Artificial photosynthesis 

Plants convert solar energy into chemical potential energy through 

photosynthesis, generating oxygen and sugar from sunlight, water and carbon dioxide. 

These sugars can be broken down to release energy at a later time, either by the plant or 

when they are consumed by other creatures and used as fuel. Photosynthesis occurs 

through step-by-step electron transfer reactions, in a process known as the Z-scheme.53 

Two components are necessary, photosystems I and II. Photosystem I uses sunlight to 

split water into oxygen, which is released, and hydrogen. The hydrogen is combined with 

CO2 to produce sugars at photosystem II in a process known as carbon fixation.54 The 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1-1: Comparative scheme of the stored energy in one molecule of glucose vs the 
stored energy in one molecule of hydrogen gas. 
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ability of plants to use abundant materials such as sunlight, water and CO2 to produce 

fuel has inspired chemists to develop similar artificial photosynthesis systems in which 

solar energy is stored in the form of a chemical bond (Figure 1-1). Specifically, water 

splitting, which stores energy in the form of hydrogen gas, has attracted much attention 

since the 1970’s because it is a simple, environmentally friendly, two electron process.55 

Additionally, hydrogen is used in many industrial syntheses of fine chemicals as well as 

ammonium fabrication for agriculture.56 Finding a clean method of generating hydrogen 

is thus of increased relevance. 

Water splitting is described by the following half reactions, water oxidation (1) 

and proton reduction (2), and has a ΔG = +237 kJ/mol H2O57: 

2H2O à O2 + 4H+ + 4e-   (1) 

4H+ + 4e- à 2H2   (2) 

There are two primary ways to perform water splitting using sunlight: 

electrochemically and photochemically (Figure 1-2). Electrochemical water splitting 

cells, which are coupled to a solar cell, use a water oxidation catalyst (or photocatalyst) at 

the anode to perform the first half reaction (Equation 1). Protons diffuse through an 

electrolyte solution while electrons are transferred through an external circuit. Electrons 

and protons then combine at the cathode to form hydrogen (Equation 2).58–60 The second 

method, photochemical water splitting, uses a water oxidation catalyst with a 

photosensitizer (light absorber) to perform water oxidation. Liberated electrons are 

transferred to a second sensitizer where another excitation process takes place and 
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electron transfer to the proton reduction catalyst occurs. Once the catalyst has been 

protonated, these energized electrons provide the driving potential used to generate 

hydrogen gas. The sensitizer can be an organic dye, metal complex, semiconductor 

nanoparticle or carbon based nanostructure.61–65 In order to improve the effectiveness of 

water oxidation and reduction, the two half-reactions are studied independently. The 

following discussion will explain the study of electrochemical and photochemical proton 

reduction systems, examined through both experimental and computational methods.     

1.5 Electrochemical water splitting 

1.5.1.  Molecular electrocatalysis using transition metal proton reduction catalysts 

Electrocatalytic hydrogen production requires the use of a proton reduction 

catalyst that preferably has a low overpotential and is capable of operating under neutral 

conditions. It is additionally desirable for the catalyst to be made of inexpensive and 

abundant materials.66–70 Thus, much research has gone into the development of 

homogenous transition-metal electrocatalysts capable of performing proton reduction 

under optimum conditions. Some of the most notable recent transition metal proton 

reduction catalysts include Ni-phosphine type compounds and various cobalt 

complexes.69,71–75 A great deal of effort has recently been focused on decreasing the 

necessary applied potential to drive the production of hydrogen. The main parameters 

that are used to gauge the effectiveness of proton reduction electrocatalysts include the 

turnover frequency (TOF = mols hydrogen/second), the overpotential (defined as the 

necessary applied potential beyond the standard potential at which hydrogen is generated) 
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and the proton affinity (measured as the pKa). A catalyst with a high proton affinity is 

capable of operating under neutral conditions, or in some cases even in basic conditions, 

allowing more efficient coupling to the oxygen evolving half reaction. 

In order to improve the effectiveness of electrochemical proton reduction 

catalysts, an understanding of their operative mechanism is important.66 Although proton 

reduction is a two-electron, two-proton process, the mechanisms by which hydrogen is 

produced can be surprisingly diverse and complex. Terminology used to describe the 

mechanisms of hydrogen production denote proton transfer steps as chemical steps (C) 

and electron transfer steps as electrochemical steps (E). For example, two typical 

hydrogen production mechanisms include a CECE mechanism and a CCEE mechanism. 

Additional complexity arises due to the fact that some of these steps can occur in a 

 
Figure 1-2: A) Electrochemical water splitting scheme B) photochemical water splitting 
scheme 
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stepwise fashion while sometimes they can occur simultaneously. Distinguishing between 

sequential and concerted mechanisms is one of the challenges that arises in the study of 

electrochemical proton reduction catalysts. Extracting rate information in an appropriate 

manner given the operative mechanism is a complex process as well, but various methods 

exist to uncover mechanistic and kinetic information.  

Both experimental and computational methods can be used to probe the catalytic 

cycles of transition-metal proton reduction catalysts. The tandem use of Density 

Functional Theory (DFT) along with experimental work has proven to be extremely 

valuable in the study of many solar energy conversion systems.76–78 Complicating issues 

such as those mentioned above can be dealt with through joint theoretical and 

experimental study. Specifically, DFT and electrochemistry provide a wealth of 

mechanistic information that ultimately allows for the development and improvement of 

new catalysts. Work by Sharon Hammes-Schiffer has provided significant insight into the 

computational determination of reduction potentials, pKa values and rates of proton and 

electron transfer for these types of compounds and is a good example of the level of 

detailed mechanistic understanding that can be gained through computational 

investigation.79–82 A significant volume of work also focuses on the study of proton-

coupled-electron-transfer, which is of great importance in this field.79,81,83,84 Specific 

details explaining the methodology used to compute physical properties and determine 

reaction pathways is explained in the computational section of the methods chapter.  
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Experimentally, two main methods are used to determine the key physical 

properties that dictate the effectiveness of proton reduction catalysts. The most 

comprehensive method is through the use of cyclic voltammetry. Work done by Jean-

Michel Savéant and later Jillian Dempsey provides a wealth of information about the 

mechanistic insight that can be gleaned through electrochemical experiments.85–88 Rates 

of reaction can be extracted from cyclic voltammograms and the mechanism of hydrogen 

production can be elucidated by studying the shapes of observed cyclic voltammetry 

traces. Specifically, a review by Dempsey and coworkers highlights the different catalytic 

zones than can be observed during electrochemical hydrogen production, and details how 

to interpret that information both qualitatively and quantitatively in terms of rates of 

product formation.86 Pure kinetic conditions, from which rate information can most easily 

be attained, result in CV traces that fall into what is called zone KS. They are easily 

identified by their S-shape, when the forward and reverse scans lie on top of each other. 

Clear examples can be seen in the work by Dempsey and coworkers.86 There is no 

substrate depletion in zone KS, as the concentration of substrate at the electrode matches 

that of the bulk solution. In this system, the substrate is the protons in solution. The most 

commonly encountered zone in the work undertaken here is called zone K, which is 

characterized by a reverse scan that does not retrace the forward scan. This shape results 

from depletion of substrate at the electrode surface and the rate-determining step of the 

reaction. Obtaining kinetic information from this zone is more challenging than zone KS, 

but by increasing the concentration of substrate or the scan rate, zone KS can be reached 
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in some cases. More detailed explanation of the specific methods used to calculate rates 

of reaction can be found in the methods section.  

The other informative experimental technique often employed in the study of 

electrochemical proton reduction catalysts is the utilization of UV-vis absorbance 

spectroscopy with simultaneous acid titration to determine the pKa values of compounds. 

Specifically, the ratio of the absorbance of deprotonated to protonated catalyst is plotted 

as a function of the pH of the solution. The inflection point of this curve is then taken as 

the pKa of the compound in solution. Again, specific details for both of these 

experimental techniques can be found in the methods chapter.  

1.5.2.  Electrocatalytic proton reduction using Ni(PyS)3
- 

Nickel pyridine 2-thiolate (Ni(PyS)3
−) is a proton reduction catalyst originally 

designed by Eisenberg and coworkers that effectively produces hydrogen both 

photocatalytically and electrocatalytically (Figure 1-3). It was found to be operative at 

high pH and with a relatively low overpotential. Eisenberg and coworkers previously 

 
Figure 1-3: Structure of Ni(PyS)3
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proposed a CECE hydrogen production mechanism, where an initial protonation step 

occurs, followed by a reduction step, and then a proton-coupled electron transfer to yield 

a hydride intermediate prior to release of hydrogen gas.62,89 However, minimal 

experimental data existed in support of this mechanism. Chapter 1 describes the 

subsequent computational investigation that was undertaken herein to study the hydrogen 

production mechanism of this catalyst. This work ultimately supported the proposed 

mechanism and provided a foundation for further study of ten derivatives of Ni(PyS)3
-. 

Our study of Ni(PyS)3
- derivatives looks at the impact of ligand modification on catalytic 

efficacy, quantified through observed reaction rates, as well as catalytic mechanisms. The 

previously mentioned experimental and theoretical methods are employed. Results of two 

separate studies, one on homoleptic derivatives and one on heteroleptic derivatives, are 

detailed in chapters II and III.  

1.6 Photochemical water splitting 

Photochemical proton reduction requires four main components: protons, 

electrons, a photosensitizer and a proton reduction catalyst (Figure 1-4).90 In a fully 

integrated system, the protons and electrons would be liberated from water by the water 

oxidation catalyst. However, in order to study the efficiency of proton reduction, a 

sacrificial electron donor (SED) and a proton source are used instead.91 The SED is 

typically an organic molecule which gives up an electron to the photosensitizer and upon 

doing so does not interfere with hydrogen formation. The proton source can be the 

solvent itself. All components must have energy levels that are close enough to each 
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other, in order for the process to occur.18 The following detailed explanation describes a 

fully integrated system using a semiconductor photosensitizer, although the same 

principles apply to the study of the proton reduction half reaction on its own as well.   

As mentioned previously, water splitting is endothermic by 237 kJ/mol.57 This 

corresponds to 1.23 eV of stored potential energy. Thus the band gap of the 

semiconductor photosensitizer (or the highest occupied/lowest unoccupied orbital gap in 

the case of molecular sensitizers) must be at least 1.23 V.92 However, in order for the 

reaction to be driven by visible light, the band gap must also be less than 3.0 V.93 Another 

option is to have two sensitizers with band gaps that together span the range from 1.23 

and 3.00 V (Figure 1-4).94 In addition to the magnitude of the band gap, the location of 

the conduction and valence bands come into play. The conduction band must be slightly 

 
Figure 1-4: Integrated water splitting system with both water oxidation and proton 
reduction. Here two photosensitizers are pictured with conduction and valence bands 
located at the correct potentials to drive water oxidation (-1.23 V vs SHE) and proton 
reduction (0.00 V vs SHE). 
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more negative than the H+/H2 couple, which is at 0.00 V vs. the standard hydrogen 

electrode (SHE), and the valence band must be slightly more positive than the O2/H2O 

couple, which is at 1.23 V vs. SHE.93 Satisfying the necessary bandgap conditions takes 

care of the thermodynamic requirements to perform water splitting, but excited state 

lifetimes, charge separation, overpotential and other factors play an important role in 

determining hydrogen production as well.53,92,93  

The process begins when the photosensitizer (P) absorbs a photon to reach an 

excited state (P*). From here, two mechanisms are possible; they are known as reductive 

quenching and oxidative quenching (Figure 1-5).95 In the reductive quenching 

mechanism, P* is reduced by either electrons liberated from water, or the SED for the 

half reaction, to give P-. The electron is then transferred to the proton reduction catalyst. 

Oxidative quenching occurs when the excited electron is immediately transferred to the 

proton reduction catalyst, yielding P+. The photosensitizer is then reduced by either the 

SED of electrons from water. In both cases, the light absorber returns to the ground state. 

Mechanistic information can be determined experimentally through luminescence 

quenching experiments as well as electrochemical measurements.91 Determining whether 

electron transfer occurs through the reductive or oxidative mechanism gives insight into 

the relative rates of reaction. For example, if reductive quenching occurs, then the rate at 

which the hole is filled by a new electron is faster than the rate at which the excited 

electron transfers to the proton reduction catalyst. Luminescence, specifically 

fluorescence, will be looked at in more detail now.  
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Molecules and structures such as quantum dots can absorb specific wavelengths 

of light, corresponding to the discrete energy levels of either their orbitals or conduction 

and valence bands. The energy that is absorbed causes an electron to be excited from the 

ground state to an excited state. For molecules, selection rules dictate that this transition 

can only occur between energy levels with the same multiplicity; e.g. singlet to singlet. 

Once an electron has been excited there are three possible ways in which it can return to 

the ground state. The first is non-radiative decay, where the energy is lost as heat. The 

second is non-radiative intersystem crossing, where the electron transitions to a lower 

energy triplet state. Lastly, radiative decay can occur; this is when the energy is emitted 

in the form of electromagnetic radiation (light) of a specific energy, again dictated by the 

discreet energy levels of the light absorber. When radiative decay occurs from states of 

 
 
Figure 1-5: Scheme of the mechanism of oxidative quenching (left) vs mechanism of 
reductive quenching (right) for quenching of luminescence due to electron transfer. 
Circled numbers indicate the order in which each step is occurring. 
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the same multiplicity, the process is called fluorescence. When it occurs with a change in 

multiplicity it is called phosphorescence. If we think of fluorescence and 

phosphorescence in terms of absorption and emission of light, we note that in both cases 

the light that is emitted from the sample is red-shifted relative to the light that has been 

absorbed. For phosphorescence the shift is larger than for fluorescence, as the energy loss 

from intersystem crossing is greater than that of internal conversion. Internal conversion 

is the process by which the excited electron reaches the lowest vibrational energy state of 

the excited singlet state.96  

When an oxidant or reductant (SED) with appropriate energy levels is combined 

in solution with a luminescent species, additional outcomes are possible. One such 

outcome is that the excited state electron can be transferred to a vacant orbital of the 

oxidizing species (Figure 1-5). The oxidant can be a catalyst such as a proton reduction 

catalyst, which then uses the high-energy electron to drive hydrogen production. Thus, 

luminescence quenching can be an effective tool for gauging whether or not a catalyst 

could be used in conjunction with a specific light absorber. Luminescence quenching is 

easily monitored using a fluoremeter and provides further insight including whether 

reductive quenching or oxidative quenching is occurring, depending on whether the 

reductant or the oxidant causes quenching.97–102 In the case of quantum dot sensitizers, 

the location of the conduction and valence bands can be determined by quenching 

luminescence with compounds that have known reduction and oxidation potentials.103 



 

 

 

17 

Additionally, the quenching constant may be derived using the Stern-Volmer equation (3) 

and can yield insight into the extent of quenching.88,104  

Io/I = Ksv[Q] + 1   (3) 

Equation 3 is the Stern-Volmer equation, where Io is the fluorescence intensity without 

quencher, I is the intensity of the same solution following addition of quencher, [Q] is the 

concentration of quencher and Ksv is the fluorescence quenching constant.99,105  

Finally, quantum yield (Φ) measurements can be used to characterize 

photosensitizers. Quantum yield is the ratio of emitted photons to absorbed photons as 

shown in equation 4.  

Φ = !"#$%& !" !"#$#%& !"#$$!%
!"#$%& !" !"#$#%& !"#$%"&'        (4) 

A quantum yield of 1 means 100% of the photons absorbed undergo radiative 

decay back down to the ground state. Photosensitizers commonly used in water splitting 

applications include Ru(bpy)3
2+ (bpy= bipyridine) which has a quantum yield of about 

0.018-0.063, the organic dye Eosin Y, and rhodamine dyes which have quantum yields 

around 0.57 and  0.9 respectively.106–109  

1.6.3.  Quantum dot sensitizers for photochemical water splitting 

Study of potential photosensitizers for large-scale water splitting applications is of 

interest.110,111 Additionally, pairing the energy levels of newly developed sensitizers with 

those of proton reduction catalysts is an important step in ensuring that maximum 

hydrogen production efficiencies can be reached. Efficiency for hydrogen production can 

be measured through turnover number (TON) and hydrogen production quantum yield. 
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TON measures mols H2/mols of either catalyst or sensitizer. Hydrogen production 

quantum yield measures number of hydrogen molecules/ number of photons. Turnover 

frequency (TOF) shows the efficiency of the rate of hydrogen production measured as 

mols H2/ mols of either catalyst or sensitizer/ hour.  

Herein, the ability of carbon quantum dots (CQDs) to act as sensitizers is studied 

and optimized. CQDs are carbon-based nanostructures, typically spherical, comprised of 

several carbon types including graphene, graphene oxide, amorphous carbon and 

diamond.65,112 These regions of varying carbon lattice type cause areas of aliphatic and 

aromatic carbon to become isolated, making them act like molecular sensitizers. Thus 

CQDs have a wide range of excitation and emission wavelengths, making them good 

candidates for use in water splitting.113–116 They have previously been used to enhance the 

effectiveness of semiconductor sensitizers and in one account have been used on their 

own to act as a light absorber for photochemical water splitting.65,115,117–119 The quantum 

yields of CQDs can be improved through surface modification and the optical properties 

can be modified.120 We take advantage of these effects to create more efficient 

photosensitizers.  

1.7 Outline of Thesis 

The subject of the enclosed dissertation is the study of photochemical and 

electrochemical energy conversion methods using both experimental and computational 

methods. Details of the computational and experimental work performed are given in the 

method section. The use of DFT to calculate reduction potentials and pKa values is 
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explained. Electrochemical experiments used to obtain reduction potential and rates of 

hydrogen production are explained in detail as well as UV-vis absorption spectroscopy 

experiments to determine pKa values. Chapter 2 contains the initial investigation of the 

catalytic cycle of hydrogen production by Ni(PyS)3
- using purely computational methods. 

This work was published in Dalton Transaction in 2015.121 Chapter 3 details the study of 

homoligated derivatives of Ni(PyS)3
-, where each ligand is uniformly modified. The 

effects of symmetric ligand modification are studied by examining changes in the 

mechanism of hydrogen production, physical properties and effectiveness of compounds. 

The work on homoleptic modification of Ni(PyS)3
- was published in 2018 in the Journal 

of Physical Chemistry A.207 Non-uniform ligand modification was studied next and is 

described in Chapter 4, which explains the increased complexity of heteroleptic catalyst 

design, synthesis and study. This work currently remains unpublished. Chapter 5 moves 

on to describe photocatalytic hydrogen production through the use of a dual nanomaterial 

system, when CQDs are used as a photosensitizer in conjunction with a NiNP catalyst. 

This work was published in IOP Nanotechnology in 2017. Final conclusions are in 

Chapter 7.  
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CHAPTER 2  

METHODS 

 

2.1 Experimental and computational methods to study electrocatalytic proton reduction 

2.1.1.  Computational determination of thermodynamic properties 

For the initial investigation of the catalytic cycle of Ni(PyS)3
-, DFT calculations 

were performed using the Gaussian 09 suite of programs.122 Previous reports use either 

B3P86123–125/6-31+G(d) or B3LYP124,126/6-31+G(d) for similar nickel based 

 
 
Figure 2-1: Optimized structure of Ni(PyS)3

- using A) B3LYP/ gas phase B) B3LYP/ 
water C) B3LYP/ ethanol D) B3P86/ gas phase E) B3P86/ water F) B3P86/ ethanol. 

A B C

ED F



 

 

 

21 

catalysts.127,128 The structure of the starting catalyst Ni(PyS)3
- was optimized using both 

levels of theory in the gas phase and using the CPCM129,130 solvation model for both 

ethanol and water (Figure 2-1).  

It has been reported that the catalyst is active in a solvent mixture containing 

water and ethanol62, however since the dielectric constant of water is higher than for 

ethanol we used a pure water solvation model. The nickel-heteroatom bond lengths from 

the optimized geometries were compared to corresponding crystal structure (Table 

2-1).131 Average deviation from crystal structure bond lengths obtained from B3LYP is 

2.07% while the deviation obtained using B3P86 is only 0.42% (Table 2-2). Differences 

in bond lengths between the gas phase optimization and the optimized structure using a 

solvent model are negligible, however the total energy was lower using the solvent 

model. For these reasons, subsequent calculations were performed using 

B3P86/6-31+G(d) with the CPCM water solvation model. 

The catalytic cycle laid out in the literature was used as a starting point for 

selecting intermediates of interest.62 Other isomers and alternative reaction paths were 

Table 2-1: Calculated bond lengths vs crystal structure bond lengths for different basis 
sets and levels of theories. 
 

 

 

Crystal  
Structure 

B3LYP 
Ethanol CPCM 

B3LYP 
gas 

B3LYP 
Water CPCM 

B3P86 
Ethanol CPCM 

B3P86 
gas 

B3P86 
Water 
CPCM 

Bond Length Length Length Length Length Length Length 
Ni-N1 2.034Å 2.069 Å 2.064 Å 2.090 Å 2.063 Å 2.071 Å 2.062 Å 
Ni-N2 2.041 Å 2.102 Å 2.101 Å 2.065 Å 2.041 Å 2.044 Å 2.044 Å 
Ni-N3 2.081 Å 2.063 Å 2.071 Å 2.070 Å 2.044 Å 2.038 Å 2.041 Å 
Ni-S1 2.541 Å 2.565 Å 2.609 Å 2.603 Å 2.549 Å 2.554 Å 2.549 Å 
Ni-S2 2.526 Å 2.608 Å 2.604 Å 2.596 Å 2.560 Å 2.548 Å 2.563 Å 
Ni-S3 2.518 Å 2.607 Å 2.564 Å 2.613 Å 2.545 Å 2.514 Å 2.545 Å 
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also considered. Structures of selected intermediates were optimized with DFT to 

determine specific complex geometries, spin states, and total energies. Spin density maps 

of doublet, triplet and quartet states were generated using the cubegen utility in Gaussian 

03.  

The total energy of each intermediate was obtained from the total thermal and 

electronic energy from the frequency calculation. The ΔG° for each reaction at standard 

state was determined using Equation 1. Eproducts and Ereactants are the values of the total 

internal energy of the reaction components.  

ΔGrxn = [ΣEprod] – [ΣEreact]  (1) 

Reduction potentials were computed using isodesmic reactions with the 

experimental Ni(I)(PyS)3H/Ni(II)(PyS)3H- couple as the theoretical reference reaction 

(Eref = –1.62 V vs SCE) to generate a balanced redox reaction and calculate ΔGiso 

(Appendix Figure 1). Use of a reference reaction in this manner eliminates systematic 

errors resulting from electron exchange functionals and choice of basis set.80 Using the 

free energy change of the reaction below, the reduction potentials were determined.  

Table 2-2: Calculated error for computed bond lengths. 
 

 

 
B3LYP 

Ethanol CPCM 
B3LYP 

gas 
B3LYP 

Water CPCM 
B3P86 

Ethanol CPCM 
B3P86 

gas 
B3P86 

Water CPCM 
Bond %Error %Error %Error %Error %Error %Error 
Ni-N1 1.73 1.46 2.76 1.43 1.80 1.40 
Ni-N2 2.98 2.95 1.18 0.01 0.15 0.16 
Ni-N3 -0.86 -0.50 -0.53 -1.78 -2.07 -1.93 
Ni-S1 0.95 2.69 2.45 0.33 0.50 0.32 
Ni-S2 3.25 3.07 2.76 1.34 0.88 1.48 
Ni-S3 3.52 1.81 3.79 1.07 -0.15 1.08 

Energy  
( Hartrees) 3445.962706 -3445.882271 -3445.965484 -3449.714625 -3449.632615 -3449.717432 
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Ox + Ni(I)(PyS)3HN-  à Red + Ni(II)(PyS)3HN
  (2) 

Ox and Red are the oxidized and reduced intermediates of interest. The ΔG° for 

these isodesmic reactions was used to calculate E0 of the desired reaction using the 

Equation 3 where F is Faraday’s constant. All reduction potentials are reported vs SCE to 

match experiment.   

E0 vs SCE = (–ΔGiso/nF) + Eref (3) 

Since protonation at the ligand involves breaking the Ni-S or Ni-N bond, using an 

isodesmic reaction as a reference for determining the reaction pKa becomes problematic. 

The reported error for pKa calculations with B3P86 level of theory is 2.6 units if no 

isodesmic reaction is used to correct for systematic errors.132 To determine pKa’s for the 

possible protonation sites and to calculate G the value of -264 kcal/mol for water solvated 

H+ was used.127 The pKa was calculated using Equation 4, using ΔG for the 

corresponding reaction below where B is the intermediate being protonated. 

B + H+ à BH pKa = -ΔG/RTln10  (4) 

Energy coordinate diagrams were generated from the free energy change of each 

step in the catalytic cycle with the reduction potentials referenced either to SCE or -1.3 V 

vs SCE and a pH of 12 as indicated in the figure captions. These were chosen to indicate 

the reaction coordinates at experimental conditions. The reaction was optimal at pH 12 

and -1.3 V is the reduction potential of reduced fluorescein dye. The ΔG° values reported 

in the text are at standard state, and the values in the figures are referenced to these 

experimental values.  
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The structures of the transition states were determined using the QST2 method. 

Frequency calculations for the transition state structures were checked by ensuring only 

the presence of only one negative frequency. The normal modes for the negative 

frequencies were also checked to ensure that the proper transition state was being 

identified. 

Example calculation for determination of the pKa of Ni(5-ClPyS)3 

To begin, ΔGrxn is calculated by subtracting the sum of the energies (in kcal/mol) 

of the starting catalyst and solvated proton from the energy of the protonated species: 

ΔGrxn = [ΣEprod] – [ΣEreact] 

ΔGrxn = [NiE3NH] – [NiE3
- + H+] 

ΔGrxn = [-3028439.394] – [-3028164.751 + -263.99961] 

ΔGrxn = -10.64360115 

Next, the value of ΔG is divided by RTln(10), when R is the gas constant and T is 

the temperature in K, to determine pKa: 

pKa = -ΔG/[ln(10)RT] 

pKa = -[-10.64360115]/[ln(10)RT] 

pKa = -[-10.64360115]/[1.364247] 

pKa = 7.801813858 

This value can then be used to determined ΔG for a reaction at given experimental 

conditions by first calculating an adjusted pKa. For a solution of pH 7, the adjusted pKa 

is: 
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pKa adj = pKa – pH 

pKa adj = 7.801813858 – 7 

pKa adj = 0.801813858 

The adjusted pKa value is then used to calculate a new value of ΔG, which 

accounts for the pH of the solution: 

pKa = -ΔG/[ln(10)RT] 

ΔG = -pKa * /[ln(10)RT] 

ΔG = -0.801813858 * 1.364247 

ΔG = -1.09387215 kcal/mol 

Example calculation for determination of the E0
 of Ni(5-ClPyS)3 

Next, ΔGiso is calculated via an isodesmic reaction, by subtracting the sum of the 

energies of the reactants, in this case the oxidized species Ni(5-ClPyS)3H and the reduced 

reference species Ni(PyS)3H-, from the energy of the reduced species, Ni(5-ClPyS)3H and 

the oxidized reference Ni(PyS)3H: 

ΔGiso = [ΣEprod] – [ΣEreact] 

ΔGiso = [NiE3NH- + Ni(PyS)3H] – [NiE3H + Ni(PyS)3H-] 

ΔGiso = [-3028534.654 + -2173599.531] – [-3028439.394 + -2173689.218] 

ΔGrxn = -5.57253879 

This value of ΔG is then used to calculate the unreferenced value of E0, using F, 

Faraday’s constant, and n, the number of electrons involved in the reaction: 

E0 vac = (–ΔGiso/nF) 
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E0 vac = (–(-5.57253879)/ 23.06) 

 E0 vac = 0.241653894 V vs vacuum 

This value is then corrected using the reference value of -1.18 V vs SCE for 

Ni(PyS)3H-/Ni(PyS)3H reference reaction, making the final value of E0 referenced against 

SCE: 

E0 SCE = E0 vac + Eref 

E0 SCE = 0.241653894 V + -1.18 V 

 E0 SCE = -0.938346106 V vs SCE 

E0 SCE = -0.94 V vs SCE 

2.1.2.  Experimental determination of reduction potentials and rates of hydrogen 

production using cyclic voltammetry  

Cyclic voltammetry measurements were performed with a Biologic SP 200 

potentiostat using a one-compartment cell with a glassy carbon working electrode, a Pt-

wire counter electrode and a Ag+/AgNO3 acetonitrile reference electrode. A 10-3 M 

solution of catalyst made in dry/degassed acetonitrile was titrated with up to 30 

equivalents of a 1.0 M solution of 4-cyanoanilinium in dry/degassed acetonitrile, with N2 

flowing in the headspace of the container. The potential was first swept from 0.0 V vs 

Ag+/AgNO3 to -1.2 V vs Ag+/AgNO3, then back to 0 V vs Ag+/AgNO3 sweeping through 

+0.5 V vs Ag+/AgNO3. Two scans were run sequentially before the next addition of acid 

and the electrodes were cleaned in between each run. Following an addition of acid, the 

solution was bubbled with N2 for two minutes before performing another scan.  
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Overpotentials were determined by calculating the standard reduction potential 

(E!"/!! 
° ) of 4-cyanoanilinium using the equation86,133,134: 

E!"/!! 
° = E!!/!! 

° − 2.303RT
F pK!,!",! 

 

Where E!!/!! 
° is the standard potential for the solvated proton and dihydrogen 

couple for a chosen solvent. The reported value of -0.028 V vs Fc+/Fc in acetonitrile was 

used.135 The overpotential, η, is defined as the difference between E! − E!"/!! 
! . Prior to 

addition of acid, a reduction peak was not observed within the solvent window for any of 

the derivatives. Following addition of acid, a reduction peak was observed (one 

equivalent of acid was added to all derivatives except those containing carboxylic acid 

substituents, which needed four equivalents to ensure protonation of the carboxylic acid 

groups). Subsequent addition of acid led to a catalytic wave in all cases. 

The observed rate of hydrogen production was measured by plotting the ratio of 

icat/ip vs concentration of acid, until the ratio approached a plateau (icat = catalytic current 

and ip = initial current).  In the region where there is no longer a linear dependence on the 

concentration of acid, the ratio of icat/ip was used to calculate kobs (observed rate constant) 

and the TOF. The process is described in detail in the experimental section, using the 

approximate model for a pseudo-first order catalytic system.85,86,136–138 The shape of the 

catalytic curve indicates that pure kinetic conditions with substrate consumption are 

never reached. It is often challenging to reach pure kinetic conditions due to the 

occurrence of multiple reaction mechanisms, especially in cases where isomers exist.75 
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Extracted kobs are used for internal comparison between the selected catalysts in this 

study. This method has previously been used to estimate the rates (TOF’s) of systems 

with complex or unknown catalytic mechanisms.139–145 Electrocatalytic TOF’s 

determined using this method follow the same trends as the photocatalytic TOF 

previously determined by Eisenberg and coworkers.62  

The kinetic isotope effect was observed in CV traces obtained using a 1 M HCl 

solution, made in either 10mL of H2O or D2O to titrate a 10-3 M solution of catalyst in a 

solution of H2O or D2O, respectively. The experiment was performed using the same 

scan rate and applied potential as above.  

2.1.3. Experimental determination of pKa values using UV-vis spectroscopy 

An aqueous 1 M solution of NaOH was added to a 7.5 x 10-4 M solution of 

catalyst in 1:1 EtOH/H2O until the catalyst was completely deprotonated as monitored by 

UV-vis using a StellarNet SILVER-Nova25 BW16 Spectrometer. The sample was then 

titrated with 1 M and 0.1 M HCl, taking UV-Vis absorption spectra and recording pH 

between each addition, until the catalyst was completely protonated. To address the error 

introduced by concentration differences in each measurement, the ratio of the catalyst’s 

absorbance at two different wavelengths was plotted against pH. The pKa of the catalyst 

was obtained by the inflection point of a fitted curve which was found by taking the 

second derivative of the equation of the curve and setting it equal to zero (a third or 

fourth degree polynomial). 
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2.1.4. Mass spectroscopy 

Mass spectroscopy was performed on a Thermo Electron LTQ-Orbitrap 

Discovery high-resolution mass spectrometer with electrospray ionization in negative 

mode. 

2.1.5. Sources of starting materials  

 6-Mercaptopyridine-3-carboxylic acid, 2-Mercaptopyridine-3-carboxylic acid, 3-

(Trifluoromethyl)pyridine-2-thiol, 5-(Trifluoromethyl)pyridine-2-thiol, 2-Mercapto-6-

methylpyridine, 5-chloropyridine-2-thiol, nickel (II) chloride, and sodium metal were 

purchased from Sigma Aldrich and used as received. Ferrocene was purchased from 

Acros Organics and used without purification. Lithium chloride was purchased from 

Fluka and used as received. Solvents were used without further purification from the 

MBraun Solvent system.  

Chemicals used in the study of photochemical hydrogen production by CQD’s 

and NiNP’s were purchased from Sigma Aldrich or Fisher Scientific and used without 

further purification. NiCl2 (98%; 1A carcinogen) and citric acid (99%) were purchased 

from Sigma Aldrich. PVP (molecular biology grade, >95%) was purchased from Fisher.  

The hydrogen production quantum yield was determined using a potassium ferrioxalate 

actinometer following published procedures.146  

2.1.6. General synthetic procedure 

All syntheses were performed using dry/degassed solvents under N2 atmosphere 

and complexes were stored under N2 atmosphere. Compounds Ni(5-CF3PyS)3
-, Ni(5-
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ClPyS)3
-, and Ni(6-CH3PyS)3

- were synthesized using the previously described 

methods.62 The remaining catalysts, Ni(3-CF3PyS)3
-, Ni(6-S-3-COOH)3

-, and Ni(2-S-3-

COOHPyS)3
- were synthesized using a modified procedure, where a solution of 

deprotonated ligand was prepared using sodium methoxide in dry/degassed methanol. 

Following color change, indicative of deprotonation, an equivalent of [Et4N]Br was 

added to exchange the counter ion. Solvent was removed in vacuo and the remaining 

solid was dispersed into dry/degassed acetonitrile, to remove the residual salt by 

filtration. A solution of [Et4N]2NiCl4 in acetonitrile was added slowly over the course of 

30 minutes and allowed to react for at least two hours, until green product was formed. 

The catalyst then precipitated out which allowed us to remove residual salts through 

filtration following reduction of the solution volume by about half. Reduction potentials 

and rates of hydrogen production were determined as described in Chapter 2. 

Electrocatalytic TOF’s determined using this method (Table 4-2) follow the same trends 

as the photocatalytic TOF previously determined by Eisenberg and coworkers.62  

[Et4N]2NiCl4 

Literature procedure147 for synthesis of the nickel precursor was followed with the 

exception that the stoichiometry of NiCl2 to [Et4N]Br was changed from 1:2 to 1:4. 

Appearance of product was as previously noted.   

2.1.7. Synthesis of derivatives of Ni(PyS)3
-  

Note: the counter ion for all compounds is [Et4N]+.  

Ni(PyS)3[Et4N] 
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Ni(PyS)3
- was synthesized as previously reported, with results as described in the 

literature.148 A crystal structure was obtained for Ni(PyS)3
-.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-2: Single crystal X-ray structure obtained for Ni(PyS)3[Et4N]. Chemical 
formula: C23H32N4NiS3. Space group: P21/c (14). Cell Lengths: a 14.9857(11) Å b 
9.1919(3) Å c 18.7452(11) Å. Cell angles: a 90.039(4)° b 104.865(5)° g 90.067(4)°. Cell 
volume: 2495.68. Z,Z’: Z: 4. R-Factor(%): 3.91.  

 

Ni(3-CF3Py-2-S)3[Et4N]  

Sodium metal (.07 mmols, 1.6mg) was dissolved into 1 mL of dry/degassed 

methanol to yield the necessary solution of sodium methoxide. Into this solution 

0.26 mmols (463mg) of 3-(trifluoromethyl)pyridine-2-thiol was added and allowed to 

dissolve resulting in a clear yellow solution. Then 0.9 mmols (18.9mg) of [Et4N]Br was 

then added and allowed to react for one hour before solvent was removed by rotary 

evaporation and the remaining solid was dissolved into 0.8 mL of acetonitrile. Residual 

salt was removed through filtration before the solution was placed back under N2. A 

solution of 0.26 mmols (119.86mg) of [Et4N]2NiCl4 in 0.8 mL of acetonitrile was slowly 
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added via syringe over the course of 30 minutes. If the nickel precursor is added too 

quickly, a brown solution results instead of a green one. During the addition, if slight 

brown precipitate was observed, the addition could be slowed down and the reaction 

proceeded as intended. The final mixture was allowed to react for two hours, or until 

complete color change to blue/green occurred. The volume of solution was reduced by 

half prior to filtering to remove salt byproducts and was stored under N2 at -10°C. 

FTMS–p ESI Calcd. for C18H9N3S3F9Ni, 591.9168; found, 591.8486.  

Ni(5-CF3Py2-S)3[Et4N]  

 Sodium metal (3.4 mmols, 7.8mg) was combined with 5 mL of dry/degassed 

methanol to make sodium methoxide. 5-(trifluoromethyl)pyridine-2-thiol (3.4 mmols, 

605mg) was added to this solution and yielded a clear yellow solution once dissolved, 

after which 3.4 mmol (714mg) of [Et4N]Br was added and allowed to react for one hour. 

Following this, solvent was removed in vacuo and the resulting solid was dissolved into 

10 mL of dry/degassed acetonitrile. Salts were filtered out and the remaining solution was 

placed back under N2 before a 10 mL solution of 0.85 mmol (392mg) [Et4N]2NiCl4 in 

10 mL of acetonitrile was slowly added over 30 minutes. Following the addition, 

complete color change to blue/green occurred and the volume of the solution was reduced 

by half before being stored at -10°C under N2. FTMS – p ESI Calcd. for C18H9N3S3F9Ni, 

591.9168; found, 591.8523.  

Ni(3-COOHPy-6-S)3[Et4N] 
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Sodium methoxide was made by dissolving 2.88 mmols (66mg) of sodium into 

2.2 mL of dry/degassed methanol. 6-mercaptopyridine-3-carboxylic acid (1.44 mmols, 

222mg) was then added and allowed to react over the course of an hour, ultimately 

yielding a clear yellow solution into which 2.88 mmols (605mg) of [Et4N]Br was added. 

This solution was allowed to stir for an hour before the solvent was removed in vacuo 

and the resulting solid was dissolved into 4.3 mL of dry/degassed acetonitrile. Salts were 

removed through filtration and the solution was placed under an atmosphere of N2. A 

solution of 0.36 mmols (166mg) of [Et4N]2NiCl4 in 4.3 mL of acetonitrile was made and 

slowly added over the course of 60 minutes. The length of time of the addition was 

increased to an hour to avoid solubility issues resulting from the formation of the 

carboxylate. Once the reaction mixture appeared blue/green, the volume was reduced by 

half and the solution was placed under N2 at -10°C and the solid product was collected. 

FTMS – p ESI Calcd. for C18H10N3S3O4Na2Ni, 531.8983; found, 531.9774.  

Ni(3-COOH3Py-2-S)3[Et4N]  

A 2.2 mL solution of sodium methoxide was made by combining 2.88 mmols 

(66mg) of sodium with 2.2 mL of dry/degassed methanol. 2-mercaptopyridine-3-

carboxylic acid, 1.44 mmols (222mg) was added and allowed to stir for an hour to ensure 

deprotonation, at which point 2.88 mmols (605mg) of [Et4N]Br was added and allowed to 

react for an hour. Solvent was then removed in vacuo and the resulting solid was 

dissolved into 4.3 mL of dry/degassed acetonitrile with residual salts removed by 

filtration. This solution was placed under N2 and over the course of 60 minutes a solution 
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of 0.36 mmols (166mg) of [Et4N]2NiCl4 in 4.3 mL of acetonitrile was added to yield a 

blue/green product. The final volume of solution was reduced to half in vacuo and stored 

under N2 at -10°C to yield a solid product. FTMS – p ESI Calcd. for 

C18H10N3S3O4Na2Ni, 531.8983; found, 531.9769. 

Ni(5-Cl3Py-2-S)3[Et4N] 

Sodium methoxide was made by dissolving 1.44 mmols (33mg) of sodium into 

2.2 mL of dry/degassed methanol and used to dissolve 1.44 mmols (210mg) 5-

chloropyridine-2-thiol. Following addition of ligand the solution immediately turned 

clear yellow and 1.44 mmols (302mg) of [Et4N]Br was added and allowed to react for an 

hour. After an hour, the solvent was removed and the resulting solid was dissolved into 

4.3 mL of dry/degassed acetonitrile. Residual salts were filtered off and the solution was 

placed back under N2. Into this solution a 4.3 mL solution of [Et4N]2NiCl4 in acetonitrile 

was slowly added over the course of 30 minutes to yield a bright green solution of 

mixture, the volume of which was reduced by half before storing at -10°C under N2 to 

afford the solid product. FTMS – p ESI Calcd. for C15H9N3S3Cl3Ni, 491.8348; found 

491.7782.  

Ni(6-CH3Py-2-S)3[Et4N] 

 Sodium metal (3.4 mmols, 78mg) was dissolved into 5 mL of dry/degassed 

methanol to form a solution of sodium methoxide. Into this solution 3.4 mmols (422mg) 

of 6-methylpyridine-2-thiol was dissolved and combined with 3.4 mmols (714mg) of 

[Et4N]Br before being allowed to react for an hour. After an hour, the solvent was 
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removed and the resulting solid was dissolved into 10 mL of dry/degassed acetonitrile. 

Salts were removed using filtration and the solution was placed back under N2. Over the 

course of 30 minutes a 10 mL solution of [Et4N]2NiCl4  in acetonitrile was added to yield 

a light green product. The volume was reduced by half and the final solution was placed 

under N2 at -10°C. Ni(6-CH3Py-2-S)3
-
 was isolated as a very light green solid. Calcd. For 

the ligand C6NSH6; 124.0221 found 124.0092. 

Ni(6-CH3PyS)2(PyS)[Et4N] 

 A 5 mL solution of NaOCH3 was made, by dissolving 3.4 mmols (79 mg) of 

solid sodium into 5 mL of dry/degassed methanol. This was split into two portions of 

3.33 mL and 1.67 mL to deprotonate the (6-CH3)PySH and PySH, respectively. 

2.27 mmols (285 mg) of (6-CH3)PySH was deprotonated in the NaOCH3 and 2.27 mmols 

(580 mg) of [Et4N]Br was added. This solution was allowed to stir for one hour before 

removing the solvent in vacuo. The resulting solid was dispersed into 6.67 mL of 

acetonitrile and salt was filtered to yield a light yellow, transparent solution. A blue 

solution of 0.85 mmols (390 mg) of [Et4N]2NiCl4 in 10 mL of acetonitrile was then 

gradually added over the course of an hour. An initial color change to green occurred, 

followed by a final color change to a brown, opaque solution following complete addition 

of the nickel precursor. This solution was allowed to stir over night. A solution of PyS, 

1.13 mmols (125 mg), in 1.67 mL of NaOCH3 was then made and reacted for one hour 

with 1.13 mmols of [Et4N]Br. Solvent was removed and the resulting solid dispersed into 

3.33 mL of acetonitrile and filtered to yield a transparent yellow solution. This ligand 
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solution was added gradually to the brown, opaque reaction mixture, which gradually 

began to turn green. The reaction was allowed to proceed overnight and by morning the 

solution was a bright, opaque green. Total volume was reduced by half and residual salt 

was filtered. λmax of absorbance was observed at 677 nm. FTMS – p ESI Calculated for 

NiC17H15N3S3 at 414.97816, seen at 124.00907 corresponding to (6-CH3)PyS- ligand and 

110.90974 corresponding to PyS- ligand.  

Ni(PyS)2(6-CH3PyS) [Et4N] 

 A 5 mL solution of NaOCH3 was made and separated into two portions of 

3.33 mL and 1.67 mL to deprotonate (6-CH3)PySH and PySH. 252 mg of PySH 

(2.27 mmols) was added into the 3.33 mL portion and 162 mg of (6-CH3)PySH was 

added to the 1.67 mL portion. 240 mg of [Et4N]Br was added to the solution of (6-

CH3)PySH, then solvent was removed in vacuo. The product was dissolved in acetonitrile 

and salt was removed though filtration. 480 mg of [Et4N]Br was added to the PySH and 

allowed to react for an hour before solvent was removed in vacuo. The resulting solid 

was dispersed into 6.67 mL of acetonitrile and residual salt was filtered off. A 10 mL 

solution of [Et4N]2NiCl4 in acetonitrile was gradually added drop-wise to this solution 

over the course of 30 mins, resulting in the formation of a bright green, opaque solution 

that gradually became full of brown/orange precipitate. An additional 4 mL of 

acetonitrile was added and the solution was allowed to stir overnight. It remained brown 

and opaque until the solution of (6-CH3)PyS- in acetonitrile was slowly added drop-wise. 

The previously brown solution underwent a rapid change to a bright green, opaque 
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solution which was allowed to stir overnight. λmax of absorbance was observed at 639 nm. 

FTMS – p ESI Calculated for NiC16H12N3S3 at 399.95468; seen 401.92438, could 

correspond to doubly protonated species. Also see peaks at 124.0100 and 109.9900 

corresponding to 6-CH3PyS- and PyS- ligands. Interpretation of these results is discussed 

in Chapter 5. 

Ni(PyS)2(3-CF3PyS) [Et4N] 

A 5 mL solution of NaOCH3 was made and partitioned into two solutions of 

1.67 mL and 3.33 mL to dissolve the (3-CH3)PySH (203 mg, 1.13mmols) and PySH 

(252 mg, 2.27 mmols) respectively. Once the PyS- was fully dissolved, 480 mg 

(2.27 mmols) of [Et4N]Br counter ion was added and the solution was allowed to react 

for an hour before solvent was removed. The solid was dissolved in 6.67 mL of 

acetonitrile and the residual salt was filtered off. Into this solution, the blue, transparent, 

10 mL solution of [Et4N]2NiCl4 (390 mg, 0.85 mmols) in acetonitrile was added drop-

wise over the course of 30 minutes. As the addition progressed, the solution became 

opaque and light green, eventually turning to a brown/green color. It was allowed to react 

overnight. The second ligand solution was made by dissolving the (3-CH3)PySH in the 

remaining 1.67 mL of NaOCH3, adding 240 mg (1.13 mmols) of [Et4N]Br and allowing 

these to react for one hour. Solvent was removed and the product was re-dispersed in 

3.33 mL of acetonitrile before residual salt was removed. This ligand solution was 

gradually added to the reaction mixture, which remained green and opaque and was 

allowed to react overnight again. The next day all precipitates were filtered off and the 
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volume was reduced to approximately 5 mL which cause white precipitate to crash out, 

leaving behind a dark forest green solution. Salts were filtered off. FTMS – p ESI 

Calculated for NiC16H9N3S3F3 at 453.92641; seen 523.87260 (expected for Ni(3-

CF3PyS)2(PyS)-). UV-vis absorbance recorded at 619 nm.  

Ni(3-CF3PyS)2(PyS)[Et4N] 

NaOCH3, 5 mL, was made and separated into two parts, 1.67 mL and 3.33 mL, 

for PySH (126 mg, 1.13 mmols) and (3-CH3)PySH (406 mg, 2.27 mmols) respectively. 

Once both ligands were dissolved into the 1.67 mL and 3.33 mL aliquots of NaOCH3, 

240 mg of [Et4N]Br was added to the PyS- solution and 480 mg of [Et4N]Br was added to 

the (3-CH3)PyS- solution. These solutions were allowed to react for an hour before 

solvent was removed from each in vacuo. The resulting deprotonated compound 

PyS[Et4N] was dissolved into 3.33 mL of acetonitrile and the deprotonated compound (3-

CH3)PyS[Et4N] was dissolved into 6.67 mL of acetonitrile. Residual salts were filtered 

from both. The solution of (3-CH3)PyS[Et4N] was dark yellow/brown and transparent. 

Into this solution was added the blue, transparent acetonitrile solution of [Et4N]2NiCl4 

(390 mg, 0.85 mmols in 10 mL) yielding a green/blue solution with a slight amount of 

yellow precipitate. The remaining yellow ligand solution of PyS[Et4N] was added slowly 

and yielded no apparent, immediate color change. This reaction mixture was allowed to 

stir overnight. After reacting overnight, the solution was still an opaque blue/green and 

the precipitate was filtered. The final volume was brought down to about 5 mL and white 

salt crystals precipitated out of solution. These were removed by decanting the solution. 
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FTMS – p ESI Calculated for NiC17N3S3H10F6 (due to pH of solution catalyst is 

protonated) at 523.92161; seen 523.87260. UV-vis absorbance λmax = 625 nm; broad 

peak.  

2.2 Experimental methods to study photocatalytic proton reduction 

2.2.8. Experimental conditions for photochemical hydrogen production 

Gas concentrations were measured on a Hiden Analytical quadrupole mass 

analyser. Emission measurements were made on a PTI Quantumax 300. 1H NMR spectra 

were collected on a 400 MHz Bruker Avance III spectrometer, running at 400.13 MHz 

with a 9.4 Tesla magnet. The 13C NMR were collected on a 600 MHz Bruker Avance III 

spectrometer with a 14 Tesla magnet, operating at 150 MHz, fitted with a 5 mm BBO 

probe. UV-vis spectra were taken on a StellarNet SILVER-Nova25 BW16 Spectrometer.   

2.2.9. Synthesis of CQD 

CQDs were synthesized based on the procedure used by Reisner and 

coworkers.149 Citric acid (100 g) was heated to 453 K and allowed to stir for 24 hours. 

After 24 hours no more stirring was possible. The white powder became a light yellow 

liquid and darkened until it became a hard black solid. Small samples were taken, 

dispersed in D2O and brought to pH 10 using NaOH at 5 hours and 24 hours and 

analyzed with 1H NMR. After 24 hours, the CQDs were allowed to cool to room 

temperature, subsequently half of the total solid product was dispersed in 3 L of water 

and brought to pH 10 using NaOH.  Blue fluorescence was noted when irradiated with 
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365 nm light. The remaining sample was split into two batches, one was left as 

synthesized and to the other 29 K MW polyvinylpyrrolidone (PVP) was added at the 

following percentages by weight of the CQDs: 5% (0.5 g PVP), 10% (1.0 g PVP), 20% 

(2.0 g PVP), 35% (3.5 g PVP), 50% (5.0 g PVP). 1H NMR (CDCl3, 20°C): δ ppm 8.40, 

7.75, 7.25, 5.45, 3.5, 2.0-2.5, 0.75-1.75. 1C NMR (H2O): δ ppm 180-185, 120-145, 10-42.  

2.2.10. Synthesis of NiNPs 150,151 

Ni(acac)2 (520 mg, 2 mmol) was mixed into oleylamine (2 mL) in a 100 mL one-

neck round-bottom flask, filled with an Ar atmosphere. The resulting blue slurry was 

stirred for 20 minutes at 100°C. Trioctylphosphine (TOP, 5 mL) was injected into the 

slurry, resulting in a translucent blue solution after 2 minutes of stirring. The temperature 

was increased to 200°C, and the solution turned from blue to deep black. The solution 

was kept at 200°C for 30 minutes, then cooled to room temperature in a water bath. The 

solution was transferred to a centrifuge tube, in which the nanoparticles were flocculated 

by the addition of 35 mL ethanol and centrifuged for 15 minutes at 3.0 rcf. The ethanol 

was decanted off, and the particles were washed 3 times in 40 mL n-hexane/ethanol (1:3), 

centrifuging each wash for 30 minutes at 3.0 rcf.  

NiNPs (100 mg) were then dispersed in 10 mL of n-hexane in a 100 mL one-neck 

round-bottom flask. PVP 29 K (700 mg) was dissolved in 6 mL of chloroform and added 

to the flask. The flask was stoppered, placed under an Ar atmosphere, then stirred and 

heated at 65°C for 12 hours. After cooling to room temperature, the solution was 

transferred to a centrifuge tube in which the nanoparticles were flocculated with 20 mL 
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ethanol and centrifuged for 20 min at 3.0 rcf. The solvents were decanted off, and the 

particles were washed 3 times with acetone/ethanol (1:1), centrifuging each wash for 30 

minutes at 3.0 rcf.151  

2.2.11. Transmission Electron Microscopy and EDX 

Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray 

Spectroscopy (EDX) were performed on a FEI Technai F-20 operating at 200 kV and 

equipped with an Oxford Instruments EDX detector. The sample grids used were Lacey 

Carbon Film over 400 mesh copper purchased from Ted Pella. Samples were prepared by 

sonicating a moderately dilute sample (10 mg/1 mL) for 10 seconds, then drop casting 

onto the grid. The samples were left to dry in air for 3 hours prior to imaging. No heat 

was applied. 

2.2.12. Fluorescence Quantum Yield Measurements 

Quantum yield measurements were performed using a petite integrating sphere 

attachment. The excitation and emission spectra were corrected using the 

Emcorr_Quanta_Solid /Sphere correction with the Felix software. A 2.0 optical density 

neutral density filter was used while measuring the excitation light. Each sample 

contained 1.4 mg of CQD diluted to a total volume of 10 mL in 1:1 water/EtOH. The 

quantum yield of the 0%, 5%, 10%, 20%, 35% and 50% PVP-coated particles were 

measured at various excitation wavelengths.  
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2.2.13. Fluorescence quenching studies 

A solution of 4 mg CQD in 10 mL of 1:1 H2O/ EtOH was titrated with a variety 

of sacrificial electron donor solutions (triethylamine, ascorbic acid, triethanolamine and 

EDTA) as well as NiNP solution. After each addition of quencher, the emission intensity 

of the CQDs was measured. 

2.2.14. Hydrogen production 

Hydrogen production was carried out in sealed 50 mL vials equipped with septa 

and 10 mL of solution. Each vial was purged five times and reactions were run under N2 

at atmospheric pressure in an ice bath. The N2 was used as an internal standard for the 

hydrogen production measurement.  The gas composition of the headspace was measured 

with the mass analyzer. All measurements were repeated three times at a minimum. 

Reaction rates were determined by continuous monitoring of N2 gas bubbled through the 

reaction mixture. An oil bubbler outlet was used to ensure the reaction remained at a 

constant internal pressure. The samples were irradiated with 470 nm light from LEDs. 

Specific reagents used and their corresponding concentrations are reported in Chapter 6.  
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CHAPTER 3  

INITIAL COMPUTATIONAL INVESTIGTION OF NICKEL PYRIDINETHIOLATE 

DFT Analysis into the Intermediates of Nickel Pyridinethiolate Catalyzed Proton 

Reductions 

This work is published in Dalton Transactions.   

Virca, C. N.; Mccormick, T. M. DFT Analysis into the Intermediates of Nickel Pyridine 

Thiolate Catalyzed Proton Reduction: Supporting Information. Dalt. Trans. 2015, 1–28. 

3.1 Introduction 

Finding an efficient way to generate clean, low-cost energy is fundamental for 

environmental preservation and the improvement of living conditions for people in 

developing nations.3,13 Converting water to hydrogen as a clean fuel source using 

precious-metal free water reduction catalysts is of great interest.63,152,153 Both cobalt and 

nickel catalysts have been shown to be effective for water reduction.62,64,89,102,143,154–160 

Specifically, the Ni(PyS)3
- catalyst has shown high activity and stability in photochemical 

systems.62,89 

The reaction pathway for this catalyst has been proposed from experimental 

observations (Figure 3-1).62 In the proposed reaction pathway, Ni(PyS)3
- undergoes 

protonation at a pyridyl nitrogen to form Ni(PyS)3HN, followed by reduction 

(Ni(PyS)3HN-) then proton coupled electron transfer to make the hydride, Ni(PyS)3HNHNi, 
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and finally release of hydrogen. In this study we examine electronic and structural 

properties of the reaction intermediates using DFT calculations.  

A recent review highlighted several advancements towards using computations in 

rational design of water-reduction catalysts.161 Computational methods have previously 

been used to enhance knowledge of hydrogen evolution catalytic cycles in a similar 

manner,77,82,127,128,158,159,162–164 including those of cobalt glyoxime80,165,166 and Ni 

P2N2141,167–169 type catalysts. The objective of the work in this chapter is to use DFT 

methods to probe the intermediates in the proton reduction pathway of Ni(PyS)3
-. DFT 

can provide information on reaction intermediates that are difficult to probe 

experimentally, eg. spin state, localization of charges and structure. Also identification of 

high-energy intermediates could help target catalyst modification to increase catalytic 

 
Figure 3-1: Proposed catalytic cycle for proton reduction by [Ni(PyS)3]- with cation 
omitted. 

Ni(PyS)3-

Ni(PyS)3HN

Ni(PyS)3HN-

Ni(PyS)3HNHNi
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turnover frequency. 

To this end, we have determined the energies of key intermediates through 

frequency calculations, identified a potential transition state and generated spin density 

maps for intermediates in various spin states. Geometries were determined through 

optimization calculations performed on possible intermediates of the reaction pathway. 

Optimized structures allowed us to explore the possibility of solvent coordination at a 

vacant site on the nickel during the catalytic cycle. 

3.2 Results and Discussions 

3.2.1. Protonation 

Experimental results indicate protonation occurs prior to reduction; a reduction 

wave is only observed after addition of acid to the catalyst.89 We calculated the reduction 

potential of Ni(PyS)3
- to be -1.9 V. This potential is too negative to be reduced under 

experimental conditions, corroborating that protonation must occur first.  

Protonation can occur at either the sulfur or pyridyl nitrogen; resulting in 

dechelation of the ligand. Protonation of the pyridyl nitrogen is proposed by Eisenberg et 

al. A crystal structure of a similar compound, Ni(H-PyS)4,62 shows protonation of the 

pyridyl nitrogen in a square planar compound with only remaining sulphur coordination. 

However, for a similar complex with a tris-phosphine chelating ligand and a PyS- ligand, 

it has been suggested that protonation occurs at the sulphur without detachment from the 

nickel, followed by proton migration to the detached pyridyl nitrogen.170 To probe the 

preferred protonation site we optimized structures with one protonated sulfur, both 
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attached (ring closed) Ni(PyS)3HS
closed and detached (ring open) Ni(PyS)3HS

open from the 

nickel, and the protonated pyridyl nitrogen (ring open), Ni(PyS)3HN. The open and closed 

structures of the protonated sulfur optimize to the same open structure, Ni(PyS)3HS 

(Figure 3-2). Dechelation of the protonated ligand results in a square pyramidal structure. 

The meridional geometry of Ni(PyS)3
- results in two distinct pyridyl nitrogen sites. 

Protonation to form the cis isomer is statistically more likely, and slightly lower in 

energy; as such we only consider the cis geometry. 

Using the energy of a solvated proton, the pKa for the species protonated at the 

sulfur and nitrogen were calculated to be 3.2 and 9.9 respectively (Equation 5 and 6 in 

standard state). The experimentally determined pKa of the catalyst is 12.1.89 The 

 
Figure 3-2: Optimized structures of Ni(PyS)3HN

(gas), Ni(PyS)3HN,  Ni(PyS)3HS and 
Ni(PyS)3

2-. Grey, carbon; Blue, nitrogen; Yellow, sulfur; White, hydrogen; Light Blue, 
nickel.  

Ni(PyS)32- Ni(PyS)3HS

Ni(PyS)3HN	
gas Ni(PyS)3HN
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calculated pKa of 9.9 for the species protonated at the pyridyl nitrogen is within the 2.6 

unit error typical for this method.127 The photocatalytic experimental reaction conditions 

report an optimal pH of 12. Protonation at the sulfur under these conditions is less 

favored than protonation at the nitrogen and unlikely to occur (Figure 3-3).  

Ni(PyS)3
- +  H+ à Ni(PyS)3HS    ΔG° =  -4.31 kcal/mol, pKa 3.2  (5) 

Ni(PyS)3H- +  H+ à Ni(PyS)3HN      ΔG° = -13.5 kcal/mol, pKa 9.9  (6) 

The calculated pKa for the species protonated at the pyridyl nitrogen supports that 

the catalytic cycle starts with protonation and subsequent reduction to form complex 

Ni(PyS)3HN-. 

 

Figure 3-3: Energy coordinate diagram at pH 12 of: Green: reduction of Ni(PyS)3
-; Red: 

protonation at sulfur followed by reduction; Blue: protonation at pyridyl nitrogen 
followed by reduction. Optimized structures of both Ni(PyS)3HN- and Ni(PyS)3HS- with 
doublet spin states. 

 

2N
- (doublet)

2S
- (doublet)

Ni(PyS)3HN-
doublet

Ni(PyS)3HS-
doublet

Ni(PyS)3HN-

Ni(PyS)3HN

Ni(PyS)3HS-

Ni(PyS)3HS

Ni(PyS)32-

Ni(PyS)3-
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3.2.2. Geometry and Water Coordination 

The catalyst, Ni(PyS)3
- is in an octahedral configuration. Initial protonation at a 

pyridyl nitrogen detaches the nitrogen at which point the complex is five-coordinate 

square-pyramidal leaving a vacant coordination site that could be occupied by solvent. 

The reaction solvent is a mixture of water and ethanol. Due to electrostatic potential and 

size of water we considered water coordination. To explore water coordination, we 

optimized the geometry and performed frequency calculations on the intermediates both 

with (Ni(PyS)3HN � H2O) and without (Ni(PyS)3HN) a coordinated explicit water 

molecule (Figure 3-4). Compound Ni(PyS)3HN � H2O has a similar geometry as 

Ni(PyS)3HN, but with a water molecule occupying the vacant coordination site.  

Coordination of water to the vacant site is not energetically favorable for the 

protonated compound Ni(PyS)3HN
 by 6.42 kcal/mol (Equation 7). The standard state is 

calculated with 1 M H2O; considering water as a solvent (55 M) this reaction is also not 

Figure 3-4: Structure Ni(PyS)3HN � H2O optimized in water and in the gas phase and 
structure Ni(PyS)3HN- � H2O optimized using water with a CPCM solvation model. 

Ni(PyS)3HN	�	H2O Ni(PyS)3HN-	�	H2O Ni(PyS)3HN	�	H2O	(gas)
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spontaneous. Furthermore, the reduction potential of Ni(PyS)3HN � H2O is -2.4 V, far 

from the experimentally observed value of -1.18 V. 

Ni(PyS)3HN + H2O à Ni(PyS)3HN � H2O      ΔG° = +6.42 kcal/mol                (7) 

Ni(PyS)3HN - + H2O à Ni(PyS)3HN- � H2O       ΔG° = +34.96 kcal/mol              (8) 

After reduction the catalyst is still five coordinate. Likewise, water coordination 

after reduction is thermodynamically unfavorable with ΔG = +34.96 kcal/mol (Equation 

8). Calculations indicate that although there is a vacant coordination site on complex 

Ni(PyS)3HN and Ni(PyS)3HN-, water coordination to make Ni(PyS)3HN � H2O and 

Ni(PyS)3HN- � H2O is not energetically favorable and is unlikely to occur. 

However, coordination of a hydroxide to Ni(PyS)3HN to get Ni(PyS)3HN � OH-  

ion is exothermic, ΔG° = -11.38 kcal/mol. The reduction potential of Ni(PyS)3HN � OH-   

is -1.7 V, outside the potential available under experimental conditions indicating that 

either reduction of Ni(PyS)3HN is kinetically favored over hydroxide coordination or 

hydroxide coordination is reversible. This intermediate is unlikely to contribute to the 

catalytic cycle and is not considered further.  

3.2.3. Spin State 

The spin state of the complex is set by the user in the calculation setup, allowing 

both investigation into various spin states and room for error in choosing the incorrect 

spin state. For most organic molecules all electrons are paired and a singlet spin state can 

be assumed, however transition metal complexes are more complicated.171,172 Six 

coordinate Ni(II) is octahedral d8 so Ni(PyS)3H- and Ni(PyS)3HN  have a triplet ground 
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state with two unpaired electrons (Figure 3-5). When Ni(PyS)3HN  was optimized as a 

singlet, the geometry changed to square planar with dechelation of two ligands and the 

complex was 7.0 kcal/mol higher energy than the triplet.  

Intermediate Ni(PyS)3HN-, could be either a doublet, with an unpaired electron on 

the metal, or a quartet with one unpaired electron on a ligand and two on the metal. The 

geometry was optimized for the complex in both spin states. Many redox catalysts 

operate through redox active (non-innocent) ligands.173,174 Spin localization can be 

difficult to determine experimentally for intermediates not long-lived enough for electron 

paramagnetic resonance (EPR) experiments, however localization of spin density can be 

determined through computationally generated spin density maps.  

Spin density maps were generated to localize the electron density of the unpaired 

electrons (Figure 3-5). The geometry optimizations of Ni(PyS)3HN- as a doublet and 

 

Figure 3-5: Optimized structure of Ni(PyS)3HNsinglet. Electron spin density map of 
Ni(PyS)3HN- in the quartet spin state and doublet spin state. Optimized structure of 
Ni(PyS)3HN- in a quartet spin state 

Ni(PyS)3HN
singlet Ni(PyS)3H-

quartet	 Ni(PyS)3H-
doublet	 Ni(PyS)3HN-

quartet	
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quartet show minimal change in structure. However, from the spin density maps it is 

evident that the electron density of the doublet of complex Ni(PyS)3HN- is heavily 

localized on the central nickel atom. The quartet spin has electron density more 

delocalized across the ligands, predominantly on the protonated pyridyl ligand. The 

doublet zero-point energy is lower by 87.2 kcal/mol than the quartet. The lower energy of 

the doublet state indicates that reduction of Ni(PyS)3HN results in a doublet state with 

electron density on the nickel center, not the ligand.  

3.2.4. Hydride Formation 

The final intermediate in the proposed reaction pathway is a nickel hydride 

(Ni(PyS)3HNHNi-) formed through a second reduction and protonation. Experimentally 

the hydride has not been isolated but is thought to form through a concerted proton 

coupled electron transfer (PCET) step.62 The hydride (Ni(PyS)3HNHNi-) could be formed 

in one PCET step, or in two sequential steps, protonation and reduction.175,176 

Figure 3-6: Optimized structures of Ni(PyS)3HNHNi- 
singlet (gas), Ni(PyS)3HNHNi- 

singlet (water) 
and Ni(PyS)3HNHNi-

 triplet (water).  
 

Ni(PyS)3HNHNi- 
singlet (gas)    Ni(PyS)3HNHNi- 

singlet (water)   Ni(PyS)3HNHNi-
 triplet (water)  
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Ni(PyS)3HNHNi- was optimized as a triplet with a water solvation model as well as a 

singlet in both solvent and the gas phase (Figure 3-6). Optimized geometries for the 

reduced compound, Ni(PyS)3HN 2-, and the protonated compound, Ni(PyS)3HNHNi, were 

found to give stable structures suggesting a possible sequential reaction pathway (Figure 

3-7).  

Considering these intermediates the following options were considered: A) 

reduction of Ni(PyS)3HN- to yield complex Ni(PyS)3HN 2-, then addition of a proton at the 

nickel center to yield complex Ni(PyS)3HNHNi-, B) reduction of Ni(PyS)3HN- with 

concerted migration of the proton to the nickel, to yield complex Ni(PyS)3HNi 2- and 

subsequent protonation to yield complex Ni(PyS)3HNHNi- C) protonation of the nickel 

center of Ni(PyS)3HN- to yield complex Ni(PyS)3HNHNi, then reduction of the complex to 

again form Ni(PyS)3HNHNi-, and D) concerted PCET, which was modeled by addition of 

Figure 3-7: PCET alternative intermediates: second reduction, Ni(PyS)3HN 2-, 
protonation, Ni(PyS)3HNHNi, and reduction with concerted proton migration, 
Ni(PyS)3HNi 2-. 

Ni(PyS)3HN	2-	 Ni(PyS)3HNHNi	 Ni(PyS)3HNi	2-	
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a proton at the nickel center and simultaneous addition of an electron. Note the final 

intermediate, Ni(PyS)3HNHNi-, is the same in all four options. 

To begin, we consider reduction of Ni(PyS)3HN- to yield Ni(PyS)3HN 2-. The 

calculated reduction potentials for Ni(PyS)3HN- is -2.1 V. Under experimental 

photocatalytic conditions, electron transfer is thought to occur through a reductive 

quenching mechanism such that the electrons would come from reduced dye, fluorescein, 

at a potential of -1.3 V.89 This would not have enough potential to reduce Ni(PyS)3HN-.  

Due to the high reduction potential for Ni(PyS)3HN-, we no longer consider option A.  

Option B, proton transfer from the pyridyl nitrogen to the metal center with 

Ni(PyS)3HN- reduction, results in a hydride intermediate, Ni(PyS)3HNi2- that 

is -42.14 kcal/mol more stable than complex Ni(PyS)3HN 2-. Concerted proton transfer to 

the Ni and reduction has a calculated potential of -1.8 V. Protonation of this complex is 

Figure 3-8: Optimized structures of Ni(PyS)3HN 2- 
singlet, Ni(PyS)3HN 2- 

triplet, 
Ni(PyS)3HNHNi and Ni(PyS)3HNi 2-. 

Ni(PyS)3HN	2-	
singlet	 Ni(PyS)3HN	2-	

triplet	

Ni(PyS)3HNHNi	 Ni(PyS)3HNi	2-	
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unfavorable by 30.49 kcal/mol. Attempts to model an intermolecular PCET reaction with 

an explicit water molecule did not optimize to a protonated structure. 

 Option C, formation of Ni(PyS)3HNHNi, is exergonic by 11.96 kcal/mol, this 

corresponds to a pKa of 8.8 for the Ni-H on compound Ni(PyS)3HNHNi.  

Ni(PyS)3HN- + H+ à Ni(PyS)3HNHNi  ΔG° = -11.96 kcal/mol, pKa 8.8                (9) 

Experimentally, the reaction occurs at a pH of 12.89 Even considering a 2.6 pKa 

unit margin of error, equilibrium likely lies towards having higher concentrations of 

Ni(PyS)3HN-, rather than protonated compound Ni(PyS)3HNHNi. Interestingly Eisenberg 

et al noted a small reduction wave in the CV around -1.0 V that did not show any 

catalytic behavior and that disappeared upon neutralization.62 Our results indicate this 

Figure 3-9: Energy coordinate diagram for alternative paths to PCET. Red trace: 
Ni(PyS)3HN- is first protonated (Ni(PyS)3HNHNi), then reduced at the nickel center. 
Green trace: Ni(PyS)3HN- is reduced to Ni(PyS)3HN 2-, followed by proton migration to 
Ni(PyS)3HNi 2-. Blue trace: concerted PCET. 

Ni(PyS)3HN	2-	
singlet	

Ni(PyS)3HNi	2-	

Ni(PyS)3HNHNi	

Ni(PyS)3HNHNi-
		

Ni(PyS)3-		

Ni(PyS)3H		

Ni(PyS)3H-
		

Ni(PyS)3-		
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peak may correspond to reduction of Ni(PyS)3HNHNi that has a calculated reduction 

potential of -1.0 V.  At pH 12 protonation of Ni(PyS)3HN- is only exothermic by 4.41 

kcal/mol.  Although only small amounts of Ni(PyS)3HNHNi may be formed it would be 

easily reduced, driving this reaction. 

Finally, Equation 10, concerted protonation and reduction was calculated to 

require 2.3 kcal/mol. In the absence of kinetic data, we hypothesize that the transition 

from Ni(PyS)3HN- to Ni(PyS)3HNHNi- will have a lower barrier of activation than the 

transition from Ni(PyS)3HNHNi to Ni(PyS)3HNHNi- (Figure 3-9).  

Ni(PyS)3HN- + e- + H+ à Ni(PyS)3HNi   ΔG° = 2.35 kcal/mol                   (10) 

 
 
Figure 3-10: Spin density map for Ni(PyS)3HNHNi-, triplet, left, and Ni(PyS)3HNi 2-, 
triplet, right, showing spin density located heavily on the hydride and protonated PyS- 
ligands respectively. 

 

The ground state of the hydride, Ni(PyS)3HNHNi-, and the doubly reduced 

compound, Ni(PyS)3HN 2-, could be either a singlet state or a triplet state. Knowing where 

electron density is localized is important for ligand design. The energy of the triplet state 

for Ni(PyS)3HNHNi- is 61.7 kcal/mol lower in energy than the singlet state. The spin 

density map of Ni(PyS)3HNHNi- in a triplet state shows electron density on both the metal 
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and the hydride, supporting the hydride designation of this complex (Figure 3-10). 

Likewise, the triplet state of Ni(PyS)3HN 2- is 35.6 kcal/mol lower in energy than the 

singlet. The electron density is located primarily on the protonated ligand. These electron 

density maps suggest that unlike the first reduction, which was centered on the nickel, the 

second reduction is ligand based.  

 

Figure 3-11: Structure of transition state between Ni(PyS)3HNHNi- and Ni(PyS)3
- + H2 

with bond lengths. 

3.2.5. Hydrogen release 

 After formation of the nickel hydride, Ni(PyS)3HNHNi-, the catalyst has the 

two electrons and two protons required to produce hydrogen. In the octahedral complex 

Ni(PyS)3HNHNi- the proton on the pyridyl nitrogen and nickel are close together (1.44 Å). 

In the optimized structure of the transition state the H-H bond length is 0.98 Å. The Ni-H 
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bond length has extended to 1.72 Å, and the N-H bond length is 1.33 Å   (Figure 3-11). 

The transition state is only 0.64 kcal/mol higher in energy than Ni(PyS)3HNHNi-. The 

release of hydrogen from the transition state is exergonic by 5.2 kcal/mol, suggesting that 

hydrogen elimination has a low barrier of activation. 

3.2.6. Complete Catalytic Cycle 

Thermodynamic cycles were used to determine the most catalytically favored 

pathway. The reduction potentials and pKa’s connecting each intermediate are shown in 

Figure 3-12.177,178 We calculated that reduction of Ni(PyS)3
- prior to protonation would 

require a potential of -1.9 V. Thus, it is evident that initial protonation is more favorable 

than initial reduction of Ni(PyS)3
-. This is in agreement with electrochemical 

experimental data indicating that without acid present in solution, no cyclic voltammetry 

wave is observed at potentials less negative that -2.0 V.89 The calculated pKa of 

Ni(PyS)3HN is 9.9, which is in relatively good agreement with the experimentally 

measured pKa of 12. Given the 2.6 unit margin of error, protonation of compound 1- is 

likely at pH 12, which was used in the photocatalytic experiment.  
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From experiment it is still unclear if the formation of the hydride, Ni(PyS)3HNHNi-

occurs through sequential or concurrent protonation and reduction. Structures of 

protonated intermediate Ni(PyS)3HNHNi and reduced intermediates Ni(PyS)3HN 2- and 

Ni(PyS)3HNi 2- were optimized suggesting these may be stable intermediates and 

sequential PCET may occur. However, the reduction potential of Ni(PyS)3HN- to make 

Ni(PyS)3HN 2- and Ni(PyS)3HNi 2- are -2.1 V and -1.8 V respectively, making formation of 

these intermediates unlikely (Figure 3-12). The protonated compound Ni(PyS)3HNHNi, if 

present in solution, is likely found in low concentrations, however the low reduction 

Figure 3-12: Thermodynamic cycle for H2 production by Ni(PyS)3
-. Electrochemical 

data reported vs SCE. 
 

[NiI(PyS)3]HNHNi	 [Ni0(PyS)3]HNHNi-	
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potential would drive this reaction toward the hydride Ni(PyS)3HNHNi-. Additionally, 

electrochemical data indicates the presence of a second reduction at -1.0 V. Our 

calculated reduction potential of -1.0 V for Ni(PyS)3HNHNi indicates correct identification 

of this reduction wave. Taking into consideration the pKa’s and reduction potentials a 

sequential PCET where protonation occurs before reduction is most consistent with 

experimental results. However, the overall ΔG of 2.35 kcal/mol for PCET, where 

Ni(PyS)3HN- becomes Ni(PyS)3HNHNi-, suggests a low barrier to a concerted mechanism. 

The structure of the hydride Ni(PyS)3HNHNi- shows the protons in close proximity, 

requiring very little energy to generate the transition state for hydrogen elimination to 

regenerate the initial catalyst Ni(PyS)3
-.   

These calculations suggest two main routes to improve catalyst design, first 

sterically hindering the space around the nickel could prevent coordination of a hydroxide 

that forms a complex that cannot continue through the catalytic cycle. Secondly, the high 

energy steps are protonations, thus increasing the basicity of the ligand may result in a 

more active catalyst. Also the reduction potentials determined suggest that a less reducing 

photosensitizer would still provide the potential needed to drive this reaction and could 

allow for ideal matching of photosensitizer and catalysts. Further studies into this 

hypothesis are underway.  

3.3 Conclusions 

This study explored the Ni(PyS)3
- intermediates throughout the catalytic cycle of 

proton reduction. Specifically, DFT calculations support the experimentally proposed 



 

 

 

60 

catalytic cycle while providing insight into intermediate complex geometries and electron 

localization of the reduced intermediates. Catalyst protonation at the pyridyl nitrogen is 

required to lower the reduction potential of the catalyst so that it can be reduced by the 

photosensitizer. This protonation leads to ligand dechelation, leaving a vacant 

coordination site. Water coordination following initial protonation is thermodynamically 

unfavorable, however hydroxide coordination is exothermic and could lead to an 

intermediate that would not continue through the catalytic cycle. The spin density map of 

the reduced catalyst (Ni(PyS)3HN-) reveals electron density is localized at the metal 

center. The formation of the nickel-hydride intermediate Ni(PyS)3HNHNi- occurs through 

sequential proton-electron transfer, and the hydride nature was confirmed through a spin 

density map. Hydrogen elimination from this species is not energetically demanding, as 

demonstrated through determination of the transition state energy. Through the use of 

DFT calculations, we elucidated features of intermediates along the catalytic cycle of 

Ni(PyS)3
- which were experimentally unexplored. 
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CHAPTER 4   

MODIFICATION OF PYRIDINETHIOLATE LIGANDS  

Investigation into the effect of ligand modification on derivatives of a Ni(PyS)3
- 

proton reduction catalyst using joint computational and experimental methods 

This work is published in ACS Journal of Physical Chemistry A. 

Virca, C. N.; Lohmolder, J. R.; Tsang, J. B.; Davis, M. M.; McCormick, T. M. Effect of 

Ligand Modification on the Mechanism of Electrocatalytic Hydrogen Production by 

Ni(pyridinethiolate)3
- Derivatives. J. Phys. Chem. A Just Accept. Manuscr. 2018. 

4.1 Introduction 

Computational design of molecular hydrogen evolution catalysts made from earth 

abundant materials is an active area of research with significance for driving the 

development of effective renewable-energy storage technologies.63,66,67,80,144,152,163,179–181 

Rationally designed homogenous catalysts with computationally predicted properties 

could be formulated to operate under ideal conditions, at neutral pH and with low 

overpotentials.166,182,183 One goal of computationally driven catalyst design is to elucidate 

reaction mechanisms of catalysts by determining the pKa’s and reduction potentials of 

intermediates for each possible protonation and reduction step along the catalytic cycle. 

Given defined experimental parameters such as pH, the energy change of each step can 

be calculated and used to generate reaction coordinate diagrams.79,180 Mechanistic insights 
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are obtained through study of the molecular geometry, energy, and electronic structure of 

reaction intermediates.80,84,127,163,178,180,184–187 

Nickel-pyridinethiolate (Ni(PyS)3
-), and simple derivatives of this compound, 

have been shown to be effective hydrogen evolution catalysts, under both photocatalytic 

and electrocatalytic conditions, capable of operating at pH 12 and with relatively low 

overpotentials.62,155 The work on Ni(PyS)3
- detailed in Chapter 3 supports the catalytic 

Chemical-Electrochemical-Chemical-Electrochemical (CECE)  mechanism of hydrogen 

production put forth by Eisenberg and co-workers under the given experimental 

conditions,188 as calculated pKa values and reduction potentials correlate well to those 

determined experimentally. In this work, we build on our previous study by probing how 

pKa and E0 are affected by modifying the pyridine ligand moiety with electron donating 

and withdrawing substituents spanning a range of Hammett constants. It has been 

previously shown that a methyl-substituted catalyst results in increased photocatalytic 

hydrogen production rates, in this work we suggest an alternative mechanism for this 

derivative.62 The investigated substituents are as follows: 3-(trifluoromethyl)pyridine-2-

thiol (3-CF3PyS), 5-(trifluoromethyl)pyridine-2-thiol (5-CF3PyS),62 6-mercaptopyridine-

3-carboxylic acid (6-S-3-COOHPyS), 2-mercaptopyridine-3-carboxylic acid (2-S-3-

COOHPyS), 5-chloropyridine-2-thiol (5-ClPyS),62 6-methylpyridine-2-thiol (6-

CH3PyS)62 (structures in Figure 4-1 and Table 4-1). The catalytic cycles of these 

compounds were studied computationally and the complexes were subsequently 

synthesized and characterized experimentally.  
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The previously supported CECE mechanism of Ni(PyS)3
- serves as the starting 

point for analysis of the catalytic cycle. The most notable finding of our study is that for 

the most electron donating substituent 6-CH3PyS-, agreement between experimental and 

theoretical data suggests a unique CCEE mechanism. Initial protonation and reduction 

steps are studied by visualization of the frontier molecular orbitals, spin density maps, 

pKa values of various sites, E0 values, and thermodynamic reaction coordinate diagrams 

for reaction intermediates. Remaining protonation and reduction steps are discussed and 

Figure 4-1: Schematic of Ni(PyS)3
- compound, R groups are given in Table 4-1 

 
Table 4-1: Specified substitutions on Ni(PyS)3

- schematic with associated Hammett 
constants.189  

 R R’ R’’ σ 

(3-CF3PyS) -H -H -CF3 0.43 

(5-CF3PyS) -H -CF3 -H 0.43 

(6-S-3-COOHPyS) -H -COOH -H 0.37 

(2-S-3-COOHPyS) -H -H -COOH 0.37 

(5-ClPyS) -H -Cl -H 0.37 

(6-CH3PyS) -CH3 -H -H -0.07 

 



 

 

 

64 

the effect of pKa and E0 on experimentally determined TOFs is proposed. We use this 

data to investigate the relationship between E0, pKa and σ (Hammett constant), used to 

quantify the effect of the electron donating/withdrawing ability of the ligand substituent. 

 

4.2 Results 

Compounds Ni(5-CF3PyS)3
-, Ni(5-ClPyS)3

-, and Ni(6-CH3PyS)3
- were 

synthesized as previously described.62 Compounds Ni(3-CF3PyS)3
-, Ni(6-S-3-COOH)3

-, 

and Ni(2-S-3-COOHPyS)3
- were synthesized using a similar procedure, detailed in 

Chapter 2. Reduction potentials and rates of hydrogen production were determined as 

Table 4-2: Computationally determined pKa
ŧ values and reduction potentials* (V vs 

SCE) with experimental pKa’s, reduction potentials, TOFs and overpotentials (ηexp).  

Ligand N pKa 

(calc) 

S pKa 

(calc) 
pKa 
(exp) 

E0
(calc) E0

(exp)
* TOF s-1 ηexp 

(3-CF3PyS) 6.3 -7.7 8.3 -1.34 -1.26 42 325 mV 

(5-CF3PyS) 6.6 1.5 7.4 -1.30 -1.29 53 354 mV 

(6-S-3-
COOHPyS) 9.9 -0.2 10.3 -1.36 -1.13 164 194 mV 

(2-S-3-
COOHPyS) 7.0 4.5 8.6 -1.37 -1.25 164 315 mV 

(5-ClPyS) 7.8 4.0 7.6 -1.38 -1.31 314 375 mV 

(6-CH3PyS) 16.3 7.6 10.7 -1.55 -1.09 332 155 mV 
 

ŧpKa values calculated from the triplet state. *Electrochemical data in Appendix Figure 
2 to Appendix Figure 7. Computed values for formation of the doublet state. E0 taken 
as the cathodic maximum current with one equivalent of acid.  
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described in Chapter 2. Electrocatalytic TOF’s determined using this method (Table 4-2) 

follow the same trends as the photocatalytic TOF previously determined by Eisenberg 

and coworkers.62  

To determine the pKa’s of each derivative, solutions in 1:1 H2O/EtOH with 

catalyst concentration of the order of 10-4 M were fully deprotonated using aqueous 

NaOH and the UV-vis absorbance of the deprotonated catalysts was determined. Samples 

were titrated with aqueous HCl and the pH and absorbance spectra were monitored 

throughout, until complete conversion to the protonated catalyst as noted by no further 

change in the absorbance spectra. Absorbance spectra of the fully protonated and fully 

deprotonated catalysts can be seen in Appendix Figure 9 as well as the titration spectra 

and accompanying plots of the absorbance ratio vs pH in Appendix Figure 2 to Appendix 

Figure 7. The pKa was chosen to be the minimum value of the second derivative of the 

curve of best fit of the ratio of λmax of the protonated and deprotonated catalysts plotted 

against pH, which corresponds to its inflection point. Not all of the plots of UV-vis 

absorbance spectra show a clear isosbestic point in moving from the protonated to the 

deprotonated species in solution. We attribute this to the presence of isomers of the 

catalyst in solution caused by the meridional structure. Current work is ongoing to further 

investigate the effects of having multiple isomers of nickel-based proton reduction 

catalysts. By using the experimental properties of each derivative we were able to 

undertake a more focused computational investigation into the mechanism of hydrogen 

production by these compounds. 
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4.3 Discussion 

4.3.1. First chemical step  

The first step of the catalytic cycle of hydrogen production by Ni(PyS)3
- was 

previously determined to be protonation.188 For each derivative reduction prior to 

protonation would require large potentials. Under our experimental conditions, reduction 

was observed for all catalysts using an applied potential of -1.58 V vs SCE or less only 

after a proton source was added (Appendix Figure 10), thus protonation was considered 

to be the first step in the catalytic cycle of all derivatives. The catalyst could be 

protonated at a pyridyl nitrogen, or on a sulfur atom. In Chapter 3, exploring the catalytic 

cycle of Ni(PyS)3
-, we supported the experimentally determined site of protonation by 

comparing ΔG for protonation at various possible sites and selecting the most 

thermodynamically favored option. For Ni(PyS)3
- this was found to be on the dechelated 

pyridyl nitrogen.  

Furthermore, protonation at the pyridyl nitrogen is supported by a previously 

reported single crystal X-ray structure of a similar compound, [Ni(HpyS)4](NO3)2·EtOH, 

which has all four ligands protonated at the pyridyl nitrogen and dechelated.62 For all six 

derivatives, protonation at the pyridyl nitrogen is thermodynamically favored relative to a 

sulfur atom. Our computed values pKa generally agree with experimental data, with the 

exception of Ni(6-CH3PyS)3
-. For Ni(6-CH3PyS)3

- neither the computed pKa for 

protonation of nitrogen nor sulfur matches the experimentally obtained value. This 

inconsistency suggests a deviation from the CECE mechanism.  
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We have found that Ni(6-CH3PyS)3
- follows a unique catalytic mechanism due to 

the electron donating effect of the methyl substitution on the pyridinethiolate ligands. 

Although the Hammett constant of a methyl substituent does not differ greatly relative to 

the Hammett constant of a H substituent, it appears that this minor increase in electron 

density allows access to a new mechanism. Interestingly, this catalyst has the highest 

electrochemical TOF of 332 s-1 (plots of icat/ip used to generate the TOF’s can be seen in 

Appendix Figure 2 to Appendix Figure 7). This follows the previously reported 

Figure 4-2: Reaction coordinate diagram of the proposed catalytic cycle of hydrogen 
production by Ni(6-CH3PyS)3

- showing CCEE mechanism with proton shift from a 
ligand nitrogen to the Ni center (at pH 7). 
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photocatalytic activity of this catalyst that was found to have the highest TOF out of a 

series of nickel pyridinethiolate complexes.62  

We investigated the possible protonation sites for Ni(6-CH3PyS)3
-. The cycle 

begins with Ni(6-CH3PyS)3
- in a triplet-spin-state, which will be denoted {t}. The triplet-

spin-state is selected over the singlet-spin-state, {s}, as it is the lower energy 

conformation and has the appropriate octahedral geometry (Figure 4-2). As with the other 

derivatives, protonation of Ni(6-CH3PyS)3
-{t} could be the first step, occurring at either a 

S or N of the pyridinethiolate ligand. The calculated pKa’s are 7.6 for sulfur protonation 

and 16.3 for nitrogen protonation, indicating that with experimental conditions at pH 7 

both of these sites can be protonated. The intermediate protonated at a nitrogen is more 

thermodynamically favored with a ΔG at pH 7 of -12.7 kcal/mol compared to the ΔG for 

protonation at a ligand sulfur atom of only -1 kcal/mol.  

Following initial protonation, Ni(6-CH3PyS)3HN{t} can either undergo a second 

protonation at a S, N or Ni, or be reduced to either Ni(6-CH3PyS)3H-{d} or Ni(6-

CH3PyS)3H-{q}. Protonation at S and Ni have respective pKa’s of 1.0 and -2.6, as such, 

neither species will be present at pH 7. However, dechelation and protonation of a second 

ligand nitrogen corresponds to a pKa of 10.44 (ΔG = -4.7 kcal/mol at pH 7) (Figure 4-2). 

The experimentally measured pKa for Ni(6-CH3PyS)3
- is 10.7, suggesting that proceeding 

through a doubly protonated intermediate could be a viable pathway. Due to the method 

by which we determined pKa’s experimentally, without the application of an externally 

applied potential, the measured pKa of 10.7 must necessarily correspond to a step that 
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occurs prior to reduction. We propose that two sequential protonation events start the 

catalytic cycle, given experimentally determined pKa.  

After undergoing two protonations, Ni(6-CH3PyS)3HNHN
+{t} can be reduced to 

Ni(6-CH3PyS)3HNHN{d} or Ni(6-CH3PyS)3HNHN{q}. The double-state has electrons 

localized on the metal, while the quartet-state would have electrons localized on a ligand. 

E0
calc for reduction to Ni(6-CH3PyS)3HNHN{d} is -0.89 V, while E0 to Ni(6-

CH3PyS)3HNHN{q} is -2.16 V. Experimentally, the measured reduction potential is -1.09 

V vs SCE. Thus, reduction to the doublet-state, with the electrons on the metal center, is 

preferred. From Ni(6-CH3PyS)3HNHN{d}, the necessary second reduction to yield Ni(6-

CH3PyS)3HNHN
-{s} or Ni(6-CH3PyS)3HNHN

-{t} requires -2.80 V and -2.58 V, 

respectively, making both reductions too energetically demanding to occur under the 

electrochemical hydrogen production conditions used herein (Figure 4-3). This suggests 

that hydrogen production is occurring through reduction a different intermediate.  
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Figure 4-3: Reaction coordinate diagram showing prohibitively large ΔG required to go 
from Ni(6-CH3PyS)3HNHN{d} to Ni(6-CH3PyS)3HNHN

-{s} and Ni(6-CH3PyS)3HNHN
-{t}. 

 

An intermediate with a proton on the nickel center, Ni(6-CH3PyS)3HNHNi{d} has 

a calculated reduction potential of -1.18 V vs SCE , which is in agreement with the 

experimentally determined potential of -1.09 V vs SCE. Although direct protonation of 

the metal center is not favored (pKa of -2.6), proton shifts have been previously reported 

in proton reduction catalytic cycles; from pendant amines to nickel centers in NiP2N2 

type catalysts.190 We propose that an internal proton shift occurs from a protonated ligand 

nitrogen to the metal center for Ni(6-CH3PyS)3
-. This shift requires 21 kcal/mol, and 

leads to the formation of Ni(6-CH3PyS)3HNHNi{d}. The transition state corresponding to 

this movement of the proton from the ligand to the metal center was optimized and can be 
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seen on the reaction coordinate diagram the transition from Ni(6-CH3PyS)3HNHN{d} to 

Ni(6-CH3PyS)3HNHNi{d} in Figure 4-4.  

 

In order to circumvent the large energetic requirement, we propose the proton 

shift and reduction occur simultaneously. Without computationally generated kinetic data 

we must rely on electrochemical data to support this claim. Reduction potentials are 

shifted negatively by approximately 10 mV in deuterated solvent vs protonated solvent, 

suggesting PCET is occurring (Appendix Figure 8). This mechanism accounts for both 

the experimentally measured pKa and reduction potential and helps to explain why Ni(6-

CH3PyS)3
- ultimately has the lowest overpotential and highest TOF of the derivatives that 

were studied. Ni(6-CH3PyS)3
- can be readily protonated twice at pH 7 and subsequently 

Figure 4-4: Reaction coordinate showing transition state between Ni(6-
CH3PyS)3NHNH{d} and Ni(6-CH3PyS)3NHNiH{d}. Bond lengths between N-H and Ni-H 
for the transition state are 1.66 Å and 1.50 Å, respectively. 
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be reduced at lower potentials than the other derivatives. The CCEE mechanism of Ni(6-

CH3PyS)3
- contains the smallest energy fluctuations of all of the hydrogen production 

pathways considered (Figure 4-5).  

 

Figure 4-5: Reaction coordinate diagram comparing the four most likely pathways for 
Ni(6-CH3PyS)3

- catalyzed proton reduction. Thermodynamic values given for a solution 
of pH 7 with no applied potential. 

 

One final point of consideration for Ni(6-CH3PyS)3
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position relative to the nitrogen, while electron withdrawing substitutions we studied are 

in the meta positions for compounds Ni(3-CF3PyS)3
--Ni(5-ClPyS)3

-; these derivatives 
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effects are not responsible for the unique mechanism of this catalyst, analogous 

computations were performed with the donating group at the meta and para position 

relative to the pyridyl nitrogen, to minimize steric hindrance. The corresponding pKa’s 

for the protonated meta and para substituted derivatives are 14.6 and 15.1, respectively 

compared to 16.3 for Ni(6-CH3PyS)3
-. Though there is an effect on pKa as a result of 

substitution position, all three of these compounds are still significantly more basic than 

compounds Ni(3-CF3PyS)3
--Ni(5-ClPyS)3

-, whose pKa’s range from 6.3 to 7.8. 

Subsequent protonation required for the CCEE mechanism is possible again for both 

isomers at pH 7 (pKa para = 9.3 and pKa meta = 7.1). The remaining two electrical steps 

occur for the meta isomer at -0.95 V vs SCE and -1.10 V vs SCE, and at -1.04 V vs SCE 

and -1.10 V vs SCE for the para isomer (Table S1). These values are similar to those 

calculated for Ni(6-CH3PyS)3
-
ortho

 of -0.89 V vs SCE and -1.18 V vs SCE. Finally, the 

energetic requirement for the proton shift from the pyridyl N to the Ni center for both of 

these isomers are within 1 kcal/mol of the 21 kcal/mol requirement for Ni(6-CH3PyS)3
-. 

Thus, regardless of the position of the electron donating substituent, its impact on the 

catalytic mechanism is maintained. 
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Table 4-3: Second pKa (with location of protonation) and second reduction potential 
(V vs SCE) 

 However, for electron-withdrawing –COOH substitutions the position has a 

significant effect on the pKa of the third intermediate. For compounds Ni(6-S-3-COOH)3
- 

and Ni(2-S-3-COOH)3
-, which contain –COOH in para and ortho positions, respectively 

relative to the sulfur, Ni(6-S-3-COOH)3
- has a pKa of -1.80 and Ni(2-S-3-COOH)3

- has a 

pKa of 9.23 (Table 4-3). We suspect the difference in acidity for these two compounds is 

a result of the proximity of the ortho –COOH substituent to the metal center which can 

stabilize the protonated state by acting as an intra-molecular proton shuttle. Work 

studying the effects of pendant amines on Ni containing catalysts has shown that pendant 

ligands, when in the vicinity of the metal center, can have stabilizing effects on critical 

reaction intermediates such as hydrogen and hydride containing complexes.79,191–193 This 

leads to significant increases in the pKa for stabilized intermediates. An increase in 

basicity of 8 pKa units has been reported for isomers of a hydrogenase models that 

 

Ligand pKa (calc) (2) E0
(calc) (2) 

(3-CF3PyS) 2.35 (Ni) -0.96 

(5-CF3PyS) 2.38 (Ni) -1.04 

(6-S-3-COOHPyS) -1.80 (Ni) -0.88 

(2-S-3-COOHPyS) 9.23 (Ni) -0.94 

(5-ClPyS) 8.86 (Ni) -1.38 

(6-CH3PyS) 10.44 (N) -1.18 
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contain amine/metal center interactions.32 This same effect of position on pKa is not 

observed when comparing the –CF3 derivatives, Ni(3-CF3PyS)3
- and Ni(5-CF3PyS)3

- that 

have very similar pKa values of 2.35 and 2.38 respectively. 

 

Figure 4-6: MO diagram for Ni(PyS)3H- for orbitals 100-103 showing α-orbitals 101 
with contributions from both sulfur p-orbitals as well as nickel d-orbitals. 
 

Ligand involvement is not restricted to protonation events. Non-innocent ligands 

can also influence reduction. In the CECE mechanism, the compound is reduced after the 

first protonation. Our intuition suggests reduction of compounds with decreased electron 

density may be ligand centered rather than metal centered. The first reduction in the 

catalytic cycle brings the compound back to an overall -1 charge and could result in a 

doublet-spin-state if reduction occurs at the metal center, or a quartet-spin-state, for 

which electron density is distributed on the protonated ligand. The parent compound, 

Ni(PyS)3H, was determined to undergo reduction to a low spin, doublet state, where the 

incoming electron is localized on a d-orbital at the nickel center (Figure 4-6). The LUMO 

(designated as 100 β-orbital) is the logical recipient for this first electron (Figure 4-7). 
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From visual inspection of this unoccupied frontier molecular orbital, it is apparent that a 

portion of the orbital is indeed the result of contributions from d-orbitals of the nickel 

center. Furthermore, calculated values of E0 are systematically higher for reduction to the 

quartet-spin-state, resulting from reduction of the ligand, than for the metal-centered 

reduction to the doublet-state.  

A second protonation and reduction must occur to produce hydrogen. For all 

compounds, except Ni(5-ClPyS)3
- and Ni(6-CH3PyS)3

-, the first calculated reduction 

potential corresponds to the experimentally measured E0 value. Reduction of Ni(5-

ClPyS)3
- was calculated at -1.38 V for both the first and second reduction, making it 

impossible to distinguish which event is being measured experimentally. In our initial 

computational investigation of Ni(PyS)3
- catalyzed proton-reduction, the second 

 
Figure 4-7: MO diagrams from Ni(PyS)3H for orbitals 99, 100 and 101, showing that 
the LUMO, 100-β, is localized at the nickel center, which would lead to a low spin 
configuration of Ni(PyS)3H- following reduction. 
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reduction is attributed to formation of a Ni-hydride through PCET.188  

The CECE pathway was modeled with placement of the second proton on the 

nickel center. The pKa’s for these species can be seen in Table 3. For Ni(3-CF3PyS)3
-, 

Ni(5-CF3PyS)3
- and Ni(6-S-3-COOH)3

- highly acidic compounds result, indicating that 

for these derivatives this chemical step may be occurring via PCET to yield a hydride 

intermediate, as was the case for Ni(PyS)3
-. It has been noted previously that when high-

energy intermediates result from proton transfer steps, the energetic barrier can be 

Figure 4-8: A-F mapped SOMO’s for derivatives demonstrating primary contribution 
from S p-orbitals. A2-F2 spin density maps for Ni(PyS)3

- derivatives showing location of 
unpaired electron density. Atoms: white, hydrogen; grey, carbon; light blue, fluorine; 
dark blue, nitrogen; red, oxygen; yellow, sulfur; green, chlorine. A) Ni(3-CF3PyS)3

- B) 
Ni(5-CF3PyS)3

- C) Ni(6-S-3-COOHPyS)3
-D) Ni(2-S-3-COOHPyS)3

- E) Ni(5-ClPyS)3
-F) 

Ni(6-CH3PyS)3
- 

A B

E

C D

F
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bypassed by concerted addition of a proton and an electron simultaneously.79 

Computational investigation of PCET steps were not considered in this study. Rather we 

look at the second protonation and reduction as two separate steps to distinguish the 

thermodynamic requirements of each. 

Thus, the final step is a reduction, which brings all compounds back to an overall 

-1 charge and results in formation of an intermediate that can exist as either a triplet or a 

singlet-spin-state. A singlet-state would require the electron to be localized on the metal 

center, while a triplet-spin-state could be a result of electron density located on either the 

H atom or a PyS ligand.  Spin density maps of the unpaired electron density supports 

formation of a hydride (Figure 4-8). The triplet-states for most of the compounds are 

lower in energy than their singlet-state analogues. The triplet-state of Ni(5-CF3PyS)3
- is 

Figure 4-9: Relationship between E0 from computed data and Hammett constants. 
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slightly higher in energy than the singlet-state, however, the singlet-state intermediate has 

complete dechelation of the protonated ligand. Furthermore, the proton and hydride are 

not spatially oriented for elimination of hydrogen in the singlet-state-intermediate, thus 

we suggest that the triplet-state-intermediate is still part of the reaction pathway.   

The meridional geometry for these complexes results in two unique chemical 

environments for the pyridyl nitrogen. Thus the second protonation of Ni(6-CH3PyS)3
- 

could occur at the nitrogen atom either trans or cis to the protonated nitrogen. The 

protonation of the nitrogen atom located cis to the already protonated nitrogen was 

discussed above. Protonating in the trans geometry results in a pKa of 26.9, which is 

likely stabilized by hydrogen-bonding interactions with the nearby sulfur atom. However, 

because the pKa value is not directly supported with experimental data, it was not 

highlighted alongside the described CCEE mechanism above, though it is a possible 

intermediate given the experimental conditions used. Optimized structures of both of 

these doubly protonated compounds can be seen in Appendix Figure 11. The CCEE 

mechanism for the derivatives of Ni(PyS)3
- without electron-rich substituents was also 

investigated (Appendix Figure 11).  Several isomers exist for each compound and both 

protonation sites are unique, with different pKa values. For example, for Ni(3-CF3PyS)3
- 

the trans protonation site has a pKa of 4.6 while the cis position has a pKa of 6.0. 

Computational results alone suggest that in some instances, a second protonation may be 

possible, but due to a lack of experimental agreement including subsequent reduction 

potentials this pathway was not considered further.  
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The relationship between initial pKa, initial E0 and Hammett constant is consistent 

with the literature.182 As substituents become more electron withdrawing, E0 decreases in 

magnitude, a desirable result to decrease required overpotentials (Figure 4-9). The 

reverse relationship is observed between pKa values and Hammett constant.  As electron-

withdrawing capability increases, pKa decreases, limiting the range of pH’s at which the 

protonated species can exist and begin the catalytic cycle. Consequently, pKa and E0 are 

inversely affected by substitution. This inverse relationship makes it difficult to optimize 

both the pKa and reduction potential using simple ligand substitution. However, as shown 

in the discussion of Ni(6-CH3PyS)3
-, changes in the mechanism that result from ligand 

modification can supersede this relationship. Furthermore, this is observed in the 

influence of ligand modification on the experimentally measured electrochemical TOF. 

Catalytic efficiency was quantified through TOFs, which were determined 

electrochemically.86,194–197 It appears that the most electron withdrawing substitutions 

negatively impact the rate of hydrogen production, as seen in Table 4-2 where 

compounds Ni(3-CF3PyS)3
- and Ni(5-CF3PyS)3

- have lowest experimentally measured 

TOF’s. The two carboxylic acid containing catalysts, Ni(6-S-3-COOH)3
- and Ni(2-S-3-

COOH)3
-, show a mild increase in TOF relative to Ni(3-CF3PyS)3

- and Ni(5-CF3PyS)3
-. 

Although Ni(5-ClPyS)3
- is substituted with -Cl groups that have the same Hammett-

constant as the –COOH groups, it has a TOF that is nearly double, 314 s-1 for Ni(5-

ClPyS)3
- compared to 164 s-1 for Ni(6-S-3-COOH)3

- and Ni(2-S-3-COOH)3
-. The TOF of 

Ni(5-ClPyS)3
- is quite similar to that of Ni(6-CH3PyS)3

- (332 s-1), which has the most 
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electron rich ligands. The effect of these substituents on the rate of hydrogen production 

warrants further investigation.  

4.4 Conclusions  

Through the joint use of computational and experimental means, six derivatives of 

Ni(PyS)3
- were studied to evaluate the effect of ligand modification on properties of the 

catalysts and their hydrogen production mechanisms. Compounds containing electron 

poor ligands maintain the CECE mechanism followed by the parent compound. The 

TOF’s of these derivatives are limited by the initial metal-centered reduction event, 

which occurs at a greater potential than the second reduction. E0 and pKa for the first two 

steps of these catalytic cycles show linear correlation with Hammett-constants and the 

relationship between these two parameters is inversely favorable. The electron rich ligand 

has the most substantial impact on the mechanism of hydrogen production, causing 

deviation from a CECE mechanism in favor of a CCEE mechanism, which involves a 

proton shift from a pyridyl nitrogen to the nickel center following the second protonation.  
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CHAPTER 5  

HETEROLEPTIC MODIFICATION OF NICKEL PYRIDINETHIOLATE 

Unexpected structural effects of heteroleptic catalyst design 

5.1 Introduction 

Unpublished work. 

 Rational design of transition metal catalysts has been pursued for decades as a 

way of methodically creating new compounds for the conversion of solar energy into 

chemical fuel.56,179 The computational study of transition metal electrocatalysts for water 

splitting is one such area that has received great attention in recent years.77,163,164,198–200 

However, the purely theoretical assessment of target catalysts remains slightly out of 

reach, and thus a joint theoretical and experimental approach currently provides an 

accessible means of studying and improving complex catalytic systems.181,201 When 

applying theoretical and experimental methods to the study of proton reduction catalysts, 

such as Ni(PyS)3
- and its derivatives, particular focus is given to the determination of pKa 

values and E0 values,202 as these thermodynamic properties are indicators of how easily 

the catalyst will be protonated and reduced.121 By extension, this affects the pH at which 

hydrogen generation is possible, in addition to the required overpotential for proton 

reduction. Ideally, hydrogen production would occur at low overpotentials and in either 

neutral or basic solution, so as to be more easily coupled with the oxygen evolving half 

reaction of water splitting.203 Ligand modification is one way to design new proton 
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reduction catalysts with these targeted properties,166,204,205 however unexpected outcomes 

are possible due to the variety and complexity of catalytic pathways that can be 

accessed.87,206,207  

In Chapter 4 we presented a series of six derivatives of Ni(PyS)3
-, made by 

uniform ligand modification to all three PyS- ligands, with either electron donating or 

withdrawing substituents (Figure 5-1).208 The original Ni(PyS)3
- catalyst was previously 

found to operate via a CECE (chemical-electrochemical-chemical-electrochemical) 

mechanism, where the initial protonation step occurs at a pyridyl nitrogen and the second 

protonation likely occurs through concerted PCET (proton-coupled electron transfer) to 

generate a nickel hydride.121 Due to agreement between the existing experimental data 

and our calculated results, this mechanism was chosen as the starting point for the study 

of the six Ni(PyS)3
- derivatives. We found that electron-withdrawing substituents tend to 

 
Figure 5-1: Influence of electron donating and electron withdrawing modifications on 
the properties and mechanisms of homoleptic Ni(PyS)3

- derivatives. 
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maintain the CECE mechanism, but result in low electrochemical hydrogen production 

rates. On the other hand, the most electron rich substituent (-CH3) was found not only to 

correlate to a high rate of hydrogen production, but was also found to preferentially 

proceed through a CCEE mechanism. These results serve as an example of the 

complexity often encountered in the study of electrochemical hydrogen production by 

transition metal catalysts. 

In the current study, the effect of non-uniform ligand modification was studied 

using the same joint theoretical and experimental method. A series of four heteroleptic 

compounds were chosen for study, using ligands 3-CF3PyS- and 6-CH3PyS- as the 

respective electron withdrawing and donating ligands (Figure 5-2). These are referred to 

as Ni(6-CH3PyS)2(PyS)-, Ni(PyS)2(6-CH3PyS)-, Ni(PyS)2(3-CF3PyS)- and Ni(3-

CF3PyS)2(PyS)- (Figure 5-3). We hypothesize that it is possible choose ligand 

combinations to target the desired properties mentioned above for an ideal proton 

Figure 5-2: Electron rich 6-CH3PyS- and electron poor 3-CF3PyS- ligands chosen to 
make the heteroleptic compounds as well as the structure of the unmodified Ni(PyS)3

- 
catalyst.   
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reduction catalyst, namely high pKa and low E0 values. These predictions build off of the 

findings presented in Chapter 4, where changes in pKa and E0 were studied as a function 

of the electron donating or withdrawing nature of the selected ligands, quantified by their 

Hammet-constants. The more electron rich ligands were found to promote higher pKa 

values, and the electron poor ligands were found to promote lower reduction potentials. 

This trend has been previously noted for catalysts such as Co(dmg)2.182 Through the use 

of heteroleptic compounds, we attempt to tune these two physical properties 

independently of one another. Electron rich ligands are expected to provide a more 

electron rich site for protonation, thus allowing hydrogen production under more basic 

conditions, while electron poor ligands are expected to offset increased electron density 

at the metal center, thus facilitating reduction and resulting in lower overpotentials.  

This type of heteroleptic nickel catalyst for proton reduction has, to our 

knowledge, never previously been reported. The results of this study demonstrate the 

subtle complexity of this class of compounds and how unanticipated structural effects 

lead to complex outcomes. Specifically, due to the geometry of these heteroleptic nickel 

Figure 5-3: Scheme for the design of heteroleptic compounds.  
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complexes, a variety of isomers exist for each compound that can have greatly differing 

physical properties. For example, for the same protonation step the pKa can vary by as 

much as 6 pKa units. Ultimately, this leads to a large variety of possible hydrogen 

production mechanisms, even among isomers of the same heteroleptic compound. 

Because each catalyst has three starting isomers, after just the first protonation step it is 

possible to have nine different isomers for each compound, and that is only after 

consideration of the initial pronation step occurring at a pyridyl nitrogen. As such, one of 

the goals of this work is to use illustrative examples to highlight the most important 

outcomes of making and studying heteroleptic compounds as well as to propose a method 

for how to approach similar problems in the study of heteroleptic compounds for 

different applications.  

5.2 Results 

5.2.1. Computational results 

Initial isomers of heteroleptic compounds 

Heteroleptic compounds were designed to target both high pKa values and low 

overpotentials. This is achieved by either substituting one or two ligands with an electron 

rich group, thereby increasing proton affinity, or by substituting one or two ligands with 

an electron withdrawing group to reduce the overpotential. To identify the unique effect 

of each type of substituent on the properties and effectiveness of heteroleptic compounds, 

we chose to study compounds using 2:1 and 1:2 ratios of substituted ligand to 

unsubstituted ligand (Figure 5-3). Due to the geometry of the bidentate ligands about the  
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Figure 5-4: Naming scheme for the three isomers of Ni(6-CH3PyS)2(PyS)-. The naming 
scheme is used for all of the compounds when they are viewed with a vertical meridional 
plane with the sulfurs on top. The L, C and R distinctions designate the position of the 
one unique ligand.  

 

nickel center, each heteroatom is in a unique chemical environment. This results in three 

possible isomers for each heteroleptic catalyst prior to the first step in the catalytic cycle.  

The geometry can best be observed when viewing the catalyst such that the meridional 

planes are vertical and the sulfurs are on top. When the three isomers are aligned in this 

way the one unique ligand will appear either to the right of the plane of sulfurs [R], in the 

plane (center) [C], or to the left of the plane [L] (Figure 5-4). The back sulfur must be 

connected to the ligand that lies in the same plane as the meridional sulfur atoms. We 

have established a naming scheme based on viewing the molecules in this way. For 

example, for Ni(6-CH3PyS)2(PyS)-, when the catalyst is viewed as shown in Figure 5-4, 

the compound is named Ni(6-CH3PyS)2(PyS)- [C] when the unique ligand is positioned 

centrally. When the unique ligand is on either the left or the right, the isomer is then 

called Ni(6-CH3PyS)2(PyS)-[L] or Ni(6-CH3PyS)2(PyS)-[R], respectively. Each of the 

Ni(6-CH3PyS)2(PyS)- [L] 
 

Ni(6-CH3PyS)2(PyS)- [C] Ni(6-CH3PyS)2(PyS)- [R] 
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three isomers is unique and has its own energy of formation as well as multiple values for 

pKa and E0.   

The structures of all three isomers for each heteroleptic catalyst were optimized 

and the relative energies of the isomers were compared to determine the likelihood that 

they will be formed experimentally (Figure 5-5 and Table 5-1). The most electron rich 

catalyst Ni(6-CH3PyS)2(PyS)- is most stable in the Ni(6-CH3PyS)2(PyS)- [C] 

conformation, with the unsubstituted ligand in the central position. On the other hand, for 

the second electron rich catalyst, Ni(PyS)2(6-CH3PyS)-, the most stable conformation is 

Ni(PyS)2(6-CH3PyS)- [L], and the most unstable is Ni(PyS)2(6-CH3PyS)- [C], where the 

one unique ligand is centrally positioned. Interestingly, Ni(PyS)2(6-CH3PyS)- [R] is 

relatively low in energy, suggesting that placement of ligand 6-CH3PyS- in the central 

Figure 5-5: Relative energies of the three isomers for each heteroleptic compound 
relative to the most stable isomer. L, C and R indicate the position of the unique ligand 
for each isomer. A) Ni(6-CH3PyS)2(PyS)- B) Ni(PyS)2(6-CH3PyS)- C) Ni(PyS)2(3-
CF3PyS)- and D) Ni(3-CF3PyS)2(PyS)-. 
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position is generally disfavored. For the electron poor compound Ni(PyS)2(3-CF3PyS), 

the most stable confirmation has the one electron poor ligand in the central position. The 

least stable conformation has the substituted ligand in the R position, though all three 

isomers are fairly close in energy. Compound Ni(PyS)2(3-CF3PyS)- is most stable when 

the substituted ligand is in the R position, although the distribution in energy for the three 

isomers of Ni(PyS)2(3-CF3PyS)- is the smallest of the four heteroleptic three catalysts. 

After determining the relative energy of each starting isomer for the four heteroleptic 

catalysts, the relative distribution of isomers at room temperature can be determined 

using a Boltzmann distribution. Although factors such as barriers to formation are not 

considered, this information still helps us to understand differences in catalytic activity 

when we begin comparing experimental and theoretical data.  

Table 5-1: Relative population for the three isomers of each heteroleptic compound 
determined from the energies of formation of each isomer 

 

 

 

 

 

 

 

 

 

[L]	 [C]	 [R]	

Ni(PyS)2(6-CH3PyS)-	 0.1	 1.0	 0.2	

Ni(6-CH3PyS)2(PyS)-		 1.0	 0.3	 0.7	

Ni(3-CF3PyS)2(PyS)-	 0.8	 1.0	 0.7	

Ni(PyS)2(3-CF3PyS)-		 0.9	 0.9	 1.0	
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Computed physical properties 

E0 and pKa values were calculated for each step and intermediate along the 

catalytic cycle. We began our investigation of the physical properties by calculating the 

pKa values for each heteroleptic catalyst (Table 5-2). The presence of multiple possible 

starting isomers, which are heavily influenced by the electronics and position of the 

ligands, greatly complicates the investigation of these properties. We must consider each 

possible protonation site for the initial chemical step. This means that when considering 

only protonation at the ligand nitrogen atom, each isomer contains three distinct 

protonation sites, with unique pKa values resulting in each heteroleptic compound having 

nine distinct isomers following the first protonation step. The second protonation event 

Table 5-2: pKa values for protonation at each of the labeled ligand positions for the three 
isomers of each heteroleptic compound. Cells highlighted in red indicate ligands with 
electron withdrawing modification and cells highlighted in green indicate ligands with 
electron donating modifications.  

Compound	
	

L	pKa	
	

C	pKa	
	

R	pKa	
	

Ni(3-CF3PyS)2(PyS)-	[L]	 8.80	 2.10	 1.90	
Ni(3-CF3PyS)2(PyS)-	[C]	 5.30	 5.20	 5.20	
Ni(3-CF3PyS)2(PyS)-	[R]	 6.50	 2.90	 8.40	

Ni(PyS)2(3-CF3PyS)-	[L]	 7.00	 6.30	 8.60	
Ni(PyS)2(3-CF3PyS)-	[C]	 9.20	 2.70	 8.70	
Ni(PyS)2(3-CF3PyS)-	[R]	 9.10	 5.70	 7.10	

Ni(PyS)2(6-CH3PyS)-	[L]	 11.62	 8.14	 9.37	
Ni(PyS)2(6-CH3PyS)-	[C]	 8.94	 10.31	 9.61	
Ni(PyS)2(6-CH3PyS)-	[R]	 9.12	 9.13	 11.45	

Ni(6-CH3PyS)2(PyS)-	[L]	 11.20	 15.10	 13.10	
Ni(6-CH3PyS)2(PyS)-	[C]	 13.00	 13.00	 12.40	
Ni(6-CH3PyS)2(PyS)-	[R]	 11.83	 11.77	 10.63	
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could occur at one of three remaining protonation sites, the nitrogen atoms on the 

remaining two ligands or the central nickel atom, resulting in 27 isomers for each 

compound.  

The nine possible pKa values for each of the four heteroleptic catalysts for the first 

protonation step can be seen in Table 5-2 The mean values aid in the observation of 

general trends in the proton and electron affinity of each heteroleptic compound (Table 

5-3). The data shows an overall trend for the initial protonation step, where adding more 

electron rich ligands leads to an overall increase in the pKa of all protonation sites, 

despite the large variability in pKa between isomers of the same compound. This result is 

in line with the results of our previous studies and our hypothesis for the current work. 

However, when the pKa values are inspected more closely, it is clear that the positioning 

of the ligands plays an important role in influencing the proton affinity of each nitrogen 

as well. This observation will be expounded upon in the discussion section.   

Table 5-3: Average values for pKa and E0 values for corresponding numbered chemical 
(C1 and C2) or electrochemical (E1 and E2) steps. Specific sites of protonation are 
indicated. 

Ni(3-CF3PyS)2(PyS)-		 Ni(PyS)2(3-CF3PyS)-		 Ni(PyS)2(6-CH3PyS)-		 Ni(6-CH3PyS)2(PyS)-		

C1	(pKa)	 5.1	 7.2	 9.7	 12.4	

E1	(E0)	 -1.46	 -1.57	 -1.60	 -1.72	

C2	nickel	(pKa)	 0.24	 3.24	 2.40	 3.69	

C2	nitrogen	(pKa)	 11.51	 13.09	 14.58	 16.52	

E2	nickel	(E0)	 -1.96	 -2.10	 -2.29	 -2.17	

E2	nitrogen	(E0)	 -1.07	 -1.05	 -1.1	 -1.59	

C2	(pKa)	 -	 -	 3.44	 5.1	
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For a CECE mechanism, reduction is the next step that must be investigated. 

Reduction potentials were calculated for any compounds that could be protonated at 

neutral pH, or in the case of the most electron poor catalyst Ni(3-CF3PyS)2(PyS)-, for 

those compounds with pKa values greater than 5 (Table 5-4). The trend in the reduction 

potentials for the four heteroleptic compounds is as expected, with the most electron poor 

compound Ni(3-CF3PyS)2(PyS)- having the lowest average reduction potential and the 

most electron rich compound Ni(6-CH3PyS)2(PyS)- having the highest average reduction 

potential.   

As mentioned previously, for each compound there are three possible sites of 

Table 5-4: Reduction potentials for isomers of each heteroleptic compound. Columns 
indicate which ligand was protonated in the previous step. Only compounds with pKa 
values greater than 5 were considered. Cells highlighted in red indicate ligands with 
electron withdrawing modification and cells highlighted in green indicate ligands with 
electron donating modifications.  
 

Compound	
	

L	E0	
	

C	E0	
	

R	E0	
	

Ni(3-CF3PyS)2(PyS)-	[L]	 -1.53	 -	 -	
Ni(3-CF3PyS)2(PyS)-	[C]	 -1.41	 -1.33	 -1.51	
Ni(3-CF3PyS)2(PyS)-	[R]	 -	 -	 -1.54	

Ni(PyS)2(3-CF3PyS)-	[L]	 -1.53	 -	 -1.56	
Ni(PyS)2(3-CF3PyS)-	[C]	 -1.56	 -	 -1.61	
Ni(PyS)2(3-CF3PyS)-	[R]	 -1.52	 -	 -1.62	

Ni(PyS)2(6-CH3PyS)-	[L]	 -1.67	 -1.50	 -1.70	
Ni(PyS)2(6-CH3PyS)-	[C]	 -1.60	 -1.56	 -1.57	
Ni(PyS)2(6-CH3PyS)-	[R]	 -1.55	 -1.55	 -1.67	

Ni(6-CH3PyS)2(PyS)-	[L]	 -2.21	 -1.55	 -1.86	
Ni(6-CH3PyS)2(PyS)-	[C]	 -1.65	 -1.71	 -1.69	
Ni(6-CH3PyS)2(PyS)-	[R]	 -1.54	 -1.55	 -1.72	
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protonation for the second chemical step, the remaining two nitrogen atoms of the ligands 

and the central nickel. The pKa values for protonation at each of these sites were 

computed for viable intermediates (Appendix Table 1). Protonation at the metal center 

for nearly every isomer of the four heteroleptic complexes is thermodynamically 

disfavored. However, we have previously shown migration is possible from a ligand 

nitrogen to the nickel atom. Proton affinities at the metal center are similar for all four 

compounds.  

Two unique nitrogen protonation sites exist for each isomer for the second 

chemical step and can both be protonated (Appendix Table 1). The pKa values computed 

for second protonation at the remaining nitrogen sites follow the trend that is expected 

given the type and number of ligands present. The most electron rich compound is most 

easily protonated while the most electron poor compound has the lowest proton affinity. 

The computed pKa values for these compounds are generally quite large and may lead to 

thermodynamic sinks and inert intermediates.  

Finally, reduction potentials for the second electrochemical step in a CECE 

mechanism were computed for compounds where the second protonation occurred at the 

metal center, as well as for compounds where second protonation occurred on a ligand 

(Appendix Table 2). These reduction potentials also follow the expected trend, with 

higher overpotentials noted for more electron rich compounds and lower overpotentials 

noted for electron poor compounds. When the twice protonated intermediate has one 

proton located at the metal center rather than a second ligand, the required reduction 
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potential is significantly lower for all four heteroleptic compounds. The trends in 

reduction potentials for intermediates protonated at the metal center do not track exactly 

with the number and type of ligand.  

5.2.2. Experimental results 

Experimentally, the four heteroleptic compounds were synthesized, characterized, 

and subsequently tested for their ability to produce hydrogen electrochemically. The 

synthesis of heteroleptic compounds is uniquely challenging in that the thermodynamic 

formation of homoleptic compounds may be favored, or one heteroleptic compound may 

be more thermodynamically favored than the other, causing mixture of compounds in 

solution. Even if care is taken to promote the formation of the heteroleptic compound, the 

existence of the three isomers for each heteroleptic catalyst further complicates the 

synthesis of a single, pure product. There are thermodynamic differences in the formation 

of the three isomers of the electron rich heteroleptic compounds Ni(6-NiCH3PyS)2(PyS)- 

and Ni(PyS)2(6-CH3PyS)- vs the possible homoleptic products Ni(6-CH3PyS)3
- and 

Ni(PyS)3
-. The same is true for electron poor heteroleptic compounds Ni(3-

CF3PyS)2(PyS)- and Ni(PyS)2(3-CF3PyS)- vs their homoleptic counterparts Ni(3-

CF3PyS)3
- and Ni(PyS)3

-. Our strategy to promote the formation of the desired 

heteroleptic product was to carry out the synthesis in a two-step fashion. Addition of the 

majority ligand was performed first, followed by addition of the third ligand to generate 

the final octahedral Ni(II) compound. Color changes during the course of synthesis 

suggest transition from the intermediate nickel compound to the final compound did 
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occur. The detailed synthetic procedures for each heteroleptic compound are explained in 

the experimental section.  

The identity and properties of the compounds were probed through the use of 

mass spectroscopy, UV-vis absorption spectroscopy and cyclic voltammetry. When 

possible, the results of experimental characterization were compared to computationally 

generated data. Cyclic voltammetry and UV-vis absorption spectroscopy were also used 

to experimentally determine E0 and pKa values, respectively. Because the reductions are 

irreversible, E0 for each compound was chosen to be the point at which the maximum 

current was passed. The rate of hydrogen production, kobs was determined for each 

compound through titration of a solution of catalyst with 4-cyanoanilinium. In addition to 

kobs, insight into the mechanism of hydrogen formation could be obtained through 

interpretation of the shape of the CV traces, aided by comparison of E0 with 

computational results.85,197,209    

The presence of multiple isomers of the same catalyst adds an element of 

complexity to the study of their kinetics. We thus chose one systematic approach to 

report kobs, keeping in mind that we are only looking at observed rates for the purposes of 

assessing how they are affected by differences in the type and number of ligand 

modifications. The analysis of selected cyclic voltammograms is detailed in the 

discussion section to illustrate how this kind of electrochemical study can be used to 

understand heteroleptic compounds.  
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5.2.3. UV-vis absorbance spectroscopy 

UV-vis absorbance spectra were taken for each heteroleptic compound under both 

acidic and basic conditions (Figure 5-6). The λmax values for each compound under acidic 

and basic conditions can be seen listed in Table 5-5. Distinct absorbance peaks are seen 

for all compounds. The electron rich compounds have the same λmax values for the high-

energy transition, but different values of λmax for the low-energy transition (Figure 5-6A). 

Both of the electron poor heteroleptic catalysts have unique λmax values for the high and 

low energy transitions (Figure 5-6C). For all four heteroleptic compounds a bathochromic 

shift is observed when the catalyst becomes protonated. This shift was used to identify 

the relative concentration of the deprotonated vs protonated product in solution at various 

pH’s and obtain pKa values. Within the visible region, a second absorption is observed 

for the electron rich compounds, attributed to a d to d transition at the nickel center. The 

λmax values resulting from these transitions shift bathochromically as electron density 

increases in the ligands. For the electron poor compounds, there is no peak in the visible 

range due to overlap with the higher energy peak (Appendix Figure 12). The absorbance 

of two mixtures of the homoleptic catalysts Ni(PyS)3
- and Ni(3-CF3PyS)3

- were measured 

under acidic and basic conditions. These solutions contained 2:1 and 1:2 ratios of the two 

homoleptic products. Absorption maxima for the mixtures are distinct from those of the 

heteroleptic compounds. 
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Figure 5-6: A) Experimentally acquired spectra of Ni(6-CH3PyS)2(PyS)- (green) and 
Ni(PyS)2(6-CH3PyS)- (blue) in the UV and near UV region under both acidic and basic 
conditions. B) Experimentally acquired UV-vis absorbance spectra of compounds 
Ni(PyS)3

-, Ni(PyS)2(6-CH3PyS)-, Ni(6-CH3PyS)2(PyS)- and Ni(6-CH3PyS)3
- from left to 

right, showing the visible region where d to d metal transitions can be observed under 
neutral conditions C) Experimentally acquired spectra of Ni(3-CF3PyS)2(PyS)- (red) and 
Ni(PyS)2(3-CF3PyS)- (blue) in the UV and near UV region. Dashed lines indicate 
solutions measured at pH 13 and solid lines indicate solutions measured at pH 1.5 D) 
Experimentally acquired spectra of solution of a) 2:1 Ni(PyS)3

- to Ni(3-CF3PyS)3
- at pH 

13 b) 2:1 Ni(PyS)3
- to Ni(3-CF3PyS)3

- at pH 1.5 c) 2:1 Ni(3-CF3PyS)3
- to Ni(PyS)3

- at pH 
13 d) 2:1 Ni(3-CF3PyS)3

- to Ni(PyS)3
-  at pH 1.5. 
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5.2.4. pKa values 

The pKa was determined using the absorption spectra of the fully deprotonated 

compound and monitoring both changes in absorbance and pH as acid was titrated into 

the solution. A titration curve plotting the ratio of λmax for the protonated and 

deprotonated compounds as a function of pH was generated. The UV-vis absorbance data 

of the electron rich compound Ni(PyS)2(6-CH3PyS)-can be seen in Figure 5-7, as an 

example, along with the corresponding plot of absorbance ratio vs pH. The inflection 

point of this titration curve corresponds to the pKa of the compound in solution. 

Remaining spectra and plots for the other three heteroleptic compounds can be seen in the 

Appendix. Due to the existence of multiple isomers of each compound in solution, the 

experimental determination of physical properties becomes complicated. For example, in 

the evaluation of pKa values for certain homoleptic compounds, clear isosbestic points 

Table 5-5: Measured λmax values for each heteroleptic complex in both acidic and basic 
conditions. Absorbance values in the visible region corresponding to d to d transitions 
included as well 

λmax	basic	(nm)	 λmax	acidic	(nm)	 λmax	d	to	d	(nm)	

Ni(6-CH3PyS)3	 310	 347	 612		

Ni(6-CH3PyS)2(PyS)-		 275,	321	 284,	355	 628		

Ni(PyS)2(6-CH3PyS)-		 275	,	316	 284,	352	 656	

Ni(PyS)3	 N/A	 N/A	 682		

Ni(PyS)2(3-CF3PyS)-		 260,	305	 270,	343	 N/A	

Ni(3-CF3PyS)2(PyS)-		 264,	305	 269,	345	 N/A	

Ni(3-CF3PyS)3	 275,	308	 280,	350	 N/A	
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can be seen, indicating direct transformation of the unprotonated to the protonated 

compound. For heteroleptic compounds, the lack of an isosbestic point found in UV-vis 

spectra likely results from the isomers being protonated and those resulting after 

protonation. Thus, the extracted pKa value is taken as an average of all species in 

solution. Experimentally measured pKa values can be seen in Table 5-6. Measured pKa 

values follow the expected trend, based on the electronic properties of the ligands. More 

electron rich ligands have higher measured pKa values and more electron poor catalysts 

have lower pKa values. The previously measured values of the homoleptic compounds 

Ni(6-CH3PyS)3
-, Ni(PyS)3

- and Ni(3-CF3PyS)3
- also follow the expected trend.  

Figure 5-7: Ni(PyS)2(6-CH3PyS)- data A) absorbance ratio of protonated and 
deprotonated catalyst as a function of pH where inflection point is used to determine pKa 
B) UV-vis absorbance spectra. 
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the Ni(II)/Ni(I) (Appendix Figure 13) is observed for all four compounds. A catalytic 

wave was observed with increasing acid concentration. Experimentally measured 

reduction potentials can be seen in Table 5-6 and cyclic voltammograms can be seen in 

Appendix Figure 14 to Appendix Figure 16.  

5.2.6. Electrochemical rates of hydrogen production  

The rate of hydrogen production was measured by determining the catalytic 

current under high acid conditions, with the applied potential swept from 0.5 V vs SCE to 

-2.0 V vs SCE.  The acid independent regime was determined by titration of a 10-3 M 

solution of catalyst with 4-cyanoanilinium until a linear dependence on the acid 

concentration could no longer be identified for the current response. An initial scan was 

run with a concentration of 5.4 x 10-3 M 4-cyanoanilinium, with the potential swept from 

0.5 V vs SCE to -2.0 V vs SCE, to establish the current response corresponding to 

reduction of the catalyst, to get ip. A subsequent scan under the same conditions was run 

after increasing the concentration of 4-cyanoanilinium to 2.2 x 10-2 M. At this 

concentration the reaction rate is no longer affected by depletion of acid at the electrode 

Table 5-6: Values for E0 and pKa determined experimentally for homoleptic and 
heteroleptic compounds. For Ni(6-CH3PyS)3

- the reported values are computational 
values for the CECE mechanism for comparison purposes. e Indicates experimentally 
obtained values and c denotes computed values. 

	

	 Ni(PyS)3
-	 Ni(6-

CH3PyS)3
-	

Ni(6-
CH3PyS)2(PyS)

-	
Ni(PyS)2(6-
CH3PyS)

-	
Ni(PyS)2(3-
CF3PyS)

-	
Ni(3-
CF3PyS)2(PyS)

-	
Ni(3-
CF3PyS)3

-	

pKa	
e	 12.0e	 16.3	c	 11.2e	 10.2e	 9.8e	 9.5e	 6.3e	

E0	e	V	vs	
SCE	

-1.62e	 -1.55c	 -1.55e	 -1.55e	 -1.44e	 -1.42e	 -1.26e	
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surface. Cyclic voltammograms can be seen in Appendix Figure 17. The measured 

current corresponds to icat and is used to calculate the rate of hydrogen production. The 

measured rates of hydrogen production are 4400 s-1 for Ni(6-CH3PyS)2(PyS)-, 3300 s-1 for 

Ni(PyS)2(6-CH3PyS)-, 2100 s-1 for Ni(PyS)2(3-CF3PyS)- and 3200 s-1 for Ni(3-

CF3PyS)2(PyS)-, compared to 332 s-1 and 42 s-1 for Ni(6-CH3PyS)3
- and Ni(3-CF3PyS)3

-.  

5.2.7. Mass spectroscopy results 

Mass spectra were taken for each of the four heteroleptic catalysts (Appendix 

Figure 18). Computed values for the mass peaks of each compound along with fragments 

of importance and measured values can be seen in Table 5-7. The calculated mass peak 

for the most electron poor compound Ni(3-CF3PyS)2(PyS)- was found experientally at 

523.87260. For the second electron poor compound Ni(PyS)2(3-CF3PyS)-, the mass peak 

was not observed. For both of the electron rich compounds, Ni(6-CH3PyS)2(PyS)- and 

Ni(PyS)2(6-CH3PyS)- the peaks corresponding to ligands PyS- and 6-CH3PyS- were 

found. We have previously noted that for electron rich compounds, only the ligand peaks 

are observed in the mass spectra. For Ni(6-CH3PyS)2(PyS)-, ligands PyS- and 6-CH3PyS- 

appear in a 2:10 ratio, while for compound Ni(PyS)2(6-CH3PyS)- they appear in a 9:10 

ratio. Complication in the identification of metal-pyridinethiolate complexes using ESI 

mass spectroscopy could be arising from transformations such as the oxidation of analyte 

into disulfide species, as has been reported in a comprehensive mass spectroscopy study 

on the behavior of 2-mercaptopyridine metal complexes.210  
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5.3 Discussion 

5.3.8. Support for formation of heteroleptic compounds 

The identity of the complexes in solution was supported by considering UV-vis 

absorption spectroscopy in conjunction with measured physical properties and some mass 

spectral data. Absorbance data for the four heteroleptic catalysts studied supports the 

existence of these compounds in solution. The UV-vis absorbance spectra of solutions of 

the electron rich catalysts Ni(6-CH3PyS)2(PyS)- vs Ni(PyS)2(6-CH3PyS)- in acetonitrile, 

as well as the homoleptic complexes Ni(6-CH3PyS)3
- and Ni(PyS)3

-, each have a unique 

absorption profile at neutral pH (Table 5-6). In particular, the lowest energy d to d 

Table 5-7: Mass spectra data for heteroleptic compounds. Each compound tested is 
highlighted in bold with important fragments listen underneath, along with their expected 
masses and measured masses. 

Compound	 Formula	 Calculated	 Found	 Counts	

Ni(6-CH3PyS)2(PyS)-		

Ni(6-CH3PyS)2(PyS)-		 NiN3S3C17H19		 419.00946		 N/A	

6-CH3PyS-		 C6H6NS		 124.02209		 124.00998		 100	

PyS-	 C5H4NS		 110.00644	 109.99496		 20	

Ni(PyS)2(6-CH3PyS)-		

Ni(PyS)2(6-CH3PyS)-		 NiN3S3C17H19		 419.00946		 N/A	

6-CH3PyS-		 C6H6NS		 124.02209		 124.00998		 92	

PyS-	 C5H4NS		 110.00644	 109.99566		 100	

Ni(3-CF3PyS)2(PyS)-		

Ni(3-CF3PyS)2(PyS)-		 C17H10N3S3F6Ni		 523.929453		 523.87260		 5	

Ni(PyS)2(3-CF3PyS)-		

Ni(PyS)2(3-CF3PyS)-		 C16H11N3S3F3Ni		 455.942069		 N/A	
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transition appears in the range between 615 nm and 685 nm, and each has a unique λmax, 

with a bathochromic shift increasing as the number of electron rich ligands is increased, 

as would be expected (Table 5-6A). This suggests that each of these solutions contain 

unique compounds. In the UV region, the absorbance spectra of Ni(6-CH3PyS)2(PyS)- 

and Ni(PyS)2(6-CH3PyS)- are more similar, both under acidic and basic conditions, 

however they are distinct from one another (Table 5-6C).  

The formation of unique electron rich heteroleptic products is further supported 

by the experimentally measured pKa values. The most electron rich compound, Ni(6-

CH3PyS)2(PyS)-, has the highest experimentally determined pKa value of 11.2. 

Compound Ni(PyS)2(6-CH3PyS)- has a value of 10.2. These pKa values for the 

heteroleptic compounds also fall between the measured values for the homoleptic 

analogues as would be expected. All values can be seen in Table 5-6. These distinct 

experimentally measured pKa values offer additional support that both heteroleptic 

compounds were made.  

The formation of the electron rich heteroleptic compounds was further 

investigated through the use of high-resolution ESI mass spectroscopy. For compounds 

Ni(PyS)2(6-CH3PyS)- and Ni(6-CH3PyS)2(PyS)-, peaks are expected at 404.99381 and 

419.00946, correspoding to N3S3C16H17Ni and N3S3C17H19Ni respectively. The PyS- and 

6-CH3PyS- ligands are expected to yield mass peaks at 110.00644 (C5H4NS)  and 

124.02209 (C6H6NS). As has been noted in our previous work, electron rich compounds 

are prone to complete dissociation using ESI. Not surprisingly, mass spectra of both 
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electron rich compounds show peaks corresponding to ligands PyS- and 6-CH3PyS-, but 

not the metal complexes themselves (Appendix Figure 18). However, the mass spectrum 

of compound Ni(PyS)2(6-CH3PyS)- has a 9:10 ratio of ligand 6-CH3PyS- to ligand PyS-, 

while compound Ni(6-CH3PyS)2(PyS)- has 10:2 of ligand 6-CH3PyS- to ligand PyS-. 

Ligand dissociation for the electron rich compounds is not unexpected, as this same 

outcome was noted previously for the homoleptic compound Ni(6-CH3PyS)3
-.208 Mass 

spectroscopy data does not help to support the existence of the electron rich compounds, 

however it does show that one of the electron poor compounds was made.   

For the electron poor compound Ni(3-CF3PyS)2(PyS)- a mass peak is expected at 

523.929453 corresponding to C17H10N3S3F6Ni. The experimental peak can be seen at 

523.87260 (Appendix Figure 18), supporting the formation of this complex. For 

Ni(PyS)2(3-CF3PyS)-, a peak is expected at 455.942069, corresponding to 

C16H11N3S3F3Ni. This peak was unfortunately not found. Instead, the peak corresponding 

to the homoleptic compound Ni(3-CF3PyS)3
-
 can be seen at 591.85272 (computed 

591.916837). However the existence of compound Ni(3-CF3PyS)3
-
 in solution is not 

supported by UV-vis absorption spectroscopy, or experimentally determined reduction 

potential and pKa values. It is possible that compound Ni(3-CF3PyS)3
- is being formed 

during the ionization process.  

The UV-vis absorption spectra for solutions of Ni(PyS)2(3-CF3PyS)- and Ni(3-

CF3PyS)2(PyS)- in 1:1 H2O/EtOH, both under acidic and basic conditions, shows the 

presence of two unique products when examined in the UV and near UV region. To 
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ensure these absorption spectra were not composites of 2:1 ratios of the homoleptic 

products Ni(3-CF3PyS)3
- and Ni(PyS)3

- in solution, absorption spectra of 2:1 and 1:2 

Ni(3-CF3PyS)3
- and Ni(PyS)3

- were acquired under both acidic and basic conditions. 

These spectra can be seen in Figure 5-7 and Appendix Figure 14 to Appendix Figure 16. 

From comparison of these spectra we can see that the measured UV-vis absorption 

spectra of solutions of Ni(3-CF3PyS)2(PyS)- and Ni(PyS)2(3-CF3PyS)- are distinct and are 

not the same as the absorption spectra of a mixture of the homoleptic complexes. As was 

the case for Ni(6-CH3PyS)2(PyS)- and Ni(PyS)2(6-CH3PyS)-, experimentally determined 

pKa values offer further support for the formation of both Ni(PyS)2(3-CF3PyS)- and Ni(3-

CF3PyS)2(PyS)-. Their experimentally measured pKa values were determined to be 9.8 

and 9.5, with the lower pKa value corresponding to compound Ni(6-CH3PyS)2(PyS)- 

which has two electron poor ligands. This experimental data supports the existence of the 

heteroleptic compounds in solution, and thus we proceeded to use comparison between 

experimental and computed data to help us further understand exactly which species are 

present. We also sought to understand how the presence of so many unique isomers in 

solution affects how these catalysts function. 
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5.3.9. Effects of isomers on catalytic properties and effectiveness of hydrogen 

production  

For the initial protonation step, the pKa values of the three ligand nitrogen atoms 

are the thermodynamic quantities of interest. Catalyst Ni(PyS)2(3-CF3PyS)- provides an 

interesting example of the compounding influence of both electronic and structural 

features of the ligands on these pKa values. Ligand placement in the central position, such 

that dechelation occurs at the nitrogen trans to a sulfur, corresponds to a marked decrease 

in the proton affinity of its nitrogen atom. This is true for all ligands, regardless of 

electronics (Table 5-2). When examining the acidity of each ligand for the three isomers 

of Ni(PyS)2(3-CF3PyS)-, this effect can clearly be seen. For Ni(PyS)2(3-CF3PyS)- [L], 

where the withdrawing ligand is positioned on the left, we see that this ligand does not 

have the lowest pKa (Figure 5-8). Instead, the unsubstituted ligand in the central position 

Figure 5-8: A) Optimized structure of Ni(PyS)2(3-CF3PyS)- [L] B) Ni(PyS)2(3-CF3PyS)- 
[C] and C) Ni(PyS)2(3-CF3PyS)- [R] with three nitrogen protonation sites circled, with 
corresponding pKa values beside them. 
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is the most acidic, demonstrating that position can override electronics when it comes to 

influencing pKa values. For Ni(PyS)2(3-CF3PyS)- [C], the withdrawing group is located 

in the central position and the compounding effect of both position and electronics leads 

to a staggering decrease in pKa to 2.7, relative to 7.0 and 7.1 for the same ligand in the L 

and R positions. The origin of the substantial effect of position on the acidity of ligand 

nitrogens is currently under investigation. It would be advantageous to be able to 

structurally force ligands into a select position so as to further tune the effects of ligands 

through positioning modification in addition to electronic modification. The implication 

for catalysis of this phenomenon is that without proper control over which isomer is 

formed during synthesis, effectiveness could be greatly diminished, or at the very least, 

experimental investigation of catalytic mechanisms is markedly more complex.  
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Electrochemical investigation was undertaken to gain a better understanding of 

how the existence of multiple isomers affects the reduction potentials and rates of 

hydrogen production. In order to observe the catalytic response of different isomers at 

lower overpotentials, the initial sweep window was decreased from -0.5 V to -2.0 V vs 

Figure 5-9: A) Cyclic voltammograms of Ni(6-CH3PyS)2(PyS)- with increasing 
concentration of 4-cyanoanilinium and increasing potential up to 0.1 M 4-
cyanoanilinium showing a change in catalytic zone B) continuation of A with additional 
acid and larger potential sweep, showing a continued change in catalytic zone C) cyclic 
voltammograms of Ni(PyS)2(6-CH3PyS)- with increasing concentration of 4-
cyanoanilinium up to 0.03 M 4-cyanoanilinium D) continuation of B with additional acid 
and applied potential, showing a continued change in catalytic zone E) plot of icat/ip for 
Ni(6-CH3PyS)2(PyS)- ) plot of icat/ip for Ni(PyS)2(6-CH3PyS)-. 
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SCE to -0.5 V to -1.60 V vs SCE. For example, for Ni(PyS)2(6-CH3PyS)-, an initial 

potential sweep to -1.60 V vs SCE results in a first redox event at -1.45 V vs SCE. 

Comparison to computationally generated redox potential supports the assignment of this 

peak to the Ni(II)H/Ni(I)H couple of six of the possible nine isomers of Ni(PyS)2(6-

CH3PyS)H (Table 5-4). From the shape of the CV trace, it appears catalysis is occurring 

in zone KS, indicating the presence of side reactions or depletion of the acid. Subsequent 

addition of acid does push catalysis closer to pure kinetic conditions, or zone K (Figure 

5-9A). The remaining three isomers have higher overpotentials for the Ni(II)H/Ni(I)H 

redox. These calculated values range from -1.67 to -1.70 V vs SCE, thus the potential 

sweep was increased to -1.85 V vs SCE to see if a second current response could be 

identified (Figure 5-9B). It is apparent from the shape of the CV trace that once the 

potential is increased, catalysis immediately reverts back to zone KS. We propose that 

this is due to an increased concentration of active catalyst in solution, causing hydrogen 

production to become dependent on substrate diffusion to the electrode once again. As 

the concentration of acid is increased, the data shows a second shift back towards zone K, 

indicating that pure kinetic conditions have been reached again. This switch in catalytic 

zones supports the existence of multiple distinct isomers of Ni(PyS)2(6-CH3PyS)- in 

solution as it demonstrates that under more negative potential, more species become 

active for hydrogen production. As would be expected, the rate of hydrogen production 

varies depending on the number of active catalyst in solution. The initial kobs for 

Ni(PyS)2(6-CH3PyS)- is quite poor, at 18 s-1 (Figure 5-9E). When the applied potential 
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and acid concentration is increased, this value jumps significantly to 420 s-1 (Figure 

5-9E). The implications of these results for catalysis are that without control over the 

formation of selected isomers, catalysis can be limited by higher required overpotentials. 

The same method was applied to understand the hydrogen production rates of the 

other electron rich compound Ni(6-CH3PyS)2(PyS)- (Figure 5-9C,D). No reduction peak 

is observed for this catalyst in the absence of acid when the potential is swept to -1.65 V 

vs SCE. Following the first addition of acid, a reduction peak is observed at a potential of 

-1.55 V vs SCE, the same potential that was measured when -2.0 V vs SCE was applied 

(Figure 5-9C). The computed redox potentials for the first electrochemical step for four 

of the nine isomers of Ni(6-CH3PyS)2(PyS)-H fall within the margin of error to be 

reduced at this potential. As zone K is approached, a low rate of hydrogen production of 

16 s-1 is measured, suggesting a low concentration of active catalyst in solution or poor 

catalyst performance. A low concentration of active catalyst makes sense given our 

computational findings. When the applied potential is swept furthr and concentration of 

acid is increased further the CV traces revert back to zone KS as seen in Figure 5-9D, 

likely this is due to the increased concentration of active catalyst in solution causing 

hydrogen production to become dependent on the concentration of acid once again. 

Further addition of acid pushes catalysis back into zone K and the measured rate 

increases to 131 s-1. We propose that this is once again due to the effective concentration 

of active catalyst increasing in solution as experimental conditions enable more isomers 

of Ni(6-CH3PyS)2(PyS)- to be reduced. Increases in the current response of Ni(6-
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CH3PyS)2(PyS)- can be seen in the plot of icat/ip. We hypothesize, based on computational 

data, that each increase in current corresponds with the reduction of additional isomers 

(Figure 5-9F). It is likely that additional mechanisms would also become accessible with 

an increase in both applied potential and concentration of acid. For example, isomers that 

can undergo second protonation at a ligand nitrogen cannot be reduced when the potential 

is swept out to -1.65 V vs SCE. However, once the potential is swept to -2.0 V vs SCE, 

reduction of these intermediates becomes a thermodynamically viable mechanism. The 

hydrogen production rate was further increased to 290 s-1 through continued addition of 

acid. 

Poor hydrogen production by can also be understood by using computational data 

to interpret experimental results. Compound Ni(3-CF3PyS)2(PyS)- has a low measured 

rate of hydrogen production, and analysis of this catalyst provides an informative 

example. Experimental UV-vis absorption data indicates that Ni(3-CF3PyS)2(PyS)- has a 

Figure 5-10: A) Cyclic voltammetry traces for Ni(3-CF3PyS)2(PyS)- with increasing 
additions of 4-cyanoanilinium up to 0.065 M and B) plot of icat/ip vs [4-cyanoanilinium]. 
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pKa of 9.5 and electrochemical data indicates the presence of two redox events within a 

potential window of -1.80 V vs SCE, one taking place at -1.52 V vs SCE and the other at 

-1.94 V vs SCE (Figure 5-10 and Appendix Figure 14). According to computational data, 

the measured pKa can be attributed to the protonation of the unsubstituted ligand on both 

Ni(3-CF3PyS)2(PyS)-[L] and Ni(3-CF3PyS)2(PyS)-[R]. These two protonation sites have 

calculated pKa values of 8.80 and 8.40, respectively (Table 5-2). The unsubstituted ligand 

of Ni(3-CF3PyS)2(PyS)-[C] is not a favored protonation site. Due to its central 

positioning, it has a computed pKa value of 5.20. The low pKa of Ni(3-CF3PyS)2(PyS)-[C] 

is a detrimental for hydrogen production, as the first step in the catalytic cycle 

protonation (Table 5-2). As noted previously, computed energies of formation indicate 

that Ni(3-CF3PyS)2(PyS)-[C] is the most stable isomer of (3-CF3PyS)2(PyS)-. Because of 

its greater stability relative to Ni(3-CF3PyS)2(PyS)-[L] and Ni(3-CF3PyS)2(PyS)-[R], 

Ni(3-CF3PyS)2(PyS)-[C] likely exists in larger proportion, meaning the concentration of 

active catalyst is diminished under neutral conditions (Table 5-1). Additionally, due to 

dechelation of the ligands along the catalytic cycle, isomerization to lower energy 

configurations could occur. Thus, as hydrogen production proceeds for Ni(3-

CF3PyS)2(PyS)-[L] and Ni(3-CF3PyS)2(PyS)-[R], isomerization to Ni(3-CF3PyS)2(PyS)-

[C] could further decreasing the concentration of active catalyst in solution, resulting in 

the low rate of hydrogen production.  
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Additionally, Ni(3-CF3PyS)2(PyS)- [L] and Ni(3-CF3PyS)2(PyS)- [R] are severely 

limited because they require a large overpotential for the final reduction step. Ni(3-

CF3PyS)2(PyS)- [L] and Ni(3-CF3PyS)2(PyS)- [R] have initial computed E0 values of -

1.53 and -1.54 V vs SCE. For the first reduction step, it is interesting to note that both of 

these redox values for the first step are lower than for the unsubstituted Ni(PyS)3
-, 

demonstrating that even for heteroleptic compounds, the electronic effects of the ligands 

are as expected when the mechanism remains unchanged. However, following this 

reduction, protonation is possible for both compounds at a second ligand nitrogen. Ni(3-

CF3PyS)2(PyS)- [L]NLNC has a pKa of 11.51 while Ni(3-CF3PyS)2(PyS)- [R]NRNC has a 

pKa of 12.11. The subsequent redox events for both compounds are calculated to require 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-11: Reaction coordinates for the three isomers of Ni(3-CF3PyS)2(PyS)- 
highlighting numerical thermodynamic values for each protonation and reduction of 
Ni(3-CF3PyS)2(PyS)- [C]. Relative energies of formation for each of the three isomers 
are depicted on the right, with Ni(3-CF3PyS)2(PyS)- [R] being the least stable and Ni(3-
CF3PyS)2(PyS)- [C] being the most stable. 
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more than -2.0 V vs SCE. Reduction of the compounds protonated at their metal centers 

is only calculated to require -1.13 and -1.15 V vs SCE, respectively. However, these low 

reduction potentials are not observed experimentally. This may be due to the low pKa 

value for direct protonation at the metal center and the absence of any proton-coupled 

transition steps that would result in a hydrogen being on the metal center. When up to -

2.0 V vs SCE of potential is applied, a catalytic current is observed, though it rapidly 

plateaus (Figure 5-10). We propose that the limited effectiveness of compound Ni(3-

CF3PyS)2(PyS)- is a result of variable proton affinities for each isomer, resulting in a low 

concentration of active catalyst. Additionally, large required overpotentials along the 

catalytic cycle may also be contributing to the low overpotential. Ultimately, this catalyst 

rapidly ceases to produce hydrogen and it is possible that this is due to its conversion to 

the inactive Ni(3-CF3PyS)2(PyS)- [C] isomer.  

Another indication that isomerization along the catalytic cycle affects hydrogen 

production rates is provided through a comparison of the rates of hydrogen production 

under extreme experimental conditions. If the conversion of isomers throughout the 

catalytic cycle causes a decrease in the effectiveness of hydrogen production, then the use 

of a high initial concentration of acid and a high initial overpotential should result in a 

faster rate of hydrogen production. The concentration of active catalyst in solution should 

be maximized prior to isomerization. An initial CV scan was taken of catalyst solutions 

with a concentration of 5.4 x 10-3 M 4-cyanoanilinium, and an applied potential window 

of -0.5 V SCE to -2.0 V vs SCE to establish a clear ip value. A subsequent scan with a 4-
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cyanoanilinium concentration of 2.2 x 10-2 M was then run within a potential window of -

0.5 V vs SCE to -2.0 V vs SCE (Appendix Figure 17). Under these initial conditions, the 

majority of the catalyst in solution should be active and results should provide a more 

accurate comparison of hydrogen production rates between the four heteroleptic 

compounds. The observed rate constants for Ni(3-CF3PyS)2(PyS)-, Ni(PyS)2(3-CF3PyS)-, 

Ni(PyS)2(6-CH3PyS)- and Ni(6-CH3PyS)2(PyS)- were found to be 3218, 2077, 3275 and 

4392 s-1 respectively. When the concentration of 4-cyanoanilinium was gradually 

increased along with the applied potential, the relative rates of reaction for Ni(3-

CF3PyS)2(PyS)-, Ni(PyS)2(3-CF3PyS)-, Ni(PyS)2(6-CH3PyS)- and Ni(6-CH3PyS)2(PyS)- 

were found to be 35, 99, 290 and 420 s-1. The measured rates of hydrogen production are 

1-2 orders of magnitude larger for the high acid, high potential conditions. Although 

decomposition of the catalyst is possible, these results support the hypothesis that 

interconversion of isomers along the catalytic cycle reduces the concentration of active 

catalyst in solution. Thus, the overall effectiveness of certain heteroleptic compounds is 

severely limited and we once again see the importance of structurally favoring the 

formation of more active isomers.  

5.4 Conclusions 

In summary, we have found that although we can make fairly accurate predictions 

about general trends in the physical properties of heteroleptic catalysts, the varied effects 

on hydrogen production efficiency of adding electron donating and withdrawing 

substituents in a non-uniform way are much more difficult to predict. The experimentally 
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measured properties of each catalyst follow the trends we would expect, but physical 

properties alone do not provide enough information about the intricacies of the catalytic 

process, which ultimately allow us to improve catalyst structure. However, discrepancies 

in hydrogen production rates can be understood in a more detailed way as a consequence 

of how the concentration of active catalyst is impacted by the existence of many isomers 

of the same compound. Because each isomer has unique physical properties, the effective 

concentration of active catalyst in solution depends on experimental conditions, thus 

causing large fluctuations in measured rates of hydrogen production. From our 

investigation of both experimental and computational data for the four heteroleptic 

compounds studied herein, we see that in addition to electronics, the placement of ligands 

has an enormous impact on the properties of each isomer, particularly the pKa values. 

This discovery will guide the design of future catalysts by providing evidence that the 

placement of ligands in the most strategic position is just as important as modification of 

the electronics of the ligands themselves. In the case of Ni(PyS)3
- derivatives, placing an 

electron rich ligand in the central position can negate the effects of having increased 

electron density, by greatly reducing the proton affinity of that particular ligand. Because 

heteroleptic compounds can isomerize during catalysis, creating structural features that 

force the formation and maintenance of a particular isomer would be a very powerful tool 

in the creation of improved catalysts for many areas of chemistry, not limited to proton 

reduction. The use of a 4-coordinate ligand to maintain geometry may be one such way to 

allow catalysis to occur, while simultaneously imparting a measure of control over the 
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mechanism through which that catalysis occurs. Additionally, understanding why the 

structure of heteroleptic compounds results in such drastically different properties from 

one ligand to another for each isomer is of the utmost importance. Current computational 

investigation is underway in our lab to explain the nature of these highly variable 

properties as well as to uncover strategies to target the synthesis particularly active 

isomers. It is our hypothesis that by selectively favoring the synthesis of only the most 

active heteroleptic catalysts, the effectiveness of catalysis could be greatly improved.  
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CHAPTER 6  

PHOTOCHEMICAL CONVERSION OF SOLAR ENERGY 

Photocatalytic Water Reduction Using a Polymer Coated Carbon Quantum Dot 

Sensitizer and a Nickel Nanoparticle Catalyst 

This work has been published in IOP Nanotechnology.211 

Virca, C.; Winter, H.; Goforth, A. M.; Mackiewicz, M.; McCormick, T. 

Photocatalytic Water Reduction Using a Polymer Coated Carbon Quantum Dot Sensitizer 

and a Nickel Nanoparticle Catalyst. Nanotechnology 2017, 28. 

 

6.1 Introduction  

Solar driven water splitting3,153,212 has been studied as a method to store energy 

since Fujishima and Hondas’s first H2 producing electrochemical photolysis experiments 

in 1972.55 Although significant progress has been made in the last few decades in the area 

of photochemical water splitting to improve the effectiveness of both catalysts61,75,157,213–

215 and sensitizers,102,117,213 the development of benign, easily-synthesized, and 

inexpensive photosensitizers and catalysts remains of interest.53,57,92,216–221 To date, one of 

the most successful sensitizers, published by Eisenberg and co-workers, is CdSe quantum 

dots.63,155 Other photocatalyzed energy storage reactions can also be effectively sensitized 

through the use of quantum dots,222–225 such as using dual-sized CdTe quantum dot 

sensitizers to enhance photo-electrochemical water oxidation.226 However, despite the 
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effectiveness of CdSe and CdTe quantum dot sensitizers, commercialization is limited 

due to toxicity.227 Consequently, the discovery, study, and use of more benign sensitizers 

are of significant interest.  

Recent reports on the wide range of excitation and emission energies of carbon 

quantum dots (CQDs) suggest they may be suitable light absorbers for photochemical 

water splitting.113,114,117,118,228,229 Reisner and co-workers report H2 production from a 

system using a CQD sensitizer and a nickel-bis-diphosphine (Ni-P2N2) catalyst irradiated 

with UV-light.65 The luminescence quantum yield of the CQDs in this study was 

relatively low (2.3% at 360 nm excitation). Polymer coatings have been shown to 

improve the emission quantum yields of CQDs; for example, a polyethylene glycol 

(PEG) coating on CQDs can increase fluorescence quantum yields by 100%.120 The 

fluorescence of CQDs is attributed to surface defects, thus polymer passivation is thought 

to decrease non-radiative decay pathways, enhancing fluorescence quantum yields.112,230 

We hypothesized that applying a PVP coating to CQDs would reduce non-radiative 

recombination and increase the probability of electron transfer from the sensitizer to a 

catalyst, thus increasing H2 production. PVP is selected for use in this study as it provides 

the added benefit of solubilizing the nanomaterials and has been applied in literature for 

this purpose.231 Furthermore, PVP coating on CQDs has been shown to both enhance 

fluorescence, similar to a PEG coating, but to have a less electronically insulating 

effect.232     
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Recently, nickel nanoparticles (NiNPs) were shown to catalyze H2 

production.151,231 When sensitized with 2-phenyl-4-(1-naphthyl)quinolinium, the rate of 

H2 production using a NiNP catalyst was 40% of that of an analogous system catalyzed 

by platinum nanoparticles (PtNPs).231 H2 production in water required that the NiNPs be 

solubilized using a polyvinylpyrrolidone (PVP) coating.231 Thus, we chose PVP to 

stabilize and solubilize both the CQD sensitizer and the NiNP catalyst. 

Herein, we report the effect of the amount of PVP on H2 production using CQDs 

as sensitizers and a NiNP catalyst, when irradiated with visible light (470 nm) (Figure 

6-1).211 Specifically, the photophysical properties of PVP-coated CQDs are investigated 

and correlated to H2 production. The PVP coating of the CQD sensitizer was found to 

both increase CQD fluorescence quantum yields and affect H2 production. A 1:1 

water/EtOH solution containing CQDs, PVP-coated NiNPs, and 

Figure 6-1: Schematic representation of electron movement through the CQD/NiNP H2 
production system . 
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ethylenediaminetetraacetic acid (EDTA) as the sacrificial electron donor, produced H2 

gas when irradiated with light at 470 nm. Both the catalyst and photosensitizer were 

functional without additional purification beyond wash/spinning centrifuge cycles, 

eliminating the need for additional tedious purification of the NiNPs and CQDs. 

Characterization of the nanomaterials and the role of PVP is described in detail below. 

6.2 Methods 

6.2.1. Potassium Ferrioxalate Actinometry146 

All manipulations were performed in a dark room with a red light source until the 

experimental light source (470nm) was measured.  A solution of 0.15 M 

K3Fe(C2O4)3·H2O was prepared by dissolving 73.68 g of solid into 800 mL of water with 

100 mL of 1 N sulphuric acid. This solution was brought to a total volume of 1 L.  

A calibration graph was then prepared from three standard solutions: 1) a 

0.4 × 10-6 M solution of Fe2+ in sulphuric acid, 2) a 0.1 % by weight solution of 1,10-

phenanthroline in water and 3) a buffer solution of 600 mL of H3CCOONa and 360 mL 

of 1 N sulphuric acid diluted to a final volume of 1 L. A series of standard solutions of 

total volume 10 mL was made in 25 mL volumetric flasks using 0, 0.5, 1, 1.5, 2.0, 2.5, 

3.0, 3.5, 4.0, 4.5, 5.0 mL of standard solution 1 and sulphuric acid. 2 mL of solution 2 

was then added to each 10 mL solution and a sufficient amount of solution 3 was added 

to reach the final volume of 10 mL. These standard solutions were allowed to react for an 

hour in the dark. The absorption of each of these solutions was then measured at 510 nm 



 

 

 

122 

using the iron-free solution as a blank. A linear plot of Io/I vs. molar concentration of 

Fe2+ phenanthroline complex was then generated.  

The intensity of the 470 nm light source was then determined. In order to do this 

30 mL of actinometer solution was irradiated under inert atmosphere for 10, 20 and 40 

minutes. Next, 10 mL of solution was taken and 2 mL of phenanthroline solution was 

added along with 5 mL of buffer solution into a 25 mL volumetric flask. The volume was 

filled with water. Following 1 h, the absorption was measured at 510 nm. The number of 

photons was calculated using the following formula: 

 

!!"!! =  6.023 x 10!" V! V! log!"(I!/I)
V!!"

 

V1 = volume of irradiated actinometer solution 
V2 = volume taken for light measurement 
V3 = final diluted volume of V2 
log10(I0/I) = measured optical density 
l = path length 
ε = molar extinction coefficient of Fe2+ complex (can be determined 
experimentally)- approximately 1.11 x 104 l mol-1 cm-1 

 

The number of photons was determined using the following equation: 

!! =  !!"!!ϕ!
 

Where ϕλ is the quantum yield for Fe2+ formation at a given wavelength (in this 

case, 0.94). Dividing by t (irradiation time in seconds) yields the number of photons 

absorbed by the actinometer per second.  
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The quantum efficiency of H2 production was determined next, using the known 

amount of photons as calculated above and the measured H2 production:  

2.55 x 10!" photons/s as measured above 
1.596 x 10!" photons/10 mins 

 
2.78 !mols H!/10 mins measured as described in the manuscript 

 
1.675 x 10!" H atoms consumed/10 mins 

 
A!"!! = 0.061553 
A!"# = 0.00035 

 
A!"!!
A!"#

 x 1.596 ! 10!"photons
10 mins =  2.8 x 10!"photons

10 mins  

 
1.675 x 10!" H atoms
2.8 x  10!" photons = 0.0597 = 5.97% 

 
A = absorbance of the compound 

 

Results and Discussion  

 NiNPs were synthesized via thermolysis of nickel acetylacetonate (Ni(Acac)2) in 

the presence of trioctylphosphine (TOP) and oleylamine according to a previously 

published method.151 The relatively short growth time and excess stabilizing TOP results 

in highly monodisperse NiNPs with an average diameter of 6 nm (TEM imagine in 

Figure 6-2A, DLS data in Appendix Figure 19. Exchanging the coating for 29K MW 

PVP makes the NPs dispersible in water. DLS data of the aqueous, PVP-coated NiNPs 

shows that the particles aggregate into polydispersed microstructures ca. 3 µm in size 

(Appendix Figure 20). By TEM, CQDs around 5 nm in size were observed, and for 

certain small, well-resolved particles crystalline lattice fringes are visible that resemble 



 

 

 

124 

those attributed to graphitic carbon in the literature (Figure 6-2B). 65,118 Differing 

amounts of PVP were added to the CQDs as a weight percent of the CQD in solution.   

6.2.2. CQD Composition and Morphology.   

CQDs were synthesized through thermolysis of citric acid at 180°C for 24 hours. 

The formation of CQDs was monitored using 1H and 13C NMR. Citric acid was 

consumed almost entirely within 5 hours of heating; primarily aromatic, olefinic and 

aliphatic protons became apparent in 1H NMR (S1). After 24 hours some olefinic protons 

are no longer visible in 1H NMR (Appendix Figure 21) and the 13C NMR spectrum 

Figure 6-2: TEM images of A) as synthesized NiNPs showing consistent size 
distribution (size distribution in S5) B) CQD showing crystal-lattice fringes C) PVP-
coated NiNPs and CQDs D) reaction mixture after irradiation.  
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indicates the presence of aromatic, olefinic, nitrile and aliphatic carbon as well as 

possibly ketones, aldehydes, carboxylic acids and esters (Appendix Figure 22). These 

findings suggest that the emissive properties of the CQDs could be due to isolated 

pockets of aromatic carbon surrounded by aliphatic carbon regions in addition to 

quantum confinement effects as suggested previously.228 Minimally, NMR analysis 

indicates the CQDs are not pure “nano-graphene”. The FT-IR spectrum of the 24 hour 

thermalized CQDs has a peak around 3400 cm-1 that has been assigned to O-H stretching. 

The series of peaks around 2900 cm-1 have been assigned to C-H stretching. The sharp 

peak at 1530 cm-1 is characteristic of C=O, and that at 1450 cm-1 has been assigned to 

C=C stretching (Appendix Figure 23). Our assignments and data are consistent with 

previous characterization of CQDs.120,233–235  

Transmission electron microscopy (TEM) images of the 24 hour thermalized 

CQDs show formation of two distinct materials (Figure 6-3). Small aggregated structures 

approximately 100 nm in size composed of nanoparticles ranging from 10 nm to 20 nm 

are observed. These are similar to particles reported using the same preparation 

method.149 Large sheets composed of amorphous carbon are also observed.236 Previous 

reports on the synthesis of CQDs identify larger amorphous carbon domains alongside 

the CDQs.65 These images, together with NMR data, suggest a mixture of nano-materials 

rather than a homogenous CQD sample. TEM images of the PVP-coated CQD shows 

only amorphous carbon material, the polymer is not easily distinguishable from the 

CQDs (Figure 6-3C). 
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After drop-casting solutions containing the CQDs, Ni NPs, and PVP, the 

aggregated components were imaged by TEM with EDX.  TEM images taken of the Ni 

NPs mixed with PVP-coated CQDs show the 6 nm NiNPs within the PVP matrix, 

suggesting that they are likely closely associated in solution (Figure 6-2C). A coating of 

carbon material can be seen in these images, however, the carbon-containing polymer and 

CQDs cannot be distinguished using these techniques. EDX mapping shows overlaid 

nickel, oxygen, and carbon signals indicating relatively homogenous dispersion of the 

carbon (CQD and polymer) and nickel materials (Appendix Figure 24). Although dried 

imaging samples may not be completely indicative of solution behavior, these images, 

along with emission quenching studies described below lead us to believe the PVP, CQD 

and NiNPs are mixed together in solution. Imaging after catalysis was difficult due to the 

large amounts of PVP and EDTA present in the mixture. However, TEM images of a thin 

cross-section of the material display dark circular objects attributed to the NiNPs. These 

are no longer as uniform nor as well separated by the carbon material as the pre-reaction 

particles (Figure 6-2D). These images suggest aggregation of NiNPs as a possible 

explanation for the decreased catalytic activity. Larger NiNPs have previously been 

shown to be less catalytically active for H2 production.231   
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Figure 6-3: A) uncoated CQD sample showing approximately 20 nm structures 
aggregated together B) uncoated CQD sample showing large amorphous sheets and C) 
PVP coated NiNPs and CQDs following irradiation with 470 nm light for 5 hours. 

6.2.3. Photoluminescence of PVP Coated CQDs 

PVP did not change the shape of the excitation or emission spectra of the CQDs; 

however fluorescence quantum yields were increased for PVP-coated samples relative to 

uncoated samples (Table 6-1). As expected, the photoluminescence spectra of the CQDs 

displayed excitation dependent emission (Figure 6-4). The CQDs have emission 

λmax = 456 nm when excited at 355 nm. Excitation of the same sample at 470 nm (the 

wavelength used for H2 production experiments below) gives an emission at λmax = 

532 nm (Figure 6-4A). A shift in emission λmax with varying excitation wavelength is 

documented for CQDs and has been attributed to quantum confinement effects in a 

highly polydisperse sample, and from diversity of emissive surface defects.228 UV-vis 

absorption of both uncoated and coated (0% wt, 20 wt% and 50 wt%) particles display an 

onset of absorption starting around 700 nm, with monotonically increasing absorption at 

shorter wavelengths, similar to previously published spectra (Figure 3B). 116,228,230  
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Table 6-1: Quantum yields (Φ) for CQDs with various percentage PVP coatings by 
weight. Quantum yields were measured with 360 nm excitation and 470 nm excitation. 

 An increase in PVP causes an increase in fluorescence quantum yield, especially 

for excitation at 470 nm where over a three-fold increase in quantum yield (from 0.42% 

to 1.4%) is observed when 20 wt% PVP is added (Table 6-1). The quantum yields were 

also found to be dependent on the excitation wavelengths (Appendix Table 3). Emission 

is observed with excitation energies as low as 525 nm, however, as excitation becomes 

more red-shifted, quantum yields gradually decrease from 4.8% at 360 nm to 0.4% at 

500 nm and become nearly negligible at 0.1% with 520 nm excitation. These suggest that 

non-radiative decay pathways are minimized due to the polymer coating.  

 Additional experiments were carried out to determine if PVP-coated CQDs were 

capable of undergoing upconversion as previously noted in the literature.113,114,237 

Excitation with 720 nm light appears to give rise to a small emission peak at 

λmax = 456 nm, the same that was observed when excited with 360 nm (Figure 6-4C). 

However, insertion of a shortpass filter (<610 nm) between the excitation source and 

sample, eliminating the scattered second order diffraction from the grating, results in 

complete elimination of the emission. This indicates that the emission observed without 

the shortpass filter is an artifact of the grating of the fluorometer, which allows second 

 

	 0%	 5%	 10%	 20%	 35%	 50%	

360	nm	 3.9%	 4.3%	 4.5%	 4.8%	 5.2%	 11.1%	

470	nm	 0.4%	 0.8%	 1.1%	 1.4%	 1.3%	 1.4%	
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order diffraction of λ/2 excitation light to hit the sample in addition to the desired 

excitation wavelength. Thus, CQDs’ do not appear to upconvert NIR light under these 

conditions.  

 

Figure 6-4: A) Emission for CQDs showing variation in emission based on excitation 
wavelength. B) UV-vis absorption spectra of CQDs with 0%, 20% and 50% PVP coating 
C) Emission of CQDs following excitation with 360 and 720 nm; with and without a 
shortpass filter showing the disappearance of apparent upconversion with the filter in 
place. 

 

6.2.4. Hydrogen Production Using CQD Sensitizers and NiNP Catalysts.  

A maximum of 32 (± 3.6) µmols of H2, corresponding 330 mmols H2/g CQD, was 

produced over 4 hours for a system containing 68 µg of 20 wt% PVP-coated CQDs 

(Figure 6-5). A H2 production quantum yield of 6% was determined using potassium 

ferrioxalate actinometry (see Supporting Information).146 The system by Reisner and co-

workers with uncoated CQDs and Ni-P2N2 molecular catalyst produced 0.398 mmols of 

H2/g CQD/h with a quantum efficiency of 1.4%.65 Continuous H2 production was 

monitored using a Hiden Analytical Quadrupole Mass Analyzer sampling a flow of N2 
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gas through the irradiated reaction mixture. Solutions made with 0 wt%, 20 wt% and 50 

wt% PVP-coated CQDs under identical conditions show that increased polymer loading 

decreases the initial rate for H2 production (the initial rate was determined over a 10 min 

interval). The greatest amount of H2 was produced with for the 20 wt% PVP-coated 

CQDs over 5 hours, which is attributed to the intermediate amount of PVP stabilizing the 

system and allowing for an increase in the total amount of H2 produced (Figure 6-5A, 

Table 2). Though the initial rate of H2 production is lower for the 20% wt% PVP coated 

CQD, due to the stabilizing effect of the PVP this rate is maintained, resulting in higher 

total amounts of H2 production. The H2 production rate remained the most consistent over 

an hour of irradiation with this intermediate amount of additional polymer.   

After one hour, rates of H2 production decreased for all samples. Uncoated CQDs 

have the largest initial rate at 33 mmol H2/g CQD/h while PVP-coated CQDs at 20 wt% 

and 50 wt% produce H2 at rates of of 25 and 16 mmol of H2/ g CQD/h respectively 

(Table 6-2).  For the uncoated CQDs the rate after 1 hour decreased to 19 mmol H2/g 

CQD/h while H2 production for the 20 wt% PVP-coated sample only decreased to 

20 mmol H2/g CQD/h. The rate of H2 production for the 50 wt% coated CQDs decreases 

to 7 mmol H2/g CQD/h. We hypothesize that decreasing H2 production with increasing 

PVP beyond 20% by weight results from insulation that prohibits electron transfer thus 

decreasing overall H2 produced (Table 6-2). The insulating effect of the PVP in solution 

was observed by monitoring the effect of increased PVP on emission quenching. 

Emission of the CQDs was partially quenched by adding PVP-coated NiNPs. When an 
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excess PVP was then added, the emission intensity increased, indicating excess PVP 

inhibits electron transfer from the CQD to the NiNP catalyst (Appendix Figure 25). This 

effect is observed without isolating the particles suggesting the PVP in solution is in 

dynamic contact with both the CQD and NiNP.  

Figure 6-5: A) H2 production over time for uncoated, 20% and 50% PVP-coated CQDs. 
B) H2 production starting again following addition of 60 µg NiNPs after initial decrease 
in H2 production at 70 min.  Reactions run using 60 µg NiNPs and 680 µg CQDs in 10 
mL of 0.5 M EDTA in 1:1 H2O/EtOH, irradiated with 470 nm LEDs. 

 

Table 6-2: Instantaneous rates of H2 production of CQDs with varying polymer coating 
calculated at t=10 mins and t= 60 mins using 6 µg/mL of NiNPs and 68 µg/mL of CQDs. 
Effect of PVP coating by weight percent of CQDs on total H2 production after 5 h in a 
total volume of 10 mL. 

 

Instantaneous rate at 0% PVP 20% PVP 50% PVP 

10 mins (mmols H2/g CQD/hour) 33 25 16 

60 mins (mmols H2/g CQD/hour) 19 20 7 

Total amount of H2 (µmol) 20 ± 2.8 32 ± 3.6 6.4 ± 1.1 
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 Higher amounts of polymer coating on the CQDs likely increase the amount of polymer 

surrounding the NiNPs when mixed in solution. Supportive of this, TEM, SEM and EDX 

mapping of a mixture of CQD and NiNP with PVP coatings show that all components are 

uniformly aggregated together. PVP may inhibit catalyst aggregation, a mechanism of 

deactivation previously reported in the literature.238 Similar system instability has been 

reported for both NiNPs and PtNPs in photocatalytic H2 production.231 

Figure 6-6: Effect of concentration of A) CQDs, with a constant 6 µg/mL of NiNPs and 
B) NiNPs, with a constant 68 µg/mL of CQD, on H2 production. H2 production amounts 
were measured over a period of five hours. 
 

 H2 production depends on the concentration of CQDs and NiNPs (Figure 6-6). 

Using a constant NiNP concentration (6 µg/mL), the CQD concentration was varied from 

0-240 µg/mL (Figure 6-6A).  Maximum H2 is produced using either 68 µg /mL or 

130 µg/mL CQD and production tapers off significantly with either more or less 

photosensitizer. Without CQDs, no H2 is detected. Higher concentrations of CQDs 



 

 

 

133 

decrease H2 production, likely due to auto-quenching of the sensitizer. Using 68 µg/mL 

of 20 wt% PVP-coated CQDs as the sensitizer and varying NiNP concentrations, H2 

production is maximized with 24 µg/mL of NiNP in solution. Over the course of 5 hours 

for a 10 mL volume, 22.4 (±2.4) µmols H2 is produced (330 mmols H2/g CQD). Any 

deviation from this concentration decreases H2 production, and without any NiNPs no H2 

is detected. Variation in H2 production with increasing NiNP concentration may be due to 

competition by the catalysts for the reducing electrons.  

Total amount of H2 is depends on the pH of solution. The optimal pH is the un-

adjusted value of 4.71, formed by dissolving EDTA in a water/EtOH mixture. H2 

production is lower at pH 3.13, 7.06 and 11.16 (Figure 6-7). This may be due to the 

sacrificial electron donor (SED) being less active in the protonated form at lower pH, and 

proton reduction being less favored at higher pH. A solution using 0.5 M triethylamine 

(TEA) was also tested as a SED under basic conditions with a pH of 12.24; no H2 is 

produced in this case. Although TEA quenches sensitizer emission (Appendix Figure 26), 

we suspect the catalyst cannot be protonated due to the basicity of the solution, inhibiting 

H2 production.  Additionally, using only water as the solvent results in no H2 production. 
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Figure 6-7: A) Effect of pH on total H2 production. Solution of 0.5 M EDTA in 1:1 
H2O/EtOH used with 680 µg CQD and 120 µg NiNPs in a total volume of 10 mL B) 
Effect of PVP coating by weight percent of CQDs on total H2 production after 5 h. 
Solution of 0.5 M EDTA in 1:1 H2O/EtOH used with 680 µg CQD and 60 µg NiNP in a 
total volume of 10 mL. 
 

Component stability was determined by re-introducing either the photosensitizer 

or catalyst after H2 production ceases. After 70 min, a reaction containing 68 µg/mL 

20 wt% PVP-coated CQDs and 6 µg/mL NiNPs stops producing H2. Upon addition of a 

180 µg aliquot of NiNPs into 10 mL of solution, H2 production resumes (Figure 6-8B). 

Subsequent aliquot addition every 30 min maintains H2 production for 150 min, although 

the rate of hydrogen production decreases with each aliquot (Figure 6-8). An analogous 

experiment was performed where 2 mg of CQDs were added after 130 min. The rate of 

H2 production does not significantly increase with addition of CQD (Figure 6-8). These 

results suggest that the CQD sensitizer could be recycled however the NiNP catalyst 

could not. Using 180 µg of NiNPs and 2000 µg of CQDs in 30 mL of 0.5 M EDTA in 1:1 

EtOH/water, H2 production continued without additions for nearly four hours. These 
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observations support that deactivation of the NiNP catalyst primarily causes cessation of 

H2 production.  

Figure 6-8: A) H2 production over time with CQD added after 130 minutes B) H2 
production over time with continued addition of NiNPs as indicated by arrows to 
maintain production for 150 minutes. Solution of 0.5 M EDTA in 1:1 H2O/EtOH used 
with 680 µg CQD / 10 mL and 60 µg NiNP / 10 mL in total volume of 30 mL. 

 

6.2.5. Mechanistic Investigation via Fluorescence Quenching Titrations.  

To gain insight into the mechanism of CQD sensitized H2 production, including 

how the sensitizer and catalyst interact with each other in solution, fluorescence-

quenching titrations were performed with a 10 mL CQD solution (68 µg/mL) in 1:1 

EtOH/water. EDTA or NiNPs were added to the CQD solutions to observe reductive or 

oxidative quenching respectively. Quenching was observed in both cases. This indicates 

that electron transfer is possible both from the electron donor to the photosensitizer, and 

from the photosensitizer directly to the catalyst. The quenching rate coefficients for the 

EDTA SED is calculated from plots of I0/I vs concentration of quencher to be 1679.9 
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mol-1 (Appendix Figure 26). This indicates that H2 production with EDTA as the SED 

could occur via a reductive quenching pathway. TEA caused emission quenching but did 

not act as a sacrificial electron donor for hydrogen production. Two other sacrificial 

electron donors, triethanol amine and ascorbic acid, caused minimal (3.7 mol-1) or no 

quenching respectively. The solution of NiNPs in EtOH causes emission quenching 

(Appendix Figure 27). With continuous addition of NiNPs up to 1 mg/mL, the 

fluorescence gradually quenches, indicating that the oxidative quenching pathway could 

also contribute to the H2 production mechanism. To further test the hypothesis that 

observed quenching was a result of electron transfer, and not energy transfer, experiments 

using methyl viologen (MV) as an oxidant and as an electron transfer indicator dye, were 

performed. Emission of the CQDs is quenched using MV (Appendix Figure 28). 

Additionally, an air-free solution containing CQDs, MV and EDTA was irradiated with 

360 nm light and the solution subsequently turned blue indicating electron transfer to the 

MV from the photosensitizer. A solution without CQDs did not produce a significant 

color change. 

6.3 Conclusions 

In summary we have demonstrated that H2 is produced photocatalytically using 

PVP-coated CQDs and NiNPs when irradiated with 470 nm light. A system containing 

68 µg/mL of CQD and 6 µg/mL of NiNPs (10 mL solution) produced is 32 (±3.6) µmols 

of H2 (330 mmols H2/g CQD). Activity without re-addition continued for nearly four 

hours, though most H2 was produced in the first two hours as the reaction rate decreased. 
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Properties of the CQDs were studied to correlate how the photophysical properties relate 

to H2 production. Addition of PVP to the CQDs caused an increase in fluorescence 

quantum yield. The increased emission quantum yield correlated to an increased amount 

of H2 production for the 20% coated particles. Interestingly, we note that though quantum 

yield increases as the amount of PVP by weight is increased, after 20% H2 production is 

significantly suppressed due to an insulating effect of the polymer prohibiting electron 

transfer.  
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CHAPTER 7  

CONCLUSIONS 

A multifaceted approach to understanding solar energy conversion systems  

The production of hydrogen as a fuel source provides several avenues to develop 

fundamental scientific understanding while simultaneously contributing to the 

improvement of renewable energy technology. Photochemical and electrochemical 

methods are studied in unique ways and each divulges information that can be used to 

guide the development of catalytic materials and systems. Both computational and 

experimental methods can be used to understand the complex catalytic cycles of 

hydrogen production by molecular catalysts, while the study of nanomaterials using this 

joint approach remains markedly more complex. As such purely experimental methods 

were used to probe photochemical hydrogen production using a composite nanomaterial 

system.  

On the other hand, our initial investigation of catalytic hydrogen production by 

Ni(PyS)3
- demonstrates the usefulness of using computational and experimental methods 

to study intermediates and transition states throughout the catalytic cycle of proton 

reduction. Specifically, the DFT calculations performed herein supported the 

experimentally proposed catalytic cycle while providing insight into intermediate 

geometries and the location of electrons for reduced intermediates. Our investigation 

revealed that protonation at a pyridyl nitrogen is necessary prior to reduction, so as to 

lower the required overpotential. The experimentally tested system studied by Eiseberg 
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and coworkers utilized Ni(PyS)3
- as a photocatalyst in conjunction with a fluorescein 

sensitizer, and without initial protonation,  electron transfer from the sensitizer could not 

occur. Protonation leads to ligand dechelation, which opens a coordination site at the 

nickel center. The possibility of water coordination was explored but found to be 

disfavored, and though coordination of hydroxide was energetically possible, it was 

determined to likely form an inert intermediate.  

Exploration of the spin density of Ni(PyS)3HN- revealed that electron density at 

this step is localized around the metal center. Another feature of this part of the catalytic 

cycle that could have been difficult to probe experimentally is the formation of the 

nickel-hydride intermediate Ni(PyS)3HNHNi-. Computations provided support for the 

formation of this intermediate by analyzing the thermodynamics of a sequential proton-

electron transfer, as well as by studying the spin density maps of this intermediate in 

differing spin states. Hydrogen elimination from the nickel hydride was then found to be 

a facile step. Through a computational exploration using DFT, we were able to provide 

support for a previously proposed mechanism. The use of joint theoretical and 

experimental methods provided details about the catalytic cycle, which prompted us to 

consider modifications to the catalyst that could then be studied using the same 

methodology.  

The results of the initial investigation of Ni(PyS)3
- demonstrated that a systematic 

approach could be used to undertake the study of hydrogen production by molecular 

proton reduction catalysts using computational and experimental results. To further 
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understand how molecular nickel catalysts produce hydrogen, this method was applied in 

the exploration of the effect of slight electronic modifications to the ligands of Ni(PyS)3
- 

type compounds. The effectiveness of these compounds was determined by studying their 

rates of hydrogen production when used as electrocatalysts and by measuring their 

physical properties. Specifically, the pKa and E0 values of each compound were measured 

experimentally, and generated computationally as well. The mechanism of hydrogen 

production undertaken by each derivative was probed using the same method which 

previously allowed us to support a CECE mechanism of hydrogen production for 

Ni(PyS)3
-.   

A total of six derivatives of Ni(PyS)3
- were synthesized and characterized. In this 

way, the effects of ligand modification could be evaluated on the basis of how they 

modulated compound properties and how that resulted in changed in the hydrogen 

production mechanisms of said compounds. What we found was that compounds 

containing electron poor ligands had a tendency to maintain the CECE mechanism 

followed by Ni(PyS)3
-. The initial reduction step was found to be metal centered, as it 

was for Ni(PyS)3
-, and for each derivative the overpotential of this step is greater than 

that required than for the second reduction step. TOF’s of these derivatives are likely 

limited by this overpotential. Computed and experimental values of E0 and pKa for the 

first two steps of the CECE catalytic cycles show a linear correlation with corresponding 

Hammett-constants. The relationship between the two parameters was found to be 

inversely favorable, with higher pKa values and higher E0 values occurring under the 
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same conditions, and low pKa values and low E0 values occurring under the same 

conditions. The CECE mechanism of Ni(PyS)3
- was the most profoundly affected by 

substitution with an electron rich ligand. It was found to cause a shift to a favored CCEE 

mechanism, which involves a proton shift from a pyridyl nitrogen to the nickel center 

following the second protonation. This was determined to likely be the result of a drastic 

change in physical properties as a result of increased electron rich character of the 

ligands. By looking at the effects of electron density on physical properties and catalytic 

mechanisms, we were able to identify the important characteristics of a proton reduction 

catalyst that promote favorable properties and, ultimately, should improve rates of 

hydrogen production.   

Electron rich ligands were shown to increase the proton affinity of Ni(PyS)3
-  type 

catalysts, while electron poor ligands were shown to reduce the required overpotential for 

the first reduction step when a CECE mechanism is undertaken. Our next goal was to use 

this information to design catalyst that combined these two elements, in order to create a 

compound with both high proton affinity and low overpotentials for hydrogen production. 

Heteroleptic compound were thus designed using different ratios of substituted to 

unsubstituted ligands to see if we could exert control over the pKa and E0 values of the 

compounds. Our expectation was that electron rich ligands would provide favored sites of 

protonation and electron poor ligands would reduce the required potential to drive 

hydrogen production.  
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Although we found that we can make fairly accurate predictions about general 

trends for the physical properties of heteroleptic catalysts, the specific mechanism and 

efficiency of hydrogen production are much more difficult to predict on the basis of non-

uniform addition of electron donating and withdrawing substituents. Experimentally 

determined properties of all four heteroleptic catalyst were found to follow the general 

trends we expected, but the physical properties alone could not provide enough 

information about the intricacies of the catalytic process, which ultimately give us the 

ability to improve catalyst structure. Part of the challenge in predicting reactivity arises 

from the complexity that is introduced by creating a large number of possible isomers for 

each heteroleptic compound. Because each isomer has corresponding unique physical 

properties, the concentration of active catalyst in solution fluctuates throughout the 

course of the reaction, leading to inconsistencies in measured rates of hydrogen 

production.  

Computed and experimental data for the four heteroleptic compounds studied 

revealed that the placement of unique ligands greatly impacted the physical properties of 

each isomer, particularly the pKa values. This effect was even greater than electronic 

effects in some situations. This result impacts how future catalysts are designed by 

providing evidence that ligand placement, in addition to the electronics of the ligands 

themselves, is just as important in dictating the resulting properties of the compound. 

Putting an electron rich ligand in the central position drastically decreased the proton 

affinity, thereby negating any benefits of placing an electron rich ligand in that position.  
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The thermodynamics of the formation of each isomer of the starting catalysts was 

investigated and it was noted that the most stable isomer in some cases is not the most 

catalytically active. In some cases, the most stable isomer is catalytically inert under 

neutral reaction conditions. Due to isomerization through the course of the catalytic 

cycle, the concentration of active catalyst was hypothesized to decrease as hydrogen 

production occurs for certain compound. Thus, creating structural features that promote 

the initial formation and subsequent maintenance of a particularly active isomer could be 

a strategy for how to improve catalysts for many areas of chemistry. Geometry could be 

maintained through the use of a 4-coordinate ligand, which would also impart a measure 

of control over the mechanism through which catalysis proceeds.  

This strategy could extend beyond the area of renewable energy and into areas 

such as targeted catalysis for synthesis of enantioselective products, for example. 

Additionally, understanding the underlying structural features of heteroleptic compounds 

that results in a diversity of physical properties is an important next step in the further 

development of effective catalysts that can selectively be tuned to operate through a 

particular mechanism. Current computational investigation continues to explore the 

origin of variability in physical properties as well as to target strategies that may be used 

in the selective synthesis of desired isomers. This work leads us to hypothesize that 

favoring the most active heteroleptic catalysts would lead to greatly enhanced catalytic 

effectiveness, as well as improved understanding of the operative mechanism by which 

they proceed.  
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 In addition to improving the effectiveness of hydrogen production by 

electrocatalysts, structural modification to alter the physical properties of catalysts is a 

useful strategy when working with photocatalysis as well. One of the great challenges of 

working with photocatalytic systems is ensuring the appropriate alignment of energy 

levels for each component. If the excited state of the selected photosensitizer is unable to 

transfer an electron to the catalyst, then no product can be formed. Modifying either the 

sensitizer or catalyst in order to properly align these energy levels may have detrimental 

consequences on other important parameters, such as pKa, as we demonstrated in the 

previous computational and experimental work. One way to broadly circumnavigate the 

issue of misaligned energy levels is through the use of nanomaterials, such as in our work 

using CQDs and NiNPs to produce hydrogen photocatalytically.  Because of the wide 

range of excitation and emission energies of CQDs, they can effectively sensitize 

different species. In our particular work, hydrogen gas was produced photocatalytically 

using 470 nm light, PVP-coated CQDs and NiNPs. The study examined how the 

concentration of PVP affected the ability of CQD/NiNP composites to catalyze proton 

reduction. Composites made with a higher weight percent PVP showed decreased rates of 

hydrogen production, however this production was maintained over a longer period of 

time. Interestingly, an increase in the weight percent of PVP coating lead to an increase 

in the fluorescence quantum yield of the CQDs.  

Ultimately, though the nanomaterials effectively produced hydrogen with visible 

light and were synthesized using simple procedures and inexpensive materials, their 
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fundamental drawback comes from the difficulty with which they can be studied.  As we 

have seen, molecular proton reduction catalysts can be probed in depth using 

computational and experimental methods. In order to study the mechanism of hydrogen 

production by CQD/NiNP composites, certain luminescence quenching methods were 

utilized, with a specific emphasis on using fluorescence quenching titrations. However, 

these studies revealed only that hydrogen production could be occurring through either a 

reductive or oxidative quenching mechanism. Add-in experiments indicate that 

decomposition of the catalyst and the sensitizer both contributed to a decrease in 

hydrogen production, but no further details beyond this were identified. Clearly, though a 

functional, tunable hydrogen production system can be made using easily synthesized 

nanomaterials, mechanistic characterization using a joint theoretical and computational 

approach remains a more feasible process for studying molecular hydrogen production 

catalysts. 
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APPENDIX 

ADDITIONAL EXPERIMENTAL AND COMPUTATIONAL DATA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Appendix Figure 1: Cyclic voltammograms of a 1 x 10-3 M solution of Ni(PyS)3
- in 

dry/degassed acetonitrile with TBAF without a proton source or ferrocene (red) and with 
both ferrocene and 4-cyanoanilinium (blue). Scan started in the negative direction at 
0 V vs Ag/AgNO3 using a 500 mV scan rate using a glassy carbon working electrode, 
platinum coil counter electrode and Ag/AgNO3 reference with acetonitrile solution.  
 

-0.00015	

-0.00010	

-0.00005	

0.00000	

0.00005	

0.00010	

0.00015	

-2.00	 -1.50	 -1.00	 -0.50	 0.00	 0.50	 1.00	 1.50	

Cu
rr
en

t	(
A)
	

V	vs	Ag/AgNO3	

Fc/Fc+	0.116	V	



 

 

 

181 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Appendix Figure 2: A) UV-vis absorbance spectra of a 2x10-3 M solution of Ni(3-
CF3PyS)3

-  in 1:1 H2O/EtOH as it is titrated with 0.1 M aqueous HCl to yield Ni(3-
CF3PyS)3H. B) plot of the ratio of the absorbance at λmax for Ni(3-CF3PyS)3

-/Ni(3-
CF3PyS)3H vs pH. C) Cyclic voltammograms of a 1.4 x 10-3 M Ni(3-CF3PyS)3

- in 
dry/degassed acetonitrile taken at a scan rate of 500mV/s starting at 0 V vs Ag+/AgNO3 
and D) plot of icat/ip vs [4-cyanoanilinium]  
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Appendix Figure 3: A) UV-vis absorbance spectra of a 2x10-3 M solution of Ni(5-
CF3PyS)3

-  in 1:1 H2O/EtOH as it is titrated with 0.1 M aqueous HCl to yield Ni(5-
CF3PyS)3H B) plot of the ratio of the absorbance at λmax for Ni(5-CF3PyS)3

-/Ni(5-
CF3PyS)3H vs pH C) Cyclic voltammograms of a 6.2 x 10-3 M Ni(5-CF3PyS)3

- in 
dry/degassed acetonitrile taken at a scan rate of 500mV/s starting at 0 V vs Ag+/AgNO3 
and D) plot of icat/ip vs [4-cyanoanilinium]  
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Appendix Figure 4: A) UV-vis absorbance spectra of a 1.1x10-4 M solution of Ni(6-S-3-
COOHPyS)3

- in 1:1 H2O/EtOH as it is titrated with 0.1 M aqueous HCl to yield Ni(6-S-3-
COOHPyS)3H B) plot of the ratio of the absorbance at λmax for Ni(6-S-3-COOHPyS)3

-

/Ni(6-S-3-COOHPyS)3H vs pH C) Cyclic voltammograms of a 1.2 x 10-3 M Ni(6-S-3-
COOHPyS)3

- in dry/degassed acetonitrile taken at a scan rate of 500mV/s starting at 0 V 
vs Ag+/AgNO3 and D) plot of icat/ip vs [4-cyanoanilinium]  
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Appendix Figure 5: A) UV-vis absorbance spectra of a 1.2x10-4 M solution of Ni(2-S-3-
COOHPyS)3

-  in 1:1 H2O/EtOH as it is titrated with 0.1 M aqueous HCl to yield Ni(2-S-
3-COOHPyS)3H B) plot of the ratio of the absorbance at λmax for Ni(2-S-3-COOHPyS)3

-

/Ni(2-S-3-COOHPyS)3H vs pH C) Cyclic voltammograms of a 1.0 x 10-3 M Ni(2-S-3-
COOHPyS)3

- in dry/degassed acetonitrile taken at a scan rate of 500mV/s starting at 0 V 
vs Ag+/AgNO3 and D) plot of icat/ip vs [4-cyanoanilinium] 
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Appendix Figure 6: A) UV-vis absorbance spectra of a 1x10-6 M solution of Ni(5-
ClPyS)3

-  in 1:1 H2O/EtOH as it is titrated with 0.1 M aqueous HCl to yield Ni(5-
ClPyS)3H B) plot of the ratio of the absorbance at λmax for Ni(5-ClPyS)3

-/Ni(5-ClPyS)3H 
vs pH C) Cyclic voltammograms of a 0.7 x 10-3 M Ni(5-ClPyS)3

- in dry/degassed 
acetonitrile taken at a scan rate of 500mV/s starting at 0 V vs Ag+/AgNO3 and D) plot of 
icat/ip vs [4-cyanoanilinium]  
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Appendix Figure 7: A) UV-vis absorbance spectra of a 1x10-6 M solution of Ni(6-
CH3PyS)3

- in 1:1 H2O/EtOH as it is titrated with 0.1 M aqueous HCl to yield Ni(6-
CH3PyS)3H B) plot of the ratio of the absorbance at λmax for Ni(6-CH3PyS)3

-/Ni(6-
CH3PyS)3H vs pH C) Cyclic voltammograms of a 1.0 x 10-3 M Ni(6-CH3PyS)3

- in 
dry/degassed acetonitrile taken at a scan rate of 500mV/s starting at 0 V vs Ag+/AgNO3 
and D) plot of icat/ip vs [4-cyanoanilinium]. 
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Appendix Figure 8: Cyclic voltammograms of Ni(6-CH3PyS)3
- in 1:1 H2O/EtOH, using 

LiCl and ferrocene, with a glassy carbon working electrode, platinum coil counter 
electrode and silver wire pseudo reference electrode. Increasing additions of HCl (dotted) 
and DCl(solid) were made and resulted in a thermodynamic shift of E0 (starting with 
1,2,3 equivalents and subsequently increasing to 2 equivalent jumps) thus showing both 
catalytic wave and kinetic isotope effects. 
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Appendix Figure 9: Normalized UV-vis absorbance spectra for compounds A) Ni(3-
CF3PyS)3

- B) Ni(5-CF3PyS)3
- C) Ni(6-S-3-COOHPyS)3

- D) Ni(2-S-3-COOHPyS)3
-- E) 

Ni(5-ClPyS)3
- and F) Ni(6-CH3PyS)3

- in 1:1 H2O/EtOH. Panel A shows the fully 
protonated spectra obtained by adding excess 1 M aqueous HCl and panel B shows the 
fully deprotonated spectra obtained by adding excess 1 M aqueous NaOH. 
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Appendix Figure 10: Cyclic voltammograms of a solution of catalyst in dry/degassed 
acetonitrile with TBAF A) Ni(3-CF3PyS)3

- B) Ni(5-CF3PyS)3
- C) Ni(6-S-3-COOHPyS)3

- 
D) Ni(2-S-3-COOHPyS)3

- E) Ni(5-ClPyS)3
- and F) Ni(6-CH3PyS)3

-  without 4-
cyanoanilinium (black), with 1 equivalent of 4-cyanoanilinium (red) and with excess 4-
cyanoanolinium (blue) at the following equivalents of acid relative to the complex: A) 41, 
B) 25, C) 15, D) 12, E) 23, F) 19. 
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Appendix Figure 11: Optimized structures of the twice protonated intermediate in a 
CCEE mechanism with corresponding calculated pKa values for protonation at the 
nitrogen atom positioned either cis or trans to the originally protonated nitrogen. 
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Appendix Table 1: Computed pKa values for the second protonation event in a CECE 
mechanism. 

	Second	Protonation		
Compound	 L/C	pKa	 L/R	pKa	 C/L	pKa	 C/R	pKa	 R/L	pKa	 R/C	pKa	 L/M	 C/M	 R/M	

Ni(3-CF3PyS)2(PyS)-	[L]	 11.51	 9.65	 -	 -	 -	 -	 0.95	 -	 -	
Ni(3-CF3PyS)2(PyS)-	[C]	 12.82	 10.46	 11.51	 11.33	 11.60	 14.30	 -0.83	 -1.46	 1.13	
Ni(3-CF3PyS)2(PyS)-	[R]	 -	 -	 -	 -	 9.77	 12.11	 -	 -	 1.40	

Ni(PyS)2(3-CF3PyS)-	[L]	 13.24	 13.83	 -	 -	 9.99	 14.65	 1.02	 -	 3.55	
Ni(PyS)2(3-CF3PyS)-	[C]	 11.67	 13.50	 -	 -	 14.80	 12.37	 4.19	 -	 -	
Ni(PyS)2(3-CF3PyS)-	[R]	 13.76	 11.68	 -	 -	 13.06	 14.53	 4.19	 -	 -	

Ni(PyS)2(6-CH3PyS)-	[L]	 14.43	 -	 16.56	 14.21	 -	 -	 1.39	 2.20	 -	
Ni(PyS)2(6-CH3PyS)-	

[C]	 -	 13.83	 15.84	 13.53	 11.73	 14.45	 6.77	 1.38	 1.10	
Ni(PyS)2(6-CH3PyS)-	

[R]	 14.53	 16.55	 14.59	 15.19	 14.56	 14.16	 (S)	8.32	 (S)	9.25	 1.53	

Ni(6-CH3PyS)2(PyS)-	[L]	 -	 -	 15.87	 16.53	 -	 -	 -	 3.61	 -	
Ni(6-CH3PyS)2(PyS)-	[C]	 15.85	 16.58	 16.87	 18.64	 17.66	 16.24	 3.65	 -	 3.91	
Ni(6-CH3PyS)2(PyS)-	

[R]	 16.52	 15.80	 16.82	 14.85	 -	 -	 3.60	 (S)	10.09	 -	
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Appendix Table 2:  Computed values for E0 for the second reduction event in a CECE 
mechanism. 

	Second	reduction	potentials	

Compound	 L/C	E0	 L/R	E0	 C/L	E0	 C/R	E0	 R/L	E0	 R/C	E0	 L/M	E0	 C/M	E0	 R/M	E0	
Ni(3-CF3PyS)2(PyS)-	[L]	 -2.04	 -1.56	 -	 -	 -	 -	 -1.13	 -	 -	
Ni(3-CF3PyS)2(PyS)-	[C]	 -2.04	 -1.98	 -2.04	 -2.00	 -2.04	 -	 -1.10	 -0.82	 -1.13	
Ni(3-CF3PyS)2(PyS)-	[R]	 -	 -	 -	 -	 -1.92	 -2.03	 -	 -	 -1.15	

Ni(PyS)2(3-CF3PyS)-	[L]	 -1.98	 -2.02	 -	 -	 -1.88	 -2.34	 -1.17	 -	 -1.03	
Ni(PyS)2(3-CF3PyS)-	[C]	 -2.01	 -2.27	 -	 -	 -2.33	 -1.99	 -1.03	 -	 -	
Ni(PyS)2(3-CF3PyS)-	[R]	 -2.28	 -2.02	 -	 -	 -2.04	 -2.06	 -0.96	 -	 -	

Ni(PyS)2(6-CH3PyS)-	[L]	 -2.40	 -	 -2.40	 -2.34	 -	 -	 -1.08	 -1.28	 -	
Ni(PyS)2(6-CH3PyS)-	[C]	 -	 -	 -1.95	 -1.85	 -2.29	 -2.36	 -1.04	 -1.09	 -1.13	
Ni(PyS)2(6-CH3PyS)-	[R]	 -2.36	 -2.39	 -	 -2.39	 -2.43	 -2.33	 -	 -	 -1.25	

Ni(6-CH3PyS)2(PyS)-	[L]	 -	 -	 -2.31	 -1.92	 -	 -	 -	 -1.23	 -	
Ni(6-CH3PyS)2(PyS)-	[C]	 -1.87	 -2.80	 -2.31	 -1.93	 -2.77	 -1.93	 -1.23	 -1.44	 -1.19	
Ni(6-CH3PyS)2(PyS)-	[R]	 -1.97	 -1.98	 -1.97	 -2.32	 -	 -	 -1.23	 -1.59	 -	
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Appendix Figure 12:  Absorbance spectra for solutions of Ni(3-CF3PyS)3
-, Ni(3-

CF3PyS)2(PyS)- and Ni(PyS)2(3-CF3PyS)- in 1:1 H2O/EtOH. 
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Appendix Figure 13: Cyclic voltammetry traces in the absence of acid (black trace) and 
in the presence of 4-cyanoanilinium (blue trace) for A) Ni(3-CF3PyS)2(PyS)- B) 
Ni(PyS)2(3-CF3PyS)- C) Ni(PyS)2(6-CH3PyS)- and D) Ni(6-CH3PyS)2(PyS)-. 
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Appendix Figure 14: Ni(3-CF3PyS)2(PyS)- series A) and C) absorbance ratio of 
protonated and deprotonated catalyst as a function of pH where inflection point is used 
to determine pKa B) and D) UV-vis absorbance spectra. 
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Appendix Figure 15: Ni(6-CH3PyS)2(PyS)- data A) absorbance ratio of protonated 
and deprotonated catalyst as a function of pH where inflection point is used to 
determine pKa B) UV-vis absorbance spectra. 
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Appendix Figure 16: Ni(PyS)2(3-CF3PyS)- data for A) absorbance ratio of protonated 
and deprotonated catalyst as a function of pH where inflection point is used to determine 
pKa B) UV-vis absorbance spectra. 
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Appendix Figure 17: Cyclic voltammetry traces with 10-3 M 4-cyanoanilinium (black 
trace) and with 2.2 x 10-2 M 4-cyanoanilinium (blue trace) for A) Ni(3-CF3PyS)2(PyS)- 
B) Ni(PyS)2(3-CF3PyS)- C) Ni(PyS)2(6-CH3PyS)- and D) Ni(6-CH3PyS)2(PyS)-. 
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Appendix Figure 18: Mass spectra for A) Ni(6-CH3PyS)2(PyS)- B) Ni(PyS)2(6-
CH3PyS)- C) Ni(PyS)2(3-CF3PyS)- D) Ni(3-CF3PyS)2(PyS)-. Spectra were recorded on a 
thermal electron LTQ-Orbitrap Discovery high-resolution mass spectrometer with 
negative mode ESI.  
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Appendix Figure 19: Size distribution of NiNPs as determined through TEM. 
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Appendix Figure 20: Dynamic Light Scattering (DLS) data of NiNPs coated with PVP. 
DLS measurements were performed on a Horiba LB-550 DLS instrument. A 
concentrated 100 µL sample of Ni NPs was added to 2 mL of DI water. The dispersion 
was then sonicated, passed through a 0.2 µm PTFE syringe filter, and sonicated in the 
measurement cuvette before measurement. 
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Appendix Figure 21: 1H NMR in D2O of A) citric acid B) CQDs after 5 hours of heating 
at 180°C and C) CQDs after 24 hours of heating at 180°C. 
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Appendix Figure 22: 13C NMR in H2O of CQDs after 24 hours of heating at 180°C. 
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Appendix Figure 23: FTIR spectrum of uncoated CQDs. 
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Appendix Figure 24: Electron Dispersive X-Ray (EDX) mapping of NiNP 
microstructures (coated with PVP). All scale bars are 250 nm. 
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Appendix Table 3: Change in QY as excitation wavelength is shifted bathochromically. 
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Appendix Figure 25: A) Emission spectrum of CQDs (68 µg/mL) with excitation at 360 
nm (red). Emission spectrum showing decrease in emission following addition of 100 µL 
NiNPs (6 µg/mL) (green) and subsequent spectrum showing increase in emission 
following addition of 500 µL of a 1.0 x 10-3M PVP solution (blue). All solutions are in 
1:1 H2O/EtOH. B) Plot of I0/I using λmax  of the CQDs as I0 and λmax  as I following the 
addition of NiNPs and PVP. 
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Appendix Figure 26: Change in emission intensity (I0) of CQDs as a function of added 
quencher, I0/I vs mols of quencher for A) TEA, B) AA (N/A) C) TEOA, and D) EDTA.  
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Appendix Figure 27: CQD emission quenching (4 mg CQD in 10 mL 1:1 H2O/EtOH) 
using A) TEA, 50 µmol aliquots B) AA, 1 µmol aliquots C) TEAO, 19 mmol aliquots D) 
EDTA (10 µmol additions) E) NiNPs (30 µg additions). 
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Appendix Figure 28: A) Quenching of CQD (4 mg in 10 mL 1:1 H2O/EtOH) emission 
by 0.01 mol aliquots of methyl viologen B) Reduction of methyl viologen by CQDs using 
360 nm irradiation.  
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