
Portland State University
PDXScholar
Engineering and Technology Management Student
Projects Engineering and Technology Management

Spring 2018

Technological Evolution in Software Engineering
Cody Miller
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/etm_studentprojects

Part of the Software Engineering Commons, and the Technology and Innovation Commons

This Project is brought to you for free and open access. It has been accepted for inclusion in Engineering and Technology Management Student Projects
by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Citation Details
Miller, Cody, "Technological Evolution in Software Engineering" (2018). Engineering and Technology Management Student Projects.
2239.
https://pdxscholar.library.pdx.edu/etm_studentprojects/2239

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PDXScholar

https://core.ac.uk/display/212628075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fetm_studentprojects%2F2239&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/etm_studentprojects?utm_source=pdxscholar.library.pdx.edu%2Fetm_studentprojects%2F2239&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/etm_studentprojects?utm_source=pdxscholar.library.pdx.edu%2Fetm_studentprojects%2F2239&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/etm?utm_source=pdxscholar.library.pdx.edu%2Fetm_studentprojects%2F2239&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/etm_studentprojects/2239
https://pdxscholar.library.pdx.edu/etm_studentprojects?utm_source=pdxscholar.library.pdx.edu%2Fetm_studentprojects%2F2239&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=pdxscholar.library.pdx.edu%2Fetm_studentprojects%2F2239&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/644?utm_source=pdxscholar.library.pdx.edu%2Fetm_studentprojects%2F2239&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/etm_studentprojects/2239?utm_source=pdxscholar.library.pdx.edu%2Fetm_studentprojects%2F2239&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

 ETM OFFICE USE ONLY

Report No.:

Type: Student Project

Note:

Technological Evolution in

Software Engineering

Course Title: Management of Tech Innovation

Course Number: 549

Instructor: Dr. Weber

Term: Spring

Year: 2018

Author(s): Cody Miller

CODY MILLER 2

Contents
Abstract .. 3

Review of Literature .. 4

Programs, Life Cycles, and Laws of Software Evolution 4

Program Maintenance .. 4

The Life Cycle ... 5

Evolution .. 6

Analysis & Findings .. 8

Software Maintenance and Evolution: A Roadmap 8

Software Maintenance ... 9

A Staged Model for Software Lifecycle 10

Analysis & Findings .. 13

The Linux kernel as a case study in software evolution 13

Research Data .. 14

Evolution of the Linux Kernel ... 14

Analysis & Findings .. 18

Conclusion ... 18

References .. 20

CODY MILLER 3

Abstract

In all software development processes, the software must evolve in response to its

environment or user needs to maintain satisfactory performance [1]. If software doesn’t

support change, it gradually becomes useless [2]. With many organizations today, being

software-centric organizations, this has huge implications for their business: evolve your

software, or risk your software becoming gradually useless, and therefore, your entire

business.

Technology Evolution is a highly relevant subject, Intel’s business model for the

last 50 years, has been that of Moore’s Law [3], a hardware centric Technology Evolution

model. As a Software Engineer at Intel, our business group faces a similar issue, we must

continually adapt, and evolve our software, in response to our customer’s needs, and

current technology trends, if we don’t evolve our software, our competitors will evolve

theirs faster, and our business group, will gradually cease to exist, without competitive,

and evolving software.

The software evolution phenomenon was first identified in the late 60s [4] though

not termed as such till 1974 [5]. The goal of this article, is to explore the current literature

on software evolution, and its impacts on software development activities, and software

organizations. As a manager, and practicing Software Engineer, software evolvability, the

ability, inter alia, for responsiveness and timely implementation of needed changes, will

play an ever increasing more critical role in ensuring the survival of a society ever more

dependent on computers [4].

CODY MILLER 4

Review of Literature

Programs, Life Cycles, and Laws of Software Evolution

 This article identifies the sources of evolutionary pressure on computer

applications(software) and shows why this results in a process of never ending

maintenance activity.

 In 1977, the total U.S. expenditure on programming is estimated to be between

50-100 billion, this represents more than 3 percent of the U.S. GNP [2]. These ever-

increasing numbers, and the rise of “Silicon Valley”, one could argue that software

effectiveness, and software evolution, is a significant component of national economic

health. As software plays an ever-increasing role in society, it becomes more critical to

create and maintain effective, cost-effective, and timely software. For more than two

decades however, the programming fraternity, and through them the computer user

community, has faced serious problems in achieving this [6].

Program Maintenance

Of the 50 – 100 billion U.S. expenditure on software in 1977, some 70 percent

was spent on program maintenance and only about 30 percent on program development.

This ratio is generally accepted by the software community as characteristic of the state

of the art [2]. To put this in perspective, software maintenance can be classified as all

changes made to a software application, after its first installation. Whereas in hardware

systems, large changes to hardware typically result in a redesign, retooling, and

construction of a new model. With software, improvements, and adaptations to the ever-

changing environment, can be achieved by alterations, deletions, and extensions of the

existing code base. Typically, new capabilities, not recognized during the development

CODY MILLER 5

phase, is added onto the existing structure, without an entire system redesign, this is what

makes software maintenance so critical, to both software development, and in turn,

software evolution.

The Life Cycle

 The dynamic, evolutionary nature of computer applications, of the software that

implements them and of the process that produces both, has in recent years given rise to a

concept of a program life cycle and to techniques for life-cycle management [2]. In

Figure 1, Boehm describes the Software Lifecycle, the first 3 phases (Systems

Requirements, Software Requirements, and Preliminary Design), occur during the

“definition” phase of software development. The “implementation” phase (Detailed

Design, Code & Debug, and Test) make up the next set of software development

activities. Lastly, we have the “maintenance” phase, which consumes some 70 percent of

software development costs, and makes up a key phase of software evolution.

CODY MILLER 6

Figure 1 - The Software Life Cycle according to Boehm

In studying program evolution, repetitive phenomena that define a life cycle

(Figure 1), can be observed on different time scales, representing various levels of

abstraction. The highest-level concerns successive generations of system sequences. Each

generation is represented by a sequence of system releases. This level corresponds most

closely to that found in the more general systems situation, with each generation having a

lifespan of from, say, five to twenty years [2]. Due to these lifespans of 5-20 years, it can

be difficult for individuals to observe this evolution, measure its dynamics, and model it

as a life cycle process.

Evolution

As shown in Figure 1, you can see how software evolution, correlates with the

software life cycle, indicating that software evolution is an intrinsic, feedback driven,

property of software. The resultant evolution of software appears to be driven and

controlled by human decision, managerial edict, and programmer judgement [2].

CODY MILLER 7

In this article, Lehman describes 5 laws, of Software Evolution [2]. These laws

are not just descriptions of the evolutionary process, these laws also represent principles

in software engineering. It is important to note, these laws are not like laws of physics, or

chemistry, they are not immutable, instead, they arise from the habits and practices of

people and organizations. The laws, therefore form an environment within which the

effectiveness of programming methodologies and management strategies and techniques

can be evaluated.

1. Continuing Change: A program that is used and that as an implementation of

its specification reflects some other reality, undergoes continual change or

becomes progressively less useful. The change or decay process continues

until it is judged more cost effective to replace the system with a recreated

version.

2. Increasing Complexity: As an evolving program is continually changed, its

complexity, reflecting deteriorating structure, increases unless work is done to

maintain or reduce it.

3. The Fundamental Law of Program Evolution: Program evolution is subject

to a dynamic which makes the programming process, and hence measures of

global project and system attributes, self-regulating with statistically

determinable trends and invariances.

4. Conservation of Organizational Stability: During the active life of a

program the global activity rate in a programming project is statistically

invariant.

CODY MILLER 8

5. Conservation of Familiarity: During the active life of a program the release

content (changes, additions, deletions) of the successive releases of an

evolving program is statistically invariant.

Analysis & Findings

This article rationalizes the widely held view, first expressed in Garmisch [7],

that there is an urgent need for a discipline of software engineering. This should enable

the cost-effective planning, design, construction, and maintenance of effective programs

that provide, and then continue to provide, valid solutions to stated (possibly changing)

problems, or satisfactory implementations of (possibly changing) computer applications

[2].

Secondly, in this article, we recognized how software evolves, through the

software lifecycle, with a large majority of evolutionary activities, and costs, occurring in

the maintenance phase of the software life cycle. Understanding that software changes,

and evolves over time, 5 laws, that appear to govern the dynamics of the evolution

process was introduced [2].

Software Maintenance and Evolution: A Roadmap

 Software maintenance and evolution are characterized by their huge cost and slow

speed of implementation. Yet they are inevitable activities – almost all software that is

useful and successful stimulates user-generated requests for change and improvements

[8]. The objective of this article, is to describe the current landscape for research into

software maintenance and evolution over the next 10 years, with the aim of improving

the speed and accuracy of change while reducing cost. This is accomplished through two

CODY MILLER 9

approaches: A new model of software evolution called the staged model is proposed.

Second, a longer term, and much more radical vision of software evolution is presented

[8].

 Software evolution lacks a standard definition, with some researchers and

practitioners using it as a substitute for maintenance. In this article, the authors refer to

maintenance as general post-delivery activities, and evolution to refer to a particular

phase, in the staged model.

Software Maintenance

 Software maintenance is defined in IEEE93 as “The modification of a software

product after delivery to correct faults, to improve performance or other attributes, or to

adapt the product to a modified environment”. ISO95, describes a similar definition, “The

software product undergoes modification to code and associated documentation due to a

problem or the need for improvement. The objective is to modify the existing software

product while preserving its integrity”. The key point here, is that both of these

definitions, show a post-delivery nature.

 A widely cited survey [9], and repeated by others in different domains, pointed to

a very high expenditure of life-cycle costs in the maintenance stage. Lientz and Swanson

further categorized the maintenance phase into four classes [9]

 Adaptive – Changes in the software environment

 Perfective – new user requirements

 Corrective – Fixing errors

 Preventative – Prevent problems in the future

CODY MILLER
1

0

Of these 4 maintenance classes, the survey showed that around 75% of

maintenance effort was spent on the first two classes, many subsequent studies, suggest a

similar problem [8]. What this study tells us, is that the incorporation of new user

requirements is the core problem for software evolution and maintenance.

 There are several implications to these results. If changes can be anticipated

during design time, they can be built in by some form of parameterization. The problem

is, many changes actually required, are ones that designers cannot even conceive. This

makes software maintenance important for two reasons:

1. It consumes a large portion of the overall lifecycle costs

2. The inability to change software quickly and reliably means that business

opportunities are lost

A Staged Model for Software Lifecycle

 The conventional lifecycle model, as described in Figure 1, is no longer useful for

modern software development. It does not help with reasoning about component-based

systems, and does not help with planning software evolution [8]. The staged model of

software lifecycle was introduced in [10], and is summarized in Figure 2.

CODY MILLER
1

1

Figure 2 - The Simple Staged Model

In the Simple Staged Model, the software lifecycle is represented as a sequence of

stages, “Initial Development” is the first stage, as shown in Figure 2. The primary

difference in this model, is the “maintenance” phase is separated into an “evolution”

stage, proceeded by “servicing, and “phase-out” stages.

CODY MILLER
1

2

The Initial Development phase, is when the 1st version of a software application is

developed. It does not need to have full features, but what will remain constant is that it

has architecture that will remain throughout the staged model. An important outcome of

this stage is the knowledge the programming team acquires, this knowledge is a crucial

prerequisite for the subsequent stage of evolution [8].

The Evolution stage, begins when the Initial Development stage is complete. The

goal of the Evolution stage, is to adapt the software to the ever-changing user

requirements and environment. The Evolution stage is also responsible for correcting

software bugs, and responds to developer, and user learning.

In business terms, the software evolves, because it is successful in the

marketplace, revenue streams are buoyant, user demand is strong, the development

atmosphere vibrant and positive, and the organization is supportive. Return on investment

is excellent [8].

Architecture, and team knowledge make software evolution possible. This allows

the team to make changes in the software, without damaging the architecture. When one

of these aspects disappears, the program is no longer evolvable, and enters the

“Servicing” stage, as shown in Figure 2. The Servicing stage, consists of very small

changes, such as, patches, and wrappers. From a business perspective, this occurs

typically when the software is no longer a core product to the business, and the cost-

benefit of changes, are much more marginal [8].

The two final stages, Phase-Out, and Close-Down. A phase-out, means the

Servicing stage has shut down, and users work around known software bugs, but the

CODY MILLER
1

3

software may still be in production. The Close-Down stage is when the software is shut

down, and users are directed towards a replacement.

Analysis & Findings

 A new software lifecycle model is proposed in this article (Figure 2), called the

Staged Model. During Initial Development of the software, the main goal of this stage is

to ensure evolution can be enabled easily, through successful knowledge transfer. This is

an organization issue, and technological problem.

 Software evolution needs to be addressed as a business issue as well as a

technology issue, and therefore is fundamentally interdisciplinary [8]. In order to make

progress, one must understand what evolution is, and how to start the process. In a

strategic sense, advancement in software architectures is a critical piece to master.

 Being able to change and evolve software easily, is a difficult challenge in the

domain of Software Engineering. Change is a constant in software, and one of the main

benefits of software, it is naïve to not think software evolution will be needed in the

future. We can expect software evolution to be positioned at the center of software

engineering [8].

The Linux kernel as a case study in software evolution

 In this case study on software evolution, the researchers look at 810 versions of

the Linux kernel, released over a period of 14 years, to understand the software’s

evolution, with Lehman’s Laws of software evolution as a basis. The objective, being to

understand if Lehman’s laws of software evolution, are reflected in the development of

the Linux kernel.

CODY MILLER
1

4

 The Linux kernel is a large, and long-lived software system, in use throughout the

world. Since version 1.0 was released in 1994, more than 800 releases have been made

since. It’s an open source project, providing data for this study of software evolution of a

nature and scale that is impossible with other, especially closed-source, systems [11].

Research Data

 All Linux releases from March 1994 to August 2008 were analyzed. This

amounted to 810 releases, with 144 production versions, and 429 development versions.

The entire source code was included in the analysis, including .h, and .c files. Both

development, and product versions were included, as most of the evolution occurs in

development versions [12].

Evolution of the Linux Kernel

Law 1: Continuing Change

 To refresh, this law states that a program that is used must be continually adapted

to changes in its usage environment, else it becomes progressively less satisfactory.

Linux software must adapt to the changing hardware environment, these changes can be

tracked to the arch subdirectory of the kernel, whereas driver changes pertaining to new

peripheral support, can be tracked in the driver’s directory. One can conclude, that code

added to these two directories, reflects adaptation to the systems changing hardware

environment [11]. A plot of how these two subdirectories grow over-time, is shown in

Figure 3 [11].

CODY MILLER
1

5

Figure 3 - The growth of source files in the arch and drivers directories as a fraction of the whole Linux system

As you can see from this chart, these two subdirectories grow over-time,

mirroring the growth of the Linux kernel as a whole. Using this data, we can therefore

assert that Linux exhibits continued change and adaptation to its environment, in

accordance with Lehman’s first law. While the original law is probably of wider scope,

then this specific example [11].

Law 2: Increasing Complexity

 Lehman’s second law, as a program evolves its complexity increases, unless work

is done to maintain it. This is a difficult law, to prove, or disprove formally, as it allows

for both trends [11]. Lehman supports this law, through rationalization, asserting that

adding features and devices becomes more complex. Given current Linux data, regarding

the Linux code growth (not necessarily a good metric to measure this), does not display

an inverse-square pattern, as claimed by Lehman.

Law 3: Self-Regulation

CODY MILLER
1

6

 Lehman’s third law, asserts that software evolution process is self-regulating,

leading to a steady trend. The existence of self-regulation in the Linux kernel, may be

established by observing growth trends, as shown in Figure 4 [11].

Figure 4 - The growth of Linux as measured by LOC and number of functions

As shown in Figure 4, exhibited growth patterns are steady, they do exhibit slight

variations, that may be described as a ripple. The data also exhibits, the occasional larger

jumps as a result of integrating a new subsystem, that was developed externally. The

smooth growth rate, may be interpreted as resulting from self-regulation, but it may also

be the result of an invariant work rate [11].

Law 4: Conservation of Organizational Stability

 In this law, Lehman states the average effective global rate of activity on an

evolving system is invariant over the life of the product. This is difficult to measure since

we wish to observe “work” on the actual project.

CODY MILLER
1

7

 Taken at face value, this law is patently false for Linux. The number of people

contributing to Linux development has grown significantly over the years, and several

companies now have dedicated employees assigned to working on them [11].

Law 5: Conservation of familiarity

 According to this law the change between successive releases is limited, to allow

developers to maintain understanding of the code base, and to allow users to still

understand the system. Findings from the Linux kernel indicate that developers familiar

with one version may expect little change in the subsequent ones, this holds true where

the system grew significantly as well, because such additions are on existing known

architectures, the knowledge base remains similar. However, when looking at changes

between successive major versions, there is significant changes, with many users opting

to stay on older versions, to maintain familiarity, and compatibility.

 Thus, we have both support for this law (as witnessed by the longevity of

production versions) and contradiction of the law (because successive production

versions with significant changes are nevertheless released) [11]. Table 1 [11],

summarizes these findings, into Lehman’s laws, and their manifestation in Linux.

Table 1 - Support for Lehman's Laws in Linux

CODY MILLER
1

8

Analysis & Findings

 The study presented here, was based on Lehman’s Laws of software evolution.

Obvious support was found for continuing growth and change, and invariant work rate.

Conservation of familiarity seems to be combined with large changes when new Linux

production versions are released. Preventative maintenance practices, seems to support

the increasing complexity law. The hardest law to measure, and justify, is the self-

regulating law, for which only anecdotal evidence is found.

 Taking a global view of Linux’s evolution, the authors find it to be a prime

example of perpetual development – a system that is developed continuously in

collaboration with its users, without elaborate specifications and planning [11]. These

results are specific to Linux; however, some observations may generalize to other

software systems as well.

Useful future research, would be to perform a similar study on a closed-source

system, in order to understand the differences in development, the problem being, finding

suitable data for such a study.

Conclusion

 In this literature review, my research focused on 3 primary sources of literature

[2], [11] [8]. A wealth of accompanying literature was reviewed, in addition to these

articles, to gain a broad perspective, on the current state of Technology Evolution within

Software Engineering. Topics ranged from Moore’s Law, to software engineering

economics, with the commonality of Technology Evolution, and Software Engineering

[1], [3], [13]–[19].

CODY MILLER
1

9

 After reading all of this literature, there were several trends observed, with respect

to Technological Evolution in Software Engineering, and most importantly, findings that

should help practicing managers, and leaders, to evolve, and better understand their

software.

 Two competing Software Development Lifecycles were proposed, the Software

Development Lifecycle as proposed by Boehm, as shown in Figure 1, and the Simple

Staged Model, as shown in Figure 2. While these models differed, there were many

commonalties shared between the two, and some differences.

Software maintenance is a critical phase in software development activities, and

the resultant evolution of the software. Not only is this a very important stage in software

development, and its subsequent evolution, it’s the costliest, and time-consuming activity

of all software activity. Across all literature, this has been a common trend, with little, to

no disagreements on the importance, and cost of software maintenance, and its role in

software evolution.

I can also back this claim up, through my own professional experience as a

Software Engineer at Intel. Our business group puts the majority of our software

engineering resources into this “software maintenance” area, and I can see how it ties into

the literature. From a business perspective, its always a battle, to determine where to

allocate your resources, the maintenance phase, or the or the definition phase (defining

future software, to eventually replace the software going through iterative maintenance,

and evolution).

To be a successful software engineering manager, it’s important to understand

Technology Evolution, and its effects on software development activities. The software

CODY MILLER
2

0

engineering landscape is a complex landscape, and better understanding concepts such as

the software development lifecycle (SDLC), Lehman’s Laws of Software Evolution, and

the importance of software maintenance on innovation, and its impact on the evolution of

software, gives the practicing manager a “toolkit” to successfully navigate this ever-

changing environment.

Technology Evolution, and its effects on Software Evolution, is not just some

buzz-word, or academic only concept, it’s a phenomenon that is occurring on a daily

basis, across all facets of software engineering, some may recognize it, others may not.

The ones that do, have a significant competitive advantage over others that don’t. There

is one thing that’s certain in today’s business environment: evolve your software, or risk

your software becoming gradually useless, and therefore, your entire business going out.

References

[1] S. Murer, C. Worms, and F. J. Furrer, “Managed Evolution,” Informatik-Spektrum,

vol. 31, no. 6, pp. 537–547, Dec. 2008.

[2] M. M. Lehman, “Programs, life cycles, and laws of software evolution,” Proc.

IEEE, vol. 68, no. 9, pp. 1060–1076, 1980.

[3] E. Mollick, “Establishing Moore’s Law,” IEEE Ann. Hist. Comput., vol. 28, no. 3,

pp. 62–75, Jul. 2006.

[4] M. M. Lehman and J. F. Ramil, “Software evolution—Background, theory,

practice,” Inf. Process. Lett., vol. 88, no. 1–2, pp. 33–44, Oct. 2003.

[5] M. M. Lehman, “Programs, Cities, Students— Limits to Growth?,” in

Programming Methodology, New York, NY: Springer New York, 1978, pp. 42–

CODY MILLER
2

1

69.

[6] E. J. Goldberg, “High Cost of Software,” (Naval Post-grad. Sch. Monterey, CA), p.

138 pp, 1973.

[7] I. NATO Conference on Software Engineering Techniques (1969 : Rome, J. N.

Buxton, 1936- Brian Randell, and N. S. Committee., “Software engineering

techniques : report on a conference sponsored by the NATO Science Committee,

Rome, Italy, 27th to 31st October 1969.”

[8] K. Bennett, V. R. the F. of S. Engineering, and undefined 2000, “Software

maintenance and evolution: a roadmap,” dl.acm.org.

[9] B. P. Lientz and A. E. Burton, Swanson, Software maintenance management : a

study of the maintenance of computer application software in 487 data processing

organizations. 1980.

[10] K. H. Bennett, V. T. Rajlich, and N. Wilde, “Software Evolution and the Staged

Model of the Software Lifecycle,” 2002, pp. 1–54.

[11] A. Israeli and D. G. Feitelson, “The Linux kernel as a case study in software

evolution,” J. Syst. Softw., vol. 83, no. 3, pp. 485–501, Mar. 2010.

[12] Thomas and L. Gray, “An analysis of software quality and maintainability metrics

with an application to a longitudinal study of the linux kernel,” 2008.

[13] B. Boehm, Software engineering economics. 1981.

[14] R. Garud and M. A. Rappa, “A Socio-Cognitive Model of Technology Evolution:

The Case of Cochlear Implants,” Organ. Sci., vol. 5, no. 3, pp. 344–362, Aug.

1994.

[15] R. Kapoor and P. J. McGrath, “Unmasking the interplay between technology

CODY MILLER
2

2

evolution and R&D collaboration: Evidence from the global semiconductor

manufacturing industry, 1990–2010,” Res. Policy, vol. 43, no. 3, pp. 555–569,

Apr. 2014.

[16] “Software technology evolution helps streamline offshore engineering:

EBSCOhost.”

[17] R. P. de Oliveira and E. S. de Almeida, “Evaluating Lehman’s Laws of Software

Evolution for Software Product Lines,” IEEE Softw., vol. 33, no. 3, pp. 90–93,

May 2016.

[18] Y. Dong, M. Candidate, and S. Mohsen, “Does Firefox obey Lehman’s Laws of

software Evolution?”

[19] M. W. Godfrey and D. M. German, “On the Evolution of Lehman’s Laws,” J.

Softw. Evol. Proc, vol. 0000, no. 00, pp. 1–7.

	Portland State University
	PDXScholar
	Spring 2018

	Technological Evolution in Software Engineering
	Cody Miller
	Let us know how access to this document benefits you.
	Citation Details

	Technological Evolution in Software Engineering

