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Abstract 

Endoribonuclease toxins (ribotoxins) are produced by bacteria and fungi to respond to stress, eliminate non-self 

competitor species, or interdict virus infection. PrrC is a bacterial ribotoxin that targets and cleaves tRNALys
UUU in the 

anticodon loop. In vitro studies suggested that the post-transcriptional modification threonylcarbamoyl adenosine 

(t6A) is required for PrrC activity but this prediction had never been validated in vivo. Here, by using t6A-deficient yeast 

derivatives, it is shown that t6A is a positive determinant for PrrC proteins from various bacterial species. 

Streptococcus mutans is one of the few bacteria where the t6A synthesis gene tsaE (brpB) is dispensable and its 

genome encodes a PrrC toxin. We had previously shown using an HPLC-based assay that the S. mutans tsaE mutant 

was devoid of t6A. However, we describe here a novel and a more sensitive hybridization-based t6A detection method 

(compared to HPLC) that showed t6A was still present in the S. mutans ∆tsaE, albeit at greatly reduced levels (93% 

reduced compared to WT). Moreover, mutants in two other S. mutans t6A synthesis genes (tsaB and tsaC) were 

shown to be totally devoid of the modification thus confirming its dispensability in this organism. Furthermore, 

analysis of t6A modification ratios and of t6A synthesis genes mRNAs levels in S. mutans suggest they may be regulated 

by growth phase. 

Keywords 

RNA maturation, translation, modified nucleosides, t6A detection 
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Abbreviations 

t
6
A or t

6
A37 threonylcarbamoyladenosine 

ASL Anticodon Stem Loop 

TCTC ThreonylCarbamoyl Transferase Complex 

Introduction 

tRNA molecules are heavily modified post-transcriptionally to ensure translational accuracy and cell survival1. 

tRNA Anticodon Stem Loops (ASLs) (Figure 1) make excellent targets for ribotoxins (or anticodon nucleases, ACNases) 

in toxin/antitoxin (TA) modules that can be utilized by organisms to eliminate competition or for suicidal functions 

under stress or phage attack2,3. Different ACNases have been characterized with very specific tRNA cleavage patterns. 

The Escherichia coli toxins Colicin E5 and Colicin D target tRNAs with a QUN anticodon (Q being the modified base 

Queuosine)4 and tRNAArg isoacceptors, respectively5. The Mycobacterium tuberculosis toxin VapC-mt4 targets 

tRNAAla
UGC, tRNASer

GCU and tRNASer
GGA

6, while the enteric VapC proteins target tRNAiniMet
CAU

7. MazF-mt9, from the same 

organism, targets the ASL of tRNALys
UUU

8. Whereas none of these toxins require the presence of tRNA modifications for 

cleavage, there are other ACNases for which activity is dependent on such modifications. For example, the PaT toxin 

from Pichia acacia targets the methyl group of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U34) containing 

tRNAGln
UUG, as evidenced by the resistance of the mcm5s2U34 deficient Saccharomyces cerevisiae trm9∆ strain9. 

Another example is the γ-toxin from Kluyveromyces lactis, which recognizes the wobble modification mcm5U of 

tRNAGlu
UUC

10. 

One of the first identified ACNases was E. coli PrrC (PrrCEc)
11. Infection of E. coli by bacteriophage T4 activates 

PrrC, which then cleaves the ASL of tRNALys
UUU to disrupt translation of late T4 proteins (primarily structural and 

assembly viral proteins)12 and contain the infection in a suicidal gesture2,13. PrrC has been shown to cleave native 

tRNALys
UUU in vitro but not the corresponding unmodified transcript14–16, leading to the hypothesis that a post-
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transcriptional modification on tRNALys
 was a requirement for PrrC activity. Two complex post-transcriptional 

modifications are found in the ASL of tRNALys in both E. coli and S. cerevisiae17. First, the U at position 34 is modified to 

5-methylaminomethyl-2-thiouridine (mnm5s2U) in E. coli and to 5-methoxycarbonylmethyluridine (mcm5U) in S. 

cerevisiae. Second, the A at position 37 is modified to threonylcarbamoyl adenosine (t6A) in both organisms (Figure 1). 

In some organisms, t6A is further modified into complex derivatives such as cyclic-t6A (ct6A), N6-methyl-t6A (m6t6A)6,7 

and 2-methylthio-t6A (ms2t6A)18. Unlike the γ-toxin from K. lactis, PrrC was still toxic when expressed in S. cerevisiae 

elp3Δ and trm9Δ derivatives (lacking mcm5U34)16. This left the t6A modification of tRNALys as a logical candidate for the 

missing positive determinant for cleavage by PrrC. 

t6A is one of the few universal modifications on the ASL found in most tRNAs that decode ANN codons17. The t6A 

synthesis pathway has recently been elucidated in all domains of life (see19 for review). In bacteria, the first enzyme L-

threonylcarbamoyladenylate synthase (EC 2.7.7.87), which can be of type 1 (TsaC) or type 2 (TsaC2), produces L-

threonylcarbamoyladenylate (TC-AMP). In yeast, the equivalent protein is encoded by the TCS2 (SUA5) gene. The TC-

AMP intermediate is then used by the bacterial tRNA adenosine (37) threonylcarbamoyltransferase complex, which is 

composed of the three subunits TsaD, TsaB and TsaE to transfer the threonylcarbamoyl moiety to the target 

adenosine-37 of the target tRNA. In the yeast cytoplasm, the transferase complex is composed of the KEOPS complex 

subunits (encoded by the TCS3/KAE1, TCS5BUD32, TCS6/PCC1, TCS7CGI121, TCS8/GON7 genes) whereas TCS4 (QRI7) 

fulfills that role in yeast mitochondria. The tsaBCDE genes are generally essential in bacteria20, and in E. coli, it was 

shown that t6A is a strict determinant for the bacterial-type isoleucyl-tRNA synthetase (IleRS) and possibly for lysidine 

synthase (TilS), roles that easily explain the essentiality phenotype. However, the t6A synthesis genes can be deleted in 

some bacteria, including Streptococcus mutans, an oral pathogen that thrives in multi-species biofilms on tooth 

surfaces20. In this organism, the ∆tsaE (brpE/SMU.409) strain is viable although growth rate was affected. The mutant 

is also compromised in biofilm formation, and is more sensitive than the wild-type to low pH and oxidative stress21. 

The tsaE/brpE gene is co-transcribed in S. mutans UA159 with brpA, which encodes a surface-associated protein with 

global effects on S. mutans biofilm formation and tolerance to antibiotic, acid, and oxidative stresses22,23. In a 

systematic study of a gene deletion library of S. mutans, tsaC (SMU.1083c) was found to be dispensable and its 
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deletion also led to poor acid survival and biofilm formation deficiencies24. Using an HPLC based assay, we previously 

showed that the S. mutans ∆tsaE strain lacked t6A20, but the t6A levels in the S. mutans tsaC mutant have not been 

analyzed. More generally, the molecular rationale underlying the pH sensitivity and biofilm defects of t6A deficient S. 

mutans strains is unknown. 

Toxin/antitoxin modules such as MazE/F or RelB/E have been suggested to play a role in the survival of S. mutans 

in its harsh environment, possibly by triggering dormancy states25,26. A prrC homolog is also found in S. mutans 

(SMU.893/PrrCSm) just upstream of the relBE toxin/antitoxin genes25. The corresponding PrrCSm protein is comparably 

active as a cytotoxin in yeast as its E. coli counterpart27. However, the role of PrrC in S. mutans physiology is not clear. 

The prrC gene is co-transcribed in an operon with the genes hdsMSR that encode the subunits of the type Ic DNA 

Restriction-Modification (R-M) complex prrI28. PrrCEc is kept in an inactive state by binding to an EcoprrI/DNA complex, 

but the toxin can be activated by several mechanisms28. One such example is during infection by T4 phage, which 

results in the binding of EcoprrI by T4-encoded polypeptide STP, thus releasing active PrrCEc. Other stresses that affect 

the activity of type I DNA restriction endonucleases also appear to activate PrrCEc and possibly disable protein 

synthesis28. Although, it is known that increased levels of dTTP combined with GTP hydrolysis activates the PrrCEc 

ACNase, the triggers in other organisms such as S. mutans remain a mystery. Furthermore, it is unclear whether the 

PrrC toxin plays a role in dormancy or programed cell death (PCD), states known to be important for S. mutans 

survival29. 

In this work, we show that t6A is a positive determinant for both the E. coli and S. mutans PrrC toxins. Using a 

newly developed and more sensitive than HPLC t6A detection method (based on the previously described “positive 

hybridization in the absence of i6A37” (PHA6) assay30–32), we demonstrate that t6A is not absent in the S. mutans tsaE 

strain as previously thought, but is present at greatly reduced levels compared to wild type. The tsaC and tsaB 

mutants, however, were also viable but appeared to completely lack this modification but are still viable. We also 

showed that in S. mutans, expression of both the tsaBCE genes and t6A levels are both growth-phase dependent, 

being greatly reduced in stationary phase. 
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Results 

The modification t
6
A is a positive determinant for cleavage of tRNA by PrrC 

If t6A is a determinant for PrrC, then t6A yeast strains should be resistant to the PrrC-induced growth inhibition 

previously observed in WT cells16. To test this hypothesis, a plasmid containing the E. coli prrC gene under the control 

of galactose inducible promoter (pYCPrrCEc)
16 was transformed into wild-type (WT) and t6A deficient yeast strains. As 

shown Figure 2A, the BY4741 (pYCPrrCEc) cells did not grow in the presence of galactose whereas the t6A deficient 

tcs3Δ (pYCPrrCEc) strain grew. The tcs4Δ strain (containing a deletion for the mitochondrial-specific t6A synthesis gene 

but with a fully functional cytosolic t6A biosynthesis machinery) was sensitive to the PrrC toxin similar to that observed 

in the WT strain. The strains carrying the control vector (pRS415) showed no difference in growth between induced 

and non-induced conditions. 

A difficulty when working with most t6A deficient yeast strains is their poor growth on minimal media 

supplemented with carbon sources other than glucose33. The tcs8Δ strain is an exception as it is devoid of t6A but its 

growth on minimal media is robust enough for reproducible growth tests33. This strain was thus used to compare the 

toxicity of the PrrCEc and S. mutans PrrC (PrrCSm) toxins in yeast and the role of t6A in this toxicity. The empty vector 

pYCplac111 and a catalytically inactive variant of PrrCEc bearing a Lys to Ala mutation at position 46 (PrrCEc K46A)16 

were used as negative controls. As shown in Figure 2B, tcs8∆ is resistant to the expression of PrrC toxins from both E. 

coli and S. mutans while BY4741 is not. As expected, overexpression of any of the control plasmids did not affect 

growth of the BY4741or tcs8∆ strains. These results confirmed the prediction that t6A is a positive determinant for the 

PrrC toxins from both E. coli and S. mutans. 

Development of a sensitive hybridization based t6A detection assay 

To explore the role of t6A in S. mutans physiology, a more sensitive detection assay was required. Inspired by the 

assay developed for the detection of i6A by Northern blot (PHA6)30, a Northern blot assay was developed for the 

detection of t6A34. The premise of the assay is based on the carbamoylthreonyl group preventing hybridization of an 

ASL probe spanning position 37 (Figure 1). It is predicted that the extent of hybridization will increase as the levels of 
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t6A modification decrease. A probe spanning the TΨC loop of the tRNA can be used as an internal control for tRNA 

quantification. For this assay, purified bulk tRNAs were spotted and cross-linked onto neutral nylon membranes and 

detected with biotinylated probes (Table S1) to allow detection with streptavidin-labeled Horseradish Peroxidase 

(HRP). 

tRNA extracted from yeast BY4741, tcs2∆, tcs4∆, and tcs3∆ strains, were spotted onto nylon membranes in 

duplicate. One membrane was treated with a biotinylated probe annealing to the TΨC loop and the second 

membrane was treated with the ASL probe for tRNAIle
IAU. As shown in Figure 3A, only tRNAs from t6A deficient strains 

tcs2∆ and tcs3∆ hybridized with the ASL probe, while no hybridization is observed with BY4741 and minimal 

hybridization with tcs4∆. tRNAs from all strains hybridized with the TΨC probe showing relative quantities of tRNAs 

spotted on the membrane. These results are consistent with t6A detection via HPLC33. The limit of detection of this 

method for yeast bulk tRNA was found to be 10 ng (Figure 3B). 

This assay was then extended to tRNAs from the bacterial model E. coli and to different tRNA isoacceptors. t6A 

is essential in E. coli making it impossible to isolate tRNAs from a t6A deficient strain, therefore in vitro transcribed 

tRNA was used as negative control using probes specific for tRNAIle
GAU and tRNAThr

GGU. As shown Figure 3C, both wild 

type and in vitro transcribed tRNAs anneal to the TΨC probe, while only the transcripts anneal to the ASL probe. 

Similar results were obtained with probes specific for with E. coli tRNAThr
GGU. This new assay was named Positive 

Hybridization in the Absence of t6A, or PHAt6A Assay. This method allows one to detect t6A in specific tRNAs with a 

sensitivity that now allows the exploration of the role of t6A in bacterial physiology generally, and more specifically in 

S. mutans. 

t6A is not essential is S. mutans but the tsaE mutant does contain residual amounts of the modification 

Previous analysis of bulk tRNA extracted from the S. mutans ∆tsaE strain using HLPC indicated that no t6A was 

present in that background20. However, when using the PHAt6A method with probes specific for S. mutans tRNAIle
GAU, 

faint annealing was observed, which made us consider that t6A may still be present (Figure 4A). To investigate this 

result further, each corresponding tRNA preparation was analyzed by mass spectrometry (MS), which demonstrated 
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that t6A was present in the ∆tsaE strain but in lower amounts (~7% t6A modified) than the wild-type (Figure 4B and 

Figure S1A). This result made us question our prior conclusions on the dispensability of t6A in S. mutans20. We 

therefore obtained the S. mutans UA159 ∆tsaC and ∆tsaB strains (kind gift from Robert Quivey, University of 

Rochester)24, and analyzed t6A levels using PHAt6A with the probe targeting tRNAIle
GAU. As shown in Figure 4C, strong 

annealing of the ASL probe was observed in the tRNA extracted from the ∆tsaC and ∆tsaB strains but also from the 

∆tsaE mutant. This ambiguity in the PHAt6A necessitated MS analysis (Figure 4B) of the tRNA samples. Indeed ∆tsaC 

and ∆tsaB are devoid of t6A while ∆tsaE maintains trace amounts of t6A modified tRNA. With only ~7% of the WT t6A 

levels present in the ∆tsaE strain, we are at the limit of the detection of the PHAt6A modification and under the limit 

of regular HPLC20. Among the platforms for t6A detection, only MS offers the sensitivity to detect such low levels of 

the modification. 

We extended the method to other S. mutans tRNAs and found that tRNAiniMet
CAU, a tRNA known to not be t6A 

modified in bacteria35, showed reduced annealing in the ∆tsaE strain compared to WT. This suggests tsaE might play a 

role in tRNA discrimination in the t6A insertion machinery. It is possible that tRNAiniMet
CAU is targeted for t6A 

modification by mistake when tsaE is absent. Further analysis is required to fully elucidate this observation. 

Analysis of tsaBCDE expression levels and t6A content in S. mutans in different growth conditions 

At the time of the analysis (March 2017 release), 22 transcriptomics experiments for the S. mutans U159 strain had 

been integrated in the PATRIC36 and 25 in the Microbesonline databases37. Using the transcriptomics heatmap analysis 

tools of pathway databases, we surveyed expression profiles of prrC (SMU.893) and of the four t6A synthesis genes 

(tsaC/SMU.1083c; tsaB/SMU.385; tsaD/SMU.387; tsaE/SMU.409) and found a few conditions where these genes were 

differentially-expressed, such as biofilm vs. planktonic growth or when co-cultured with other oral bacteria (Table S2). 

As mentioned above, the available transcriptomic data did suggest that the genes encoding for the t6A 

synthesis proteins might be differentially expressed in biofilm vs planktonic growth. To explore this further, cells were 

grown in rich (BHI) media and in semi-defined media containing sucrose (which promotes biofilm growth)38. Cells 

were harvested from these two culture conditions at 4 different growth phases: early exponential (4 h growth), mid 
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exponential (6 h growth), late exponential (8 h growth), and stationary phase (12 h growth) (Figure S2). tRNA was 

extracted from cells harvested from each growth phase and growth condition, and analyzed via PHAt6A and by LC-

MS/MS. The PHAt6A shows an increase in signal in the ASL from early exponential (4 h) to stationary phase (12 h) 

(Figure 5), suggesting that t6A levels decrease in a growth-phase dependent manner. The samples were analyzed via 

MS on two separate occasions and both analysis showed a similar trend of decreasing t6A levels along the growth 

curve for both BHI and biofilm media. However, there is no statistically significant difference in the degree of t6A 

modification for each of these time points (Figure S3). This seeming disparity in results between the two methods 

arises from the scope of each analysis. MS quantifies t6A modification from all tRNA isoacceptors where subtle 

variations in t6A levels of a few tRNA species may be undetectable. In contrast, PHAt6A reports only on a specific tRNA 

species allowing for isoacceptor-specific monitoring of t6A levels. Expression of prrC and of the t6A biosynthesis genes 

were also measured by quantitative real-time PCR (qPCR) in the same set of biological samples. Expression of the t6A 

synthesis genes correlated well with the PHAt6A results, whereby expression of most t6A biosynthesis genes and of 

prrC decreased during stationary phase in both BHI and biofilm media (Figure 6A). The only exception to this pattern 

was in tsaD expression, which increased in stationary phase relative to exponential growth phase. The same pattern 

of growth phase dependent gene expression was observed in both BHI and biofilm media cultures (Figure 6A). 

Moreover, when directly comparing expression of each gene between growth conditions at each time point (Figure 

6B), stationary phase tsaC expression was increased 2.5-fold in biofilm media relative to BHI. 

Discussion 

Recent studies in different model organisms have shown that levels of tRNA modification levels can be fine-tuned to 

specifically regulate the translation efficiency of specific genes39,40. To date, no such regulation has been observed 

with t6A dependent codons, and it is not known whether t6A levels are regulated in any model system. Indeed, the 

identity of the complete set of genes involved in t6A synthesis were only discovered within the last five years41. In 

addition, the methods available for t6A detection did not allow, until very recently, any physiological studies that could 

address potential regulation mechanisms. Advances in MS analytical methods, as well as the hybridization based 
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PHAt6A assay, described in this present paper, have now solved this issue. Using these tRNA modification profiling 

platforms, the ratios of specific modifications found in bulk tRNA extracted from different conditions can be captured. 

Recent studies have shown that levels of t6A and ms2t6A vary accordingly to fluctuations in tRNA modification profiles 

in Mycobacterium tuberculosis under hypoxic conditions40, and yeast under different stress conditions43. The MS 

platform is quantitative for the total amount of t6A but is unable to discriminate between the different tRNAs. To 

identify the specific tRNA modifications in a sequence context, another MS-based platform called the RNA 

modification mapping approach can be used. This method involves base-specific RNase digestion to the 

oligonucleotide level. These RNase digestion products are separated and analyzed by LC-MS/MS from which the 

identity and site of modification can be determined44. Whereas MS-based platforms are accurate and robust, the cost 

of, and access to, such detection platforms is a major challenge. Herein lies the advantage of the PHAt6A assay, a cost-

effective and universally accessible method for t6A detection. This method allows detection of t6A levels in specific 

tRNAs in very low sample quantities (only 10 ng of bulk tRNA are required) therefore facilitating analysis of samples 

from limited biological sources. Moreover, PHAt6A enables one to survey t6A levels in many replicates over multiple 

growth conditions. In fact, this assay has already been used to monitor t6A variations in TCS3 mutants in Drosophila 

melanogaster34. With the recent discovery that mutations in the Human Tcs4 (Kae1) gene lead to severe disease45, 

methods to easily detect t6A levels in human cells could have diagnostic value. 

The PHAt6A assay was used to analyze t6A levels in different tRNAs extracted from S. mutans WT, tsaE, 

tsaC and tsaD strains and showed that: 1) t6A is dispensable in S. mutans; 2) tsaC and tsaB are strictly required for 

t6A synthesis; 3) the absence of tsaE significantly reduces the amounts of t6A, and TsaE is not strictly required for t6A 

synthesis, instead possibly playing a role in specificity (targeting the correct tRNA) or in regulation of t6A levels. 

The first study on regulation of t6A synthesis genes was recently published in the Mycobacterium tuberculosis 

model46. The tsaD, tsaB and tsaE genes are in the same operon with quite a complex regulation. Specific expression of 

tsaD was observed under a few conditions such as H2O2 exposure46. The S. mutans tsaE (brpB) gene is co-transcribed 

with the regulator gene brpA22 (Figure S4), which plays a role in resistance to various antibiotic and environmental 

stressors22,23. The S. mutans tsaB and tsaD genes are in a predicted operon that encodes a MarR-type regulator 
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(SMU.384) of unknown function37 (Figure S4). Results from available transcriptomic data (Table S2) and the qPCR 

results presented here (Figure 6 and Supplemental data 1), do suggest that the expression of S. mutans t6A genes is 

growth-phase dependent, but further experiments will be required to fully understand the nature of this regulation. 

The PrrC ACNases from E. coli or S. mutans were only toxic in yeast strains harboring t6A. Combined with the prior 

results that showed that PrrC was toxic to strains missing the mcm5U34 modification47, it is clear t6A is a positive 

determinant for PrrC. Attempts to purify recombinant WT PrrC for structure/function studies are confounded by the 

inhibition of protein synthesis elicited when PrrC begins to accumulate. The tcs8∆ yeast strain is resistant to PrrC but 

grows better than the other t6A deficient yeast strains and could be used as a host for the large-scale expression of 

the toxin. 

The presence of PrrC in S. mutans, an organism where t6A is dispensable, raises questions and avenues for 

future work. Recent single cell analysis experiments have shown that subpopulations of S. mutans cells in biofilm have 

different fates: growth, dormancy or death depending on the expression of specific toxins48. Given that both prrC and 

tsaE expression are down-regulated in a brpA mutant (Table S2) and BrpA is thought to respond to cell envelope 

stress22, could downregulation of t6A levels protect a subpopulation from stress-induced PrrC? Further studies are 

required to explore the physiological role of PrrC in S. mutans and involvement of t6A in mechanisms of toxin 

resistance. 

Methods 

Strains and Growth Conditions 

A list of all organisms used in this study can be found in Table S3. Yeast strains were grown on YPD (DIFCO 

Laboratories) at 30C. Synthetic minimal media, with or without agar, with or without dropout supplements (-uracil, -

ura; -leucine, -leu; -histidine, -his) were purchased from Clontech (Palo Alto, CA) and prepared as recommended by 

the manufacturer. Glucose (Glu, 2% w/v), Glycerol (Gly, 4% w/v), 5-fluoro-orotic acid (5-FOA, 0.1% w/v) and G418 (300 

g/mL) were used when appropriate. Yeast transformations were carried out using frozen competent cells as 
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described49 with plating onto the appropriate media. E. coli strains were grown in LB (1% tryptone w/v, 0.5% yeast 

extract w/v, and 1% salt w/v; 1.5% agar w/v was added for plates) at 37 °C, unless otherwise stated. When necessary, 

LB was supplemented with kanamycin (Kn, 50 μg/mL), ampicillin (Ap, 100 μg/mL), or chloramphenicol (Cm, 35 μg/mL). 

S. mutans was grown in Brain Heart Infusion media at 37°C in a CO2 incubator. When necessary, 5 µg/µL of 

erythromycin, kanamycin (50 µg/mL), and spectinomycin was added. For phenotype screens, yeast cultures were 

grown in the media listed in the figure to saturation, washed, normalized to an OD600 of 1.0 and 5 µL of 1:10 serial 

dilutions were spotted on the listed media with the supplements listed in the figure and text. Galactose (2% w/v) and 

Raffinose (1% w/v) was added when needed. 

Bioinformatics 

Transcriptomics data was taken from the PATRIC database where as of March 2017, 22 experiments for S. mutans 

were available36. Microbesonline was also used as a resource for microarray data and operon prediction for S. 

mutans37. Resources at the National Center for Biotechnology Information (NCBI) and BLAST tools were used 50. tRNA 

gene sequences were taken from the GtRNAdb: Genomic tRNA Database51. 

Extraction of bulk tRNAs and Preparation of in vitro transcribed tRNA 

Bulk tRNA were prepared as previously described using acid buffered-phenol (phenol saturated with 50 mM 

sodium acetate, pH 5.8) and alcohol precipitation
52

. The template for producing E. coli tRNA
Ile

GAU transcript 

was produced via a Klenow extension reaction
53

 with the oligonucleotides 5'-

AATTCCTGCAGTAATACGACTCACTATAAGGCTTGTAGCTCAGGT GGTTAGAGCGC-3' and 5'-

TGGTAGGCCTGAGTGGACTTGAACCACCGACCTCACCCTT ATCAGGGGTGCGCTCTAAC-3'. The 

template for E. coli tRNA
Thr

GGU utilized the plasmid pCDI147 which had been linearized by MvaI to allow 

for run-off transcription. pCDI147 was generated using two ligation events. First, the ligation of 6 

oligonucleotides 5'-AGCTTTAATA CGACTCACTATAGGGGCTGATATGGCTCAG-3', 5'-

TTGGTAGAGCGCACCCTTGGTAG GGGTGGGGTCCCCAGTTCGACTCTGGG-3', 5'-

TATCAGCACCATATGCTAGTTATTGC TCAGG-3', 5'-GATCCCTGAGCAATAACTAGC-3', 5'-
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ATATGGTGCTGATACCCAGAGTC GACTGGGGACCCCACCCCTACCAAGGG-3', and 5'-

TGCCTCTACCAACTGAGCCATAT CAGCCCCTATAGTGAGTCGTATTAA-3'. This oligonucleotide 

was subsequently digested with BamHI/HindIII before a second ligation into a similarly treated pUC18 

plasmid to generate pCDI147. Transcription reactions were run for four hours at 37 °C in 80 mM HEPES (pH 

7.4), 2.0 mM spermidine, 24 mM MgCl2, 2.0 mM ribonucleotide triphosphates (NTPs), 3 μM template, and 

2.5 μg/mL of T7 polymerase. The RNA products generated in the transcription reactions were precipitated by 

the addition of 0.1 volume 8.0 M ammonium acetate, 3 volumes of 100% ethanol, and cooling at −80 °C for 

30 minutes, then pelleted by centrifugation at 15,000 RCF for 30 minutes at 4 °C, and resuspended in 50 mM 

HEPES (pH 7.4), 2.0 mM EDTA. The solutions were mixed 1:1 with formamide, heated at 90 °C for 5 

minutes, and snap cooled on ice before being purified via Urea-PAGE electrophoresis (10%). The RNA was 

extracted by cutting the excised band from the Urea-PAGE gel, slicing it into 1 cm cubes, followed by adding 

10 mL HEPES (pH 7.4) 2 mM EDTA per 1 g of gel. This suspension was then placed at 4 °C with agitation 

overnight. The soluble portion of the suspension was then precipitated as previously described and 

resuspended in water. The tRNA solution was then frozen at -80 °C before lyophilization. 

Positive Hybridization in the Absence of t6A Assay 

Blotting. tRNAs were diluted to the appropriate concentration (3 µg – 1ng/µL) to which 3 volumes of denaturing 

solution (500 µL formamide, 162 µL 37% formaldehyde, 100 µL RNase-free 10X MOPS) was added. tRNAs were 

denatured at 85°C for 15 min and cooled to 4°C for 2 min and the final volume was adjusted to 30 µL with 10X SSC (1.5 

M sodium chloride, 0.15 M sodium citrate). Biodyne® A membrane (Thermo Scientific) was rehydrated in 10X SSC for 

at least 10 min and placed in a dot blot vacuum manifold (Bio-Rad). Each of the wells were rinsed twice with 0.5 mL 

10X SSC before applying the denatured tRNA samples. The wells were rinsed twice with 10X SSC before removing the 

membrane from the apparatus. The membrane was dried at in an 80˚C incubator for 30 seconds followed by RNA 

crosslinking at 120 mJ/cm2 (optimal crosslink mode in Fisher Biotech UV Crosslinker FB-UV XL-1000). 

Hybridization. The membrane was rehydrated in 10X SSC for 1 minute and pre-hybridized for 30--60 min at 42°C with 

pre-warmed Dig Easy Hyb (Roche). One µL of 100 µM biotinylated probes (Listed in Table S1) per 5 cm2 membrane 
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was added to 80 µL DIG Easy Hyb and heat denatured at 95˚C for 10 minutes followed by cooling to 4°C for 2 min. The 

denatured probes were applied to the pre-hybridized membrane and incubated at 39°C for at least 16 hours with 

moderate rocking. 

Washing. Hybridization solution was poured off and two types of washes was implemented: The low stringency wash 

consists of 3 washes with wash buffer (2x SSC/0.2% SDS) for 10 min while the high stringency wash adds 1 additional 

wash at room temp for 10 min and 1 final wash at 55°C for 15 min. For S. cerevisiae tRNAIle GAU, membrane probed 

with TΨC was subjected to low stringency washing while the membrane probed with ASL required the high stringency 

wash to reduce background. For E. coli and S. mutans tRNAs, low stringency washing for both membranes were 

sufficient. Visualization was performed as described by the manufacturer of North2South Chemiluminescent 

Detection Kit (Thermo Scientific No. 17097) 

Quantitative Real-time PCR (qPCR) 

All S. mutans UA159 cultures were grown at 37 °C, 0 RPM in a 5% CO2 incubator. For each experiment, S. 

mutans was freshly streaked from a 40% (vol vol−1) glycerol stock (stored at -80ºC) onto Brain heart infusion (BHI) 

agar and grown for 48 h. A single colony was then inoculated into 40 ml BHI broth, and grown for 18 hours. For 

each growth experiment (n = 3), the S. mutans 18 hour culture was diluted to an optical density at 600 nm (OD600) 

= 0.05, in a 0.4 media/flask volume ratio, and grown in BHI or Biofilm Media containing 11 mM glucose and 10 mM 

sucrose38. Culture samples were collected from each flask at 4, 6, and 12 hours growth (corresponding to early 

exponential, late exponential, and stationary phase), harvested by centrifugation, and cell pellets were stored at  

−80 °C in RNAlater (Thermo Fisher Scientific). RNA was subsequently isolated with the RNeasy Kit (Qiagen) and 

FASTPREP lysing matrix B tubes (MP Biomedical) using previously-described methods54,55. Each RNA sample was 

then subjected to a second DNAse treatment using the TURBO DNA-free™ Kit (Thermo Fisher Scientific) per the 

manufacturer’s protocols. Lack of contaminating genomic DNA in each RNA sample was determined using PCR 

and S. mutans gyrB primers. RNA samples (0.750 µg) were subsequently converted to cDNA using the iScript Reverse 

Transcriptase kit (BioRad). Expression of genes of interest was measured in the cDNA from each sample by 
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quantitative real-time qPCR using iQ SYBR green supermix (BioRad) and the CFX Connect System (BioRad) following 

previously-published qRT-PCR protocols56. The Livak method (2ΔΔCt)57 was used to calculate the relative fold change 

between the calibrator samples (indicated in each figure legend) and test samples. Primers specific to the 

housekeeping gene gyrB (gyrB-F/gyrB-R) were used as the reference gene (Table S4). 

Mass Spectrometry 

Total tRNA samples were digested with purified RNase T1 (50 U/μg tRNA) in a 220 mM ammonium acetate buffer for 

2 h at 37°C. Samples were vacuum dried and resuspended with 10 μL mobile phase A for LC-MS/MS analysis. The 

RNase digestion products were separated on a Poroshell 120 EC-C18 column (1  50 mm and 2.7 μm pore size, column 

oven at 30 °C) using a Thermo Surveyor HPLC attached to a Thermo LTQ-XL (Thermo Scientific, Waltman, MA) linear 

ion trap mass spectrometer. Mobile phase A (MPA) consists of 8 mM TEA/200 mM HFIP, pH 7 and mobile phase B is 

50% MPA and methanol with a flow rate set at 50 μL/min. The LC gradient initiated at 10%B then increased linearly to 

60%B for 32 min, followed by 95%B for 5 min before a minimum 20 min re-equilibration period at 10%B. The source 

was set at the following conditions: capillary temperature was set at 275 °C, spray voltage of 4 kV and 35, 14 and 10 

arbitrary flow units of sheath, auxiliary and sweep gas, respectively. The mass spectra were recorded in negative 

polarity. The entire run was divided into two segments, each with five scan events. The product ion’s sequence 

information was obtained by collision induced dissociation (CID) in scan events 2--5. Data acquisition was through 

Thermo Xcalibur software. 

Analysis of t6A modifications in S. mutans grown in rich media and biofilm media 

Bulk tRNA (1 g) from each sample was hydrolyzed to ribonucleosides in a reaction containing Benzonase (0.375 U), 

calf intestine alkaline phosphatase (8.5 U), phosphodiesterase I (0.05 U), coformycin (3.5 μM; nucleobase deaminase 

inhibitor), deferoxamine (3 mM; antioxidant), butylated hydroxytoluene (0.3 mM; antioxidant) HEPES (500 mM, pH 8) 

and MgCl2 (5 mM) in a final reaction volume of 50 μl. The reaction was allowed to proceed for 2 h at 37 °C and was 

stopped by removal of the enzymes by microfiltration with 10,000 Da spin filters. Following the addition of [15N5]-2’-

deoxyadenosine as an internal standard for data normalization, ribonucleosides were resolved on a Synergy Fusion RP 
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HPLC column (2.5 μm particle size, 100 Å pore size, 100 mm length, 2 mm inner diameter; Phenomenex, Torrance, CA, 

USA) mounted on an Agilent 1290 series HPLC system equipped with a diode array detector (DAD). The 

ribonucleosides were eluted at a flow rate of 0.35 ml/min and a column temperature of 35 °C with a gradient 

consisting of 5 mM ammonium acetate (A) and acetonitrile (B) as follows: 0–1 min 100% A, 1–10 min 0–10% B, 10–

24 min 10–40% B, 24–44 min 40–80% B, and 44–49 min 100% A to regenerate the column. The column, with its eluent 

directed through the DAD to record the 260 nM absorbance of canonical ribonucleosides, was coupled to an Agilent 

6430 triple quadrupole mass spectrometer operated in positive ion mode with the following parameters: electro-

spray ionization (ESI-MS), fragmentor voltage (average) 80 V, cell accelerator voltage 2 V, N2-gas temperature 350 °C, 

N2-gas flow 10 l/min, nebulizer 40 p.s.i., capillary 3500 V. Using dynamic multiple reaction monitoring (MRM), 

modified ribonucleosides were identified based on retention time (t6A at 7.9–8.3 min) and mass transition 

(m/z 413→281 for loss of ribose from t6A). The signal for t6A was normalized by dividing by the peak area of the [15N5]-

dA standard (inter-sample variation) and by the summed MRM peak areas of the canonical ribonucleosides (input 

RNA variation). The normalized peak areas of three biological replicates were then averaged. 
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Figure 1. Mapping of nucleoside modifications and targets for oligo probes on tRNA. Modifications on positions 34 

and 37 are listed in their respective boxes. Target for ASL probe is depicted in green and target for the TΨC probe is 

depicted in red. 
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Figure 2. Resistance of t6A deficient yeast strains to PrrC toxins. A. Cytosolic tcs3∆ is resistant to PrrCEc while 

mitochondrial tcs4∆ is not. B. tcs8∆ is resistant to both PrrCEc and PrrCSm, while the PrrCEc K46A variant has no effect 

on growth. Cells were grown in synthetic minimal media containing agar and leucine dropout supplement (SD-Leu). 

Galactose (2% w/v) and raffinose (1% w/v) were added where necessary (SD-Leu Gal/Raf). Strains were incubated at 

30°C for ~72 hours. 
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Figure 3. PHAt6A assay with yeast and E. coli bulk tRNAs. A. PHAt6A with tRNA isolated from wild type yeast and t6A 

deficient strains. B. Sensitivity of the PHAt6A method using yeast tRNAs. C. PHAt6A with wild type E. coli and in vitro 

transcribed tRNAs. 

  



 

26 

 

 

Figure 4. Detection of t6A in S. mutans wild-type and mutant strains. A. PHAt6A with S. mutans ∆tsaE. B. Mass spec 

analysis of t6A modification in tRNAIle
GAU showing no t6A in ∆tsaC and ∆tsaB but trace amounts are detected in ∆tsaE. 

C. PHAt6A with t6A deficient strains ∆tsaC, ∆tsaB, ∆tsaE using oligonucleotides specific to tRNAIle
GAU. D. PHAt6A with 

wild type UA159 and ∆tsaE using probes for tRNAiniMet
CAU. 
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Figure 5. Detection of t6A in S. mutans UA159 tRNA grown in Biofilm and Rich Media. PHAt6A of tRNA isolated from 

the following time points: 4h – Early-exponential, 6h – Mid-exponential, 8h – Late-exponential, and 12h – Stationary 

phase. 
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Figure 6. S. mutans UA159 gene expression profile for ∆tsaC, ∆tsaB, ∆tsaD, ∆tsaE, and prrC genes during growth in 

Biofilm and Rich media (BHI). A. Fold change difference of each of the genes with respect to 4h time point (calibrator). 

* indicates statistical significance (P < 0.05, Student-Newman-Keuls Test) relative to calibrator sample. B. Fold change 

difference in gene expression at each time point in Biofilm media with respect to Rich media (calibrator). * indicates 

statistical significance (P < 0.05, Two-tailed T-Test) relative to calibrator sample. 
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