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THE AUXILIARY SPACE PRECONDITIONER FOR THE DE RHAM
COMPLEX\ast 

J. GOPALAKRISHNAN\dagger , M. NEUM\"ULLER\ddagger , \mathrm{A}\mathrm{N}\mathrm{D} P. S. VASSILEVSKI\S 

Abstract. We generalize the construction and analysis of auxiliary space preconditioners to the
n-dimensional finite element subcomplex of the de Rham complex. These preconditioners are based
on a generalization of a decomposition of Sobolev space functions into a regular part and a potential.
A discrete version is easily established using the tools of finite element exterior calculus. We then
discuss the four-dimensional de Rham complex in detail. By identifying forms in four dimensions with
simple proxies, form operations are written out in terms of familiar algebraic operations on matrices,
vectors, and scalars. This provides the basis for our implementation of the preconditioners in four
dimensions. Extensive numerical experiments illustrate their performance, practical scalability, and
parameter robustness, all in accordance with the theory.

Key words. regular decomposition, HX preconditioner, 4D, skew-symmetric matrix fields,
exterior derivative, proxies
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1. Introduction. The auxiliary space preconditioners for problems posed in
H(curl) and H(div), initially studied by Hiptmair and Xu [24], are now well under-
stood both theoretically and practically, in two and three space dimensions. These
preconditioners have been used for accelerating a wide variety of solution techniques,
thanks to their highly scalable parallel implementations, and are known as AMS and
ADS preconditioners (see the software libraries HYPRE [25] and MFEM [33]). The
goal of the present work is twofold. First, we generalize the mathematical design and
analysis of these preconditioners to n dimensions. Second, we provide an implemen-
tation of the preconditioners in four dimensions (4D) and detail the techniques we
used to transform 4D exterior calculus into matrix and vector operations.

An important ingredient in the analysis of the auxiliary space preconditioners
in two and three dimensions was the so-called regular decomposition, which splits a
Sobolev space function into a component of higher regularity and a scalar or vector
potential. Such decompositions were known early on [9]. But the key to the success of
the auxiliary space preconditioners was a discrete version of this decomposition found
in [24], now also known as the HX decomposition. Its practical use was elaborated
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AUXILIARY SPACE PRECONDITIONER IN n DIMENSIONS 3197

in [29] and [30], where slightly stronger results were established (using [39]) to prove
robustness of the solvers in a general setting involving a stiffness term and a mass
term weighted with a parameter. Further related interesting studies on solvers in
H(curl) and H(div) can be found in [10, 11, 48].

One of the motivations for this work, especially our 4D implementation, is the
recent increased interest in spacetime discretizations. In three space dimensions, they
yield large linear systems built on 4D meshes and discretizations. Starting as early as
the eighties, literature on spacetime methods began to accumulate [5, 6, 20, 27, 28,
45]. As methods that parallelize only spatial degrees of freedom created increasingly
larger computational bottlenecks in temporal simulations [17], the potential for higher
scalability of the spacetime methods received more attention, resulting in a resurgence
of interest in recent years [1, 6, 7, 31, 32, 35, 37, 38, 41, 42, 43, 44]. Further reasons
for pursuing spacetime discretizations, such as limited regularity [15] and spacetime
adaptivity [19], have also been noted. Among these reasons, perhaps the most relevant
to this work is the above-mentioned potential of spacetime methods to break through
temporal causality barriers when exploiting parallelism. However, this potential is
unlikely to be realized without highly scalable solvers. In turn, spacetime solvers in
4D are unlikely to be developed without a complete understanding of preconditioners
for the norm generated by each of the four canonical first order partial differential
operators in 4D. Herein lies one of our contributions. By showing how to build scalable
preconditioners for the norm of all the first order Sobolev spaces in 4D, we provide
building blocks for designing spacetime solvers.

To describe a specific scenario illustrating the need for preconditioners in 4D, re-
call that conservation laws take the form divF = 0 for some flux F depending on the
unknown fields. Here, ``div"" is the 4D spacetime divergence when the conservation
law is posed in three space dimensions. One can construct a spacetime discretization
for this equation along the lines of [38] for scalar conservation laws. The resulting
system of equations, as shown in [38], is of saddle-point form. Its leading blocks on
the diagonal correspond to bilinear forms that are equivalent to the canonical norms
arising from the 4D de Rham sequence. Therefore, a block-diagonal preconditioner
for that saddle-point system is obtained using diagonal blocks consisting of precon-
ditioners for the relevant canonical 4D norms. This shows in section 3 an immediate
impact of our preconditioners on existing work. Our later discussions on 4D imple-
mentation are also of immediate relevance to this example. Indeed, one of the solvers
considered in [38] utilizes iterations in a divergence-free space, which benefits from
explicit knowledge of that subspace. Our considerations in section 4 characterize this
subspace as Div of certain skew-symmetric matrix-valued functions (where Div de-
fined later---see (4.7)---is such that div \circ Div applied to skew-symmetric matrix-valued
functions vanishes). Beyond these comments, we shall not dwell on further details of
applications in this paper.

The remainder of the paper is structured as follows. We begin in section 2 with
the necessary background on finite element exterior calculus and introduce the regular
decomposition in n dimensions. This section also reviews a few new tools available
thanks to the recent intensive research on finite element exterior calculus, such as the
bounded cochain projections and their commutativity and approximation properties.
Section 3 introduces the auxiliary space preconditioner, which is the main object
of this study. After its definition and complete analysis, we proceed to section 4,
which specializes the discussion to 4D exterior calculus and presents techniques and
identities used for the implementation of the preconditioner and its 4D ingredients.
Section 5 contains a large set of numerical results illustrating the scalable and robust
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3198 J. GOPALAKRISHNAN, M. NEUM\"ULLER, AND P. S. VASSILEVSKI

performance of the method, all in accordance with the theory.

2. Preliminaries. We use finite element exterior calculus, for which standard
references include [4, 22]. In this section, we establish the exterior calculus notation
used in this paper and recall results pertinent to the analysis of preconditioners.

2.1. Sobolev spaces of exterior forms. First, we set notation for k-forms in
n dimensions (0 \leq k \leq n). The set of increasing multi-indices with k components is
denoted by \scrI k = \{ \alpha = (\alpha 1, . . . , \alpha k) : 1 \leq \alpha 1 < \alpha 2 < \cdot \cdot \cdot \alpha k \leq n\} . For \alpha \in \scrI k and
x = (x1, x2, . . . , xn), we abbreviate the elementary k-form dx\alpha 1 \wedge dx\alpha 2 \wedge \cdot \cdot \cdot \wedge dx\alpha k to
simply dx\alpha . The space of k-forms on Rn is denoted by �k = \{ 

\sum 
\alpha \in \scrI k

c\alpha dx
\alpha : c\alpha \in R\} 

and its dimension is nk \equiv ( nk ). Let H
s(\Omega ) denote the standard Sobolev space on any

open \Omega \subset Rn. The Sobolev space of exterior k-forms is defined by

Hs(\Omega ,�k) =

\biggl\{ 
w =

\sum 
\alpha \in \scrI k

w\alpha (x) dx
\alpha : w\alpha \in Hs(\Omega )

\biggr\} 
.

Its norm is given by

(2.1) \| w\| 2Hs(\Omega ,�k) =
\sum 
\alpha \in \scrI k

\| w\alpha \| 2Hs(\Omega ).

The above notation scheme generalizes to analogously define other spaces of forms
like L2(\Omega ,�k), C(\Omega ,�k), etc. Thus \scrD \prime (\Omega ,�k) denotes the space of k-forms whose
components \varphi i1\cdot \cdot \cdot ik are distributions in \scrD \prime (\Omega ) (where \scrD (\Omega ) is the space of smooth
compactly supported test functions). The inner product and norm of L2(\Omega ,�k) is
denoted simply by (\cdot , \cdot ) and \| \cdot \| , respectively. In either case the form degree k will
be understood from context.

Let d \equiv d(k) denote the kth exterior derivative; e.g., when applied to w = w\alpha dx
\alpha \in 

H1(\Omega ,�k), the exterior derivative dw is given by

(2.2) dw =

n\sum 
i=1

\partial iw\alpha dxi \wedge dx\alpha ,

where \partial iw\alpha is the usual ith partial derivative \partial w\alpha /\partial x
i of the scalar multivariate

function w\alpha . In three dimensions, d0 generates the familiar gradient, d1 generates
curl, and d2 generates the divergence operator. In 4D, the exterior derivative has
analogous interpretations, which are worked out in detail later in section 4.

We are interested in the Sobolev spaces

H(d,\Omega ,�k) = \{ w \in L2(\Omega ,�k) : dw \in L2(\Omega ,�k+1)\} 

normed by

\| w\| 2H(d,\Omega ,�k) = \| w\| 2 + \| dw\| 2.

Note that when k = n, this space coincides with L2(\Omega ,�n) (since d = 0 then). When
n = 3, these spaces coincide with the three familiar spaces H1(\Omega ), H(curl,\Omega ), and
H(div,\Omega ) for k = 0, 1, and 2, respectively. For n = 4, the corresponding four spaces
are studied in detail in section 4.
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AUXILIARY SPACE PRECONDITIONER IN n DIMENSIONS 3199

2.2. Regular decomposition. From now on, within this section, we tacitly
assume that \Omega is an open bounded domain that is starlike with respect to a ball
B, by which we mean that for any x \in \Omega , the convex hull of x and B is contained
in \Omega . This assumption implies that topology of \Omega is trivial, i.e., \Omega is homotopy
equivalent to a ball, and that the boundary of \Omega is Lipschitz. Under this assumption,
certain regularized versions of homotopy operators of Poincar\'e are constructed in [34]
(where they are called averaged Cartan-like operators) and [14] (where they are called
regularized Poincar\'e-type integral operators). In the proof below, we shall follow the
notation of [14] and denote these by Rk. We use them to obtain a decomposition of
H(d,\Omega ,�k) into a more regular part and a remaining potential, as stated next.

Theorem 2.1 (regular decomposition). For each integer 1 \leq k \leq n, there is a
C1 > 0 and continuous linear maps

\scrS : H(d,\Omega ,�k) \rightarrow H1(\Omega ,�k), \scrP : H(d,\Omega ,�k) \rightarrow H1(\Omega ,�k - 1)

such that for all w \in H(d,\Omega ,�k),

w = \scrS w + d\scrP w

and
\| \scrS w\| H1(\Omega ,�k) \leq C1\| dw\| , \| \scrP w\| H1(\Omega ,�k - 1) \leq C1\| w\| H(d,\Omega ,�k).

Proof. The regularized Poincar\'e-type integral operators of [14, Corollary 3.4] are
continuous linear operators Rk : L2(\Omega ,�k) \rightarrow H1(\Omega ,�k - 1) for all k = 1, 2, . . . , n  - 1
satisfying dRku + Rk+1du = u for all u \in H(d,\Omega ,�k). Moreover, the results of [14]
when k = n also yield dRnu = u. Therefore, setting \scrP = Rk and \scrS = Rk+1, the
result follows for all k = 1, 2, . . . , n  - 1. It also follows for k = n once we set \scrS = 0
and \scrP = Rn.

We note that regular decompositions were also given in [23, Theorem 5.2] and [16,
Lemma 5], but their results do not state the first inequality of Theorem 2.1, which
we need in the ensuing analysis.

2.3. Interpolation into finite element spaces. Recall the well-known finite
element subspaces [4, 22] of H(d,\Omega ,�k). Let Pr denote the space of polynomials in
n variables of degree at most r, Pr�k = \{ 

\sum 
\alpha \in \scrI k

p\alpha dx
\alpha : p\alpha \in Pr\} , and let P - 

r �k \subseteq 
Pr�k, for all integers r \geq 1, be as defined in [4, section 5.1.3]. Let \Omega h denote a
geometrically conforming shape-regular simplicial finite element mesh of \Omega . Let h
denote the maximal mesh diameter h = maxK\in \Omega h

diam(K). To simplify technicalities,
we assume that the mesh \Omega h is quasi-uniform, so the diameter of every element is
bounded above and below by some fixed constant multiples of h. The standard finite
element subspaces of H(d,\Omega ,�k), indexed by maximal mesh element diameter h, are
V

(k)
h = \{ v \in H(d,\Omega ,�k) : v| K \in P - 

r �k for all n-simplices K that are elements of

the mesh \Omega h\} . The Lagrange finite element space V
(0)
h will play a special role in our

discussions. We now introduce three operators that map various functions into V
(k)
h

that will be used in what follows.
The first operator we need is the L2 projection. Identifying the nk-fold product of

V
(0)
h as a subspace of H1(\Omega ,�k), we denote it by V

(0),k
h . Let Qh = Q

(k)
h : L2(\Omega ,�k) \rightarrow 

V
(0),k
h be defined by (Qhz, vh) = (z, vh) for all vh \in V

(0),k
h . Then it follows from [12]

that for any v \in H1(\Omega ,�k),

(2.3) | Qhv| H1(\Omega ,�k) + h - 1\| Qhv  - v\| \prec | v| H1(\Omega ,�k).
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Here and throughout, we write A \prec B to indicate that the quantities A and B satisfy
A \leq CB with a constant C that is independent of h (but may depend on the shape
regularity of \Omega h).

The next operator is the finite element interpolant \Pi h \equiv \Pi 
(k)
h , often called the

canonical interpolant. A standard set of degrees of freedom of P - 
r �k is well known

(see [4, Theorem 5.5] or [22]). It defines the canonical finite element interpolant \Pi h in
the usual way. Although the domain of \Pi h is often viewed as contained in a general
(sufficiently regular) Sobolev space, an important point of departure in this paper is
to view \Pi h as a bounded linear operator on discrete spaces, namely,

\Pi 
(k)
h : V

(0),k
h \rightarrow V

(k)
h .

Lemma 3.3 below provides continuity and approximation estimates for \Pi h on the
above domain.

Since \Pi h is, in general, unbounded on H(d,\Omega ,�k), ideas to construct bounded
projectors into V

(k)
h were proposed in [40] and its antecedents. Such projectors are

now well known [4] by the name ``bounded cochain projectors."" Denoting them by

\scrB (k)
h , we recall the standard result [4, Theorem 5.9] that \scrB (k)

h : L2(\Omega ,�k) \rightarrow V
(k)
h is a

bounded projection satisfying

\| w  - \scrB (k)
h w\| \prec hs\| w\| Hs(\Omega ,�k),(2.4a)

d\scrB (k)
h = \scrB (k - 1)

h d(2.4b)

for all 0 \leq s \leq r.
As a final note on the notation, we will omit the superscript (k) indicating the

form degree from any notation when no confusion can arise. For example, just as d

abbreviates d(k), we shall use \scrB h for \scrB (k)
h when the form degree k can be understood

from the context.

3. The preconditioner.

3.1. Definition. Let \tau > 0, and let A \equiv A(k) : V
(k)
h \rightarrow V

(k)
h denote the operator

defined by

(3.1) (A(k)u, v) = \tau (u, v) + (du, dv)

for all u, v \in V
(k)
h . Algebraic multigrid preconditioners for A(k), for any form degree

k, can be built by generalizing the ideas in [24] and [29], as we shall see in this section.
The norm generated by A is defined by \| u\| A = (Au, u)1/2. Given two closed

subspaces V,W of L2 and a linear operator R : V \rightarrow W , we use Rt : W \rightarrow V to
denote its Hilbert adjoint defined by (Rtw, v) = (w,Rv) for all w \in W and v \in V .

Let dh denote the restriction of d on V
(k)
h , i.e., dh : V

(k)
h \rightarrow V

(k+1)
h . Then its adjoint

dth : V
(k+1)
h \rightarrow V

(k)
h is calculated by the above-mentioned definition.

We define the preconditioner B \equiv B(k) : V
(k)
h \rightarrow V

(k)
h for k \geq 1 by induction on

k, supposing that for k = 0, we are given a good preconditioner B(0) : V
(0)
h \rightarrow V

(0)
h ;

i.e., there exists a \beta \geq 1 such that

(3.2) \beta  - 1(B(0)w,w) \leq ((A(0)) - 1w,w) \leq \beta (B(0)w,w)

for all w \in V
(0)
h . Of course, we have in mind practically useful scenarios where \beta is

completely independent of (or very mildly dependent on) \tau and h. The supposition
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of (3.2) is justified since there are good algebraic preconditioners [21] for the Dirichlet
operator (arising from A(0)). Then the nk-fold product of B(0), denoted by B(0),k :

V
(0),k
h \rightarrow V

(0),k
h , preconditions A(0),k : V

(0),k
h \rightarrow V

(0),k
h , the nk-fold product of A(0).

Our aim is to use this to precondition B(k) for k > 0.

We need one more ingredient: the operator Dh \equiv D
(k)
h : V

(k)
h \rightarrow V

(k)
h defined by

(Dhu, v) = (h - 2 + \tau )(u, v)

for all u, v \in V
(k)
h . Finally, we define the preconditioner by

(3.3) B \equiv B(k) = D - 1
h +\Pi hB

(0),k\Pi t
h + \tau  - 1dhB

(k - 1)dth

for all 1 \leq k \leq n. Clearly, a practical implementation of this preconditioner would
need implementations of \Pi h, dh, and B(0),k. The latter has been amply clarified
in the literature (see, e.g., [21]). In section 4, we will provide more details on the
implementation of \Pi h and dh when n = 4.

Note that when the last term in (3.3) is recursively expanded, a simplification
occurs; i.e., we have

dhB
(k - 1)dth = d

(k - 1)
h

\biggl[ 
(D

(k - 1)
h ) - 1 +\Pi 

(k - 1)
h B(0),k - 1(\Pi 

(k - 1)
h )t

+ \tau  - 1d
(k - 2)
h B(k - 2)(d

(k - 2)
h )t

\biggr] 
(d

(k - 1)
h )t

= d
(k - 1)
h

\biggl[ 
(D

(k - 1)
h ) - 1 +\Pi 

(k - 1)
h B(0),k - 1(\Pi 

(k - 1)
h )t

\biggr] 
(d

(k - 1)
h )t(3.4)

because d
(k - 1)
h d

(k - 2)
h = 0. Thus the cost of applying the preconditioner B(k) (ignoring

the cost of inversion of Dh and the application of \Pi h) is dominated by the cost of
applying B(0),k - 1 and B(0),k, i.e., the cost of applying B(0)

nk + nk - 1 =

\biggl( 
n+ 1
k

\biggr) 
times. This also shows that an implementation of B using only the above-mentioned
nonzero terms would be more efficient than simply implementing (3.3) recursively.

3.2. Analysis. We now proceed to prove a discrete version of the regular de-
composition (as stated in Lemma 3.4 below). To this end, in addition to Theorem 2.1,
we need bounds on \Pi 

(k)
h . By viewing \Pi 

(k)
h as an operator acting on discrete spaces

(as already mentioned earlier), we are able to use conclusions from scaling and finite-
dimensionality arguments for k-forms, such as the next two lemmas. We shall briefly
display a proof of one of them using Euclidean coordinates. Let \^K denote the unit
n-simplex. There is an affine homeomorphism \Phi K : \^K \rightarrow K for any n-simplex K.
Let hK = diam(K). Suppose v is a k-form in L2(K,�k). Its pullback under \Phi K is a
k-form on \^K denoted by \Phi \ast 

Kv.

Lemma 3.1 (inverse inequality). For all vh \in V
(k)
h , we have \| dvh\| \prec h - 1\| vh\| .

Lemma 3.2 (scaling of pullback). For all v \in L2(K,�k),

\| \Phi \ast 
Kv\| 2

L2( \^K,�k)
\prec h2k - n

K \| v\| 2L2(K,�k) \prec \| \Phi \ast 
Kv\| 2

L2( \^K,�k)
,(3.5)

and for all v \in H1(K,�k),

| \Phi \ast 
Kv| 2

H1( \^K,�k)
\prec h2+2k - n

K | v| 2H1(K,�k) \prec | \Phi \ast 
Kv| 2

H1( \^K,�k)
.(3.6)
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Proof. Let v =
\sum 

\alpha \in \scrI k
v\alpha dx

\alpha . Its pullback \^v = \Phi \ast 
Kv, when expanded in elemen-

tary form basis at any \^x \in \^K, takes the form

\^v(\^x) =
\sum 
\alpha \in \scrI k

n\sum 
i1=1

\cdot \cdot \cdot 
n\sum 

ik=1

v\alpha 1,...,\alpha k
(\Phi  - 1

K \^x)
\partial x\alpha 1

\partial \^xi1

\partial x\alpha 2

\partial \^xi2
\cdot \cdot \cdot \partial x

\alpha k

\partial \^xik
d\^xi1 \wedge d\^xi2 \wedge \cdot \cdot \cdot \wedge d\^xik .

Note that \| \partial x\alpha l/\partial \^xil\| L\infty ( \^K) \prec hK . To prove (3.6), applying (2.1) but with norm
replaced by seminorm,

| \^v| 2
H1( \^K,�k)

=
\sum 
\beta \in \scrI k

| \^v\beta | 2H1( \^K,�k)

\prec 
\sum 
\alpha \in \scrI k

n\sum 
i1=1

\cdot \cdot \cdot 
n\sum 

ik=1

n\sum 
l=1

\bigm\| \bigm\| \bigm\| \bigm\| \partial 

\partial \^xl

\biggl( 
v\alpha 1,...,\alpha k

(\Phi  - 1
K \^x)

\partial x\alpha 1

\partial \^xi1

\partial x\alpha 2

\partial \^xi2
\cdot \cdot \cdot \partial x

\alpha k

\partial \^xik

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2
L2( \^K)

\prec 
\sum 
\alpha \in \scrI k

n\sum 
i1=1

\cdot \cdot \cdot 
n\sum 

ik=1

n\sum 
l=1

n\sum 
m=1

\bigm\| \bigm\| \bigm\| \bigm\| \partial xm

\partial \^xl
\partial mv\alpha 1,...,\alpha k

\partial x\alpha 1

\partial \^xi1

\partial x\alpha 2

\partial \^xi2
\cdot \cdot \cdot \partial x

\alpha k

\partial \^xik

\bigm\| \bigm\| \bigm\| \bigm\| 2
L2(K)

| \^K| 
| K| 

\prec h2+2k
K

| \^K| 
| K| 

\sum 
\alpha \in \scrI k

n\sum 
m=1

\| \partial mv\alpha \| 2L2(K) \prec h2+2k - n
K | v| 2

H1( \^K,�k)
.

The reverse inequality can be established by considering the inverse map \Phi  - 1
K . The

inequalities of (3.5) are proved similarly.

Lemma 3.3. For all vh \in V
(0),k
h

\| \Pi hvh\| \prec \| vh\| ,(3.7)

\| \Pi hvh  - vh\| \prec h\| vh\| H1(\Omega ,�k),(3.8)

\| d\Pi hvh\| \prec \| vh\| H1(\Omega ,�k).(3.9)

Proof. Let \Pi K : Pr�k(K) \rightarrow P - 
r �k(K) be the canonical interpolant on K, i.e.,

\Pi Kv = (\Pi hv)| K for any v \in V
(0),k
h . Recall that any v in V

(0),k
h \subset H1(\Omega ,�k),

when restricted to K, lies in Pr�k. It is easy to check that for any v \in Pr�k,
\Phi \ast 

K\Pi Kv = \Pi \^K\Phi \ast 
Kv. Since \Pi \^K : Pr�k \rightarrow P - 

r �k( \^K) is a linear map between finite-
dimensional spaces, it is bounded. Using Lemma 3.2, we have

\| \Pi hv\| 2L2(K,�k) \prec hn - 2k\| \Phi \ast 
K\Pi v\| 2

L2( \^K,�k)
= hn - 2k\| \Pi \^K\Phi \ast 

Kv\| 2
L2( \^K,�k)

\prec hn - 2k\| \Phi \ast 
Kv\| 2

L2( \^K,�k)
\prec hn - 2kh2k - n\| v\| 2L2(K,�k).

When summed over all K \in \Omega h, this proves (3.7).
To prove (3.8), we note that c  - \Pi \^Kc = 0 for any constant function c. Hence

choosing c to be the mean value of \Phi \ast 
Kv on \^K,

\| \Pi hv  - v\| 2L2(K,�k) \prec hn - 2k\| (\Pi \^K  - I)(\Phi \ast 
Kv  - c)\| 2

L2( \^K,�k)

\prec hn - 2k\| \Phi \ast 
Kv  - c\| 2

L2( \^K,�k)
\prec hn - 2k| \Phi \ast 

Kv| 2
H1( \^K,�k)

\prec hn - 2kh2+2k - n| v| 2H1(K,�k),

where we have again used Lemma 3.2. Summing over all elements, this proves (3.8).
Finally to prove (3.9), we note that the canonical interpolant commutes with

the exterior derivative when applied to smooth functions. In particular, on any
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AUXILIARY SPACE PRECONDITIONER IN n DIMENSIONS 3203

v \in Pr�k(K), we have d\Pi 
(k)
h v| K = \Pi 

(k+1)
h dv| K . Hence, using the already estab-

lished (3.7),

\| d\Pi hv\| 2L2(K,�k) \prec \| dv\| 2L2(K,�k) \prec | v| 2H1(K,�k).

Summing over all elements, this proves (3.9).

Lemma 3.4 (stable decomposition). For any uh \in V
(k)
h , there are functions sh \in 

V
(k)
h , zh \in V

(0),k
h , and ph \in V

(k - 1)
h such that

(3.10) uh = sh +\Pi hzh + dph

and

(3.11)
(h - 2 + \tau )\| sh\| 2 + \tau \| ph\| 2 + \tau \| dph\| 2

+ \tau \| zh\| 2 + | zh| 2H1(\Omega ,�k) \prec \tau \| uh\| 2 + (1 + \tau )\| duh\| 2.

Proof. We apply Theorem 2.1 to uh \in V
(k)
h \subset H(d,\Omega ,�k) to obtain

uh = z + dp,(3.12)

\| z\| H1(\Omega ,�k) \leq C1\| duh\| , \| p\| H1(\Omega ,�k - 1) \leq C1\| uh\| H(d,\Omega ,�k),(3.13)

where z = \scrS u and p = \scrP u. Now let zh = Q
(k)
h z \in V

(0),k
h . Applying \scrB (k)

h to both sides
of (3.12) and using (2.4),

uh = \scrB hz + d\scrB hp.

Then (3.10) follows with

sh = \scrB hz  - \Pi hzh, ph = \scrB hp,

and it only remains to prove the estimate (3.11).
Observe that

\| zh\| 2A(0) = \tau \| zh\| 2 + \| d0zh\| 2 \prec \tau \| z\| 2 + | z| 2H1(\Omega ,�k) by (2.3)

\prec (1 + \tau ) \| duh\| 2 by (3.13),

\tau \| ph\| 2 = \tau \| \scrB hp\| 2 \leq \tau \| p\| 2 by (2.4)

\prec \tau \| uh\| 2 + \tau \| duh\| 2 by (3.13),

\| dph\| 2 = \| d\scrB hp\| 2 = \| \scrB hdp\| 2 \prec \| dp\| 2 by (2.4)

\prec \| uh\| 2 + \| z\| 2 by (3.12)

\prec \| uh\| 2 + \| duh\| 2 by (3.13),

\| sh\| 2 \leq (\| \scrB (k)
h z  - z\| + \| z  - zh\| + \| zh  - \Pi 

(k)
h zh\| )2

\prec h2\| z\| 2H1(\Omega ,�k) \prec h2\| duh\| 2

by (2.4), (2.3), and (3.8). Inequality (3.11) follows by combining these estimates.

With the above lemmas, we are ready to conclude the analysis. The basis for the
analysis of auxiliary space preconditioners is the standard ``fictitious space lemma""
(see, e.g., [24, 36, 47]), which we state without proof below in a form convenient for
us. Suppose we want to precondition a self-adjoint positive definite operator \Kappa on a
finite-dimensional Hilbert space V using
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3204 J. GOPALAKRISHNAN, M. NEUM\"ULLER, AND P. S. VASSILEVSKI

1. a self-adjoint positive definite operator S : V \rightarrow V whose inverse is easy to
apply;

2. two ``auxiliary"" Hilbert spaces \~V1 and \~V2 and linear operators \~Ri : \~Vi \rightarrow V ;
and

3. two further self-adjoint positive definite operators \~\Kappa i : \~Vi \rightarrow \~Vi on the auxil-
iary spaces whose inverses are easy to apply.

In this setting, the following result guides the preconditioner design. Here, we denote
norms generated by self-adjoint positive definite operators in accordance with our

prior notation scheme, e.g., \| w\| \~\Kappa i
= ( \~\Kappa iw,w)

1/2
\~Vi

.

Lemma 3.5 (Nepomnyaschikh lemma). Suppose there are positive constants c1, c2,
cs > 0 such that for all \~vj \in \~Vj , j = 1, 2, and v \in V ,

(3.14) \| \~R1\~v1\| \Kappa \leq c1\| \~v\| \~\Kappa 1
, \| \~R2\~v2\| \Kappa \leq c2\| \~v\| \~\Kappa 2

, \| v\| \Kappa \leq cs\| v\| S .

Suppose also that, given any v \in V , there are s \in V , \~vi \in \~Vi such that s + \~R1\~v1 +
\~R2\~v2 = v and

\| s\| 2S + \| \~v1\| 2\~\Kappa 1
+ \| \~v2\| 2\~\Kappa 2

\leq c20\| v\| 2\Kappa .(3.15)

Then P = S - 1 + \~R1
\~\Kappa  - 1
1

\~Rt
1 +

\~R2
\~\Kappa  - 1
2

\~Rt
2 preconditions \Kappa and the spectrum of P\Kappa is

contained in the interval [c - 2
0 , c21 + c22 + c2s].

Theorem 3.6. Let 0 < \tau \prec 1, and let A and B be defined by (3.1) and (3.3),
respectively. Suppose (3.2) holds. Then for each 1 \leq k \leq n  - 1, there is an \alpha \geq 1
independent of h and \tau such that the spectral condition number of BA satisfies

\kappa (BA) \leq \alpha 2\beta 2.

Proof. First, we analyze the preconditioner

(3.16) P (k) = D - 1
h +\Pi h(A

(0),k) - 1\Pi t
h + \tau  - 1dh(A

(k - 1)) - 1dth.

For this, we apply Lemma 3.5 with

V = V
(k)
h , \Kappa = A(k), S = Dh,

\~V1 = V
(0),k
h , \~\Kappa 1 = A(0),k, \~R1 = \Pi 

(k)
h ,

\~V2 = V
(k - 1)
h , \~\Kappa 2 = \tau A(k - 1), \~R2 = d

(k - 1)
h .

Note that V and \~Vi are endowed with L2 inner products as before, so, e.g., \| w\| 2\~\Kappa 1
=

( \~\Kappa 1w,w) = (A(0),kw,w) = \tau \| w\| 2 + (d0w, d0w). We must verify conditions (3.14)
and (3.15) of the lemma.

To verify (3.14), we use the following bounds, which hold for any zh \in \~V1, ph \in \~V2,
and vh \in V :

\| \~R1zh\| 2\Kappa = \| \Pi hzh\| 2A = \tau \| \Pi hzh\| 2 + \| d\Pi hzh\| 2

\prec \tau \| zh\| 2 + | zh| 2H1(\Omega ,�k) = \| zh\| 2\~\Kappa 1
,(3.17)

\| \~R2ph\| 2\Kappa = \| dph\| 2A = \tau \| dph\| 2 \leq \tau 
\bigl( 
\| dph\| 2 + \tau \| ph\| 2

\bigr) 
= \tau \| ph\| 2A = \| ph\| 2\~\Kappa 2

,

\| vh\| 2\Kappa = \tau \| vh\| 2 + \| dvh\| 2

\prec (h - 2 + \tau )\| vh\| 2 = \| vh\| 2Dh
.(3.18)
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We have used the inverse inequality of Lemma 3.1 in the last bound. With the above
bounds, we have verified (3.14).

Next, to verify (3.15), we use Lemma 3.4 to decompose any uh in V into uh =
sh + \~R1zh + \~R2ph = sh +\Pi hzh + dph and apply (3.11). Since \tau \leq 1, (3.11) implies

\| sh\| 2Dh
+ \| ph\| 2\~\Kappa 2

+ \| zh\| 2\~\Kappa 1
= \| sh\| 2Dh

+ \tau \| ph\| 2A + \| zh\| 2\~\Kappa 1

\leq \| sh\| 2Dh
+ \tau (\tau \| ph\| 2 + \| dph\| 2) + \| zh\| 2\~\Kappa 1

\prec \tau \| uh\| 2 + (1 + \tau )\| duh\| 2

\prec \| uh\| 2A.

This verifies (3.15). Thus Lemma 3.5 yields the existence of an \alpha k \geq 1 (after over-
estimating the constants if necessary) such that

(3.19)
1

\alpha k
(P (k)v, v) \leq ((A(k)) - 1v, v) \leq \alpha k(P

(k)v, v)

for all v \in V .
To complete the proof, we use the quadratic form of P (k) to estimate that of B.

For any v \in V ,

(B(k)v, v) = (D - 1
h v, v) + (B(0),k\Pi t

hv,\Pi 
t
hv) + \tau  - 1(B(k - 1)dthv, d

t
hv)

= ((D
(k)
h ) - 1v, v) + (B(0),k\Pi t

hv,\Pi 
t
hv)

+ \tau  - 1
\Bigl[ 
((D

(k - 1)
h ) - 1dthv, d

t
hv) + ((B(0),k - 1) - 1\Pi t

hd
t
h, \Pi 

t
hd

t
hv)

\Bigr] 
,

where we have used (3.4). Now, using (3.2), (3.16), and (3.19),

(B(k)v, v) \leq (D - 1
h v, v) + \beta ((A(0),k) - 1\Pi t

hv,\Pi 
t
hv)

+ \tau  - 1
\Bigl[ 
((D

(k - 1)
h ) - 1dthv, d

t
hv) + \beta ((A(0),k - 1) - 1\Pi t

hd
t
hv,\Pi 

t
hd

t
hv)

\Bigr] 
\leq \beta 

\Bigl[ 
(D - 1

h v, v) + ((A(0),k) - 1\Pi t
hv,\Pi 

t
hv) + \tau  - 1(P (k - 1)dthv, d

t
hv)

\Bigr] 
\leq \beta 

\Bigl[ 
(D - 1

h v, v) + ((A(0),k) - 1\Pi t
hv,\Pi 

t
hv) + \tau  - 1\alpha k - 1((A

(k - 1)) - 1dthv, d
t
hv)

\Bigr] 
\leq \beta \alpha k - 1(P

(k)v, v) \leq \beta \alpha k - 1\alpha k((A
(k)) - 1v, v).

Combining with a similarly provable lower inequality, we have

\beta  - 1\alpha  - 1
k - 1\alpha 

 - 1
k (B(k)v, v) \leq ((A(k)) - 1v, v) \leq \beta \alpha k - 1\alpha k(B

(k)v, v)

for all v \in V
(k)
h .

3.3. A variant. The preconditioner in (3.3) is a generalization of an auxiliary
space preconditioner in the form given in [24]. An auxiliary space preconditioner in
a slightly different form was proposed in [29, 30]. It can also be extended to higher
dimensions, as we now show. To define this variant, let Q0 denote the projection
satisfying

Q0u \in dV
(k - 1)
h : (Q0u, \kappa ) = (u, \kappa ) for all \kappa \in dV

(k - 1)
h .

Then A0 = Q0A| dVh
: dV

(k - 1)
h \rightarrow dV

(k - 1)
h satisfies

(3.20) (A0\kappa 1, \kappa 2) = (A\kappa 1, \kappa 2) = \tau (\kappa 1, \kappa 2)
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for all \kappa 1, \kappa 2 \in dV
(k - 1)
h because d \circ d = 0. Clearly A0 is invertible for all \tau > 0. Let

B0 : dV
(k - 1)
h \rightarrow dV

(k - 1)
h be a preconditioner for A0; i.e., there is a \beta 0 \geq 1 such that

(3.21) \beta  - 1
0 (B0\kappa , \kappa ) \leq (A - 1

0 \kappa , \kappa ) \leq \beta 0(B0\kappa , \kappa )

for all \kappa in dV
(k - 1)
h . Using B0, we define our second auxiliary space preconditioner

C : V
(k)
h \rightarrow V

(k)
h by

(3.22) C = D - 1
h +\Pi hB

(0),k\Pi t
h +B0Q0.

Unlike (3.3), some care is needed to design and implement B0. Consider, for
instance, the case B0 = A - 1

0 . Although it appears from (3.20) that A - 1
0 is simply the

inverse of a mass matrix scaled by \tau  - 1, the difficulty is that we usually do not have

a basis for dV
(k - 1)
h in a typical implementation. To compute the action of the last

term in (3.22) on some v \in V
(k)
h , namely, \kappa 1 = A - 1

0 Q0v, we write A0\kappa 1 = Q0v and
apply (3.20) to observe that \kappa 1 solves

\tau (\kappa 1, \kappa 2) = (v, \kappa 2) for all \kappa 2 \in dV
(k - 1)
h .(3.23)

Since we do not have a basis for dV
(k - 1)
h , we use potentials p1, p2 in V

(k - 1)
h (for which

we do have a basis) to express \kappa i = dpi. Then (3.23) implies that p1 in V
(k - 1)
h solves

(3.24) \tau (dp1, dp2) = (v, dp2) for all p2 \in V
(k - 1)
h .

Even if these equations do not uniquely determine p1, this approach does lead to a
practical algorithm, because we only need dp1 to apply (3.22). Note that p1 is deter-
mined only up to the kernel of d, but \kappa 1 = dp1 is uniquely determined. One strategy
to compute dp1 is to apply d after computing a solution p1 given by the pseudoinverse
of the system in (3.24). Another is to use an iterative technique that converges to one
solution of (3.24). One may also use a combination of such strategies, such as a multi-
level iteration with smoothers that are convergent despite the singularity in (3.24),
combined with a coarse-level solver obtained from a pseudoinverse. For more details,
the reader may consult [29, 30] or the implementations in [25, 33]. Notwithstanding
the complications in implementation, the analysis is a straightforward application of
the previous results.

Theorem 3.7. Let 0 < \tau \leq 1, and let A and C be defined by (3.1) and (3.22),
respectively. Suppose (3.2) and (3.21) hold, and let \beta 1 = max(\beta , \beta 0). Then for each
1 \leq k \leq n  - 1, there is an \alpha \geq 1 independent of h and \tau such that the spectral
condition number of CA satisfies

\kappa (CA) \leq \alpha 2\beta 2
1 .

Proof. As in the proof of Theorem 3.6, we consider an intermediate P = D - 1
h +

\Pi h(A
(0),k) - 1\Pi t

h +A - 1
0 Q0, which is the preconditioner of Lemma 3.5 with

V = V
(k)
h , \Kappa = A(k), S = Dh,

\~V1 = V
(0),k
h , \~\Kappa 1 = A(0),k, \~R1 = \Pi 

(k)
h ,

\~V2 = dV
(k - 1)
h , \~\Kappa 2 = A0 = \tau I, \~R2 = I.
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We proceed to verify conditions (3.14) and (3.15). The following estimates hold for
all zh \in \~V1, \kappa h \in \~V2, and vh \in V :

\| \~R1zh\| 2\Kappa \prec \| zh\| 2\~\Kappa 1
by (3.17),

\| \~R2\kappa h\| 2\Kappa = \| \kappa h\| 2A = \tau \| \kappa h\| 2 = \| \kappa h\| 2\~\Kappa 2
,

\| vh\| 2\Kappa \prec \| vh\| 2Dh
by (3.18).

Hence we have verified (3.14). To verify (3.15), as before, we use Lemma 3.4 to
decompose any uh in V into uh = sh + \~R1zh + \~R2\kappa h = sh + \Pi hzh + \kappa h, where
\kappa h = dph \in \~V2, and apply (3.11) to get

\| sh\| 2Dh
+ \tau \| \kappa h\| 2 + \| zh\| 2\~\Kappa 1

\prec \| uh\| 2A,

where we have used the assumption that \tau is bounded. This verifies (3.15). Thus
Lemma 3.5 yields the existence of an \alpha k \geq 1 (after overestimating the constants if
necessary) such that

\alpha  - 1
k (Pv, v) \leq (A - 1v, v) \leq \alpha k(Pv, v)

for all v \in V.
To complete the proof, observe that for any v \in V ,

(Cv, v) = (D - 1
h v, v) + (B(0),k\Pi t

hv,\Pi 
t
hv) + (B0Q0v,Q0v)

\leq (D - 1
h v, v) + \beta ((A(0),k) - 1\Pi t

hv,\Pi 
t
hv) + \beta 0(A

 - 1
0 Q0v,Q0v)

\leq \beta 1(Pv, v) \leq \beta 1\alpha k(A
 - 1v, v).

Together with a similarly provable other-side bound, we have \beta  - 1
1 \alpha  - 1

k (Cv, v) \leq 
(A - 1v, v) \leq \beta 1\alpha k(Cv, v) for all v \in V .

4. Implementation in 4D. In this section, we detail the implementation of
the building blocks of the preconditioner in 4D. These details form the basis for our
publicly available implementation of the preconditioner in the modular finite element
methods (MFEM) package [33]. The vector space �k in general dimensions is not
usually implemented in finite element packages (yet). Therefore, our approach is to
view forms using elements (called ``proxies"" below) of the more standard vector spaces
like R, R4, and the vector space of 4\times 4 skew-symmetric matrices K.

4.1. Proxies of forms. As already mentioned in section 2.1, any \varphi \in �k has
the basis expansion

(4.1) \varphi =
\sum 

1\leq i1<\cdot \cdot \cdot <ik\leq 4

\varphi i1\cdot \cdot \cdot ik dxi1 \wedge \cdot \cdot \cdot \wedge dxik .

Here the sum runs over all indices in \scrI k with four components. The numbers \varphi i1\cdot \cdot \cdot ik ,
called the ``components"" or the ``coefficients"" of the form, are arranged into vectors
or matrices that form ``proxies"" of k-forms, as defined below.

The proxy of a k-form \varphi is denoted by [\varphi ](k) and is defined as follows. In the
case of a 0-form \varphi , we set [\varphi ](0) = \varphi . In the case of higher form degrees, we use the
components of \varphi in (4.1), namely, \varphi i for 1-form, \varphi ij for 2-form, and \varphi ijk for 3-form,
to define proxies:

[\varphi ](1) =

\left[    
\varphi 1

\varphi 2

\varphi 3

\varphi 4

\right]    , [\varphi ](2) =

\left[    
0 \varphi 34  - \varphi 24 \varphi 23

 - \varphi 34 0 \varphi 14  - \varphi 13

\varphi 24  - \varphi 14 0 \varphi 12

 - \varphi 23 \varphi 13  - \varphi 12 0

\right]    , [\varphi ](3) =

\left[    
\varphi 234

 - \varphi 134

\varphi 124

 - \varphi 123

\right]    .D
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Finally a \varphi \in �4 has only one component, \varphi 1234, so we set [\varphi ](4) = \varphi 1234. Thus
[\cdot ](k) introduces a one-to-one onto correspondence from �k to R,R4,K,R4, and R, for
k = 0, 1, 2, 3, and 4, respectively.

Some identities are expressed better using the permutation (or the Levi-Civita)
symbol \varepsilon i1 i2... in , whose definition we recall briefly. For any n and any indices ik in
\{ 1, 2, . . . , n\} , the value of \varepsilon i1 i2... in is zero when any two indices are equal. When the
indices are distinct, i1 i2 . . . in is a permutation of 1, 2, . . . , n and the value of \varepsilon i1 i2...in

is set to the sign of the permutation. It can be easily verified that the (i, j)th entry of
the above-defined skew-symmetric matrix proxy of a \varphi \in �2 and the ith component
of the proxy vector of a \varphi \in �3 are given by

(4.2) [\varphi ]
(2)
ij =

\sum 
1\leq k<l\leq 4

\varepsilon ijkl\varphi kl, [\varphi ]
(3)
i =

\sum 
1\leq j<k<l\leq 4

\varepsilon ijkl\varphi jkl,

where the sums run over increasing multi-indices in \scrI 2 and \scrI 3, respectively.
Next, we define two cross products (both denoted by \times ) in the 4D case. Recall

that for any u, v \in R3, the ith component of the standard cross product u\times v is given
by [u\times v]i =

\sum 3
j,k=1 \varepsilon ijkujvk. Analogously, we define

[u\times v]ij =

4\sum 
k,l=1

\varepsilon ijklukvl, u, v \in R4;

i.e., this cross product of two 4D vectors yields a skew-symmetric matrix. We also
define the cross product of two skew-symmetric matrices \kappa , \eta in K by

\kappa \times \eta =
\sum 

1\leq i<j\leq 4

\sum 
1\leq k<l\leq 4

\varepsilon ijkl\kappa ij\eta kl, \kappa , \eta \in K,

i.e., the result of the cross product of two matrices in K produces a real number by a
formula analogous to the cross product of 2D vectors (and the analogy is clear once
we view the skew-symmetric matrices as vectors in R6).

These operations, together with other standard multiplication operations, yield
(after some elementary, albeit tedious, calculations) formulas for the wedge product
and form action in terms of proxies, as summarized in the next result. The standard
products used below include the scalar multiplication, the inner product of two vectors
in R4 (denoted by \cdot ), the matrix-vector product of elements in K with R4, and the
Frobenius inner product between matrices (denoted by :).

Proposition 4.1. The following identities hold for the wedge product:

[\eta \wedge \varphi ](k) = [\varphi \wedge \eta ](k) = [\varphi ](0) [\eta ](k), \varphi \in �0, \eta \in �k, k = 0, . . . , 4,(4.3a)

 - [\eta \wedge \varphi ](2) = [\varphi \wedge \eta ](2) = [\varphi ](1) \times [\eta ](1), \varphi \in �1, \eta \in �1,(4.3b)

[\eta \wedge \varphi ](3) = [\varphi \wedge \eta ](3) = [\eta ](2) [\varphi ](1), \varphi \in �1, \eta \in �2,(4.3c)

 - [\eta \wedge \varphi ](4) = [\varphi \wedge \eta ](4) = [\varphi ](1) \cdot [\eta ](3), \varphi \in �1, \eta \in �3,(4.3d)

[\eta \wedge \varphi ](4) = [\varphi \wedge \eta ](4) = [\varphi ](2) \times [\eta ](2), \varphi \in �2, \eta \in �2.(4.3e)
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AUXILIARY SPACE PRECONDITIONER IN n DIMENSIONS 3209

The values of forms applied to vectors u, v, w, z \in R4 are given by

\varphi (v) = [\varphi ](1) \cdot v, \varphi \in �1,(4.4a)

\varphi (u, v) = [\varphi ](2) : (u\times v), \varphi \in �2,(4.4b)

\varphi (u, v, w) = det
\Bigl[ 
[\varphi ](3), u, v, w

\Bigr] 
, \varphi \in �3,(4.4c)

\varphi (u, v, w, z) = [\varphi ](4) det[u, v, w, z], \varphi \in �4.(4.4d)

4.2. The four derivatives. Analogous to the three fundamental first order
differential operators (grad, curl, div) in 3D, there are four first order differential
operators in 4D, which we denote by

(4.5) grad, Curl, Div, div .

The first and the last operators in (4.5) are standard: For any u \in \scrD \prime (\Omega ,R) define
gradu \in \scrD \prime (\Omega ,R4) as the vector whose ith component is \partial iu. For any v \in \scrD \prime (\Omega ,R4),

we set div v =
\sum 4

i=1 \partial ivi.
Next, we define the 4D Curl in a way that brings out the analogies with the 3D

case. Recall that the ith component of the curl of a vector function w in 3D can
be expressed as [curlw]i =

\sum 3
j,k=1 \varepsilon ijk\partial jwk. Analogously, for any w \in \scrD \prime (\Omega ,R4), we

define Curlw as the matrix in K whose (i, j)th entry is defined by

(4.6) [Curlw]ij =

4\sum 
k,l=1

\varepsilon ijkl\partial kwl,

i.e.,

Curlw =

\left[    
0 \partial 3w4  - \partial 4w3 \partial 4w2  - \partial 2w4 \partial 2w3  - \partial 3w2

\partial 4w3  - \partial 3v4 0 \partial 1w4  - \partial 4w1 \partial 3v1  - \partial 1w3

\partial 1v4  - \partial 4v2 \partial 4v1  - \partial 1v4 0 \partial 1v2  - \partial 2v1
\partial 3v2  - \partial 2v3 \partial 1v3  - \partial 3v1 \partial 2v1  - \partial 1v2 0

\right]    .

Finally, the remaining operation Div acts on \kappa \in \scrD \prime (\Omega ,K) and produces Div \kappa \in R4

by taking divergence rowwise, i.e.,

(4.7) [Div \kappa ]i =

4\sum 
j=1

\partial j\kappa ij .

Note that the identities Curl(gradu) = 0, Div(Curlw) = 0, and div(Div \kappa ) = 0 follow
immediately from the above definitions.

By connecting the inputs and outputs of the above-introduced four differential
operators to proxies of forms, we may understand them as manifestations of exterior
derivatives. In fact, the following diagram commutes:

\scrD \prime (\Omega ,�0)
d(0)

//

[ \cdot ](0)

��

\scrD \prime (\Omega ,�1)
d(1)

//

[ \cdot ](1)

��

\scrD \prime (\Omega ,�2)
d(2)

//

[ \cdot ](2)

��

\scrD \prime (\Omega ,�3)
d(3)

//

[ \cdot ](3)

��

\scrD \prime (\Omega ,�4)

[ \cdot ](4)

��
\scrD \prime (\Omega ,R)

\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d} // \scrD \prime (\Omega ,R4)
\mathrm{C}\mathrm{u}\mathrm{r}\mathrm{l} // \scrD \prime (\Omega ,K) \mathrm{D}\mathrm{i}\mathrm{v} // \scrD \prime (\Omega ,R4)

\mathrm{d}\mathrm{i}\mathrm{v} // \scrD \prime (\Omega ,R)

This follows from the identities collected next, which can again be proved by elemen-
tary calculations.
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Proposition 4.2. The following identities hold:

[d(0)\varphi ](1) = grad([\varphi ](0)), \varphi \in \scrD \prime (\Omega ,�0),(4.8a)

[d(1)\varphi ](2) = Curl([\varphi ](1)), \varphi \in \scrD \prime (\Omega ,�1),(4.8b)

[d(2)\varphi ](3) = Div([\varphi ](2)), \varphi \in \scrD \prime (\Omega ,�2),(4.8c)

[d(3)\varphi ](4) = div([\varphi ](3)), \varphi \in \scrD \prime (\Omega ,�3).(4.8d)

In addition to the operator Curl, another curl operator deserves mention because
it fits in an alternate sequence of spaces in 4D. Let M denote the space of 4 \times 4
matrices, and let skwm = (m  - mt)/2 for any m \in M. Define the curl of a skew-
symmetric matrix, namely, curl : \scrD \prime (\Omega ,K) \rightarrow \scrD \prime (\Omega ,R4), and an antisymmetrization
operator K : M \rightarrow K by

(4.9) [curl\omega ]i =

4\sum 
k,l=1

\varepsilon ijkl\partial j\omega kl, [Km]ij =

4\sum 
k,l=1

\varepsilon ijklmkl

for any \omega \in \scrD \prime (\Omega ,K) and m \in M. Also let the gradient of a vector field, Grad :
\scrD \prime (\Omega ,R4) \rightarrow \scrD \prime (\Omega ,M), be defined by [Gradu]ij = \partial jui. Now, analogous to the previ-
ously discussed sequence,

\scrD \prime (\Omega ,R)
\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d} // \scrD \prime (\Omega ,R4)

\mathrm{C}\mathrm{u}\mathrm{r}\mathrm{l} // \scrD \prime (\Omega ,K) \mathrm{D}\mathrm{i}\mathrm{v} // \scrD \prime (\Omega ,R4)
\mathrm{d}\mathrm{i}\mathrm{v} // \scrD \prime (\Omega ,R),

we may study the following sequence with the newly defined curl:

\scrD \prime (\Omega ,R)
\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d} // \scrD \prime (\Omega ,R4)

\mathrm{s}\mathrm{k}\mathrm{w}\mathrm{G}\mathrm{r}\mathrm{a}\mathrm{d} // \scrD \prime (\Omega ,K) \mathrm{c}\mathrm{u}\mathrm{r}\mathrm{l} // \scrD \prime (\Omega ,R4)
\mathrm{d}\mathrm{i}\mathrm{v} // \scrD \prime (\Omega ,R).

The properties of the second sequence can be derived from those of the first using

(4.10) K skwGradu = Curlu, curl\omega = DivK\omega 

for all u \in \scrD \prime (\Omega ,R4) and \omega \in \scrD \prime (\Omega ,K). In particular, skwGrad grad = 0, curl skwGrad
= 0, and div curl = 0.

4.3. Sobolev spaces. In view of the identities of Proposition 4.2, the spaces
H(d,\Omega ,�k) in 4D are identified to be the same as

H(grad,\Omega ,R) = \{ u \in L2(\Omega ,R) : gradu \in L2(\Omega ,R4)\} ,
H(Curl,\Omega ,R4) = \{ v \in L2(\Omega ,R4) : Curl v \in L2(\Omega ,K)\} ,
H(Div,\Omega ,K) = \{ \kappa \in L2(\Omega ,K) : Div \kappa \in L2(\Omega ,R4)\} ,
H(div,\Omega ,R4) = \{ q \in L2(\Omega ,R4) : div q \in L2(\Omega ,R)\} 

for k = 0, 1, 2, 3, respectively. Also setting

H(curl,\Omega ,K) = \{ \omega \in L2(\Omega ,K) : curl\omega \in L2(\Omega ,R4)\} ,

we note that the operator K defined in (4.9) yields a one-to-one onto homeomorphism
K : H(curl,\Omega ,K) \rightarrow H(Div,\Omega ,K).
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In addition to the usual Green's formula involving gradient and divergence, one
can derive other integration-by-parts formulae, which also clarify the nature of traces
in the new spaces. Let \scrD (\=\Omega ,K) and \scrD (\=\Omega ,R4) denote the sets of restrictions to \Omega of
functions in \scrD (R4,K) and \scrD (R4,R4), respectively. Let \Omega have Lipschitz boundary so
that the unit outward normal n on \partial \Omega is well defined almost everywhere. Then we
can show that the traces (n\times u)| \partial \Omega and (\omega n)| \partial \Omega have meaning for u \in H(Curl,\Omega ,R4)
and H(Div,\Omega ,K). More precisely, define

(tr(1)u)(\omega ) =

\int 
\partial \Omega 

(n\times u) : \omega , (tr(2)\omega )(u) =

\int 
\partial \Omega 

\omega n \cdot u

for all u \in \scrD (\Omega ,R4) and \omega \in \scrD (\Omega ,K).

Proposition 4.3. Suppose \Omega has Lipschitz boundary. Then tr(1) and tr(2) ex-
tend to continuous linear operators tr(1) : H(Curl,\Omega ,R4) \rightarrow H(curl,\Omega ,K)\prime and tr(2) :
H(Div,\Omega ,K) \rightarrow H(Curl,\Omega ,R4)\prime satisfying

(tr(1)u)(\omega ) =

\int 
\Omega 

Curlu : \omega  - 
\int 
\Omega 

u \cdot curl\omega ,

(tr(2)\kappa )(u) =

\int 
\Omega 

Div \kappa \cdot u dx - 
\int 
\Omega 

\kappa \times Curlu

for all u \in H(Curl,\Omega ,R4), \kappa \in H(Div,\Omega ,K), and \omega \in H(curl,\Omega ,K).

Proof. For u \in \scrD (\Omega ,R4) and \omega \in \scrD (\Omega ,K), integrating by parts each term that
makes up the products below and using the properties of \varepsilon to simplify the result, we
derive

(4.11)

\int 
\Omega 

Curlu : \omega  - 
\int 
\Omega 

u \cdot curl\omega =

\int 
\partial \Omega 

(n\times u) : \omega .

Similarly, we also derive

(4.12)

\int 
\Omega 

Div\omega \cdot u - 
\int 
\Omega 

\omega \times Curlu =

\int 
\partial \Omega 

\omega n \cdot u.

Now viewing H(Curl,\Omega ,R4), H(Div,\Omega ,K), and H(curl,\Omega ,K) as graph spaces of Curl,
Div, and curl, we apply the well-known extensions of classical density proofs to graph
spaces (see, e.g., [26]) to conclude that \scrD (\=\Omega ,R4) is dense in H(Curl,\Omega ,R4) and that
\scrD (\=\Omega ,K) is dense in H(curl,\Omega ,K) as well as H(Div,\Omega ,K). Hence the result follows
from (4.11) and (4.12).

The Sobolev spaces we have introduced above have their analogues with essential
boundary conditions:

H0(Curl,\Omega ,R
4) = \{ v \in H(Curl,\Omega ,R4) : tr(1)v = 0\} ,

H0(Div,\Omega ,K) = \{ \omega \in H(Div,\Omega ,K) : tr(2)\omega = 0\} .

The construction of the HX preconditioner for these spaces follows along the same
lines as before, now using standard preconditioners inH1

0 (\Omega ). To highlight the changes
required in the analysis, first, instead of the regularized Poincar\'e operator Rk (ap-
pearing in the proof of Theorem 2.1), we must now use the generalized Bogovski\u {\i}
operator (see [14] or [34, Theorem 1.5]) to get the appropriate regular decomposition
with boundary conditions. We then continue along the previous lines after replacing
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Q
(k)
h by the L2 projection into V

(k)
h \cap H1

0 (\Omega ,�
k). Note that the H1

0 -stability of this
projection holds, as remarked in [12, p. 153]. Bounded cochain projectors preserv-
ing homogeneous boundary conditions are also known [13], so all the ingredients are
available to generalize our analysis to the case of homogeneous essential boundary
conditions.

4.4. Finite element spaces. Let T be a 4-simplex with vertices ai, i = 1, . . . , 5.
Let \lambda i denote its ith barycentric coordinate; i.e., \lambda i(x) is the unique affine function
(of the Euclidean coordinate x of points in T ) that equals 1 at ai and equals 0 at all
the remaining vertices of T . Let

gi = grad\lambda i \in R4, gij = gi \times gj \in K, gijk = gijgk \in R4.

Let fi1,...,ik denote the subsimplex of T formed by the convex hull of ai1 , . . . , aik for
any k = 1, . . . , 5, and let \bigtriangleup (k, T ) denote the set of all k-subsimplices of T . To a
0-subsimplex fi = ai we associate the function \lambda i, and to other subsimplices fij , fijk,
and fijkl we associate, respectively, the functions

\lambda ij = \lambda igj  - \lambda jgi,(4.13a)

\lambda ijk = \lambda igjk  - \lambda jgik + \lambda kgij ,(4.13b)

\lambda ijkl = \lambda igjkl  - \lambda jgikl + \lambda kgijl  - \lambda lgijk.(4.13c)

Note that these expressions depend on the ordering of the vertices and on T . When
such dependence is to be made explicit, we write the function associated to any
fi1,...,ik \in \bigtriangleup (k, T ), namely, \lambda i1,...,ik , as \lambda 

T
ai1

,...,aik
or \lambda T

a(f), where a(f) = (ai1 , . . . , aik).

We implemented the lowest order polynomial space P
 - ,(k)
1 (T ) = span\{ \lambda a(f) :

f \in \bigtriangleup (k, T )\} for k = 0, 1, 2 and 3. Using Propositions 4.1 and 4.2, these spaces
may be immediately recognized as the space of proxies of the Whitney basis [2, 3, 46]
for P - 

1 �k. To construct the global finite element spaces, we consider the set of all
k-subsimplices of the simplicial mesh \Omega h, denoted by \bigtriangleup (k,\Omega h). An element f of
\bigtriangleup (k,\Omega h) is in the set \bigtriangleup (k, Tj) for one or more mesh elements T1, . . . , Tnf

in \Omega h. To
each f \in \bigtriangleup (k,\Omega h), we associate an ordered set of its vertices a(f). The ordering fixes
a global orientation of f independently of Tj . Let \lambda f , for each f \in \bigtriangleup (k,\Omega h), be the
function that vanishes on all elements of the mesh except T1, . . . , Tnf

, where its values

are given by \lambda f | Tj
= \lambda 

Tj

a(f). These functions define the global finite space by

\scrV (k)
h = span\{ \lambda f : f \in \bigtriangleup (k,\Omega h)\} 

for each k = 0, 1, 2, 3. One can easily show that \scrV (1)
h \subseteq H(Curl,\Omega ,R4), and \scrV (2)

h \subseteq 
H(Div,\Omega ,K), either directly integrating by parts using Proposition 4.3 on each mesh

element, or by observing that \scrV (k)
h consists of all proxies of V

(k)
h (when r = 1) and

recalling [2] that V
(k)
h \subseteq H(d,\Omega ,�k). Of course, we also have \scrV (0)

h \subseteq H(grad,\Omega ,R4)

and \scrV (3)
h \subseteq H(div,\Omega ,R4).

Our actual implementation uses an alternative, but equivalent, technique that
proceeds by implementing the expressions in (4.13) only on the unit 4-simplex and
then mapping the basis functions to each mesh simplex appropriately (see the code
in [33] for more details).

4.5. Finite element interpolant. The implementation of the HX precondi-

tioner for \scrV (1)
h \subseteq H(Curl,\Omega ,\scrR 4), \scrV (2)

h \subseteq H(Div,\Omega ,K), and \scrV (3)
h \subseteq H(div,\Omega ,R4)
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requires us to implement canonical finite element interpolants \Pi \mathrm{C}\mathrm{u}\mathrm{r}\mathrm{l}
h , \Pi \mathrm{D}\mathrm{i}\mathrm{v}

h , and \Pi \mathrm{d}\mathrm{i}\mathrm{v}
h ,

into these spaces, respectively. Since the last one is standard, we only describe the
first two.

Let T be a 4-simplex with vertices ai, and let u : T \rightarrow R4 be a smooth vector
function. Let eij denote the segment connecting ai and aj . Then \Pi \mathrm{C}\mathrm{u}\mathrm{r}\mathrm{l}

h u| T is the

unique function in P
 - ,(1)
1 (T ) satisfying \sigma ij(u  - \Pi \mathrm{C}\mathrm{u}\mathrm{r}\mathrm{l}

h u) = 0 for every edge eij of T ,
where

\sigma ij(u) =
1

| eij | 

\int 
eij

u \cdot (ai  - aj)

and | eij | denotes the length of the edge eij .
Next, let \omega : T \rightarrow K be a smooth function and let fijk denote the triangle formed

by the convex hull of ai, aj , and ak. Then \Pi \mathrm{D}\mathrm{i}\mathrm{v}
h \omega | T is the unique function in P

 - ,(2)
1 (T )

satisfying \sigma ijk(\omega  - \Pi \mathrm{D}\mathrm{i}\mathrm{v}
h \omega ) = 0 for all 2-subsimplices fijk of T , where

\sigma ijk(\omega ) =
1

| fijk| 

\int \int 
fijk

\omega : (aj  - ai)\times (ak  - ai)

and | fijk| denotes the area of the triangle fijk.
To compute the preconditioner action, we need to apply \Pi \mathrm{C}\mathrm{u}\mathrm{r}\mathrm{l}

h to functions u :
\Omega \rightarrow R4, whose components are in the lowest order Lagrange finite element space.
Then defining \Pi \mathrm{C}\mathrm{u}\mathrm{r}\mathrm{l}

h u| T for each T in \Omega h as above, the continuity of components of

u implies that the resulting global function \Pi \mathrm{C}\mathrm{u}\mathrm{r}\mathrm{l}
h u is in \scrV (1)

h . Similarly, when \omega has

components in the Lagrange finite element space, \Pi \mathrm{D}\mathrm{i}\mathrm{v}
h \omega is in \scrV (2)

h .
The unisolvency of these degrees of freedom follows from [4, Theorem 5.5] after

identifying the degrees of freedom given there (for k = 1, 2) in terms of our proxies
using Proposition 4.1. In particular, \Pi \mathrm{C}\mathrm{u}\mathrm{r}\mathrm{l}

h and \Pi \mathrm{D}\mathrm{i}\mathrm{v}
h can be viewed as proxies of \Pi 

(k)
h

for k = 1 and 2 in four dimensions.

5. Numerical results. In this section, we report the results of numerical ex-
periments obtained using our implementation of the preconditioners in 4D. We imple-
mented the lowest order finite element subspaces of H1(\Omega ), H(Curl,\Omega ), H(Div,\Omega ),
and H(div,\Omega ) on general unstructured (conforming) meshes of 4-simplices. The pre-
conditioners were built atop this discretization. Below we will perform verification of
the discretization as well as report on the performance of the preconditioners.

5.1. Convergence studies. In the first series of examples, we fix \Omega = (0, 1)4

and solve the linear systems arising from the lowest order finite element discretization
of the following problem: Find u \in H(d,\Omega ,�k), such that

(u, v) + (du, dv) = \langle F, v\rangle for all v \in H(d,\Omega ,�k),(5.1)

where F \in H(d,\Omega ,�k)\prime is a bounded linear functional given below for each k =
0, 1, 2, 3. The domain \Omega was initially subdivided into a mesh \Omega h of 96 4-simplices of
uniform size (see also [37]). Afterwards we apply successive refinement based on the al-
gorithm of Freudenthal (see [8, 18, 37] for more details). The arising linear systems are
solved using preconditioned conjugate gradient iterations, where the preconditioner
is set to the ones given in section 3.1 for each k. In all the presented experiments,
set the smoother Dh by three steps of a Chebyshev smoother with respect to the
operator A. We iterate until a relative residual error reduction of 10 - 6 is obtained.
Under these numerical settings, we study two types of convergence, namely, the con-
vergence rates of the lowest order 4D discretizations, and the iterative convergence of
the preconditioned conjugate gradient iterations.
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Table 5.1
Convergence result and iteration numbers for H(grad,\Omega , R ).

Level Cores Elements dof | | u - uh| | L2(\Omega ) eoc iter

0 16 96 25 2.21816E-1 - 6
1 16 1 536 169 1.64804E-1 0.43 11
2 128 24 576 1 681 7.38929E-2 1.16 15
3 16 384 393 216 21 025 2.63863E-2 1.49 18
4 32 768 6 291 456 297 025 7.77695E-3 1.76 20
5 32 768 100 663 296 4 464 769 2.06687E-3 1.91 22
6 32 768 1 610 612 736 69 239 041 5.26637E-4 1.97 25

To establish a baseline, we start with 0-forms, i.e., d = grad. The F in (5.1) is
set so that the exact solution is

u(x) = cos(\pi x1) cos(\pi x2) cos(\pi x3) cos(\pi x4).

The L2(\Omega ) distance between this u and the computed solution uh in the 4D lowest
order Lagrange finite element space is reported in one of the columns of Table 5.1.
Clearly the observed convergence rate is close to two, the best possible rate for this
approximation space. For solving the linear systems, we set the preconditioner to the
algebraic multigrid preconditioner BoomerAMG of the HYPRE package [21]. The
iteration counts reported in the last column of the same table show small iteration
numbers with small growth. Recall that one of the basic assumptions in the auxil-
iary space preconditioner construction is that we have a good preconditioner for the
Laplacian. Therefore this report of the performance of BoomerAMG in 4D gives us
a measure of how well this baseline assumption is verified in practice.

For 1-forms, i.e., d = Curl, we set an F in (5.1) that yields the exact solution

u(x) = [s1c2c3c4, - c1s2c3c4, c1c2s3c4, - c1c2c3s4]
\top ,

where ci = cos(\pi xi) and si = sin(\pi xi) for i = 1, . . . , 4. In Table 5.2 we summarize the
convergence results for the lowest order finite elements, i.e., edge-elements in 4D. Here,
we again observe a convergence rate close to the theoretically expected rate of one. For
solving the linear system we use the proposed preconditioner given in subsection 3.1.
Here we obtain small iteration counts. But observe that they are slightly increasing.
We believe this is due to the fact that the BoomerAMG's performance (reported in
the previous table) is not strictly uniform.

When considering 2-forms, i.e., d = Div, we use the manufactured solution

u(x) =

\left[    
0 c1c2s3s4  - c1s2c3s4 c1s2s3c4

 - c1c2s3s4 0 s1c2c3s4  - s1c2s3c4
c1s2c3s4  - s1c2c3s4 0 s1s2c3c4
 - c1s2s3c4 s1c2s3c4  - s1s2c3c4 0

\right]    ,

where ci, si are as above. Using the lowest order finite elements for 2-forms in 4D, we
observe in Table 5.3 the optimal convergence rate of one. Moreover the preconditioner
given in subsection 3.1 leads to iteration numbers similar to those in the previous
example.

For 3-forms, i.e., d = div, we consider the exact solution

u(x) = [c1s2s3s4, s1c2s3s4, s1s2c3s4, s1s2s3c4]
\top .

For these lowest order Raviart--Thomas finite elements in 4D, we again observe the
correct convergence rate of one from Table 5.4. The iteration numbers for the auxiliary
space preconditioner again exhibit a small growth.
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Table 5.2
Convergence result and iteration numbers for H(Curl,\Omega , R 4).

Level Cores Elements dof | | u - uh| | L2(\Omega ) eoc iter

0 16 96 144 3.77018E-1 - 10
1 16 1 536 1 512 3.05056E-1 0.31 15
2 128 24 576 19 344 1.92098E-1 0.67 18
3 16 384 393 216 276 000 1.10859E-1 0.79 22
4 32 768 6 291 456 4 167 744 5.94185E-2 0.90 25
5 32 768 100 663 296 64 774 272 3.05043E-2 0.96 28
6 32 768 1 610 612 736 1 021 411 584 1.53829E-2 0.99 35

Table 5.3
Convergence result and iteration numbers for H(Div,\Omega , K ).

Level Cores Elements dof | | u - uh| | L2(\Omega ) eoc iter

0 16 96 312 4.40957E-1 - 16
1 16 1 536 4 032 4.58250E-1 - 26
2 128 24 576 57 600 2.83070E-1 0.69 27
3 16 384 393 216 869 376 1.53587E-1 0.88 28
4 32 768 6 291 456 13 504 512 7.95018E-2 0.95 28
5 32 768 100 663 296 212 877 312 4.02155E-2 0.98 29
6 32 768 1 610 612 736 3 380 674 560 2.01713E-2 1.00 33

Table 5.4
Convergence result and iteration numbers for H(div,\Omega , R 4).

Level Cores Elements dof | | u - uh| | L2(\Omega ) eoc iter

0 16 96 288 3.74239E-1 - 9
1 16 1 536 4 224 1.94337E-1 0.95 18
2 128 24 576 64 512 9.76605E-2 0.99 19
3 16 384 393 216 1 007 616 4.88885E-2 1.00 19
4 32 768 6 291 456 15 925 248 2.43047E-2 1.01 19
5 32 768 100 663 296 253 231 104 1.20968E-2 1.01 20
6 32 768 1 610 612 736 4 039 114 752 6.03196E-3 1.00 24

5.2. Parameter robustness. In the following experiments we will study the
preconditioners when a parameter \tau > 0 is involved; namely, instead of (5.1), we
consider the following problem: Find u \in H(d,\Omega ,�k), such that

\tau (u, v) + (du, dv) = \langle F, v\rangle for all v \in H(d,\Omega ,�k),

where F is set for each k as described previously. All other parameters, including
the domain and stopping criterion, are set as in the previous experiments. The re-
sults, summarized in Tables 5.5--5.8, show iteration numbers for the preconditioned
conjugate gradient method. For weights \tau ranging from 10 - 6 to 106 we observe quite
small iteration numbers, which vary only slightly with \tau . For small values of \tau , these
observations are consistent with the analytical conclusions of Theorem 3.6.

Conclusion. We presented the auxiliary space preconditioning technique in ar-
bitrary dimensions. The presentation extends previous results of Hiptmair and Xu
[24] using recent estimates on regularized homotopy operators [14, 34] and recent
developments in finite element exterior calculus [4]. Although we only analyzed the
additive version of the auxiliary space preconditioners, their multiplicative versions
can be similarly derived and analyzed.

This work also provides an implementation of the 4D auxiliary space precon-
ditioners (currently available at one of the public domain development branches of

D
ow

nl
oa

de
d 

08
/2

6/
19

 to
 1

31
.2

52
.1

81
.1

31
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3216 J. GOPALAKRISHNAN, M. NEUM\"ULLER, AND P. S. VASSILEVSKI

Table 5.5
Iteration numbers for different number of weights \tau and refinements for the space H(grad,\Omega , R ).

Weight \tau 
L 10 - 6 10 - 5 10 - 4 10 - 3 10 - 2 10 - 1 1 10 102 103 104 105 106

0 5 5 6 6 7 7 6 5 9 11 12 12 12
1 10 11 12 12 12 12 11 9 5 10 12 12 12
2 15 15 15 15 15 15 15 13 8 9 12 12 12
3 19 19 19 19 19 19 18 17 13 7 10 12 12
4 20 20 20 20 20 20 20 19 15 9 9 11 12
5 23 23 23 23 23 23 22 21 16 11 6 8 11
6 27 27 27 27 27 26 25 23 17 12 8 5 9

Table 5.6
Iteration numbers for different number of weights \tau and refinements for the space H(Curl,\Omega , R 4).

Weight \tau 
L 10 - 6 10 - 5 10 - 4 10 - 3 10 - 2 10 - 1 1 10 102 103 104 105 106

0 11 11 12 12 11 11 10 11 16 18 19 19 19
1 14 15 15 15 14 15 15 14 19 24 27 27 27
2 21 19 19 18 17 19 18 15 16 21 28 29 29
3 23 21 20 19 21 23 22 20 15 18 22 26 26
4 22 21 20 21 23 24 25 22 16 14 20 25 28
5 22 23 25 24 27 29 28 25 18 14 16 22 29
6 28 29 29 31 32 33 35 29 22 14 13 19 27

Table 5.7
Iteration numbers for different number of weights \tau and refinements for the space H(Div,\Omega , K ).

Weight \tau 
L 10 - 6 10 - 5 10 - 4 10 - 3 10 - 2 10 - 1 1 10 102 103 104 105 106

0 12 13 14 14 15 15 16 17 21 23 23 23 23
1 20 21 22 23 24 26 26 26 25 31 34 34 34
2 20 21 23 24 26 27 27 27 26 27 34 35 35
3 20 21 23 24 26 27 28 27 26 24 27 30 31
4 20 21 22 24 26 27 28 27 26 25 24 28 30
5 22 22 24 25 27 28 29 28 25 25 24 25 31
6 28 28 30 30 31 32 33 30 26 23 24 21 28

Table 5.8
Iteration numbers for different number of weights \tau and refinements for the space H(div,\Omega , R 4).

Weight \tau 
L 10 - 6 10 - 5 10 - 4 10 - 3 10 - 2 10 - 1 1 10 102 103 104 105 106

0 8 8 9 9 9 9 9 10 13 14 14 14 14
1 20 20 19 19 18 17 18 18 17 16 17 17 17
2 22 21 20 19 18 18 19 20 20 16 17 17 17
3 21 20 18 17 17 18 19 20 20 18 15 16 16
4 19 18 17 16 17 18 19 20 19 19 16 15 16
5 18 20 20 18 18 19 20 20 19 18 18 14 16
6 22 22 22 22 23 23 24 23 20 16 17 16 15

[33]). During this work, we also implemented the finite element subspaces (currently
the lowest order ones) of the 4D de Rham complex, their canonical interpolants using
proxy identities, and attendant 4D mesh operations. Use of this technology for space-
time applications and the addition of geometric multigrid to the tool set are subjects
of ongoing research.
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