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AN ABSTRACT OF THE THESIS OF Gabriel Baud-Bovy for the Master of Science 

in Electrical Engineering presented October 14, 1992. 

Title: A Gaze-Addressing Communication System using Artificial Neural Networks 

S OF THE THESIS COMMITTEE: 

Andrew M. Fraser 

Sergio 

Severe motor disabilities can render a person almost completely incapable of 

communication. Nevertheless, in many cases, the sensory systems are intact and the 

eye movements are still under good control. In these cases, one can use a device 

such as the Brain Response Interface (BRI) to command a remote control (e.g. room 

temperature, bed position), a word-processor, a speech synthesizer, and so on. 

The BRI is a gaze-addressing communication system that was developed by 

Dr. Erik E. Sutter at the Smith-Kettlewell Eye Research Institute, San-Francisco: a 

menu of communication objects (e.g. letter, word, command) is displayed on a ·rl 

screen; the disabled person selects an object by gazing at it; an electrode implanted 
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in the visual cortex transmits the brain-wave response evoked by the visual stimulus 

associated with the object; a special device receives and analyzes the brain-wave 

signal to identify which object is being gazed at; and, finally, the action corresponding 

to the object is undertaken (e.g. change bed position). Currently, the brain-wave 

signal is analyzed by computing the correlation between the current brain-wave signal 

and previously recorded template signals. Although it was not part of the initial 

objective of this thesis, we found that normalizing the brain-wave signal before 

computing the correlation yields a significant improvement on the performance. This 

observation is of immediate utility since, to our understanding, the current 

implementation of the BRI does not normalize the brain-wave response. 

This thesis explores using Artificial Neural Network (ANN) technology instead 

of the correlation technique to identify the brain-wave signals, with the important 

objective of shortening the response time. The method pursued was to effect correct 

classification on short portions of the brain-wave signals (short brain-wave signals lead 

to short response times). 

In the present thesis, we conducted several experiments with two very different 

ANN architectures. One of the ANN architectures was found to consistently perform 

at least as well as the correlation technique. None of our experiments, however, 

performed significantly better than the cross-correlation technique. In the course of 

the experiments, we repeatedly observed two phenomena that may have had an 

impact on the performance. We believe that these phenomena may happen in 
. 

different problem contexts. Thus, the study and a general solution of these problems 
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could have an impact beyond this particular problem context. 

The first phenomenon, here called contrast-enhancement, refers to the fact 

that only the small deviations from the desired output values disappear during the 

training process whereas the larger ones do not. Associated with this phenomenon, 

we observed that the average output values of the ANN continue to get closer to the 

desired output values long after the (correct) identification decisions reached their 

maximum during the training process. The second phenomenon, here called nearby 

misclassification, refers to the fact that a misclassification is more likely to happen 

between two brain-wave signals evoked by "similar" visual stimuli. In this thesis, we 

describe a modification of the backpropagation paradigm aimed at improving the 

discrimination among arbitrarily defined classes of inputs (the error computed by the 

criterion function is made dependent on the class of the input). 

Altogether, we believe that the results reported in this thesis are promising 

since this research was conducted under the severe handicap of having only 99 brain

wave responses. This is insufficient because the brain-wave responses are extremely 

difficult to categorize (the problem context cannot be adequately represented by only 

99 responses), and because it is a well known fact that the size and quality of the 

training set is crucial to achieving good performance with the ANN technology. In 

addition, in spite of this handicap, these results provided a better understanding of 

the problem context and yielded several interesting observations that may be helpful 

in a future of work. 
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CHAPTER I 

INTRODUCTION 

A motivation for this research has been to make a contribution toward the 

satisfactory solution of the communication problems faced by severely disabled 

persons. The idea is to construct a system that permits a severely disabled person 

to select a particular object intended for communication just by gazing at it. 

Severe motor disabilities can render a person almost completely 
incapable of communication (locked-in syndrome). The most frequent 
causes are amyotrophic lateral sclerose (ALS), severe cerebral palsy, 
and head trauma. Often, the person's gaze is the most efficient means 
to transmit information, since in most cases the sensory systems are 
intact and eye movements are still under good control. (Sutter, 1992, 
pg. 1) 

Any system that uses a person's gaze for communication purposes is called a 

gaze-addressing communication system. A common approach involves the use of eye 

tracking devices that observe the eye position. Up-to-date eye tracking systems use 

video cameras to detect the orientation of the pupils (Eye Typer\ Cedric2
). These 

systems, however, have several drawbacks. For example, they do not tolerate head 

movements and do not work well with persons wearing eye glasses (Sutter & Tran, 

1992a). 

1 "Eye Typer" is a trademark of Sentient System Technology, Inc. 

2 The Cedric communicator is manufactured by Santech Pty Ltd., Australia 
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1. THE BRAIN RESPONSE INTERFACE 

The system developed by Dr. Erich E. Sutter (1992) is based on a different 

approach. The system, called the Brain Response Interface (BRI), does not rely on 

the orientation of the pupil; instead, it analyses the brain-wave signals evoked by the 

visual stimuli associated with the communication objects being gazed at . 

.... ·· ......... !".::::::,,,.,COMMANDS 
r'~~~:~~~:~-;.,.._-:~~~:~-p,,_,, 

xxx: xxx: xxx: xxx: xxx 
I I I I ----r----r----r----r----
1 I I I 

xxx: xxx: xxx: xxx: 
I I I I ----r----r----

' . .................. VISUAL STIMULUS xxx 
• I ,•' 
•• I \•'' .- --. ,. f:: ;it""·~ - - - -

I I .... I 

I I .-. •• 

I I I "• ... 
MONITOR SCREEN 

..... ELECTRODE 

BRI DEVICE ( ( ( 11UEME1C 

COMPUTER SPEECH-SYNTHESIZER 

Figure 1. The Brain Response Interface. 
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The BRI makes use of computer technology: a menu of (64) communication 

objects (e.g. letter, word, command) is displayed on a monitor screen (a different 

visual stimulus is associated with each object); the disabled person selects an object 

by gazing at it; an electrode records the brain-wave signals induced by the visual 

stimulus; a telemeter3 transmits the signals to the BRI device; and the BRI device 

analyzes the brain-wave patterns and determines which object is being gazed at. The 

disabled person must hold his or her gaze during the entire process (usually 1.5 

second). Once the object as been identified, it is finally transmitted to one of the 

devices connected to the system (e.g. a word-processor, a speech-synthesizer). 

In the system designed by Dr. Erich E. Sutter, the analysis of the brain-wave 

patterns is carried out by an algorithm that computes the correlation between the 

current brain-wave signal and previously recorded template signals. The present 

thesis explores using the artificial neural network technology to replace thecross-

correlation technique. 

2. A COMMUNICATION SYSTEM MODEL 

The intention of a gaze-addressing system is to enable a disabled person to 

communicate with his or her environment. An abstract model of a communication 

system is illustrated in Figure 2, along with how this model is applied to the present 

3 A telemeter is used to prevent a potential risk of infection that would be 
present if there was a direct wire connection from the electrode to the BRI device 
(Sutter, Pevehouse, Barbaro, 1992). 
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problem context. The components of the model are described in the following 

paragraphs and, in more detail, in the subsequent chapters. 

B r\ ENCODING r--\ I NOISE I r--\ DECODING r1\ I RECEIVER 

Lf PROCESS l--( CHANNEL l--( PROCESS Lf 
L-~~~~~~__. 

~ [BRJ DEVI,q =~~CE 
SPEECH-SYNTiiETIZER, 

..__ _____ _, 

VISUAL SYSTEM: 

EYE, BRAIN 
DISAB~D ~[MONITOR l 
PERSON L/ 

Figure 2. Application of a communication system model to the present 
problem context. Each part of the communication system can be 
mapped to a corresponding element of the present problem context. 

2.1. Information Source 

Information theory defines the information source to be a random generator 

of events. An information source is characterized by a probability distribution 

underlying the generation of the events. The particular sequence of events that is 

generated by the information source constitutes the information that has to be 

transmitted. In the present problem context, we define an event to be the act of 

gazing at one of the 64 communication objects displayed on the monitor screen. 

Thus, we associate the user of the BRI with the information source since it is he or 

she who selects the command. In the present thesis, we assume that all objects have 

the same likelihood of being chosen. 
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2.2. Encoding Process 

The function of the encoding process is to associate a codeword with every 

event generated by the information source. The characteristics of the codewords 

depend on the problem context. In the present case, the codewords are specially 

designed visual stimuli generated at the monitor screen. 

An encoding process is usually divided into two parts: source encoding and 

channel encoding. The role of source encoding is to increase the speed of 

transmission. To do so, source encoding takes advantage of any structure in the 

information being encoded and, usually, assigns short codewords to frequent symbols. 

The role of channel encoding is to maximize the likelihood that the information will 

be recovered after it has been transmitted by the channel. For that purpose, channel 

encoding takes advantage of whatever properties are known about noise 

contaminating the signal during the transmission. To combat the noise, channel 

encoding typically introduces redundancy in the codewords. Both issues are 

addressed in Chapter II. 

2.3. Channel 

The role of the channel is to transmit a signal and, thus, to carry the 

information from one point to another. In the BRI, the channel is the visual system 

of the user (i.e. the eye and the visual cortex). Note that the visual system changes 

the representation of the information (i.e. the codewords) as the visual stimulus 

becomes a brain-wave signal. In the BRI, the brain-wave signal is next detected by 

an electrode and transmitted to the BRI device by a telemeter. Our model does not 
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include the electrode and the telemeter, because we assume that their effect on the 

transmission of the information can be neglected. 

2.4. Noise 

Noise corresponds to any interference happening during the transmission of 

the signal that causes a loss of information. The noise is often modeled as a random 

process. In the BRI, since the visual system is a very noisy channel, it is important 

to carefully design the visual stimuli to prevent significant loss of information. 

2.5. Decoding Process 

The function of the decoding process is to retrieve the information at the 

receiving end of the channel. In the system originally designed by Dr. E. Sutter 

(1992), such analysis is carried out by an algorithm that computes the correlation 

between the brain-wave signal being detected and previously recorded template 

signals. In the present thesis, artificial neural network (ANN) technology replaces 

the cross-correlation algorithm. 

2.6. Receiver 

The receiver represents any entity that makes use of the information. In the 

present problem context, the receiver is any type of machine that may be useful for 

communicating to, or controling the environment. For example, it can be a 

wordprocessor, a speech-synthesizer, or an universal remote control (stereo, 

television, bed position, room temperature). 
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3. OBJECTIVES 

Identification of temporal patterns (events) in a noisy background is a classic 

problem of real-time signal analysis. Our main objective is to design an artificial 

neural network that can identify certain brain-wave signals evoked by visual stimuli. 

The ability of artificial neural networks to perform well on noisy data sets is 

important in this context because the signal-to-noise ratio of brain-wave signals is low. 

Evoked Potentials (EP) can be conceived as deterministic low 
amplitude signals embedded in colored noise, the 
electroencephalogram (EEG) background activity, which has temporal 
and spectral characteristics similar to the EP waveforms. This fact 
increases the difficulty of detecting and estimating the parameters of 
the EP themselves. Typical values of the signal-to-noise ratio are less 
than OdB. (Uncini, 1990, pg. 145) 

One particular problem has attracted our attention: in order to obtain the 

important objective of shortening the response time of the BRI, the artificial neural 

network must be able to correctly identify the visual stimuli on the basis of just a 

portion (e.g. the first half) of the brain-wave responses. 

In the present thesis, even though the results obtained with the ANN 

technology are very similar to those obtained with the cross-correlation technique, 

we identified two problems that, if solved,could lead to a significant improvement of 

the classification performance. The first problem is the contrast-enhancement 

phenomenon that characterized the training process of most of our experiments. The 

second problem is the nearby misclassification distribution phenomenon that was 

repeatedly observed when the performance of our experiments were evaluated. Both 

phenomena are described in detail in Chapter V. 
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4. SIMILAR WORK 

ANN technology has been used in many different problem contexts that are 

related to the work of the present thesis: detection, identification, reconstruction, or 

temporal correlation of individual spike trains (Jansen, 1990; Wong, Banik & Bauer, 

1988; Hassoun & Spiker, 1988; Tam & Perkel, 1989), electroencephalogram (EEG) 

topography recognition (Hiraiwa, Shimihara & Tokunaga, 1990), electrocardiogram 

(ECG) analysis (Caroll & Ved, 1990; Strand & Jones, 1990), classification of 

myoelectric signals (Kelly, Parker & Scott, 1990), somatosensory-evoked potentials 

(Holdaway, White & Marmarou, 1990), dimensionality of EEG signals (Lo & 

Principe, 1989). 

Appendix E contains a long list of (additional) references. 



CHAPTER II 

THE ENCODING PROCESS 

The function of the encoding process is to associate a codeword with every 

event generated by the information source. 

1. THE MONITOR SCREEN 

The monitor screen in the BRI is divided into 64 command fields arranged in 

an 8x8 array (see Figure 3). Each command field contains the name of a command4 

displayed in small characters. The name of the command, however, is not taken into 

account in the definition of the visual stimuli because the characters specifying it 

cover only a small area of each field: the definition of the visual stimuli is only based 

on the background state of the field. The names of a command can therefore be 

changed without having to redefine the visual stimulus associated with the 

corresponding field. This opens the way to the realization of a system of menus of 

commands which may potentially offer an unlimited number of commands (the actual 

implementation of the BRI has 8 levels of menus). The division of the screen into 

64 fields limits the size of the menu (i.e. the number of commands that can be 

simultaneously accessed). 

4 In this chapter as well as in the rest of this thesis, the term "command" is 
favored instead of the term "communication object" used previously. 
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COM. 62 : COM. 63 : 
' ' 
' 

Figure 3. The monitor screen. The names of the commands 
(communication objects) are displayed in the command fields. 

2. THE VISUAL SYSTEM 

2.1. Cortical Magnification 

10 

In order to give a precise form to the concept of visual stimulus, we make the 

distinction in this chapter between the 64 visual stimulus elements that correspond 

to the command fields, and the visual stimulus that corresponds to the entire monitor 

screen. We need this distinction to explain how the BRI is able to identify which 

command is being gazed at, despite the fact that the surrounding commands are still 

included in the visual field. 



Figure 4. Amplitude of the brain-wave response to stimuli in different 
locations of the visual field. The figure is copied from Sutter & Tran 
(1992a, pg. 4). 
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Figure 4 shows the amplitude of a set of brain-wave responses induced by a 

set of identical visual stimuli in different locations in the visual field. Figure 4 reveals 

the increased sensitivity of the visual system at the center of the visual field: the visual 

stimuli at the center of the visual field generate by far the largest brain-wave 

responses. This is justified by the disproportionately large amount of the visual 

system allocated to the processing of the center of our vision, where the acuity is the 

greatest (Sutter & Tran, 1992b ). This property of the visual system is called cortical 

magnification, and can sometimes reach an accuracy of 1 degree (Sutter & Tran, 

1992b, pg. 20). Without this property, it would be very difficult to identify which 

command is being gazed at, because the visual stimulus at each of the command 

fields would evoke equal brain-wave activity. 
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2.2. Constraints On The Visual Stimuli 

The visual stimuli must always be modulated-in-time, since significant 

alterations of brain-wave patterns are induced only by stimuli that change rapidly (e.g. 

a blinking light). The form of the brain-wave responses depends on the modulation 

patterns of the visual stimuli, not on the state of the command fields at specific times. 

It has been determined empirically that the modulation rate of the visual stimuli is 

limited; visual stimuli with excessively high modulation rates do not appear to effect 

changes in the brain-wave responses. 

Two issues must be considered in order to choose the appropriate modulation 

patterns for the visual stimuli: noise contamination and response time of the BRI. 

It is interesting to notice that these issues correspond to the parameters of a 

fundamental characteristic of a communication system called channel capacity. 

Channel capacity defines what is the maximum amount of information that a 

channel can transmit. This limit stands independently of the encoding and decoding 

processes. The definition of channel capacity is 

s 
C = 2WT log (1 + - ) 

N 
(1) 

where C is the channel capacity, Wis the bandwidth of the system, SIN is the signal-

to-noise ratio, and T is the signal duration. In the present problem context, the 

bandwidth (modulation rate) of the visual system is limited. Thus, the only way to 

increase the channel capacity (i.e. increase the quantity of information that may be 

transmitted) is to modify either the signal-to-noise ratio of the signal (noise 
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contamination issue) or the signal duration (response time issue). We do not attempt 

to compute the channel capacity in the present thesis because we do not have reliable 

means to estimate the signal-to-noise ratio of the brain-wave responses. 

2.3. Noise Contamination Issue 

Although the brain wave responses are mostly regulated by the visual stimulus 

elements at the center of the command field (cortical magnification), the surrounding 

visual stimuli do contaminate the main signal. The surrounding visual stimuli can be 

viewed as noise sources. Three approaches are possible to combat noise 

contamination. The first approach takes advantage of the fact that the visual system 

is overall additive (Sutter, 1992a). In practical terms, this means that the signal-to

noise ratio does not decrease if all brain-waves are uncorrelated. Hence, to insure 

a good signal-to-noise ratio of the main brain-wave response, the surrounding visual 

stimuli must generate a set of orthogonal brain-waves responses. The second 

approach is to repeat the signal until it has been identified. It assumes that the visual 

system is stationary and relies, for example, on averaging methods to increase the 

signal-to-noise ratio. The last approach is to increase the length (redundancy) of the 

signals. Various combinations are possible. For example, if the decoding process has 

not identified the visual stimulus at the end of the stimulation cycle (i.e. after the 

visual stimulus has been entirely transmitted), then the visual stimulus could be 

repeated and the brain-wave responses for both stimulation cycles averaged. 



14 

2.4. Response Time Issue 

The response time is the time necessary for the decoding process to identify 

from the brain-wave response which visual stimulus is present. Ideally, the decoding 

process of the BRI would be able to identify which command is being looked at on 

the basis of the brain-wave response to either short visual stimuli, or initial segments 

of visual stimuli. Once a visual stimulus has been identified, the BRI waits for a short 

interval of time (300ms) to allow the user to select a new command before restarting 

the process. 

The response time issue is closely related to the noise contamination issue; for 

example, noise-proof signals could help to obtain short response times. However, 

each issue conveys its own twist and must be considered independently. 

2.5. Example 

These issues are best described with an example. It is easy to construct a set 

of orthogonal visual stimuli 

xz(t): 1000 0000 0000 000 
xi(t): 0000 1000 0000 000 
xJ(t): 0000 0000 1000 000 
xit): 0000 0000 0000 100 

Obviously, the brain-wave responses induced by these visual stimuli are 

uncorrelated if the lag between the impulses belonging to different visual stimuli is 

greater than the duration of the brain-wave response to an impulse (80-lOOms ). This 

set of visual stimuli, however, is not satisfactory because it is impossible to distinguish 

between the third and fourth visual stimulus before almost the end of the stimulation 
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cycle. Increasing the number of visual stimuli aggravates the problem; if similar 

visual stimuli were to be used in the BRI to encode the 64 commands, the response 

time could exceed 6.4 seconds. In contrast, consider the following set of visual stimuli 

xi(t): 0001 0011 0101 111 
xi(t): 0011 0101 1110 001 
xJ(t): 0101 1110 0010 011 
xlt): 1110 0010 0110 101 

If the visual system were linear, it could be shown that the brain-wave 

responses induced by the initial segments of the visual stimuli would be nearly 

uncorrelated (and, a fortiori, different). Thus, the decoding process could determine 

almost immediately which command is being gazed at. Since however the visual 

system is highly nonlinear (and very noisy), we cannot demonstrate directly that the 

brain-wave responses induced by these signals are uncorrelated. 

3. THE VISUAL STIMULI 

3.1. Field Signals 

In the present thesis, the modulation patterns of the visual stimuli are specified 

by a set of functions xi(t), x2(t), ... , x64(t), called field signals, where x;(t) EB and B= {O, 

... ,n} is the set of all possible states in which the background of a field can be (e.g. 

0 could mean a blue colored field, 1 a red colored field, and so forth). 

In the BRI, the field signals have special properties; for example, they are 

deterministic, binary (B={O,l} ), periodic, orthogonal, and have desirable correlation 

properties (e.g. any segment of some specified length within a period is approximately 
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uncorrelated with any other segment of the same length). The definition of the field 

signals is 

co 

X;(t ) L C;(t -kT) (2) 
k=O 

where the 64 functions c;( r) are short (discontinuous) signals, called binary m-

sequences, defined over O~r~T. The binary m-sequences are defined later in this 

chapter. Equation 2 essentially expresses the fact that the field signals are periodic: 

the field signal x;(t) always repeats the binary m-sequence c;(t). 

A property of the binary m-sequences is that C;+i(t) can be derived from c;(t) 

by a single wrap-around shift. Because of the above property, and because the field 

signals are periodic (as defined in equation 2), the field signals are identical except 

for a shift of time L as expressed in equation 3 

X;(t) = xi+l(t -L) (3) 

For example, let 000100110101111 be the binary m-sequence ci(t). Then, the 

field signal xi(t) is (equation 2) 

xi(t): 000100110101111 000100110101111 000100110101111 ... 

and, by shifting this signal three times by four bits (equation 3), we obtain the 

following set of field signals 

xi(t): 000100110101111 000100110101111 000100110101111 
xi(t): 001101011110001 001101011110001 001101011110001 
xJ(t): 010111100010011 010111100010011 010111100010011 ... 
xit): 111000100110101 111000100110101 111000100110101 



17 

3.2. Binary M-sequence 

Any binary m-sequence of length I'-1 may be generated by using a special 

m-digit register. For example, the binary m-sequence (m=4) 000100110101111 is 

generated by the 4-digit register illustrated in Figure 5. 

M-DIGIT REGISTER (M = 4) 

------------------------------------------------------

0 1--.f 0 0 

:_ • • • • • • • • m• ••••a••••••••• • .' •• • v-• •" ~ . .: 
XOR 

0 

0 
BINARY M-SEQUENCE 

(M =4) 

Figure 5. Binary m-sequence register (m=4). 

The successive states of the register are described in Table I (the binary m-

sequence is defined by the last digit of the register). 
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TABLE I 

SUCCESSIVE STATES OF A BINARY M-SEQUENCE REGISTER 
(M=4) 

register I XOR I binary 
state m-sequence 

1000 0 0 

0100 0 0 

0010 1 0 

1001 1 1 

1100 0 0 

0110 1 0 

1011 0 1 

0101 1 1 

1010 0 0 

1101 1 1 

1110 1 0 

1111 0 1 

0111 0 1 

0011 0 1 

0001 1 1 
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Binary M-Sequence Correlation Properties. Binary m-sequences share many 

characteristics with a white noise signal. When a binary m-sequence is transformed 

into a sequence of +l's and -1 's by means of the substitution 

its auto-correlation function becomes 

t"-1 
cor(k) = L xixi-k 

i=l 

0-+ 1 
1 -+ -1 

= { 2m-1, 

-1, 

if k = 0 

if k ~ 0 

(4) 

where X; is the ith element of the m-sequence, k is the lag. The sequence is, thus, 

almost perfectly white over a complete cycle. 
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We can also compute the correlation between segments of a binary m-

sequence 

cor(k) 
N 

= L xixi+k 
i=l 

(5) 

where N is the length of the segment of the binary m-sequence, k is the lag. For 

example, the correlation between the initial segment 111-1 of the binary m-sequence 

111-111-1-ll-ll-1-1-1-l and the sequence itself is indicated in Table II. 

TABLE II 

COMPUTATION OF TIIE CORRELATION BETWEEN SEGMENTS (N =4) 
OF A BINARY M-SEQUENCE OF LENGTII 15 

I co:Ck) I 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

4 0 0 2 2 -2 0 -2 2 0 0 -2 -4 -2 0 

The results reported in Table II indicate that all segments of the binary m-

sequence are different except when there is no lag (k=O). More generally, 

cor(k) = N, 

cor(k) ~ N, 

if k = 0, 

if k > 0 

and 
(6) 

where N is the length of the segment. In other words, this means that the field signal 

never repeats itself. 

In the present problem context, it also means that the initial segments of two 

different field signals are always different, and become less and less correlated as the 

length increases (this can be verified by computing the correlation for segments of 

various lengths). Thus we can hope that the corresponding brain-waves are also 
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uncorrelated although we cannot demonstrate it analytically since the visual system 

is so nonlinear. 

Other Properties. The m-digit register goes through all possible states except 

0000 while generating the binary m-sequence (the 0000 state produces the sequence 

0000000000 ... ). The states of the register are repeated in the same order indefinitely. 

This property of the binary m-sequence leads to several observations. First, the same 

binary m-sequence is also repeated indefinitely. Second, the length of a binary m

sequence generated by am-digit register is equal to Z"-1 (number of states possible 

minus one). Third, the initial state is irrelevant; the only effect of changing the initial 

state of the register is to change the starting point of the binary m-sequence. Fourth, 

there is a maximum of Z"-1 binary m-sequences (of length Z"-1) since there is a 

maximum of Z"-1 initial states. These observations may help to understand why 

binary m-sequences of the same length can be derived one from another and, 

thereby, why all field signals are identical except for a shift of time. Since the initial 

state of the register is the only parameter that distinguishes two binary m-sequences, 

and since the register goes through all possible states while generating a single binary 

m-sequence, all binary m-sequences are identical but for a different starting point. 

Note that a single register can be used to generate several binary m-sequences 

at once. For example, in Table III, the field signals x1 , x2 , x3 , and x4 are obtained 

by repeatedly arranging the binary m-sequence 000100110101111 into four columns. 
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TABLE III 

GENERATION OF MULTIPLE BINARY M-SEQUENCES 
BY A SINGLE REGISTER 

X1(t) I x2(t) I X3(l) I X4(l) 

0 0 0 l 

0 0 l 1 

0 l 0 1 

l l l 0 

0 0 1 0 

0 1 1 0 

1 0 1 1 

1 1 0 0 

0 l 0 0 

1 l 

This property is used to generate the 64 field signals in the BRI. 

4. ADDITIONAL REMARKS 

4.1. Source Encoding 

21 
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In this chapter, we have focused our interest on designing "noise-proof' signals 

(channel encoding). We have not explicitly discussed the issues related with source 

encoding although the speed of the transmission is a fundamental characteristic of the 

problem context. 

Source encoding is based on prior knowledge of the probability distribution 

of the events. A classic method for speeding up the transmission is, for example, to 

assign short codewords to frequent events. However, this approach does not make 

sense in the BRI, because the transmission of the codeword is stopped as soon as it 

is identified. In a sense, the length of the codewords is automatically adjusted. 
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Nevertheless, it could be possible to improve the performance of the BRI by 

assigning visual stimuli whose initial segments are particularly "noise-proof' to 

frequent events. But discussing source encoding in detail in the present context is 

pointless since we do not have any information about the probability distribution of 

the events. 

4.2. System Analysis 

A Volterra series is a mathematical formalism that may be used to model the 

input/output relationship of linear and/or nonlinear systems. To avoid a layer of 

mathematical complexity, we assume that the input signals are discrete, and all 

integrals are replaced by sums. The following expression corresponds to a single-

input system 

y(tn) = L h(k)x(tn-k) 
k 

+ E h(k,l)x(tn-k)x(tn-l) 
kl 

+ E h(k,l,m )x(tn-k)x(tn-i)x(tn-m) 
klm 

+ 

(7) 

The kernels h, represent the system's response to the "cross-talk" among 

different segments of the input history. For example, h(k,l) expresses the cross-talk 

among two segments, h(k,l,m) expresses the cross-talk among three segments, and so 

forth. 
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In a multiple-input system, it is necessary to take into account all input signals 

y(tn) = L L h;(k)x;(tn-k) 
i k 

+ ~ Lkl h/k,l)xltn-k)x/tnJ 
IJ 

(8) 

+ 

The kernels of the form h;i , hiik, etc., correspond to the cross-talk between 

segments of different input signals. 

In a system analysis context, the objective is to determine the values of the 

parameters of the chosen system model (e.g. the kernels for the Volterra series). For 

that purpose, it is necessary to get the maximum possible information out of the 

input/output relationship in order to be able to fully characterize the system. In the 

linear case, the system response to a single impulse is sufficient to characterize the 

system. In the nonlinear case, it is necessary to use white noise or deterministic 

signals with similar properties to extensively 11test11 the nonlinear system and to get an 

informative system response. For example, in (Sutter, 1987; Sutter, 1991), binary m-

sequences are used as input signals to determine the (kernel) parameters of the 

visual system. 

In the present problem context however, the objective is to identify the input 

signal (not the system). But, since binary m-sequences are also used in the BRI, we 

wondered if there was a common reason for using the same signals in the two 

different contexts. We do not think so because both objectives are different, and 

"testing" the system does not seem to be a relevant issue. 
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Marmarelis (1978) provides a good introduction to the general subject of 

mathematical analysis of nonlinear systems along with a general presentation and 

examples of biological modeling. 



CHAPTER III 

THE DECODING PROCESS 

In a communication system, the function of the channel is essentially to 

transmit a signal from one point to another, and the role of the decoding process is 

to retrieve the information from the encoded signal at the receiving end of the 

channel. 

In this chapter, we specify the desired input/output relationship that the 

decoding process should realize, and how it can be implemented. For clarity 

purposes, we divide the decoding process into three successive stages: the 

preprocessing, classification, and decision stage. The cross-correlation technique and 

the two possible usages of ANN technology described in this chapter correspond to 

the classification stage. 

1. THE DESIRED INPUT/OUTPUT RELATIONSHIP 

1.1. Inputs 

In the present problem context, the input to the decoding process is the brain

wave signal evoked by the visual stimulus associated with the command being gazed 

at (see Figure 6). In the present thesis, these brain-wave signals are often called 

brain-wave responses. 



Figure 6. Example of a brain-wave response. The lower line 
corresponds to the binary m-sequence used as visual stimulus. 

1.2. Desired Outputs 
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The output of the decoding process is a binary vector of dimension 64 that 

indicates the class of the brain-wave response, and, thereby, which command is being 

gazed at (by definition, all brain-wave responses that are evoked by the same visual 

stimulus belong to the same class). The code for the desired outputs is simple: the 

value of the nth output element is set to one, and the values of all other output 

elements to zero, if the input (brain-wave response) belongs to the n1
h class. Thus, 

the desired outputs are 

class l:IOOO'XXX.IOOOOOO'XXX.IOOOOOO'XXX.IOOOOOO'XXX.IOOOOOO<X>OCOOO'XXX.IOOOQOO')()() 

class 2: 01 oooooo'XXX.X>OC1000'000000'XXX.1000l(J()()OOO'XXX.IOOOl(J()()OOO'XXX.1000l()(}OOOOO 

class 64: 1 

2. PREPROCESSING STAGE 

Data preprocessing can be thought of as a preliminary stage of the decoding 

process. Data preprocessing is required when the format of the signal being detected 

does not fit the characteristics of the decoder, or when the performance of the 
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decoding process are not satisfactory. It is an important issue that may involve many 

different operations: sampling, filtering, feature extraction, etc. The application of 

these techniques depends on the problem context. 

2.1. Sampling 

In the BRI, the brain-wave signal being detected is analog. Thus, it is 

necessary to sample and quantify the brain-wave signal in the first place because the 

techniques used to implement the decoding process require n-dimensional vectors 

(patterns) as inputs. Sampling is an important issue. Unfortunately, we did not have 

the information necessary to address it seriously in the present thesis. In our 

experiments, we used the data that were available in their original format (see 

Chapter V). 

2.2. Filtering 

Filtering techniques seek to improve the performance of the decoding process 

by isolating the information and the noise in signals being detected, and removing the 

noise. 

Low-pass or high-pass filters, for example, are common filtering techniques 

that increase the signal-to-noise ratio by removing the frequencies that contain most 

of the noise. These filters, however, are difficult to use in the present problem 

context because the brain-wave responses are "embedded in colored noise which has 

temporal and spectral characteristics similar to the evoked potentials" (Uncini, 1990, 

145). 
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Averaging is another filtering technique. This technique, however, is not 

compatible with the avowed objective of minimizing the response time, since its usage 

requires several brain-wave responses. In addition, numerous studies have shown that 

brain-wave responses are not perfectly stationary and may require the use of 

sophisticated, computationally expensive averaging techniques (Aunon, 1981). 

2.3. Adaptive Filtering 

There are various forms of adaptive filters reported in the literature. The 

following description of an adaptive filter is simple. 

The input signals generally originate from sampling continuous 
signals by analog-to-digital conversion. [ ... ] The output is a linear 
combination of the current and past input signal samples. By varying 
the [coefficients of the linear combination], the [relationship] from the 
input to the output is directly controllable. The output is compared to 
a special input signal called the "desired response" [e.g. the next input 
signal sample]. The [coefficients] are usually adjusted to cause the 
output signal to be a best least square match over time to the desired 
response. (Widrow, 1988, pg. 250) 

Adaptive filters can easily be implemented with the Artificial Neural Network 

(ANN) technology (Widrow, 1988). Adaptive filtering has generated a lot of interest 

recently because it does not require a priori knowledge of the signal and the noise 

function (Iyer, 1990, pg. 536). Besides, it avoids the ensemble averaging and time 

averaging when used in nonstationnary mode (in which case the coefficients of the 

linear combination are continuously and automatically updated). Note, however, that 

we can expect a problem in filtering a nonstationary signal in a very high noise 

environment (Thakor, 1987). 
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2.4. Feature Extraction 

According to the problem context, it may be necessary to extract special 

"features" of the data. For example, in a similar problem context, Holdaway (1990) 

used a peak detection program to preprocess the brain-wave signals. 

3. CLASSIFICATION STAGE 

In this section, we describe the cross-correlation technique and introduce two 

types of Artificial Neural Networks (ANNs) used in the research reported in this 

thesis. In this chapter, we do not detail the ANN architectures since they may vary 

from one experiment to another (see Chapter V), nor do we address any specific 

ANN issue (see Chapter IV). 

3.1. The Cross-Correlation Technique 

The cross-correlation technique is based on 64 templates that represent the 

archetypal brain-wave responses to the 64 different visual stimuli (field signals) 

generated by the BRI monitor screen. We assume that the templates are all identical 

except for a shift of time because the visual stimuli are themselves identical except 

for a shift of time. Then, the brain-wave response R being detected is compared to 

each template by computing the correlation 

N 

cor(R, T;,N) = L R(k)Y';(k) l = 1, .. ,64 (9) 
k-1 

where N is the length of the brain-wave response, and T; is the ith template. This 

computation supplies us with 64 values. Ideally, the output element with the highest 
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value should indicate the class of the brain-wave response, and, thereby, which 

command is being gazed at. 

Normalization. In the current implementation of the BRI, the templates T1, 

... , T 64 are normalized 

T -i -

Ti-µTj 

a T; 

thus, the computation of the correlation becomes 

N 

cor(R, Ti,N) = :E R(k)T;(k) 
k=l 

1 N N 
= -{ :E R(k)I';(k) - µ r- :E R(k)} 

a T: k=l 
1
k=l 

I 

(10) 

(11) 

In the present thesis, we also consider the case where only the brain-wave response 

is normalized, 

N 

cor(R, T;,N) = :E R(k)I';(k) 
k=l 

1 N 
= -{ :E R(k)I';(k) 

a R k=l 

N 

µ R L I';(k)} 
k=l 

(12) 

and the case where the templates and the brain-wave response are both normalized 
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N 

cor(R, Ti,N) :E R(k)T;(k) 
k=I 

= 
l N N 
-{ L R(k)T;(k) - µ R L T;(k) 

a Ra T· k=I k=I 
I 

(13) 

N 

- µ T· L R(k) + µ Rµ Tj } 
1k=1 

The four above cases are summarized in the following table 

TABLE IV 

CORRELATION EQUATIONS 

I 
Templates 

I Brain-wave response I Not normalized Normalized 

Not normalized equation 9 equation 11 

Normalized equation 12 equation 13 

It is obvious from the previous equations that the length of the brain-wave 

response and. the length of the templates used in the calculation of the correlation 

are always the same. In order to understand the following remarks, we note that the 

addition of a constant to the 64 values computed by the cross-correlation technique, 

and/or the multiplication of these values by a coefficient, does not affect the decision 

being made about the class of the response, because this decision depends only on 

which is the highest value produced by the computation of the correlation. 

Template Normalization. When the templates are normalized, we can always 

assume that the average and the variance of the templates are the same for every 

template because all templates are identical except for a shift in time (thus, they can 

be replaced by a constant in the previous equations). This is true because it is 
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always possible to normalize the entire templates since they are known in advance. 

Thus, normalizing the templates does not affect the decision being made about the 

class of the brain-wave response. 

Response Normalization. When the calculation of the correlation is based on 

the entire brain-wave response, the term 

N 

I: ~Ck) (14) 
k=l 

is the same for every template (and can be replaced by a constant in the previous 

equation). Thus, in this case, normalizing the brain-wave response does not impact 

its classification. This observation together with the previous one lets us affirm that 

entire brain-wave responses are always similarly classified whether or not the 

responses and/or the templates are normalized. 

However, when the calculation of the correlation is based on only a segment 

of the brain-wave response, the classification of the response may be different 

depending on whether it has been normalized or not5• This not surprising since, in 

this case, the term in equation 14 is different for every template (this term was 

5 Note that normalizing the brain-wave response on the basis of its full length, 
or on the basis of a segment of it can change the decision being made about the class 
of the input because the average of the response varies as the length of the brain
wave response increases. The fact that the average of the brain-wave response is 
independent of i (independent of the templates) does not necessarily imply that it can 
be neglected because, in equation 12 and 13, the average of the brain-wave response 
is part of a term that depends on the templates. However, we have determined 
empirically (on the basis of the available data, see Chapter IV) that we can assume 
that the average of the brain-wave response is independent of the templates except 
when very short segments of the brain-wave responses are considered (N<lOO). 
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introduced when the brain-wave response was normalized, see equation 12 and 13), 

In Chapter V, we report better results when the brain-wave response was normalized. 

Logically, the difference is particularly striking when short segments are considered. 

Memory And Computational Requirements. In principle, the 64 templates 

need to be stored in memory. However, since the templates are identical except for 

a shift of time, one can use 64 different pointers directed to a single template in 

memory to represent the 64 templates. 

The computation of the correlation can easily be carried out on-line. For 

example, consider equation 13. Normalizing the templates does not require any real-

time computation since it can be done in advance. For the brain-wave response 

however, the normalization must be recaclulated as its length increases. Fortunately, 

it is possible to reduce equation 12 and 13 to the following 

N N 

E R(k)I';(k) µ. R L I';(k) (15) 
k=I k=I 

without affecting the decision being made about the class of the input. Thus, by 

keeping (and updating) the following values in memory 

N 

Mli(N) = E R(k)I';(k) 
k=l 
N 

Mz(N) = E R(k) (16) 
k=I 
N 

M'3i(N) = E T;(k) 
k=I 
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the computation of equation 13 is reduced to 

1 
Mli(N) - NMi(N)M'3i(N) (17) 

3.2. First ANN Architecture Studied 

The first ANN architecture used for the present research is a straightforward 

implementation of the desired input/output relationship. It consists of a single 

(backpropagation) ANN with 1016 input elements (maximum length of the brain-

wave response) and 64 output elements (size of the desired outputs) as shown in 

Figure 7. 

OtrrPtrr 

64 
,-"4-- -- ... -·-- .,. __ .......... -
' ' ' ' 

.. -..... ---........ --....... ---.... -
1016 

INPtrr 

Figure 7. First ANN architecture. One single ANN with 1016 input 
elements and 64 output elements, and one "hidden"layer. 
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3.3. Second ANN Architecture Studied 

The second ANN architecture used for the present research consists of 64 sub-

ANNs, each sub-ANN having to identify one of the classes. Each of the sub-ANNs 

has only one output element: the desired output value is 1 if the sub-ANN identifies 

the input as an element of its own class, and 0 otherwise. An important observation 

is that by assuming that a shift in time of the visual stimulus effects a similar shift in 

time of the brain-wave response and by using a proper reencoding of the input 

pattern, it is possible to use the same sub-ANN 64 times as shown in Figure 8. 

OUTPUT 

II I 164 

INPUT 

Figure 8. Second ANN architecture. 64 identical sub-ANNs, each 
having 1016 input elements and 1 output element. The input for each 
sub-ANN is modified by a wrap-around shift. 
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4. DECISION STAGE 

The desired outputs are binary vectors. In contrast, the usual techniques used 

to categorize the brain-wave-responses produce real-valued output vectors. It is 

therefore necessary to complete these techniques with an additional stage, called the 

decision stage, that converts the actual real-valued output vector into a binary vector. 

In a sense, the role of the decision stage is to provide an interpretation of the output 

values produced by the decoder. It may be useful to design the decoder so that the 

actual outputs approximate the desired outputs. Several different methods can be 

used at the decision stage. All methods are subject to errors since there is no 

warranty that the real-valued output contains the necessary information to choose the 

correct desired output. In the next paragraphs, we define a typology of the possible 

errors and propose several methods that may be used at the decision stage. 

4.1. Error Types 

If one considers the output elements individually, two types of error are 

possible. The decoding process (after the, decision stage) may have produced a one 

instead of a zero, or a zero instead of a one. It is however more interesting to 

consider the 64 output elements together to define a typology of the possible errors. 

An output is said to be formally valid if only one output element has a one as output 

value. All desired outputs are formally valid. A type 1 error is said (here) to arise 

when the decoding process produces a formally valid but incorrect output. A ~ 

2 error arises when the decoding process produces only zeros. A type 3 error arises 
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when the decoding process produces several ones including the correct one. A ~ 

4 error arises when the decoding process produces several ones, all of them incorrect. 

For example, if the desired output is class 1 

class 1: 1 ()()(),OOOl.'XXXl{}()Ol{)()().()(){)(l{}()Ol()()(),()(){)(')()()()l{)()().OOOl.')()()(,l()()()l{)()().'XXX'IOOOl(}()()OOOO 

the four possible error types are illustrated as follows 

error type 1: 01()()(),0001.')()()(,l()()()l()()(),()(){)(')(}()()l()()(),()(){)(')(}()()l(}()()OOOl.'XXXl()()()OOO()(){)(')()()(,l()()()OOO 

error type 2: 
error type 3: 10000000000000001 1000000 

error type 4: 0001()()(),0()()010000000000000001000000000100000000000001 

Notice that if the correct answer is not known, it is impossible to distinguish 

between the correct output and a type 1 error (both look like desired outputs), or 

between a type 3 error and a type 4 error. Nevertheless, this distinction is useful 

because one can introduce a bias in the decoding process to decrease the number of 

errors of one type at the expense of another when designing it. This makes sense if 

the cost associated with a particular error type is very high. 

4.2. Decide via Maximum Method 

The maximum method assigns a 1 to the highest (analog) value and 0 to the 

rest. This method always generates a formally valid (but possibly incorrect) output. 

Only type 1 errors are possible. 

4.3. Decide via Threshold Method 

The threshold method assigns a 1 to all values higher than some threshold 

value and 0 to the rest. In other words, a minimum "level of confidence" is required. 

This method allows all four previously defined error types to arise. It has the 
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advantage that many errors are signaled by invalid output; for example if all real 

valued outputs are low (type 2 error) or if more than one output is higher than the 

threshold (type 3 error and type 4 error), this information can be used to discard the 

output. 

4.4. Decide via Threshold-Maximum Method 

The threshold-maximum method is an attempt to overcome the cons of each 

method by combining them. The idea is to select all real valued outputs higher than 

some threshold and assign a 1 to the highest of these. The rest of the output values 

are set to 0. Only type 1 and type 2 errors are possible with this method. 



CHAPTER IV 

ARTIFICIAL NEURAL NETWORKS 

1. FUNDAMENTALS 

1.1. Recall Process 

Processing elements (PEs) and connections are the basic components of an 

ANN architecture: ANNs are "parallel, distributed information structures consisting 

of processing elements interconnected together with unidirectional signals called 

connections" (Hecht-Nielsen, 1988). Each connection has a weight that represents 

the strength of the connection. The processing elements carry out only local 

information processing operations which depend upon the current values xi of the 

PE's input signals and upon the current values wji of the weights 

n 

Yi = f(L wji x) 
izl 

(18) 

where f can be an operation of any mathematical type (e.g. threshold, sigmoid). The 

function f is usually called the transfer function. 
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Figure 9. A processing element. 

The information processing operations that lead to the computation of the 

output of the ANN for a given input are collectively referred as the recall process. 

These operations are not entirely parallel: ANNs process the input signals 

sequentially, in a few steps, each step involving a large number of PEs. This 

observation leads to the characterization of ANNs in terms of groups of processing 

elements, called layers. Typically, all processing elements in a layer share a common 

interconnection scheme and process the information simultaneously. Feedforward 

ANN architectures allow information to flow in only one direction, from the input 

layer to the output layer, while feedback or recurrent ANN architectures allow the 

information to flow in both directions. 

The input layer consists of all processing elements that receive a signal from 

the environment6• The output layer consists of all processing elements that emit a 

signal to the environment. Any layer that lies between the input and output layer is 

called a hidden layer. 

6 The input layer is essentially a buffer (the PEs simply store the current value 
of the signals). 
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OUTPlIT LA YER 

1} 
HIDDEN LA YER 

1} 
INPUT LAYER 

Figure 10. A feedforward fully connected ANN with one hidd~~layer. 

1.2. Training Process 

Once the architecture is fixed, the actual input/output relationship of an ANN 

depends entirely on the values given to the weights. Since an ANN can contain 

several thousaq.d weights (more than 30,000 in our experiments), discovering a weight 

configuration that corresponds to the desired input/output relationship is not a trivial 

task. ANNs solve this problem by learning the desired input/output relationship 

during a training process. Leaming is defined to be any change in the weight 

configuration: the process can be either supervised or unsupervised. In the case of 

supervised learning, the objective is to teach the ANN a predetermined input/output 

relationship. Global information about the problem context (e.g. the desired output) 

can be incorporated in the learning process. In the case of unsupervised learning, the 

input/output relationship is not known at the beginning of the training process, rather 
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it emerges as the result of the process. In a sense, the resulting input/output 

relationships reflects the properties of data that the ANN has discovered during the 

learning process. In the present thesis, we consider only the (supervised) learning 

algorithm called backpropagation. 

1.3. Backpropagation 

Typically, backpropagation is applied to feedforward architectures. 

Backpropagation ANNs are characterized by a particular training process that 

consists of the following elements: a training set, a criterion function, and a learning 

rule (these elements are not exclusive to the backpropagation paradigm). 

The training set contains data representative of the problem context (i.e. 

representative of the desired input/output relationship). 

The criterion function provides a global measure of the error associated with 

the current weight configuration. For example, the criterion function typically 

computes the difference between the actual output and the desired output value for 

each PE in the output layer. In theory, the criterion function should take into 

account the error associated with all the input patterns that are relevant to the 

current problem context (i.e. all inputs that are specified by the desired input/output 

relationship). It is convenient to think of the criterion function as a surface in the 

space of all possible weight configurations. This surface is sometimes called the error 

surface. 

The learning rule interprets the data supplied by the criterion function and 

determines the next weight configuration to use. The objective of the training 
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process is to find a weight configuration that minimizes the criterion function. In the 

backpropagation paradigm, the error e; associated with the PEs in the output layer 

is backpropagated in successively lower layers 

e. = f(:L w .. e.) 
J , JI I 

I 

(19) 

where ej is the error associated with the PE in a lower layer, wji are the weights 

associated with the connections between the upper and lower layer,/' is the derivative 

of the transfer function at the point corresponding to the value of the PE's output, 

xj. Finally, the error associated with each processing element is used to update the 

weight as follows 

new w .. 
JI 

old old 
= wji + wji e; 

(20) 

From an abstract viewpoint, the backpropagation training process is 

functionally equivalent to a gradient descent algorithm operating on the error surface 

in weight space. 

2. ARTIFICIAL NEURAL NETWORK ISSUES 

2.1. Credit Assignment Problem 

As previously mentioned, the criterion function provides only a global 

assessment of the performance of an ANN. Hence, the learning rule must include 

a mechanism that interprets the data provided by the criterion function and assigns 

the "credit" (or the ''blame") to each weight individually. The backpropagation 
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algorithm offers a general solution to this problem for multi-layered, feedforward 

ANNs. This explains the popularity of the backpropagation paradigm today. 

2.2. Local Minimum Problem 

As previoulsy mentioned, the backpropagation learning rule is functionally 

equivalent to a gradient descent algorithm operating on the surface determined by 

the criterion function. In this case, the local minimum problem originates from the 

fact that the criterion function is evaluated only locally. Representing the criterion 

function as a surface is convenient but does not reflect the fact that the points of the 

surface are known only one at a time (for the current weight configuration). Thus, 

depending on the initial weight configuration, such a learning algorithm can get stuck 

in a local minimum (unsatisfactory weight configuration). 

In fact, the local minimum problem is essentially a computational problem 

since any systematic approach to solve it would require the computation of more 

points of the surface; in other words, more information about the problem context 

or more guidance. In a sense, this problem is shared by every type of learning 

machine. 

2.3. Generalization Problem 

The term 'generalization' relates to the act of generating an output for an 

input not seen during the training process. The generalization problem is thus 

connected with the fact that (in most cases) the training set is only a partial definition 

of the input/output relationship. One side effect of this is that a bias is introduced 
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in the computation of the criterion function because, in principle, all inputs relevant 

in the problem context should be considered. In practice, the performance of the 

ANN depends on the size and quality of the training set. Hence, a good 

understanding of the problem context is necessary to be able to select appropriate 

data for the training set. 

Overfitting Problem. The overfitting problem is a special case of the 

generalization problem. It arises when the ANN performs very well on the training 

set but poorly on any other data set. In a sense, the ANN has memorized the 

training set without learning the underlying features that characterize the problem 

context. The ANN cannot generalize (well). A small training set, or a noisy set of 

data can cause the problem. In the case of a noisy data set, the problem arises 

because the ANN learns the features of the noise along with the features of the data; 

it then performs poorly on data that have been contaminated by a different noise. 

2.4. Representation problem 

From an abstract viewpoint, an ANN is a box with an input and an output. 

However, the set of possible input/output mappings that the ANN can actually 

perform is limited by its architecture: ANNs are not meant to be universal Turing 

machines, they do not process the information symbolically. In addition, the number 

of achievable input/output relationships is further reduced if one takes into 

consideration the training process, because in effect the training process creates 

"attractors" as it brings the weights to a particular configuration associated with a 

local minimum (only input/output mappings with large "attractors" are likely to be 
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learned). In practice, solving the representation problem means figuring out an 

appropriate input/output mapping for a particular ANN architecture given a specific 

problem context. The representation problem is possibly the most complex issue; it 

has not yet received a satisfactory theoretical solution. 

2.5. Memory and Computational Requirements 

ANNs typically have many connections. Each connection is associated with 

a weight that must be stored in memory. This creates a serious problem as the size 

of the ANN scales up. Parallel ANN implementations solve memory-related 

problems by storing locally the value of the weight into specialized processors 

associated with the PEs. 

We distinguish the computational costs associated with the recall and the 

training process. The recall process requires the computations of a sum and several 

products for each PE in the ANN. Although an ANN can contain many PEs and 

connections, it is possible to design fast parallel implementations by allotting a 

specialized processor to each PE, since all information processing operations are 

local. The training process is much more computationally expensive. In a 

backpropagation ANN, each presentation of a datum during the training process 

requires twice as many computations (the error needs to be backpropagated). More 

significant is the fact that backpropagation ANNs usually require many presentations 

to learn an appropriate weight configuration (15,000 to 500,000 in our experiments). 

On one side, computational requirements associated with the training process may 

not seem relevant since the process does not have to be repeated once the ANN has 
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learned the desired input/output relationship. But, on the other side, the length of 

the training process can become a very significant obstacle while designing an ANN. 

Indeed, the design stage is still an empirical process and usually requires many 

experiments before an adequate ANN architecture is found. 

3. THE ART OF ARTIFICIAL NEURAL NETWORK DESIGN 

Designing an ANN that performs well on a given problem context raises many 

problems. First, an ANN paradigm must be chosen (e.g. backpropagation). This 

choice depends on the problem context. 

Then, in many cases, the basic ANN paradigms must be modified in order to 

obtain satisfactory performance (e.g. decrease the number of errors, speed up the 

training process). Some of these modifications have become usual (e.g. the addition 

of a momentum term to the learning rule), others must be specifically designed to fit 

special characteristics of the problem context (e.g. the modification of the 

backpropagation algorithm made by the author, and detailed in Appendix: A). 

Finally, once the general characteristics of the ANN have been fixed, it is still 

necessary to determine the value of many parameters (e.g. the size of the hidden 

layer, the epoch size). Note that it is possible for some of these parameters to change 

during the training process (e.g. the learning coefficients). Note also that the 

distinction between a modification of an ANN paradigm and a parameter, is 

somewhat arbitrary. 
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3.1. The Design Issue 

This sub-section gives a quick (and partial) account of the current state of 

development of ANN technology theoretical knowledge. 

It has been proved that a three layer ANN can approximate a wide range of 

input/output relationship to any degree of accuracy (White, 1988). Unfortunately, 

this result states only that a mapping exists; it does not state how to find the 

mapping, nor the required number of PEs in the hidden layer. There is not yet any 

theory answering these questions. 

As a matter of fact, full fledged theories are just beginning to be developed. 

To give an indication about the direction of the current state of the art, many of 

these theories are based on ideas borrowed from Information Theory. Their 

objective essentially is to match the "complexity" of the problem context with the 

"complexity" of the ANN (e.g. in simple models, the complexity of an ANN is 

sometimes related to the number of weights). 

For example, there is an obvious relationship (and experimental confirmations) 

between, say, the overfitting problem and the "complexity" of the ANN. Previously, 

we partially described the overfitting problem as primarily depending on the size and 

characteristics of the training set. But, in fact, if the ANN is too "simple" relatively 

to the "complexity" of the problem context, then it will never learn how to generalize, 

since it will never be able to learn in the first place (generalization problem). And 

if the ANN is too "complex", then it will not be constrained enough by the training 

process (overfitting problem). 
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The slow progress toward a full-fledged theory is easy to understand, since it 

should probably include an evaluation of the "complexity" of the desired input/output 

relationship (i.e. the problem context), a description of the available data sets (e.g. 

the sizes of the training and testing sets), a description of the architecture of the 

ANN (e.g. the number of weights), and a description of the training process (e.g. the 

learning schedule). In addition, such a theory should also be backed up by a deep 

understanding of the problem context because such a knowledge is necessary to 

estimate the "complexity" of the problem context, and to define an appropriate 

input/output relationship, and to select the data sets. 

In the previous paragraphs, we basically discussed the design issue as if it were 

a theoretical problem that should be addressed before doing any experiments. 

Another approach is to let the ANN adapt its architecture during the training 

process. For example, pruning is a technique that minimizes the number of 

connections and of PEs during the training process. Other techniques start from a 

simple architecture and increase the number of connections and PEs as long as it is 

necessary. Although these techniques can (sometimes) automate the design process, 

all have the drawback that the training time tends to be greatly increased. 

3.2. Epoch Size 

In this sub-section, we discuss a parameter, the epoch size, whose importance 

is too often neglected. Of course, the epoch size is not the only important parameter. 

The epoch size refers to the number of presentations before the weight 

configuration is updated. For example, in the original definition of the 
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backpropagation algorithm, the epoch size should theoretically be the size of the 

entire desired input/output relationship. In practice however, the epoch size is 

limited by the size of the training set. Empirically, this turns out not being a major 

problem since, in many cases, the training process succeeds with a small epoch size. 

The impacts of the epoch size on the training process are just starting to be 

studied theoretically. As a matter of fact, one must be aware that computing the 

criterion function on the basis of only a subset of the required data changes its value. 

In addition, the order of presentation of data becomes a factor. For example, let x1 

and x2 be two elements of the training set, let W1, W21 W3 and W4 be different weight 

configurations, suppose that the learning rule changes the weight configuration each 

time a data is presented as specified below 

(W1, X1) -> W2 
(W1, xi) -> W3 
(W21 xi) -> W3 
(WJ> X1) -> W4 

then a different order of presentation will produce a different result 

(W1, x1, xi) -> W3 
(WJJ x21 x1) -> W4 



CHAPTER V 

EXPERIMENTS AND RESULTS 

From an abstract viewpoint, the decoding process is simply a box with 1016 

input elements and 64 output elements. In this chapter, we evaluate the performance 

of the cross-correlation technique and the ANN technology on the basis of the 

available data. We demonstrate that the ANN technology can perform at least as well 

as the cross-correlation technique currently used in the BRI. In addition we describe 

two particular phenomena that, if solved, could lead to a significant improvement of 

the performance. 

1. METHODOLOGICAL ISSUES 

1.1. Data 

The data used in the present research were collected at the Smith-Kettelwell 

Eye Research Institute by the team of Dr. Erich E. Sutter. A set of 99 brain-wave 

responses was recorded by the means of an external electrode applied on the scalp 

of a healthy subject. An unique binary m-sequence was used as visual stimulus. The 

analog signal recorded by the electrode was then sampled and quantified. After 

having examined the data, we suppressed the eight initial anomalous values that were 

always equal to 32768, and, thereby, reduced the length of the data to 1016 samples. 

In addition, after a discussion with Dr. Sutter, we set the value of the 527th sample 
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to the value of the 526th sample in the data (the value of the 527th sample was equal 

to zero in all data for an unknown reason). 

For methodological reasons, the data are divided in two sets. The first data 

set contains 66 of the 99 brain-wave responses, and these are used to define 

templates required by the cross-correlation technique or to construct the training sets 

required by the ANN methodology. The second data set comprises the 33 remaining 

responses and is used to evaluate the performance of the techniques used in the 

present thesis to implement the decoding process. 

1.2. Training Set 

Defining the training set is a very important step of the ANN methodology. 

In the present problem context, it is obviously necessary to include data 

representative of the brain-wave responses induced by each of the 64 visual stimuli 

into the training set. In the present research, we constructed the training set by 

assuming that a shift of time of the visual stimulus produces a similar shift of the 

brain-wave response. Thus, each brain-wave response included in the first data set 

(66 responses) was successively shifted 63 times to simulate the brain-wave responses 

associated with the other visual stimuli. In other words, the new training set was 

constructed by augmenting the original data set with 63 shifted copies of it as shown 

in Figure 11. In this manner, we defined 64 classes: class 1 designates the responses 

that have not been shifted, class 2 designates the responses that have been shifted 

only once, class 3 designates the responses that have been shifted two times, and so 

on. 
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Figure 11. The data sets. This figure illustrates how the training sets 
used in the ANN experiments are derived from the original data set of 
99 brain-wave responses. 
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In experiments involving the second ANN type (see Figure 8), we further 

augment the training set by duplicating 63 times every response in class 1 (unshifted 

brain-wave response). The objective of this last modification of the training set is to 

equalize the number of responses whose desired output is 1 (responses in class 1) 

with the number of responses whose desired output is 0 (responses in class 2, ... , and 

class 64). This is done in an effort to avoid the typical results wherein an ANN 

learns to always output a 0, when the number of responses whose desired output is 

0 exceeds by far the number of responses whose desired output is 1. In experiments 

involving the first ANN type (see Figure 7), there is not such a motivation to 
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duplicate the responses in class 1, since the desired outputs are always 64-dimensional 

vectors with one 1 and 63 Os (this does not mean that the encoding of the desired 

outputs is appropriate). 

1.3. Evaluation of the Performance 

The 33 responses in the testing set represent different brain-wave responses 

that have all been evoked by the same visual stimulus. Let us first remark that 33 

responses constitute a very small testing set. However, it did not make sense to 

augment artificially the size of the testing set by shifting the responses to simulate the 

brain-wave responses to other visual stimuli. As a matter of fact, this would not 

provide any additional information about the performance of the techniques used in 

the present research, because, in the case of the cross-correlation technique, the 

templates are themselves identical except for a shift of time, and because, in the case 

of the ANN technology (type 2 ANN), the 64 sub-ANNs are identical. In both cases, 

the only effect of shifting the input is to shift the output. 

Thus, ideally, the results should inditate that all responses in the testing set 

belong to class 1 as indicated in Figure 127
• We note that in some cases, when ANN 

technology was used, some experiments were run more than once in order to render 

the experiment results less sensitive to the random elements of the experimental 

process (e.g. initial value of the weights). In these cases, the results that are reported 

7 In the present thesis, we used the graphic capabilities of MATLAB to enhance 
the presentation of the results (MATI.AB is a trademark of The Math Works, Inc). 



55 

correspond to the average performance between the different realizations of the 

same experiment. 

33 
I r 1- ,,,.,--rrn.-rr-r...-.--r1"...,..,...,.....-.--------

' I I I Iii I I I I I I ITI 11ITI111111111 

0 
1 .:;::..• ·~ 

t 
j_ 

Figure 12. Three dimensional representation of the ideal case when 
all the responses in the testing set are classified correctly. The x-axis 
corresponds to the 64 output elements, the y-axis corresponds to the 
33 responses in the testing set, and the z-axis indicates the value 
associated with the output elements. 

Figure 13 illustrates an alternative format to communicate the results that is 

adequate when the output values (z-axis) are binary. 
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Figure 13. Two dimensional representation of the ideal case when all 
the responses in the testing set are classified correctly. The x-axis 
corresponds the 64 output elements, the y-axis corresponds to the 33 
responses in the testing set. 

2. CROSS-CORRELATION TECHNIQUE 
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The first step of the cross-correlation technique corresponds to the definition 

of the templates. In the present thesis, the first template, T1, is obtained by averaging 

66 brain-wave responses. The 63 other templates are derived from the first template 

by successive wrap-around shifts. 

The second step of the cross-correlation technique is the computation of the 

correlation. The responses in the testing set and/or the templates are eventually 

normalized. The four possible cases are indicated in Table V. This issue was 

discussed in detail in Chapter II. 



Brain-wave response 

Not normalized 

Normalized 

TABLEV 

CROSS-CORRELATION TECHNIQUE: 
1HE FOUR POSSIBLE CASES 

I 
Templates 

I Not normalized 

I 
caseA 

I case C 
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Normalized I 
case B 

I case D 

The time necessary to (correctly) classify the brain-wave response being 

detected is the most important criterion by which the BRI is evaluated. Figure 14 

shows the percentage of correct classifications as a function of the size of the segment 

of the brain-wave response being used in the calculation. 
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Figure 14. Percentage of correct classifications by the cross-correlation 
technique as a function of the length of the response. The dashed line 
corresponds to cases A and B (the brain-wave response has not been 
normalized), the solid line to cases C and D (the brain-wave response 
has been normalized). 
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As one can see, better classification performance is achieved when the brain-

wave responses are normalized. 

Figure 14 provides an experimental confirmation of two observations that were 

made in Chapter III. First, normalizing the templates does not impact the 

classification of the brain-wave responses in the testing set (therefore only two lines 

are used in Figure 14). But, normalizing the brain-wave response impacts the 

classification of the responses except when the entire brain-wave response is taken 

into account in the computation of the correlation (both lines indicate the same 

number of misclassifications when the length of the response is 1016). 

Figure 15 shows how the brain-wave responses in the testing set are classified 

when entire responses are used in the calculation of the correlation (Figure 15 is the 

same for all four cases because, as previously mentioned, the classification 

performance is the same in all four cases when entire responses are used). 
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Figure 15. Classification of the brain-wave responses by the cross
correlation technique. Entire responses are used in the calculation of 
the correlation, and the maximum method is used at the decision stage. 
The x-axis corresponds to the 64 templates, the y-axis corresponds to 
the 33 responses in the testing set (see Figure 13 for perfect results). 
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3. FIRST ARTIFICIAL NEURAL ARCHITECTURE 

In this research, experiments were carried out with two different ANN types. 

The general form of each ANN type is described in Chapter III. The first ANN type 

yielded poor results and is described here for completeness. A summary of the 

experimental conditions is given in Table VI. In every case, a single ANN with 64 

PEs in the output layer is used (see Figure 7). 

TABLE VI 

FIRST ANN ARCHITECTURE EXPERIMENTS 

X4 

PEs 1016,30, 64 

Transfer function sigmoid 

Leaming rule delta 

Learning schedules8 default, hidx4, outx4 

Epoch size 16 

Input range 0, 1 

Output range 0.2, 0.8 

X7 

PEs 1016, 30, 64 

Transfer function tanh 

Learning rule cum-delta 

Leaming schedules default, ncmhid, ncmout 

Epoch size 66 

Input range -1, 1 

Output range -0.6, 0.6 

XS 

Leaming schedule default, ncmhid2, ncmout2 

8 The learning schedules are different for the input, hidden, and output layers. 
The learning schedules are described in Appendix C. 
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The first ANN type failed to learn to correctly classify the responses. In every 

case (after 500,000 presentations), the ANN did not exhibit any sign of learning: the 

root mean square (RMS) error did not change at all. The problem may be related 

to the representation issue, as during most of the training process, the output 

elements are learning to produce a 0. Another possible reason for the failure of this 

approach is that we may have stopped the training process to early. However, 

500,000 presentations seemed large when compared to the 15,000 (or even fewer) 

presentations required by the second architecture type. 

If more experiments were to be run with the first ANN type, two suggestions 

are to change the representation of the desired outputs, and to include more than 

one hidden layer in the ANN. 

4. SECOND ARTIFICIAL NEURAL NETWORK ARCHITECTURE 

The second ANN type uses a combination of 64 identical sub-ANNs, each 

having only 1 PE in the output layer (see Figure 8). 

4.1. Evaluation of the Performance 

Figure 16 shows the percentage of correct classifications as a function of the 

length of the brain-wave response. The few results reported in Figure 16 are 

representative of all experiments with the second ANN type. 
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Figure 16. Percentage of correct classifications by the ANN technology 
as a function of the length of the response. Maximum method used at 
the decision stage. ANN experiments (solid line), cross-correlation 
technique (dashed line). 
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As one can see, the results reported in Figure 16 show the ANNs did as well 

as the cross-correlation technique, but did not achieve the hoped improvement of 

classfication rate on the shorter response segments. 

In the subsequent paragraphs, we discuss the results that we obtained. 

4.2. Comparison with the Cross-Correlation Technique 

Even though the classification performance obtained with the cross-correlation 

technique (case C or D), and those obtained with the ANN technology are similar, 

there are major differences between the two techniques. For example, Figure 17 

shows that the values associated with the 64 output elements are very different in 

each case. 

The relative difference between the value of the first output element (whose 

desired output value is 1), and the value of the other output elements (whose desired 

output value is 0) is usually larger for the ANN technology than for the cross-

correlation technique. 
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0 
Figure 17. Output values: ANN technology versus cross-correlation 
technique. Experiment x96 after 15,000 presentations (top figure), 
cross-correlation technology (bottom figure). The x-axis corresponds 
to 64 templates, the y-axis corresponds to the 33 responses in the 
testing set, the z-axis corresponds to the value of the output element. 
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This observation is confirmed by averaging, for each one of the 64 output 

elements, the 33 values that are associated with the responses in the testing set. A 

plot of the (64) average values associated with each one of the output elements is 

represented in Figure 18. The term "average output values" designates this type of 

results. 

As one can see, the average output values of experiment :x96 is closer to the 

desired output than the average output values of the cross correlation technique9• 

9 In Figure 18, the original results obtained with cross-correlation technique are 
rescaled in order to facilitate the comparison. 
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This observation is promising. The ANN technology, however, does not perform 

significantly better than the cross-correlation technique (as indicated by the 

classification performance reported in Figure 16). As a matter of fact, the ANNs 

sometimes generate undesirable high values (the "pies" that may be observed in 

Figure 17) that will cause the corresponding response to be misclassified (the 

maximum method is used at the decision stage). We shall describe, in section 4.5, a 

how these "pies" materialize during the training process (contrast-enhancement 

phenomenon). 
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Figure 18. Average output values: ANN technology versus cross
correlation technique. Experiment x96 after 15,000 presentations (solid 
line), cross-correlation technique (dashed line). 

4.3. Training Process with Short Responses 

In the present research, some ANN experiments were designed to evaluate the 

impacts of particular ANN design choices (e.g. error processing, hidden layer size). 

In this case, the ANNs were trained with entire brain-wave response (1016 samples). 

Other ANN experiments were designed to produce good classification results 

as soon as possible (short response time). In those experiments, we trained the 
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ANNs with short brain-wave responses since the time necessary to identify (correctly) 

the brain-wave response being detected obviously depends on the length of the 

responses. Note that the ANNs trained with shorter responses nevertheless had 1016 

PEs in the input layer. In the present research, the shorter responses were simulated 

by setting to zero the values of the PEs (in the input layer) exceeding the size of the 

response10
• 

In the present research, the ANNs trained with shorter brain-wave responses 

can be divided in two sets. 

One set of experiments involved training with responses of only one size (e.g. 

responses 888 samples long for experiment x60). In a sense, these experiments are 

intended to provide information on how well specially dedicated ANNs can perform 

on short responses. The classification results after 15,000 presentations are reported 

in Table VII (the ANNs are trained and tested with responses of the same length). 

TABLE VII 

TRAINING PROCESS WITH PARTIAL RESPONSES 

response length performance 
experiments 

training set testing set 

x90, x91, x92 1016 98.5% 87.9% 

x60,x61 888 97.0% 86.4% 

x64,x65 760 95.5% 77.3% 

x66,x67 632 89.4% 53.0% 

x68, x69 504 78.8% 47.0% 

1° For that purpose we used the "minmax table" facility of the ANN simulator 
NWORKS. 



65 

The other set of experiments was trained with a mix of responses of different 

lengths (the corresponding training processes are described in Appendix: B). The 

results associated with these experiments are reported in Figure 19. 
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Figure 19. Percentage of correct classifications by ANN experiments 
trained on a mix of responses of different lengths as a function of the 
length of the response. ANN technology (solid line), cross-correlation 
technique (dashed line). The crosses correspond to the classification 
performance of the experiments reported in Table VIL 

There are only minor differences between the results corresponding to the 

experiments trained solely on entire responses (Figure 16) and those corresponding 

to experiments that included shorter responses in their training process (Figure 19). 

4.4. Generalization And Overfitting Problems 

Comparing the results for the testing and training set are useful in determining 

if the ANNs are overtrained ( overfitting problem). Figure 20 and 21 show the 

percentage of responses in the training and testing set that are classified correctly for 

experiments x96 and X92. Experiment x96 is representative of the experiments that 
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were trained with entire brain-wave responses. Experiment X92 is representative of 

the experiment that were trained with a mix of responses of different lengths. 
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Figure 20. Percentage of correct classification as a function of the 
length of the training process (experiment x96). Entire brain-wave 
responses were used during the training process. Testing set (solid 
line), training set (dashed line). 

In experiment x96, the percentage of correct classifications after 15,000 and 

25,000 presentations remained stable (87.9% on the testing set, 98.5% on the training 

set). 

Note that, in Figure 20, the classification performance on the testing set 

continue to improve between 800 and 2,000 presentations even though the 

classification performance associated with the training set remain at the same level. 

We address this issue again in the next section (in fact, we will show that, in a sense, 

the ANNs are still learning long after the classification performance associated with 

the training and/or the testing set have stopped to improve). 
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Figure 21 Percentage of correct classification as a function of the 
length of the training process (experiment X92). A mix of responses 
of various length was used during the training process. Performance 
on the training set (top figure), performance on the testing set (center 
figure). The bottom figure is a superposition of the two previous 
figures. The results are plotted for responses of four different lengths: 
1016 samples (solid line), 760 samples (dashed line), 504 samples 
(dotted line), 248 samples (dot-dashed line). 
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The classification performance reported in Figures 20 and 21 do not exhibit 

any obvious sign of overfitting: the percentage of correctly classified responses in the 

training and testing set is close. In one particular case (experiment X92, 504 samples 

long responses), there is a significant difference between the classification 

performance obtained on the training and testing set. This observation, however, is 

limited to responses of this particular length, there is no such difference when the 

same ANN is tested with responses of different lengths. Thus, one cannot, on the 

basis of these results, conclude that experiment X92 is overtrained. 

4.5. Contrast-Enhancement 

Figure 22 shows the evolution of the average output values at different stages 

of the training process. 

As one can see, Figure 22 shows that the average outputs values continue to 

get closer to the ideal case during the training process during as many as 15,000 

presentations. This observation apparently contradicts the results reported in Figure 

20 showing that the classification performance of the ANNs reaches its maximum 

very quickly (90% after 2,000 presentations). 
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Figure 22. Evolution of the average output values at different stages 
of the training process (experiment x96). Each line correspond to the 
average output values at a different stage of the training process, the 
corresponding number of presentation is inscribed in the right margin. 

We believe that this contradiction is essentially due to a phenomenon, here 

called contrast-enhancement, that characterizes the training process of all the 

experiments in this research. In order to observe this phenomenon, it is necessary 

to look at the values associated with the 64 output elements for each response in the 

testing set at different stages of the training process (Figure 23). 
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Figure 23. Output values at different stages of the training process. 
Experiment x96 after 600 (top figure), 2500 (center figure), and 15,000 
presentations (bottom figure). The x-axis corresponds to 64 output 
elements, the y-axis corresponds to the 33 responses in the testing set, 
and the z-axis indicates the value associated with the output elements. 
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Figures 23 suggests that the output values that are already close to the desired 

outputs stay close (or get closer) at the expense of other values that get worse. In 

other words, the contrast among the output values is enhanced because intermediary 



71 

values (the "gray" values) disappear during the training process. At the end of the 

training process, only the values close to 0 (the "white" values) or close to 1 (the 

"black" values) remain. Thus, the improvement in the average output value during 

the training process is due to the fact that most of the small deviations from the 

desired output values (the "gray" value) disappear. However, the classification 

performance does not change since the misclassifications are mainly due to the 

"black" or "white" values. 

A number of our experiments were designed with the objective of lowering the 

error associated with the ''black" and "white" values as well as the error associated 

with the "gray" values. To achieve this objective, we experimented with changing 

several parameters of the training process, but did not succeed. For example, we 

increased the size of the epoch from 16 to 132 (experiment XS); we reduced the 

output range (experiment X6); and so on. 

Our conclusion is that increasing the length of the training process will not 

improve performance of these experiments. We believe that the contrast

enhancement phenomenon described in this section is a problem that may have 

appeared in other problem contexts as well. It would be interesting to see if there 

is a general solution to this phenomenon. We believe that, in the present problem 

context, it will most likely be necessary to increase the size of the training set to 

obtain better results. 
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Figure 24 shows the evolution of the output values associated with two 

particular brain-wave responses in the testing set that exemplifies particularly well the 

contrast-enhancement phenomenon. 
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Figure 24. Output values associated with two specific brain-wave 
responses at different stages of the training process (experiment x96). 
The top figure corresponds to the 19th response in the testing set, the 
bottom figure corresponds to the 24th response in the testing set. 600 
presentation (dotted line), 2,000 presentations (dashed line), 15,000 
presentations (solid line). The x-axis corresponds to 33 responses in the 
testing set, the y-axis indicates the actual value of the output element. 

4.6. Nearby Misclassification 

TJ:ie term 'nearby misclassification' refers to the fact that a misclassification is 

more likely to occur among the 11early11 classes, e.g. between classes 2 and 10 (see 
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Figure 25). This observation was repeated many times during this research11
• Note 

that the impact of nearby misclassification distribution can be observed in the average 

output values (Figure 24). Because most misclassifications happen when the value 

of the second and following output elements is significantly bigger than 0, and 

because most misclassifications occur in the early classes, it is therefore normal for 

the average output values reported in Figure 24 to be bigger in the early classes than 

in the later ones. 

Note also that if the responses in the testing set belonged to another class (all 

responses in the testing actually belong to class 1 ), then the correct classifications as 

well as the misclassifications would be accordingly shifted (see section 1.3). 
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Figure 25. Classification of the responses in the testing set in 
experiment x96. The maximum method is used at the decision stage. 

-

-

11 Figure 25 shows also something else. The comparison between the 
classification of the responses by the ANN technology (Figure 25) and by the cross
correlation technique (Figure 15) shows that the misclassifications, albeit different, 
are caused by the same responses. This suggests that the misclassifications are really 
due to attributes of the responses rather than to some peculiar characteristic of the 
methods used. We cannot, however, discard these responses because we do not have 
enough information about the characteristics of typical responses. 
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Observing that the visual stimuli inducing the brain-wave responses belonging 

to these classes are "closer in time" to the visual stimulus corresponding to class 1 (i.e. 

there is smaller lag between xi(t) and xi(t) than between xz(t) and xJ(t), etc.) can 

certainly be part of an explanation of the nearby misclassification distribution 

phenomenon. But this reason is insufficient because the misclassifications do not 

follow a symmetric pattern, there are fewer misclassifications between classes 56 and 

64 than between classes 2 and 10. Thus, there must be an additional reason to 

explain why the misclassifications occur essentially between class 2 and class 10. 

We designed several experiments that specifically address this issue (the ANNs 

used in these experiment require a modification of the backpropagation algorithm). 

The results associated with these experiments are reported in Tables VIII and IX. 

As one can see, these experiments have similar classification performance. 

TABLE VIII 

ERROR PROCESSING I 

experiment response's error performance 
class factor (testing set) 

x90, x91, x92 1-64 1 87.9% 

xlO, xll 1-2 2 87.9% 
3-64 1 

x20, x21, x22 1-10 2 88.8% 
11-64 1 

x25, x26, x25 1 1 88.8% 
2-10 2 
11-64 1 
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TABLE IX 

ERROR PROCESSING II 

experiments response's error performance for various response 
class factor sizes (testing set) 

1016 760 504 248 

Xl 1 2 87.9% 78.8% 42.4% 333% 
2-7 4 

8-11 2 
12-64 1 

X2 1 2 84.8% 78.8% 45.5% 273% 
2-11 4 
12-21 2 
22-64 1 

X3 1 2 90.9% 78.8% 45.5% 15.2% 
2-11 0.5 
12-64 1 

In a typical backpropagation ANN (e.g. experiments x90, x91, and x90), the 

error computed by the criterion function is simply the difference between the actual 

and the desired output (i.e. the error e; associated with the PE X; is o;- d;, where o; 

is the actual output value, d; is the corresponding desired output value). In our 

version of the backpropagation paradigm, the idea is to modify the error evaluated 

by the criterion function as a function of the class of the response. For example, in 

experiments xlO and xll, the computation of the error in the output layer is 

e; = { 2(o; - d;) 

Oi - di 

if the input belongs to class 1, or class 2 

otheTWise 
(21) 

In equation 21, the coefficient that eventually multiplies the error is called the 

error factor. A detailed description of the implementation of this modified version 

of the b~ckpropagation paradigm is given in Appendix A, and a detailed description 

of these experiment is given in Appendix B. 
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As previously mentioned, the results of these experiments are not conclusive. 

Nevertheless, we believe that this approach has potential. A more simple problem 

context would certainly be desirable to understand it better both empirically, and 

theoretically. 

4.7. Hidden Layer Size 

The size of the hidden layer is one of the most important characteristics of an 

ANN architecture. The results associated with several experiments addressing this 

issue are reported in Table X. 

TABLEX 

SIZE OF TIIB HIDDEN LA YER 

experiments size (PEs) performance 

training set testing set 

x84, x85 10 98.5% 90.0% 

x90, x91, x92 20 98.5% 87.9% 

x81, x82 30 98.5% 89.4% 

x87, x88 50 98.5% 87.9% 

As previously mentioned, these results are not conclusive. On the positive 

side, it was noted that the experiments with fewer PEs in the hidden layer required 

a shorter training process (the differences were on the order of a few thousand 

presentations). 



CHAPTER VI 

CONCLUSION 

In the present thesis, we tried to improve the speed of classification in an 

existing gaze-addressing communication system, called the Brain Response Interface, 

that was developed at the Smith-Kettelwell Institute at San-Francisco by Dr. Erich 

Sutter. In particular we explored the potential of a new approach based on ANN 

technology to replace the cross-correlation technique currently used in the BRI. 

1. DISCUSSION OF THE RESULTS 

1.1. Artificial Neural Network Technology 

The initial objective was only partially achieved. Even though we definitely 

established that the ANN technology can perform at least as well as the cross

correlation technique, none of our experiments performed substantially better than 

the cross-correlation technique. 

One must notice however that this research was conducted under a severe 

handicap of having only 99 brain-wave responses. Sixty six of these were used as the 

training set, and the remaining 33 as the testing set. This is insufficient for several 

reasons. 

First, brain-wave response are signals that are extremely difficult to categorize, 

and this set is not fully representative of the problem context. The characteristics of 
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the brain-wave response depends strongly on the individual, and on his or her general 

medical status. In addition, temporary bursts of noise can transform them 

significantly. It is felt that substantially more data will be necessary to insure that 

results obtained reflect adequately the performance potential of the ANN technology. 

Second, it is a well known fact that the size and quality of the training set is 

crucial in achieving good performance with ANN technology. Any future research 

should include more responses. This, however, may cause several practical problems 

(e.g. the training file in our experiments exceeded 35MBytes12
). Thus, it may be 

necessary to change the sampling rate, and/or the representation of the responses. 

In any case, these experiments will require expertise in neuro-physiology as well as 

in ANN technology. 

Despite this handicap, the results reported in this thesis brought a better 

understanding of the problem context, yielded several interesting observations, and 

helped to define lines of future research. 

First, we found a fairly robust way to use ANNs in this problem context. Our 

experiments show that relatively minor changes in the architecture of the ANNs did 

not impact the performance. This same observation, however, prevented us from 

precisely relating a specific set of parameters of the ANN to the characteristics of the 

12 The size of the training file could be significantly reduced by using the user I/O 
facility if NWORKS. This would require writing an I/O program that automatically 
shift the responses on the fly when they are presented to the ANN (see section 1.2, 
Chapter V). 
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present problem context. The design of future experiments could certainly be 

facilitated if more conclusive results had been obtained. 

Second, we identified two phenomena that, if properly addressed, could lead 

to a significant improvement of the classification performance. The first 

phenomenon, called contrast-enhancement, relates to the fact that only the small 

deviations from the desired output values disappear during the training process. 

Therefore, the percentage of classification remains stable even though the ANN 

continues to learn (the average output values get closer to the desired output values). 

What is necessary is a method that positively impacts the large deviations from the 

desired output values. 

The second phenomenon, called nearby distribution, relates to the observed 

situation that a misclassification is more likely to happen in a class close to the actual 

(correct) class of the input. Any method providing better discrimination among 

nearby classes would solve this problem. In this thesis, we tried to modify the 

backpropagation paradigm so that the criterion function depends on the class of the 

brain-wave response, but no improvements were discovered. 

We believe that the ANN technology has the flexibility to address both 

problems. We also believe that these phenomena are worth being studied for them

selves because they may happen in different problem contexts. Thus, a solution to 

these problems could have a larger applicability than the present problem context. 

Finally, we should mention a point that may give an edge to using this 

technology in the present problem context. 
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In this thesis, we assumed that the visual system was stationary13
• But, 

factors exterior to the visual system like fatigue, stress, or environmental changes, 

affect the visual system in the long run. This problem is handled differently according 

to the technology used. In the case of the cross-correlation technique, it possible to 

use averaging techniques to adjust templates. In the case of the ANN technology, it 

is possible to automatically adjust the weights by continuing the training process while 

it is performing its classification task. The use of ANN technology in nonstationnary 

problem contexts is increasingly popular as indicated by the amount of recently 

published literature about adaptive filtering. 

Unfortunately, the data available for this research do not afford the possibility 

of addressing this issue. 

1.2. The Cross-Correlation Technique 

Although this was not part of our initial objective, we found that normalizing 

the brain-wave response before computing its correlation to the templates, has a 

positive and significant impact on the performance. This observation is of immediate 

utility since, to our understanding, the current implementation of the BRI does not 

normalize the brain-wave response. In Chapter III, we showed that normalization of 

the brain-wave response may be realized at a low computational cost. 

13 The input/output relationship of a stationary system doesn't change with time. 
Stationary systems are also called time-invariant systems. 
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DESCRIPTION 

The ANN presented in this appendix is a modification of the backpropagation 
paradigm. It suggests a new way of using knowledge of the problem context (expert 
knowledge) in ANN technology. 

The first step is to attach a class to each datum in the training set. In 
principle, the class could be arbitrarily defined. In practice however, it makes sense 
to base the definition of the data on the properties of the data, or on other 
properties of the problem context. A practical way to define a class is, for example, 
to add some bits to each datum in the training set. 

The second step is to make a component of the ANN (say, the criterion 
function) dependent on the datum's class k 

e = f(d,a,k) 

where e is the error returned by the criterion function f, d is the desired output, and 
a is the actual output. For example, in the present thesis, the difference between the 
desired output and actual output, d-a, is multiplied by a coefficient, called the error 
factor, that depends on the datum's class k 

e = cid-a) 

where ck is the error factor associated with (input) datum's class k, and e the error 
that will be back.propagated. 

The hope here is that the ANN will learn to discriminate the data whose class 
is associated with the largest error factor ck (we did not provide a theoretical basis 
for this "hope"). 

NWORKS IMPLEMENTATION 

The data format in a nna file is (one datum per line) 

[input] [class] [desired_ output] 

where [class] is a sequence of bits c1 c2 ... cn- In the present thesis, the first class was 
encoded by the sequence 100 ... 00, the second class was encoded by the sequence 
010 ... 00, and so on. We note that, in this case, the class and the desired output are 
similar. This is not necessary. One could imagine two inputs having the same desired 
output, but belonging to two different classes. 

The typical backpropagation architecture (i.e multilayered feedforward ANN) 
must be modified: four layers are added, and a special control stategy csbkp4 must 
be used (see Figure A. l ). 
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The input layer, as usual, is a buffer. Netl and net2 layers correspond to a 
2-layer backpropagation network (as many layers as desired can be defined). Buffer, 
errorl, error2, and output layers have special functions, and they (as well as the 
connection schemes) must be defined according to what the control stategy csbkp4 
expects. 

Figure A.1 
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The control strategy csbkp4 works as follows: the input and the class are 
loaded in the input layer; csbkp4 goes through a classic recall process through netl 
and net2 layer (steps 1 and 2); the output of net2 is transmitted to the output layer 
through the buffer layer (steps 3 and 4); and the difference between the actual output 
and the desired output is determined in the output layer and backpropagated to the 
buffer layer (step 5). 

From that point, what happens during the training process is unusual: the 
error stored in the buffer layer is transmitted to errorl layer and to error21ayer (step 
6 and 7); and, the error is backpropagated again to the buffer layer (step 8). 

The error! layer is a particular layer whose "sum" function returns the product 
between all incoming inputs. Errorl layer is very important since the bits defining 
the class of the input will determine wich processing elements in errorl layer will 
contain the error. This makes possible to differentiate the processing of the error 
according to the class of the input datum (the pathways for the error are different 
according to the datum's class). The error can be modified, for example, by the error 
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factor of each processing element in the error2 layer, by the transfer function of 
errorl layer, by the weights between buffer and errorl, by the weights between error! 
and error2, and/or by the weights between error2 and buffer. In each case, the 
modification of the error depends on the class of the datum. 

Once the error is back in the buffer layer, it is simply backpropagted to the 
input layer (steps 9, 10, and 11), and the weights are updated as in a classic 
backpropagation training process. 

Of course, more error layers could be added between errorl and error2 layers 
to permit a more sophisticated processing of the error. In addition, one could 
imagine an ANN where the error processing would itself be subject to some training. 
The error layers could constitute an independent backpropagation ANN with zero 
as desired output. 

DISCUSSION 

The ANN paradigm described in this appendix and changing the 
representation of the data, are two different methods of using expert knowledge in 
ANN technology. The challenge, in both cases, is to clearly understand the impact 
of these modifications on the performance of the ANN, on the duration of the 
training process, and so on. 

Modeling the impact of changing the representation of the data is difficult. 
As a matter of fact, despite many studies, the representation problem is not yet 
solved. Changing the data's representation has only an indirect (implicit) effect on 
the ANN's dynamic. Its impact is difficult to model (the information flow in an ANN 
is distributed over many processing elements through complex connection patterns). 

In contrast, the modification of the ANN backpropagation algorithm that we 
propose, is explicitely stated. Thus, its impact could be studied independently in 
specially designed problem contexts. Then, this knowledge could be applied in real
world applications. One could imagine a catalog of possible modifications depending 
on the characterisitcs of the problem context (e.g. the properties of the data). 
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FIRST ANN ARCHITECI1JRE TYPE EXPERIMENTS 

X4 

Layer sizes 1016, 30, 64 

Transfer function sigmoid 

Learning rule delta 

Leaming schedules default, hidx:4, outx4 

Epoch size 16 

Input range 0, 1 

Output range 0.2, 0.8 

X7 

Layer sizes 1016, 30, 64 

Transfer function tanh 

Leaming rule cum-delta 

Leaming schedules 
. 

default, ncmhid, ncmout 

Epoch size 66 

Input range -1, 1 

Output range -0.6, 0.6 

XS 

Layer sizes 1016, 30, 64 

Transfer function tanh 

Leaming rule cum-delta 

Leaming schedules default, ncmhid2, ncmout2 

Epoch size 66 

Input range -1, 1 

Output range -0.6, 0.6 
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EXPERIMENT X90, X91, X92 

x90, x91, x92 

Layers sizes 1016, 20, 1 (see Hidden Layer Size Table) 

Transfer function sigmoid 

Learning rule delta 

Learning schedules default, hiddenl, out3 

Epoch size 16 

Input range o, 1 

Output range 0, 1 

Error factor 1-64:1 (see Error Factor I Table) 

The characteristics of the experiments described in the two next tables are similar to 
those of experiments X90, X91, and X90 (except for the differences that are 
explicitely stated). 

SIZE OF THE HIDDEN LA YER 

I experiments I size (PEs) I 
x84,x85 10 

x90,x91,x92 20 

x81, x82 30 

x87,x88 50 

ERROR FACTOR I 

I experiments I response's I error 

I class factor 

x90, x91, x92 1-64 1 

xlO, xll 1-2 2 
3-64 1 

x20, x21, x22 1-10 2 
11-64 1 

x25, x26, x2S 1 1 
2-10 2 

11-64 1 
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EXPERIMENTS XlO, X20, X30 

XLO, X20, X30 

Layer sizes 1016, 30, 1 (45 PEs in the hidden layer of X2) 

Transfer function sigmoid 

Leaming rule delta 

Leaming schedule default, hidden, output 

Epoch size 16 

Input range 0.2, 0.8 

Output range 0, 1 

Error factor see Table Error Factor II 

ERROR FACTOR II 

I experiments I response's I error I class factor 

XL 1 2 
2-7 4 

8-11 2 
12-64 1 

X2 1 2 
2-11 4 
12-21 2 
22-64 1 

X3 1 2 
2-11 0.5 
12-64 1 
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MISCALLENEOUS EXPERIMENTS 

xso 

Layer sizes 1016, 30, 1 

Transfer function sigmoid 

Leaming rule norm-cum-delta 

Leaming schedule default, hidden, output 

Epoch size 132 

Input range 0, 1 

Output range 0, 1 

Error factor 1;2, 2-11:4, 12-21:2, 22-64:1 

X60 

Layer sizes 1016, 30, 1 

Transfer function sigmoid 

Leaming rule norm-cum-delta 

Learning schedule default, hidden, output 

Epoch size 16 

Input range 0, 1 

Output range 0.3, 0.7 

Error factor 1;2, 2-11:4, 12-21:2, 22-64:1 
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TRAINING PROCESS WITH PARTIAL INPUTS I 

I experiments I input size I number of presentation I 
X83 1016 10,000 

760 10,000 
1016 5,000 
504 10,000 
1016 5,000 
248 10,000 
1016 5,000 
504 5,000 
1016 2,500 
760 5,000 
1016 2,500 (70,000) ,_ _____________ .. --------------------
760 10,000 
120 10,000 
248 10,000 
504 10,000 
760 10,000 
376 10,000 
632 10,000 
888 10,000 
120 10,000 
760 10,000 

1016 10,000 
632 10,000 
376 10,000 
888 10,000 (210,000) 

The classification performance of experiment X83 was evaluated after 70,000, and 
210,000 presentations. 
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TRAINING PROCESS WITH PARTW... INPUTS II 

I experiments I input size I number of presentation I 
x96 120 1000 

248 1000 
376 1000 
504 1000 
632 1000 
760 1000 
888 1000 
1016 1000 (8,000) 

-------------- --------------------
The previous training was repreated 4 more 
times (32,000 presentations). 
-----------------------------------

120 2500 
248 2500 
376 2500 
504 2500 
632 2500 
760 2500 
888 2500 
1016 2500 (60,000) 

-------------- --------------------
120 5000 
248 5000 
376 5000 
504 5000 
632 5000 
760 5000 
888 5000 
1016 5000 (100,000) 
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UR SCHEDULE I 

I Schedules I Parameters I 2'000 I 5'000 I 10'000 I 17'500 I 30'000 I 
hidden learning .225 .125 .05 .02 .01 

momentum .4 .2 .1 .05 .05 

output learning .15 .1 .07 .05 .04 

momentum .4 .2 .1 .05 .05 

UR SCHEDULE II 

I Schedules I Parameters I 2,000 I 5,000 I 15,000 I 30,000 I 75,000 I 
hlddenl learning .2 .1 .05 .01 .002 

momentum .2 .1 .05 .01 .001 

5,000 10,000 20,000 50,000 100,000 

outJ learning .15 .o75 .01875 .0017 0 

momentum .4 .2 .05 .00313 0 

UR SCHEDULE III 

I Schedules I Parameters I 5000 I 15,000 I 30,000 I 75,000 I 100,000 I 
ncmhld learning .6 .2 .1 .05 .03 

momentum 0 0 0 0 0 

ncmout learning .5 .2 .1 .02 .03 

momentum 0 0 0 0 0 

UR SCHEDULE IV 

Schedules Parameters 25,000 50,000 10,000 (sic) 200,000 400,000 I 

ncmhld2 learning .9 .7 .45 .175 .275 

momentum .2 .2 .2 .2 .2 

ncmout2 learning .8 .6 .45 .325 .25 

momentum .2 .2 .2 .2 .2 
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UR SCHEDULE V 

Schedules Parameters 5,000 10,000 20,000 50,000 100,000 

hidx4 learning .4 .2 .1 .05 .02 

momentum .4 .2 .1 .05 .02 

outx4 learning .15 .1 .07 .05 .02 

momentum .4 .2 .1 .05 .02 
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The names of directories and files are indicated in bold typeface. All records 

are recorded on two tapes (2xl50 Mbyte ). 

The data (brain-wave responses) are located in several directories: dataO, 

data2, data3, data4, classO, classl, class2. The content of the directories is described 

in README files. 

The C-programs used in this thesis are available in the directory src. This 

directory contains the programs used to convert the data from a binary to ASCII the 

format, and to the format required by ANN simulator NWORKS (.nna files), to 

construct the training sets required by the ANN methodology. The programs, nmax, 

nconf and nerr, were used to analyzes the test files (.nnr files). nconf and nerr can 

be used in different problem contexts. A detailed listing of the results obtained in 

this research is contained in the file res/nmax.res. 

The ANN experiments are divided into four directories: expl, exp2, exp3, exp3, 

exp4. expl and exp2 contain preliminary experiments. exp3 contains the experiments 

whose initial letter is a lowercase 'x' (e.g. experiment x90 corresponds to the file 

bkpx90??? .nnd, the last digits usually indicate the stage in the training process, and/or 

the minmax table used during the testing). exp4 contain the experiments whose 

intial letter is an uppercase 'X'. The directories nna and nnb contain the training sets 

that were used to train the ANNs. The directories nnc, nnt, and nnd, contain 

respectively the minmax tables, learning/recall schedules, and the control strategies 

used in the ANN experiments. 
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The directory cor contains computations and results associated with the cross

correlation technique. 
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