
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

1990

An effective cube comparison method for discrete An effective cube comparison method for discrete

spectral transformations of logic functions spectral transformations of logic functions

Ingo Schafer
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Schafer, Ingo, "An effective cube comparison method for discrete spectral transformations of logic
functions" (1990). Dissertations and Theses. Paper 4147.
https://doi.org/10.15760/etd.6031

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4147&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4147&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://doi.org/10.15760/etd.6031
mailto:pdxscholar@pdx.edu

AN ABSTRACT OF THE THESIS OF Ingo Schtl.fer for the Master of Science in Electri­

cal Engineering presented May 14, 1990.

Title: An Effective Cube Comparison Method for Discrete Spectral Transformations of

Logic Functions

APPROVED BY THE MEMBERS OF THE THESIS COMMITTEE:

Spectral methods have been used for many applications in digital logic design,

digital signal processing and telecommunications. In digital logic design they are imple-

mented for testing of logical networks, multiplexer-based logic synthesis, signal process-

ing, image processing and pattern analysis. New developments of more efficient algo-

rithms for spectral transformations (Rademacher-Walsh, Generalized Reed-Muller,

Adding, Arithmetic, multiple-valued Walsh and multiple-valued Generalized Reed-

Muller) their implementation and applications will be described.

2

Recently a new method to generate the Rademacher-Walsh spectrum has been

introduced. In this thesis this method has been taken and generalized for all the above

mentioned transformations. It will be further called the Cube Comparison method. The

main advantage of this method is, that it generates the spectrum directly from the cube

representation of Boolean and multiple-valued input, binary output functions and does

not use the classical approach of matrix calculation or derived from it the Fast Transfor­

mations. Thus, it overcomes the limitation caused by the memory requirement of all the

current implementations.

The programs for the binary transformation presented in the thesis allow the cal­

culation of the complete spectrum for completely and incompletely specified Boolean

functions having u:µ to 32 literals. However, this is only a limitation of the implementa­

tion and can be changed by using different data structures. To be able to use functions

represented in the classical way fast preprocessing algorithms like the generation of the

disjoint cubes from the nondisjoint ones, or the generation of dense arrays have been

developed.

The implementation of the multiple-valued Walsh transformation makes use of an

algorithm to convert the multiple-valued representation of the input function to a binary

one. This binary representation can be taken directly for the binary Rademacher-Walsh

transformation.

For the multiple-valued Generalized Reed-Muller (GRi\1) transformation the

Cube comparison method is used first to transform all literals to the chosen polarity and

second to calculate using these literals the final multiple-valued Generalized Reed-Muller

form.

As an application of the fast GRM implementation the minimization program

CANNES (CANonical Nor Exor Synthesizer) is introduced. It makes use of the recently

introduced Canonical Restricted Mixed Polarity (CRMP) Exclusive Sum of Product

3

forms. Such a form is preferred over the standard Sum of Product form (SOP) in design­

ing for testability.

AN EFFECTIVE CUBE COMPARISON METHOD FOR DISCRETE

SPEC1RAL 1RANSFORMA TIONS OF LOGIC FUNCTIONS

by

INGO SCIDXFER

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

ELECTRICAL ENGINEERING

Portland State University
1990

TO THE OFFICE OF GRADUATE STUDIES:

The members of the Committee approve the thesis of Ingo SchMer

presented May 14, 1990.

arr

Marek El anots ·

APPROVED:

Rolf Schaumann, Chair, Department of Electrical Engineering

. William Savery, Vice Provost for Uraduafu/Studies and Research

LIST OF TABLES .

LIST OF FIGURES

TABLE OF CONTENTS

CHAPTER

I INTRODUCTION

PAGE

VI

Vlll

I

I. I Applications and Properties of Spectral Transformations I

1.2 General Description of Discrete Spectral Methods . . . 4

II DISCRETE SPECTRAL TRANSFORMATIONS

FOR BOOLEAN FUNCTIONS

II.I Algorithm to Generate Disjoint Cubes

II. I. I Description
11.1.2 Implementation

11.2 Generalized Reed-Muller Transformation .

11.2. I Description
11.2.2 Implementation
11.2.3 A complete example . . .
11.2.4 Execution times

11.3 Generalized ESOPE to SOPE Transformation

11.3.I Description
11.3.2 Implementation . .
11.3.3 A complete example
11.3.4 Execution times . .

11.4 Generalized Adding and Arithmetic

Transformation . . .

11.4.1 Description . .
11.4.2 Implementation .

8

8

8
IO

I8

I8
26
28
31

32

32
35
36
36

38

38
41

III

IV

v

II.4.3 A complete example . .

II.5 Inverse Adding and Arithmetic

Transformation

II.5.1 Description
II.5.2 Implementation
II.5.3 A complete example
II.5.4 Execution times for GARD and INGARD

transformations

IL 6 Rademacher-Walsh Transformation

II.6.1 Description
II.6.2 Implementation
II.6.3 A complete example
II.6.4 Execution times

MULTIPLE-VALUED SPECTRAL TRANSFORMATIONS

III.1 Multiple-Valued Walsh Transformation

III.1.1 Description
III.1.2 Implementation of the conversion algorithm.
III.1.3 A complete example
III.1.4 Execution times

III.2 Multiple-Valued Generalized Reed-Muller

Transformation . . .

III.2.1 Description . .
ill.2.2 Implementation

CANONICAL NOR EXOR SYNTHESIZER (CANNES).

IV.1 Description of the CRMPE .

IV.2 Implementation of CANNES .

IV.2.1 Decomposition of a sparse function
IV.2.2 Minimization of a dense function

IV.3 A Complete Example of an Execution

ofCANNES

CONCLUSION

lV

44

47

47
50
52

52

53

53
56
59
60

63

63

63
65
70
75

75

75
85

92

92

94

96
97

98

103

REFERENCES

APPENDIX

A

B

c

D

BASIC DEFINITIONS

FORMATS OF BINARY TRANSFORMATIONS

FORMATS OF MULTIPLE-VALUED

TRANSFORMATIONS . .

PROCEDURES OF MRM .

v

105

108

110

114

116

l

TABLE

I

II

III

IV

v

VI

VII

VIII

x

XI

XII

XIII

XIV

xv

XVI

XVII

XVIII

XIX

xx

LIST OF TABLES

Example for the Cube Comparison Method .

Spectrum of a Function F.

Computer Representation of an Array of Cubes

Equivalence Operation on Cubes

Spectrum M for the fUnction of Table IV .

Equivalence Operation for the Function of Table V . .

Execution Time for the Reed-Muller Transformation

Execution Time for ESOPE to SOPE Transformation

Third Order Indices of Spectral Coefficients .

Incompletely Specified Boolean Function .

Spectrum S for the GAD Transformation for the Function of

Table XI

Spectrum S for the GAR Transformation for the Function of

Table XI

Intermediate Values for the GAD Transformation

Illustration of the Property of the Smallest Order .

Inverse GAR Transformation . . .

Execution Times for the GAD and INGAD Transformation .

Spectrum S of the Rademacher-Walsh Tansformation

Generation of the de-Coefficient So

Intermediate Values for the Rademacher-Walsh Spectrum

PAGE

6

22

28

29

29

30

32

36

42

45

45

46

47

48

52

53

54

59

60

XXI

XXII

XXIII

XXIV

xxv

XXVI

XX VII

XXVIII

XXIX

xxx
XXXI

XXXII

XXXIII

XXXIV

xxxv
XXXVI

XXXVII

Execution Times for the Rademacher-Walsh Transformation

Binary Representation of a Multiple-Valued Literal . . .

Merged List of the Binary Representation of Table XXII

Shifted Binary Representation of two Multiple-Valued Literals.

First Order Coefficients of a Product of Two Multiple-Valued

Literals

Second Order Coefficients

Complete Spectrum of the Multiple-Valued Function

Execution Times for the Multiple-Valued Walsh Transformation.

All Possible Compositions of Polarity Literals . .

Truth Values S for Restricted Orthogonal Matrix A

Polarity Literals of a Given Polarity

Notation for the MRME . . .

Spectrum of the Product X 1X 2 .

Set of Transformations for a Multiple-Valued Literal

Code Representation for the Polarity Literals

Complete MRME Spectrum .

Minimal GRM of a Subset .

Vll

61

66

67

67

73

74

74

75

77

79

80

81

85

87

88

90

102

LIST OF FIGURES

FIGURE

I. Matrix Multiplication

2. The Stages of an Execution of the Algorithm to Generate a Disjoint

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Cube Representation of a Boolean Function .

Equivalence Operation .

Spectrum M for a Binary Function Having Four Literals .

Karnaugh Maps for ES OPE and SOPE .

Step by Step Execution of ES OPE to SOPE Transformation.

Essential Order-2 Matrices for GAD and GAR Transformations

Structure of Multiple-Valued Walsh Implementation

Conversion of Multiple-Valued Product of Literals

Converted Product of Literal to Nondisjoint Cubes

Disjoint Cube Representation of the Product of two Literals .

An Example of the Input File for the Multiple-Valued Walsh

Transformation Program.

Conversion of the Product of the Literals X and Y to Disjoint Cube

Representation

Disjoint Cube Representation of Other Products of two Literals

Example of a 3 x 3 Orthogonal Matrix .

Restricted Orthogonal Matrix A

Polarity Matrix for Polarity of Table XXXI .

Description of Polarity Matrices

PAGE

5

17

19

21

33

37

38

65

66

68

70

71

72

73

77

78

80

81

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Polarity Matrices

Standard Trivial Functions for Polarity in Figure 19

Karnaugh Map of Product X 1 023 X 2 01

Structogram of CANNES

Decomposition of Sparse Function

Test Function .

Comparison ESPRESSO with CANNES .

ORME of the Non Sparse Array

Subcombinations

Step by step Minimization of the Array Shown in a

ix

83

84

84

95

96

99

99

100

100

101

CHAPTER I

GENERAL INTRODUCTION

I.1 APPLICATIONS AND PROPERTIES OF SPECTRAL TRANSFORMATIONS

In the last two decades there has been a growing interest in digital theory, espe­

cially in two areas, logic design and analysis of switching circuits, and non-sinusoidal

communication (1-34).

The representation of a function f(t) in its sampled time domain contains only

local information of the function. The advantage of the Fourier Transformation F(ro) also

called spectrum of the function f(t) is, that it contains much more global information of

the signal (1,2). Similarly the representation of logic functions in their Boolean or

Multiple-Valued domain is less global than their discrete counterparts to the Fourier

Transformation, the discrete global spectral transformations (such as Walsh-type

Transformations).

The advantage of the discrete spectral transformations compared to the conven­

tional Fourier methods in analysis and synthesis of logic circuits is that they can be easily

implemented on digital computers. Because of their applicability to high speed digital

computation in areas such as image processing and communication systems they are seen

as an important signal processing tool (1-11).

The Walsh (1-7,12-15) and Reed-Muller transformations have been found espe­

cially advantageous for fault detection and synthesis of logic circuits (1-7,16-18). A

given logic function is defined uniquely by its spectral coefficients. Therefore, any mal­

function of the hardware related to this function will be seen in its spectral characteris-

2

tics. The two above mentioned transformations are well suitable for the design of easily­

testable circuits. This is because both transformations favor the design of circuits with

high percentage of exclusive-OR (EXOR) gates, where every input combination to an

EXOR gate is a test condition for it (1-7). Thus, for circuits containing EXOR gates a

smaller number of tests has to be generated to be able to test the whole circuit. There­

fore, spectral transformations are used to both test generation of arbitrary circuits and

design of special circuits which are easy testable.

Since logic functions are described completely by their spectral coefficients then

the latter can be used for functions classification (4,7). It is well known that the number

of possible different functions of a given number of variables is enormous. Therefore, it

is useful to find the characteristic of the functions that would allow identical hardware

realizations for a group of them. The following important properties of the functions can

be found by spectral classification methods: linear separability, monotonicity, summabil­

ity, asummability, and dual-comparability.

The decomposition of Boolean functions (4-6) is used to reduce its complexity

and improve its testability. Finding decompositions in the Boolean domain has been

found very difficult. In (4-6,28,29) efficient methods to decompose functions into linear

(implementation using only one EXOR gates) and non-linear (implementation using

non-EXOR gates) parts was introduced for the spectral domain. The two basic types of

decomposition are serial and parallel linearization (6,28,29). The serial linearization

decomposition can only be done by spectral methods. The disadvantage to decompose

Boolean functions in spectral domain in comparison to the Boolean domain is the time

necessary for performing the transformation. Thus, fast efficient algorithms for spectral

transformations would clearly give the advantage to the decomposition of Boolean func­

tions in spectral domain.

The Walsh-type and Reed-Muller transformations are also used in multidimen-

3

sional signal processing (in particular image processing) for pattern recognition and data

compression (1,3,7-10). These transformations have in common, that they are efficient

coding schemes to reduce the bandwidth of transmission channels or digital storage

requirements for an image or signal. The advantage in multidimensional signal process­

ing is that the image, signal energy is redistributed into relatively few low-order

coefficients in the spectral domain, which are sufficient for a good reconstruction of the

original picture, signal (1,3,7-10). The property of data compression makes these

transformations very well suited for communications (1,2,4).

The recently introduced Arithmetic and Adding Transformations (GARD

Transformation) (27) have similar orthogonal transformation matrices as the ORME

Transformation. Thus, the GARD Transformation favors also the design of circuits with

EXOR-gates. Therefore, it is expected, that it has similar applications in synthesis of

logic circuits as the ORME Transformation.

The methods to generate spectra directly from their orthogonal matrices (1,2,4)

are slow and inefficient. Thus, a lot of research was performed in the development of

better algorithms. The results of this research were the methods like Fast Transforma­

tions (2,11) developed using matrix factorization, signal flow graphs for parallel process­

ing (10) and special hardware architectures like Digital Signal Processors (DSPs) (11).

The classical methods of matrix multiplication and Fast Transformations have the disad­

vantage, that for the calculation of the spectrum all spectral coefficients have to be kept

in the computer memory. The second disadvantage is that even the Fast Transformations

for the spectral transformations are relatively slow.

This thesis investigates a new fast method for the implementation of the spectral

transformations Rademacher-Walsh, Generalized Reed-Muller, Generalized Adding and

Arithmetic transformation for binary input functions. It presents also fast algorithms for

Multiple-valued Walsh and Multiple-valued Generalized Reed-Muller transformation for

4

multiple-valued input binary output functions. The basic theory underlying the method

proposed here was recently introduced in (3,4,12-15) for the Walsh transformation. The

new method further called Cube Comparison Method overcomes the problem of memory

requirements completely. At least there is hardly any internal computer memory require­

ment, and the memory requirements to store the complete spectra on the hard disk are

inherent to the problem. Another advantage of the Cube Comparison Method is, that it is

very well suited for the development of data flow graphs and algorithms for parallel pro­

cessing (every spectral coefficient can be calculated independent from the other ones).

Even with serial processing of the complete spectrum the new introduced algorithms are

faster then most of the other implementations.

I.2 GENERAL DESCRIPTION OF DISCRETE SPECTRAL METHODS

The existing implementations of Rademacher-Walsh and Generalized Reed­

Muller transformations use algorithms for matrix multiplication or Fast Transformations

(1,2,4). Some basic Definitions necessary for the introduction of the Cube Comparison

Method can be found in Appendix A.

From the point of view of speed and computer memory utilization the worst

method to generate the spectrum is to apply directly the matrix multiplication definition

of an orthogonal transformation (1,2,10,11). It has large memory requirements and the

calculation time is very long due to the large number of multiplications as well as addi­

tion and subtraction operations. For a function having N literals a 2N x 2N matrix is

required to perform the transformation. Hence, there are N(N-1) additions or subtractions

necessary for the Walsh transformation by using a matrix of order N.

Example I.I:

The function F = abc + aii c + a ii c is a function of three input variables. The

function can be represented in the form of the vector V=< O,l,0,0,0,1,0,1 >,where

5

1 stands for an on-minterm used in the function F. For all other not used terms the

value in the vector position is 0. The matrix here has to be a 8 x 8 matrix. The

matrix chosen below is the one for the Rademacher-Walsh transformation. In Fig-

ure 1 the matrix and the final spectrum of the matrix multiplication are shown.

1 1 1 1 1 1 1 1 0 3 1

1 -1 1 -1 1 -1 1 -1 1 -3 S1
1 1 -1 -1 1 1 -1 -1 0 1 S2
1 -1 -1 1 1 -1 -1 1 0 = -1 S3
1 1 1 1 -1 -1 -1 -1 0 -1 S12
1 -1 -1 -1 -1 1 -1 1 1 1 Sn
1 -1 -1 -1 -1 -1 1 1 0 -1 S23
1 1 1 1 -1 1 1 -1 1 1 S123

Figure 1. Matrix multiplication.

The ordering of spectral coefficient shown in Figure 1 is used for the

Rademacher-Walsh, Arithmetic, and Adding spectra. In this presentation it will be called

the straight order.

All essential radix-2 transformations like Walsh-type, Reed-Muller, Arithmetic

and Adding have the property, that their transformation matrix T for order N higher than

two can be obtained by a Kronecker multiplication:

TN= T2fkl

where [k] in the exponent means the application of the Kronecker product for n times,

with k = log2N.

With this property it is particularly easy to obtain fast transformations by a pro-

cess of matrix factorization. Hence, several Fast Transformations were developed and

implemented for Walsh-type (1,2,4) and ORME Transformation (9,16,17). The advan-

tage of the Fast Transformations is the reduction of the number of operations. For

instance, for the above shown Walsh transformation the number of operations is reduced

6

to Nlog2N. Substantial disadvantages however still exist. The data has to be rearranged

prior or subsequent to a transformation which takes additional processing time. The large

memory requirement is still the other disadvantage. Therefore all current implementa-

tions are limited to Boolean functions using up to 16-20 input variables, depending on

the internal memory of the computer system.

To overcome these problems, the method previously mentioned (3,4,12-15) was

changed and generalized to all the above named transformations. It has the feature that

each spectral coefficient can be directly generated from the cube representation of the

function. The idea of this method described here is to make use of a kind of cube com-

parison among the indices of the spectral coefficients and the cubes. It will be further

called Cube Comparison Method. In Table I an easy example for the Cube Comparison

Method between the cube and the indices of the spectral coefficients is shown.

TABLE I

EXAMPLE FOR THE CUBE COMP ARIS ON METHOD

indices of the spectral coefficients

cube So S1 S2 S3 s 12 S13 S23 s 123

000 1-- -1- --1 11- 1-1 -11 111

001 1 1 1 1

-01 1 1

Below the spectral coefficients (So, S 1,. .. ,S 123) the Boolean representation of their

indices (standard trivial functions, described later) is shown. In the first column the two

cubes are given for which the spectra should be generated. The applied rules for the two

cubes in our example for which the value of the spectral coefficient will be one, are:

• at least the positive literal (ls) of the cube have a corresponding "1" in the

representation of the indices.

7

• the de-literals of the cubes must not have a ti 1 ti in the corresponding position of

the representation of the indices.

The example in Table I has illustrated only the first of all three parts of the Cube

Comparison Method. The three parts are:

1. Comparison of a cube representation of a logic function with the cube representa­

tion of the indices of the spectral coefficients.

2. Calculation of the signs of the values of the spectral coefficients. They depend on

the cube representation of the logic function and the order of the spectral

coefficients.

3. The value of the spectral coefficients depends on the number of de literals in the

cubes of the logic function.

In the following Chapters the Cube Comparison Method is adapted for needs of

different algorithms calculating spectra. Because those algorithms make use of the

representation of a Boolean function as arrays of disjoint on- and de- cubes, first a new

efficient algorithm to generate disjoint cubes from the nondisjoint ones is discussed.

CHAPTER II

DISCRETE SPECTRAL TRANSFORMATIONS

FOR BOOLEAN FUNCTIONS

II.1 ALGORITHM TO GENERA TE DISJOINT CUBES

II.1.1 Description

As mentioned in Chapter I, the algorithms described in the sequel make use of

completely or incompletely specified Boolean functions in the form of arrays of disjoint

on- and de- (if any) cubes or an array of disjoint off-cubes. Such an algorithm was first

introduced in (18-20). An improved version of it shown here has been designed, because

the algorithm (18) is not well suited for the implementation on computer systems. The

task of the algorithm is to generate the array of disjoint cubes from a Boolean function

represented in the form of an array of nondisjoint on-cubes (in the case of completely

specified Boolean function), or an array of on- and de-cubes or on- and off-cubes (in the

case of incompletely specified Boolean functions).

The same notation as in (18) is used in the description of the revised algorithm.

Every time two cubes Ca and cb are compared, the pointer a indicates the position of the

cube which is the first in the pair of the cubes being compared, the pointer b indicates the

position of the second cube in the pair. Note, that the pointer a changes its values from 1

ton - 1 (where n is the current number of cubes in the array) and the pointer b changes

its values from n to 2 accordingly. In a given moment, the value of the pointer b is

always greater by at least 1 than the value of the pointer a. During the execution of the

algorithm the number of cubes in the array A can be different than the original number of

9

cubes. The symbols of cubical calculus that are used in the sequel follow the notations

from (21-23). It is due to the fact that two cube operations used in the algorithm have the

following properties : 1) disjoint sharp operator (denoted by #j) can generate more than

one cube as its result, 2) absorption can remove some cubes and decrease by that the total

number of cubes.

Symbols used:

a , b : pointers to two different cubes,

cubea,

cubeb : determine the cubes pointed to by a, and b in the cube list,

d : number of solution cubes generated by the disjoint sharp operation,

m : number of cubes in the cube list before entering a new loop,

n : number of cubes during execution of the loop.

Algorithm: Generation of disjoint cubes

step 1. set a and b to the following positions in the cube list :

a := 1, b := n, m := n

where n is the initial number of cubes in the cube list.

step 2. Main loop :

For each pair of cubes cube a and cubeb from an array A do :

if an intersection of cubes cube a and cubeb is not an empty set

then

{ if cubea absorbs cubeb

then { substitute cubeb by the last cube of the array A ;

n := n -1;

if b =a then go to step 3

else go to step 2}

else { calculate the d solution cubes from the disjoint sharp

operation cubeb #j cubea;

else { b := b - 1;

replace cubeb by one solution cube and add

the other ones to the end of the array A ;

n := n + d -1;

if b ~ a then go to step 3

else go to step 2} }

if b ~ a then go to step 3

else go to step 2}

Step 3.

b :=n;

a :=a+ 1;

if a = m then stop

else m :=n;

go to step 2.

10

The details of the implementation of the above algorithm and an example of its

execution are shown in the sequel.

II.1.2 Implementation

For the implementation, the algorithm was changed and improved in order to take

the advantage of some features of the C-language to become faster for computer process-

11

ing. Moreover, it has been implemented in three computer environments: SUN3/50-

workstation, VAX 11nso, and Sequent SYMMETRY computer.

The implementation of the disjoint algorithm makes use of the the pointer struc­

ture for storing the array of cubes as follows:

struct cube _field
{

unsigned short *value; I* list of the literals of the cube *I
short p; I* determines the number of "-"sin the cube *I
short type; I* type determines if the cube is a DC- or ON-cube *I

}cube;

This pointer structure determines a field in which one cube could be stored. The

literals of each cube are stored in a list composed of short variables: cube->value[i]. To

avoid wasting of the memory space, eight literals from a given cube are stored in a short

variable (having 16 bits) where the internal representation of each cubical calculus sym­

bols: 0/(10), 1/(01), -/(11), and E/(00) takes two bits (where e determines a contradiction­

ary literal).

The element cube->p contains the number of "X" (de-literals) in the cube.

Finally, the element cube->type = {ON, DC, OFF} determines if the cube is an on-, de-

or off-cube. An additional pointer structure unsigned int *cube _list is used to store the

addresses of the different cubes.

In order to have direct access to cubes and their values at any time, the list of

terms is stored in an array. Because of the dynamical nature of the array, the calloc() and

realloc() C functions (24) have been used. Such an approach speeds up an overall pro-

cessing time.

The algorithm generates arrays of disjoint cubes for separate lists of on-, de- or

off-cubes. It uses mixed lists like those from Example II.1 as well.

Cube operations used in this version of the algorithm are disjoint sharp, intersec-

tion and equivalence of cubes (21,22,23). An absorb operator is implemented by two

12

operators in sequence: first an intersection of two cubes is performed, next, the matching

operator takes the result of the intersection operator and the original cubes as arguments.

When the result is equal to one of the original cubes then the larger cube is kept and the

other (the one that is equal to the result of the intersection) is deleted from the list of

cubes.

In order not to remove or change the positions of cubes during the execution of

the algorithm only the addresses of cubes in a list are changed and removed. Such an

approach is much easier to handle because the cubes in a given array can have an arbi­

trary number of literals and the iength of an array storing the cubes dynamically changes.

If a cube has to be removed (which happens for the disjoint sharp or absorb operations)

then either u.t-ie corresponding address in an address list is substituted by the address of the

first cube generated by the disjoint sharp operation or in the case of the absorb operation

the address corresponding to the last position in the address list is copied into the vacant

position of this list.

In order to obtai..~ an array for the addresses of cubes that always matches the size

of the array of cubes, the realloc() function has been used. By doing so, one can use the

address list like an array with direct access to each element of the list without the neces-·

sity of going through the elements of a linked list. These special two features: the usage

of addresses in a list and the realloc() function (for the direct access of the a..rray) have

sped up our algorithm significantly.

The same basic notation from the Disjoint Algorithm in Chapter II.1.1 is used in

the description of the program. In addition, the following symbols are used:

cube : a pointer to the cube address list.

sol[i] : soiution cube of the i-th position in the solution c!1be address list.

sol-cubes : number of solution cubes from t!1e disjoint sharp operation.

cube[a],

cube[b] : determine the cubes from the positions a and b in the cube address list.

: indicates if the algorithm should be performed for on-, de- or off-cubes. type

Algorithm: Implementation of the Disjoint Algorithm

a= 1, b = n /*where n is the initial number of cubes in the cube address list*/
do
{

if (cube->type != type)
{a++;
continue;}

b = n;
m= n;

a++

while (b >a)
{

}

if (cube->type != type)
{ b--;
continue;}

if(intersect(cube[a], cube[b]) == cube[b])
cube[b] = cube[n];
n--;
cube = (cube *)realloc(cube , n * sizeof (cube)) ;

else if (intersect(cube[a], cube[b]) != 0)

disjoint-sharp(cube[b], cube[a]);

b--;

d =sol-cubes;
cube[b] = sol[l];
cube= (cube *)realloc(cube, (n+d-1) * sizeof (cube));
for (i = 2; i <= d; i++)

cube[n+i] = sol[i];
n=n+d-1;

}while (a< m-1)

Example II.I:

13

An example of the execution of the algorithm is shown below. The order of the

cubes is chosen in such a way that all different branches of the algorithm are

passed through. If the cubes in the input array are sorted according to their size

,-

14

then larger cubes are obtained as solution cubes but the number of perf01med

sharp operations remains the same. Thus, the execution time of the Disjoint Algo­

rithm will be the same, but for the sorting of the cubes additional time is neces­

sary. performed on an sorted array the execution time will be the same. Figure 2

shows the states of the algorithm in the moments when the contents of the array

of cubes has been modified. These pictures are referred to in the description

below. The symbol "•"denotes the beginning of a new loop in the algorithm, the

indentation shows the inner and outer loop.

step 1 : Initialization

number of cubes n = 5;

Figure 2a

step 2: Loop

•n=5;a=l;b=n=5;

intersection :cube[l] 11cube[4]=1100;

absorption.cube[4] ;z: 1100;

disjoint sharp :cube[4] #j cube[I] :

sol[l] = OJXX

sol[2} = 11 IX

sol[3] = 1101

substitute cube[4 j with sol[1 j;

place the resr of solution cubes at the end of the array

Figure 2b

n=n+d-1=7

• n=7;a=l:b=3:

a:tersec;Jcn cabefl] r: czd·e[3] = 0

• n=7;a=l ;b=2;

intersection : cube[1] n cube[2] = 0

• n=7;a=2;b=7;

intersection : cube[2] n cube[7] = 0

•n=7;a=2;b=6;

intersection: cube[2] n cube[6] = 11 JX;

absorption : cube[6] = 11 IX;

substitute cube[6] with cube[n] and remove cube[n]

Figure 2c

• n=6;a=2;b=5;

cube[S] is DC-cube

•n=6;a=2;b=4;

intersection : cube[2] n cube[4] = 0

• n=6;a=2;b=3;

intersection : cube[2] n cube[3] = lXll;

absorption : cube[3] ::/:. lXll;

disjoint sharp: cube[3] #j cube[2]:

sol[1] = OXll;

substitute cube[3] with sol[l]

Figure 2d

•n=6;a=3;b=6;

intersection: cube[3] n cube[6] = 0

• n=6;a=3;b=5;

15

cube[5] is DC-cube

• n=6;a=3 ;b=4;

intersection: cube[3] n cube[4] = 0111;

absorption : cube[4] * 0111

disjoint sharp : cube[4] #j cube[3]:

sol[l] = OlOX

sol[2] = 0110;

substitute cube[4] with sol[l];

place sol[2] at the end of the array

Figure 2e

• n=7;a=4;b=7;

intersection: cube[4] n cube[7] = 0

•n=7;a=4;b=6;

intersection : cube[4] n cube[6] = 0

•n=7;a=4;b=5;

cube[5] is DC-cube

•n=7;a=5;b=7;

cube[7] is DC-cube

• n=7;a=6;b=7;

intersection: cube[6] n cube[7] = 0

solution array :

Figure 2e

16

~3.X4
x1.x2""'-00 ~~ ~· ·~

00 - • -

01
i--,.......-1---+-~..--I

11
i-;;_~-r.-...q:;.-i

10

a. input array

Xl,X2,X3,X4

lXOOON

lXlXON

XXll ON

XlXXON

OOOODC

lXOOON

lXlXON

XXll ON

OlXXON

0000 DC

1101 ON

c. absorption of cube[6]

e. cube[4] #j cube[3]

lXOOON

lXIXON

OXll ON

OlOX ON

OOOODC

1101 ON

0110 ON

b. cube[4] #j cubc[l]

~

d. cube[3] #j cube[2]

lXOO ON

lXlXON

XXll ON

OlXXON

OOOODC

lllXON

1101 ON

lXOOON

lXlXON

OXll ON

OlXX ON

I OOOODC

1101 ON

Figure 2. The stages of an execution of the algorithm to generate a disjoint
cube representation of a Boolean function.

17

18

In order to generate disjoint de-cubes the type condition in the beginning of the

algorithm has to be changed to DC and then the same algorithm will perform the

generation of disjoint de-cubes. In the above example, it is obvious, that the sin­

gle de-cube is a disjoint one so there is no need to use such an algorithm.

11.2 GENERAL REED-MULLER TRANSFORMATION

11.2.1 Description

There is a growing interest in the design of logic circuits using EXOR gates. The

advantages of functions realized with such circuits are the reduced number of gates and

even more importantly the easy testability. A particular field of interest is the minimiza­

tion of logic functions with the Generalized Reed-Muller Expression (ORME) (25,26).

The Reed-Muller Expression (RME) (25,26) of a function F(X o.X 1,Xm-1) over

the Galois Field 2 (GF(2)) is given by

F(Xo.X1, ... ,Xm-1)=aoE9a1XoE9a:iX1 E9aµoX1 E9 · · · E9a2 ... -1Xo· · ·Xm-1,(l)

where (a0 , a 1 , a1 ... _1) are coefficients of the RME and (1, X o.X 1 , Xm-1) are the

basic vectors. The elements of the GF(2) are the operations of addition and multiplication

for modulo 2, and the numbers (0,1).

One method to generate the RME from Sum Of Products Expression (SOPE) is to apply

the following rules:

if=1E9a

a (b Ee c) = ab Ee ac

aEea=O

aEBO=a

In Example II.2 it is shown how these rules are applied to an example function.

19

Example //.2

F=a cdEF>b cdEF>a b cdEF>abcEF>abd EF>abc d

=(lEF>a)cdEF>(lEF>b)cdEF>(lEF>a)(lEF>b)cdEF>ab(lEF>c)EF>ab(lEF>d)EF>ab(lEF>c)(lEF>d)

=cdEF>acdEF>cdEF>bcdEF>cdEF>acdEF>bcdEF>abcdEF>abEF>abcEF>abEF>abdEF>abEF>abcEF>abdEF>abcd

=abEF>cd

This method is not very useful for computer implementation. Other methods like

Fast Transformations and matrix multiplication were mentioned in Chapter I, but they

have large memory requirements. Hence, it was investigated if the method of Cube Com­

parison (Chapter I) could be applied for the RME Transformation.

Let us first make the following Definitions that are necessary to describe the

ORME Transformation with the Cube Comparison method.

Definition //.1

The equivalence operation (=) is applied to two cubes. It is the bit-wise applica­

tion of a bit operation that has the following operation-table.

~
Figure 3. Equivalence operation.

Where the literals in the first column represent a certain literal a of the first cube

and the literals in the first row represents a certain literal b of the second cube

between which the equivalence operation should be performed.

Example //.3

Definition //.2

1010
-011
-ITO

20

Let us denote the coefficients (ao, ... ,a2m _ 1) of the Reed-Muller expression

according to Equation (1) as the spectral coefficients of the spectrum M. The

index i of each spectral coefficient Mi is the cube representation of products of

the basic vectors (1,X o • .. ,xm_1), where the products of basic vectors represent the

set of standard trivial functions for the RME, shown in Figure 4.

Example //.4

The coefficient a3 of the RME and its corresponding product of basic vectors

Xa Xb are now represented by the spectral coefficient Mab.

Property //.1

The Reed-Muller transformation has the property, that it contains literals present

in a given term only.

Example //.5

abd =ab(1 $d)=abEBabd.

With these definitions and properties of the RME transfonnation we are able to

prove the theorems necessary to develop the algorithm which makes use of the Cube

Comparison method.

21

' '
a 1 1 1 1 a 0 0 0 0 a 0 0 0 0 a 0 0 1 1

1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1

1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1

Mo Ma Mb Mc

' ' a 0 1 1 0 a 0 0 0 0 a 0 0 0 0 a 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 1 1 1 1 0 0 1 1 0 1 1 0

0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0

Md Mab Mac Mad

' ' ' '
a 0 0 0 0 a 0 0 0 0 a 0 0 1 0 a 0 0 0 0

0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0

0 0 1 1 0 1 1 0 0 0 1 0 0 0 I 1

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Mbc Mbd Med Mabe

' ' '
a 0 0 0 0 a 0 0 0 0 a 0 0 0 0 a 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Mabd Macd Mbcd Mabcd

Figure 4. Spectrum M for a binary function having four literals

22

Theorem //.1

The values of the spectral coefficients, for which the indices contain at least all

the positive literals and not the de-literals of a term t, are equal to the value "1 ".

Proof:

Any term t can be represented by its spectrum M. According to Property II.1 it is

not possible that in the RME a literal can occur that is not used in the term t.

Theorem 11.2

If the number of occurances of a spectral coefficient for a function F consisting of

several terms is odd, the index of this coefficient, being represented as a cube, is a

term of the RME for the function F.

Proof:

With the Definition II.2 and the property that a EB a = 0 the proof for Theorem II.2

is trivial.

In Table II the application of these Theorems is shown for the function F used in

Example II.2. The spectral coefficients Mi. M 23 ..• are named using the same characters

for the index a=l, b=2, c=3 and d=4 as for the terms, in order to stress the connection

between the indices and the term.

TABLE II

SPECTRUM M OF A FUNCTION F

term Mo Ma Mb Mc Md
acd
lied
a lied
abc
abd

abed
result

1------

term
acd
bed

abed
abe
abd

abed
result

acd
lied

abed
abe
abd

abed

TABLE II

SPECTRUM M OF A FUNCTION F
(continued)

Mab Mac Mad Mbe Mbd

1
1
1
1

Mabe Mabd Macd Mbed
1

1
1 1

1
1

1 1

23

Med
1
1
1

1

Mabed

1

1

As one can observe from Table II, the result ab E9 cd is the same as one obtained

in Example II.2.

Definition II.3

The polarity cube is the vector representation of the negative and positive literals

of a term t. For a positive literal the respective position of the polarity has the

value 1, for a negative literal it has the value 0.

Example II.6

The polarity of the term abed= 1101.

Let as observe, that the polarity for the RME has the value 1 for each literal. Now

we want to expand the method for RME to a more general expression in which all polari-

ties of variables are possible.

24

Definition II.4

A Generalized Reed-Muller expression (ORME) is an Exclusive SOPE (ESOPE)

in which every term has the same polarity. It can be represented by a spectrum

similar to one from the Definition II.2, where the standard trivial functions

(respectively, the indices of the spectral coefficient of the new spectrum) have a

different polarity for each chosen polarity. The connection between indices of

spectral coefficients of a certain polarity and the coefficients of the RME spec­

trum is given by the equivalence operation.

Example II.7

Using the equivalence relation the spectral coefficient Mabd of the RME transfor­

mation is changed to the respective spectral coefficient of the ORME transforma­

tion with the polarity abed (0101):

abd = abed = abd

The spectral coefficient for the chosen ORME is now Mlibd. Product abd is the

standard trivial function corresponding to Mlibd.

To be able to use the RME transformation characterized by the Theorems II.1 and

II.2 in order to create a GRME transformation according to the Definition II.4 the coun­

terpart of these theorems have to be found for ORME.

Theorem II.3

To make use of the Theorem II.1 for the GRME transformation, the equivalence

operation between every cube of the SOPE and the polarity cube has to be per­

formed to create argument cubes to be applied in Theorem II.1.

Proof:

The standard trivial functions, respectively the indices of the spectral coefficients

of the ORME spectrum according to Definition II.4 have the same polarity as the

25

polarity of the GRME itself. Hence, the analogous theorem to Theorem II.1 is

that all values of spectral coefficients for which the indices contain all the literals

of term t that have the same polarity as the polarity cube and not the de-literals of

term t, are equal to value "1 ".

With the application of Theorem II.3 we are now able to find the spectral

coefficients of a GRME. This is possible by first performing the equivalence operation

between the terms of the SOPE and the polarity cube and next applying Theorem II.1.

The indices of the spectral coefficients have still the polarity of the RME. To obtain

proper indices the following theorem is used.

Theorem II.4

To obtain the GRME from the spectrum calculated according to the Theorem II.3

the equivalence operation has to be performed between the standard trivial func­

tions for this GRME and its polarity.

Proof:

According to Definition II.4 every set of standard trivial functions, necessary for

the different GRME polarities, can be obtained by performing the equivalence

operation between the cubes of the standard trivial functions and the polarity.

Hence, this operation has to be performed between the spectrum being in RME

and the polarity cube in order to obtain the correct polarity of the solution terms

inGRME.

With the four Theorems II.1- II.4 we are now able to formulate an algorithm to

generate the GRME from a SOPE.

Notation:

term : cube of the function in SOPE.

polarity:

chosen polarity for the ORME transformation.

newterm:

cube after performing equivalence operation between polarity and term .

covalue:

variable to count the occurances of a spectral coefficient.

so/term :one final term of the ORME.

Algorithm : Generalized Reed-Muller transformation

do for each term

newterm = term =polarity

do for each possible index

do for each newterm

if (newterm is covered by the index)

covalue = covalue + 1;

if (covalue is odd)

so/term = index =polarity;

II.2.2 Implementation

26

The above shown algorithm has been developed to be well suited for computer

implementation. Therefore, it can be directly used as a subprogram.

To store one term, the structure termJield is used. This structure has been created in

order to be able to compare directly the term representation with indices of spectral ·

coefficients.

The variables value! and valuex used in the structure are needed to compare the

term representation with an index of a spectral coefficient. As mentioned in Chapter

II.1.2, two bits are necessary to store one binary literal. To be still able to compare the

27

cube representation of the term and the index, a cube is stored in two distinct fields. The

literals of the term->valuel are 1 for those literals of the term that are either 1 or-. The

de literals of the term are stored in term->valuex. With this approach, using a long vari-

able having 32 bits, the implementation is limited to 32 literals per term.

struct term _field
{

unsigned long value];
unsigned long valuex;
unsigned short order;

}*term;

I* field to store one's of term
!*field to store de' s of term
!* number of positive literals

*I
*!
*I

The pointer unsigned int *term_list is used to store the addresses of the term in a

dynamical array.

Because the order of solution terms is irrelevant it is possible to generate the

indices for the whole spectrum with a single counting loop. With this approach one

obtains the fastest possible way to generate the indices.

With these properties the implemented algorithm for the GRME transformation

has the following structure.

Notation:

term : current processed cube of the term_list.

index : index of the currently processed spectral coefficient.

total : number of spectral coefficients.

terms : number of terms.

coeff : a variable to determine if the number of occurances of a coefficient is odd or

even.

Algorithm: GRME transformation

for (index = 0 ; index < total ; index++)
{ coeff = O;

!*calculate coefficient for all terms *I

for (k = 0; k <terms; k++)
{ term = term _list[k];
if ((index & term->valuex) != 0)

continue;
if((index & term->valuel) == term->valuel)

{ if (coeff = = 0) coeff = 1;
else coeff = 0; }}

if (coeff== 1)
!*index of the spectral coefficient is a solution term*!

output(index);}

II.2.3 A complete example

28

The list of terms shown in Table III taken as an example to illustrate the algo­

rithm of the GRME transformation, is the same as in Example 11.2. The cube of the term

is shown together with the corresponding value! and valuex, to help the reader to analyze

the algorithm.

TABLE ID

COMPUTER REPRESENTATION OF AN ARRAY OF CUBES

valuex
1

1000
0000
0001
0010
0000

The chosen polarity of the GRME is 0101. First the terms are matched with the

polarity according to the equivalence operation (fable IV, Theorem 11.3). Because the de

literals (valuex) do not change in this operation, they are not shown in Table IV.

TABLE IV

EQUIVALENCE OPERATION ON CUBES

newterm
1-01
-001
1001
011-
01-0
0110

valllel
ITOI
1001
1001
0111
0110
0110

29

Next the RME transformation is applied for the new terms (variable newterm) of

Table IV. The Table V shows in each row the RME transformation for one term. In the

row before the last the value (covalue) of the complete spectrum is shown. According to

Theorem II.2 this value is 11
l11 when the number of occurances of a spectral coefficient in

the respective columns of the table is odd. The RME of the newterms is represented by

the indices of those spectral coefficients having value 11 1 ".

TABLE V

SPECTRUM M FOR THE FUNCTION OF TABLE IV

newterm Mo Mi M1 M3 M4
1-Ul
-001 1
1001
011-
01-0 1
0110

covalue 1 1
mdex -1-- ---1

TABLEV

SPECTRUM M FOR THE FUNCTION OF TABLE IV
(continued)

newterm M12 M13 Mi4 M13 M14 M34
1-01 1
-001 1 1
1001 1
011- 1
01-0 1 1
0110 1

covalue 1 1
mdex 11-- --11

newterm Mi23 Mi24 Mi34 M134 Mt234
1-01 1
-001 1
1001 1 1 1
011- 1
01-0 1
0110 1 1 1

co value
index

30

The set of terms in RME from Table V (indices) has to be changed to the correct

polarity. This is done by applying the equivalence operation between the term cubes and

the polarity cubes. The final GRME of the initial SOPE of the terms before and after per­

forming the equivalence operation (after equivalence) is shown in Table VI.

TABLE VI

EQUIVALENCE OPERATION FOR THE FUNCTION OF TABLE V

before eaiuvalence
-1--
---1
11-­
--11

31

The GRME in Table VI can be written as the GRME b $ d ab ed.

II.2.4 Execution times

The execution times shown here and those in the following Chapters refer to a

SUN 3/50 workstation. The meaning of the abbreviations in the time table is as follows

(all values are in seconds):

- u elapsed user time.

- s elapsed system time.

- no cube has no de literals.

- some cube has some de literals.

- many cube has many de literals.

- cubes number of cubes in the array.

- literals number of literals per cube.

-RM times for common Reed-Muller transformation.

- GRM times for heuristic polarity for less changes.

In Table VII the execution times for different input functions and for two different polari­

ties are shown. The polarity of the GRME transformation is chosen by some heuristic

methods to obtain a GRME with less changes in the input function. Hence, for the

GRME transformation the execution time is significantly shorter.

32

TABLE VII

EXECUTION TIME FOR THE REED-MULLER TRANSFORMATION

cubes literals type RM GRM
u s u s

1 10 no 0.0 0.1
1 10 some 0.0 0.1
1 10 many 0.0 0.1

10 10 no 0.7 0.1 0.1 0.1
10 10 some 0.1 0.1
10 10 many 0.1 0.1
1 14 no 0.5 0.1
1 14 some 0.3 0.1
1 14 many 0.2 0.1

10 14 no 13.9 0.2 2.0 0.1
10 14 some 1.5 0.1
10 14 many 1.3 0.1
1 18 no 5.0 0.1
1 18 some 3.6 0.1
1 18 many 3.5 0.1

10 18 no 124.1 1.3 32.0 0.4
10 18 some 20.5 0.1
10 18 many 20.2 0.1
1 22 no 177.6 0.1
1 22 some 57.1 0.1
1 22 many 56.3 0.1

10 22 no - - 511.9 2.7
10 22 some 324.2 0.2
10 22 many 323.6 0.1

II.3 GENERALIZED ESOPE TO SOPE TRANSFORMATION

IL 3 .1 Description

The algorithm introduced here is a general case of a transformation from an

ES OPE to a SOPE. Hence, the inverse RM transformation is just one special case of this

transformation.

The general idea of the method to generate any ES OPE to a SOPE is that for each

possible pair of ESOPE terms their overlapping parts have to be removed, which means

applying the identity: term EB term = 0.

33

Example 1/.9

In Figure 5 the method of removing overlapping parts is shown on a simple

example function.

c,d
a,b 00 01 11

00 0 0

01 1 1

11 0 0 1

10

a. ab "cd

a,b
c,d

0

1

0

0 1A 0

b. abc + acd +abed+ abed

Figure 5. Kamaugh maps for ESOPE and SOPE.

In Figure 5a. the ESOPE of the function ab E9 cd is shown. By removing the

overlapping part in the Karnaugh map one obtains a SOPE of this function.

To remove all overlapping parts for several terms each pair of terms has to be

compared similarly to the algorithm to generate disjoint cubes introduced in Chapter II. I.

There is only one difference between the method to generate disjoint cubes from nondis-

joint ones and the method to generate a SOPE from any ESOPE. While in the Disjoint

Algorithm the sharp operation (22) is performed between cubes that are nondisjoint, for

the ES OPE to SOPE transformation algorithm the overlapping part of the two cubes has

to be removed. The removal of this part can be done by performing the sharp operation

between each of the two terms and their overlapping part.

In the case of a description without Kamaugh maps the overlapping part is deter­

mined by the intersection (22) of the cubes.

With the above described change of the disjoint algorithm one can directly obtain

the algorithm shown below to generate an SOPE for any ESOPE.

34

Algorithm: ESOPE to SOPE Transformation

step 1. set a and b to the following positions in the term list :

a := 1, b := n, m := n

where n is the initial number of terms in the term list.

step 2. Main loop :

For each pair of terms terma and termb from an array A

if an intersection of terms terma and termb is non-empty set

then

do for terma and for termb

{ if termb equals the intersection

then do { if termb is the last of the array then remove termb

else { substitute termb by the last term of the array A ;

n := n - 1; } }

else if terma equals the intersection

then do { substitute terma by the last term of the array A ;

n := n -1;

b :=n }

else do for (calculate the d solution terms from the disjoint sharp

35

operation termaib #j intersection;

replace termatb by one solution term and add

the other ones to the end of the array A ;

n :=n +d -1;

if b ~a then go to step 3 }

}

go to step 2.

else do { b :=b -l;ifb ~a then gotostep3

else go to step 2}

step 3.

b := n;

a :=a+ 1;

if a = m then stop

else m := n;

go to step 2.

II.3.2 Implementation

From the discussed difference between the Disjoint Algorithm (Chapter II.1) and

the algorithm for ESOPE to SOPE Transformation, one can easily change the implemen­

tation of the Disjoint Algorithm for the ESOPE to SOPE Transformation.

36

According to this the program makes use of the same structures described for the

Disjoint Algorithm.

II.3.3 A complete example

In Figure 6a a step by step transformation of the ESOPE of Figure 6a to the final

SOPE in Figure 6e is shown.

First the terms lXOO and XlXX are intersected. Because the intersection is not

empty, the intersection cube is sharped from both terms. The initial two terms in the

array are substituted by the two of the solution terms of the sharp operation. The other

solution terms are appended to the end of the array (Figure 6b). Next the following pair

of terms is taken. This procedure is repeated until every pair determined by the shown

algorithm is compared.

II.3.4 Execution times

The here used notation is the same as shown in Chapter II.2.4.

TABLE VIII

EXECUTION TIMES FOR ES OPE TO SOPE TRANSFOIUvlA TION

cubes llterals type time
u s

1 8 no 0.0 0.1
10 8 no 0.1 0.1
10 8 some 0.0 0.1
10 8 many 0.0 0.1
1 16 no 0.4 0.1
10 16 no 8.9 0.1
10 16 some 6.1 0.1
10 16 many 5.1 0.1
1 22 no 27.3 0.1
10 22 no 545.9 3.2
10 22 some 341.9 0.3
10 22 many 340.0 0.1

X1X~,X4
- '0

a. input array

c. second loop

e. output array

Xl,X2,X3,X4

lXOOON

lXlXON

XXll ON

XlXXON

OOOODC

j10000N

. 101XON

XXll ON

OlXXON

OOOODC

1101 ON

1000 ON

10100N

OXll ON

OlOXON

OOOODC

1101 ON

1111 ON

OllOON

b. first loop

d. third loop

lOOOON

lXlXON

XXll ON

OlXXON

OOOODC

lllX ON

1101 ON

lOOOON

1010 ON

OXll ON

OlXXON

OOOODC

1101 ON

1111 ON

Figure 6. Step by step execution of ES OPE to SOPE transformation

37

38

TI.4 GENERALIZED ADDING AND ARITHMETIC TRANSFORMATIONS

II.4.1 Description

In (27) the Generalized Adding and Arithmetic Transformations (GAD, GAR)

were introduced. We expect, that these transformations can be useful for applications in

multidimensional signal processing and image processing as well as for designing and

testing of digital circuits.

As mentioned in Chapter I. the GAD and GAR Transformations (GARD

Transformation, for short) are generated by some essential order-2 matrices. These are

shown in (Figure 7).

[: ~] [_: ~ J
a. Adding b.Arithmetic

Figure 7. Essential order-2 matrices for GAD and GAR Transfonnations.

As an application of the Cube comparison method for this transform the R spec­

trum is used. The R spectrum is a conventional coding scheme where the value of the

spectral coefficient <0, 1, 0.5> corresponds to <off 0, on 1, de-> representing the possi­

ble minterm type.

Because the GARD and GRME Transformations have similar order-2 matrices,

the same Cube Comparison method as for the GRME can be applied. The difference

between the GARD Transformation with respect to the GRME Transformation is, that for

the first transformation the value of the spectral coefficient is an important magnitude.

The Properties to generate the spectrum for the GARD Transformation according

to the Cube Comparison method make use of the same notation as in the previous

Chapters. The only additional variable used here is defined below.

pol is used as a prefix to indicate that the tenn/index is matched with the polarity

39

Properties for the GARD Transformation:

Property II.2

All terms are matched with the polarity cube according to the equivalence opera­

tion (Definition II.1), see Theorem II.3.

po/term = term =polarity

Property II.3

The value of the spectral coefficient is according to the R vector, <on-1.0, dc-0.5>

when the polterm is covered by the polindex = index = polarity:

po/term c po/index

Property II.4

The complete spectrum for the array of minterms is calculated by adding the

spectra for each minterm.

For the GAR transformation also negative values of spectral coefficients can also

occur. The sign for the value of the spectral coefficients depends on the order (number of

subindices of the coefficients) of the coefficient. Thus, the straight order defined in

Chapter 1 is a convenient order to calculate the sign. The following Properties for the

GAR transformation define the calculation of the signs.

Property II 5

The value of a spectral coefficient calculated according to Property II.4 has to be

negated if the number of ones in polterm is odd.

Property II.6

Additionally to Property II.5 the value of the spectral coefficient has to be negated

if the order of the coefficient is even.

From these Properties the algorithm to generate the spectrum for the GARD

Transformation has been developed. The notation listed below is used.

40

value the value of one spectral coefficient is stored in this variable according to Pro­

perty II.3.

sign determines the sign of the spectral coefficient calculated for the GAR Transfor­

mation according to Property II.4, II.5.

Algorithm: GARD Transformation for multiple polarities

do for each minterm

{

}

polterm = term = polarity;

if number of ones in polterm is odd and GAR Transformation is chosen

sign= -1;

else sign= 1;

do for each spectral coefficient

{

}

polindex = index = polarity;

if order of spectral coefficient is even and GAR Transformation is chosen

sign= sign* -1;

if polterm = polterm n polindex

{

if de minterm

value = value + sign * 0.5;

else

value =value + sign * 1.0;

}

,--------

41

An example which shows the different steps of these algorithm can be found in

Chapter II.4.3.

II.4.2 Implementation

The algorithm especially designed for computer implementation is suitable for

the generation of the C-code. As its advantage all spectral coefficients are generated

separately for the whole set of minterms, so no memory to store the spectral coefficient is

needed. Therefore, the spectral coefficients can directly be stored on the hard disk. The

structure struct minterm is used to store the minterms.

struct minterm
{

unsigned long value; I* bit representation of the minterm literals *I
float type; !*is according to minterm type 1.0, 05 or 0.0 *!

}term;

In the field minterm->value the ones of the input minterm are stored. Thus the maximum

number of literals in the input function can be 32. The field minterm->type determines

the value of the spectral coefficients according to the minterm type (on - 1; de - 0.5).

This way of representing the type is used because it directly determines the value of the

spectral coefficient.

To use an array for the minterms, which can match its size according to the

number of input minterms, a dynamic memory allocation is used. The pointer unsigned

int *minterm-list is therefore taken to store the addresses of the minterms. Because of the

use of the function realloc() for the dynamic memory allocation, it can be treated like an

array of addresses.

As shown in Chapter II.4.1, the straight order is necessary to calculate the value

of the spectral coefficients for the GAR transformation. Hence, an algorithm has been

developed to generate the indices in this order. In this algorithm the complete set of

indices is calculated respective to the given order. The algorithm is illustrated in Exam-

ple II.10.

42

Example II.JO:

The indices of the spectral coefficients of the first order have only one literal.

Respectively, the cube representations of the indices have one 1 each. The first

order indices of a five-valued function are shown in Table IX.

TABLE IX

FIRST ORDER INDICES OF SPECTRAL COEFFICIENTS

I coef~cient II s 1 I s 2 I &i 3 I s 4 I s 5 I in ex 10000 01000 0 loO 00010 00001

The third order coefficients of the same function are shown in Table X.

TABLEX

TIIlRD ORDER INDICES OF SPECTRAL COEFFICIENTS

coernc1ent index
123 111

S124 11010
s 125 11001
S134 10110
S135 10101
S14s 10011
S234 01110

...
S34s I 00111

Let us denote by k the number of literals, necessary for the current order. As it

can be observed, to obtain all indices for one order of coefficients, one has to gen-

erate all possible arrangements of k symbols "1" in a field of the length deter-:

mined by the number of input variables. For this purpose a recursive algorithm

has been designed. The recursive algorithm behaves like a certain set of loops,

where, their number is determined by the order that has to be generated.

For the third order coefficient generation shown in Table X, three loops are neces-

43

sary. The outer loop is responsible for changing the position of the leftmost "1"

from the first to the third position. In the next inner loop the "1" on the position

right to the leftmost "1" has to go to the position right to the third position. Again

for the next inner loop the "1" right to the "1" from the next outer loop has to go

right to the last position of the "1" in the next outer loop.

The procedure consisting of these three loops looks as follows.

Notation:

a,b,c : determine the positions of the three ones.

index : is the final index such as one shown in Table X

first[i]: is the index i of the spectral coefficient Si

for (a = 0 ; a <= 3 ; a++)

{

}

for (b = a+l; b <= 4; b++)

{

for (c = b+ 1 ; c <= 5 ; c++)

index= first[a] + first[b] + first[c];

}

As seen above, for each different order another number of loops is necessary. To

overcome this problem, a recursive algorithm has been designed that behaves such as a

given number of loops.

Notation:

from : determines the start number of the loop.

to : determines the end number of the loop.

order : determines the order that should be generated.

times : determines the current depth of the recursion.

· I

Algorithm: One order of coefficients for the GARD Transformation.

short order; I* calculated order *I

gen coeff(jrom,to,times)
short from; I* loop beginning *!
short to; I* loop end *I
short times; I* depth of recursion */
{

int i,k;
float coejf; I* final value of the spectral coefficient*!

times++;
for (i =from; i <= to; i++)
{

}
}

index= index+ first[i+l];
if (times < order)

gen coeff(i+ 1,to+] ,times);
else -
{

}

coeff = O;
for (k = 0; k < minterms; k++)
{

}

minterm = minterm list[k];
if ((minterm->value & ((index)"(!polarity))) == minterm->value)

coeff = coeff + (jloat)sign * minterm->type;

output(coejf);

index= index-first[i+l];

114.3 A complete example

44

An example for both, the Arithmetic and the Adding transformation illustrates the

generation of the spectral coefficients. In TABLE XI the array of minterms for the

chosen function is shown. The last column of the minterms determines: "-" the de-

minterm, "1" the on-minterm.

45

TABLE XI

INCOMPLETELY SPECIFIED BOOLEAN FUNCTION

mintenn I e
0001 1
0101 1
1001 1
1010 1
1110 1
0111
1111

In the Tables XII and XIII the minterms of the function shown in Table XI are

applied to generate the spectra for the GAR and GAD Transformations. The final spectra,

calculated by adding the values of all partial coefficients are shown in the last rows of

Tables XII and Table XIII.

min term
0001 on
0101 on
1001 on
1010 on
1110 on
0111 de
1111 de
result

TABLE XII

SPECTRUM S FOR THE GAD TRANSFORMATION
FROM THE FUNCTION OF TABLE XI

S4
1

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1 1

mm term .J 123 .J 124 .J 134 .)234 .) 1234
1 on 0 1 1 1 1

0101 on 0 1 0 1 1
1001 on 0 1 1 0 1
1010 on 1 0 1 0 1
1110 on 1 0 0 0 1
0111 de 0 0 0 .s .5
1111 de 0 0 0 0 .s

-----~

result

S24 34
1 1
1 0
0 0
0 0
0 0
0 0
0 0
2 1

min term
0001 on
0101 on
1001 on
1010 on
1110 on
0111 de
1111 de
result

TABLE XIII

SPECTRUM S FOR THE GAR TRANSFORMATION
FROM THE FUNCTION OF TABLE XI

S1
u

0 0
0 0
0 0
0 0
0 0
0 0

0

mm term
uuul on
0101 on
1001 on
1010 on
1110 on
0111 de
1111 de
result

0
0
0
0
0
0

0
0
0
0
0
0

s 123
0
0
0
-1
1
0
0
0

s 124
1
-1
-1
0
0
0
0
-1

0
0
0
0
0
0

s 134
1
J.

0
-1
-1
0
0
0
-1

0
0
1
0
0
0
1

S234
1

-1
0
0
0
.5
0
.5

s 1234
-1
1
1
1
-1
-.5
.5
1

34
-1
0
0
0
0
0
0
-1

46

As mentioned above, each spectral coefficient in the program is directly generated

by adding the values for each minterm. Therefore, it is generated for the whole set of

minterms before calculating the next coefficient. Within each coefficient (denoted as

coeff in the algorithm) the value for each minterm is added to the initially zero value of

coeff. For instance, for the GAD transformation the intermediate values are shown in

Table XIV.

,------

TABLE XIV

INTERMEDIATE VALUES FOR THE GAD TRANSFORMATION

mm term
0001 on
0101 on
1001 on
1010 on
1110 on
0111 de
1111 de
result

0
0
0
0
0
0

mm term
Ouul on
0101 on
1001 on
1010 on
1110 on
0111 de
1111 de
result

0
0
0
0
0
0

0
0
0
0
0
0

s 123
0
0
0
1
2
2
2
2

s 124
1
2
3
3
3
3
3
3

0
0
0
0
0
0

s 134
1
1
2
3
3
3
3
3

S234
1
2
2
2
2

2.5
2.5
2.5

0
0
0
0
0
0

s 1234
1
2
3
4
5

5.5
6
6

34
1
1
1
1
1
1
1
1

47

Execution times for the GAD transformation will be presented in Chapter Il.5.4.

II.5 INVERSE ARITHMETIC AND ADDING TRANSFORM

II.5.1 Description

The INverse Generalized ARithmetic and aDding transformations here called

INGARD, is one single algorithm for both the inverse Adding and the inverse Arithmetic

Transformation. Let us first observe the main Property of the forward GARD Transfor­

mation, that led to the INGARD algorithm.

Property 11.7

In the smallest order where not all spectral coefficients are equal to zero, every

spectral coefficient can have only the values (+/-) 1 or (+/-)0.5.

48

Because of the importance of this Property it will be illustrated in the following

Example.

Example II.11

The complete set of minterms for a four variable input function and their com­

plete spectra are shown in Table XV. The minterms are ordered in a way, to illus-

trate the above Property. Hence, one can observe that the leftmost 1 of the spec­

trum in the row below is always right of the leftmost 1 of the spectrum in a cer-

tain row.

min term .So
ouuo 1
1000
0100
0010
0001
1100
1010
1001
0110
0101
0011
1110
1101
1011
0111
1111

TABLE XV

ILLUSTRATION OF THE PROPERTY OF
THE SMALLEST ORDER

S1 S2 .) 3 S4 S12 s 13 s 14

1 1 1 1
1 1

1 1
1 1

1
1

1

S23 S24 S34

1 1
1 1

1 1

1
1

1

TABLE XV

ILLUSTRATION OF THE PROPERTY OF
THE SMALLEST ORDER

(continued)

min term s 123 S124 s 134 S234 S1234
0000
1000 1 1 1 1
0100 1 1 1 1
0010 1 1 1 1
0001 1 1 1 1
1100 1 1 1
1010 1 1 1
1001 1 1 1
0110 1 1 1
0101 1 1 1
0011 1 1 1
1110 1 1
1101 1 1
1011 1 1
0111 1 1
1111 1

The following Properties can be derived directly from Property II.7.

Property 11.8

49

The set of minterms can be calculated by generating the minterm always for the

leftmost (for the straight order) non-zero spectral coefficient, where the spectrum

of the minterm has to be subtracted from the complete spectrum.

Property 11.9

The next leftmost spectral coefficient not equal to zero (as defined in Property

II.7) is always right (for the straight order) of the previous one.

Property II.JO

The value of the leftmost spectral coefficient must always be (+/-) 1 or (+/-)0.5

depending on the type of the minterm, either on- or dc-minterm, and the transfor­

mation, either the inverse Adding or the inverse Arithmetic one.

50

Property II.

The correct solution minterm is calculated by performing the equivalence opera­

tion (Definition Il.1) between the minterm generated according to Properties Il.7 -

II.10 and the polarity cube.

The algorithm derived from these Properties is shown below:

Algorithm: INGARD

do

take leftmost spectral coefficient with value ':F 0;

minterm = index of this spectral coefficient;

generate spectrum for this mintenn;

subtract spectrum of the minterm from the total spectrum;

solution minterm = mintenn = polarity

while (spectrum ':F zero)

For the Arithmetic Transformation the negative values for the value of the spec­

tral coefficients can occur. Therefore, it is possible that the values for some spectral

coefficients can reduce themselves to zero. However, as shown for the inverse Adding

Transformation, this can not occur in the smallest order (Property Il.7). Hence, the same

algorithm as for the inverse Adding Transformation can be taken for the inverse Arith­

metic Transformation as well.

II.5.2 Implementation

For the implementation of the algorithm it is necessary to read from the input file

the values of the spectral coefficients according to their indices. The routine which per­

forms this task is similar to the gen coeff procedure shown in Chapter II.4.2 for the for­

ward transformation. In the gen_ coef f procedure the part where the coefficient is

51

calculated has to substituted by the input of the value of the spectral coefficient from the

hard disk file. Below the structure in which the value has to be read is shown.

struct spectral coef
{ -

unsigned long index;/* subscript index of the spectral coefficient *I
double value; I* value of spectral coeff */
unsigned short order; I* order of the spectral coefficient *I

}*spectrum;

Here the realloc() function can be used for the whole structure. It is then possible to

access directly each spectral coefficient like an element of an array. The main procedure

to find the leftmost non-zero spectral coefficient and generating the minterm, is shown

below. It makes use of the previously defined variables and the additional variables

order no and TRANSFORM:

order no

determines the current processed order.

TRANSFORM

determines if Arithmetic or Adding Transformation.

Algorithm : INGARD implementation

for (i = 0; i < coeffs; i++)
{

}

order no= spectrum[i].order;
if (spectrum[i] .value != 0)
{

}

/* minterm is identical to the index of the spectral coefficient *I
if (abs(spectrum[i].value) == 1.0)

else

/* minterm is on minterm *I
type= ON;

I* minterm is de minterm *I
type= DC;

minterm->type = (jloat)sign * spectrum[i].value;
minterm->value = (spectrum[i].index);
output(minterm);
I* subtract the spectrum of the mintermfrom total spectrum *I
subtract _trans/ orm(TRANSFORM);

r-

52

II.5.3 A complete example

For the illustration of the inverse transformation the spectrum generated by the

forward Arithmetic Transformation according to Table XI has been chosen.

TABLE XVI

INVERSE GAR TRANSFORMATION

I ii I ri I Ii ii i'f I l"'f I 1"
I ""

I M I C'I
34

-1
1 1 0

0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 a· 0 1 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

1234
T
2

1 -2 -1 -.5 1
1 -1 0 -.5 0
1 0 0 .5 -1
0 0 0 .5 0
0 0 0 0 .5
0 0 0 0 0

The spectrum shown in the first row of Table XVI is the initial spectrum. Now the

min term for the leftmost spectral coefficient not equal to zero (S 4) has to be generated.

The spectrum for this minterm is immediately subtracted from the previous spectrum.

The new spectrum is shown in the second row of the Table, where the minterm is shown

in the first column. The loop to generate all minterms is repeated until the generated

spectrum becomes zero for all coefficients.

II.5.4 Execution times for GARD and ING ARD Transformations

Because of the nature of the forward GAD Transformation, the execution time

53

does not depend on the ratio of on- to off-literals in a term. The Table XVII presents first

the time for the forward GAD Transformation, followed by the time for the inverse GAD

Transformation for the same example. The first column includes the number of minterms

and the second column gives the number of literals of those minterms. The same exam­

ple as used to determine the execution time was assumed. The symbols u and s for the

elapsed time have the same meaning as in Chapter II.2.4.

TABLE XVII

EXECUTION TIMES FOR THE GAD AND
INGAD TRANSFORMATIONS

min terms Iitenus orwar1
u

transtorm
s

mverse transtorm

1
10
1

10

8
16
16

.1
0.5
22.6
31.2

.l
0.1
0.3
0.3

u s
.1 0.2

0.5 0.2
23.3 0.9
55.1 1.0

II.6 RADEMACHER-WALSH TRANSFORMATION

II.6.1 Description

An algorithm to calculate the spectral coefficients of the Rademacher-Walsh

Transformation for completely specified Boolean functions directly from the SOPE was

shown in (4,3). It has the disadvantage that for several cases an additional correction of

the Boolean function was required. This algorithm was improved to make use of com­

pletely and incompletely specified Boolean functions represented in an array of disjoint

cubes such as generated with the algorithm shown in Chapter ILL This method (12,13)

has been applied in the development of the algorithm for the computer implementation

(14,15).

Let us first recall the basic properties for the generation of the Rademacher-Walsh

r--

54

spectrum directly from the representation of disjoint cubes (12,15).

Example II.12

The array of disjoint cubes generated in Example II.1 is used to generate the spec­

trum S shown in Table XVIII. Each row contains the values of the spectral

coefficients for the given cube. The final spectrum shown in the last row is calcu-

lated by the sum of the respective values for the cubes, the only exception is the

de-coefficient SO·

TABLE XVIII

SPECTRUM S OF THE RADEMACHER-WALSH TRANSFORMATION

cube .) 0 .) 4
1- on 1 -4
1-1- on 8 8 0 8 0
0-11 on 12 -4 0 4 4
010- on 12 -4 4 -4 0
OOOOdc 7 -1 -1 -1 -1
1101 on 14 2 2 -2 2
0110 on 14 -2 2 2 -2
s ectrum -1

cube .l34
1-0 on -4
1-1- on 0 -8 0 0
0-11 on 0 4 0 -4
010- on 4 -4 0 0
0000 de -1 -1 -1 -1
1101 on -2 2 -2 2
0110 on 2 2 2 2
snectrum -1 -1 -5

TABLEXVill

SPECTRUM S OF THE RADEMACHER-WALSH TRANSFORMATION
(continued)

cube
r:oo"On
1-1- on 0 0 0 0 0
0-11 on 0 0 -4 0 0
010- on 4 0 0 0 0
0000 de -1 -1 -1 -1 -1
1101 on -2 2 -2 -2 2
0110 on -2 2 2 -2 -2
suectrum -1 3 -1 -5 -1

55

In Table XVIII one can observe the following Properties (taken from (14,15)) of

the Rademacher-Walsh spectrum:

1 The contribution of the on-cube of degree m to full n -space spectrum of function

F (where n is a number of variables, and p is a number of de-variables in the

function F) is related as follows:

so in full n -space = 2n - 2 x 2P

and

SJ in full n -space = SJ in m -space x 2P, where I '# 0.

2 The contribution of the de-cube of degree m to full n -space spectrum of function

F is related as follows:

so in full n-space = 2n -1 - 2P

and

SJ in full n -space = SJ in m -space x 2P - 2, where I '# 0.

The following properties of the signs of each spectral coefficient SJ, where I '# 0, are

valid for on- and de-cubes of any degree:

56

3 If in a given cube the Xi variable of a Boolean function is in affirmation, then the

sign of the corresponding first-order coefficient is positive, otherwise for a vari­

able that is in negation, the sign of the corresponding first-order coefficient is

negative.

4 The signs of all even-order coefficients are given by the negation of the multipli­

cation of the signs of the related first-order coefficients.

5 The signs of all odd-order coefficients are given by the multiplication of the signs

of the related first-order coefficients.

The following properties have to be applied additionally for the de spectral coefficient:

6 The value of a de spectral coefficient so is equal for a completely specified

Boolean function to the sum of all the corresponding contributions from all on­

disjoint cubes, but it requires a correction factor - (k - 1) x 2n, where k is a

number of disjoint cubes in the on-array of cubes.

7 The value of a de spectral coefficient so is equal for an incompletely specified

Boolean function to the sum of all the corresponding contributions from all on­

and de-disjoint cubes, but it requires a correction factor

- (k - 1) x 2n - l x 2n - 1, where k is the number of disjoint on- cubes, and l is

the number of disjoint de-cubes.

II.6.2 Implementation

It has been investigated to make use of the Cube Comparison method for the

implementation of the Rademacher-Walsh Transformation. As one can observe from

Table XVIII and from the properties given in Chapter II.6.1, the value of the spectral

coefficients depends on the positive as well as on the negative literals of the cubes. The

Cube Comparison method to obtain the spectral coefficients with non-zero value from the

spectrum is the same as for the RME Transformation (Theorem II. l.). Similarly to the

57

Arithmetic Transformation, the signs of the value of the spectral coefficients depend on

the order of the coefficient. Thus, again the straight order (Rademacher-Walsh order) has

to be applied. Because of these similarities, the algorithm uses the same structure as for

the GRM Transformation (Chapter II.2.2). The procedure to generate the indices in the

straight order is similar to the gen_coeff procedure (Chapter II.4.2) for the GARD

Transformation.

The meaning of the different fields in the structure has changed To adopt to the

Cube comparison method necessary for the Rademacher-Walsh Transformation. There­

fore the structure term _field is shown below.

struct term _field
{

unsigned long value]; !* is "1 "for de- and on- literals of the term *I
unsigned long valuex; I* is "1 "for the de-literals of the term *I
unsigned short order; !* value according number of de' s *!
unsigned short type;!* determines on-, de- or off-type of cube *I

}*term;

The procedure to generate the indices according to the straight order is shown

below. It generates one complete order of spectral coefficients for the given order in the

variable order. The variable sign determines if the order is an odd or even one. In the

subroutine value_coeff() the final signs of the spectral coefficient has to be determined.

This procedure will be described in the sequel. The value of a spectral coefficients

depends on the number of de literals in the cube (Properties 1 and 2). This value is cal­

culated once per cube and stored in the field term->order. All other variables and the

array (first[i]) have the same meaning as in Chapter II.2.2 and II.4.2.

Algorithm: Generation of one order of spectral coefficients

short order; I* order that has to be generated *!
short sign; I* determines sign according to the generated order *!
unsigned long index; I* global variable to store the index *I

gen_ coeff(from,to ,times)
short from;

short to;
short times;
{

inti;
times++;

}

for (i =from ; i < = to ; i + +)
{ index = index + first[i + 1];
if (times < order)

gen_ coeff(i+ l ,to+ l ,times);
else

!*calculation of the value for the whole array of cubes*!
value coeff();

index= index -first[i+l];}

58

The main difference to the GAD, GAR and GRME Transformations is that the

sign of the value of the spectral coefficients depends on the sign of the respective

coefficients of the first order. Therefore, after the generation of the value for a spectral

coefficient, the sign has to be determined. The procedure value_coeff has been

designed to perform the calculation of the sign according to Properties 3 and 4.

Procedure : Calculation of the sign of the value for a spectral coefficient

value coeff()
{ -

short i,k;
shorts;!* local variable for the sign *I
long value;

value= 0;
for (k = 0 ; k < cubes ; k+ +)
{

cube= cube list[k];
if ((cube-> valuex & index) = = 0)
{

/*determine sign of the value*/
s =sign;
for (i = 1 ; i <=values; i++)
{

}

if((first[i-1] & index)!= 0)
I* check ifvaluel has zero on this position*!
if ((first[i-1] & cube->valuel) == 0)

!* sign has to be negated*!
s = s * -1;

value= value+ s*cube->order;

59

)
)
output(value);

With the above algorithm all spectral coefficients except the de-coefficient So can

be generated. This has to be generated separately according to Properties 1,2,6 and 7.

II.6.3 A complete example

The same array of cubes representing the function f as in Exa.rnple II. l and II.12

is taken to illustrate the different steps of the Rademacher-Walsh algorithm.

First the de-coefficient is generated according to the formulas of Properties 1,2,6

and 7. Similarly to the GARD Transformation, the values are immediately added, what

is shown in Table XIX. In the last row the final value is given after the required correc-

tion according to Properties 6 and 7.

TABLE XIX

GENERATION OF THE DC-COEFFICIENTS 0

CUOe I 00

i..:oo on 12
1-1- on 20
0-11 on 32
010- on 44
0000 de 51
1101 on 65
0110 on 79
suectrum

Next all spectral coefficients are generated according to the shown algorithm

gen_coeff() (Chapter II.6.2), where again each spectral coefficient is calculated by adding

immediately the contribution of each cube, from the array of cubes, to the value of the

spectral coefficient. The intermediate values of the spectral coefficients are given in

Table XX.

60

TABLE XX

INTERMEDIATE VALUES FOR THE RADEMACHER-WALSH SPECTRUM

cuoe
I=mron
1-1- on 12 0 4 -4
0-11 on 8 0 8 0
010- on 4 4 4 0
0000 de 3 3 3 -1
1101 on 5 5 1 1
0110 on 3 7 3 -1

I spectrum 3 7 3 -1

cube -
1-00on
1-1- on 0 -4 4 0 0 -4
0-11 on 0 0 8 0 0 -8
010- on 4 -4 8 4 0 -8
0000 de 3 -5 7 3 -1 -9
1101 on 1 -3 5 5 -3 -7
0110 on 3 -1 3 3 -1 -5
suectrum 3 -1 3 3 -1 -5

-~···--

cube
I=mron
1-1- on 0 0 4 0 0
0-11 on 0 0 0 0 0
010- on 4 0 0 0 0
0000 de 3 -1 -1 -1 -1
1101 on 1 1 -3 -3 1
0110 on -1 3 -1 -5 -1
suectrum -1 3 -1 -5 -1

II.6.4 Execution times

In Table XXI execution times for different input functions are shown. The

corresponding notation can be found in Chapter II.2.4. The execution times for the new

algorithm introduced here are compared to the times of the Spectral Synthesis System of

the Drexel University (32,33). The following notation is used:

newalgorithm

61

times for the algorithm introduced here.

S3 times of the Spectral Synthesis System.

TABLEXXI

EXECUTION TIMES FOR THE RADEMACHER-WALSH TRANSFORMATION

cube literal type new algorithm S3

u I s

10 1.8
1 10 no 0.3 0.1
1 10 some 0.2 0.2
1 10 many 0.2 0.1

10 10 no 1.2 0.1
10 10 some 0.3 0.2
10 10 many 0.2 0.2

14 32
1 14 no 5.1 0.2
1 14 some 2.9 0.1
1 14 many 2.9 0.2
10 14 no 24.1 0.2
10 14 some 4.3 0.2
10 14 many 3.9 0.2
10 16 no 106.7 0.9
10 16 some 16.6 0.5
10 16 many 16.0 0.2

18 382
1 18 no 88.6 0.9
1 18 some 41.4 1.0
1 18 many 46.7 1.0

10 18 no 458.0 1.4
10 18 some 63.2 0.4
10 18 many 63.2 0.3

Because the Spectral Synthesis System makes use of a Fast Transformation, the

complete set of minterms has to be specified for the transformation. The Cube Com-

62

parison method can perform the transformation directly on the representation of cubes.

Thus, the execution times depend on the number of cubes. Therefore, the execution time

for 1 and for 10 cubes of different types is shown in the above table.

CHAPTER III

MULTIPLE-VALUED TRANSFORMATIONS

III.1 MULTIPLE-VALUED WALSH TRANSFORMATION

III.1.1 Description

The spectral representation of multiple-valued input binary output functions for

the Walsh Transformation was introduced by B.Falkowski (30). In such a representation

the spectrum for each mv-function is composed of a vector of Walsh Transformations,

each of them defined for one product of two input variables of the function. For functions

having only two input variables the spectrum is composed out of one Walsh Transforma-

ti on.

Let us first review some basic definitions for multiple-valued input, binary output

functions.

Definition III.I

A multiple-valued input, binary output incompletely specified function f

(mv function, for short) is a mapping f(X 1 Xi. ... , Xn) : P 1 x P 2 x · · · P n -?B,

where Xi is a multiple-valued variable (mv-literal), and Pi = {0,1, ... ,pi-1} is a

set of true values that this variable may assume, Pi is the number of values of

variable Xi. B = { 0,1,-} denotes the off-, on- and don't care value. This is a gen­

eralization of an ordinary n-input switching function f: B n -?B.

Definition Ill.2

For any subset Si ~Pi, Xisj is a literal Xi representing the function such that

s {1 if Xie Si
Xii= O ifXieSi

,----

64

Definition III.3

A product of literals, X 1s 1x l 2 ••• Xn Sn, is referred as a product term (also called

term , product or cube). A product term that includes literals for all function vari­

ables X 1.X 2, ... ,Xn is called the full term.

The Multiple-valued Walsh Transformation (MWT) introduced in (30) is based

on an algorithm to convert the mv-function to a set of two-dimensional maps. This

description of maps was taken to illustrate the conversion. For the computer implementa­

tion, the mv-function and its conversion to a Boolean function are represented as arrays

of cubes. The array of cubes representing the multiple-valued function is mapped to its

logical equivalent in the form of a Boolean function represented as an array of cubes.

From this point on, one can calculate the spectrum of each such Boolean function accord­

ing to the algorithm described in Chapter II.6. This method of the calculation of Walsh

spectrum of Boolean functions requires to represent such functions in the form of arrays

of disjoint on- and de- cubes. After the two-dimensional multiple-valued arrays (every

array represents one out of all possible products of two distinct multiple-valued literals)

have been converted to Boolean arrays of cubes the algorithm to generate disjoint cubes

from nondisjoint ones (Chapter II.l) is applied to all the cubes describing the function.

The last step in the generation of a partial spectrum for the mv-function is the calculation

of the Walsh spectrum from the arrays of disjoint cubes. The detailed description of the

algorithm to perform this task can be found in Chapter II.6. The complete structure of

the implementation of the MWT is shown in Figure 8.

Since the binary Walsh Transformation and the disjoint algorithm have already

been described in previous Chapters, only the conversion algorithm to change multiple­

valued input functions to binary ones will be described in the next section.

Generation of the Boolean

representation of each

product of two

multiple-valued literals

~

Generation of disjoint
cubes from nondisjoint ones

for each product

~

Binary Walsh transfonnation

for each product

Figure 8. Structure of the multiple-valued Walsh implementation.

III.1.2 Implementation of the conversion algorithm

65

The general principle is to convert each possible combination of two multiple-

valued literals of a binary function to its logical equivalent of Boolean arrays of cubes.

The different steps of the conversion algorithm are illustrated with the mv­

function xo.1,2,4yo.2 where X is a five valued literal and Y a three-valued literal. Since

the mv-function has only two literals then only one Boolean array of cubes describes

fully this function. The conversion is performed by changing the multiple-valued nota­

tion (in decimal code) to the binary one. The result of this conversion for the considered

mv-function is shown in Figure 9.

The implemented algorithm first generates two list of cubes for each literal of the

product of literals. The first list contains the corresponding binary on-representation (true

cube) for each value of a singular multiple-valued literal. If a multiple-valued literal

does not have a number of zn values (where n =2 for the literal Y and n =3 for the literal

66

X in our example), then a second list containing not -used values as the representation of

the de-cubes is used. For example, the literal X is described by the two list in Table XXII

and:XXIII.

·····~ ~ 1 : 2.

x ~ 00 01 11 10
I I I

multiple-valued product of two literals :

xo.1,2,4 yo.2
0 ~ 000 1 0 - 1

1 ~ 001 1 0 - 1 this product converted to the binary array :

3 ~ 011 0 0 - 0 ON -cubes: I 00000

00010

2 ~ 010 1 I 0 I - I 1 I I 00100

00110

- i 110 01000

01010

- i 111 10000

10010

- i 101

4 ~ 100 1 0 1
............ _,_ ___ _. ____ _._ ____ ..._ ___ _.

Figure 9. Conversion of multiple-valued product ofliterals.

TABLEXXII

BINARY REPRESENTATION OF A MULTIPLE-VALUED LITERAL

on cuoe

XXIII).

67

In order to obtain larger cubes, the cubes of each of these lists are merged (Table

TABLEXXIII

MERGED LIST OF THE BINARY REPRESENTATION
OF TABLE XXII

Now the binary representations of the cubes of literal X are shifted m positions to

the left, where m is the number of bits necessary to represent the multiple-valued literal

Y. Analogously, the cubes describing the literal Y are shifted n positions to the right,

where n is the number of positions used in the description of the multiple-valued literal

X. For our example, m = 3, and n = 2. The shifted positions in the cubes are filled with

don't care symbols. The result at this stage is shown in Table XXIV.

TABLEXXIV

SHIFfED BINARY REPRESENTATION OF TWO
MULTIPLE-VALUED LITERALS

Yon cubes

At the final stage, the cubes describing X and Y are intersected, and Figure 10

shows the complete conversion of the product of the two literals.

68

··. YjO 1 - 2
. ··········••flo•••••··

X! "' I oo
01 11 10 multiple-valued product ofliterals :

xo.1,2,4 yo.2
0~000

~ 1 ; 001 0
" "~ .

converted product of literals :

3 j 011 I 0 I 0 ~ - i 0 I ON -cubes:
I

-00-0

2 ~ 010 I 1 1 0 I - l 1 I I 001-0

010-0
1....---r- I ~I L

- ~ 110

- j 111
DC- cubes:

- j 101
,,_ I I\ - II _/, [-1-- J -

110--

4 j 100 I 1 ~ I \-/ ~ 1 I
---11

0

·············
Figure 10. Converted product ofliterals to nondisjoint cubes.

A long variable (having 32 bits) is used to store any of those cubes. Generally, the

following formula is valid for any product of multiple-valued literals X and Y, having m

and n bits used for the description of their multiple values:

m+n=b,

where b is the number of bits in the total description of the binary cubes. Hence, in our

implementation, the maximal value of b is 32. In the discussed example, b=5.

The algorithm which describes all steps of the conversion for multiple-valued

input binary functions having an arbitrary number of literals is shown below. The nota­

tion used in this algorithm is as follows:

literah : ifh literal of a multiple-valued cube.

literalk : kth literal of a multiple-valued cube.

values i : number of values of literalj.

valuesk : number of values of literah.

69

mapi : necessary bits for the binary minterms to represent the multiple-valued literah.

mapk : necessary bits for the binary minterms to represent the multiple-valued literalk.

Algorithm: Conversion from a mv-function to its Boolean representation

do for each multiple-valued input cube

{do for each literal of the multi valued cube

{generate the array of binary min terms according to ones in

the positional representation of the literal;

merge the minterms to cubes.}

do for each product i ,k of the generated arrays

{append to the cubes of /iterali mapk de literals;

append the cubes of literah to mapi de literals;

put the intersections of the cubes to the solution list of the product i ,k.

do for i ,k

{if values i ,k < mapi ,k

{merge all min terms not covered by litera/j ,k;

append to the cubes of literati mapk de literals;

append the cubes of literah to mapi de literals;

put these de cubes to the solution list of the product for i ,k.} } } }

The solution list of a product of two literals can have nondisjoint de- and on­

cubes. Therefore, before applying the Walsh Transformation the disjoint array of cubes

has to be generated from the nondisjoint one (Figure 11, 13c).

x

000

001

011

010

110

111

101

100

y 00 01 11 10 multiple-valued product of two literals :

xo,1,2,4 yo,2

disjoint arrays of cubes representation :

ON -cubes:

DC- cubes:

-00-0

001-0

010-0

1-1--

110--

0--11

10011

Figure 11. Disjoint cube representation of the product of two literals.

70

The final lists of on- and de- cubes can be directly taken as the input data to gen­

erate the spectral coefficients with the program for the binary Rademacher-Walsh

Transformation (Chapter II.6).

III.1.3 A complete example

In this part, an execution of the complete program will be illustrated. The input

format is shown in Figure 12. In this example, the mv-function is composed of two terms

each having three multiple valued literals: X, Y and Z. The number of the literals and

their maximal logical values are declared first. Then, the terms are entered in the posi­

tional notation. The command .e stands for the end of the declaration list

#example file for multiple-valued Walsh Transformation
.mv [literals] [valueso] .. [valuesn]

.mv 3 5 3 4

#X Y Z
11101 101 0011
10110 0111010
.e

71

FiS1!re 12. An example of the input file for the multiple-valued Walsh Transfor­
mation program.

First, all the multiple-valued literals are converted to the binary representation.

By using the previously described algorithm, the Boolean array of cubes is generated for

all cubes of a given product of two literals. In the case of our example two Boolean

arrays (illustrated here as Karnaugh maps) shown in Figure 13a, and Figure 13b are gen­

erated. Next, all the results for the same product of literals are merged together. Finally,

a disjoint array is generated from the nondisjoint on (Figure l 3c, where I stands for the

bit-by-bit OR operation).

Similarly the binary representation for all product of literals, in our example the

products of literal o and literal 2 and the product of literal 1 and literal 2, are generated.

The final results for those product of literals is shown in Figure 14.

Now, the binary Walsh Transformation is applied to each of the cube representa­

tions in tum. An execution of the binary Walsh Transformation for the product YZ is

shown below. Since the relationship between these two literals is described by the Kar­

naugh map of the dimension 4 x 4 then 16 spectral coefficients fully describe this map.

The relationship between other products of literals is represented by the spectra having

32 spectral coefficients each. Thus, the binary function from our example is described by

three vectors of binary speccra: two having 32 elements and one having 16 elements.

y 00 01 11 10 ~y 00 01 11
x x

000 000

001 001

011 011

010 010

110 110

111 111

101 101

100 1 - 100

a. xo.1,2,4 yo.2 b. x 0,2,3 y 1,2

x· y 00 01 11 10

000

001

011

010

110

111

101

100

c. xo.1,2,4yo.21xo.2,3yl,2

Figure 13. Conversion of the product of the literals X and Y to disjoint
cube representation.

72

10

00 01 11 10

"' c 17 '\I (I
000

001 l 0 j o~I~ ~z 00 01 11
y

011 R o~R 00

010 01 fl 1 1

110 (- I - I - I -] 11

111 r- I
-

I
-

I -~ 10

101

100 I O I 0

a. pairX-Z b. pair Y-Z

Figure 14. Disjoint cube representation of other products of two literals.

TABLEXXV

FIRST ORDER COEFFICIENTS OF A PRODUCT OF
TWO MULTIPLE-VALUED LITERALS

RO R z2.3 R zl,3 R y2,3 R y1,3

-01- ON 8 0 -8 8 0

01-0 ON 4 -4 -4 8 -4

10-0 ON 2 -2 -6 6 -6

11-- DC -2 2 -2 6 -6

73

10

In the algorithm, the coefficients of the de coefficient (R 0) and the first order

74

coefficients are generated first. It is shown in Table XXV. For the notation used in the

spectrum see (30).

After that, the next consecutive order (second one in this case) is generated.

TABLEXXVI

SECOND ORDER COEFFICIENTS

R z1.2 R z2.3+y2,3 R z2,3+yl,3 R zl,3+y2.3 R zl,3+yl,3 R y1.2

0 0 0 8 0 0

4 0 -4 8 4 0

6 2 -2 6 2 -2

2 2 -2 6 2 -2

The last two orders are generated in a similar way and one obtains the complete

spectrum of the literal product YZ shown in Table XXVII.

RO

-2

TABLEXXVII

COMPLETE SPECTRUM OF THE
MULTIPLE-VALUED FUNCTION

R z2,3 R z1,3 R y2.3 R yI.3

2 -2 6 -6

R z1.2 R z2.3+y2,3 R z2,3+yl,3 R z1,3+y2,3 R z1,3+yl,3 R y1.2

2 2 -2 6 2 -2

R z1,2+y2.3 R z1.2+y1,3 R z2.3+y1.2 R zl,3+y1.2 R z1.2+y1.2

2 6 2 -2 2

75

III.1.4 Execution times

The examples tested to evaluate the execution time have either 5 or 10 values per

literals. The corresponding numbers of cubes, values and literals can be read from the

Table. The notations follows the one from Chapter II.2.4.

TABLE XXVIII

EXECUTION TIMES FOR THE MULTIPLE-VALUED
WALSH TRANSFORMATION

1
1
5
5
10
10

10
5
10
5
10

5luera1s
u
L
5.1 3.7
2.8 4.6
26.9 6.2
4.9 5.7

61.0 6.2

u
7.
31.7
13.6

235.9
24.3

472.3

s
f 6.1
27.9
20.4
31.6
25.2
39.5

The results from the table confirm the theory. The execution time increases

• nearly linearly with the number of cubes.

• exponentially with the number of values, because the number of spectral

coefficients that have to be calculated increases exponentially.

• linearly with the number of spectra that have to generated according to the

number of literals (see (30)).

III.2 MULTIPLE-VALUED GENERALIZED REED-MULLER TRANSFORM

III.2.1 Description

The new concept of a mixed polarity multiple-valued input Generalized Reed­

Muller expression (MRME) (32) is a generalization of the GRME to multiple-valued

algebra. It finds several applications in logic design, pattern recognition, and other areas.

In logic design it can be primarily used for the minimization of EXOR-based

76

counterparts of PLAs with input decoders (16,17,31,33). It will be investigated in this

Chapter, how to apply the method of pattern matching to perform the transformation

from a disjoint multiple-valued SOPE or MRME, to another MRME.

The method for the generation of the MRME consists of two basic parts. First,

each multiple-valued literal of the mv-input function has to be transformed to a chosen

polarity (defined below). In the second part the transformed literals for each term are

taken to calculate the final MRME.

The theory to change the polarity of a singular multiple-valued literal is defined

by the two following Theorems.

Theorem III.I

Any value of a multiple-valued variable X/; with the set of truth values Pi =

{0,1, .. ,pi-1} can be created by Pi variables virT;, with the set of truth values

Tir cAi = {O,l, .. ,pi-1}, where the Pi vectors Air for the mv-variable xis; form

the row vectors of an orthogonal Pi x Pi matrix Ai.

Proof:

One property of an orthogonal m x m matrix 0 with the elements Oij e (0,1) is,

that any vector U(uo, u i. ... , Um-1) with Uj e (0,1) can be represented by a super­

position (performing of bit-by-bit arithmetic sum operation) of row vectors Oi of

the matrix 0. Hence, any set S of truth values P = {0,1, .. ,p-1} of a mv-literal xs
can be represented by a superposition (or in the GF(2) field the bit-by-bit EXOR

operation) of the values from the orthogonal set of truth values A = { 0, l , .. ,p -1},

where V, is a row vector of the orthogonal p x p matrix A .

Example III.I

To illustrate Theorem III.1 all possible sets of truth values S cP = {0,1,2} of a

three-valued literal X s are calculated from the representation of the 3 x 3 orthog­

onal matrix shown in Figure 15.

77

[0 1 1 J [Ti J A = 0 1 0 = T1

1 0 0 T3

Figure 15. Example of a 3 x 3 orthogonal matrix.

In the following Table the calculation of all possible sets of truth values S by

exoring the rows of the orthogonal matrix A (Figure 15) is shown, where the rows

are named Ti. T 2 and T 3.

TABLEXXIX

ALL POSSIBLE COMPOSIDONS OF POLARITY LITERALS

truth values S
,2,
{1}

{ 1,2}
{0}

{0,2}
{0,1}

{0,1,2}

binarv code
1

010
011
100
101
110
111

comoosition of matrix rows
TiffiT2

T2 Ti
T3

Ti E9T2E9T3
T2ffiT3
TiE9Ti

For the use of less restricted forms Theorem III.1 can be easily generalized with

Lemma III. I.

Definition III.4

The matrix describing the vectors T, of the mv-literals V, T,, where by exoring of

those literals every possible set S c P = { 0, l , .. ,p -1} of a mv-variable X s can be

described will be denoted as matrix C.

LemmaIII.l

The Theorem III.1 can be generalized to a non canonical form by using instead of

the orthogonal matrix A the matrix C according to Definition III.4, where the

orthogonal matrix A is a proper subset of the matrix C.

78

A restricted orthogonal matrix A will further be used to represent the set of

literals Vir defined in Theorem III. l.

Theorem III.2

Any value of a multiple-valued variable X/; with the set of truth values Pi =

{ 0,1, .. ,pi-1} can be created by Pi - 1 variables Vir with the set of truth values Ai

= {0,1, .. ,pi-1}, where one of the values of the truth values Pi is not used in the set

of truth values Ai. The set or truth values have to form a orthogonal

(p - 1) x (p -1) matrix B. To expand this matrix again to a orthogonal p xp

matrix A a row corresponding to the de-literal is added.

Proof·

The proof is similar to the proof of Theorem III.1 because again an orthogonal

p x p matrix A is used. It is obvious, that an orthogonal (p - 1) x (p - 1) matrix

B can be expanded to an orthogonal p x p matrix A by adding a row containing

only 1 's, and filling up the new positions in the matrix A with O's.

Example III 2

The Example ill.1 will be now used for the orthogonal matrix A shown in Figure

16, where the first row represents the de literal. The set S = { 1} of the truth

values P is not used by the truth values A for the literals V,.

[
1 1 1 J [T1 J A = 0 0 1 = Tz

1 0 0 T3

Figure 16. Restricted orthogonal matrix A.

TABLEXXX

TRUTH VALUES S FOR RESTRICTED ORTHOGONAL MA TRIX A

Definition III 5

truth values S

{l}
{ 1,2}
{0}

{0,2}
{0,1}

{0,1,2}

binarv code
1

010
011
100
101
110
111

comoosition of matrix rows
T2

T1Et>T3
T1 EBT2Et>T3

T2Et>T3
T3

T16'T2
T1

79

The set of truth values Ai for the literals V ir defined in Theorem III.2.2 forming

the orthogonal Pi x Pi matrices Ai, is the restricted polarity for the literal Xi Si

with the truth values Pi = {0,1, .. ,pi -1}. Because in the sequel only the

restricted polarity is used, it will just be called the polarity of literal Xi si.

Definition III.6

The literals V ir with the truth values Ai defined in Theorem ill.2.2 are called the

polarity literals .

Example III.3

The four-valued literal x023 can be represented by the set of polarity literals

shown in Table XXXI. Below the representation of the truth values of the polarity

literals are illustrated as a orthogonal matrix. The chosen set of polarity literals

representing any possible four-valued literal are: V? 1 = X 0123, V l 2 = X 13, V / 3 =

X 23, and Vl4 =X 123.

TABLEXXXI

POLARITY LITERALS OF A GIVEN POLARITY

polarity literal binary representation

V 1T1 =X0123 = 1 1111

vl2=x13 0101

Vl3=X23 0011

V/4 =X123 0111

1111 T1

0101 T2
A = I =

0011 T3

0111 T4

Figure 17. Polarity matrix for polarity of Table XXXI.

Example:

xo23 = 1 © v l3 Et) v l4

in the binary form representing :

1111
0011

© 0111
1011

80

According to Theorem III.2 and Definition III.5 it is possible to transform each

variable of a mv-function f to another polarity.

Let us recall the notation presented until now in the above Definitions and

Theorems:

81

TABLEXXXII

NOTATION FOR THE MRME

X1 S1 X S2 2 ... XS· i I••• X Sn n

p i=(O,l, .. ,p 1 -1) Pi=(O,l, .. ,pi -1) Pn=(O,l, .. ,pn -1)

V Tu V T1, V T1p, V Tn1 V Tnr V T"I'.
11 ··· ir ··· ip1 n i ··· nr ••• npn

Ai A· l An

T11 Tn1

Ai = Ti, An = Tnr

T1p, Tnp,

Figure 18. Description of polarity matrices.

In the first row of Table III.4 the multiple-valued literals Xi S; of a function F(X i.

X 2 •... ;xn) are shown. Below the set of truth tables Pi for those literals are given. Next the

polarity literals Vir are shown. Finally in Figure 18 the polarity matrices consisting of

the value vectors Tir are illustrated.

Example III.4

The term X 1°23 X 21 (where X 1 is the same literal as in Example III.3 and X 2 is a

five-valued literal) shall be represented with the polarity literals denoted as in

Table XXXII. The polarity for X 1 is the same as in Example III.3: V 11 =X 1 Ol23,

V 12 =Xi 13, V 13 = X 1 23 , V 14 = X 1 123. The polarity for X 2 is (V 21 = X 2 13,

v 22 = x 2 23' v 23 = x 2 123' v 24 = x 2 4).

X 1 °23X 2 1= (1 EF> V 13 EF> V 14) (V 22 EF> V 23)

82

= 1 E9 v 22 E9 v 23 E9 v 13 v 22 E9 v 13 v 23 E9 v 14 v 22 E9 v 14 v 23

It will be now investigated how to describe the MRME spectrum M and apply the

Cube Comparison method to calculate the final MRME from the polarity representation

of the literals Xi S;. It will be shown, that the Cube Comparison method can be used

instead of the product multiplication of the two products in Example 111.4. The

Definition 11.2 defining the Reed-Muller spectrum M for Boolean functions is extended

here to one of the spectrum for the multiple-valued Generalized Reed-Muller Transfor­

mation.

Definition Ill.7

The Multiple-valued input Generalized Reed-Muller form (MRME) of a function

F(X 1,X2, ... , Xn) over the Galois Field 2 (GF(2)), where Xi> i=l,2, ... ,n are the

literals according to Definition 111.1, can be described by its spectrum M that is

analogous to the spectrum M defined in Equation (1) from Chapter 11.2.1.

F(X 1.X2 •••. ,Xn) = ao E9

a1 Vu E9 ... E9 ar V1r E9 ... ap 1 V1p 1 E9 ap 1+1 V21 E9 ... E9 ap 1+ ... +Pn Vnpn E9

ao1+1V11V21E9ao 1+2V11V31 E9 ... E9ao2Vn_IP_1V11Pn E9

aon-1+1V11 ... Vn 1 E9 ··· E9 aon V lp1 ... V '7Pn

The above formula is very general, because every polarity can have a different

number of polarity literals. The total number of coefficients ai E (0, 1) is dependent

on the total number of polarity literals, as well as on their number in one polarity.

For the Definition of the spectrum M still the same Definition 11.2.2 for Boolean

functions is valid, the basic vectors (standard trivial functions) are now the EXOR

combinations of the polarity literals.

,--

83

Because of the complexity of the multiple-valued spectrum M only an example of

a simple spectrum is shown below.

Example III5

The spectrum M of the two variable mv-function F(X 1,X 2) = X 1 023 X2 °1 is used

to show the spectrum and the standard trivial functions of the chosen polarity.

The chosen polarity for the two literals is shown in Figure 19. In the Figure 20

the set of all standard trivial functions for these polarities of X 1 and X 2 is given.

Below the transformation of the product X 1°23 X2 o1 is shown:

x 1 °23 x 2 Ol = (v 11 $ v 13 $ v 14) (v 21 $ v 23)

= (1 $ v 13 $ v 14) (1 $ v 23)

= 1 $ v 13 $ v 14 $ v 23 $ v 13 v 23 $ v 14 v 23

For a comparison of the product X 1 023 X 2 Ol with the standard trivial functions in

Figure 20, the Kamaugh map of this product of literals is shown in Figure 21.

The reader can observe that the above shown formula can be directly related to

the Kamaugh maps in Figure 20, and 21.

1111 T11

[111 J [T21 J 0101 T12
A1 = 100 = T22 Ai =I =

0011 T13
001 T23

0111 T14
-

Figure 19. Polarity matrices.

2
X1 0 1 2

2
X1 0 1 2 X1 2 o 1 2 X1 2 0 1

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0 1 1 1

2 1 1 1 2 0 0 0 2 1 1 1 2 1 1

3 1 1 1 3 1 1 1 3 1 1 1 3 1 1

l=V11=V21 V12

x
V13

x
V14

x
x

1 0 0

1 0 0

1 0 0

1 0 0

V22

x
0 0 0

0 0 0

1 0 0

1 0 0

V 13V22

x x x
I 0 0 1 0 0 0

0 0 1 1 0 0

0 0 1 0 0 0

0 0 1 1 0 0

V23 V 12V22

x x x
I 0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 1 0 0

0 0 1 1 0 0

V 13V23 V14V22

Figure 20. Standard trivial functions for polarity in Figure 19.

x
x

1 1 0

0 0 0

1 1 0

1 1 0

Figure 21. Kamaugh map of product X 1 023 X 2 01.

0 0

0 0

0 0

0 0

V 12V23

0 0

0 0

0 0

0 0

V14V23

84

2

0

1

1

1

0

1

0

1

~-

0

1

1

1

The new expression can be now represented in the form of spectral coefficients, where

the indices are again the representation of the standard trivial functions.

85

TABLE XXXIII

SPECTRUM OF THE PROD UC! X 1X 2

product Mo Mv12 Mv13 Mv14 Mv22 MvZ3

X 1 023 X2 o1 1 0 1 1 0 1

Mv12 V22 Mv12V23 1\1vn V22 Mv:3V23 Mv14V22 Mv14Y23

0 0 0 1 0 1

The polarity matrices in the further presentation will be restricted for implementa­

tion reasons: one variable in the polarity matrix has to be zero for all the literals

representing the orthogonal matrix, except the de-literal (see Example ill.3, ill.4).

III.2.2 Implementation

Analogously to the theory from Chapter III.2.1 the method for the implementa­

tion of the MRME Transformation consists of two algorithms. With the first one the mv­

literals from the mv-function Fare transformed to their chosen polarity. This algorithm is

basically a change of the binary representation of the initial literals of the function F to

another one representing the EXOR combination of polarities literals. This new code is

chosen in such a way, that the second algorithm can accept it without respect to the

chosen polarity.

The second algorithm performs the Final Transformation, such as shown in Example

III.5 for a classical method, with the Cube Comparison method.

The used pointer structures in this procedures are:

unsigned long *cube; !*represents the literals of the cube *!

where cube[n] represents an array of n literals (using callee()). Therefore the number of

values is limited to 32.

unsigned int* cube list; /*field to store the addresses of the cubes *!

where cube_list[n] represents an array of addresses for n cubes.

Finally

struct polarity
{

}*pol;

unsigned int
unsigned long
unsigned short

po _add; I* address to field of polarity literals *!
notused;!* value not used in the polarity literals *!
no; I* number of polarity literals *!

86

is the structure to store the polarity literals for each literal of the cube. Where po_ add

contains the address of the field of polarity literals stored in pol lit.

unsigned long *pol lit;

The additional array coeff[n] is to store the cube for the current created coefficient, the

array index[m] contains the normalized index of the coefficient which has to be com­

pared with the resultant code for the initial literals of each cube derived from the algo-

rithm to transform one literal (Chapter III.2.2.1).

III.2.2.1 Transformation for one multiple-valued literal. The basic steps of the

algorithm for the transformation of a multiple-valued literal to its representation of polar­

ity literals will be illustrated on an example. In Table XXXIV the set of transformations

of a three-valued literal X for the polarity used in Example III.3 is shown. In the first

row the possible combinations of polarity literals are shown. In the second row the result

of the EXOR operation is shown in the binary 'representation. In the last row of the table

the new code called the normalized code is given. It determines the combination of the

polarity literals.

literal 1 V2

1111 0101

X3

x2

x23

xi

x13 1

x12

x123

xo 1

X03 1

xo2 1 1

xo23 1

xo1 1

xo13 1

xo12 1

xo123 1

code 1000 0100

TABLEXXXIV

SET OF TRANSFORMATIONS FOR A
MULTIPLE VALUED LITERAL

V3 V4 V 2ffiV 3 V 2ffiV 4

0011 0111 0110 0010

1

1

1

1

1

1

1

1

0010 0001 0110 0101

87

V 3ffiV 4 V 2ffiV 3ffiV 4

0100 0001

1

1

1

1

0011 0111

As mentioned above, the code for the representation of the GRME of one literal is

chosen in a way, that this normalized code can be directly used to perform the Final

Transformation. This can be done by using the same representation of the polarity literals

V 1, V 2, . .. for every chosen polarity. The code determines of what polarity literal/s the

initial literal is composed of.

88

If a literal has to be represented by a combination of the orthogonal subset and the

de coefficient, the new code is calculated by the supercube operation of the code for the

de coefficient and the code of the subset combination.

Example III.6

The literal X 1 with the internal representation 0100 is changed to the new code

1101 for the polarity chosen in Example III.3. The new code representing this

combination of polarity literals can be derived from Table XL, which is obtained

from the normalized code shown in Table XXXIV.

TABLE XL

CODE REPRESENTATION FOR THE
POLARITY LITERALS

In Table XL the normalized code for the possible EXOR combinations of rows

from Table XXXIV is shown, where according to the indices numbers of the

polarity literals the normalized code cube has a "1 ". To obtain the code for a

combination of those polarity literals one has just to perform the supercube opera-

tion on the code from the selected polarity literals.

The algorithm to generate the new code is shown below. It has the same structure

as the algorithm shown in Chapter II.4.2 for the generation of one order of coefficients

for the GAD- and GAR-Transformations. Because the new code here is the same as the

one used for the indices in those transformations, the same basic procedure could be

taken. Again, this procedure creates one order (determined by the number of EXOR-ed

89

basic polarity literals). In Table XXXIV every order of the new code is indicated by vert­

ical double lines. The following notation is used in addition to the one of Chapter II.4.2.

Notation

ind: determines the literal of the cube that has to be transformed.

code : beginning number of the code for a new order, new code ..

value : the value of the exored binary representation of the polarity literals.

pol _list :array of the binary representation of the polarity literals.

change code:

substitutes the old code of the literal by the new generated one.

Algorithm: Transformation of one multiple-valued literal

unsigned short order; I* order that should be generated *I
unsigned long code; I* new code for the initial literal *I
unsigned long pol_lit; !*address of the polarity literals *!
unsigned long value; !*result of EXOR-ed polarity literals *I
int ind; I* which literal of the cube *I

gen lit (from,to,times)
uns{gned short from; !* initial 0 *I
unsigned short to; I* number of different literals minus order *I
short times; I* determines depth of recursion *I
{

}

inti;

times++;
for (i =from; i <= to; i ++)
{

}

I* first bit for 1 *I
code= code+ (1 <<(30-i));
!*generate EXOR list of polarity literals *I
value= value" pol_lit[i];
if (times < order)

gen_lit(i+l, to+l, times);
else

change code (value,ind,code);
code= code --(1 <<(30-i));
value= value" pol_lit[i];

90

In the subroutine change_code() of the shown above algorithm, the representation

of the initial literals of all cubes determined by ind, which are equal to value will be

changed to the new code .

III.2.2.2 Transformation of a multiple-valued function. After the transformation

of each literal, as described above, the whole set of multiple-valued cubes has to be

changed to the MRME. Again, the basic steps of the algorithm will be explained on

examples.

Example III.7

The possible spectral coefficients I standard trivial functions for a spectrum

representing a function having three distinct literals is shown in Table XXXVI.

The literal X being four valued is represented by three polarity literals Xi. X 2 and

X 3. The second literal X 2 being five valued is represented by the polarity literals

V 2i. V 22. V 23 and V 24· Similarly for the third four-valued literal X 3.

TABLEXXXVI

COMPLETE MRME SPECTRUM

cube de Mv12 Mv13 Mv12 Mvn Mv']A Mvn Mv33

code 100 110 101 1100 1010 1001 110 1010

Mv12V12 Mv12V23 Mv12Y24 ... Mv']Av33

110 1100 100 110 1010 100 110 1001 100 ... 100 1001101

Mv12V12 V32 Mv12V12V33 ... Mv13 v ']A V33

110 1100 110 110 1100 101 ... 101 1001 101

91

The same code as shown in Example III.6 is used for each literal, but here only

one polaritity literal for each literal X 1. X z, and X 3 can occur. The complete code

for the shown first order in Table XXXVI has additionally the code 1000, 100 for

the not used literals, analogously as shown above for the second order.

Code specification:

1. the indices of the literals are represented in a positional notation.

2. first bit is always one (code for the de literal).

According to this we are now able to formulate an algorithm to perform the

transformation.

Algorithm: MRME Transformation of a multiple-valued function

do for all spectral coefficients

{do for every multiple-valued literal in normalized code

{if intersection of normalized code and index is not empty

{add "l" to the value of the spectral coefficient.} }

if the value of the spectral coefficient is odd

index of spectral coefficient determines polarity literals

that form the solution cube.}

The algorithm which performs the above described transformation consists of two

basic procedures. The first procedure Pl generates the possible combinations of literals

of the initial cube, the second procedure P2 takes such a combination and generates all

possible combinations of polarity literals within this combination. The C source-code for

these procedures can be found in Appendix D.

CHAPTER IV

CANONICAL NOR EXOR SYNTHESIZER (CANNES)

IV.1 DESCRIPTION OF THE CRMPE

In (33) a new kind of EXOR-based PLAs was proposed. It makes use of both

uncomplemented and complemented variables. Hence, it can realize any ESOPE without

restrictions. The advantage of such an approach is that on the average the PLA structure

requires lesser rows (terms) than the standard PLA. Since there is no exact minimization

method or a reliable method that produces a quasi minimum solution of ESOPEs so far, a

new concept of Canonical Restricted Mixed Polarity Exclusive Sum of Products forms

(CRMPE) has been recently introduced (34). It has been proven there, that the upper

bound on the number of terms in the CRMPE is smaller than that in the conventional

forms and equal to that of the ESOPEs.

Let us recall the Definition of the CRMPE (34).

Definition of CRMP E:

The form:

F (Xo.X 1 •... ,Xm-1) = ao E9 aiX o E9 a1X 1i E9a~oX1 E9 · · · E9 a2'" -1Xo · · · Xm-1

(similar to Reed-Muller form (Chapter Il.2.1)) where every variable can be both

complemented and not complemented, but where there is exactly one coefficient

for each basic vector (X o. X 1 •... ;x o · · · Xm-1) of the variables of a term, is called

the canonical restricted mixed polarity form.

93

Example IV.1:

1 E9 x 1 E9 .X2 E9 .X1x2 is a CRMP form, because there exists only one term for each

basic vector of variables.

It was shown (34) that this form leads to the minimum solution only if the func­

tion is dense. The Definition of a dense function is, that the Hamming distance between

the cubes describing the function is less than 3. Hence, the initial Boolean function being

an array of disjoint cubes has to be decomposed to arrays of dense functions.

The very generic description for minimization of CRMPE described in (34) talces

all possible branches of a tree search to find the minimal solution.

Hence, a fast straight forward algorithm based on heuristical mechanisms which

will be introduced here has been developed. In the sequel this algorithm will be called

CANonic Nor Exor Synthesizer (CANNES). The algorithm malces use of a completely

or incompletely specified Boolean function represented in the form of array of cubes.

One basic procedure of the CANNES-algorithm is performing the GRME Transforma­

tion on parts of the array for all possible polarities to find the minimal GRME. For the

definitions of prime term and subcombination please see Theorem 2.3 and Definition 4.1

in (34).

Definition IV.1

An essential prime term of a function f is the term of the GRME of this function,

that has the most subcombinations.

Definition IV.2

A subset of a prime term (for short, subset) consists of the prime term itself and

all of its subcombinations.

The algorithm of the complete CANNES program performing the minimization

of SOPE to CRMPE is shown below. The notation as defined in the above Definitions is

used.

Algorithm : Minimization to a CRMPE

generate disjoint array of cubes;

decompose array to dense arrays;

do for each dense array

{do

{find essential prime term;

if order of essential prime term < 2

{final CRMPE found;

stop}

find minimal GRME of this subset;

if (minimal GRME of subset < subset)

substitute subset by minimal GRME;

else

essential prime term is term of CRMPE;

while (TRUE)}

IV.2 IMPLEMENTATION

94

For the implementation of the CANNES algorithm is separated in several subrou­

tines. The structure is shown in Figure 22.

One can observe, that two procedures of the program are already known. The

algorithm for the generation of disjoint cubes from nondisjoint ones (Chapter II.1) and

the procedure for the General Reed-Muller transform (Chapter II.2). Therefore in the

sequel only the decomposition algorithm and the minimization algorithm will be

described in detail.

95

The GRME Transformation is the main procedure used, therefore the same struc­

tures as for the ORME Transformation implementation (Chapter II.2.2) are taken.

CANNES

DISJOINT ARRAY

DECOMPOSITION

GENERAL REED MULLER

MINIMIZATION

POLARITIES

I GENERAL REED MULLER

Figure 22. Structogram of CANNES.

In the CANNES program the algorithm to generate disjoint cubes from nondis­

joint ones is first performed, because for the decomposition algorithm (Chapter N.2.1)

the Boolean function has to be represented as an' array of disjoint cubes. The minimiza­

tion algorithm is based on the representation of the function in any GRME. The best

result is obtained, when the minimal GRME is selected. Hence, for each dense array the

96

minimal GRME is found by generating all possible GRMEs. Next every dense array

being represented by its minimal GRME is minimized by the minimization algorithm

(Chapter IV.2.2).

IV.2.1 Decomposition of a sparse function

To be able to obtain a quasi minimal solution for a sparse function, it has to be

decomposed to a representation of sets of dense functions (34). To perform this task a

simple algorithm has been designed.

Example W.2.1

01

11

10

Figure 23 presents a sparse function f represented in a Karnaugh map. To gen­

erate the dense arrays for this function it is separated into parts having smaller

Hamming distance than three.

11 10

0 0

0 0 0 0

0 0 0

0 0 0 0

sparse function f :

[:]
dense set 1

[000~ :~

Figure 23. Decomposition of sparse function.

[1110]

dense set 2

The basic idea of the decomposition algorithm is to take one cube of the input

array and perform the supercube operation (bit-by-bit OR operation between two cubes,

in the algorithm denoted as D with all other cubes to which the Hamming distance is

smaller than three. This has to be repeated, as shown in the algorithm below, until one

obtains different arrays of cubes, where every array represents a dense function.

Notation:

cubes number of cubes in the input array.

supercube

variable that contains the result of the supercube operation.

H(supercube,cube)

function that gives the Hamming distance between the supercube and the cube.

TRUE flag to determine that an additional cube with H<3 has been found.

Algorithm: decomposition of a sparse input function

do

{ supercube =first cube of the input array;

cubes = cubes - 1;

do for all remaining cubes

{NEW= FALSE;

do for all cubes:

{if H(supercube,cube) < 3

{ supercube = supercube I cube;

cubes = cubes - 1;

NEW=TRUE}}

while (NEW ==TRUE) }

move all cubes covered by the supercube to a new array;

while (cubes > 0) }

IV .2.2 Minimization of a dense function

97

In the complete algorithm of the CANNES program (Chapter IV.1) the general

method of the minimization was described. For the implementation, only the procedures

to handle the array operations such as removing of the subsets of an essential prime term

98

have to be added. Therefore, a more detailed algorithm is given below. For the complete

description of the CANNES program one can refer to its source code.

Notation:

input array

output array

: array that contains the cubes of a GRME of the dense function.

: array that contains the final minimized CRMPE.

Algorithm: Minimization of a dense function in GRME

do

{find essential prime term;

if order of essential prime term < 2

put all terms to output array;

break;

extract the subset of the essential prime term from the array;

generate all possible GRMEs of this subset;

take the minimal GRME of this subset;

if (CARD(minimal GRME of subset) < CARD(subset))

substitute subset with its minimal GRME in the input array;

else

put essential prime term to output array;

while (TRUE)}

In the next Chapter this algorithm is illustrated on an example.

IV.3 A COMPLETE EXAMPLE OF AN EXECUTION OF THE CANNES PROGRAM

For the description of the final algorithm for the implementation the function F

shown in Figure 24 was taken. As one can observe, the function is dense, hence, only one

array of cubes representing the whole function has to be minimized.

001 011 010 110 111 101

00

01

11

IO

"

Figure 24. Test function.

100 cubes:

00-10

01101

01110

01000

01011

11001

11010

11100

1-111

10011

99

For comparison, the solution given by the well-known minimization program

ESPRESSO (21) and the solution calculated by CANNES are shown in Figure 25.

00-10 10-11 00-0-

01101 11100 -0-00

01110 01101 ----0

01000 01000 ---0-

01011 11001 -10--

11001 • 0-110 1----

11010 11010

11100 00-10

1-111 01011

10011 1-111

a. input array b. minimization by ESPRESSO c. minimization by CANNES

Figure 25. Comparison ESPRESSO with CANNES.

As one can observe from Figure 24 the input function is already disjoint and

dense. Hence, the ORME Transformation to obtain the ESOPE for the final minimiza­

tion can be directly executed.

100

First all possible GRMEs are generated for the input function. The GRME with

the minimal number of terms is selected (Figure 26).

GRME

0---­
--0--
-00--
---0-
00-0-
----0
-0-00

Figure 26. GRME of the non sparse array.

The different steps of the now performed minimization are illustrated in Figure

28. The prime term with the most subcombinations in Figure 26 is 00-0-. The list of its

subcombinations is shown in Figure 27, and as a subset in Figure 28a.

suocombination

0---­
---0-

Figure 27. Subcombinations.

Next the minimal GRME of this subset has to be generated, by calculation of all

possible GRMEs. Because all GRMEs do not have less cubes than the initial subset, the

essential prime term is a final solution term. Therefore it is stored in the solution array

(first cube in solution array Figure 28b). The term 0--- is now a prime term in the

remaining array. So it is also given to the solution array.

Again, the prime term with the most subcombinations (essential prime term) for

the remaining cubes has to be found. This essential prime term -0-00 with its subcombi­

nations (shown as a subset in Figure 28b) does also not lead to a more minimal solution.

Therefore the essential prime term is also a final solution term and has to be put with the

prime terms of the remaining array to the solution array (Figure 28c). Again, the next

essential prime term has to be found.

a. first loop

l
--0--

-00--

----0

-0-00

subset:

[

00-0- l
0---- J"
---0-

c. third loop

[-----
J l solution array :

00-0-
subset:

-0-00

1-oo-- J 0----

L L--o-- ----0

---0-

GRM of subset:

I L-10-- J

b. second loop

[~~~~~ J
-00--

subset:

[~~i_o J
----0

d. fourth loop

solution array :

-10--

00-0-

-0-00

0---­

----0

---0-

101

solution array :

C00-0- J
0----

Figure 28. Step by step minimization of the array shown in a.

In Table XXXVII, subset in Figure 28c, the subset of this prime term and t~e

minimal GRME is shown.

102

TABLE XXXVII

MINIMAL GRM OF A SUBSET

suoset I m1mmal GRME
()() -1()--
--0--

The final two cubes are prime terms and so they are immediately put to the solu-

tion array (Figure 28d). As one can observe this solution is not the final solution shown

in Figure 25c. The general minimization according to the algorithm shown in Chapter

IV.3.1 is finished. As a last minimization step it is tried to substitute a possible de term

(-----).In our example-----"' 0---- = 1----. With this last interaction we get the result as

shown in Figure 25c.

CHAPTER V

CONCLUSION

The basic ideas of the new Cube Comparison Method have been shown for

several discrete spectral transformations of logic functions. The first part of the Cube

Comparison Method has been to compare the disjoint cube representation of a logic func­

tion with all indices of the spectral coefficients. Secondly the signs of the values have

been calculated according to the order of the spectral coefficient. Finally the last part of

the Cube Comparison method has been illustrated for the Rademacher Walsh Transfor­

mation, where the values of the spectral coefficients depend on the number of de-literals

in the cubes. The internal memory requirement, that limits all other existing implemen­

tations, has been overcome by the Cube Comparison Method. It has been also possible to

generate only single spectral coefficients of the whole spectrum. This is for example use­

ful for cases, where only those coefficients with the largest magnitude are necessary

(25,26). Additionally, without any speed up methods, the implemented transformations

are up to several times faster than the current existing ones.

Still, there are other speed up possibilities. In the current implementations, every

cube is compared with all the indices of the spectral coefficients. Many cubes of the array

of cubes have no contribution to certain orders of spectral coefficients. Hence, by sorting

the cubes of the input array according to their smallest/highest order of spectral

coefficients that are not equal to zero the calculation time can be sped up several times.

Another possibility is to generate the spectral coefficients directly from the cube

representation of the function. This approach will speed up the processing time, but its

disadvantage is, that the whole spectrum has to be stored in the computer memory.

104

On top of that, all the algorit."lms can be performed in parallel. Because every

spectral coefficients can be calculated directly from the cube representation, all spectral

coefficients and the spectra for every cube can be processed in parallel. There are hardly

any limitations for the parallelization of the algorithms. Thus, efficient implementations

on pipelined vector processors and recently introduced DSP-coprocessors for personal

computers are possible. It makes it also vei'_" well suited for systolic VLSI realizations.

The two advantages, no memory :requirements and the shorter processing time,

give:> the new C!lbe CoLTipnrison ::\letf:ou for spectral transfomiation the advantage over

all mher currently exhting methods yielding solutions to problems of very high dimen­

sions.

REFERENCES

(1) K. G. Beauchamp, "Applications of Walsh and Related Functions." New York,
NY: Academic Press, 1984.

(2) K. G. Beauchamp, "Transforms for Engineers." Oxford:Clarendon Press, 1987

(3) J. C. Muzio, S. L. Hurst, "The computation of complete and reduced sets of
orthogonal spectral coefficients for logic design and pattern recognition pur­
poses," Comput. & Elect. Engng., vol. 5, pp. 231-249, 1978.

(4) S. L. Hurst, D. M. Miller, J. C. Muzio, "Spectral Techniques in Digital Logic."
London: Academic Press, 1985.

(5) S. L. Hurst, "Use of linearization and spectral techniques in input and output com­
paction testing of digital networks," IEE Proc. Comput. & Digital Tech., vol. 136,
pp. 48-56, Jan. 1989.

(6) M. G. Karpovsky, "Finite Orthogonal Series in Design of Digital Devices." New
York: Wiley, 197 6.

(7) M. G. Karpovsky, (ed), "Spectral Techniques and Fault Detection." Orlando:
Academic Press, 1985.

(8) S. S. Agaian, "Hadamard Matrices and Their Applications." Berlin: Springer­
Verlag, 1980.

(9) B. R. K. Reddy, A. L. Pai, "Reed-Muller Transform Image Coding," Computer
Vision, Graphics, and Image Processing, vol. 42, pp. 48-61, 1988.

(10) L. P. Yaroslavsky, "Digital Picture Processing - An Introduction." Berlin:
Springer Verlag, 1985.

(11) D. F. Elliott, K. R. Rao, "Fast Transforms: Algorithms, Analysis, Applications."
London: Academic Press, 1982.

(12) B. J. Falkowski, M. A. Perkowski, "Yet another method for the calculation of
Hadamard-Walsh spectrum for completely and incompletely specified Boolean
functions," accepted for publication in Int. J. of Electronics, August 1990.

106

(13) B. J. Falkowski, M. A. Perkowski, "Algorithms for the calculation of Hadamard­
Walsh spectrum for completely and incompletely specified Boolean functions,"
Proc. of IEEE 9th Int. Phoenix Conf. on Comp. & Comm., pp. 868-869, Scotts­
dale, AR, March 1990.

(14) B. J. Falkowski, I. Schfil"er, M. A. Perkowski, "Effective computer methods for
the calculation of Rademacher-Walsh spectrum for completely and incompletely
specified Boolean functions," submitted to IEEE Int. Conf. on Computer Aided
Design, ICCAD 1990.

(15) B. J. Falkowski, I. Sch~fer, M. A. Perkowski, "Effective Computer methods for
the calculation of Rademacher-Walsh spectrum with fast generation of disjoint
cubes for completely and incompletely specified Boolean functions," submitted to
IEEE Trans. on Computer Aided Design, April 1990.

(16) Ph. W. Besslich, "Efficient Computer Method for EXOR Logic Design," IEE
Proc. E., Comput. & Digital Tech., vol. 130, No6, pp. 203-206, Nov. 1983.

(17) Ph. W. Besslich, "Spectral Processing of Switching Functions Using Signal-Flow
Transformations, in Spectral Techniques and Fault Detection." (M.G. Karpovsky,
ed.), Orlando: Academic Press, 1985.

(18) L. Nguyen, M. Perkowski, N. Goldstein, "PALMINI - fast Boolean minimizer for
personal computers," Proc. of 24th ACM/IEEE Design Automation Conference,
pp. 615-621, 1987.

(19) B. J. Falkowski, M. A. Perkowski, "An algorithm for the calculation of disjoint
cube representation of completely and incompletely specified Boolean functions,"
accepted for publication in Int. J. of Electronics, 1990.

(20) B. J. Falkowski, I. Sch~fer, M.A. Perkowski, "A fast computer algorithm for the
generation of disjoint cubes for completely and incompletely specified Boolean
functions." submitted to IEEE Midwest Conf. on Circuits and Systems, Calgary:
August 1990.

(21) R. K. Brayton, G. D. Hachtel, C. T. McMullen, A. L. Sangiovanni-Vincentelli,
"Logic Minimization Algorithms for VLSI Synthesis." Hingham, MA: Kluwer
Academic Publishers, 1985.

(22) D. L. Dietmayer, "Logic Design of Digital Systems." Boston, MA: Allyn and
Bacon, 1978.

(23) J.P. Roth, "Computer Logic, Testing and Verification." Potomac, MD: Computer
Science Press, 1980.

(24) B. W. Kernighan, D. M. Ritchie, "The C Programming Language." Englewood
Cliffs, NJ: Prentice-Hall, 1978.

107

(25) M. Davio, J.P. Deschamps, A. Thayse, "Discrete and Switching Functions," New
York: McGraw-Hill, 1978.

(26) D. Green, "Modern Logic Design." Workingham: Addison-Wesley, 1986.

(27) B. J. Falkowski, M. A. Perkowski, "A family of all essential radix-2
addition/subtraction multi-polarity transforms: algorithms and interpretation in
Boolean domain," Proc. of IEEE Int. Symp. on Circuits & Systems, pp 2913-
2916, May 1990.

(28) E. A. Trachtenberg, D. Varma, "A design automation system for spectral logic
synthesis," Proc. of Int. Workshop on Logic Synthesis, Research Triangle Park,
North Carolina, May 12-15, 1987.

(29) D. Varma, E. A. Trachtenberg, "Design automation tools for efficient implemen­
tation of logic functions by decomposition," IEEE Trans. Computer-Aided
Design, vol. CAD-8, pp. 901-916, Aug. 1989.

(30) B. J. Falkowski, M. A. Perkowski, "Walsh type transforms for completely and
incompletely specified multiple-valued input binary functions", Proc. of Int.
Symp. on Multiple-Valued logic, Charlotte, NC, May 1990.

(31) T. Sasao, "An application of multiple-valued logic to a design of programmable
logic arrays," Proc. of 8th Int. Symp. on Multiple-Valued Logic, 1979.

(32) M. A. Perkowski, P. Dysko, B. J. Falkowski, "Two learning methods for a tree­
search combinatorial optimizer," Proc. of IEEE 9th Int. Phoenix Conf. on Comp.
& Comm., pp. 606-613, Scottsdale, AR, March 1990.

(33) T. Sasao, Ph. W. Besslich, "On the Complexity of Mod-2 Sum PLA's"' IEEE
Trans. on Comp., vol. 39, No.2, Feb. 1990.

(34) L. Csanky, M. Perkowski, I. Schfil"er, "Canonical restricted mixed-polarity
exclusive sums of products and the efficient algorithm for their minimization,"
PSU internal report, Dec. 1989.

SNOIJ1NH3G :::nsvs:

VXIGN3ddV

109

Definition 1

A literal is a variable Xi which can either be positive (xi/1) or negative (xi/0). A

literal that can be in both forms is called a don't care (de) literal (/-).

Definition 2

A term t of degree m is a product of m distinct literals, not including de literals.

For example the term abc has the degree 3. The number of de literals in term tis

denoted by p .

Definition 3

A cube of degree m is the representation of a term t of degree min binary form.

Assuming three variables of order a,b,c for the term abc the binary form is 110.

Definition 4

In a n-variable combinational logic function F, n is the number of distinct

literals. Then, n = m + p.

Definition 5

A minterm mt of an -variable combinational logic function F is a term that has n

literals and no de literal. All minterms necessary to describe this function Fare so

called on minterms, minterms for that the function F is not specified are the so­

called de minterms and finally all other minterms, that are not used for the func­

tion Fare off min terms.

Example:

The literals that occur in a function f are a,b,c and d. Therefore the term abc is

described by the cube representation 110-, where ' -' stands as a de literal for the

literal d not used in this term.

APPENDIXB

INPUT FORMAT FOR DISCRETE BINARY TRANSFORMATIONS

111

In general all programs introduced here use the ESPRESSO input format (30). An

example of this format is shown below.

example of a general input file
.i4
.o 1
1-00 1
1-1- 0
--11 -
-1-- 1
.e

The number after .i determines the number of input literals, where the input

literals can be on-(1), off-(0), or de-(-) literals. The symbol .e at the end of the file deter-

mines the end of the list of input cubes. All programs for Boolean functions are limited to

32 input literals, except for the disjoint and ESOPE to SOPE implementation. These last

two program have no input limitation basing on their different pointer structures.

The number after .o determines the number of output literals. All programs for

Boolean functions are limited to 1 output literal. For the GRME transformation this value

is ignored, because the program works only for on-cubes. The type is similar coded to the

literals (on(l), off(O), de(-)).

In the above example the first four bits (i.e. 1-00) of one line determine the four input

literals. The one that follows that four positions determines the type of the cube.

In the follows the additional notation necessary for certain programs are

described:

GRME Transformation

For the GRME Transformation the first cube in the input file will be read as the

polarity. Hence, no de-literal (-) is allowed.

GARD Transformation

Similar to the GRME Transformation the first cube of the input file will be read as

the polarity. Additionally the following Notations are used:

.t+/.t-

. R/.S

112

The letter t stands for transformation. The following letter "+"

determines that the Adding transformation is performed. If the

letter"-" follows the Arithmetic transformation is performed .

The letters R!S specify the chosen coding of the spectrum. The

letter R determines that the spectrum according to the coding of

the R spectrum is generated. Similar for S. In the current version

of the program the R spectrum is not implemented, but the subpro­

gram has been written in a way to expand it easily.

INGARD Transformation

The input format of the INGARD implementation is the same as the output for­

mat of the GARD transformation. Where the specification of the transformation is

the same as for the GARD transformation, including the polarity cube. The dif­

ferent orders are separated by .n [ordernumber]. An example is shown below.

The specification .o [outputliterals] is not necessary.

example output file of the GARD transformation
#which is the input format of the INGARD transformation

.i4

.o 1

.R

.t+

1111

.no
0
.n 1
0
0
0
1
.n2
0
1
2
0
2
1
.n 3
2
3
3
2.5
.n4
6
.e

113

SNOIJ .. VW'a:OdSNV(IJ.. G3Jl'lV A-'.~'ldI.L 'lflW illll ~Od J.. V~Od J..fldNI

;)XIGN3ddV

115

The input format for the multiple-valued Walsh transformation is shown in

Chapter III.1.3. It is similar to the input format of ESPRESSO (30).

For the MRME Transformation implementation additionally the polarity has to be

specified. Therefore, first the polarity cubes have to be read, such as for the ORME

Transformation An example of an input file of the MRME Transformation is shown

below. The number of literals per cube determines the number of polarity cubes that have

to be read. In the below example this means two polarity cubes.

#example file for the MRME Transformation
.mv [literals] [values o] .. [values n]

.mv25 34

now the two polarity cubes follow
11101 101 0011
10110 0111010
now the cubes follow
100110111101
11001 001 0010
.e

NOll V J.N3:W3:'ldWI W"'ffit'i 3:Hl. tIO S3:~DG3::JO~d

GXIGN3:ddV

Algorithm: GRME for a multiple-valued input function

Procedure Pl:

gen_order (from,to,order,times)
unsigned short from; /*initial 0 *I
unsigned short to; /* number of different literals minus order *I
unsigned short order; /*order that should be generated */
unsigned short times; /* to determine the loop of the procedure *I
{

}

int i,k;

times++;

for (i = from; i <= to ; i ++)
{

which_lit[times-1] = i;
if (times < order)

else
{

gen_ order (i+ 1,to+ 1,order,times);

/* allocate memory for Procedure P2 *I
coeff = (LONG*)calloc(literals,sizeof (LONG));
index = (LONG*)calloc(literals,sizeof(LONG));
for (k = O; k <literals ; k++)

index[k] = first[31];
gen_coeff(order ,0);
free (coeff);
free (index);

117

Procedure 2:

gen_coeff (order, times)
unsigned short order;
unsigned short times;
{

int i,k,l;
int final; /* to determine if even or odd coefficient *I
short match;/* check if all literals have an intersection *I

times++;
for (i = 0; i < pol[which_lit[times-1]].no; i++)
{

pol_lit = pol[which_lit[times-1]] . po_add;
coeff[which_lit[times-1]] = pol_lit[i];
/*first bit is used to determine if+ 1 in algorithm 1 */
index[which_lit[times-1]] = 1 << (30-i);
if (times < order)

else
{

}

gen_coeff (order,times);

/* check if intersection for all literals is not empty */
/*for 1 has to be done outside this loop ! */
final= O;
for (1=0; 1 <cubes; l++)
{

}

/*check current ESOP form for all cubes */
cube= cube_list[l];
match =TRUE;
for (k = 0 ; k < literals ; k++)

if ((coeff[k] & cube[k]) == 0)
match= FALSE;

if (match == TRUE)
if (final == 0)

final= 1;
else

final= O;

if (final == 1)
for (k = 0 ; k <order ; k++)

output_ value(coeff[which_lit[k]]);

118

	An effective cube comparison method for discrete spectral transformations of logic functions
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1519767132.pdf.UYup8

