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AN ABSTRACT OF THE THESIS OF Ingo Schtl.fer for the Master of Science in Electri

cal Engineering presented May 14, 1990. 

Title: An Effective Cube Comparison Method for Discrete Spectral Transformations of 

Logic Functions 

APPROVED BY THE MEMBERS OF THE THESIS COMMITTEE: 

Spectral methods have been used for many applications in digital logic design, 

digital signal processing and telecommunications. In digital logic design they are imple-

mented for testing of logical networks, multiplexer-based logic synthesis, signal process-

ing, image processing and pattern analysis. New developments of more efficient algo-

rithms for spectral transformations (Rademacher-Walsh, Generalized Reed-Muller, 

Adding, Arithmetic, multiple-valued Walsh and multiple-valued Generalized Reed-

Muller) their implementation and applications will be described. 
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Recently a new method to generate the Rademacher-Walsh spectrum has been 

introduced. In this thesis this method has been taken and generalized for all the above 

mentioned transformations. It will be further called the Cube Comparison method. The 

main advantage of this method is, that it generates the spectrum directly from the cube 

representation of Boolean and multiple-valued input, binary output functions and does 

not use the classical approach of matrix calculation or derived from it the Fast Transfor

mations. Thus, it overcomes the limitation caused by the memory requirement of all the 

current implementations. 

The programs for the binary transformation presented in the thesis allow the cal

culation of the complete spectrum for completely and incompletely specified Boolean 

functions having u:µ to 32 literals. However, this is only a limitation of the implementa

tion and can be changed by using different data structures. To be able to use functions 

represented in the classical way fast preprocessing algorithms like the generation of the 

disjoint cubes from the nondisjoint ones, or the generation of dense arrays have been 

developed. 

The implementation of the multiple-valued Walsh transformation makes use of an 

algorithm to convert the multiple-valued representation of the input function to a binary 

one. This binary representation can be taken directly for the binary Rademacher-Walsh 

transformation. 

For the multiple-valued Generalized Reed-Muller (GRi\1) transformation the 

Cube comparison method is used first to transform all literals to the chosen polarity and 

second to calculate using these literals the final multiple-valued Generalized Reed-Muller 

form. 

As an application of the fast GRM implementation the minimization program 

CANNES ( CANonical Nor Exor Synthesizer) is introduced. It makes use of the recently 

introduced Canonical Restricted Mixed Polarity (CRMP) Exclusive Sum of Product 
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forms. Such a form is preferred over the standard Sum of Product form (SOP) in design

ing for testability. 
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CHAPTER I 

GENERAL INTRODUCTION 

I.1 APPLICATIONS AND PROPERTIES OF SPECTRAL TRANSFORMATIONS 

In the last two decades there has been a growing interest in digital theory, espe

cially in two areas, logic design and analysis of switching circuits, and non-sinusoidal 

communication (1-34). 

The representation of a function f(t) in its sampled time domain contains only 

local information of the function. The advantage of the Fourier Transformation F(ro) also 

called spectrum of the function f(t) is, that it contains much more global information of 

the signal (1,2). Similarly the representation of logic functions in their Boolean or 

Multiple-Valued domain is less global than their discrete counterparts to the Fourier 

Transformation, the discrete global spectral transformations (such as Walsh-type 

Transformations). 

The advantage of the discrete spectral transformations compared to the conven

tional Fourier methods in analysis and synthesis of logic circuits is that they can be easily 

implemented on digital computers. Because of their applicability to high speed digital 

computation in areas such as image processing and communication systems they are seen 

as an important signal processing tool ( 1-11 ). 

The Walsh (1-7,12-15) and Reed-Muller transformations have been found espe

cially advantageous for fault detection and synthesis of logic circuits (1-7,16-18). A 

given logic function is defined uniquely by its spectral coefficients. Therefore, any mal

function of the hardware related to this function will be seen in its spectral characteris-



2 

tics. The two above mentioned transformations are well suitable for the design of easily

testable circuits. This is because both transformations favor the design of circuits with 

high percentage of exclusive-OR (EXOR) gates, where every input combination to an 

EXOR gate is a test condition for it (1-7). Thus, for circuits containing EXOR gates a 

smaller number of tests has to be generated to be able to test the whole circuit. There

fore, spectral transformations are used to both test generation of arbitrary circuits and 

design of special circuits which are easy testable. 

Since logic functions are described completely by their spectral coefficients then 

the latter can be used for functions classification (4,7). It is well known that the number 

of possible different functions of a given number of variables is enormous. Therefore, it 

is useful to find the characteristic of the functions that would allow identical hardware 

realizations for a group of them. The following important properties of the functions can 

be found by spectral classification methods: linear separability, monotonicity, summabil

ity, asummability, and dual-comparability. 

The decomposition of Boolean functions ( 4-6) is used to reduce its complexity 

and improve its testability. Finding decompositions in the Boolean domain has been 

found very difficult. In (4-6,28,29) efficient methods to decompose functions into linear 

(implementation using only one EXOR gates) and non-linear (implementation using 

non-EXOR gates) parts was introduced for the spectral domain. The two basic types of 

decomposition are serial and parallel linearization (6,28,29). The serial linearization 

decomposition can only be done by spectral methods. The disadvantage to decompose 

Boolean functions in spectral domain in comparison to the Boolean domain is the time 

necessary for performing the transformation. Thus, fast efficient algorithms for spectral 

transformations would clearly give the advantage to the decomposition of Boolean func

tions in spectral domain. 

The Walsh-type and Reed-Muller transformations are also used in multidimen-
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sional signal processing (in particular image processing) for pattern recognition and data 

compression (1,3,7-10). These transformations have in common, that they are efficient 

coding schemes to reduce the bandwidth of transmission channels or digital storage 

requirements for an image or signal. The advantage in multidimensional signal process

ing is that the image, signal energy is redistributed into relatively few low-order 

coefficients in the spectral domain, which are sufficient for a good reconstruction of the 

original picture, signal (1,3,7-10). The property of data compression makes these 

transformations very well suited for communications (1,2,4). 

The recently introduced Arithmetic and Adding Transformations (GARD 

Transformation) (27) have similar orthogonal transformation matrices as the ORME 

Transformation. Thus, the GARD Transformation favors also the design of circuits with 

EXOR-gates. Therefore, it is expected, that it has similar applications in synthesis of 

logic circuits as the ORME Transformation. 

The methods to generate spectra directly from their orthogonal matrices (1,2,4) 

are slow and inefficient. Thus, a lot of research was performed in the development of 

better algorithms. The results of this research were the methods like Fast Transforma

tions (2,11) developed using matrix factorization, signal flow graphs for parallel process

ing (10) and special hardware architectures like Digital Signal Processors (DSPs) (11). 

The classical methods of matrix multiplication and Fast Transformations have the disad

vantage, that for the calculation of the spectrum all spectral coefficients have to be kept 

in the computer memory. The second disadvantage is that even the Fast Transformations 

for the spectral transformations are relatively slow. 

This thesis investigates a new fast method for the implementation of the spectral 

transformations Rademacher-Walsh, Generalized Reed-Muller, Generalized Adding and 

Arithmetic transformation for binary input functions. It presents also fast algorithms for 

Multiple-valued Walsh and Multiple-valued Generalized Reed-Muller transformation for 
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multiple-valued input binary output functions. The basic theory underlying the method 

proposed here was recently introduced in (3,4,12-15) for the Walsh transformation. The 

new method further called Cube Comparison Method overcomes the problem of memory 

requirements completely. At least there is hardly any internal computer memory require

ment, and the memory requirements to store the complete spectra on the hard disk are 

inherent to the problem. Another advantage of the Cube Comparison Method is, that it is 

very well suited for the development of data flow graphs and algorithms for parallel pro

cessing (every spectral coefficient can be calculated independent from the other ones). 

Even with serial processing of the complete spectrum the new introduced algorithms are 

faster then most of the other implementations. 

I.2 GENERAL DESCRIPTION OF DISCRETE SPECTRAL METHODS 

The existing implementations of Rademacher-Walsh and Generalized Reed

Muller transformations use algorithms for matrix multiplication or Fast Transformations 

(1,2,4). Some basic Definitions necessary for the introduction of the Cube Comparison 

Method can be found in Appendix A. 

From the point of view of speed and computer memory utilization the worst 

method to generate the spectrum is to apply directly the matrix multiplication definition 

of an orthogonal transformation (1,2,10,11). It has large memory requirements and the 

calculation time is very long due to the large number of multiplications as well as addi

tion and subtraction operations. For a function having N literals a 2N x 2N matrix is 

required to perform the transformation. Hence, there are N(N-1) additions or subtractions 

necessary for the Walsh transformation by using a matrix of order N. 

Example I.I: 

The function F = abc + aii c + a ii c is a function of three input variables. The 

function can be represented in the form of the vector V=< O,l,0,0,0,1,0,1 >,where 
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1 stands for an on-minterm used in the function F. For all other not used terms the 

value in the vector position is 0. The matrix here has to be a 8 x 8 matrix. The 

matrix chosen below is the one for the Rademacher-Walsh transformation. In Fig-

ure 1 the matrix and the final spectrum of the matrix multiplication are shown. 

1 1 1 1 1 1 1 1 0 3 1 

1 -1 1 -1 1 -1 1 -1 1 -3 S1 
1 1 -1 -1 1 1 -1 -1 0 1 S2 
1 -1 -1 1 1 -1 -1 1 0 = -1 S3 
1 1 1 1 -1 -1 -1 -1 0 -1 S12 
1 -1 -1 -1 -1 1 -1 1 1 1 Sn 
1 -1 -1 -1 -1 -1 1 1 0 -1 S23 
1 1 1 1 -1 1 1 -1 1 1 S123 

Figure 1. Matrix multiplication. 

The ordering of spectral coefficient shown in Figure 1 is used for the 

Rademacher-Walsh, Arithmetic, and Adding spectra. In this presentation it will be called 

the straight order. 

All essential radix-2 transformations like Walsh-type, Reed-Muller, Arithmetic 

and Adding have the property, that their transformation matrix T for order N higher than 

two can be obtained by a Kronecker multiplication: 

TN= T2fkl 

where [k] in the exponent means the application of the Kronecker product for n times, 

with k = log2N. 

With this property it is particularly easy to obtain fast transformations by a pro-

cess of matrix factorization. Hence, several Fast Transformations were developed and 

implemented for Walsh-type (1,2,4) and ORME Transformation (9,16,17). The advan-

tage of the Fast Transformations is the reduction of the number of operations. For 

instance, for the above shown Walsh transformation the number of operations is reduced 
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to Nlog2N. Substantial disadvantages however still exist. The data has to be rearranged 

prior or subsequent to a transformation which takes additional processing time. The large 

memory requirement is still the other disadvantage. Therefore all current implementa-

tions are limited to Boolean functions using up to 16-20 input variables, depending on 

the internal memory of the computer system. 

To overcome these problems, the method previously mentioned (3,4,12-15) was 

changed and generalized to all the above named transformations. It has the feature that 

each spectral coefficient can be directly generated from the cube representation of the 

function. The idea of this method described here is to make use of a kind of cube com-

parison among the indices of the spectral coefficients and the cubes. It will be further 

called Cube Comparison Method. In Table I an easy example for the Cube Comparison 

Method between the cube and the indices of the spectral coefficients is shown. 

TABLE I 

EXAMPLE FOR THE CUBE COMP ARIS ON METHOD 

indices of the spectral coefficients 

cube So S1 S2 S3 s 12 S13 S23 s 123 

000 1-- -1- --1 11- 1-1 -11 111 

001 1 1 1 1 

-01 1 1 

Below the spectral coefficients (So, S 1,. .. ,S 123) the Boolean representation of their 

indices (standard trivial functions, described later) is shown. In the first column the two 

cubes are given for which the spectra should be generated. The applied rules for the two 

cubes in our example for which the value of the spectral coefficient will be one, are: 

• at least the positive literal (ls) of the cube have a corresponding "1" in the 

representation of the indices. 
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• the de-literals of the cubes must not have a ti 1 ti in the corresponding position of 

the representation of the indices. 

The example in Table I has illustrated only the first of all three parts of the Cube 

Comparison Method. The three parts are: 

1. Comparison of a cube representation of a logic function with the cube representa

tion of the indices of the spectral coefficients. 

2. Calculation of the signs of the values of the spectral coefficients. They depend on 

the cube representation of the logic function and the order of the spectral 

coefficients. 

3. The value of the spectral coefficients depends on the number of de literals in the 

cubes of the logic function. 

In the following Chapters the Cube Comparison Method is adapted for needs of 

different algorithms calculating spectra. Because those algorithms make use of the 

representation of a Boolean function as arrays of disjoint on- and de- cubes, first a new 

efficient algorithm to generate disjoint cubes from the nondisjoint ones is discussed. 



CHAPTER II 

DISCRETE SPECTRAL TRANSFORMATIONS 

FOR BOOLEAN FUNCTIONS 

II.1 ALGORITHM TO GENERA TE DISJOINT CUBES 

II.1.1 Description 

As mentioned in Chapter I, the algorithms described in the sequel make use of 

completely or incompletely specified Boolean functions in the form of arrays of disjoint 

on- and de- (if any) cubes or an array of disjoint off-cubes. Such an algorithm was first 

introduced in (18-20). An improved version of it shown here has been designed, because 

the algorithm (18) is not well suited for the implementation on computer systems. The 

task of the algorithm is to generate the array of disjoint cubes from a Boolean function 

represented in the form of an array of nondisjoint on-cubes (in the case of completely 

specified Boolean function), or an array of on- and de-cubes or on- and off-cubes (in the 

case of incompletely specified Boolean functions). 

The same notation as in (18) is used in the description of the revised algorithm. 

Every time two cubes Ca and cb are compared, the pointer a indicates the position of the 

cube which is the first in the pair of the cubes being compared, the pointer b indicates the 

position of the second cube in the pair. Note, that the pointer a changes its values from 1 

ton - 1 (where n is the current number of cubes in the array) and the pointer b changes 

its values from n to 2 accordingly. In a given moment, the value of the pointer b is 

always greater by at least 1 than the value of the pointer a. During the execution of the 

algorithm the number of cubes in the array A can be different than the original number of 



9 

cubes. The symbols of cubical calculus that are used in the sequel follow the notations 

from (21-23). It is due to the fact that two cube operations used in the algorithm have the 

following properties : 1) disjoint sharp operator (denoted by #j) can generate more than 

one cube as its result, 2) absorption can remove some cubes and decrease by that the total 

number of cubes. 

Symbols used: 

a , b : pointers to two different cubes, 

cubea, 

cubeb : determine the cubes pointed to by a, and b in the cube list, 

d : number of solution cubes generated by the disjoint sharp operation, 

m : number of cubes in the cube list before entering a new loop, 

n : number of cubes during execution of the loop. 

Algorithm: Generation of disjoint cubes 

step 1. set a and b to the following positions in the cube list : 

a := 1, b := n, m := n 

where n is the initial number of cubes in the cube list. 

step 2. Main loop : 

For each pair of cubes cube a and cubeb from an array A do : 

if an intersection of cubes cube a and cubeb is not an empty set 

then 

{ if cubea absorbs cubeb 

then { substitute cubeb by the last cube of the array A ; 

n := n -1; 



if b =a then go to step 3 

else go to step 2} 

else { calculate the d solution cubes from the disjoint sharp 

operation cubeb #j cubea; 

else { b := b - 1; 

replace cubeb by one solution cube and add 

the other ones to the end of the array A ; 

n := n + d -1; 

if b ~ a then go to step 3 

else go to step 2} } 

if b ~ a then go to step 3 

else go to step 2} 

Step 3. 

b :=n; 

a :=a+ 1; 

if a = m then stop 

else m :=n; 

go to step 2. 

10 

The details of the implementation of the above algorithm and an example of its 

execution are shown in the sequel. 

II.1.2 Implementation 

For the implementation, the algorithm was changed and improved in order to take 

the advantage of some features of the C-language to become faster for computer process-
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ing. Moreover, it has been implemented in three computer environments: SUN3/50-

workstation, VAX 11nso, and Sequent SYMMETRY computer. 

The implementation of the disjoint algorithm makes use of the the pointer struc

ture for storing the array of cubes as follows: 

struct cube _field 
{ 

unsigned short *value; I* list of the literals of the cube *I 
short p; I* determines the number of "-"sin the cube *I 
short type; I* type determines if the cube is a DC- or ON-cube *I 

}cube; 

This pointer structure determines a field in which one cube could be stored. The 

literals of each cube are stored in a list composed of short variables: cube->value[i]. To 

avoid wasting of the memory space, eight literals from a given cube are stored in a short 

variable (having 16 bits) where the internal representation of each cubical calculus sym

bols: 0/(10), 1/(01), -/(11), and E/(00) takes two bits (where e determines a contradiction

ary literal). 

The element cube->p contains the number of "X" (de-literals) in the cube. 

Finally, the element cube->type = {ON, DC, OFF} determines if the cube is an on-, de-

or off-cube. An additional pointer structure unsigned int *cube _list is used to store the 

addresses of the different cubes. 

In order to have direct access to cubes and their values at any time, the list of 

terms is stored in an array. Because of the dynamical nature of the array, the calloc() and 

realloc() C functions (24) have been used. Such an approach speeds up an overall pro-

cessing time. 

The algorithm generates arrays of disjoint cubes for separate lists of on-, de- or 

off-cubes. It uses mixed lists like those from Example II.1 as well. 

Cube operations used in this version of the algorithm are disjoint sharp, intersec-

tion and equivalence of cubes (21,22,23). An absorb operator is implemented by two 
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operators in sequence: first an intersection of two cubes is performed, next, the matching 

operator takes the result of the intersection operator and the original cubes as arguments. 

When the result is equal to one of the original cubes then the larger cube is kept and the 

other (the one that is equal to the result of the intersection) is deleted from the list of 

cubes. 

In order not to remove or change the positions of cubes during the execution of 

the algorithm only the addresses of cubes in a list are changed and removed. Such an 

approach is much easier to handle because the cubes in a given array can have an arbi

trary number of literals and the iength of an array storing the cubes dynamically changes. 

If a cube has to be removed (which happens for the disjoint sharp or absorb operations) 

then either u.t-ie corresponding address in an address list is substituted by the address of the 

first cube generated by the disjoint sharp operation or in the case of the absorb operation 

the address corresponding to the last position in the address list is copied into the vacant 

position of this list. 

In order to obtai..~ an array for the addresses of cubes that always matches the size 

of the array of cubes, the realloc() function has been used. By doing so, one can use the 

address list like an array with direct access to each element of the list without the neces-· 

sity of going through the elements of a linked list. These special two features: the usage 

of addresses in a list and the realloc() function ( for the direct access of the a..rray ) have 

sped up our algorithm significantly. 

The same basic notation from the Disjoint Algorithm in Chapter II.1.1 is used in 

the description of the program. In addition, the following symbols are used: 

cube : a pointer to the cube address list. 

sol[i] : soiution cube of the i-th position in the solution c!1be address list. 

sol-cubes : number of solution cubes from t!1e disjoint sharp operation. 

cube[ a], 



cube[b] : determine the cubes from the positions a and b in the cube address list. 

: indicates if the algorithm should be performed for on-, de- or off-cubes. type 

Algorithm: Implementation of the Disjoint Algorithm 

a= 1, b = n /*where n is the initial number of cubes in the cube address list*/ 
do 
{ 

if ( cube->type != type) 
{a++; 
continue;} 

b = n; 
m= n; 

a++ 

while ( b >a) 
{ 

} 

if ( cube->type != type) 
{ b--; 
continue;} 

if( intersect( cube[a], cube[b]) == cube[b]) 
cube[b] = cube[n]; 
n--; 
cube = (cube * )realloc( cube , n * sizeof ( cube ) ) ; 

else if (intersect( cube[ a], cube[b]) != 0) 

disjoint-sharp( cube[b], cube[a] ); 

b--; 

d =sol-cubes; 
cube[b] = sol[l]; 
cube= (cube *)realloc( cube, (n+d-1) * sizeof (cube)); 
for ( i = 2; i <= d; i++) 

cube[n+i] = sol[i]; 
n=n+d-1; 

}while (a< m-1 ) 

Example II.I: 

13 

An example of the execution of the algorithm is shown below. The order of the 

cubes is chosen in such a way that all different branches of the algorithm are 

passed through. If the cubes in the input array are sorted according to their size 
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then larger cubes are obtained as solution cubes but the number of perf01med 

sharp operations remains the same. Thus, the execution time of the Disjoint Algo

rithm will be the same, but for the sorting of the cubes additional time is neces

sary. performed on an sorted array the execution time will be the same. Figure 2 

shows the states of the algorithm in the moments when the contents of the array 

of cubes has been modified. These pictures are referred to in the description 

below. The symbol "•"denotes the beginning of a new loop in the algorithm, the 

indentation shows the inner and outer loop. 

step 1 : Initialization 

number of cubes n = 5; 

Figure 2a 

step 2: Loop 

•n=5;a=l;b=n=5; 

intersection :cube[l] 11cube[4]=1100; 

absorption.cube[4] ;z: 1100; 

disjoint sharp :cube[ 4] #j cube[ I] : 

sol[l] = OJXX 

sol[2} = 11 IX 

sol[3] = 1101 

substitute cube[ 4 j with sol[ 1 j; 

place the resr of solution cubes at the end of the array 

Figure 2b 

n=n+d-1=7 

• n=7;a=l:b=3: 

a:tersec;Jcn cabefl] r: czd·e[3] = 0 



• n=7;a=l ;b=2; 

intersection : cube[ 1] n cube[2] = 0 

• n=7;a=2;b=7; 

intersection : cube[2] n cube[7] = 0 

•n=7;a=2;b=6; 

intersection: cube[2] n cube[6] = 11 JX; 

absorption : cube[6] = 11 IX; 

substitute cube[6] with cube[n] and remove cube[n] 

Figure 2c 

• n=6;a=2;b=5; 

cube[S] is DC-cube 

•n=6;a=2;b=4; 

intersection : cube[2] n cube[4] = 0 

• n=6;a=2;b=3; 

intersection : cube[2] n cube[3] = lXll; 

absorption : cube[ 3] ::/:. lXll; 

disjoint sharp: cube[3] #j cube[2]: 

sol[ 1] = OXll; 

substitute cube[ 3] with sol[ l] 

Figure 2d 

•n=6;a=3;b=6; 

intersection: cube[3] n cube[6] = 0 

• n=6;a=3;b=5; 

15 



cube[ 5] is DC-cube 

• n=6;a=3 ;b=4; 

intersection: cube[3] n cube[4] = 0111; 

absorption : cube[4] * 0111 

disjoint sharp : cube[4] #j cube[3]: 

sol[l] = OlOX 

sol[2] = 0110; 

substitute cube[4] with sol[l]; 

place sol[2] at the end of the array 

Figure 2e 

• n=7;a=4;b=7; 

intersection: cube[4] n cube[7] = 0 

•n=7;a=4;b=6; 

intersection : cube[4] n cube[6] = 0 

•n=7;a=4;b=5; 

cube[5] is DC-cube 

•n=7;a=5;b=7; 

cube[7] is DC-cube 

• n=7;a=6;b=7; 

intersection: cube[6] n cube[7] = 0 

solution array : 

Figure 2e 

16 
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01 
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a. input array 

Xl,X2,X3,X4 

lXOOON 

lXlXON 

XXll ON 

XlXXON 

OOOODC 

lXOOON 

lXlXON 

XXll ON 

OlXXON 

0000 DC 

1101 ON 

c. absorption of cube[6] 

e. cube[4] #j cube[3] 

lXOOON 

lXIXON 

OXll ON 

OlOX ON 

OOOODC 

1101 ON 

0110 ON 

b. cube[4] #j cubc[l] 

~ 

d. cube[3] #j cube[2] 

lXOO ON 

lXlXON 

XXll ON 

OlXXON 

OOOODC 

lllXON 

1101 ON 

lXOOON 

lXlXON 

OXll ON 

OlXX ON 

I OOOODC 

1101 ON 

Figure 2. The stages of an execution of the algorithm to generate a disjoint 
cube representation of a Boolean function. 

17 
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In order to generate disjoint de-cubes the type condition in the beginning of the 

algorithm has to be changed to DC and then the same algorithm will perform the 

generation of disjoint de-cubes. In the above example, it is obvious, that the sin

gle de-cube is a disjoint one so there is no need to use such an algorithm. 

11.2 GENERAL REED-MULLER TRANSFORMATION 

11.2.1 Description 

There is a growing interest in the design of logic circuits using EXOR gates. The 

advantages of functions realized with such circuits are the reduced number of gates and 

even more importantly the easy testability. A particular field of interest is the minimiza

tion of logic functions with the Generalized Reed-Muller Expression (ORME) (25,26). 

The Reed-Muller Expression (RME) (25,26) of a function F(X o.X 1, ... .Xm-1) over 

the Galois Field 2 ( GF(2)) is given by 

F(Xo.X1, ... ,Xm-1)=aoE9a1XoE9a:iX1 E9aµoX1 E9 · · · E9a2 ... -1Xo· · ·Xm-1,(l) 

where (a0 , a 1 .... , a1 ... _1) are coefficients of the RME and (1, X o.X 1 .... , Xm-1) are the 

basic vectors. The elements of the GF(2) are the operations of addition and multiplication 

for modulo 2, and the numbers (0,1). 

One method to generate the RME from Sum Of Products Expression (SOPE) is to apply 

the following rules: 

if=1E9a 

a ( b Ee c ) = ab Ee ac 

aEea=O 

aEBO=a 

In Example II.2 it is shown how these rules are applied to an example function. 
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Example //.2 

F=a cdEF>b cdEF>a b cdEF>abcEF>abd EF>abc d 

=(lEF>a)cdEF>(lEF>b)cdEF>(lEF>a)(lEF>b)cdEF>ab(lEF>c)EF>ab(lEF>d)EF>ab(lEF>c)(lEF>d) 

=cdEF>acdEF>cdEF>bcdEF>cdEF>acdEF>bcdEF>abcdEF>abEF>abcEF>abEF>abdEF>abEF>abcEF>abdEF>abcd 

=abEF>cd 

This method is not very useful for computer implementation. Other methods like 

Fast Transformations and matrix multiplication were mentioned in Chapter I, but they 

have large memory requirements. Hence, it was investigated if the method of Cube Com

parison (Chapter I) could be applied for the RME Transformation. 

Let us first make the following Definitions that are necessary to describe the 

ORME Transformation with the Cube Comparison method. 

Definition //.1 

The equivalence operation (=) is applied to two cubes. It is the bit-wise applica

tion of a bit operation that has the following operation-table. 

~ 
Figure 3. Equivalence operation. 

Where the literals in the first column represent a certain literal a of the first cube 

and the literals in the first row represents a certain literal b of the second cube 

between which the equivalence operation should be performed. 



Example //.3 

Definition //.2 

1010 
-011 
-ITO 
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Let us denote the coefficients (ao, ... ,a2m _ 1) of the Reed-Muller expression 

according to Equation (1) as the spectral coefficients of the spectrum M. The 

index i of each spectral coefficient Mi is the cube representation of products of 

the basic vectors (1,X o • .. ,xm_1), where the products of basic vectors represent the 

set of standard trivial functions for the RME, shown in Figure 4. 

Example //.4 

The coefficient a3 of the RME and its corresponding product of basic vectors 

Xa Xb are now represented by the spectral coefficient Mab. 

Property //.1 

The Reed-Muller transformation has the property, that it contains literals present 

in a given term only. 

Example //.5 

abd =ab( 1 $d)=abEBabd. 

With these definitions and properties of the RME transfonnation we are able to 

prove the theorems necessary to develop the algorithm which makes use of the Cube 

Comparison method. 
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' ' 
a 1 1 1 1 a 0 0 0 0 a 0 0 0 0 a 0 0 1 1 

1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 

1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 

Mo Ma Mb Mc 

' ' a 0 1 1 0 a 0 0 0 0 a 0 0 0 0 a 0 0 0 0 

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 1 0 1 1 1 1 0 0 1 1 0 1 1 0 

0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 

Md Mab Mac Mad 

' ' ' ' 
a 0 0 0 0 a 0 0 0 0 a 0 0 1 0 a 0 0 0 0 

0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 

0 0 1 1 0 1 1 0 0 0 1 0 0 0 I 1 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

Mbc Mbd Med Mabe 

' ' ' 
a 0 0 0 0 a 0 0 0 0 a 0 0 0 0 a 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Mabd Macd Mbcd Mabcd 

Figure 4. Spectrum M for a binary function having four literals 
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Theorem //.1 

The values of the spectral coefficients, for which the indices contain at least all 

the positive literals and not the de-literals of a term t, are equal to the value "1 ". 

Proof: 

Any term t can be represented by its spectrum M. According to Property II.1 it is 

not possible that in the RME a literal can occur that is not used in the term t. 

Theorem 11.2 

If the number of occurances of a spectral coefficient for a function F consisting of 

several terms is odd, the index of this coefficient, being represented as a cube, is a 

term of the RME for the function F. 

Proof: 

With the Definition II.2 and the property that a EB a = 0 the proof for Theorem II.2 

is trivial. 

In Table II the application of these Theorems is shown for the function F used in 

Example II.2. The spectral coefficients Mi. M 23 ..• are named using the same characters 

for the index a=l, b=2, c=3 and d=4 as for the terms, in order to stress the connection 

between the indices and the term. 

TABLE II 

SPECTRUM M OF A FUNCTION F 

term Mo Ma Mb Mc Md 
acd 
lied 
a lied 
abc 
abd 

abed 
result 



1------

term 
acd 
bed 

abed 
abe 
abd 

abed 
result 

acd 
lied 

abed 
abe 
abd 

abed 

TABLE II 

SPECTRUM M OF A FUNCTION F 
(continued) 

Mab Mac Mad Mbe Mbd 

1 
1 
1 
1 

Mabe Mabd Macd Mbed 
1 

1 
1 1 

1 
1 

1 1 

23 

Med 
1 
1 
1 

1 

Mabed 

1 

1 

As one can observe from Table II, the result ab E9 cd is the same as one obtained 

in Example II.2. 

Definition II.3 

The polarity cube is the vector representation of the negative and positive literals 

of a term t. For a positive literal the respective position of the polarity has the 

value 1, for a negative literal it has the value 0. 

Example II.6 

The polarity of the term abed= 1101. 

Let as observe, that the polarity for the RME has the value 1 for each literal. Now 

we want to expand the method for RME to a more general expression in which all polari-

ties of variables are possible. 
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Definition II.4 

A Generalized Reed-Muller expression (ORME) is an Exclusive SOPE (ESOPE) 

in which every term has the same polarity. It can be represented by a spectrum 

similar to one from the Definition II.2, where the standard trivial functions 

(respectively, the indices of the spectral coefficient of the new spectrum) have a 

different polarity for each chosen polarity. The connection between indices of 

spectral coefficients of a certain polarity and the coefficients of the RME spec

trum is given by the equivalence operation. 

Example II.7 

Using the equivalence relation the spectral coefficient Mabd of the RME transfor

mation is changed to the respective spectral coefficient of the ORME transforma

tion with the polarity abed (0101): 

abd = abed = abd 

The spectral coefficient for the chosen ORME is now Mlibd. Product abd is the 

standard trivial function corresponding to Mlibd. 

To be able to use the RME transformation characterized by the Theorems II.1 and 

II.2 in order to create a GRME transformation according to the Definition II.4 the coun

terpart of these theorems have to be found for ORME. 

Theorem II.3 

To make use of the Theorem II.1 for the GRME transformation, the equivalence 

operation between every cube of the SOPE and the polarity cube has to be per

formed to create argument cubes to be applied in Theorem II.1. 

Proof: 

The standard trivial functions, respectively the indices of the spectral coefficients 

of the ORME spectrum according to Definition II.4 have the same polarity as the 
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polarity of the GRME itself. Hence, the analogous theorem to Theorem II.1 is 

that all values of spectral coefficients for which the indices contain all the literals 

of term t that have the same polarity as the polarity cube and not the de-literals of 

term t, are equal to value "1 ". 

With the application of Theorem II.3 we are now able to find the spectral 

coefficients of a GRME. This is possible by first performing the equivalence operation 

between the terms of the SOPE and the polarity cube and next applying Theorem II.1. 

The indices of the spectral coefficients have still the polarity of the RME. To obtain 

proper indices the following theorem is used. 

Theorem II.4 

To obtain the GRME from the spectrum calculated according to the Theorem II.3 

the equivalence operation has to be performed between the standard trivial func

tions for this GRME and its polarity. 

Proof: 

According to Definition II.4 every set of standard trivial functions, necessary for 

the different GRME polarities, can be obtained by performing the equivalence 

operation between the cubes of the standard trivial functions and the polarity. 

Hence, this operation has to be performed between the spectrum being in RME 

and the polarity cube in order to obtain the correct polarity of the solution terms 

inGRME. 

With the four Theorems II.1- II.4 we are now able to formulate an algorithm to 

generate the GRME from a SOPE. 

Notation: 

term : cube of the function in SOPE. 



polarity: 

chosen polarity for the ORME transformation. 

newterm: 

cube after performing equivalence operation between polarity and term . 

covalue: 

variable to count the occurances of a spectral coefficient. 

so/term :one final term of the ORME. 

Algorithm : Generalized Reed-Muller transformation 

do for each term 

newterm = term =polarity 

do for each possible index 

do for each newterm 

if ( newterm is covered by the index ) 

covalue = covalue + 1; 

if ( covalue is odd ) 

so/term = index =polarity; 

II.2.2 Implementation 

26 

The above shown algorithm has been developed to be well suited for computer 

implementation. Therefore, it can be directly used as a subprogram. 

To store one term, the structure termJield is used. This structure has been created in 

order to be able to compare directly the term representation with indices of spectral · 

coefficients. 

The variables value! and valuex used in the structure are needed to compare the 

term representation with an index of a spectral coefficient. As mentioned in Chapter 

II.1.2, two bits are necessary to store one binary literal. To be still able to compare the 
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cube representation of the term and the index, a cube is stored in two distinct fields. The 

literals of the term->valuel are 1 for those literals of the term that are either 1 or-. The 

de literals of the term are stored in term->valuex. With this approach, using a long vari-

able having 32 bits, the implementation is limited to 32 literals per term. 

struct term _field 
{ 

unsigned long value]; 
unsigned long valuex; 
unsigned short order; 

}*term; 

I* field to store one's of term 
!*field to store de' s of term 
!* number of positive literals 

*I 
*! 
*I 

The pointer unsigned int *term_list is used to store the addresses of the term in a 

dynamical array. 

Because the order of solution terms is irrelevant it is possible to generate the 

indices for the whole spectrum with a single counting loop. With this approach one 

obtains the fastest possible way to generate the indices. 

With these properties the implemented algorithm for the GRME transformation 

has the following structure. 

Notation: 

term : current processed cube of the term_list. 

index : index of the currently processed spectral coefficient. 

total : number of spectral coefficients. 

terms : number of terms. 

coeff : a variable to determine if the number of occurances of a coefficient is odd or 

even. 



Algorithm: GRME transformation 

for ( index = 0 ; index < total ; index++ ) 
{ coeff = O; 

!*calculate coefficient for all terms *I 

for ( k = 0; k <terms; k++) 
{ term = term _list[k]; 
if ( (index & term->valuex) != 0) 

continue; 
if( (index & term->valuel) == term->valuel) 

{ if ( coeff = = 0 ) coeff = 1; 
else coeff = 0; }} 

if ( coeff== 1) 
!*index of the spectral coefficient is a solution term*! 

output(index);} 

II.2.3 A complete example 

28 

The list of terms shown in Table III taken as an example to illustrate the algo

rithm of the GRME transformation, is the same as in Example 11.2. The cube of the term 

is shown together with the corresponding value! and valuex, to help the reader to analyze 

the algorithm. 

TABLE ID 

COMPUTER REPRESENTATION OF AN ARRAY OF CUBES 

valuex 
1 

1000 
0000 
0001 
0010 
0000 

The chosen polarity of the GRME is 0101. First the terms are matched with the 

polarity according to the equivalence operation (fable IV, Theorem 11.3). Because the de 

literals (valuex) do not change in this operation, they are not shown in Table IV. 



TABLE IV 

EQUIVALENCE OPERATION ON CUBES 

newterm 
1-01 
-001 
1001 
011-
01-0 
0110 

valllel 
ITOI 
1001 
1001 
0111 
0110 
0110 
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Next the RME transformation is applied for the new terms (variable newterm) of 

Table IV. The Table V shows in each row the RME transformation for one term. In the 

row before the last the value (covalue) of the complete spectrum is shown. According to 

Theorem II.2 this value is 11
l11 when the number of occurances of a spectral coefficient in 

the respective columns of the table is odd. The RME of the newterms is represented by 

the indices of those spectral coefficients having value 11 1 ". 

TABLE V 

SPECTRUM M FOR THE FUNCTION OF TABLE IV 

newterm Mo Mi M1 M3 M4 
1-Ul 
-001 1 
1001 
011-
01-0 1 
0110 

covalue 1 1 
mdex -1-- ---1 



TABLEV 

SPECTRUM M FOR THE FUNCTION OF TABLE IV 
(continued) 

newterm M12 M13 Mi4 M13 M14 M34 
1-01 1 
-001 1 1 
1001 1 
011- 1 
01-0 1 1 
0110 1 

covalue 1 1 
mdex 11-- --11 

newterm Mi23 Mi24 Mi34 M134 Mt234 
1-01 1 
-001 1 
1001 1 1 1 
011- 1 
01-0 1 
0110 1 1 1 

co value 
index 
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The set of terms in RME from Table V (indices) has to be changed to the correct 

polarity. This is done by applying the equivalence operation between the term cubes and 

the polarity cubes. The final GRME of the initial SOPE of the terms before and after per

forming the equivalence operation (after equivalence) is shown in Table VI. 

TABLE VI 

EQUIVALENCE OPERATION FOR THE FUNCTION OF TABLE V 

before eaiuvalence 
-1--
---1 
11-
--11 
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The GRME in Table VI can be written as the GRME b $ d $ab$ ed. 

II.2.4 Execution times 

The execution times shown here and those in the following Chapters refer to a 

SUN 3/50 workstation. The meaning of the abbreviations in the time table is as follows 

(all values are in seconds): 

- u elapsed user time. 

- s elapsed system time. 

- no cube has no de literals. 

- some cube has some de literals. 

- many cube has many de literals. 

- cubes number of cubes in the array. 

- literals number of literals per cube. 

-RM times for common Reed-Muller transformation. 

- GRM times for heuristic polarity for less changes. 

In Table VII the execution times for different input functions and for two different polari

ties are shown. The polarity of the GRME transformation is chosen by some heuristic 

methods to obtain a GRME with less changes in the input function. Hence, for the 

GRME transformation the execution time is significantly shorter. 
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TABLE VII 

EXECUTION TIME FOR THE REED-MULLER TRANSFORMATION 

cubes literals type RM GRM 
u s u s 

1 10 no 0.0 0.1 
1 10 some 0.0 0.1 
1 10 many 0.0 0.1 

10 10 no 0.7 0.1 0.1 0.1 
10 10 some 0.1 0.1 
10 10 many 0.1 0.1 
1 14 no 0.5 0.1 
1 14 some 0.3 0.1 
1 14 many 0.2 0.1 

10 14 no 13.9 0.2 2.0 0.1 
10 14 some 1.5 0.1 
10 14 many 1.3 0.1 
1 18 no 5.0 0.1 
1 18 some 3.6 0.1 
1 18 many 3.5 0.1 

10 18 no 124.1 1.3 32.0 0.4 
10 18 some 20.5 0.1 
10 18 many 20.2 0.1 
1 22 no 177.6 0.1 
1 22 some 57.1 0.1 
1 22 many 56.3 0.1 

10 22 no - - 511.9 2.7 
10 22 some 324.2 0.2 
10 22 many 323.6 0.1 

II.3 GENERALIZED ESOPE TO SOPE TRANSFORMATION 

IL 3 .1 Description 

The algorithm introduced here is a general case of a transformation from an 

ES OPE to a SOPE. Hence, the inverse RM transformation is just one special case of this 

transformation. 

The general idea of the method to generate any ES OPE to a SOPE is that for each 

possible pair of ESOPE terms their overlapping parts have to be removed, which means 

applying the identity: term EB term = 0. 
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Example 1/.9 

In Figure 5 the method of removing overlapping parts is shown on a simple 

example function. 

c,d 
a,b 00 01 11 

00 0 0 

01 1 1 

11 0 0 1 

10 

a. ab "cd 

a,b 
c,d 

0 

1 

0 

0 1A 0 

b. abc + acd +abed+ abed 

Figure 5. Kamaugh maps for ESOPE and SOPE. 

In Figure 5a. the ESOPE of the function ab E9 cd is shown. By removing the 

overlapping part in the Karnaugh map one obtains a SOPE of this function. 

To remove all overlapping parts for several terms each pair of terms has to be 

compared similarly to the algorithm to generate disjoint cubes introduced in Chapter II. I. 

There is only one difference between the method to generate disjoint cubes from nondis-

joint ones and the method to generate a SOPE from any ESOPE. While in the Disjoint 

Algorithm the sharp operation (22) is performed between cubes that are nondisjoint, for 

the ES OPE to SOPE transformation algorithm the overlapping part of the two cubes has 

to be removed. The removal of this part can be done by performing the sharp operation 

between each of the two terms and their overlapping part. 

In the case of a description without Kamaugh maps the overlapping part is deter

mined by the intersection (22) of the cubes. 

With the above described change of the disjoint algorithm one can directly obtain 

the algorithm shown below to generate an SOPE for any ESOPE. 
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Algorithm: ESOPE to SOPE Transformation 

step 1. set a and b to the following positions in the term list : 

a := 1, b := n, m := n 

where n is the initial number of terms in the term list. 

step 2. Main loop : 

For each pair of terms terma and termb from an array A 

if an intersection of terms terma and termb is non-empty set 

then 

do for terma and for termb 

{ if termb equals the intersection 

then do { if termb is the last of the array then remove termb 

else { substitute termb by the last term of the array A ; 

n := n - 1; } } 

else if terma equals the intersection 

then do { substitute terma by the last term of the array A ; 

n := n -1; 

b :=n } 

else do for ( calculate the d solution terms from the disjoint sharp 
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operation termaib #j intersection; 

replace termatb by one solution term and add 

the other ones to the end of the array A ; 

n :=n +d -1; 

if b ~a then go to step 3 } 

} 

go to step 2. 

else do { b :=b -l;ifb ~a then gotostep3 

else go to step 2} 

step 3. 

b := n; 

a :=a+ 1; 

if a = m then stop 

else m := n; 

go to step 2. 

II.3.2 Implementation 

From the discussed difference between the Disjoint Algorithm (Chapter II.1) and 

the algorithm for ESOPE to SOPE Transformation, one can easily change the implemen

tation of the Disjoint Algorithm for the ESOPE to SOPE Transformation. 
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According to this the program makes use of the same structures described for the 

Disjoint Algorithm. 

II.3.3 A complete example 

In Figure 6a a step by step transformation of the ESOPE of Figure 6a to the final 

SOPE in Figure 6e is shown. 

First the terms lXOO and XlXX are intersected. Because the intersection is not 

empty, the intersection cube is sharped from both terms. The initial two terms in the 

array are substituted by the two of the solution terms of the sharp operation. The other 

solution terms are appended to the end of the array (Figure 6b). Next the following pair 

of terms is taken. This procedure is repeated until every pair determined by the shown 

algorithm is compared. 

II.3.4 Execution times 

The here used notation is the same as shown in Chapter II.2.4. 

TABLE VIII 

EXECUTION TIMES FOR ES OPE TO SOPE TRANSFOIUvlA TION 

cubes llterals type time 
u s 

1 8 no 0.0 0.1 
10 8 no 0.1 0.1 
10 8 some 0.0 0.1 
10 8 many 0.0 0.1 
1 16 no 0.4 0.1 
10 16 no 8.9 0.1 
10 16 some 6.1 0.1 
10 16 many 5.1 0.1 
1 22 no 27.3 0.1 
10 22 no 545.9 3.2 
10 22 some 341.9 0.3 
10 22 many 340.0 0.1 
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a. input array 
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e. output array 

Xl,X2,X3,X4 

lXOOON 

lXlXON 

XXll ON 

XlXXON 
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OOOODC 

1101 ON 

1111 ON 

Figure 6. Step by step execution of ES OPE to SOPE transformation 
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TI.4 GENERALIZED ADDING AND ARITHMETIC TRANSFORMATIONS 

II.4.1 Description 

In (27) the Generalized Adding and Arithmetic Transformations (GAD, GAR) 

were introduced. We expect, that these transformations can be useful for applications in 

multidimensional signal processing and image processing as well as for designing and 

testing of digital circuits. 

As mentioned in Chapter I. the GAD and GAR Transformations (GARD 

Transformation, for short) are generated by some essential order-2 matrices. These are 

shown in (Figure 7). 

[ : ~] [ _: ~ J 
a. Adding b.Arithmetic 

Figure 7. Essential order-2 matrices for GAD and GAR Transfonnations. 

As an application of the Cube comparison method for this transform the R spec

trum is used. The R spectrum is a conventional coding scheme where the value of the 

spectral coefficient <0, 1, 0.5> corresponds to <off 0, on 1, de-> representing the possi

ble minterm type. 

Because the GARD and GRME Transformations have similar order-2 matrices, 

the same Cube Comparison method as for the GRME can be applied. The difference 

between the GARD Transformation with respect to the GRME Transformation is, that for 

the first transformation the value of the spectral coefficient is an important magnitude. 

The Properties to generate the spectrum for the GARD Transformation according 

to the Cube Comparison method make use of the same notation as in the previous 

Chapters. The only additional variable used here is defined below. 

pol is used as a prefix to indicate that the tenn/index is matched with the polarity 
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Properties for the GARD Transformation: 

Property II.2 

All terms are matched with the polarity cube according to the equivalence opera

tion (Definition II.1), see Theorem II.3. 

po/term = term =polarity 

Property II.3 

The value of the spectral coefficient is according to the R vector, <on-1.0, dc-0.5> 

when the polterm is covered by the polindex = index = polarity: 

po/term c po/index 

Property II.4 

The complete spectrum for the array of minterms is calculated by adding the 

spectra for each minterm. 

For the GAR transformation also negative values of spectral coefficients can also 

occur. The sign for the value of the spectral coefficients depends on the order (number of 

subindices of the coefficients) of the coefficient. Thus, the straight order defined in 

Chapter 1 is a convenient order to calculate the sign. The following Properties for the 

GAR transformation define the calculation of the signs. 

Property II 5 

The value of a spectral coefficient calculated according to Property II.4 has to be 

negated if the number of ones in polterm is odd. 

Property II.6 

Additionally to Property II.5 the value of the spectral coefficient has to be negated 

if the order of the coefficient is even. 

From these Properties the algorithm to generate the spectrum for the GARD 

Transformation has been developed. The notation listed below is used. 
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value the value of one spectral coefficient is stored in this variable according to Pro

perty II.3. 

sign determines the sign of the spectral coefficient calculated for the GAR Transfor

mation according to Property II.4, II.5. 

Algorithm: GARD Transformation for multiple polarities 

do for each minterm 

{ 

} 

polterm = term = polarity; 

if number of ones in polterm is odd and GAR Transformation is chosen 

sign= -1; 

else sign= 1; 

do for each spectral coefficient 

{ 

} 

polindex = index = polarity; 

if order of spectral coefficient is even and GAR Transformation is chosen 

sign= sign* -1; 

if polterm = polterm n polindex 

{ 

if de minterm 

value = value + sign * 0.5; 

else 

value =value + sign * 1.0; 

} 
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An example which shows the different steps of these algorithm can be found in 

Chapter II.4.3. 

II.4.2 Implementation 

The algorithm especially designed for computer implementation is suitable for 

the generation of the C-code. As its advantage all spectral coefficients are generated 

separately for the whole set of minterms, so no memory to store the spectral coefficient is 

needed. Therefore, the spectral coefficients can directly be stored on the hard disk. The 

structure struct minterm is used to store the minterms. 

struct minterm 
{ 

unsigned long value; I* bit representation of the minterm literals *I 
float type; !*is according to minterm type 1.0, 05 or 0.0 *! 

}term; 

In the field minterm->value the ones of the input minterm are stored. Thus the maximum 

number of literals in the input function can be 32. The field minterm->type determines 

the value of the spectral coefficients according to the minterm type ( on - 1; de - 0.5 ). 

This way of representing the type is used because it directly determines the value of the 

spectral coefficient. 

To use an array for the minterms, which can match its size according to the 

number of input minterms, a dynamic memory allocation is used. The pointer unsigned 

int *minterm-list is therefore taken to store the addresses of the minterms. Because of the 

use of the function realloc() for the dynamic memory allocation, it can be treated like an 

array of addresses. 

As shown in Chapter II.4.1, the straight order is necessary to calculate the value 

of the spectral coefficients for the GAR transformation. Hence, an algorithm has been 

developed to generate the indices in this order. In this algorithm the complete set of 

indices is calculated respective to the given order. The algorithm is illustrated in Exam-

ple II.10. 
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Example II.JO: 

The indices of the spectral coefficients of the first order have only one literal. 

Respectively, the cube representations of the indices have one 1 each. The first 

order indices of a five-valued function are shown in Table IX. 

TABLE IX 

FIRST ORDER INDICES OF SPECTRAL COEFFICIENTS 

I coef~cient II s 1 I s 2 I &i 3 I s 4 I s 5 I in ex 10000 01000 0 loO 00010 00001 

The third order coefficients of the same function are shown in Table X. 

TABLEX 

TIIlRD ORDER INDICES OF SPECTRAL COEFFICIENTS 

coernc1ent index 
123 111 

S124 11010 
s 125 11001 
S134 10110 
S135 10101 
S14s 10011 
S234 01110 

... 
S34s I 00111 

Let us denote by k the number of literals, necessary for the current order. As it 

can be observed, to obtain all indices for one order of coefficients, one has to gen-

erate all possible arrangements of k symbols "1" in a field of the length deter-: 

mined by the number of input variables. For this purpose a recursive algorithm 

has been designed. The recursive algorithm behaves like a certain set of loops, 

where, their number is determined by the order that has to be generated. 

For the third order coefficient generation shown in Table X, three loops are neces-
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sary. The outer loop is responsible for changing the position of the leftmost "1" 

from the first to the third position. In the next inner loop the "1" on the position 

right to the leftmost "1" has to go to the position right to the third position. Again 

for the next inner loop the "1" right to the "1" from the next outer loop has to go 

right to the last position of the "1" in the next outer loop. 

The procedure consisting of these three loops looks as follows. 

Notation: 

a,b,c : determine the positions of the three ones. 

index : is the final index such as one shown in Table X 

first[i]: is the index i of the spectral coefficient Si 

for ( a = 0 ; a <= 3 ; a++ ) 

{ 

} 

for ( b = a+l; b <= 4; b++) 

{ 

for ( c = b+ 1 ; c <= 5 ; c++ ) 

index= first[a] + first[b] + first[c]; 

} 

As seen above, for each different order another number of loops is necessary. To 

overcome this problem, a recursive algorithm has been designed that behaves such as a 

given number of loops. 

Notation: 

from : determines the start number of the loop. 

to : determines the end number of the loop. 

order : determines the order that should be generated. 

times : determines the current depth of the recursion. 

· I 



Algorithm: One order of coefficients for the GARD Transformation. 

short order; I* calculated order *I 

gen coeff(jrom,to,times) 
short from; I* loop beginning *! 
short to; I* loop end *I 
short times; I* depth of recursion */ 
{ 

int i,k; 
float coejf; I* final value of the spectral coefficient*! 

times++; 
for ( i =from; i <= to; i++) 
{ 

} 
} 

index= index+ first[i+l]; 
if ( times < order ) 

gen coeff(i+ 1,to+] ,times); 
else -
{ 

} 

coeff = O; 
for ( k = 0; k < minterms; k++) 
{ 

} 

minterm = minterm list[k]; 
if ( (minterm->value & ((index)"(!polarity))) == minterm->value) 

coeff = coeff + (jloat)sign * minterm->type; 

output( coejf); 

index= index-first[i+l]; 

114.3 A complete example 
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An example for both, the Arithmetic and the Adding transformation illustrates the 

generation of the spectral coefficients. In TABLE XI the array of minterms for the 

chosen function is shown. The last column of the minterms determines: "-" the de-

minterm, "1" the on-minterm. 
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TABLE XI 

INCOMPLETELY SPECIFIED BOOLEAN FUNCTION 

mintenn I e 
0001 1 
0101 1 
1001 1 
1010 1 
1110 1 
0111 
1111 

In the Tables XII and XIII the minterms of the function shown in Table XI are 

applied to generate the spectra for the GAR and GAD Transformations. The final spectra, 

calculated by adding the values of all partial coefficients are shown in the last rows of 

Tables XII and Table XIII. 

min term 
0001 on 
0101 on 
1001 on 
1010 on 
1110 on 
0111 de 
1111 de 
result 

TABLE XII 

SPECTRUM S FOR THE GAD TRANSFORMATION 
FROM THE FUNCTION OF TABLE XI 

S4 
1 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

1 1 

mm term .J 123 .J 124 .J 134 .)234 .) 1234 
1 on 0 1 1 1 1 

0101 on 0 1 0 1 1 
1001 on 0 1 1 0 1 
1010 on 1 0 1 0 1 
1110 on 1 0 0 0 1 
0111 de 0 0 0 .s .5 
1111 de 0 0 0 0 .s 

-----~ 

result 

S24 34 
1 1 
1 0 
0 0 
0 0 
0 0 
0 0 
0 0 
2 1 



min term 
0001 on 
0101 on 
1001 on 
1010 on 
1110 on 
0111 de 
1111 de 
result 

TABLE XIII 

SPECTRUM S FOR THE GAR TRANSFORMATION 
FROM THE FUNCTION OF TABLE XI 

S1 
u 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

0 

mm term 
uuul on 
0101 on 
1001 on 
1010 on 
1110 on 
0111 de 
1111 de 
result 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

s 123 
0 
0 
0 
-1 
1 
0 
0 
0 

s 124 
1 
-1 
-1 
0 
0 
0 
0 
-1 

0 
0 
0 
0 
0 
0 

s 134 
1 
J. 

0 
-1 
-1 
0 
0 
0 
-1 

0 
0 
1 
0 
0 
0 
1 

S234 
1 

-1 
0 
0 
0 
.5 
0 
.5 

s 1234 
-1 
1 
1 
1 
-1 
-.5 
.5 
1 

34 
-1 
0 
0 
0 
0 
0 
0 
-1 
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As mentioned above, each spectral coefficient in the program is directly generated 

by adding the values for each minterm. Therefore, it is generated for the whole set of 

minterms before calculating the next coefficient. Within each coefficient (denoted as 

coeff in the algorithm) the value for each minterm is added to the initially zero value of 

coeff. For instance, for the GAD transformation the intermediate values are shown in 

Table XIV. 
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TABLE XIV 

INTERMEDIATE VALUES FOR THE GAD TRANSFORMATION 

mm term 
0001 on 
0101 on 
1001 on 
1010 on 
1110 on 
0111 de 
1111 de 
result 

0 
0 
0 
0 
0 
0 

mm term 
Ouul on 
0101 on 
1001 on 
1010 on 
1110 on 
0111 de 
1111 de 
result 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

s 123 
0 
0 
0 
1 
2 
2 
2 
2 

s 124 
1 
2 
3 
3 
3 
3 
3 
3 

0 
0 
0 
0 
0 
0 

s 134 
1 
1 
2 
3 
3 
3 
3 
3 

S234 
1 
2 
2 
2 
2 

2.5 
2.5 
2.5 

0 
0 
0 
0 
0 
0 

s 1234 
1 
2 
3 
4 
5 

5.5 
6 
6 

34 
1 
1 
1 
1 
1 
1 
1 
1 
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Execution times for the GAD transformation will be presented in Chapter Il.5.4. 

II.5 INVERSE ARITHMETIC AND ADDING TRANSFORM 

II.5.1 Description 

The INverse Generalized ARithmetic and aDding transformations here called 

INGARD, is one single algorithm for both the inverse Adding and the inverse Arithmetic 

Transformation. Let us first observe the main Property of the forward GARD Transfor

mation, that led to the INGARD algorithm. 

Property 11.7 

In the smallest order where not all spectral coefficients are equal to zero, every 

spectral coefficient can have only the values ( +/-) 1 or ( +/-)0.5. 
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Because of the importance of this Property it will be illustrated in the following 

Example. 

Example II.11 

The complete set of minterms for a four variable input function and their com

plete spectra are shown in Table XV. The minterms are ordered in a way, to illus-

trate the above Property. Hence, one can observe that the leftmost 1 of the spec

trum in the row below is always right of the leftmost 1 of the spectrum in a cer-

tain row. 

min term .So 
ouuo 1 
1000 
0100 
0010 
0001 
1100 
1010 
1001 
0110 
0101 
0011 
1110 
1101 
1011 
0111 
1111 

TABLE XV 

ILLUSTRATION OF THE PROPERTY OF 
THE SMALLEST ORDER 

S1 S2 .) 3 S4 S12 s 13 s 14 

1 1 1 1 
1 1 

1 1 
1 1 

1 
1 

1 

S23 S24 S34 

1 1 
1 1 

1 1 

1 
1 

1 



TABLE XV 

ILLUSTRATION OF THE PROPERTY OF 
THE SMALLEST ORDER 

(continued) 

min term s 123 S124 s 134 S234 S1234 
0000 
1000 1 1 1 1 
0100 1 1 1 1 
0010 1 1 1 1 
0001 1 1 1 1 
1100 1 1 1 
1010 1 1 1 
1001 1 1 1 
0110 1 1 1 
0101 1 1 1 
0011 1 1 1 
1110 1 1 
1101 1 1 
1011 1 1 
0111 1 1 
1111 1 

The following Properties can be derived directly from Property II.7. 

Property 11.8 
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The set of minterms can be calculated by generating the minterm always for the 

leftmost (for the straight order) non-zero spectral coefficient, where the spectrum 

of the minterm has to be subtracted from the complete spectrum. 

Property 11.9 

The next leftmost spectral coefficient not equal to zero (as defined in Property 

II.7) is always right (for the straight order) of the previous one. 

Property II.JO 

The value of the leftmost spectral coefficient must always be ( +/-) 1 or ( +/-)0.5 

depending on the type of the minterm, either on- or dc-minterm, and the transfor

mation, either the inverse Adding or the inverse Arithmetic one. 
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Property II. 

The correct solution minterm is calculated by performing the equivalence opera

tion (Definition Il.1) between the minterm generated according to Properties Il.7 -

II.10 and the polarity cube. 

The algorithm derived from these Properties is shown below: 

Algorithm: INGARD 

do 

take leftmost spectral coefficient with value ':F 0; 

minterm = index of this spectral coefficient; 

generate spectrum for this mintenn; 

subtract spectrum of the minterm from the total spectrum; 

solution minterm = mintenn = polarity 

while ( spectrum ':F zero ) 

For the Arithmetic Transformation the negative values for the value of the spec

tral coefficients can occur. Therefore, it is possible that the values for some spectral 

coefficients can reduce themselves to zero. However, as shown for the inverse Adding 

Transformation, this can not occur in the smallest order (Property Il.7). Hence, the same 

algorithm as for the inverse Adding Transformation can be taken for the inverse Arith

metic Transformation as well. 

II.5.2 Implementation 

For the implementation of the algorithm it is necessary to read from the input file 

the values of the spectral coefficients according to their indices. The routine which per

forms this task is similar to the gen coeff procedure shown in Chapter II.4.2 for the for

ward transformation. In the gen_ coef f procedure the part where the coefficient is 
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calculated has to substituted by the input of the value of the spectral coefficient from the 

hard disk file. Below the structure in which the value has to be read is shown. 

struct spectral coef 
{ -

unsigned long index;/* subscript index of the spectral coefficient *I 
double value; I* value of spectral coeff */ 
unsigned short order; I* order of the spectral coefficient *I 

}*spectrum; 

Here the realloc() function can be used for the whole structure. It is then possible to 

access directly each spectral coefficient like an element of an array. The main procedure 

to find the leftmost non-zero spectral coefficient and generating the minterm, is shown 

below. It makes use of the previously defined variables and the additional variables 

order no and TRANSFORM: 

order no 

determines the current processed order. 

TRANSFORM 

determines if Arithmetic or Adding Transformation. 

Algorithm : INGARD implementation 

for ( i = 0; i < coeffs; i++ ) 
{ 

} 

order no= spectrum[i].order; 
if ( spectrum[i] .value != 0) 
{ 

} 

/* minterm is identical to the index of the spectral coefficient *I 
if ( abs(spectrum[i].value) == 1.0) 

else 

/* minterm is on minterm *I 
type= ON; 

I* minterm is de minterm *I 
type= DC; 

minterm->type = (jloat)sign * spectrum[i].value; 
minterm->value = (spectrum[i].index ); 
output(minterm); 
I* subtract the spectrum of the mintermfrom total spectrum *I 
subtract _trans/ orm(TRANSFORM); 
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II.5.3 A complete example 

For the illustration of the inverse transformation the spectrum generated by the 

forward Arithmetic Transformation according to Table XI has been chosen. 

TABLE XVI 

INVERSE GAR TRANSFORMATION 

I ii I ri I Ii ii i'f I l"'f I 1" 
I "" 

I M I C'I 
34 

-1 
1 1 0 

0 0 0 0 0 0 0 1 0 1 0 
0 0 0 0 0 0 0 a· 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 

1234 
T 
2 

1 -2 -1 -.5 1 
1 -1 0 -.5 0 
1 0 0 .5 -1 
0 0 0 .5 0 
0 0 0 0 .5 
0 0 0 0 0 

The spectrum shown in the first row of Table XVI is the initial spectrum. Now the 

min term for the leftmost spectral coefficient not equal to zero (S 4) has to be generated. 

The spectrum for this minterm is immediately subtracted from the previous spectrum. 

The new spectrum is shown in the second row of the Table, where the minterm is shown 

in the first column. The loop to generate all minterms is repeated until the generated 

spectrum becomes zero for all coefficients. 

II.5.4 Execution times for GARD and ING ARD Transformations 

Because of the nature of the forward GAD Transformation, the execution time 
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does not depend on the ratio of on- to off-literals in a term. The Table XVII presents first 

the time for the forward GAD Transformation, followed by the time for the inverse GAD 

Transformation for the same example. The first column includes the number of minterms 

and the second column gives the number of literals of those minterms. The same exam

ple as used to determine the execution time was assumed. The symbols u and s for the 

elapsed time have the same meaning as in Chapter II.2.4. 

TABLE XVII 

EXECUTION TIMES FOR THE GAD AND 
INGAD TRANSFORMATIONS 

min terms Iitenus orwar1 
u 

transtorm 
s 

mverse transtorm 

1 
10 
1 

10 

8 
16 
16 

.1 
0.5 
22.6 
31.2 

.l 
0.1 
0.3 
0.3 

u s 
.1 0.2 

0.5 0.2 
23.3 0.9 
55.1 1.0 

II.6 RADEMACHER-WALSH TRANSFORMATION 

II.6.1 Description 

An algorithm to calculate the spectral coefficients of the Rademacher-Walsh 

Transformation for completely specified Boolean functions directly from the SOPE was 

shown in (4,3). It has the disadvantage that for several cases an additional correction of 

the Boolean function was required. This algorithm was improved to make use of com

pletely and incompletely specified Boolean functions represented in an array of disjoint 

cubes such as generated with the algorithm shown in Chapter ILL This method (12,13) 

has been applied in the development of the algorithm for the computer implementation 

(14,15). 

Let us first recall the basic properties for the generation of the Rademacher-Walsh 
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spectrum directly from the representation of disjoint cubes (12,15). 

Example II.12 

The array of disjoint cubes generated in Example II.1 is used to generate the spec

trum S shown in Table XVIII. Each row contains the values of the spectral 

coefficients for the given cube. The final spectrum shown in the last row is calcu-

lated by the sum of the respective values for the cubes, the only exception is the 

de-coefficient SO· 

TABLE XVIII 

SPECTRUM S OF THE RADEMACHER-WALSH TRANSFORMATION 

cube .) 0 .) 4 
1- on 1 -4 
1-1- on 8 8 0 8 0 
0-11 on 12 -4 0 4 4 
010- on 12 -4 4 -4 0 
OOOOdc 7 -1 -1 -1 -1 
1101 on 14 2 2 -2 2 
0110 on 14 -2 2 2 -2 
s ectrum -1 

cube .l34 
1-0 on -4 
1-1- on 0 -8 0 0 
0-11 on 0 4 0 -4 
010- on 4 -4 0 0 
0000 de -1 -1 -1 -1 
1101 on -2 2 -2 2 
0110 on 2 2 2 2 
snectrum -1 -1 -5 



TABLEXVill 

SPECTRUM S OF THE RADEMACHER-WALSH TRANSFORMATION 
(continued) 

cube 
r:oo"On 
1-1- on 0 0 0 0 0 
0-11 on 0 0 -4 0 0 
010- on 4 0 0 0 0 
0000 de -1 -1 -1 -1 -1 
1101 on -2 2 -2 -2 2 
0110 on -2 2 2 -2 -2 
suectrum -1 3 -1 -5 -1 
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In Table XVIII one can observe the following Properties (taken from (14,15)) of 

the Rademacher-Walsh spectrum: 

1 The contribution of the on-cube of degree m to full n -space spectrum of function 

F (where n is a number of variables, and p is a number of de-variables in the 

function F) is related as follows: 

so in full n -space = 2n - 2 x 2P 

and 

SJ in full n -space = SJ in m -space x 2P, where I '# 0. 

2 The contribution of the de-cube of degree m to full n -space spectrum of function 

F is related as follows: 

so in full n-space = 2n -1 - 2P 

and 

SJ in full n -space = SJ in m -space x 2P - 2, where I '# 0. 

The following properties of the signs of each spectral coefficient SJ, where I '# 0, are 

valid for on- and de-cubes of any degree: 
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3 If in a given cube the Xi variable of a Boolean function is in affirmation, then the 

sign of the corresponding first-order coefficient is positive, otherwise for a vari

able that is in negation, the sign of the corresponding first-order coefficient is 

negative. 

4 The signs of all even-order coefficients are given by the negation of the multipli

cation of the signs of the related first-order coefficients. 

5 The signs of all odd-order coefficients are given by the multiplication of the signs 

of the related first-order coefficients. 

The following properties have to be applied additionally for the de spectral coefficient: 

6 The value of a de spectral coefficient so is equal for a completely specified 

Boolean function to the sum of all the corresponding contributions from all on

disjoint cubes, but it requires a correction factor - (k - 1) x 2n, where k is a 

number of disjoint cubes in the on-array of cubes. 

7 The value of a de spectral coefficient so is equal for an incompletely specified 

Boolean function to the sum of all the corresponding contributions from all on

and de-disjoint cubes, but it requires a correction factor 

- (k - 1) x 2n - l x 2n - 1, where k is the number of disjoint on- cubes, and l is 

the number of disjoint de-cubes. 

II.6.2 Implementation 

It has been investigated to make use of the Cube Comparison method for the 

implementation of the Rademacher-Walsh Transformation. As one can observe from 

Table XVIII and from the properties given in Chapter II.6.1, the value of the spectral 

coefficients depends on the positive as well as on the negative literals of the cubes. The 

Cube Comparison method to obtain the spectral coefficients with non-zero value from the 

spectrum is the same as for the RME Transformation (Theorem II. l.). Similarly to the 
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Arithmetic Transformation, the signs of the value of the spectral coefficients depend on 

the order of the coefficient. Thus, again the straight order (Rademacher-Walsh order) has 

to be applied. Because of these similarities, the algorithm uses the same structure as for 

the GRM Transformation (Chapter II.2.2). The procedure to generate the indices in the 

straight order is similar to the gen_coeff procedure (Chapter II.4.2) for the GARD 

Transformation. 

The meaning of the different fields in the structure has changed To adopt to the 

Cube comparison method necessary for the Rademacher-Walsh Transformation. There

fore the structure term _field is shown below. 

struct term _field 
{ 

unsigned long value]; !* is "1 "for de- and on- literals of the term *I 
unsigned long valuex; I* is "1 "for the de-literals of the term *I 
unsigned short order; !* value according number of de' s *! 
unsigned short type;!* determines on-, de- or off-type of cube *I 

}*term; 

The procedure to generate the indices according to the straight order is shown 

below. It generates one complete order of spectral coefficients for the given order in the 

variable order. The variable sign determines if the order is an odd or even one. In the 

subroutine value_coeff() the final signs of the spectral coefficient has to be determined. 

This procedure will be described in the sequel. The value of a spectral coefficients 

depends on the number of de literals in the cube (Properties 1 and 2 ). This value is cal

culated once per cube and stored in the field term->order. All other variables and the 

array (first[i]) have the same meaning as in Chapter II.2.2 and II.4.2. 

Algorithm: Generation of one order of spectral coefficients 

short order; I* order that has to be generated *! 
short sign; I* determines sign according to the generated order *! 
unsigned long index; I* global variable to store the index *I 

gen_ coeff(from,to ,times) 
short from; 



short to; 
short times; 
{ 

inti; 
times++; 

} 

for ( i =from ; i < = to ; i + +) 
{ index = index + first[ i + 1]; 
if ( times < order ) 

gen_ coeff(i+ l ,to+ l ,times); 
else 

!*calculation of the value for the whole array of cubes*! 
value coeff(); 

index= index -first[i+l];} 
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The main difference to the GAD, GAR and GRME Transformations is that the 

sign of the value of the spectral coefficients depends on the sign of the respective 

coefficients of the first order. Therefore, after the generation of the value for a spectral 

coefficient, the sign has to be determined. The procedure value_coeff has been 

designed to perform the calculation of the sign according to Properties 3 and 4. 

Procedure : Calculation of the sign of the value for a spectral coefficient 

value coeff() 
{ -

short i,k; 
shorts;!* local variable for the sign *I 
long value; 

value= 0; 
for ( k = 0 ; k < cubes ; k+ + ) 
{ 

cube= cube list[k]; 
if ( (cube-> valuex & index) = = 0 ) 
{ 

/*determine sign of the value*/ 
s =sign; 
for ( i = 1 ; i <=values; i++) 
{ 

} 

if( (first[i-1] & index)!= 0) 
I* check ifvaluel has zero on this position*! 
if ( (first[i-1] & cube->valuel) == 0) 

!* sign has to be negated*! 
s = s * -1; 

value= value+ s*cube->order; 
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) 
) 
output(value); 

With the above algorithm all spectral coefficients except the de-coefficient So can 

be generated. This has to be generated separately according to Properties 1,2,6 and 7. 

II.6.3 A complete example 

The same array of cubes representing the function f as in Exa.rnple II. l and II.12 

is taken to illustrate the different steps of the Rademacher-Walsh algorithm. 

First the de-coefficient is generated according to the formulas of Properties 1,2,6 

and 7. Similarly to the GARD Transformation, the values are immediately added, what 

is shown in Table XIX. In the last row the final value is given after the required correc-

tion according to Properties 6 and 7. 

TABLE XIX 

GENERATION OF THE DC-COEFFICIENTS 0 

CUOe I 00 

i..:oo on 12 
1-1- on 20 
0-11 on 32 
010- on 44 
0000 de 51 
1101 on 65 
0110 on 79 
suectrum 

Next all spectral coefficients are generated according to the shown algorithm 

gen_coeff() (Chapter II.6.2), where again each spectral coefficient is calculated by adding 

immediately the contribution of each cube, from the array of cubes, to the value of the 

spectral coefficient. The intermediate values of the spectral coefficients are given in 

Table XX. 
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TABLE XX 

INTERMEDIATE VALUES FOR THE RADEMACHER-WALSH SPECTRUM 

cuoe 
I=mron 
1-1- on 12 0 4 -4 
0-11 on 8 0 8 0 
010- on 4 4 4 0 
0000 de 3 3 3 -1 
1101 on 5 5 1 1 
0110 on 3 7 3 -1 

I spectrum 3 7 3 -1 

cube -
1-00on 
1-1- on 0 -4 4 0 0 -4 
0-11 on 0 0 8 0 0 -8 
010- on 4 -4 8 4 0 -8 
0000 de 3 -5 7 3 -1 -9 
1101 on 1 -3 5 5 -3 -7 
0110 on 3 -1 3 3 -1 -5 
suectrum 3 -1 3 3 -1 -5 

-~···--

cube 
I=mron 
1-1- on 0 0 4 0 0 
0-11 on 0 0 0 0 0 
010- on 4 0 0 0 0 
0000 de 3 -1 -1 -1 -1 
1101 on 1 1 -3 -3 1 
0110 on -1 3 -1 -5 -1 
suectrum -1 3 -1 -5 -1 

II.6.4 Execution times 

In Table XXI execution times for different input functions are shown. The 

corresponding notation can be found in Chapter II.2.4. The execution times for the new 

algorithm introduced here are compared to the times of the Spectral Synthesis System of 

the Drexel University (32,33). The following notation is used: 

newalgorithm 
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times for the algorithm introduced here. 

S3 times of the Spectral Synthesis System. 

TABLEXXI 

EXECUTION TIMES FOR THE RADEMACHER-WALSH TRANSFORMATION 

cube literal type new algorithm S3 

u I s 

10 1.8 
1 10 no 0.3 0.1 
1 10 some 0.2 0.2 
1 10 many 0.2 0.1 

10 10 no 1.2 0.1 
10 10 some 0.3 0.2 
10 10 many 0.2 0.2 

14 32 
1 14 no 5.1 0.2 
1 14 some 2.9 0.1 
1 14 many 2.9 0.2 
10 14 no 24.1 0.2 
10 14 some 4.3 0.2 
10 14 many 3.9 0.2 
10 16 no 106.7 0.9 
10 16 some 16.6 0.5 
10 16 many 16.0 0.2 

18 382 
1 18 no 88.6 0.9 
1 18 some 41.4 1.0 
1 18 many 46.7 1.0 

10 18 no 458.0 1.4 
10 18 some 63.2 0.4 
10 18 many 63.2 0.3 

Because the Spectral Synthesis System makes use of a Fast Transformation, the 

complete set of minterms has to be specified for the transformation. The Cube Com-
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parison method can perform the transformation directly on the representation of cubes. 

Thus, the execution times depend on the number of cubes. Therefore, the execution time 

for 1 and for 10 cubes of different types is shown in the above table. 



CHAPTER III 

MULTIPLE-VALUED TRANSFORMATIONS 

III.1 MULTIPLE-VALUED WALSH TRANSFORMATION 

III.1.1 Description 

The spectral representation of multiple-valued input binary output functions for 

the Walsh Transformation was introduced by B.Falkowski (30). In such a representation 

the spectrum for each mv-function is composed of a vector of Walsh Transformations, 

each of them defined for one product of two input variables of the function. For functions 

having only two input variables the spectrum is composed out of one Walsh Transforma-

ti on. 

Let us first review some basic definitions for multiple-valued input, binary output 

functions. 

Definition III.I 

A multiple-valued input, binary output incompletely specified function f 

(mv function, for short) is a mapping f(X 1 Xi. ... , Xn) : P 1 x P 2 x · · · P n -?B, 

where Xi is a multiple-valued variable (mv-literal), and Pi = {0,1, ... ,pi-1} is a 

set of true values that this variable may assume, Pi is the number of values of 

variable Xi. B = { 0,1,-} denotes the off-, on- and don't care value. This is a gen

eralization of an ordinary n-input switching function f: B n -?B. 

Definition Ill.2 

For any subset Si ~Pi, Xisj is a literal Xi representing the function such that 

s {1 if Xie Si 
Xii= O ifXieSi 
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Definition III.3 

A product of literals, X 1s 1x l 2 ••• Xn Sn, is referred as a product term (also called 

term , product or cube). A product term that includes literals for all function vari

ables X 1.X 2, ... ,Xn is called the full term. 

The Multiple-valued Walsh Transformation (MWT) introduced in (30) is based 

on an algorithm to convert the mv-function to a set of two-dimensional maps. This 

description of maps was taken to illustrate the conversion. For the computer implementa

tion, the mv-function and its conversion to a Boolean function are represented as arrays 

of cubes. The array of cubes representing the multiple-valued function is mapped to its 

logical equivalent in the form of a Boolean function represented as an array of cubes. 

From this point on, one can calculate the spectrum of each such Boolean function accord

ing to the algorithm described in Chapter II.6. This method of the calculation of Walsh 

spectrum of Boolean functions requires to represent such functions in the form of arrays 

of disjoint on- and de- cubes. After the two-dimensional multiple-valued arrays (every 

array represents one out of all possible products of two distinct multiple-valued literals) 

have been converted to Boolean arrays of cubes the algorithm to generate disjoint cubes 

from nondisjoint ones (Chapter II.l) is applied to all the cubes describing the function. 

The last step in the generation of a partial spectrum for the mv-function is the calculation 

of the Walsh spectrum from the arrays of disjoint cubes. The detailed description of the 

algorithm to perform this task can be found in Chapter II.6. The complete structure of 

the implementation of the MWT is shown in Figure 8. 

Since the binary Walsh Transformation and the disjoint algorithm have already 

been described in previous Chapters, only the conversion algorithm to change multiple

valued input functions to binary ones will be described in the next section. 



Generation of the Boolean 

representation of each 

product of two 

multiple-valued literals 

~ 

Generation of disjoint 
cubes from nondisjoint ones 

for each product 

~ 

Binary Walsh transfonnation 

for each product 

Figure 8. Structure of the multiple-valued Walsh implementation. 

III.1.2 Implementation of the conversion algorithm 
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The general principle is to convert each possible combination of two multiple-

valued literals of a binary function to its logical equivalent of Boolean arrays of cubes. 

The different steps of the conversion algorithm are illustrated with the mv

function xo.1,2,4yo.2 where X is a five valued literal and Y a three-valued literal. Since 

the mv-function has only two literals then only one Boolean array of cubes describes 

fully this function. The conversion is performed by changing the multiple-valued nota

tion (in decimal code) to the binary one. The result of this conversion for the considered 

mv-function is shown in Figure 9. 

The implemented algorithm first generates two list of cubes for each literal of the 

product of literals. The first list contains the corresponding binary on-representation (true 

cube) for each value of a singular multiple-valued literal. If a multiple-valued literal 

does not have a number of zn values (where n =2 for the literal Y and n =3 for the literal 
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X in our example), then a second list containing not -used values as the representation of 

the de-cubes is used. For example, the literal X is described by the two list in Table XXII 

and:XXIII. 

·····~ .... ~ ........... 1 ........... : ............ 2. .... . 

x ~ 00 01 11 10 
I I I 

multiple-valued product of two literals : 

xo.1,2,4 yo.2 
0 ~ 000 1 0 - 1 

1 ~ 001 1 0 - 1 this product converted to the binary array : 

3 ~ 011 0 0 - 0 ON -cubes: I 00000 

00010 

2 ~ 010 1 I 0 I - I 1 I I 00100 

00110 

- i 110 01000 

01010 

- i 111 10000 

10010 

- i 101 

4 ~ 100 1 0 1 
............ _,_ ___ _. ____ _._ ____ ..._ ___ _. 

Figure 9. Conversion of multiple-valued product ofliterals. 

TABLEXXII 

BINARY REPRESENTATION OF A MULTIPLE-VALUED LITERAL 

on cuoe 



XXIII). 
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In order to obtain larger cubes, the cubes of each of these lists are merged (Table 

TABLEXXIII 

MERGED LIST OF THE BINARY REPRESENTATION 
OF TABLE XXII 

Now the binary representations of the cubes of literal X are shifted m positions to 

the left, where m is the number of bits necessary to represent the multiple-valued literal 

Y. Analogously, the cubes describing the literal Y are shifted n positions to the right, 

where n is the number of positions used in the description of the multiple-valued literal 

X. For our example, m = 3, and n = 2. The shifted positions in the cubes are filled with 

don't care symbols. The result at this stage is shown in Table XXIV. 

TABLEXXIV 

SHIFfED BINARY REPRESENTATION OF TWO 
MULTIPLE-VALUED LITERALS 

Yon cubes 

At the final stage, the cubes describing X and Y are intersected, and Figure 10 

shows the complete conversion of the product of the two literals. 
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··. YjO 1 - 2 
. ··········••flo•••••············································ 

X! "' I oo 
01 11 10 multiple-valued product ofliterals : 

xo.1,2,4 yo.2 
0~000 

~ 1 ; 001 0 
" "~ . 

converted product of literals : 

3 j 011 I 0 I 0 ~ - i 0 I ON -cubes: 
I 

-00-0 

2 ~ 010 I 1 1 0 I - l 1 I I 001-0 

010-0 
1....---r- I ~I L 

- ~ 110 

- j 111 
DC- cubes: 

- j 101 
,,_ I I\ - II _/, [-1-- J -

110--

4 j 100 I 1 ~ I \-/ ~ 1 I 
---11 

0 

············· 
Figure 10. Converted product ofliterals to nondisjoint cubes. 

A long variable (having 32 bits) is used to store any of those cubes. Generally, the 

following formula is valid for any product of multiple-valued literals X and Y, having m 

and n bits used for the description of their multiple values: 

m+n=b, 

where b is the number of bits in the total description of the binary cubes. Hence, in our 

implementation, the maximal value of b is 32. In the discussed example, b=5. 

The algorithm which describes all steps of the conversion for multiple-valued 

input binary functions having an arbitrary number of literals is shown below. The nota

tion used in this algorithm is as follows: 



literah : ifh literal of a multiple-valued cube. 

literalk : kth literal of a multiple-valued cube. 

values i : number of values of literalj. 

valuesk : number of values of literah. 
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mapi : necessary bits for the binary minterms to represent the multiple-valued literah. 

mapk : necessary bits for the binary minterms to represent the multiple-valued literalk. 

Algorithm: Conversion from a mv-function to its Boolean representation 

do for each multiple-valued input cube 

{do for each literal of the multi valued cube 

{generate the array of binary min terms according to ones in 

the positional representation of the literal; 

merge the minterms to cubes.} 

do for each product i ,k of the generated arrays 

{append to the cubes of /iterali mapk de literals; 

append the cubes of literah to mapi de literals; 

put the intersections of the cubes to the solution list of the product i ,k. 

do for i ,k 

{if values i ,k < mapi ,k 

{merge all min terms not covered by litera/j ,k; 

append to the cubes of literati mapk de literals; 

append the cubes of literah to mapi de literals; 

put these de cubes to the solution list of the product for i ,k.} } } } 

The solution list of a product of two literals can have nondisjoint de- and on

cubes. Therefore, before applying the Walsh Transformation the disjoint array of cubes 

has to be generated from the nondisjoint one (Figure 11, 13c). 



x 

000 

001 

011 

010 

110 

111 

101 

100 

y 00 01 11 10 multiple-valued product of two literals : 

xo,1,2,4 yo,2 

disjoint arrays of cubes representation : 

ON -cubes: 

DC- cubes: 

-00-0 

001-0 

010-0 

1-1--

110--

0--11 

10011 

Figure 11. Disjoint cube representation of the product of two literals. 
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The final lists of on- and de- cubes can be directly taken as the input data to gen

erate the spectral coefficients with the program for the binary Rademacher-Walsh 

Transformation (Chapter II.6). 

III.1.3 A complete example 

In this part, an execution of the complete program will be illustrated. The input 

format is shown in Figure 12. In this example, the mv-function is composed of two terms 

each having three multiple valued literals: X, Y and Z. The number of the literals and 

their maximal logical values are declared first. Then, the terms are entered in the posi

tional notation. The command .e stands for the end of the declaration list 



#example file for multiple-valued Walsh Transformation 
# .mv [literals] [valueso] .. [valuesn] 

.mv 3 5 3 4 

#X Y Z 
11101 101 0011 
10110 0111010 
.e 
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FiS1!re 12. An example of the input file for the multiple-valued Walsh Transfor
mation program. 

First, all the multiple-valued literals are converted to the binary representation. 

By using the previously described algorithm, the Boolean array of cubes is generated for 

all cubes of a given product of two literals. In the case of our example two Boolean 

arrays (illustrated here as Karnaugh maps) shown in Figure 13a, and Figure 13b are gen

erated. Next, all the results for the same product of literals are merged together. Finally, 

a disjoint array is generated from the nondisjoint on (Figure l 3c, where I stands for the 

bit-by-bit OR operation). 

Similarly the binary representation for all product of literals, in our example the 

products of literal o and literal 2 and the product of literal 1 and literal 2, are generated. 

The final results for those product of literals is shown in Figure 14. 

Now, the binary Walsh Transformation is applied to each of the cube representa

tions in tum. An execution of the binary Walsh Transformation for the product YZ is 

shown below. Since the relationship between these two literals is described by the Kar

naugh map of the dimension 4 x 4 then 16 spectral coefficients fully describe this map. 

The relationship between other products of literals is represented by the spectra having 

32 spectral coefficients each. Thus, the binary function from our example is described by 

three vectors of binary speccra: two having 32 elements and one having 16 elements. 



y 00 01 11 10 ~y 00 01 11 
x x 

000 000 

001 001 

011 011 

010 010 

110 110 

111 111 

101 101 

100 1 - 100 

a. xo.1,2,4 yo.2 b. x 0,2,3 y 1,2 

x· y 00 01 11 10 

000 

001 

011 

010 

110 

111 

101 

100 

c. xo.1,2,4yo.21xo.2,3yl,2 

Figure 13. Conversion of the product of the literals X and Y to disjoint 
cube representation. 
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10 



00 01 11 10 

"' c 17 '\I ( I 
000 

001 l 0 j o~I~ ~z 00 01 11 
y 

011 R o~R 00 

010 01 fl 1 1 

110 ( - I - I - I - ] 11 

111 r- I 
-

I 
-

I -~ 10 

101 

100 I O I 0 

a. pairX-Z b. pair Y-Z 

Figure 14. Disjoint cube representation of other products of two literals. 

TABLEXXV 

FIRST ORDER COEFFICIENTS OF A PRODUCT OF 
TWO MULTIPLE-VALUED LITERALS 

RO R z2.3 R zl,3 R y2,3 R y1,3 

-01- ON 8 0 -8 8 0 

01-0 ON 4 -4 -4 8 -4 

10-0 ON 2 -2 -6 6 -6 

11-- DC -2 2 -2 6 -6 
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10 

In the algorithm, the coefficients of the de coefficient (R 0) and the first order 
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coefficients are generated first. It is shown in Table XXV. For the notation used in the 

spectrum see (30). 

After that, the next consecutive order (second one in this case) is generated. 

TABLEXXVI 

SECOND ORDER COEFFICIENTS 

R z1.2 R z2.3+y2,3 R z2,3+yl,3 R zl,3+y2.3 R zl,3+yl,3 R y1.2 

0 0 0 8 0 0 

4 0 -4 8 4 0 

6 2 -2 6 2 -2 

2 2 -2 6 2 -2 

The last two orders are generated in a similar way and one obtains the complete 

spectrum of the literal product YZ shown in Table XXVII. 

RO 

-2 

TABLEXXVII 

COMPLETE SPECTRUM OF THE 
MULTIPLE-VALUED FUNCTION 

R z2,3 R z1,3 R y2.3 R yI.3 

2 -2 6 -6 

R z1.2 R z2.3+y2,3 R z2,3+yl,3 R z1,3+y2,3 R z1,3+yl,3 R y1.2 

2 2 -2 6 2 -2 

R z1,2+y2.3 R z1.2+y1,3 R z2.3+y1.2 R zl,3+y1.2 R z1.2+y1.2 

2 6 2 -2 2 
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III.1.4 Execution times 

The examples tested to evaluate the execution time have either 5 or 10 values per 

literals. The corresponding numbers of cubes, values and literals can be read from the 

Table. The notations follows the one from Chapter II.2.4. 

TABLE XXVIII 

EXECUTION TIMES FOR THE MULTIPLE-VALUED 
WALSH TRANSFORMATION 

1 
1 
5 
5 
10 
10 

10 
5 
10 
5 
10 

5luera1s 
u 
L 
5.1 3.7 
2.8 4.6 
26.9 6.2 
4.9 5.7 

61.0 6.2 

u 
7. 
31.7 
13.6 

235.9 
24.3 

472.3 

s 
f 6.1 
27.9 
20.4 
31.6 
25.2 
39.5 

The results from the table confirm the theory. The execution time increases 

• nearly linearly with the number of cubes. 

• exponentially with the number of values, because the number of spectral 

coefficients that have to be calculated increases exponentially. 

• linearly with the number of spectra that have to generated according to the 

number of literals (see (30)). 

III.2 MULTIPLE-VALUED GENERALIZED REED-MULLER TRANSFORM 

III.2.1 Description 

The new concept of a mixed polarity multiple-valued input Generalized Reed

Muller expression (MRME) (32) is a generalization of the GRME to multiple-valued 

algebra. It finds several applications in logic design, pattern recognition, and other areas. 

In logic design it can be primarily used for the minimization of EXOR-based 
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counterparts of PLAs with input decoders (16,17,31,33). It will be investigated in this 

Chapter, how to apply the method of pattern matching to perform the transformation 

from a disjoint multiple-valued SOPE or MRME, to another MRME. 

The method for the generation of the MRME consists of two basic parts. First, 

each multiple-valued literal of the mv-input function has to be transformed to a chosen 

polarity (defined below). In the second part the transformed literals for each term are 

taken to calculate the final MRME. 

The theory to change the polarity of a singular multiple-valued literal is defined 

by the two following Theorems. 

Theorem III.I 

Any value of a multiple-valued variable X/; with the set of truth values Pi = 

{0,1, .. ,pi-1} can be created by Pi variables virT;, with the set of truth values 

Tir cAi = {O,l, .. ,pi-1}, where the Pi vectors Air for the mv-variable xis; form 

the row vectors of an orthogonal Pi x Pi matrix Ai. 

Proof: 

One property of an orthogonal m x m matrix 0 with the elements Oij e (0,1) is, 

that any vector U(uo, u i. ... , Um-1) with Uj e (0,1) can be represented by a super

position (performing of bit-by-bit arithmetic sum operation) of row vectors Oi of 

the matrix 0. Hence, any set S of truth values P = {0,1, .. ,p-1} of a mv-literal xs 
can be represented by a superposition (or in the GF(2) field the bit-by-bit EXOR 

operation) of the values from the orthogonal set of truth values A = { 0, l , .. ,p -1}, 

where V, is a row vector of the orthogonal p x p matrix A . 

Example III.I 

To illustrate Theorem III.1 all possible sets of truth values S cP = {0,1,2} of a 

three-valued literal X s are calculated from the representation of the 3 x 3 orthog

onal matrix shown in Figure 15. 
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[ 0 1 1 J [Ti J A = 0 1 0 = T1 

1 0 0 T3 

Figure 15. Example of a 3 x 3 orthogonal matrix. 

In the following Table the calculation of all possible sets of truth values S by 

exoring the rows of the orthogonal matrix A (Figure 15) is shown, where the rows 

are named Ti. T 2 and T 3. 

TABLEXXIX 

ALL POSSIBLE COMPOSIDONS OF POLARITY LITERALS 

truth values S 
,2, 
{1} 

{ 1,2} 
{0} 

{0,2} 
{0,1} 

{0,1,2} 

binarv code 
1 

010 
011 
100 
101 
110 
111 

comoosition of matrix rows 
TiffiT2 

T2 Ti 
T3 

Ti E9T2E9T3 
T2ffiT3 
TiE9Ti 

For the use of less restricted forms Theorem III.1 can be easily generalized with 

Lemma III. I. 

Definition III.4 

The matrix describing the vectors T, of the mv-literals V, T,, where by exoring of 

those literals every possible set S c P = { 0, l , .. ,p -1} of a mv-variable X s can be 

described will be denoted as matrix C. 

LemmaIII.l 

The Theorem III.1 can be generalized to a non canonical form by using instead of 

the orthogonal matrix A the matrix C according to Definition III.4, where the 

orthogonal matrix A is a proper subset of the matrix C. 
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A restricted orthogonal matrix A will further be used to represent the set of 

literals Vir defined in Theorem III. l. 

Theorem III.2 

Any value of a multiple-valued variable X/; with the set of truth values Pi = 

{ 0,1, .. ,pi-1} can be created by Pi - 1 variables Vir with the set of truth values Ai 

= {0,1, .. ,pi-1}, where one of the values of the truth values Pi is not used in the set 

of truth values Ai. The set or truth values have to form a orthogonal 

(p - 1) x (p -1) matrix B. To expand this matrix again to a orthogonal p xp 

matrix A a row corresponding to the de-literal is added. 

Proof· 

The proof is similar to the proof of Theorem III.1 because again an orthogonal 

p x p matrix A is used. It is obvious, that an orthogonal (p - 1) x (p - 1) matrix 

B can be expanded to an orthogonal p x p matrix A by adding a row containing 

only 1 's, and filling up the new positions in the matrix A with O's. 

Example III 2 

The Example ill.1 will be now used for the orthogonal matrix A shown in Figure 

16, where the first row represents the de literal. The set S = { 1} of the truth 

values P is not used by the truth values A for the literals V,. 

[ 
1 1 1 J [ T1 J A = 0 0 1 = Tz 

1 0 0 T3 

Figure 16. Restricted orthogonal matrix A. 



TABLEXXX 

TRUTH VALUES S FOR RESTRICTED ORTHOGONAL MA TRIX A 

Definition III 5 

truth values S 

{l} 
{ 1,2} 
{0} 

{0,2} 
{0,1} 

{0,1,2} 

binarv code 
1 

010 
011 
100 
101 
110 
111 

comoosition of matrix rows 
T2 

T1Et>T3 
T1 EBT2Et>T3 

T2Et>T3 
T3 

T16'T2 
T1 
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The set of truth values Ai for the literals V ir defined in Theorem III.2.2 forming 

the orthogonal Pi x Pi matrices Ai, is the restricted polarity for the literal Xi Si 

with the truth values Pi = {0,1, .. ,pi -1}. Because in the sequel only the 

restricted polarity is used, it will just be called the polarity of literal Xi si. 

Definition III.6 

The literals V ir with the truth values Ai defined in Theorem ill.2.2 are called the 

polarity literals . 

Example III.3 

The four-valued literal x023 can be represented by the set of polarity literals 

shown in Table XXXI. Below the representation of the truth values of the polarity 

literals are illustrated as a orthogonal matrix. The chosen set of polarity literals 

representing any possible four-valued literal are: V? 1 = X 0123, V l 2 = X 13, V / 3 = 

X 23, and Vl4 =X 123. 



TABLEXXXI 

POLARITY LITERALS OF A GIVEN POLARITY 

polarity literal binary representation 

V 1T1 =X0123 = 1 1111 

vl2=x13 0101 

Vl3=X23 0011 

V/4 =X123 0111 

1111 T1 

0101 T2 
A = I = 

0011 T3 

0111 T4 

Figure 17. Polarity matrix for polarity of Table XXXI. 

Example: 

xo23 = 1 © v l3 Et) v l4 

in the binary form representing : 

1111 
0011 

© 0111 
1011 
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According to Theorem III.2 and Definition III.5 it is possible to transform each 

variable of a mv-function f to another polarity. 

Let us recall the notation presented until now in the above Definitions and 

Theorems: 
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TABLEXXXII 

NOTATION FOR THE MRME 

X1 S1 X S2 2 ... XS· i I••• X Sn n 

p i=(O,l, .. ,p 1 -1) Pi=(O,l, .. ,pi -1) Pn=(O,l, .. ,pn -1) 

V Tu V T1, V T1p, V Tn1 V Tnr V T"I'. 
11 ··· ir ··· ip1 ... . .. n i ··· nr ••• npn 

Ai A· l An 

T11 Tn1 

Ai = Ti, An = Tnr 

T1p, Tnp, 

Figure 18. Description of polarity matrices. 

In the first row of Table III.4 the multiple-valued literals Xi S; of a function F(X i. 

X 2 •... ;xn) are shown. Below the set of truth tables Pi for those literals are given. Next the 

polarity literals Vir are shown. Finally in Figure 18 the polarity matrices consisting of 

the value vectors Tir are illustrated. 

Example III.4 

The term X 1°23 X 21 (where X 1 is the same literal as in Example III.3 and X 2 is a 

five-valued literal) shall be represented with the polarity literals denoted as in 

Table XXXII. The polarity for X 1 is the same as in Example III.3: V 11 =X 1 Ol23, 

V 12 =Xi 13, V 13 = X 1 23 , V 14 = X 1 123. The polarity for X 2 is (V 21 = X 2 13, 

v 22 = x 2 23' v 23 = x 2 123' v 24 = x 2 4). 

X 1 °23X 2 1= ( 1 EF> V 13 EF> V 14 ) ( V 22 EF> V 23 ) 
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= 1 E9 v 22 E9 v 23 E9 v 13 v 22 E9 v 13 v 23 E9 v 14 v 22 E9 v 14 v 23 

It will be now investigated how to describe the MRME spectrum M and apply the 

Cube Comparison method to calculate the final MRME from the polarity representation 

of the literals Xi S;. It will be shown, that the Cube Comparison method can be used 

instead of the product multiplication of the two products in Example 111.4. The 

Definition 11.2 defining the Reed-Muller spectrum M for Boolean functions is extended 

here to one of the spectrum for the multiple-valued Generalized Reed-Muller Transfor

mation. 

Definition Ill.7 

The Multiple-valued input Generalized Reed-Muller form (MRME) of a function 

F(X 1,X2, ... , Xn) over the Galois Field 2 (GF(2)), where Xi> i=l,2, ... ,n are the 

literals according to Definition 111.1, can be described by its spectrum M that is 

analogous to the spectrum M defined in Equation ( 1) from Chapter 11.2.1. 

F(X 1.X2 •••. ,Xn) = ao E9 

a1 Vu E9 ... E9 ar V1r E9 ... ap 1 V1p 1 E9 ap 1+1 V21 E9 ... E9 ap 1+ ... +Pn Vnpn E9 

ao1+1V11V21E9ao 1+2V11V31 E9 ... E9ao2Vn_IP_1V11Pn E9 

aon-1+1V11 ... Vn 1 E9 ··· E9 aon V lp1 ... V '7Pn 

The above formula is very general, because every polarity can have a different 

number of polarity literals. The total number of coefficients ai E (0, 1) is dependent 

on the total number of polarity literals, as well as on their number in one polarity. 

For the Definition of the spectrum M still the same Definition 11.2.2 for Boolean 

functions is valid, the basic vectors (standard trivial functions) are now the EXOR 

combinations of the polarity literals. 
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Because of the complexity of the multiple-valued spectrum M only an example of 

a simple spectrum is shown below. 

Example III5 

The spectrum M of the two variable mv-function F(X 1,X 2) = X 1 023 X2 °1 is used 

to show the spectrum and the standard trivial functions of the chosen polarity. 

The chosen polarity for the two literals is shown in Figure 19. In the Figure 20 

the set of all standard trivial functions for these polarities of X 1 and X 2 is given. 

Below the transformation of the product X 1°23 X2 o1 is shown: 

x 1 °23 x 2 Ol = ( v 11 $ v 13 $ v 14) ( v 21 $ v 23) 

= ( 1 $ v 13 $ v 14 ) ( 1 $ v 23 ) 

= 1 $ v 13 $ v 14 $ v 23 $ v 13 v 23 $ v 14 v 23 

For a comparison of the product X 1 023 X 2 Ol with the standard trivial functions in 

Figure 20, the Kamaugh map of this product of literals is shown in Figure 21. 

The reader can observe that the above shown formula can be directly related to 

the Kamaugh maps in Figure 20, and 21. 

1111 T11 

[ 111 J [ T21 J 0101 T12 
A1 = 100 = T22 Ai =I = 

0011 T13 
001 T23 

0111 T14 
-

Figure 19. Polarity matrices. 



2 
X1 0 1 2 

2 
X1 0 1 2 X1 2 o 1 2 X1 2 0 1 

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 

2 1 1 1 2 0 0 0 2 1 1 1 2 1 1 

3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 

l=V11=V21 V12 

x 
V13 

x 
V14 

x 
x 

1 0 0 

1 0 0 

1 0 0 

1 0 0 

V22 

x 
0 0 0 

0 0 0 

1 0 0 

1 0 0 

V 13V22 

x x x 
I 0 0 1 0 0 0 

0 0 1 1 0 0 

0 0 1 0 0 0 

0 0 1 1 0 0 

V23 V 12V22 

x x x 
I 0 0 0 0 0 0 

0 0 0 1 0 0 

0 0 1 1 0 0 

0 0 1 1 0 0 

V 13V23 V14V22 

Figure 20. Standard trivial functions for polarity in Figure 19. 

x 
x 

1 1 0 

0 0 0 

1 1 0 

1 1 0 

Figure 21. Kamaugh map of product X 1 023 X 2 01. 

0 0 

0 0 

0 0 

0 0 

V 12V23 

0 0 

0 0 

0 0 

0 0 

V14V23 
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2 

0 

1 

1 

1 

0 

1 

0 

1 

~-

0 

1 

1 

1 

The new expression can be now represented in the form of spectral coefficients, where 

the indices are again the representation of the standard trivial functions. 
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TABLE XXXIII 

SPECTRUM OF THE PROD UC! X 1X 2 

product Mo Mv12 Mv13 Mv14 Mv22 MvZ3 

X 1 023 X2 o1 1 0 1 1 0 1 .... 

Mv12 V22 Mv12V23 1\1vn V22 Mv:3V23 Mv14V22 Mv14Y23 

0 0 0 1 0 1 

The polarity matrices in the further presentation will be restricted for implementa

tion reasons: one variable in the polarity matrix has to be zero for all the literals 

representing the orthogonal matrix, except the de-literal (see Example ill.3, ill.4). 

III.2.2 Implementation 

Analogously to the theory from Chapter III.2.1 the method for the implementa

tion of the MRME Transformation consists of two algorithms. With the first one the mv

literals from the mv-function Fare transformed to their chosen polarity. This algorithm is 

basically a change of the binary representation of the initial literals of the function F to 

another one representing the EXOR combination of polarities literals. This new code is 

chosen in such a way, that the second algorithm can accept it without respect to the 

chosen polarity. 

The second algorithm performs the Final Transformation, such as shown in Example 

III.5 for a classical method, with the Cube Comparison method. 

The used pointer structures in this procedures are: 

unsigned long *cube; !*represents the literals of the cube *! 

where cube[n] represents an array of n literals (using callee() ). Therefore the number of 

values is limited to 32. 



unsigned int* cube list; /*field to store the addresses of the cubes *! 

where cube_list[n] represents an array of addresses for n cubes. 

Finally 

struct polarity 
{ 

}*pol; 

unsigned int 
unsigned long 
unsigned short 

po _add; I* address to field of polarity literals *! 
notused;!* value not used in the polarity literals *! 
no; I* number of polarity literals *! 
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is the structure to store the polarity literals for each literal of the cube. Where po_ add 

contains the address of the field of polarity literals stored in pol lit. 

unsigned long *pol lit; 

The additional array coeff[ n] is to store the cube for the current created coefficient, the 

array index[m] contains the normalized index of the coefficient which has to be com

pared with the resultant code for the initial literals of each cube derived from the algo-

rithm to transform one literal (Chapter III.2.2.1 ). 

III.2.2.1 Transformation for one multiple-valued literal. The basic steps of the 

algorithm for the transformation of a multiple-valued literal to its representation of polar

ity literals will be illustrated on an example. In Table XXXIV the set of transformations 

of a three-valued literal X for the polarity used in Example III.3 is shown. In the first 

row the possible combinations of polarity literals are shown. In the second row the result 

of the EXOR operation is shown in the binary 'representation. In the last row of the table 

the new code called the normalized code is given. It determines the combination of the 

polarity literals. 



literal 1 V2 

1111 0101 

X3 

x2 

x23 

xi 

x13 1 

x12 

x123 

xo 1 

X03 1 

xo2 1 1 

xo23 1 

xo1 1 

xo13 1 

xo12 1 

xo123 1 

code 1000 0100 

TABLEXXXIV 

SET OF TRANSFORMATIONS FOR A 
MULTIPLE VALUED LITERAL 

V3 V4 V 2ffiV 3 V 2ffiV 4 

0011 0111 0110 0010 

1 

1 

1 

1 

1 

1 

1 

1 

0010 0001 0110 0101 
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V 3ffiV 4 V 2ffiV 3ffiV 4 

0100 0001 

1 

1 

1 

1 

0011 0111 

As mentioned above, the code for the representation of the GRME of one literal is 

chosen in a way, that this normalized code can be directly used to perform the Final 

Transformation. This can be done by using the same representation of the polarity literals 

V 1, V 2, . .. for every chosen polarity. The code determines of what polarity literal/s the 

initial literal is composed of. 
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If a literal has to be represented by a combination of the orthogonal subset and the 

de coefficient, the new code is calculated by the supercube operation of the code for the 

de coefficient and the code of the subset combination. 

Example III.6 

The literal X 1 with the internal representation 0100 is changed to the new code 

1101 for the polarity chosen in Example III.3. The new code representing this 

combination of polarity literals can be derived from Table XL, which is obtained 

from the normalized code shown in Table XXXIV. 

TABLE XL 

CODE REPRESENTATION FOR THE 
POLARITY LITERALS 

In Table XL the normalized code for the possible EXOR combinations of rows 

from Table XXXIV is shown, where according to the indices numbers of the 

polarity literals the normalized code cube has a "1 ". To obtain the code for a 

combination of those polarity literals one has just to perform the supercube opera-

tion on the code from the selected polarity literals. 

The algorithm to generate the new code is shown below. It has the same structure 

as the algorithm shown in Chapter II.4.2 for the generation of one order of coefficients 

for the GAD- and GAR-Transformations. Because the new code here is the same as the 

one used for the indices in those transformations, the same basic procedure could be 

taken. Again, this procedure creates one order (determined by the number of EXOR-ed 
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basic polarity literals). In Table XXXIV every order of the new code is indicated by vert

ical double lines. The following notation is used in addition to the one of Chapter II.4.2. 

Notation 

ind: determines the literal of the cube that has to be transformed. 

code : beginning number of the code for a new order, new code .. 

value : the value of the exored binary representation of the polarity literals. 

pol _list :array of the binary representation of the polarity literals. 

change code: 

substitutes the old code of the literal by the new generated one. 

Algorithm: Transformation of one multiple-valued literal 

unsigned short order; I* order that should be generated *I 
unsigned long code; I* new code for the initial literal *I 
unsigned long pol_lit; !*address of the polarity literals *! 
unsigned long value; !*result of EXOR-ed polarity literals *I 
int ind; I* which literal of the cube *I 

gen lit ( from,to,times) 
uns{gned short from; !* initial 0 *I 
unsigned short to; I* number of different literals minus order *I 
short times; I* determines depth of recursion *I 
{ 

} 

inti; 

times++; 
for ( i =from; i <= to; i ++) 
{ 

} 

I* first bit for 1 *I 
code= code+ (1 <<(30-i)); 
!*generate EXOR list of polarity literals *I 
value= value" pol_lit[i]; 
if ( times < order ) 

gen_lit(i+l, to+l, times); 
else 

change code ( value,ind,code ); 
code= code --( 1 <<(30-i) ); 
value= value" pol_lit[i]; 
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In the subroutine change_code() of the shown above algorithm, the representation 

of the initial literals of all cubes determined by ind, which are equal to value will be 

changed to the new code . 

III.2.2.2 Transformation of a multiple-valued function. After the transformation 

of each literal, as described above, the whole set of multiple-valued cubes has to be 

changed to the MRME. Again, the basic steps of the algorithm will be explained on 

examples. 

Example III.7 

The possible spectral coefficients I standard trivial functions for a spectrum 

representing a function having three distinct literals is shown in Table XXXVI. 

The literal X being four valued is represented by three polarity literals Xi. X 2 and 

X 3. The second literal X 2 being five valued is represented by the polarity literals 

V 2i. V 22. V 23 and V 24· Similarly for the third four-valued literal X 3. 

TABLEXXXVI 

COMPLETE MRME SPECTRUM 

cube de Mv12 Mv13 Mv12 Mvn Mv']A Mvn Mv33 

code 100 110 101 1100 1010 1001 110 1010 

Mv12V12 Mv12V23 Mv12Y24 ... Mv']Av33 

110 1100 100 110 1010 100 110 1001 100 ... 100 1001101 

Mv12V12 V32 Mv12V12V33 ... Mv13 v ']A V33 

110 1100 110 110 1100 101 ... 101 1001 101 
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The same code as shown in Example III.6 is used for each literal, but here only 

one polaritity literal for each literal X 1. X z, and X 3 can occur. The complete code 

for the shown first order in Table XXXVI has additionally the code 1000, 100 for 

the not used literals, analogously as shown above for the second order. 

Code specification: 

1. the indices of the literals are represented in a positional notation. 

2. first bit is always one (code for the de literal). 

According to this we are now able to formulate an algorithm to perform the 

transformation. 

Algorithm: MRME Transformation of a multiple-valued function 

do for all spectral coefficients 

{do for every multiple-valued literal in normalized code 

{if intersection of normalized code and index is not empty 

{add "l" to the value of the spectral coefficient.} } 

if the value of the spectral coefficient is odd 

index of spectral coefficient determines polarity literals 

that form the solution cube.} 

The algorithm which performs the above described transformation consists of two 

basic procedures. The first procedure Pl generates the possible combinations of literals 

of the initial cube, the second procedure P2 takes such a combination and generates all 

possible combinations of polarity literals within this combination. The C source-code for 

these procedures can be found in Appendix D. 



CHAPTER IV 

CANONICAL NOR EXOR SYNTHESIZER (CANNES) 

IV.1 DESCRIPTION OF THE CRMPE 

In (33) a new kind of EXOR-based PLAs was proposed. It makes use of both 

uncomplemented and complemented variables. Hence, it can realize any ESOPE without 

restrictions. The advantage of such an approach is that on the average the PLA structure 

requires lesser rows (terms) than the standard PLA. Since there is no exact minimization 

method or a reliable method that produces a quasi minimum solution of ESOPEs so far, a 

new concept of Canonical Restricted Mixed Polarity Exclusive Sum of Products forms 

(CRMPE) has been recently introduced (34). It has been proven there, that the upper 

bound on the number of terms in the CRMPE is smaller than that in the conventional 

forms and equal to that of the ESOPEs. 

Let us recall the Definition of the CRMPE (34). 

Definition of CRMP E: 

The form: 

F (Xo.X 1 •... ,Xm-1) = ao E9 aiX o E9 a1X 1i E9a~oX1 E9 · · · E9 a2'" -1Xo · · · Xm-1 

(similar to Reed-Muller form (Chapter Il.2.1)) where every variable can be both 

complemented and not complemented, but where there is exactly one coefficient 

for each basic vector (X o. X 1 •... ;x o · · · Xm-1) of the variables of a term, is called 

the canonical restricted mixed polarity form. 
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Example IV.1: 

1 E9 x 1 E9 .X2 E9 .X1x2 is a CRMP form, because there exists only one term for each 

basic vector of variables. 

It was shown (34) that this form leads to the minimum solution only if the func

tion is dense. The Definition of a dense function is, that the Hamming distance between 

the cubes describing the function is less than 3. Hence, the initial Boolean function being 

an array of disjoint cubes has to be decomposed to arrays of dense functions. 

The very generic description for minimization of CRMPE described in (34) talces 

all possible branches of a tree search to find the minimal solution. 

Hence, a fast straight forward algorithm based on heuristical mechanisms which 

will be introduced here has been developed. In the sequel this algorithm will be called 

CANonic Nor Exor Synthesizer (CANNES). The algorithm malces use of a completely 

or incompletely specified Boolean function represented in the form of array of cubes. 

One basic procedure of the CANNES-algorithm is performing the GRME Transforma

tion on parts of the array for all possible polarities to find the minimal GRME. For the 

definitions of prime term and subcombination please see Theorem 2.3 and Definition 4.1 

in (34). 

Definition IV.1 

An essential prime term of a function f is the term of the GRME of this function, 

that has the most subcombinations. 

Definition IV.2 

A subset of a prime term (for short, subset) consists of the prime term itself and 

all of its subcombinations. 

The algorithm of the complete CANNES program performing the minimization 

of SOPE to CRMPE is shown below. The notation as defined in the above Definitions is 



used. 

Algorithm : Minimization to a CRMPE 

generate disjoint array of cubes; 

decompose array to dense arrays; 

do for each dense array 

{do 

{find essential prime term; 

if order of essential prime term < 2 

{final CRMPE found; 

stop} 

find minimal GRME of this subset; 

if ( minimal GRME of subset < subset ) 

substitute subset by minimal GRME; 

else 

essential prime term is term of CRMPE; 

while (TRUE)} 

IV.2 IMPLEMENTATION 
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For the implementation of the CANNES algorithm is separated in several subrou

tines. The structure is shown in Figure 22. 

One can observe, that two procedures of the program are already known. The 

algorithm for the generation of disjoint cubes from nondisjoint ones (Chapter II.1) and 

the procedure for the General Reed-Muller transform (Chapter II.2). Therefore in the 

sequel only the decomposition algorithm and the minimization algorithm will be 

described in detail. 
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The GRME Transformation is the main procedure used, therefore the same struc

tures as for the ORME Transformation implementation (Chapter II.2.2) are taken. 

CANNES 

DISJOINT ARRAY 

DECOMPOSITION 

GENERAL REED MULLER 

MINIMIZATION 

POLARITIES 

I GENERAL REED MULLER 

Figure 22. Structogram of CANNES. 

In the CANNES program the algorithm to generate disjoint cubes from nondis

joint ones is first performed, because for the decomposition algorithm (Chapter N.2.1) 

the Boolean function has to be represented as an' array of disjoint cubes. The minimiza

tion algorithm is based on the representation of the function in any GRME. The best 

result is obtained, when the minimal GRME is selected. Hence, for each dense array the 
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minimal GRME is found by generating all possible GRMEs. Next every dense array 

being represented by its minimal GRME is minimized by the minimization algorithm 

(Chapter IV.2.2). 

IV.2.1 Decomposition of a sparse function 

To be able to obtain a quasi minimal solution for a sparse function, it has to be 

decomposed to a representation of sets of dense functions (34). To perform this task a 

simple algorithm has been designed. 

Example W.2.1 

01 

11 

10 

Figure 23 presents a sparse function f represented in a Karnaugh map. To gen

erate the dense arrays for this function it is separated into parts having smaller 

Hamming distance than three. 

11 10 

0 0 

0 0 0 0 

0 0 0 

0 0 0 0 

sparse function f : 

[:] 
dense set 1 

[000~ :~ 

Figure 23. Decomposition of sparse function. 

[ 1110] 

dense set 2 

The basic idea of the decomposition algorithm is to take one cube of the input 

array and perform the supercube operation (bit-by-bit OR operation between two cubes, 

in the algorithm denoted as D with all other cubes to which the Hamming distance is 

smaller than three. This has to be repeated, as shown in the algorithm below, until one 

obtains different arrays of cubes, where every array represents a dense function. 



Notation: 

cubes number of cubes in the input array. 

supercube 

variable that contains the result of the supercube operation. 

H( supercube,cube) 

function that gives the Hamming distance between the supercube and the cube. 

TRUE flag to determine that an additional cube with H<3 has been found. 

Algorithm: decomposition of a sparse input function 

do 

{ supercube =first cube of the input array; 

cubes = cubes - 1; 

do for all remaining cubes 

{NEW= FALSE; 

do for all cubes: 

{if H(supercube,cube) < 3 

{ supercube = supercube I cube; 

cubes = cubes - 1; 

NEW=TRUE}} 

while ( NEW ==TRUE ) } 

move all cubes covered by the supercube to a new array; 

while ( cubes > 0 ) } 

IV .2.2 Minimization of a dense function 
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In the complete algorithm of the CANNES program (Chapter IV.1) the general 

method of the minimization was described. For the implementation, only the procedures 

to handle the array operations such as removing of the subsets of an essential prime term 
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have to be added. Therefore, a more detailed algorithm is given below. For the complete 

description of the CANNES program one can refer to its source code. 

Notation: 

input array 

output array 

: array that contains the cubes of a GRME of the dense function. 

: array that contains the final minimized CRMPE. 

Algorithm: Minimization of a dense function in GRME 

do 

{find essential prime term; 

if order of essential prime term < 2 

put all terms to output array; 

break; 

extract the subset of the essential prime term from the array; 

generate all possible GRMEs of this subset; 

take the minimal GRME of this subset; 

if ( CARD(minimal GRME of subset) < CARD(subset) ) 

substitute subset with its minimal GRME in the input array; 

else 

put essential prime term to output array; 

while (TRUE)} 

In the next Chapter this algorithm is illustrated on an example. 

IV.3 A COMPLETE EXAMPLE OF AN EXECUTION OF THE CANNES PROGRAM 

For the description of the final algorithm for the implementation the function F 

shown in Figure 24 was taken. As one can observe, the function is dense, hence, only one 

array of cubes representing the whole function has to be minimized. 



001 011 010 110 111 101 

00 

01 

11 

IO 

" 

Figure 24. Test function. 

100 cubes: 

00-10 

01101 

01110 

01000 

01011 

11001 

11010 

11100 

1-111 

10011 
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For comparison, the solution given by the well-known minimization program 

ESPRESSO (21) and the solution calculated by CANNES are shown in Figure 25. 

00-10 10-11 00-0-

01101 11100 -0-00 

01110 01101 ----0 

01000 01000 ---0-

01011 11001 -10--

11001 • 0-110 1----

11010 11010 

11100 00-10 

1-111 01011 

10011 1-111 

a. input array b. minimization by ESPRESSO c. minimization by CANNES 

Figure 25. Comparison ESPRESSO with CANNES. 

As one can observe from Figure 24 the input function is already disjoint and 

dense. Hence, the ORME Transformation to obtain the ESOPE for the final minimiza

tion can be directly executed. 
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First all possible GRMEs are generated for the input function. The GRME with 

the minimal number of terms is selected (Figure 26). 

GRME 

0---
--0--
-00--
---0-
00-0-
----0 
-0-00 

Figure 26. GRME of the non sparse array. 

The different steps of the now performed minimization are illustrated in Figure 

28. The prime term with the most subcombinations in Figure 26 is 00-0-. The list of its 

subcombinations is shown in Figure 27, and as a subset in Figure 28a. 

suocombination 

0---
---0-

Figure 27. Subcombinations. 

Next the minimal GRME of this subset has to be generated, by calculation of all 

possible GRMEs. Because all GRMEs do not have less cubes than the initial subset, the 

essential prime term is a final solution term. Therefore it is stored in the solution array 

(first cube in solution array Figure 28b). The term 0--- is now a prime term in the 

remaining array. So it is also given to the solution array. 

Again, the prime term with the most subcombinations (essential prime term) for 

the remaining cubes has to be found. This essential prime term -0-00 with its subcombi

nations (shown as a subset in Figure 28b) does also not lead to a more minimal solution. 

Therefore the essential prime term is also a final solution term and has to be put with the 

prime terms of the remaining array to the solution array (Figure 28c ). Again, the next 

essential prime term has to be found. 



a. first loop 

l 
--0--

-00--

----0 

-0-00 

subset: 

[ 

00-0- l 
0---- J" 
---0-

c. third loop 

[ -----
J l solution array : 

00-0-
subset: 

-0-00 

1-oo-- J 0----

L L--o-- ----0 

---0-

GRM of subset: 

I L-10-- J 

b. second loop 

[ ~~~~~ J 
-00--

subset: 

[ ~~i_o J 
----0 

d. fourth loop 

solution array : 

-10--

00-0-

-0-00 

0---

----0 

---0-
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solution array : 

C00-0- J 
0----

Figure 28. Step by step minimization of the array shown in a. 

In Table XXXVII, subset in Figure 28c, the subset of this prime term and t~e 

minimal GRME is shown. 
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TABLE XXXVII 

MINIMAL GRM OF A SUBSET 

suoset I m1mmal GRME 
()() -1()--
--0--

The final two cubes are prime terms and so they are immediately put to the solu-

tion array (Figure 28d). As one can observe this solution is not the final solution shown 

in Figure 25c. The general minimization according to the algorithm shown in Chapter 

IV.3.1 is finished. As a last minimization step it is tried to substitute a possible de term 

(-----).In our example-----"' 0---- = 1----. With this last interaction we get the result as 

shown in Figure 25c. 



CHAPTER V 

CONCLUSION 

The basic ideas of the new Cube Comparison Method have been shown for 

several discrete spectral transformations of logic functions. The first part of the Cube 

Comparison Method has been to compare the disjoint cube representation of a logic func

tion with all indices of the spectral coefficients. Secondly the signs of the values have 

been calculated according to the order of the spectral coefficient. Finally the last part of 

the Cube Comparison method has been illustrated for the Rademacher Walsh Transfor

mation, where the values of the spectral coefficients depend on the number of de-literals 

in the cubes. The internal memory requirement, that limits all other existing implemen

tations, has been overcome by the Cube Comparison Method. It has been also possible to 

generate only single spectral coefficients of the whole spectrum. This is for example use

ful for cases, where only those coefficients with the largest magnitude are necessary 

(25,26). Additionally, without any speed up methods, the implemented transformations 

are up to several times faster than the current existing ones. 

Still, there are other speed up possibilities. In the current implementations, every 

cube is compared with all the indices of the spectral coefficients. Many cubes of the array 

of cubes have no contribution to certain orders of spectral coefficients. Hence, by sorting 

the cubes of the input array according to their smallest/highest order of spectral 

coefficients that are not equal to zero the calculation time can be sped up several times. 

Another possibility is to generate the spectral coefficients directly from the cube 

representation of the function. This approach will speed up the processing time, but its 

disadvantage is, that the whole spectrum has to be stored in the computer memory. 
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On top of that, all the algorit."lms can be performed in parallel. Because every 

spectral coefficients can be calculated directly from the cube representation, all spectral 

coefficients and the spectra for every cube can be processed in parallel. There are hardly 

any limitations for the parallelization of the algorithms. Thus, efficient implementations 

on pipelined vector processors and recently introduced DSP-coprocessors for personal 

computers are possible. It makes it also vei'_" well suited for systolic VLSI realizations. 

The two advantages, no memory :requirements and the shorter processing time, 

give:> the new C!lbe CoLTipnrison ::\letf:ou for spectral transfomiation the advantage over 

all mher currently exhting methods yielding solutions to problems of very high dimen

sions. 
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Definition 1 

A literal is a variable Xi which can either be positive (xi/1) or negative (xi/0). A 

literal that can be in both forms is called a don't care (de) literal ( /-). 

Definition 2 

A term t of degree m is a product of m distinct literals, not including de literals. 

For example the term abc has the degree 3. The number of de literals in term tis 

denoted by p . 

Definition 3 

A cube of degree m is the representation of a term t of degree min binary form. 

Assuming three variables of order a,b,c for the term abc the binary form is 110. 

Definition 4 

In a n-variable combinational logic function F, n is the number of distinct 

literals. Then, n = m + p. 

Definition 5 

A minterm mt of an -variable combinational logic function F is a term that has n 

literals and no de literal. All minterms necessary to describe this function Fare so 

called on minterms, minterms for that the function F is not specified are the so

called de minterms and finally all other minterms, that are not used for the func

tion Fare off min terms. 

Example: 

The literals that occur in a function f are a,b,c and d. Therefore the term abc is 

described by the cube representation 110-, where ' -' stands as a de literal for the 

literal d not used in this term. 



APPENDIXB 

INPUT FORMAT FOR DISCRETE BINARY TRANSFORMATIONS 
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In general all programs introduced here use the ESPRESSO input format (30). An 

example of this format is shown below. 

# example of a general input file 
.i4 
.o 1 
1-00 1 
1-1- 0 
--11 -
-1-- 1 
.e 

The number after .i determines the number of input literals, where the input 

literals can be on-(1), off-(0), or de-(-) literals. The symbol .e at the end of the file deter-

mines the end of the list of input cubes. All programs for Boolean functions are limited to 

32 input literals, except for the disjoint and ESOPE to SOPE implementation. These last 

two program have no input limitation basing on their different pointer structures. 

The number after .o determines the number of output literals. All programs for 

Boolean functions are limited to 1 output literal. For the GRME transformation this value 

is ignored, because the program works only for on-cubes. The type is similar coded to the 

literals (on(l), off(O), de(-)). 

In the above example the first four bits (i.e. 1-00) of one line determine the four input 

literals. The one that follows that four positions determines the type of the cube. 

In the follows the additional notation necessary for certain programs are 

described: 

GRME Transformation 

For the GRME Transformation the first cube in the input file will be read as the 

polarity. Hence, no de-literal ( -) is allowed. 

GARD Transformation 

Similar to the GRME Transformation the first cube of the input file will be read as 

the polarity. Additionally the following Notations are used: 



.t+/.t-

. R/.S 
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The letter t stands for transformation. The following letter "+" 

determines that the Adding transformation is performed. If the 

letter"-" follows the Arithmetic transformation is performed . 

The letters R!S specify the chosen coding of the spectrum. The 

letter R determines that the spectrum according to the coding of 

the R spectrum is generated. Similar for S. In the current version 

of the program the R spectrum is not implemented, but the subpro

gram has been written in a way to expand it easily. 

INGARD Transformation 

The input format of the INGARD implementation is the same as the output for

mat of the GARD transformation. Where the specification of the transformation is 

the same as for the GARD transformation, including the polarity cube. The dif

ferent orders are separated by .n [ordernumber]. An example is shown below. 

The specification .o [outputliterals] is not necessary. 



# example output file of the GARD transformation 
#which is the input format of the INGARD transformation 

.i4 

.o 1 

.R 

.t+ 

1111 

.no 
0 
.n 1 
0 
0 
0 
1 
.n2 
0 
1 
2 
0 
2 
1 
.n 3 
2 
3 
3 
2.5 
.n4 
6 
.e 
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The input format for the multiple-valued Walsh transformation is shown in 

Chapter III.1.3. It is similar to the input format of ESPRESSO (30). 

For the MRME Transformation implementation additionally the polarity has to be 

specified. Therefore, first the polarity cubes have to be read, such as for the ORME 

Transformation An example of an input file of the MRME Transformation is shown 

below. The number of literals per cube determines the number of polarity cubes that have 

to be read. In the below example this means two polarity cubes. 

#example file for the MRME Transformation 
# .mv [literals] [values o] .. [values n] 

.mv25 34 

# now the two polarity cubes follow 
11101 101 0011 
10110 0111010 
# now the cubes follow 
100110111101 
11001 001 0010 
.e 
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Algorithm: GRME for a multiple-valued input function 

Procedure Pl: 

gen_order ( from,to,order,times) 
unsigned short from; /*initial 0 *I 
unsigned short to; /* number of different literals minus order *I 
unsigned short order; /*order that should be generated */ 
unsigned short times; /* to determine the loop of the procedure *I 
{ 

} 

int i,k; 

times++; 

for ( i = from; i <= to ; i ++ ) 
{ 

which_lit[times-1] = i; 
if ( times < order ) 

else 
{ 

gen_ order ( i+ 1,to+ 1,order,times ); 

/* allocate memory for Procedure P2 *I 
coeff = (LONG*)calloc(literals,sizeof (LONG)); 
index = (LONG*)calloc(literals,sizeof(LONG)); 
for ( k = O; k <literals ; k++ ) 

index[k] = first[31]; 
gen_coeff( order ,0); 
free ( coeff ); 
free ( index ); 
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Procedure 2: 

gen_coeff (order, times) 
unsigned short order; 
unsigned short times; 
{ 

int i,k,l; 
int final; /* to determine if even or odd coefficient *I 
short match;/* check if all literals have an intersection *I 

times++; 
for ( i = 0; i < pol[which_lit[times-1]].no; i++) 
{ 

pol_lit = pol[ which_lit[ times-1 ]] . po_add; 
coeff[ which_lit[ times-1 ]] = pol_lit[i]; 
/*first bit is used to determine if+ 1 in algorithm 1 */ 
index[ which_lit[times-1]] = 1 << (30-i); 
if ( times < order ) 

else 
{ 

} 

gen_coeff ( order,times ); 

/* check if intersection for all literals is not empty */ 
/*for 1 has to be done outside this loop ! */ 
final= O; 
for ( 1=0; 1 <cubes; l++) 
{ 

} 

/*check current ESOP form for all cubes */ 
cube= cube_list[l]; 
match =TRUE; 
for ( k = 0 ; k < literals ; k++ ) 

if ( ( coeff[k] & cube[k] ) == 0) 
match= FALSE; 

if ( match == TRUE ) 
if ( final == 0 ) 

final= 1; 
else 

final= O; 

if ( final == 1 ) 
for ( k = 0 ; k <order ; k++ ) 

output_ value(coeff[ which_lit[k]]); 
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