
Portland State University Portland State University

PDXScholar PDXScholar

Electrical and Computer Engineering Faculty
Publications and Presentations Electrical and Computer Engineering

1-2018

A Time-Efficient CMOS-Memristive Programmable A Time-Efficient CMOS-Memristive Programmable

Circuit Realizing Logic Functions in Generalized Circuit Realizing Logic Functions in Generalized

AND-XOR Structures AND-XOR Structures

Muayad Aljafar
Portland State University

Marek Perkowski
Portland State University, marek.perkowski@pdx.edu

John M. Acken
Portland State University

Robin Tan
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/ece_fac

 Part of the Computer Engineering Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Aljafar, Muayad; Perkowski, Marek; Acken, John M.; and Tan, Robin, "A Time-Efficient CMOS-Memristive
Programmable Circuit Realizing Logic Functions in Generalized AND-XOR Structures" (2018). Electrical
and Computer Engineering Faculty Publications and Presentations. 436.
https://pdxscholar.library.pdx.edu/ece_fac/436

This Pre-Print is brought to you for free and open access. It has been accepted for inclusion in Electrical and
Computer Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar.
Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PDXScholar

https://core.ac.uk/display/212624542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece
https://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F436&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F436&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/ece_fac/436
https://pdxscholar.library.pdx.edu/ece_fac/436?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F436&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu



Abstract— This paper describes a CMOS-memristive

Programmable Logic Device connected to CMOS XOR gates

(mPLD-XOR) for realizing multi-output functions well-suited

for two-level {NAND, AND, NOR, OR}-XOR based design. This

structure is a generalized form of AND-XOR logic where any

combination of NAND, AND, NOR, OR, and literals can replace

the AND level. For mPLD-XOR, the computational delay, which

is measured as the number of clock cycles, equals the maximum

number of inputs to any output XOR gate of a function assuming

that the number of XOR gates is large enough to calculate the

outputs of the function simultaneously. The input levels of

functions are implemented with novel programmable diode

gates, which rely on the diode-like behavior of self-rectifying

memristors, and the output levels of functions are realized with

CMOS modulo-two counters. As an example, the circuit

implementation of a 3-bit adder and a 3-bit multiplier are

presented. The size and performance of the implemented circuits

are estimated and compared with that of the equivalent circuits

realized with stateful logic gates. Adding a feedback circuit to the

mPLD-XOR allows the implementation of a multilevel XOR

logic network with any combination of sums, products, XORs,

and literals at the input of any XOR gate. The mPLD-XOR with

feedback can reduce the size and number of computational steps

(clock cycles) in realizing logic functions, which makes it well

suited for use in communication and parallel computing systems

where fast arithmetic operations are demanding.

Index Terms— ESOP structure, parity circuit, programmable

logic device (PLD), self-rectifying memristor, stateful logic,

volistor logic.

I. INTRODUCTION

N today’s computer architecture, a key problem limiting

system speed is the amount of time spent on moving data

between the processor and memory. A way to address this

problem is to have memory within the calculation circuit. The

invention of memristors [1-2] opens the door for changing the

computing paradigms of separating calculation from memory.

Memristors, as non-volatile devices, enable stateful logic [3-

7], hence, saving time spent moving the data between memory

and processor. One approach is to use memristor-based

stateful logic. The basic operations of IMPLY and FALSE can

be implemented in stateful logic. They form a functionally

complete logic set and can implement any logic function in

any logic system such as AND-OR or SOP (Sum-of-

Products), AND-XOR or ESOP (Exclusive-OR-Sum-of-

Products), TANT or Three-level-AND-NOT-Network with

True inputs [8], AND-OR-XOR Three-Level Networks [9],

and so on.

Alternatively, our motivation in this work is to realize

arithmetic and communication functions in ESOP form. The

ESOP realization of such functions decreases the number of

products and literals compared to their realizations in SOP

form [10], as described in Section III. The key point in

realizing such functions in ESOP form is to implement multi-

input XOR gates, which has been a challenge in conventional

CMOS technology, i.e., a multi-input XOR gate is slow,

consumes large amounts of power, and occupies larger areas

compared to other combinational gates. Realizing a multi-

input XOR gate with stateful logic would also require a long

sequence of stateful operations or a large number of

memristors. This disadvantage is due to the fact that XOR

gates are only available in two logic levels (such as NAND-

OR), for example, when implemented with IMPLY and

FALSE operations. Consequently, realizing an n-input XOR

gate requires realizing an exponential number of products, i.e.,

2n-1. Implementation examples of multi-input XOR gate based

on stateful logic are shown in [6][11]. An n-input XOR of

literals can be implemented in the same manner described in

[6] in a (2n–1+1) × (n+1) crossbar array with approximately 2n

computational steps. It can also be realized in the NAND-OR

synthesis method [11] in a 1 × 2n crosspoint array in almost

2n– 1 computational steps.

In addition to the computational crossbar arrays considered

in [6][11], there are crossbar arrays used as Resistive Random

Access Memory (ReRAM) [12] to store control data required

for driving the computational arrays. While in our paper we

used the ReRAM for control storage, in general it can have

other uses. The size of the ReRAM is determined by the

number of control bits used for driving the computational

array per clock cycle and the number of clock cycles for

realizing a function. For example, the size of the ReRAM for

driving a (2n –1 + 1) × (n + 1) computational array can be

estimated as ((2n-1 + 1) + (n + 1)) × 𝛼 × m where 𝛼 is the

number of control bits for driving each nanowire of the

A Time-Efficient CMOS-Memristive

Programmable Circuit Realizing Logic

Functions in Generalized AND-XOR Structures

Muayad J. Aljafar, Marek A. Perkowski, John M. Acken, and Robin Tan

I

computational array per clock cycle, and m is the number of

computational steps.

This paper proposes a memristive programmable PLA-like

circuit for realizing multi-output functions well-suited for

two-level {NOR, AND, NAND, OR}-XOR based design.

This circuit is called mPLD-XOR, which is memristor-based

Programmable Logic Device connected to a CMOS modulo-

two counters. The computational delay of the mPLD-XOR,

which is measured as the number of clock cycles, equals the

maximum number of inputs to any output XOR gates of a

multi-output function, assuming that the number of modulo-

two counters is large enough to calculate the XOR gates of the

function simultaneously. The size of each computational array

in mPLD-XOR is at most 1 × 2n where n equals the number

of primary inputs. The control data required for driving the

computational arrays are stored in ReRAM whose size

depends on the number of primary inputs n, the number of

computational steps m, and the number of outputs of the

function, as described in Section VII.

The mPLD-XOR approach has some advantages over the

stateful approach. In the stateful approach, one would first

calculate a function by populating the inputs in a

computational array and then implement stateful gates. As a

result, to calculate the function for a new set of inputs, the

computational array must be cleared (by the FALSE

operation), the new set of inputs must be populated, and the

stateful gates must be implemented again. In this process,

most of the computational steps are assigned for populating

the inputs in the computational array [6]. In contrast, in

mPLD-XOR implementation, this long process does not exist

since the circuit uses voltage as input. In addition, the

computational arrays are programmed only once for

calculating a multi-output function for any new set of inputs,

as described in Section IV. And the XOR gates are realized in

CMOS modulo-two counters as described in Section V.

The mPLD-XOR implements multi-output functions in

generalized ESOP forms, i.e., two-level structures where input

levels consist of any combination of NAND, AND, NOR, OR,

and literals, and output levels are made of only XOR gates.

Input levels are implemented using novel programmable

diode gates. These programmable gates, which rely on self-

rectifying memristors [13-15], have no practical limit on the

number of inputs, as described in Section IV. The output

levels are realized in CMOS memory, i.e., modulo-two

counters, and permanently stored in resistive memory using

volistor NOT gate [16]. The generalized ESOP structures are

good candidates for arithmetic and communication

applications.

The paper is organized as follows. In Section II, a review of

self-rectifying memristors is provided. In Section III, a

generalization to the ESOP structure is introduced. A new

approach to realize memristor-based programmable diode

gates is proposed in Section IV. In Section V, the mPLD-XOR

for realizing circuits in the generalized ESOP structure is

proposed, followed by a brief description of mPLD-XOR read

and write configuration in Section VI. Section VII shows how

to implement a 3-bit adder and 3-bit multiplier in the mPLD-

XOR. In addition, the size and performance of the circuits are

estimated and compared to their corresponding circuits

realized with stateful logic operations. In Section VIII, power,

area, and delay of the programmable diode gates and mPLD-

XOR are evaluated and compared to previously proposed

memristive logic styles for N-bit addition operation. Section

IX concludes the paper.

II. SELF-RECTIFYING MEMRISTORS

In the early 1970’s, Leon Chua originally conceived the

concept of a memristor (short for memory-resistor) to link

electric charge and magnetic flux [1]. The memristor, which

is the fourth two-terminal basic element (in addition to

resistor, capacitor, and conductor), remained a theoretical

concept until researchers at Hewlett-Packard Laboratories

successfully created the first device to be called a memristor

in 2008 [2]. Unlike a conventional three-terminal transistor, a

memristor is a two-terminal non-volatile passive device and

retains the advantages of small size, low power consumption,

and fast switching time. Crossbar structures have been

investigated for a number of applications such as high-density

ReRAM, programmable logic, and adaptive neuromorphic

circuits [17-20]. The practical issue of the crossbar structures

is the crosstalk due to the sneak path currents. These sneak

currents are a result of reversely biased cells of the crossbar

arrays and should be eliminated. To resolve this problem, Kim

et al. [13] proposed a self-rectifying memristor or a memristor

with intrinsic diode behavior. The self-rectifying memristors

suppress the sneak path currents below 1pA due to the large

rectifying ratio of the memristors, i.e., from three to six orders

of magnitude (103-106) [13-15]. As a result, the use of self-

rectifying memristors decreases the leakage power in crossbar

arrays [14][21-22].The multi-bit storage capability of the cells

was also reported [13-14]. In this work, a simplified model of

self-rectifying memristor described by (1) and (2) is used for

performance evaluation [21].

Fig. 1. i-v characteristic of the self-rectifying memristor. The device is

initialized to HRS and driven by a sinusoidal signal with 1.2V amplitude and
25MHz frequency. The inset shows a symbolic diagram of a memristor.

When the voltage exceeds VCLOSE, the flow of current into the device

decreases the resistance of the memristor.

𝑅 = {
ROPEN (

RCLOSED

ROPEN
)

𝑠

 𝑣 ≥ 0

ROPEN 𝑣 < 0
 (1)

In Equation (1), R represents the resistance of a self-

rectifying memristor, 𝑠 is a state variable normalized to a real

number between [0, 1], 𝑣 is the voltage applied across a

memristor, and ROPEN represents the resistance when a

memristor operates at HRS (high resistance state) while

RCLOSED represents the resistance when a memristor operates

at LRS (low resistance state). According to the empirical

results reported in [14], it is assumed that typical ROPEN =

500MΩ and RCLOSED = 500KΩ. The dynamic behavior of the

state variable 𝑠 is described by (2).

𝑑𝑠

𝑑𝑡
= {

𝛼(𝑣 − 𝑣𝐶𝐿𝑂𝑆𝐸) 𝑣 ≥ 𝑣𝐶𝐿𝑂𝑆𝐸

𝛼(𝑣 − 𝑣𝑂𝑃𝐸𝑁) 𝑣 ≤ 𝑣𝑂𝑃𝐸𝑁

 0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 (2)

Where 𝑣𝐶𝐿𝑂𝑆𝐸 is a positive threshold voltage, 𝑣𝑂𝑃𝐸𝑁 is a

negative threshold voltage, and 𝑣𝐶𝐿𝑂𝑆𝐸 = −𝑣𝑂𝑃𝐸𝑁 = 1V, as

used in [21]. In Equation (2), 𝛼 is a positive constant

associated with the programming rate of memristor and is

assumed to be 125 × 107 (V. s)−1. When 𝑣 equals VSET (a

positive programming voltage), the state transition in

memristors from HRS to LRS occurs in 4ns, which is

comparable with empirical programming rates reported in

[23-24]. VSET is defined as 1.2V, and VCLEAR, which is a

negative programming voltage, is defined as –1.2V. Fig. 1

shows the hysteresis behavior of a self-rectifying memristor

as found by the LTspice simulator. It illustrates the 𝑖 − 𝑣

characteristic of a self-rectifying memristor as described in (1)

and (2). The inset shows the symbolic diagram of a memristor.

When the voltage exceeds VCLOSE, the current flowing into the

device decreases the resistance of the memristor in HRS. The

results of the power analysis should be considered an

estimation using this simplified model. In this work, the same

SPICE model of the self-rectifying memristor proposed in

[21] is used for performance evaluation.

III. A GENERALIZED ESOP STRUCTURE

Arithmetic functions are well-suited for ESOP-based

design. These functions are implemented with a smaller

number of products, interconnections, and literals than their

counterparts implemented in AND-OR based design [10][25-

26]. Table I shows the number of products and literals of

benchmark functions implemented in SOP and ESOP based

designs using the Quine-McCluskey algorithm for multi-

output functions [27] and the EXMIN2 algorithm [25],

respectively. The numbers clearly show the advantage of

ESOP based design over SOP design for arithmetic functions.

In two-level AND-XOR networks, realizing multi-input

XOR gates is essential. A multi-input XOR gate can be

implemented as a cascade (or a tree) of two-input XOR gates.

However, using a traditional CMOS technology, this approach

results in a slow XOR gate [28]. In this study, we use the

hybrid CMOS-memristive technology and propose a

memristive programmable logic device connected to modulo-

two counters (mPLD-XOR) to realize multi-output functions

in ESOP based design. The mPLD-XOR can implement the

XOR gates with a practically unlimited number of fan-in,

which is an advantage over existing technologies (except

quantum reversible circuits). The mPLD-XOR also allows the

implementation of logic functions in two–level {NAND,

AND, NOR, OR}-XOR based design, which is a generalized

TABLE I

NUMBER OF PRODUCTS AND LITERALS OF BENCHMARK FUNCTIONS
[10]

 Number of Products Number of Literals

In Out SOP ESOP SOP ESOP

5xp1 7 10 63 32 278 120

9sym 9 1 84 51 504 372

addm4 9 8 189 91 1225 521

adr3 6 4 31 15 116 44

adr4 8 5 75 31 340 112

clip 9 5 117 67 631 402

cm82a 5 3 23 13 80 33

f51m 8 8 76 32 326 112

inc8 8 9 37 15 100 43

life 9 1 84 49 672 311

log8 8 8 123 104 730 550

mlp4 8 8 121 62 736 305

nrm4 8 5 120 69 716 391

rd53 5 3 31 14 140 39

rd73 7 3 127 35 756 134

rd84 8 4 255 59 1774 267

rdm8 8 8 76 32 325 112

rot8 8 5 57 36 305 197

sqr8 8 16 180 112 1068 546

squar5 5 8 25 20 95 57

z4 7 4 59 29 252 111

 (a) (b) (c)

Fig. 2. (a) Schematic of {NAND, AND, NOR, OR}-XOR logic structure. (b)

Logical equivalence of {NAND, AND, NOR, OR}-XOR structure as realized
in mPLD-XOR. (c) mPLD-XOR realizes functions in NOT-OR-XOR-NOT

logic structure.

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . .

F1 F2

Fig. 3. Function G1 is implemented as its logical equivalence, G2.

¬a

b

¬c

d

e

f

c

d

e

f

a

b

G1=G2

G1 G2

ESOP logic design. Fig. 2a shows the schematic of a two-level

{NAND, AND, NOR, OR}-XOR structure. The mPLD-XOR

implements the input level of functions using OR and NOT

gates, i.e., NAND is realized as NOT-OR using De Morgan

law, ¬(ab) = (¬a) + (¬b), NOR as OR-NOT, and AND as

NOT-OR-NOT, as shown in Fig. 2b. Note that ¬a denotes the

negation of variable a. Inverters at the input of XOR gates can

be moved to the outputs. If the number of inverters is odd, the

outputs must be inverted , i.e., ¬a ⨁ b= ¬(a ⨁ b) (output F2

in Fig. 2c). If the number of inverters is even, the outputs are

non-inverted, i.e., (¬a) ⨁ (¬b) = a ⨁ b (output F1 in Fig. 2c).

Fig. 3 shows an example of a single-output function (G1) in

the generalized ESOP structure and its logical equivalence

(G2) as implemented using mPLD-XOR.

IV. MEMRISTIVE PROGRAMMABLE DIODE LOGIC

Since the invention of memristors [2], there have been

multiple proposals for memristive logic calculations. Some of

them use resistance as input and output [3-7][21][29]. Some

others use a mix of voltage and resistance as input and

resistance as output [16][30]. Other proposals use voltage as

input and output [31-35]. In this work, we propose a novel

approach for realizing a diode logic OR and a diode logic

AND gate [36], which rely on self-rectifying memristors and

use voltage as input and output. These diode gates are used in

mPLD-XOR to implement the input level of functions. In

contrast to the earlier reported work [34], we propose a

significantly different operation of the structurally similar and

conceptually different gates.

Fig. 4a shows the schematic of a two–input memristive

programmable diode OR gate realized with self-rectifying

memristors. The proper operation of the programmable diode

OR requires initializing the memristors to LRS. In addition,

input voltage 𝑣 must satisfy the inequalities 0V ≤ 𝑣 ≤ VCLOSE

Fig. 4. Memristive programmable diode OR gate. (a) Schematic of a two-input diode OR gate implemented with self-rectifying memristors. (b) Behavior of a

two-input diode NOR. (c) Relation between the size of a diode NOR and its RC delay during the precharge interval. (d) Schematic of a 100-input diode NOR

gate. (e) Behavior of a 100-input diode NOR gate. (f) Schematic of a two-input diode NOR with pull-down transistor. (g) Behavior of a two-input diode NOR

with pull-down transistor.

where VCLOSE is the positive threshold voltage (see Fig. 1).

This voltage constraint is to ensure that the resistance states of

self-rectifying memristors remain unchanged, as described by

(2). The input voltage levels are defined as 0V and 1V

encoding logic ‘0’ and ‘1’, respectively. Assuming that

memristors M1 and M2 in Fig. 4a are connected to high and

low input voltages, respectively, the behavior of the

programmable diode OR gate can be described by Δ𝑣 =
(𝑅𝑂𝑃𝐸𝑁 + 𝑅𝐶𝐿𝑂𝑆𝐸𝐷) ∙ 𝑖 where Δ𝑣 is the input voltage

difference, and 𝑖 is the current through memristors. The

current i is limited below 1pA by the reverse biased memristor

M2. Therefore, the voltage drop across memristor M1, which

is in a forward bias situation, is very small, and the output

approximately equals V(in1). The behavior of an n-input

programmable diode OR can be explained by (3) where j and

k are the numbers of memristors set to low and high voltage

levels, respectively. While all memristors are initialized to

LRS, they exhibit different resistance states depending on

their input voltages.

 {
Δ𝑣 = (

𝑅𝑂𝑃𝐸𝑁

𝑗
+

𝑅𝐶𝐿𝑂𝑆𝐸𝐷

𝑘
) ∙ 𝑖

𝑛 = 𝑗 + 𝑘
 (3)

Memristors set to high input voltage are forward biased and

exhibit LRS, while memristors set to low input voltage are

reverse biased and exhibit HRS.

The programmable diode OR without an output load

operates in the range of 3ps. However, to be realistic, the

behaviors of a diode NOR (diode OR connected to a CMOS

inverter) is shown in Fig. 4b where V(in1) and V(in2) are the

inputs and V(out) is the output. Connecting the output of the

diode OR (WL) to a CMOS inverter causes unequal RC delays

during the charge and precharge intervals. During the charge

interval, memristors are forward biased and the RC delay is in

the range of 100ps. However, during the precharge interval,

Fig. 5. Memristive programmable diode AND gate. (a) Schematic of a two-input diode AND gate implemented with self-rectifying memristors. (b) Behavior of

a two-input diode NAND. (c) Relation between the size of a diode NAND and its RC delay during the charge interval. (d) Schematic of a 100-input diode NAND
gate. (e) Behavior of a 100-input diode NAND gate. (f) Schematic of a two-input diode NAND with pull-up resistor. (g) Behavior of a two-input diode NAND

with pull-up resistor.

memristors are reverse biased, and the RC delay is in the range

of 125ns. For large diode NORs, this delay reduces to a few

nanoseconds as shown in Fig. 4c. Fig. 4d shows the schematic

of a 100-input diode OR connected to a CMOS inverter (diode

NOR). The behavior of the gate is shown in Fig. 4e where half

of the inputs are the same as V(in1), and the other half are the

same as V(in2). The precharge delay is in the range of 2ns. In

addition, the use of a pull-down network further decreases the

precharge delay. Fig. 4f shows the schematic of a two-input

diode NOR with pull-down transistor connected to the output

of the diode-OR gate, WL. The behavior of the NOR gate is

shown in Fig. 4g where signal Ctrl controls the pull-down

transistor. The precharge delay of the NOR gate is in the range

of 125ps.

The diode gate memristors, which are initialized to LRS,

act as binary switches while maintaining their resistance

states. A memristor driven by the high input voltage acts as a

closed switch, while a memristor driven by the low input

voltage acts as an open switch. Clearly, this role cannot be

played by standard memristors.

Similar to the programmable diode OR gate, a

programmable diode AND gate can be implemented with self-

rectifying memristors. Fig. 5a shows the schematic of a two–

input programmable diode AND gate. Fig. 5b illustrates the

behavior of the diode AND connected to a CMOS inverter

(diode NAND). Fig. 5c shows the relation between the size of

a diode NAND gate (the number of inputs) and its RC delay

during the charge interval. Fig. 5d shows the schematic of a

100-input programmable diode AND gate. Fig. 5e illustrates

the behavior of a 100-input programmable diode NAND gate

where half of the inputs are the same as V(in1), and the other

half are the same as V(in2). Fig. 5f shows the schematic of a

two-input diode NAND with a pull-up resistor connected to

the output of the diode AND gate, WL. The behavior of the

NAND gate is shown in Fig 5g. Note that the RC delay during

the charge interval depends on the value of pull-up resistor Rp,

e.g., for Rp=1.25MΩ the delay is in the range of 400ps.

The i-v characteristic of a self-rectifying memristor can be

modeled as a 1D1R (1diode in series with 1 resistive RAM)

structure incorporated into a single two-terminal device [13].

A LRS memristor in reverse biased situation acts as an open

switch and exhibits a high resistance state. Therefore, a self-

rectifying memristor reduces the reverse bias leakage, as such

it allows to implement diode gates with many inputs as shown

in Fig. 4d and Fig. 5d. Clearly, the PN junction or Schottky

diode in CMOS process does not act as open switches when

they are in reverse bias situation, hence they cannot take the

role of the self-rectifying memristors in large diode gates used

in the mPLD-XOR (see Section V).

V. THE MPLD-XOR: CIRCUIT STRUCTURE AND

FUNCTIONALITY

The programmable diode logic gates introduced in Section

IV are used in a new circuit structure called mPLD-XOR to

realize multi-output functions in {NAND, AND, NOR, OR}–

XOR based design. Fig. 6 shows the schematic of mPLD-

XOR. The device consists of a ReRAM connected to CMOS

drivers, memristive programmable diode OR gates connected

to CMOS-memristive drivers, and CMOS modulo-two

counters. The ReRAM is a crossbar array of self-rectifying

memristors, which stores all control data required to drive the

circuit. Inputs are applied to programmable diode OR gates

through CMOS-memristive drivers controlled by data stored

in the ReRAM. The output of each programmable diode OR

gate is applied to a modulo-two counter, which acts as a parity

circuit (or a T flip-flop). The counter is functionally equivalent

to an XOR gate with an arbitrary number of inputs. The output

of the counter is applied to a crosspoint array through a

transmission gate and stored as the state of a memristor, as

illustrated in Fig. 10 in Section VII. The assertion of signal

CLR resets the counter and makes it available for calculating

another output of a function.

Fig. 7 includes the symbolic diagram of a modulo-two

counter as a D flip-flop where D = ¬Q. The counter is clocked

by an l-input programmable diode OR gate. The circuit

implements an n-input single-output function in {NAND,

AND, NOR, OR}–XOR based design. Inputs Ini where i ∈

{1, ⋯ , 𝑛} and their complements are applied to a 1×l

programmable diode OR through CMOS-memristive drivers

where l=2n. The drivers consist of 3-input programmable

diode AND gates connected to CMOS buffers. When CLK is

high, a combination of inputs determined by high Cj where j

∈ {1, ⋯ , 𝑙} is propagated to the diode OR gate; Cj are control

Memory

(ReRAM)

CMOS Memory Drivers

m

n-primary inputs

(in dual-rail representation)

2n

C
M

O
S

-m
e

m
ri

st
iv

e
D

ri
v

er
s

k
p
ro

g
ra

m
m

ab
le

2
n

-i
n
p

u
t

d
io

d
e

O
R

k modulo-two

counters

2n

2n

k × 2n k

CLK

.
.
.

CLR

2n

k

Fig. 6. Schematic of mPLD-XOR.

signals stored in each column of the ReRAM and applied to

the AND gates at positive edge of signal CLK. The output of

the circuit is Q, the current state of the counter (or ¬Q

depending on the function being implemented) and is

available after m clock cycles where m also denotes the

number of XOR terms, i.e., m-input XOR of sums, products,

or literals.

Fig. 8 shows the schematic of ReRAM with reference

resistors Rg. The ReRAM is connected to CMOS drivers

made of an m-bit shifter. The output of the shifter, (Q1, Q2…

Qm), at the first, second, and mth clock cycle is (1, 0, …, 0), (0,

1, 0, …, 0), and (0, 0, …, 0, 1), respectively, where logic ‘1’

and ‘0’ denote high and low voltage levels, which are 0.6V

and 0V. The programmable circuit shown in Fig. 7 is scalable,

and it can be a base of future memristive programmable

fabrics to realize large arithmetic circuits and circuits with

high XOR component. Examples of multi-output mPLD-XOR

circuits are shown in Section VII.

The circuit in Fig. 7 is designed using a 50nm TSMC

process BSIM4 models where the number of inputs is 32, and

the size of ReRAM is 64 × 16. For this example, all of the

inputs Ini are assigned a value of ‘0’.¬Ini represents the output

of inverters with input Ini. The ReRAM memristors are

programmed as shown in Fig. 8. The pale shaded memristors

are at HRS, and clear ones are at LRS. Fig. 9 shows the

simulation results where V(clk) represents the clock cycle,

V(a2) represents the output of the second AND gate, V(k)

represents the output of the programmable diode OR, and V(q)

Fig. 9. Simulation results of the mPLD-XOR circuit shown in Fig. 7 with the

ReRAM configuration shown in Fig. 8.

Inn

k

LRS LRS LRS

In1

. . .

Q

Q
SET

CLR

D

CLR

CLK

Cl

C2

C1

Programmable Diode OR Gate

Sequential XOR Gate

. . .

LRS

C(l-1)

.
.
.

al

a2

a1

a(l-1)ReRAM

o1o2o(l-1)ol

Fig. 7. Schematic of an mPLD-XOR for realizing n-input single-output functions with l lines diode OR where l=2n to allow for complemented inputs. Ini are the

primary inputs where i ∈ {1, ⋯ , 𝑛}, and Cj are the control signals stored in the ReRAM where j ∈ {1, ⋯ , 𝑙}. The output of the circuit is either Q or Q̅ depending
on the function being implemented.

C3

CLK

2n × m Crossbar array

C1

C2

C2n

Rg

Rg

Rg

CMOS Drivers

C4

Rg

HRS

LRS

1 2 3 4 m

. . .

.
.
.

Rg

Fig. 8. Schematic of the ReRAM used in Fig. 7 with reference resistors Rg.

represents the output of the modulo-two counter (see Fig. 7).

During the first clock cycle, the first column of the ReRAM

shown in Fig. 8 is connected to ‘1’ to read the control data.

Since all memristors are in HRS, none of the inputs are applied

to the programmable diode OR. At the second clock cycle, the

second column is set to ‘1’ and inputs ¬Ini are applied to the

diode OR. During the second, third, and fourth clock cycles,

V(k) toggles the counter three times. As a result, the output of

the counter remains high. The simulation results in Fig. 9 are

based on Rg = 1MΩ, RP = 3.5MΩ, VP =0.6V, and input

voltages defined as 0V and 0.6V where Rp is a pull-up resistor

used in diode AND gates and is connected to voltage Vp.

VI. PROGRAMMING THE MPLD-XOR

The general writing to a ReRAM is described in many

papers [14-15]. Programming the memristors requires the

application of VSET or VCLEAR across the devices. This

programming step is performed only once since the

memristors maintain their resistance states during logical

operations. The results of our simulations show that the sneak

path current during the read operation is small due to the

diode-like behavior of the memristors. For example, the sneak

path current is between 80pA and 240pA depending upon its

location in the array, which is small enough that it has no

negative impact on memristors in sneak paths during the read

operation. More analysis about the sneak path current during

the read operation can be found in [22]. For vary large

crossbar arrays, Opamp threshold logic can be used for the

read operation [32]. In addition, using asymmetric voltage

scheme further decreases the leakage power during the

programming [15].

VII. IMPLEMENTATION EXAMPLES IN MPLD-XOR

In previous sections, the generic fabric of the mPLD-XOR

and its programming were explained. As described in Section

V, the mPLD-XOR can implement any logic functions. As an

example, this section shows how a 3-bit adder and a 3-bit

multiplier are mapped into this fabric. The size and

performance of these circuits are also estimated. For

comparison purposes, the same adder and multiplier are also

implemented with stateful gates, and the size and performance

of the circuits are estimated. Our calculations show that the

size of the ReRAM and the number of computational steps for

realizing a 3-bit adder in the mPLD-XOR circuit to the stateful

circuit are 280:957 and 8:29, respectively. For a 3-bit

multiplier, these ratios are 564:5720 and 12:65, respectively.

In both approaches, the size of the ReRAM (including the

CMOS drivers) dominates the area when large circuits are

implemented. The implementation details can be found in

Section VII.A and VII.B.

A. 3-bit adder

Below we will illustrate how a 3-bit adder can be realized in

a simplified generic mPLD-XOR fabric, where inputs in a

complementary form only are applied to the circuit. This

simplification decreases the amount of the data stored in

ReRAM to half. The size of the ReRAM is 64×16, and the

number of modulo-two counters is three, which allows the

calculation of three single-output functions simultaneously.

The schematic of the mPLD-XOR for realizing the adder is

shown in Fig. 10. Inputs are ai and bi where i ∈ {0, 1, 2}, and

outputs are S0, S1, S2, and Co as described by (4). Instructions

for realizing the adder are loaded into the ReRAM. Note that

realizing any logic function requires loading the

corresponding instructions into the ReRAM.

Fig. 11 shows a part of the ReRAM divided into subReRAMs

where each stores instructions to calculate a 1-bit output,

except the subReRAM shown in Fig. 11a, which stores control

data for driving the CMOS part of the mPLD-XOR. The size

of subReRAMs is 35 × 8.

Once an output is calculated, it is stored as a state of a

memristor using volistor NOT gate [16]. Volistor NOT uses

voltage as input and resistance as output. To describe the

operation of a volistor NOT gate, consider the circuit shown

in Fig. 4a. Let us assume that an input voltage is applied to

memristor M1, and a negative bias defined as – 0.6V is applied

to memristor M2. When the input is ‘1’ (0.6V), the voltage

across memristor M2 is –1.2V, i.e., VCLEAR, which is sufficient

to toggle the state of memristor M2 to HRS (logic ‘0’). When

the input is ‘0’ (0V), the state of memristor M2 remains at LRS

(logic ‘1’). Memristor M1 is called ‘source memristor’ since

it is driven by the input, and memristor M2 is called ‘target

memristor’ since it stores the output [5]. Regardless of the

input value, the state of the source memristor remains at LRS

while the state of the target memristor may toggle to HRS

depending on the input. Note that the role of each memristor

is determined by the voltage applied to the memristor. The

proper operation of the volistor NOT requires initializing

memristors M1 and M2 to LRS. The crosspoint array at the

bottom right of the mPLD-XOR in Fig. 10 is used to store the

outputs of the counters using volistor NOT. The crosspoint

memristors connected to counters’ dual-rail outputs via

transmission gates act as source memristors (SM), and the

crosspoint memristors connected to TM drivers act as target

memristors (TM). The TM drivers are made of a CMOS

shifter with output voltage levels of 0V and –0.6V. The

transmission gates connect the outputs of the counters to the

source memristors only when the outputs have been

calculated. The transmission gates are controlled by signals Pi

and ¬Pi where i ∈{1, …, 2j} and j equals the number of

counters, which is 3 (see Fig. 10). Recall that each counter has

two outputs, Q and ¬Q, and thus, requires two transmission

gates. The need for representing the outputs of the counters in

dual-rail logic is described in Section III.

The first column of the subReRAM shown in Fig. 11a stores

control data for initializing the CMOS subcircuits of the

mPLD-XOR, e.g., by asserting signals CLRi where i ∈ {0, 1,

2, 3} to reset all modulo-two counters, or by asserting signals

Pi and ¬Pi where i ∈ {1, …, 6} to disconnect the modulo-two

counters connected to the crosspoint array via transmission

 {

𝑆0 = 𝑎0⨁𝑏0
𝑆1 = 𝑎1⨁𝑏1⨁𝑎0𝑏0

𝑆2 = 𝑎2⨁𝑏2⨁𝑎1𝑏1⨁𝑎1𝑎0𝑏0⨁𝑏1𝑎0𝑏0
𝐶𝑜 = 𝑎2𝑏2⨁𝑎2𝑎1𝑏1⨁𝑎2𝑎1𝑎0𝑏0⨁𝑎2𝑏1𝑎0𝑏0⨁𝑏2𝑎1𝑏1⨁𝑏2𝑎1𝑎0𝑏0⨁𝑏2𝑏1𝑎0𝑏0

 (4)

gates. Once an output of the adder is calculated, signal Ctrl is

asserted to store the output in a target memristor.

For example, upon the first assertion of signal Ctrl, the first

output (S0) is stored in the leftmost target memristor of the

crosspoint array shown in the bottom right of Fig. 10. In this

operation, the outputs of TM drivers, (o1, o2, o3, o4), equal (–

0.6, 0V, 0V, 0V). Ultimately all outputs will be stored in target

memristors TM. Each column of subReRAMs in Fig. 11b-Fig.

11d controls the primary inputs applied to each programmable

diode OR gate for realizing an XOR term such as NAND,

AND, NOR, OR, or literal. (In particular, each row of the

subReRAMs controls 1-bit input during computational steps

where inputs are shown as a red vertical bus adjacent to the

subReRAMs). The process of realizing the 3-bit adder are

described below.

1) Initialization

CMOS subcircuits are initialized in the first clock cycle by

asserting the control signals stored in the first column of

ReRAM.

2) Calculating S0

Sum bit S0 is calculated in the second and third clock cycles

by driving the second and third columns of the crossbar array

shown in Fig. 11b. In the third clock cycle, S0 is available at

the non-inverted output of XOR1. At this moment, ¬S0 is

applied to a source memristor via a transmission gate to store

S0 in the leftmost target memristor of the crosspoint array. In

this operation, signals P2 and Ctrl stored in the third column

of the crossbar array in Fig. 11a are applied to the related

transmission gate and TM drivers, respectively. In the fourth

clock cycle, signal CLR1 is asserted to clear the output of

XOR1 for the next use.

3) Calculating S2

Sum bit S2 is calculated in five clock cycles, as shown in

Fig. 11c. In clock cycle number six, S2 is available at the

inverted output of XOR2. At this moment, ¬S2 is applied to a

source memristor, and S2 is stored next to S0. This operation

requires asserting signals P3 and Ctrl, which are stored in

column number six of the crossbar array in Fig. 11a.

4) Calculating S1

Sum bit S1 is calculated in three clock cycles, as shown in

Fig. 11b. In clock cycle number seven, S1 is available at the

inverted output of XOR1. Simultaneously, ¬S1 is applied to a

 {
𝑐𝑖 = 𝑁𝐴𝑁𝐷 (𝑂𝑅 (¬𝑎, ¬b), 𝑂𝑅(¬𝑎, ¬𝑐𝑖−1), 𝑂𝑅(¬b, ¬𝑐𝑖−1))

𝑠 = 𝑁𝐴𝑁𝐷 (𝑂𝑅 (𝑎, 𝑏, ¬𝑐), 𝑂𝑅(𝑎, ¬b, 𝑐), 𝑂𝑅(¬𝑎, ¬b, ¬𝑐), 𝑂𝑅(¬𝑎, 𝑏, 𝑐))
 (5)

6

CLR1, CLR2, CLR3

6

6

ReRAM

Source Memristors

(SM)

Target Memristors

(TM)

P1, ¬P1, , P6, ¬P6

2

3

TM DriversCtrl, CLR0

12 ¬ P1, P1

 ¬ P4, P4

o1 o2 o3 o4

Q

Q
S ET

C LR

D6-input

Diode OR

Q

Q
S ET

C LR

D
6-input

Diode OR

Q

Q
S ET

C LR

D6-input

Diode OR

 6Hybrid

Driver

Hybrid

Driver

Hybrid

Driver

 6

 6

 6

 6

 6

 6

6-bit

Complementary

Inputs

Computing

s0

Computing s2

Computing Co

Control of CMOS

Circuits

Memory Drivers

8

CLK

RST

¬P2, P2
 ¬ P3, P3

 ¬ P6, P6

¬ P5, P5

Computing

s1

Fig. 10. Generic fabric of the mPLD-XOR for realizing a 3-bit adder. The grey rectangles correspond to memristive arrays, the white rectangles correspond to

hybrid CMOS-memristive circuits, and the rest of the blocks correspond to the CMOS circuits.

Ctrl

CLR0

CLR1

CLR2

CLR3

P1

¬ P1

P2

¬ P2

P3

¬ P3

P4

¬ P4

P5

¬ P5

P6

¬ P6

LRS

HRS

 1 2 3 4 5 6 7 8

Control of

CMOS Switches

(a)

source memristor to store S1 next to S2 by asserting signals

P1 and Ctrl, stored in column number seven of the crossbar

array in Fig. 11a.

5) Calculating Co

Carry bit Co is calculated in seven clock cycles, as shown in

Fig. 11d. In clock cycle number eight, Co is available at the

inverted output of XOR3. At this moment, ¬Co is applied to a

source memristor to store Co next to S1 by asserting signals

P5 and Ctrl, stored in column number eight of the crossbar

array in Fig. 11a.

In summary, the 3-bit adder is realized in eight clock cycles

in a 35 × 8 crossbar array.

The mPLD-XOR can be designed by programmable diode

ANDs instead of programmable diode ORs to realize logic

a0 b0 0 0 0 0 0 0
a1 b1 0 0 0 0 0 0

a2 b2 0 0 0 0 0 0

(a) 1 FALSE

a0 b0 ¬a0 ¬b0 0 0 0 0

a1 b1 ¬a1 ¬b1 0 0 0 0
a2 b2 ¬a2 ¬b2 0 0 0 0

(b) 2 IMPs

a0 b0 ¬a0 ¬b0 0 0 0 c1

a1 b1 ¬a1 ¬b1 0 0 0 ¬c1
a2 b2 ¬a2 ¬b2 0 0 0 0

(c) 2 IMPs

a0 b0 ¬a0 ¬b0 0 0 0 0

a1 b1 ¬a1 ¬b1 c1 ¬c1 0 0

a2 b2 ¬a2 ¬b2 0 0 0 0

(d) 2 IMPs + 1 FALSE

a0 b0 ¬a0 ¬b0 0 0 0 s0
a1 b1 ¬a1 ¬b1 c1 ¬c1 0 0

a2 b2 ¬a2 ¬b2 0 0 0 0

(e) 2 IMPs

a0 b0 ¬a0 ¬b0 0 0 0 s0

a1 b1 ¬a1 ¬b1 c1 ¬c1 0 c2
a2 b2 ¬a2 ¬b2 0 0 0 ¬c2

(f) 4 IMPs

a0 b0 ¬a0 ¬b0 0 0 0 s0

a1 b1 ¬a1 ¬b1 c1 ¬c1 0 0

a2 b2 ¬a2 ¬b2 c2 ¬c2 0 0

(g) 2 IMPs + 1 FALSE

a0 b0 ¬a0 ¬b0 0 0 0 s0
a1 b1 ¬a1 ¬b1 c1 ¬c1 0 s1

a2 b2 ¬a2 ¬b2 c2 ¬c2 0 0

(h) 4 IMPs

a0 b0 ¬a0 ¬b0 0 0 0 s0

a1 b1 ¬a1 ¬b1 0 0 0 s1
a2 b2 ¬a2 ¬b2 c2 ¬c2 c3 s2

(i) 7 IMPs

a0 b0 ¬a0 ¬b0 0 0 0 s0

a1 b1 ¬a1 ¬b1 0 0 0 s1
a2 b2 ¬a2 ¬b2 0 0 c3 s2

(j) 1 FALSE

Fig. 12. (a)-(j) Computational steps for realizing a 3-bit adder with stateful

gates. The total number of IMP and FALSE operations is 29. The numbers of
operations are shown in each step.

LRS

HRS

¬ a0

¬ b0

¬ a1

¬ b1

¬ a2

¬ b2

 1 2 3 4 5 6 7 8

6-bit inputs

Computing

S0(#3) and S1(#7)

(b)

LRS

HRS

¬ a0

¬ b0

¬ a1

¬ b1

¬ a2

¬ b2

 1 2 3 4 5 6 7 8

6-bit inputs
Computing S2(#6)

(c)

LRS

HRS

¬ a0

¬ b0

¬ a1

¬ b1

¬ a2

¬ b2

 1 2 3 4 5 6 7 8

6-bit inputs
Computing C0 (#8)

(d)
Fig. 11. Schematic of subReRAMs. SubReRAM (a) stores the control data

for driving CMOS parts of the mPLD-XOR. SubReRAMs (b)-(d) store the

control data for realizing S0, S1, S2, and Co. The number of clock cycles for
computing each output is shown in parenthesis, e.g., (#8). The size of

subReRAMs is 35 × 8.

functions in PPRM (Positive Polarity Reed-Miller)

expressions that is AND-XOR expressions with

uncomplemented literals only, as in (4). This realization also

requires changing the diode AND gates used in CMOS-

memristive drivers with diode OR gates. In addition, the

control data stored in ReRAM (Fig. 11) must be substituted

with their complements. In the AND-type mPLD-XOR, inputs

in positive polarity are applied to the circuit, and there is no

need for input CMOS inverters.

Using memristor-based stateful IMPLY gates, a 3-bit adder

can be implemented with the NAND-OR logic structure [11]

using (5). In this implementation, multi-input IMPLY gates

are utilized. The process of realizing a 3-bit adder in a 3 × 8

computational array is shown in Fig. 12. More details can be

found in [37].

The matrix shown in Fig. 12a is analogous to a 3 × 8 crossbar

array where entities of the matrix represent the states of

corresponding memristors. Inputs ai and bi where i ∈ {0, 1, 2}

are populated in the computational array shown in Fig. 12a. In

step a, the auxiliary memristors are initialized to HRS denoted

by logic ‘0’ in one clock cycle. In step b, copies of

complementary inputs are stored in the third and fourth

columns using stateful IMPLY gates. This step is realized in

two clock cycles. In step c, carry bit c1 is calculated and stored

in the rightmost memristor of the first row. Also, a copy of

¬c1 is stored in the rightmost memristor of the second row. In

step d, c1and ¬c1 are copied to new locations, as shown in

Fig. 12d. The rightmost column is cleared to be used in step e.

In step e, sum bit s0 is calculated and stored in the rightmost

memristor of the first row. The following steps, f through j,

are illustrated in Fig. 12.

The number of computational steps is 29, and the size of the

ReRAM can be estimated as c × m where c is the number of

control bits driving the 3×8 crossbar array per computational

step, and m equals the number of computational steps, which

is 29. The number of control bits driving each nanowire cannot

be smaller than three since each nanowire needs to be

connected to multiple voltage levels, grounded through a

reference resistor, or terminated to high impedance. Assuming

that each nanowire is driven by three control bits, the size of

the ReRAM can be estimated as 33× 29.

In an mPLD-XOR, the number of control bits for driving

each nanowire of the computational arrays is only one because

each nanowire must be connected to either ‘0’ or ‘1’ for

computing logic. In other words, there is no need to terminate

the nanowires to high impedance or to ground them through

reference resistors. Moreover, the memristors maintain their

resistance states during logic calculations and they don’t need

to be initialized repeatedly. Therefore, no additional voltage

levels are required for implementing logic in mPLD-XOR.

The programmable diode gates have simplified driving

circuitries, which in turn decrease the size of ReRAM. The

size of the ReRAM and the number of computational steps for

realizing the adder in the mPLD-XOR circuit to the stateful

circuit are 280:957 and 8:29, respectively.

B. 3-bit multiplier

A 3-bit multiplier can be realized with the mPLD-XOR

shown in Fig. 10. This requires loading instructions of the

multiplier into the ReRAM, which occupy 35×40 of the

ReRAM size. The number of clock cycles (computational

steps) for this realization is 40. Adding feedback CMOS D

flip-flops to the mPLD-XOR can improve the size and

performance of the circuit. For example, the multiplier can be

implemented in twelve clock cycles using 47×12 of the

ReRAM size. The enhanced mPLD-XOR stores the output of

each counter in a D flip-flop and makes it available as a

primary input (Fig. 13). This feedback also makes a counter

available for calculating another output. The feedback D flip-

flops are clocked by signal Sigi where i ∈ {1, 2, 3}. Adding

the feedback to the mPLD-XOR allows the implementation of

multilevel XOR logic networks with any combination of

sums, products, XORs, and literals at the input of any XOR

gate. Fig. 14 shows the schematic of a 3-bit multiplier as

realized with the mPLD-XOR with feedback D flip-flops. In

this realization, internal signals IP0, IC0, IC1, and IC2 in Fig.

14 are calculated, stored in D flip-flops, and used to

implement the next levels of the circuit.

If the multiplier is implemented with stateful IMPLY gates,

the number of computational steps will be 65. Fig. 15 shows

the initial states of the crossbar array for realizing the

multiplier. Assuming that each nanowire of the crossbar array

is driven by three control bits, the size of the ReRAM is

estimated as 66 × 65.

In summary, the size of the ReRAM and the number of

computational steps for realizing a 3-bit multiplier in the

mPLD-XOR circuit to the stateful circuit are 564:4290 and

12:65, respectively.

VIII. EVALUATION AND COMPARISON OF DIFFERENT

LOGIC STYLES

An extensive comparison of different architectures is

beyond the scope of this paper, however, to get some level of

comparison, here are some published numbers for other

memristive styles of logic gates. The following is a direct

comparison between the published threshold logic example

[32], MAGIC NOR example [7], and our implementation, and

as such does not include the driving circuitry to the memristor

array (see Table II). The minimum and maximum power

dissipations of 2, 10, and 100-input diode NAND/ NOR gates

were calculated. The same power calculation was also

performed for multi-input stateful NOR gates realized with

self-rectifying memristors using converse non-implication

gates (CNIMP) [6]. The simulation was performed in LTspice

using 50nm TSMC process BSIM4 models and the memristor

model explained by (1) and (2). The power dissipation and

propagation delay are calculated when a square pulse with

10ns time period and a 50% duty cycle is applied. The initial

states of memristors realizing the CNIMP NOR gates are

assumed to be ‘0’ (HRS). There are two steps for performing

the stateful NOR gate. The first step is programming the

memristors, and the second step is performing the logic. Most

of the gate power consumption is related to the programming

step (writing input values into memristors), which must be

performed repeatedly for computing different logic functions.

The initial states of the memristors in the programmable diode

gates are assumed to be ‘1’ (LRS). In contrast to the stateful

gates, memristors in programmable diode gates maintain their

resistance states during logic operations. The power

consumption of a 2-input MAGIC NOR gate based on

published numbers [7] is shown in Table II. This power does

not include the programming step where the programming of

a memristor to HRS and LRS consumes 26.35uW and 169uW,

respectively [7]. The power consumption of 10 and 100-input

MAGIC NOR gates is estimated by scaling the power

consumption of a 2-input MAGIC NOR gate. For example,

the power consumption of a 10-input MAGIC NOR is

estimated as 5× the power consumption of a 2-input MAGIC

NOR, which is about 29.75uW-313.85uW. In terms of area,

the numbers of computational memristors in all logic styles

shown in Table II are similar, however, their CMOS parts are

different. For instance, the output of a diode gate is connected

to a CMOS inverter and a pull-up resistor (or a pull-down

transistor). However, the output of a memristive resistance

divider in a threshold gate is connected to an Opamp threshold

circuit. In our simulation, it is assumed that Vdd=1V, VCOND

=0.6V, and VPROG =–0.6V where VCOND and VPROG are bias

voltages used to operate CNIMP NOR gates. In addition,

inputs applied to the diode gates are defined as 0V and 1V.

Fig. 16 shows the area and delay of an N-bit adder realized

with multiple approaches. The area and delay of the mPLD-

XOR are explained by (6) and (7), respectively, where MN is

the number of computational memristors, and DN is the

number of clock cycles. These equations are derived for an

mPLD-XOR with three modulo-two counters and feedback D

flip-flops.

M1=4, M2=10, M3=15, M4=21, M5=27, and MN=MN-1+4 for

N>5. (6)

D1=3, DN=DN-1+3 if (N-1 mod 3) ≠2, and DN=DN-1+2 if (N-1

mod 3) =2. (7)

In all approaches, only the numbers of auxiliary

(computational) memristors are considered since the number

of source and target memristors are equal. The mPLD-XOR is

1.31× faster in average than the FBLC approach [38], which

is the second fastest approach shown in Fig. 16. In addition,

the mPLD-XOR approach is 1.49× more area efficient in

average than the IMPLY Parallel approach [29], which is the

second most area efficient approach shown in Fig. 16.

Note that the number of memristors utilized in the FBLC

approach increases dramatically [39] compared to other

approaches and is not included in the graph (Fig. 16).

A 16-bit adder is also implemented in the mPLD-XOR with

three modulo-two counters and feedback D flip-flops where

A=01010101and B=00110011 are used as input vectors. The

adder is performed in 42 clock cycles each of 4ns period and

9

CLR1, CLR2, CLR3

9

9

ReRAM

Source Memristors

(SM)

Target Memristors

(TM)

P1, ¬P1, , P6, ¬P6

2

3

Ctrl, CLR0

12 ¬ P1, P1

 ¬ P4, P4

o1 o2 o3 o4 o5 o6

Q

Q
S ET

C LR

D
9-input

Diode OR

Q

Q
S ET

C LR

D
9-input

Diode OR

Q

Q
S ET

C LR

D9-input

Diode OR

9Hybrid

Driver

Hybrid

Driver

Hybrid

Driver

9

9

9

9

9

9

6-bit

Complementary

Inputs

Computing

IP0, P4,and P5

Computing

 IC0, IC1, P1, and P6

Computing

P2, P3, and IC2

CMOS Circuits

Memory Drivers

12

CLK

RST

¬P2, P2
 ¬ P3, P3

 ¬ P6, P6

¬ P5, P5

Q

Q
SET

CLR

D

33

Internal Signals

 (IC0, IC1, IC2, IP0)

Sig1, Sig2, Sig3

TM Drivers

Fig. 13. Schematic of an mPLD-XOR with feedback D flip-flops for realizing a 3-bit multiplier. In this implementation, the number of computational steps is 12,

and the instructions occupy 47×12 of the ReRAM.

P1

P2

IP0

IC0

P3

IC1

P4

IC2

P5

P6

a2 b2 a1 b1 a0 b0

Fig. 14. Schematic of a 3-bit multiplier in multilevel XOR logic structure

where XOR terms are sums, products, XORs, or literals. This circuit is
implemented with an mPLD-XOR with feedback circuit. The internal

signals (IP0, IC0, IC1, and IC2) are stored in memory cells (feedback circuit)

to decrease the size of the ReRAM.

¬𝑎0 ¬𝑎1 ¬𝑎2 ¬𝑏0 ¬𝑏1 ¬𝑏2 0 0 0 0 0 0 0 0 0 0
¬𝑎0 ¬𝑎1 ¬𝑎2 ¬𝑏0 ¬𝑏1 ¬𝑏2 0 0 0 0 0 0 0 0 0 0
¬𝑎0 ¬𝑎1 ¬𝑎2 ¬𝑏0 ¬𝑏1 ¬𝑏2 0 0 0 0 0 0 0 0 0 0
¬𝑎0 ¬𝑎1 ¬𝑎2 ¬𝑏0 ¬𝑏1 ¬𝑏2 0 0 0 0 0 0 0 0 0 0
¬𝑎0 ¬𝑎1 ¬𝑎2 ¬𝑏0 ¬𝑏1 ¬𝑏2 0 0 0 0 0 0 0 0 0 0
¬𝑎0 ¬𝑎1 ¬𝑎2 ¬𝑏0 ¬𝑏1 ¬𝑏2 0 0 0 0 0 0 0 0 0 0

Fig. 15. 6×16 computational array for implementing a 3-bit multiplier with
stateful logic gates. The matrix entities denote the initial states of the array.

50% duty cycle. The average power consumption is about

17uW based on our spice simulations where 97% of this

power is consumed in CMOS parts of the circuit. The same

adder is also implemented in Xilinx Artix-7 FPGA

XC7A100T (28nm technology). The Xilinx vivado is used to

estimate the data path delay and power consumption. The

longest data path delay of the FPGA is estimated as 7.798ns.

The total active circuit power is 416mW. In terms of energy,

the mPLD-XOR circuit consumes 2.678pJ to execute the 16-

bit adder, while the Xilinx FPGA consumes 3.244nJ for

implementing the adder.

IX. CONCLUSION

The mPLD-XOR relies on the characteristics of self-

rectifying memristors to allow voltages to be used directly as

inputs. The mPLD-XOR is designed to implement multi-

output functions well suited for XOR of sums or products

structure such as arithmetic and communication functions.

The input levels of such functions are realized with novel

programmable diode gates and the output levels with CMOS

modulo-two counters. The number of computational steps for

calculating a multi-output function equals the maximum

number of inputs to any output XOR gate when the number of

modulo-two counters is large enough to calculate the outputs

simultaneously. A 3-bit adder and a 3-bit multiplier are

implemented with mPLD-XOR, and the size and performance

of each circuit were compared with the implementation of

stateful gates. The size of ReRAM and the number of clock

cycles for realizing the adder in mPLD-XOR approach to the

stateful approach are 280:957 and 8:29 respectively. For the

3-bit multiplier, these ratios are 564:4290 and 12:65. Adding

feedback circuits to mPLD-XOR, as shown in Fig. 13, allows

the implementation of a multilevel XOR logic network with

any combination of sums, products, XORs, and literals at the

input of any XOR gate. The mPLD-XOR with feedback

circuit has the potential to decrease the number of

computational steps and the size of ReRAM. In realizing the

3-bit multiplier, the size of ReRAM and the number of

computational steps in mPLD-XOR with a feedback circuit to

the mPLD-XOR without a feedback circuit are 564:1400 and

12:40, respectively. A 16-bit adder is also implemented in the

mPLD-XOR and Xilinx Artix-7 FPGA XC7A100T. The

power consumption of the mPLD-XOR is smaller than the

Artix-7 FPGA, but it performs slower. In addition, the size and

delay comparisons of an N-bit adder realized with multiple

approaches show that the mPLD-XOR adder is more area-

delay efficient. This paper presents examples demonstrating

the benefits of using mPLD-XOR for realizing logic

functions.

REFERENCES

[1] L. Chua, “Memristor-The missing circuit element,” in IEEE Trans. Circuit

Theory, vol. 18, no. 5, pp. 507-519, Sep 1971.

[2] D. Strukov et al., “The missing memristor found,” Nature, vol. 453, no.
7191, pp. 80-83, 2008.

[3] J. Borghetti et al., “Memristive switches enable stateful logic operations

via material implication,” Nature, vol. 464, pp. 873–876, 2010.
[4] P. Kuekes, “Material implication: Digital logic with memristors,”

presented at the Memristor and Memristive Syst. Symp., Berkeley, CA, 2008.

 [5] S. Shin, K. Kim and S. M. Kang, “Reconfigurable Stateful nor Gate for
Large-Scale Logic-Array Integrations,” in IEEE Trans. Circuits Syst. II: Exp.

Briefs, vol. 58, no. 7, pp. 442-446, July 2011.

[6] E. Lehtonen, J. H. Poikonen and M. Laiho, “Applications and limitations
of memristive implication logic,” 2012 13th Int. Workshop on Cellular

Nanoscale Netw. Appl., Turin, 2012, pp. 1-6.

Fig. 16. Area and delay comparisons of an N-bit adder realized with multiple

approaches.

TABLE II
COMPARISON OF CIRCUIT IMPLEMENTATION USING DIODE GATES

WITH THAT OF OTHER LOGIC STYLES

Logic Style
Logic

Function

Power Dissipation (uW)

Delay 2

inputs

10

inputs

100

inputs

Programmable

Diode logic

NOR
0.055-

0158

0.055-

0.165

0.055-

0.245
< 0.2ns

NAND
0.426-

0.638

0.446-

0.680

0.437-

0.880
<0.50ns

Threshold logic

[32]

NOR NP 10.6 11.49 0.60us

NAND NP 9.2 10.09 0.45us

CNIMP NOR
0.457-

1.381

0.459-

5.028

0.466-

64.053

2 cycles

(20ns)

MAGIC [7] NOR
5.95-
62.77

NP NP
1 cycle
(1.3ns)

NP: Not provided (by the related papers) 0

2000

4000

6000

8000

10000

12000

14000

0 200 400 600 800 1000

L
A

T
E

N
C

Y
 (

#
 C

Y
C

L
E

S
)

LENGTH OF ADDITION (N)

MAGIC conv.

Latency Opt [7]

mPLD-XOR

FBLC [39]

IMPLY Parallel

[29]

MAGIC Trans. II

[7]

0

2000

4000

6000

8000

10000

12000

14000

0 200 400 600 800 1000

A
R

E
A

 (
#

 A
U

X
IL

L
A

R
Y

M

E
M

R
IS

T
O

R
S

)

LENGTH OF ADDITION (N)

MAGIC conv.

Latency Opt [7]

mPLD-XOR

IMPLY Parallel

[29]

MAGIC Trans. II

[7]

Fig. 16. Area and delay comparisons of an N-bit adder realized with multiple

approaches.

[7] N. Talati, S. Gupta, P. Mane and S. Kvatinsky, “Logic Design Within

Memristive Memories Using Memristor-Aided loGIC (MAGIC),” in IEEE
Trans. Nanotechnology, vol. 15, no. 4, pp. 635-650, July 2016.

[8] J. F. Gimpel, “The Minimization of TANT Networks,” in IEEE Trans.

Electronic Comput., vol. EC-16, no. 1, pp. 18-38, Feb. 1967.
[9] D. Debnath and T. Sasao, “An optimization of AND-OR-EXOR three-

level networks,” Des. Automation Conf., 1997. Proc. of the ASP-DAC '97 Asia

and South Pacific, Chiba, 1997, pp. 545-550.
[10] D. Debnath and T. Sasao, “A heuristic algorithm to design AND-OR-

EXOR three-level networks,” Proc. of 1998 Asia and South Pacific Des.

Automation Conf., Yokohama, 1998, pp. 69-74.
[11] E. Lehtonen, J. Poikonen and M. Laiho, “Implication logic synthesis

methods for memristors,” 2012 IEEE Int. Symp. Circuits Syst., Seoul, 2012,

pp. 2441-2444.
[12] H. Akinaga and H. Shima, "Resistive Random Access Memory

(ReRAM) Based on Metal Oxides," in Proc. of the IEEE, vol. 98, no. 12, pp.

2237-2251, Dec. 2010.
[13] K. Kim, S. Hyun Jo, S. Gaba, and W. Lu, “Nanoscale resistive memory

with intrinsic diode characteristics and long endurance,” Appl. Phys. Lett.,

vol. 96, no. 5, p. 053106, 2010.
[14] K. Kim et al., “A Functional Hybrid Memristor Crossbar-Array/CMOS

System for Data Storage and Neuromorphic Applications,” Nano Lett., vol.

12, no. 1, pp. 389-395, 2012.
[15] K. Kim et al., “Low-Power, Self-Rectifying, and Forming-Free

Memristor with an Asymmetric Programing Voltage for a High-Density

Crossbar Application,” Nano Lett., vol. 16, no. 11, pp. 6724-6732, 2016.
[16] M. Aljafar, P. Long and M. Perkowski, “Memristor-Based Volistor Gates

Compute Logic with Low Power Consumption,” BioNanoScience, vol. 6, no.
3, pp. 214-234, 2016.

[17] A. Dehon, “Nanowire-based programmable architectures,” J. Emerg.

Technol. Comput. Syst., vol. 1, no. 2, pp. 109-162, 2005.
[18] J. Borghetti et al., “A hybrid nanomemristor/transistor logic circuit

capable of self-programming,” Proc. of the National Academy of Sciences,

vol. 106, no. 6, pp. 1699-1703, 2009.
[19] S. Jo, K. Kim and W. Lu, “High-Density Crossbar Arrays Based on a Si

Memristive System,” Nano Lett., vol. 9, no. 2, pp. 870-874, 2009.

[20] D. Jeong et al., “Emerging memories: resistive switching mechanisms
and current status,” Reports on Progress in Physics, vol. 75, no. 7, p. 076502,

2012.

[21] E. Lehtonen et al., “A cellular computing architecture for parallel

memristive stateful logic,” Microelectronics Journal, vol. 45, no. 11, pp.

1438-1449, 2014.

[22] Y. Gao et al., “Read operation performance of large selectorless cross-
point array with

[23] M. Lee et al., “A fast, high-endurance and scalable non-volatile memory

device made from asymmetric Ta2O5−x/TaO2−x bilayer structures,” Nature
Materials, vol. 10, no. 8, pp. 625-630, 2011.

[24] A. Torrezan, J. Strachan, G. Medeiros-Ribeiro, and R. Williams, “Sub-

nanosecond switching of a tantalum oxide memristor”, Nanotechnology, vol.
22, no. 48, p. 485203, 2011.

[25] T. Sasao, “EXMIN2: a simplification algorithm for exclusive-OR-sum-

of-products expressions for multiple-valued-input two-valued-output
functions,” in IEEE Trans. Comput.-Aided Des. Integrated Circuits Syst., vol.

12, no. 5, pp. 621-632, May 1993.

[26] T. Sasao and P. Besslich, “On the complexity of mod-2l sum PLA's,”
in IEEE Trans. Comput., vol. 39, no. 2, pp. 262-266, Feb 1990.

[27] S. Muroga, Logic design and switching theory, 1st ed. New York, NY,

US: Wiley, 1979.

[28] N. Weste and K. Eshraghian, Principles of CMOS VLSI design, 1st ed.

New York, NY, US: Addison-Wesley, 1985.

[29] S. Kvatinsky et al., “Memristor-Based Material Implication (IMPLY)
Logic: Design Principles and Methodologies,” in IEEE Trans. Very Large

Scale Integr. Syst, vol. 22, no. 10, pp. 2054-2066, Oct. 2014.

[30] S. Shin, K. Kim, and S. Kang, “Memristive XOR for resistive
multiplier,” Electronics Letters, vol. 48, no. 2, p. 78, 2012.

[31] R. Rosezin et al., “Crossbar Logic Using Bipolar and Complementary

Resistive Switches,” in IEEE Electron Device Letters, vol. 32, no. 6, pp. 710-
712, June 2011.

[32] A. P. James, L. R. V. J. Francis, and D. S. Kumar, “Resistive Threshold

Logic,” in IEEE Trans. Very Large Scale Integr. Syst, vol. 22, no. 1, pp. 190-
195, Jan. 2014.

[33] L. Gao, F. Alibart, and D. B. Strukov, “Programmable CMOS/Memristor

Threshold Logic,” in IEEE Trans. Nanotechnology, vol. 12, no. 2, pp. 115-
119, March 2013.

 [34] S. Kvatinsky et al., “MRL — Memristor Ratioed Logic,” 2012 13th Int.

Workshop on Cellular Nanoscale Netw. Appl., Turin, 2012, pp. 1-6.
[35] J. R. Burger et al., “Variation-tolerant computing with memristive

reservoirs,” in Proc. IEEE/ACM Int. Symp. Nanoscale Archit., Jul. 2013, pp.

1–6.
[36] R. H. Wilkinson, “A Method of Generating Functions of Several

Variables Using Analog Diode Logic,” in IEEE Trans. Electronic Comput.,

vol. EC-12, no. 2, pp. 112-129, April 1963.
[37] E. Lehtonen et al., “Recursive Algorithms in Memristive Logic Arrays,”

in IEEE Journal on Emerging and Selected Topics in Circuits Syst., vol. 5,

no. 2, pp. 279-292, June 2015.
[38] Lei Xie at al., “Fast boolean logic mapped on memristor crossbar,” 2015

33rd IEEE International Conference on Computer Design (ICCD), New

York, NY, 2015, pp. 335-342.
[39] H. A. Du Nguyen et al., “On the Implementation of Computation-in-

Memory Parallel Adder,” in IEEE Trans. Very Large Scale Integr. Syst, vol.

25, no. 8, pp. 2206-2219, Aug. 2017.

Muayad J. Aljafar received his M.Sc.

degree in electrical engineering from

Portland State University in 2016.

Currently, he is a PhD student at Portland

State University and his primary research

area is a memristive parallel computation

and machine learning.

Marek A. Perkowski (M’84-SM’04)

obtained his M.S. degree in Electronics

and Ph.D. Degree in automatic control

from Institute of Automatic Control,

Department of Electronics, Technical

University of Warsaw, Warsaw, Poland.

Since 1983 Dr. Perkowski works for

Department of Electrical and Computer

Engineering at Portland State University. Dr. Perkowski

chaired the IEEE Technical Committee on Multiple-Valued

Logic in years 2003-2005 and was a chair of IEEE

Computational Intelligence Society Task Force on Quantum

Computing 2006 - 2007.

John M. Acken He received his BS(76)

and MS(78) in electrical engineering from

Oklahoma State University and his PhD

(88) in electrical engineering from

Stanford University. He is a research

faculty member in the Electrical and

Computer Engineering Department,

Portland State University, Portland, OR.

Prior to PSU, he taught and guided research at Oklahoma State

University. Dr. Acken has contributed to several technical

activities including: Session Chair: CCCT 2008, Publicity

Chair: IEEE IDDQ Testing Workshop 1996, Session Chair:

ACM/SIGDA Workshop on Logic Level Modeling for ASICs

1995.

Robin Tan is currently an independent

researcher at Portland State University.

His primary research area is machine

learning and applications and logic

synthesis with memristive stateful logic.

	A Time-Efficient CMOS-Memristive Programmable Circuit Realizing Logic Functions in Generalized AND-XOR Structures
	Let us know how access to this document benefits you.
	Citation Details

	/var/tmp/StampPDF/atzGiKGGxL/tmp.1518724655.pdf.Xxzqn

