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 

Abstract— This paper describes a CMOS-memristive 

Programmable Logic Device connected to CMOS XOR gates 

(mPLD-XOR) for realizing multi-output functions well-suited 

for two-level {NAND, AND, NOR, OR}-XOR based design. This 

structure is a generalized form of AND-XOR logic where any 

combination of NAND, AND, NOR, OR, and literals can replace 

the AND level. For mPLD-XOR, the computational delay, which 

is measured as the number of clock cycles, equals the maximum 

number of inputs to any output XOR gate of a function assuming 

that the number of XOR gates is large enough to calculate the 

outputs of the function simultaneously. The input levels of 

functions are implemented with novel programmable diode 

gates, which rely on the diode-like behavior of self-rectifying 

memristors, and the output levels of functions are realized with 

CMOS modulo-two counters. As an example, the circuit 

implementation of a 3-bit adder and a 3-bit multiplier are 

presented. The size and performance of the implemented circuits 

are estimated and compared with that of the equivalent circuits 

realized with stateful logic gates. Adding a feedback circuit to the 

mPLD-XOR allows the implementation of a multilevel XOR 

logic network with any combination of sums, products, XORs, 

and literals at the input of any XOR gate. The mPLD-XOR with 

feedback can reduce the size and number of computational steps 

(clock cycles) in realizing logic functions, which makes it well 

suited for use in communication and parallel computing systems 

where fast arithmetic operations are demanding. 

Index Terms— ESOP structure, parity circuit, programmable 

logic device (PLD), self-rectifying memristor, stateful logic, 

volistor logic.  

I. INTRODUCTION 

N today’s computer architecture, a key problem limiting

system speed is the amount of time spent on moving data 

between the processor and memory. A way to address this 

problem is to have memory within the calculation circuit. The 

invention of memristors [1-2] opens the door for changing the 

computing paradigms of separating calculation from memory. 

Memristors, as non-volatile devices, enable stateful logic [3-

7], hence, saving time spent moving the data between memory 

and processor. One approach is to use memristor-based 

stateful logic. The basic operations of IMPLY and FALSE can 

be implemented in stateful logic. They form a functionally 

complete logic set and can implement any logic function in 

any logic system such as AND-OR or SOP (Sum-of-

Products), AND-XOR or ESOP (Exclusive-OR-Sum-of-

Products), TANT or Three-level-AND-NOT-Network with 

True inputs [8], AND-OR-XOR Three-Level Networks [9], 

and so on.  

Alternatively, our motivation in this work is to realize 

arithmetic and communication functions in ESOP form. The 

ESOP realization of such functions decreases the number of 

products and literals compared to their realizations in SOP 

form [10], as described in Section III. The key point in 

realizing such functions in ESOP form is to implement multi-

input XOR gates, which has been a challenge in conventional 

CMOS technology, i.e., a multi-input XOR gate is slow, 

consumes large amounts of power, and occupies larger areas 

compared to other combinational gates. Realizing a multi-

input XOR gate with stateful logic would also require a long 

sequence of stateful operations or a large number of 

memristors. This disadvantage is due to the fact that XOR 

gates are only available in two logic levels (such as NAND-

OR), for example, when implemented with IMPLY and 

FALSE operations. Consequently, realizing an n-input XOR 

gate requires realizing an exponential number of products, i.e., 

2n-1. Implementation examples of multi-input XOR gate based 

on stateful logic are shown in [6][11]. An n-input XOR of 

literals can be implemented in the same manner described in 

[6] in a (2n–1+1) × (n+1) crossbar array with approximately 2n 

computational steps. It can also be realized in the NAND-OR 

synthesis method [11] in a 1 × 2n crosspoint array in almost 

2n– 1 computational steps.  

In addition to the computational crossbar arrays considered 

in [6][11], there are crossbar arrays used as Resistive Random 

Access Memory (ReRAM) [12] to store control data required 

for driving the computational arrays. While in our paper we 

used the ReRAM for control storage, in general it can have 

other uses. The size of the ReRAM is determined by the 

number of control bits used for driving the computational 

array per clock cycle and the number of clock cycles for 

realizing a function. For example, the size of the ReRAM for 

driving a (2n –1 + 1) × (n + 1) computational array can be 

estimated as ((2n-1 + 1) + (n + 1)) × 𝛼 × m where 𝛼 is the 

number of control bits for driving each nanowire of the 
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computational array per clock cycle, and m is the number of 

computational steps.  

This paper proposes a memristive programmable PLA-like 

circuit for realizing multi-output functions well-suited for 

two-level {NOR, AND, NAND, OR}-XOR based design. 

This circuit is called mPLD-XOR, which is memristor-based 

Programmable Logic Device connected to a CMOS modulo-

two counters. The computational delay of the mPLD-XOR, 

which is measured as the number of clock cycles, equals the 

maximum number of inputs to any output XOR gates of a 

multi-output function, assuming that the number of modulo-

two counters is large enough to calculate the XOR gates of the 

function simultaneously. The size of each computational array 

in mPLD-XOR is at most 1 × 2n where n equals the number 

of primary inputs. The control data required for driving the 

computational arrays are stored in ReRAM whose size 

depends on the number of primary inputs n, the number of 

computational steps m, and the number of outputs of the 

function, as described in Section VII. 

The mPLD-XOR approach has some advantages over the 

stateful approach. In the stateful approach, one would first 

calculate a function by populating the inputs in a 

computational array and then implement stateful gates. As a 

result, to calculate the function for a new set of inputs, the 

computational array must be cleared (by the FALSE 

operation), the new set of inputs must be populated, and the 

stateful gates must be implemented again. In this process, 

most of the computational steps are assigned for populating 

the inputs in the computational array [6]. In contrast, in 

mPLD-XOR implementation, this long process does not exist 

since the circuit uses voltage as input. In addition, the 

computational arrays are programmed only once for 

calculating a multi-output function for any new set of inputs, 

as described in Section IV. And the XOR gates are realized in 

CMOS modulo-two counters as described in Section V. 

The mPLD-XOR implements multi-output functions in 

generalized ESOP forms, i.e., two-level structures where input 

levels consist of any combination of NAND, AND, NOR, OR, 

and literals, and output levels are made of only XOR gates. 

Input levels are implemented using novel programmable 

diode gates. These programmable gates, which rely on self-

rectifying memristors [13-15], have no practical limit on the 

number of inputs, as described in Section IV. The output 

levels are realized in CMOS memory, i.e., modulo-two 

counters, and permanently stored in resistive memory using 

volistor NOT gate [16]. The generalized ESOP structures are 

good candidates for arithmetic and communication 

applications. 

The paper is organized as follows. In Section II, a review of 

self-rectifying memristors is provided. In Section III, a 

generalization to the ESOP structure is introduced. A new 

approach to realize memristor-based programmable diode 

gates is proposed in Section IV. In Section V, the mPLD-XOR 

for realizing circuits in the generalized ESOP structure is 

proposed, followed by a brief description of mPLD-XOR read 

and write configuration in Section VI. Section VII shows how 

to implement a 3-bit adder and 3-bit multiplier in the mPLD-

XOR. In addition, the size and performance of the circuits are 

estimated and compared to their corresponding circuits 

realized with stateful logic operations. In Section VIII, power, 

area, and delay of the programmable diode gates and mPLD-

XOR are evaluated and compared to previously proposed 

memristive logic styles for N-bit addition operation. Section 

IX concludes the paper.  

II. SELF-RECTIFYING MEMRISTORS

In the early 1970’s, Leon Chua originally conceived the 

concept of a memristor (short for memory-resistor) to link 

electric charge and magnetic flux [1]. The memristor, which 

is the fourth two-terminal basic element (in addition to 

resistor, capacitor, and conductor), remained a theoretical 

concept until researchers at Hewlett-Packard Laboratories 

successfully created the first device to be called a memristor 

in 2008 [2]. Unlike a conventional three-terminal transistor, a 

memristor is a two-terminal non-volatile passive device and 

retains the advantages of small size, low power consumption, 

and fast switching time. Crossbar structures have been 

investigated for a number of applications such as high-density 

ReRAM, programmable logic, and adaptive neuromorphic 

circuits [17-20]. The practical issue of the crossbar structures 

is the crosstalk due to the sneak path currents. These sneak 

currents are a result of reversely biased cells of the crossbar 

arrays and should be eliminated. To resolve this problem, Kim 

et al. [13] proposed a self-rectifying memristor or a memristor 

with intrinsic diode behavior. The self-rectifying memristors 

suppress the sneak path currents below 1pA due to the large 

rectifying ratio of the memristors, i.e., from three to six orders 

of magnitude (103-106) [13-15]. As a result, the use of self-

rectifying memristors decreases the leakage power in crossbar 

arrays [14][21-22].The multi-bit storage capability of the cells 

was also reported [13-14]. In this work, a simplified model of 

self-rectifying memristor described by (1) and (2) is used for 

performance evaluation [21].  

Fig. 1. i-v characteristic of the self-rectifying memristor. The device is 

initialized to HRS and driven by a sinusoidal signal with 1.2V amplitude and 
25MHz frequency. The inset shows a symbolic diagram of a memristor. 

When the voltage exceeds VCLOSE, the flow of current into the device 

decreases the resistance of the memristor.  



𝑅 = {
ROPEN (

RCLOSED

ROPEN
 )

𝑠

 𝑣 ≥ 0

ROPEN        𝑣 < 0
   (1) 

In Equation (1), R represents the resistance of a self-

rectifying memristor, 𝑠 is a state variable normalized to a real 

number between [0, 1], 𝑣 is the voltage applied across a 

memristor, and ROPEN represents the resistance when a 

memristor operates at HRS (high resistance state) while 

RCLOSED represents the resistance when a memristor operates 

at LRS (low resistance state). According to the empirical 

results reported in [14], it is assumed that typical ROPEN = 

500MΩ and RCLOSED = 500KΩ. The dynamic behavior of the 

state variable 𝑠 is described by (2). 

𝑑𝑠

𝑑𝑡
= {

𝛼(𝑣 − 𝑣𝐶𝐿𝑂𝑆𝐸)  𝑣 ≥ 𝑣𝐶𝐿𝑂𝑆𝐸

𝛼(𝑣 − 𝑣𝑂𝑃𝐸𝑁)  𝑣 ≤ 𝑣𝑂𝑃𝐸𝑁

 0  𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

      (2) 

Where 𝑣𝐶𝐿𝑂𝑆𝐸  is a positive threshold voltage, 𝑣𝑂𝑃𝐸𝑁 is a

negative threshold voltage, and 𝑣𝐶𝐿𝑂𝑆𝐸  = −𝑣𝑂𝑃𝐸𝑁 = 1V, as

used in [21]. In Equation (2), 𝛼 is a positive constant 

associated with the programming rate of memristor and is 

assumed to be 125 × 107 (V. s)−1. When 𝑣 equals VSET (a

positive programming voltage), the state transition in 

memristors from HRS to LRS occurs in 4ns, which is 

comparable with empirical programming rates reported in 

[23-24]. VSET is defined as 1.2V, and VCLEAR, which is a 

negative programming voltage, is defined as –1.2V. Fig. 1 

shows the hysteresis behavior of a self-rectifying memristor 

as found by the LTspice simulator. It illustrates the 𝑖 − 𝑣 

characteristic of a self-rectifying memristor as described in (1) 

and (2). The inset shows the symbolic diagram of a memristor. 

When the voltage exceeds VCLOSE, the current flowing into the 

device decreases the resistance of the memristor in HRS. The 

results of the power analysis should be considered an 

estimation using this simplified model. In this work, the same 

SPICE model of the self-rectifying memristor proposed in 

[21] is used for performance evaluation.  

III. A GENERALIZED ESOP STRUCTURE

Arithmetic functions are well-suited for ESOP-based 

design. These functions are implemented with a smaller 

number of products, interconnections, and literals than their 

counterparts implemented in AND-OR based design [10][25-

26]. Table I shows the number of products and literals of 

benchmark functions implemented in SOP and ESOP based 

designs using the Quine-McCluskey algorithm for multi-

output functions [27] and the EXMIN2 algorithm [25], 

respectively. The numbers clearly show the advantage of 

ESOP based design over SOP design for arithmetic functions. 

In two-level AND-XOR networks, realizing multi-input 

XOR gates is essential. A multi-input XOR gate can be 

implemented as a cascade (or a tree) of two-input XOR gates. 

However, using a traditional CMOS technology, this approach 

results in a slow XOR gate [28]. In this study, we use the 

hybrid CMOS-memristive technology and propose a 

memristive programmable logic device connected to modulo-

two counters (mPLD-XOR) to realize multi-output functions 

in ESOP based design. The mPLD-XOR can implement the 

XOR gates with a practically unlimited number of fan-in, 

which is an advantage over existing technologies (except 

quantum reversible circuits). The mPLD-XOR also allows the 

implementation of logic functions in two–level {NAND, 

AND, NOR, OR}-XOR based design, which is a generalized 

TABLE I 

NUMBER OF PRODUCTS AND LITERALS OF BENCHMARK FUNCTIONS 
[10] 

  Number of Products  Number of Literals 

In Out SOP ESOP SOP ESOP 

5xp1 7 10 63 32 278 120 

9sym 9 1 84 51 504 372 

addm4 9 8 189 91 1225 521 

adr3 6 4 31 15 116 44 

adr4 8 5 75 31 340 112 

clip 9 5 117 67 631 402 

cm82a 5 3 23 13 80 33 

f51m 8 8 76 32 326 112 

inc8 8 9 37 15 100 43 

life 9 1 84 49 672 311 

log8 8 8 123 104 730 550 

mlp4 8 8 121 62 736 305 

nrm4 8 5 120 69 716 391 

rd53 5 3 31 14 140 39 

rd73 7 3 127 35 756 134 

rd84 8 4 255 59 1774 267 

rdm8 8 8 76 32 325 112 

rot8 8 5 57 36 305 197 

sqr8 8 16 180 112 1068 546 

squar5 5 8 25 20 95 57 

z4 7 4 59 29 252 111 

   (a)                                     (b)                                     (c) 

Fig. 2. (a) Schematic of {NAND, AND, NOR, OR}-XOR logic structure. (b) 

Logical equivalence of {NAND, AND, NOR, OR}-XOR structure as realized 
in mPLD-XOR. (c) mPLD-XOR realizes functions in NOT-OR-XOR-NOT 

logic structure.
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Fig. 3. Function G1 is implemented as its logical equivalence, G2.
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ESOP logic design. Fig. 2a shows the schematic of a two-level 

{NAND, AND, NOR, OR}-XOR structure. The mPLD-XOR 

implements the input level of functions using OR and NOT 

gates, i.e., NAND is realized as NOT-OR using De Morgan 

law, ¬(ab) = (¬a) + (¬b), NOR as OR-NOT, and AND as 

NOT-OR-NOT, as shown in Fig. 2b. Note that ¬a denotes the 

negation of variable a. Inverters at the input of XOR gates can 

be moved to the outputs.  If the number of inverters is odd, the 

outputs must be inverted , i.e., ¬a ⨁ b= ¬(a ⨁ b) (output F2 

in Fig. 2c). If the number of inverters is even, the outputs are 

non-inverted, i.e., (¬a) ⨁ (¬b) = a ⨁ b (output F1 in Fig. 2c). 

Fig. 3 shows an example of a single-output function (G1) in 

the generalized ESOP structure and its logical equivalence 

(G2) as implemented using mPLD-XOR.  

IV. MEMRISTIVE PROGRAMMABLE DIODE LOGIC

Since the invention of memristors [2], there have been 

multiple proposals for memristive logic calculations. Some of 

them use resistance as input and output [3-7][21][29]. Some 

others use a mix of voltage and resistance as input and 

resistance as output [16][30]. Other proposals use voltage as 

input and output [31-35]. In this work, we propose a novel 

approach for realizing a diode logic OR and a diode logic 

AND gate [36], which rely on self-rectifying memristors and 

use voltage as input and output. These diode gates are used in 

mPLD-XOR to implement the input level of functions. In 

contrast to the earlier reported work [34], we propose a 

significantly different operation of the structurally similar and 

conceptually different gates. 

Fig. 4a shows the schematic of a two–input memristive 

programmable diode OR gate realized with self-rectifying 

memristors. The proper operation of the programmable diode 

OR requires initializing the memristors to LRS. In addition, 

input voltage 𝑣 must satisfy the inequalities 0V ≤ 𝑣 ≤ VCLOSE 

Fig. 4. Memristive programmable diode OR gate. (a) Schematic of a two-input diode OR gate implemented with self-rectifying memristors. (b) Behavior of a 

two-input diode NOR. (c) Relation between the size of a diode NOR and its RC delay during the precharge interval. (d) Schematic of a 100-input diode NOR 

gate. (e) Behavior of a 100-input diode NOR gate. (f) Schematic of a two-input diode NOR with pull-down transistor. (g) Behavior of a two-input diode NOR 

with pull-down transistor. 



where VCLOSE is the positive threshold voltage (see Fig. 1). 

This voltage constraint is to ensure that the resistance states of 

self-rectifying memristors remain unchanged, as described by 

(2). The input voltage levels are defined as 0V and 1V 

encoding logic ‘0’ and ‘1’, respectively. Assuming that 

memristors M1 and M2 in Fig. 4a are connected to high and 

low input voltages, respectively, the behavior of the 

programmable diode OR gate can be described by Δ𝑣 =
(𝑅𝑂𝑃𝐸𝑁 + 𝑅𝐶𝐿𝑂𝑆𝐸𝐷) ∙ 𝑖 where Δ𝑣 is the input voltage

difference, and 𝑖 is the current through memristors. The 

current i is limited below 1pA by the reverse biased memristor 

M2. Therefore, the voltage drop across memristor M1, which 

is in a forward bias situation, is very small, and the output 

approximately equals V(in1). The behavior of an n-input 

programmable diode OR can be explained by (3) where j and 

k are the numbers of memristors set to low and high voltage 

levels, respectively. While all memristors are initialized to 

LRS, they exhibit different resistance states depending on 

their input voltages. 

 {
Δ𝑣 = (

𝑅𝑂𝑃𝐸𝑁

𝑗
+

𝑅𝐶𝐿𝑂𝑆𝐸𝐷

𝑘
) ∙ 𝑖

𝑛 = 𝑗 + 𝑘
 (3) 

Memristors set to high input voltage are forward biased and 

exhibit LRS, while memristors set to low input voltage are 

reverse biased and exhibit HRS.  

The programmable diode OR without an output load 

operates in the range of 3ps. However, to be realistic, the 

behaviors of a diode NOR (diode OR connected to a CMOS 

inverter) is shown in Fig. 4b where V(in1) and V(in2) are the 

inputs and V(out) is the output. Connecting the output of the 

diode OR (WL) to a CMOS inverter causes unequal RC delays 

during the charge and precharge intervals. During the charge 

interval, memristors are forward biased and the RC delay is in 

the range of 100ps. However, during the precharge interval, 

Fig. 5. Memristive programmable diode AND gate. (a) Schematic of a two-input diode AND gate implemented with self-rectifying memristors. (b) Behavior of 

a two-input diode NAND. (c) Relation between the size of a diode NAND and its RC delay during the charge interval. (d) Schematic of a 100-input diode NAND 
gate. (e) Behavior of a 100-input diode NAND gate. (f) Schematic of a two-input diode NAND with pull-up resistor. (g) Behavior of a two-input diode NAND 

with pull-up resistor.  



memristors are reverse biased, and the RC delay is in the range 

of 125ns. For large diode NORs, this delay reduces to a few 

nanoseconds as shown in Fig. 4c. Fig.  4d shows the schematic 

of a 100-input diode OR connected to a CMOS inverter (diode 

NOR). The behavior of the gate is shown in Fig. 4e where half 

of the inputs are the same as V(in1), and the other half are the 

same as V(in2). The precharge delay is in the range of 2ns. In 

addition, the use of a pull-down network further decreases the 

precharge delay. Fig. 4f shows the schematic of a two-input 

diode NOR with pull-down transistor connected to the output 

of the diode-OR gate, WL. The behavior of the NOR gate is 

shown in Fig. 4g where signal Ctrl controls the pull-down 

transistor. The precharge delay of the NOR gate is in the range 

of 125ps. 

The diode gate memristors, which are initialized to LRS, 

act as binary switches while maintaining their resistance 

states. A memristor driven by the high input voltage acts as a 

closed switch, while a memristor driven by the low input 

voltage acts as an open switch. Clearly, this role cannot be 

played by standard memristors.  

Similar to the programmable diode OR gate, a 

programmable diode AND gate can be implemented with self-

rectifying memristors. Fig. 5a shows the schematic of a two–

input programmable diode AND gate. Fig. 5b illustrates the 

behavior of the diode AND connected to a CMOS inverter 

(diode NAND). Fig. 5c shows the relation between the size of 

a diode NAND gate (the number of inputs) and its RC delay 

during the charge interval. Fig. 5d shows the schematic of a 

100-input programmable diode AND gate. Fig. 5e illustrates 

the behavior of a 100-input programmable diode NAND gate 

where half of the inputs are the same as V(in1), and the other 

half are the same as V(in2). Fig. 5f shows the schematic of a 

two-input diode NAND with a pull-up resistor connected to 

the output of the diode AND gate, WL. The behavior of the 

NAND gate is shown in Fig 5g. Note that the RC delay during 

the charge interval depends on the value of pull-up resistor Rp, 

e.g., for Rp=1.25MΩ the delay is in the range of 400ps.

The i-v characteristic of a self-rectifying memristor can be 

modeled as a 1D1R (1diode in series with 1 resistive RAM) 

structure incorporated into a single two-terminal device [13]. 

A LRS memristor in reverse biased situation acts as an open 

switch and exhibits a high resistance state. Therefore, a self-

rectifying memristor reduces the reverse bias leakage, as such 

it allows to implement diode gates with many inputs as shown 

in Fig. 4d and Fig. 5d. Clearly, the PN junction or Schottky 

diode in CMOS process does not act as open switches when 

they are in reverse bias situation, hence they cannot take the 

role of the self-rectifying memristors in large diode gates used 

in the mPLD-XOR (see Section V).  

V. THE MPLD-XOR: CIRCUIT STRUCTURE AND 

FUNCTIONALITY 

The programmable diode logic gates introduced in Section 

IV are used in a new circuit structure called mPLD-XOR to 

realize multi-output functions in {NAND, AND, NOR, OR}–

XOR based design. Fig. 6 shows the schematic of mPLD-

XOR. The device consists of a ReRAM connected to CMOS 

drivers, memristive programmable diode OR gates connected 

to CMOS-memristive drivers, and CMOS modulo-two 

counters. The ReRAM is a crossbar array of self-rectifying 

memristors, which stores all control data required to drive the 

circuit. Inputs are applied to programmable diode OR gates 

through CMOS-memristive drivers controlled by data stored 

in the ReRAM. The output of each programmable diode OR 

gate is applied to a modulo-two counter, which acts as a parity 

circuit (or a T flip-flop). The counter is functionally equivalent 

to an XOR gate with an arbitrary number of inputs. The output 

of the counter is applied to a crosspoint array through a 

transmission gate and stored as the state of a memristor, as 

illustrated in Fig. 10 in Section VII. The assertion of signal 

CLR resets the counter and makes it available for calculating 

another output of a function. 

Fig. 7 includes the symbolic diagram of a modulo-two 

counter as a D flip-flop where D = ¬Q. The counter is clocked 

by an l-input programmable diode OR gate. The circuit 

implements an n-input single-output function in {NAND, 

AND, NOR, OR}–XOR based design. Inputs Ini where i ∈ 

{1, ⋯ , 𝑛} and their complements are applied to a 1×l 

programmable diode OR through CMOS-memristive drivers 

where l=2n. The drivers consist of 3-input programmable 

diode AND gates connected to CMOS buffers. When CLK is 

high, a combination of inputs determined by high Cj where j 

∈ {1, ⋯ , 𝑙} is propagated to the diode OR gate; Cj are control 
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signals stored in each column of the ReRAM and applied to 

the AND gates at positive edge of signal CLK. The output of 

the circuit is Q, the current state of the counter (or ¬Q 

depending on the function being implemented) and is 

available after m clock cycles where m also denotes the 

number of XOR terms, i.e., m-input XOR of sums, products, 

or literals. 

Fig. 8 shows the schematic of ReRAM with reference 

resistors Rg. The ReRAM is connected to CMOS drivers 

made of an m-bit shifter. The output of the shifter, (Q1, Q2… 

Qm), at the first, second, and mth clock cycle is (1, 0, …, 0), (0, 

1, 0, …, 0), and (0, 0, …, 0, 1), respectively, where logic ‘1’ 

and ‘0’ denote high and low voltage levels, which are 0.6V 

and 0V. The programmable circuit shown in Fig. 7 is scalable, 

and it can be a base of future memristive programmable 

fabrics to realize large arithmetic circuits and circuits with 

high XOR component. Examples of multi-output mPLD-XOR 

circuits are shown in Section VII.  

The circuit in Fig. 7 is designed using a 50nm TSMC 

process BSIM4 models where the number of inputs is 32, and 

the size of ReRAM is 64 × 16. For this example, all of the 

inputs Ini are assigned a value of ‘0’.¬Ini represents the output 

of inverters with input Ini. The ReRAM memristors are 

programmed as shown in Fig. 8. The pale shaded memristors 

are at HRS, and clear ones are at LRS. Fig. 9 shows the 

simulation results where V(clk) represents the clock cycle, 

V(a2) represents the output of the second AND gate, V(k) 

represents the output of the programmable diode OR, and V(q) 

Fig. 9. Simulation results of the mPLD-XOR circuit shown in Fig. 7 with the 

ReRAM configuration shown in Fig. 8. 
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represents the output of the modulo-two counter (see Fig. 7). 

During the first clock cycle, the first column of the ReRAM 

shown in Fig. 8 is connected to ‘1’ to read the control data. 

Since all memristors are in HRS, none of the inputs are applied 

to the programmable diode OR. At the second clock cycle, the 

second column is set to ‘1’ and inputs ¬Ini are applied to the 

diode OR. During the second, third, and fourth clock cycles, 

V(k) toggles the counter three times. As a result, the output of 

the counter remains high. The simulation results in Fig. 9 are 

based on Rg = 1MΩ, RP = 3.5MΩ, VP =0.6V, and input 

voltages defined as 0V and 0.6V where Rp is a pull-up resistor 

used in diode AND gates and is connected to voltage Vp.  

VI. PROGRAMMING THE MPLD-XOR

The general writing to a ReRAM is described in many 

papers [14-15]. Programming the memristors requires the 

application of VSET or VCLEAR across the devices. This 

programming step is performed only once since the 

memristors maintain their resistance states during logical 

operations. The results of our simulations show that the sneak 

path current during the read operation is small due to the 

diode-like behavior of the memristors. For example, the sneak 

path current is between 80pA and 240pA depending upon its 

location in the array, which is small enough that it has no 

negative impact on memristors in sneak paths during the read 

operation. More analysis about the sneak path current during 

the read operation can be found in [22]. For vary large 

crossbar arrays, Opamp threshold logic can be used for the 

read operation [32]. In addition, using asymmetric voltage 

scheme further decreases the leakage power during the 

programming [15].   

VII. IMPLEMENTATION EXAMPLES IN MPLD-XOR

In previous sections, the generic fabric of the mPLD-XOR 

and its programming were explained. As described in Section 

V, the mPLD-XOR can implement any logic functions. As an 

example, this section shows how a 3-bit adder and a 3-bit 

multiplier are mapped into this fabric. The size and 

performance of these circuits are also estimated. For 

comparison purposes, the same adder and multiplier are also 

implemented with stateful gates, and the size and performance 

of the circuits are estimated. Our calculations show that the 

size of the ReRAM and the number of computational steps for 

realizing a 3-bit adder in the mPLD-XOR circuit to the stateful 

circuit are 280:957 and 8:29, respectively. For a 3-bit 

multiplier, these ratios are 564:5720 and 12:65, respectively. 

In both approaches, the size of the ReRAM (including the 

CMOS drivers) dominates the area when large circuits are 

implemented. The implementation details can be found in 

Section VII.A and VII.B.   

A. 3-bit adder 

Below we will illustrate how a 3-bit adder can be realized in 

a simplified generic mPLD-XOR fabric, where inputs in a 

complementary form only are applied to the circuit. This 

simplification decreases the amount of the data stored in 

ReRAM to half. The size of the ReRAM is 64×16, and the 

number of modulo-two counters is three, which allows the 

calculation of three single-output functions simultaneously. 

The schematic of the mPLD-XOR for realizing the adder is 

shown in Fig. 10. Inputs are ai and bi where i ∈ {0, 1, 2}, and 

outputs are S0, S1, S2, and Co as described by (4). Instructions 

for realizing the adder are loaded into the ReRAM. Note that 

realizing any logic function requires loading the 

corresponding instructions into the ReRAM.  

Fig. 11 shows a part of the ReRAM divided into subReRAMs 

where each stores instructions to calculate a 1-bit output, 

except the subReRAM shown in Fig. 11a, which stores control 

data for driving the CMOS part of the mPLD-XOR. The size 

of subReRAMs is 35 × 8. 

Once an output is calculated, it is stored as a state of a 

memristor using volistor NOT gate [16]. Volistor NOT uses 

voltage as input and resistance as output. To describe the 

operation of a volistor NOT gate, consider the circuit shown 

in Fig. 4a. Let us assume that an input voltage is applied to 

memristor M1, and a negative bias defined as – 0.6V is applied 

to memristor M2. When the input is ‘1’ (0.6V), the voltage 

across memristor M2 is –1.2V, i.e., VCLEAR, which is sufficient 

to toggle the state of memristor M2 to HRS (logic ‘0’). When 

the input is ‘0’ (0V), the state of memristor M2 remains at LRS 

(logic ‘1’). Memristor M1 is called ‘source memristor’ since 

it is driven by the input, and memristor M2 is called ‘target 

memristor’ since it stores the output [5]. Regardless of the 

input value, the state of the source memristor remains at LRS 

while the state of the target memristor may toggle to HRS 

depending on the input. Note that the role of each memristor 

is determined by the voltage applied to the memristor. The 

proper operation of the volistor NOT requires initializing 

memristors M1 and M2 to LRS. The crosspoint array at the 

bottom right of the mPLD-XOR in Fig. 10 is used to store the 

outputs of the counters using volistor NOT. The crosspoint 

memristors connected to counters’ dual-rail outputs via 

transmission gates act as source memristors (SM), and the 

crosspoint memristors connected to TM drivers act as target 

memristors (TM). The TM drivers are made of a CMOS 

shifter with output voltage levels of 0V and –0.6V. The 

transmission gates connect the outputs of the counters to the 

source memristors only when the outputs have been 

calculated. The transmission gates are controlled by signals Pi 

and ¬Pi where i ∈{1, …, 2j} and j equals the number of 

counters, which is 3 (see Fig. 10). Recall that each counter has 

two outputs, Q and ¬Q, and thus, requires two transmission 

gates. The need for representing the outputs of the counters in 

dual-rail logic is described in Section III.  

The first column of the subReRAM shown in Fig. 11a stores 

control data for initializing the CMOS subcircuits of the 

mPLD-XOR, e.g., by asserting signals CLRi where i ∈ {0, 1, 

2, 3} to reset all modulo-two counters, or by asserting signals 

Pi and ¬Pi where i ∈ {1, …, 6} to disconnect the modulo-two 

counters connected to the crosspoint array via transmission 

     {

𝑆0 = 𝑎0⨁𝑏0
𝑆1 = 𝑎1⨁𝑏1⨁𝑎0𝑏0

𝑆2 = 𝑎2⨁𝑏2⨁𝑎1𝑏1⨁𝑎1𝑎0𝑏0⨁𝑏1𝑎0𝑏0
𝐶𝑜 = 𝑎2𝑏2⨁𝑎2𝑎1𝑏1⨁𝑎2𝑎1𝑎0𝑏0⨁𝑎2𝑏1𝑎0𝑏0⨁𝑏2𝑎1𝑏1⨁𝑏2𝑎1𝑎0𝑏0⨁𝑏2𝑏1𝑎0𝑏0

 (4) 



gates. Once an output of the adder is calculated, signal Ctrl is 

asserted to store the output in a target memristor.      

For example, upon the first assertion of signal Ctrl, the first 

output (S0) is stored in the leftmost target memristor of the 

crosspoint array shown in the bottom right of Fig. 10. In this 

operation, the outputs of TM drivers, (o1, o2, o3, o4), equal (–

0.6, 0V, 0V, 0V). Ultimately all outputs will be stored in target 

memristors TM. Each column of subReRAMs in Fig. 11b-Fig. 

11d controls the primary inputs applied to each programmable 

diode OR gate for realizing an XOR term such as NAND, 

AND, NOR, OR, or literal. (In particular, each row of the 

subReRAMs controls 1-bit input during computational steps 

where inputs are shown as a red vertical bus adjacent to the 

subReRAMs). The process of realizing the 3-bit adder are 

described below.  

1) Initialization

CMOS subcircuits are initialized in the first clock cycle by

asserting the control signals stored in the first column of 

ReRAM.  

2) Calculating S0

Sum bit S0 is calculated in the second and third clock cycles

by driving the second and third columns of the crossbar array 

shown in Fig. 11b. In the third clock cycle, S0 is available at 

the non-inverted output of XOR1. At this moment, ¬S0 is 

applied to a source memristor via a transmission gate to store 

S0 in the leftmost target memristor of the crosspoint array. In 

this operation, signals P2 and Ctrl stored in the third column 

of the crossbar array in Fig. 11a are applied to the related 

transmission gate and TM drivers, respectively. In the fourth 

clock cycle, signal CLR1 is asserted to clear the output of 

XOR1 for the next use.  

3) Calculating S2

Sum bit S2 is calculated in five clock cycles, as shown in

Fig. 11c. In clock cycle number six, S2 is available at the 

inverted output of XOR2. At this moment, ¬S2 is applied to a 

source memristor, and S2 is stored next to S0. This operation 

requires asserting signals P3 and Ctrl, which are stored in 

column number six of the crossbar array in Fig. 11a.  

4) Calculating S1

Sum bit S1 is calculated in three clock cycles, as shown in

Fig. 11b.  In clock cycle number seven, S1 is available at the 

inverted output of XOR1. Simultaneously, ¬S1 is applied to a 

 {
𝑐𝑖 = 𝑁𝐴𝑁𝐷 (𝑂𝑅 (¬𝑎, ¬b ), 𝑂𝑅(¬𝑎, ¬𝑐𝑖−1), 𝑂𝑅(¬b, ¬𝑐𝑖−1))

𝑠 = 𝑁𝐴𝑁𝐷 (𝑂𝑅 (𝑎, 𝑏, ¬𝑐), 𝑂𝑅(𝑎, ¬b, 𝑐), 𝑂𝑅(¬𝑎, ¬b, ¬𝑐), 𝑂𝑅(¬𝑎, 𝑏, 𝑐))
   (5) 
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source memristor to store S1 next to S2 by asserting signals 

P1 and Ctrl, stored in column number seven of the crossbar 

array in Fig. 11a. 

5) Calculating Co

Carry bit Co is calculated in seven clock cycles, as shown in

Fig. 11d. In clock cycle number eight, Co is available at the 

inverted output of XOR3. At this moment, ¬Co is applied to a 

source memristor to store Co next to S1 by asserting signals 

P5 and Ctrl, stored in column number eight of the crossbar 

array in Fig. 11a.  

In summary, the 3-bit adder is realized in eight clock cycles 

in a 35 × 8 crossbar array.  

The mPLD-XOR can be designed by programmable diode 

ANDs instead of programmable diode ORs to realize logic 

a0 b0 0 0 0 0 0 0 
a1 b1 0 0 0 0 0 0 

a2 b2 0 0 0 0 0 0 

(a) 1 FALSE 

a0 b0 ¬a0 ¬b0 0 0 0 0 

a1 b1 ¬a1 ¬b1 0 0 0 0 
a2 b2 ¬a2 ¬b2 0 0 0 0 

(b) 2 IMPs 

a0 b0 ¬a0 ¬b0 0 0 0 c1 

a1 b1 ¬a1 ¬b1 0 0 0 ¬c1 
a2 b2 ¬a2 ¬b2 0 0 0 0 

(c) 2 IMPs 

a0 b0 ¬a0 ¬b0 0 0 0 0 

a1 b1 ¬a1 ¬b1 c1 ¬c1 0 0 

a2 b2 ¬a2 ¬b2 0 0 0 0 

(d) 2 IMPs + 1 FALSE 

a0 b0 ¬a0 ¬b0 0 0 0 s0 
a1 b1 ¬a1 ¬b1 c1 ¬c1 0 0 

a2 b2 ¬a2 ¬b2 0 0 0 0 

(e) 2 IMPs 

a0 b0 ¬a0 ¬b0 0 0 0 s0 

a1 b1 ¬a1 ¬b1 c1 ¬c1 0 c2 
a2 b2 ¬a2 ¬b2 0 0 0 ¬c2 

(f) 4 IMPs 

a0 b0 ¬a0 ¬b0 0 0 0 s0 

a1 b1 ¬a1 ¬b1 c1 ¬c1 0 0 

a2 b2 ¬a2 ¬b2 c2 ¬c2 0 0 

(g) 2 IMPs + 1 FALSE 

a0 b0 ¬a0 ¬b0 0 0 0 s0 
a1 b1 ¬a1 ¬b1 c1 ¬c1 0 s1 

a2 b2 ¬a2 ¬b2 c2 ¬c2 0 0 

(h) 4 IMPs 

a0 b0 ¬a0 ¬b0 0 0 0 s0 

a1 b1 ¬a1 ¬b1 0 0 0 s1 
a2 b2 ¬a2 ¬b2 c2 ¬c2 c3 s2 

(i)  7 IMPs 

a0 b0 ¬a0 ¬b0 0 0 0 s0 

a1 b1 ¬a1 ¬b1 0 0 0 s1 
a2 b2 ¬a2 ¬b2 0 0 c3 s2 

(j) 1 FALSE 

Fig. 12. (a)-(j) Computational steps for realizing a 3-bit adder with stateful 

gates. The total number of IMP and FALSE operations is 29. The numbers of 
operations are shown in each step. 
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Fig. 11.  Schematic of subReRAMs. SubReRAM (a) stores the control data 
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control data for realizing S0, S1, S2, and Co. The number of clock cycles for 
computing each output is shown in parenthesis, e.g., (#8). The size of 

subReRAMs is 35 × 8. 



functions in PPRM (Positive Polarity Reed-Miller) 

expressions that is AND-XOR expressions with 

uncomplemented literals only, as in (4). This realization also 

requires changing the diode AND gates used in CMOS-

memristive drivers with diode OR gates. In addition, the 

control data stored in ReRAM (Fig. 11) must be substituted 

with their complements. In the AND-type mPLD-XOR, inputs 

in positive polarity are applied to the circuit, and there is no 

need for input CMOS inverters.  

Using memristor-based stateful IMPLY gates, a 3-bit adder 

can be implemented with the NAND-OR logic structure [11] 

using (5). In this implementation, multi-input IMPLY gates 

are utilized. The process of realizing a 3-bit adder in a 3 × 8 

computational array is shown in Fig. 12. More details can be 

found in [37]. 

The matrix shown in Fig. 12a is analogous to a 3 × 8 crossbar 

array where entities of the matrix represent the states of 

corresponding memristors. Inputs ai and bi where i ∈ {0, 1, 2} 

are populated in the computational array shown in Fig. 12a. In 

step a, the auxiliary memristors are initialized to HRS denoted 

by logic ‘0’ in one clock cycle. In step b, copies of 

complementary inputs are stored in the third and fourth 

columns using stateful IMPLY gates. This step is realized in 

two clock cycles. In step c, carry bit c1 is calculated and stored 

in the rightmost memristor of the first row. Also, a copy of 

¬c1 is stored in the rightmost memristor of the second row. In 

step d, c1and ¬c1 are copied to new locations, as shown in 

Fig. 12d. The rightmost column is cleared to be used in step e. 

In step e, sum bit s0 is calculated and stored in the rightmost 

memristor of the first row. The following steps, f through j, 

are illustrated in Fig. 12.  

The number of computational steps is 29, and the size of the 

ReRAM can be estimated as c × m where c is the number of 

control bits driving the 3×8 crossbar array per computational 

step, and m equals the number of computational steps, which 

is 29. The number of control bits driving each nanowire cannot 

be smaller than three since each nanowire needs to be 

connected to multiple voltage levels, grounded through a 

reference resistor, or terminated to high impedance. Assuming 

that each nanowire is driven by three control bits, the size of 

the ReRAM can be estimated as 33× 29. 

In an mPLD-XOR, the number of control bits for driving 

each nanowire of the computational arrays is only one because 

each nanowire must be connected to either ‘0’ or ‘1’ for 

computing logic. In other words, there is no need to terminate 

the nanowires to high impedance or to ground them through 

reference resistors. Moreover, the memristors maintain their 

resistance states during logic calculations and they don’t need 

to be initialized repeatedly. Therefore, no additional voltage 

levels are required for implementing logic in mPLD-XOR. 

The programmable diode gates have simplified driving 

circuitries, which in turn decrease the size of ReRAM. The 

size of the ReRAM and the number of computational steps for 

realizing the adder in the mPLD-XOR circuit to the stateful 

circuit are 280:957 and 8:29, respectively. 

B. 3-bit multiplier 

A 3-bit multiplier can be realized with the mPLD-XOR 

shown in Fig. 10. This requires loading instructions of the 

multiplier into the ReRAM, which occupy 35×40 of the 

ReRAM size. The number of clock cycles (computational 

steps) for this realization is 40. Adding feedback CMOS D 

flip-flops to the mPLD-XOR can improve the size and 

performance of the circuit. For example, the multiplier can be 

implemented in twelve clock cycles using 47×12 of the 

ReRAM size. The enhanced mPLD-XOR stores the output of 

each counter in a D flip-flop and makes it available as a 

primary input (Fig. 13). This feedback also makes a counter 

available for calculating another output. The feedback D flip-

flops are clocked by signal Sigi where i ∈ {1, 2, 3}. Adding 

the feedback to the mPLD-XOR allows the implementation of 

multilevel XOR logic networks with any combination of 

sums, products, XORs, and literals at the input of any XOR 

gate. Fig. 14 shows the schematic of a 3-bit multiplier as 

realized with the mPLD-XOR with feedback D flip-flops. In 

this realization, internal signals IP0, IC0, IC1, and IC2 in Fig. 

14 are calculated, stored in D flip-flops, and used to 

implement the next levels of the circuit. 

If the multiplier is implemented with stateful IMPLY gates, 

the number of computational steps will be 65. Fig. 15 shows 

the initial states of the crossbar array for realizing the 

multiplier. Assuming that each nanowire of the crossbar array 

is driven by three control bits, the size of the ReRAM is 

estimated as 66 × 65. 

In summary, the size of the ReRAM and the number of 

computational steps for realizing a 3-bit multiplier in the 

mPLD-XOR circuit to the stateful circuit are 564:4290 and 

12:65, respectively. 

VIII. EVALUATION AND COMPARISON OF DIFFERENT 

LOGIC STYLES

An extensive comparison of different architectures is 

beyond the scope of this paper, however, to get some level of 

comparison, here are some published numbers for other 

memristive styles of logic gates. The following is a direct 

comparison between the published threshold logic example 

[32], MAGIC NOR example [7], and our implementation, and 

as such does not include the driving circuitry to the memristor 

array (see Table II). The minimum and maximum power 

dissipations of 2, 10, and 100-input diode NAND/ NOR gates 

were calculated. The same power calculation was also 

performed for multi-input stateful NOR gates realized with 

self-rectifying memristors using converse non-implication 

gates (CNIMP) [6]. The simulation was performed in LTspice 

using 50nm TSMC process BSIM4 models and the memristor 

model explained by (1) and (2). The power dissipation and 

propagation delay are calculated when a square pulse with 

10ns time period and a 50% duty cycle is applied. The initial 

states of memristors realizing the CNIMP NOR gates are 

assumed to be ‘0’ (HRS). There are two steps for performing 

the stateful NOR gate. The first step is programming the 

memristors, and the second step is performing the logic. Most 

of the gate power consumption is related to the programming 

step (writing input values into memristors), which must be 

performed repeatedly for computing different logic functions. 

The initial states of the memristors in the programmable diode 

gates are assumed to be ‘1’ (LRS). In contrast to the stateful 

gates, memristors in programmable diode gates maintain their 

resistance states during logic operations. The power 



consumption of a 2-input MAGIC NOR gate based on 

published numbers [7] is shown in Table II. This power does 

not include the programming step where the programming of 

a memristor to HRS and LRS consumes 26.35uW and 169uW, 

respectively [7]. The power consumption of 10 and 100-input 

MAGIC NOR gates is estimated by scaling the power 

consumption of a 2-input MAGIC NOR gate. For example, 

the power consumption of a 10-input MAGIC NOR is 

estimated as 5× the power consumption of a 2-input MAGIC 

NOR, which is about 29.75uW-313.85uW. In terms of area, 

the numbers of computational memristors in all logic styles 

shown in Table II are similar, however, their CMOS parts are 

different. For instance, the output of a diode gate is connected 

to a CMOS inverter and a pull-up resistor (or a pull-down 

transistor). However, the output of a memristive resistance 

divider in a threshold gate is connected to an Opamp threshold 

circuit. In our simulation, it is assumed that Vdd=1V, VCOND 

=0.6V, and VPROG =–0.6V where VCOND and VPROG are bias 

voltages used to operate CNIMP NOR gates. In addition, 

inputs applied to the diode gates are defined as 0V and 1V.   

Fig. 16 shows the area and delay of an N-bit adder realized 

with multiple approaches. The area and delay of the mPLD-

XOR are explained by (6) and (7), respectively, where MN is 

the number of computational memristors, and DN is the 

number of clock cycles. These equations are derived for an 

mPLD-XOR with three modulo-two counters and feedback D 

flip-flops. 

M1=4, M2=10, M3=15, M4=21, M5=27, and MN=MN-1+4 for 

N>5.                                                                                      (6) 

D1=3, DN=DN-1+3 if (N-1 mod 3) ≠2, and DN=DN-1+2 if (N-1 

mod 3) =2.                                                                            (7) 

In all approaches, only the numbers of auxiliary 

(computational) memristors are considered since the number 

of source and target memristors are equal. The mPLD-XOR is 

1.31× faster in average than the FBLC approach [38], which 

is the second fastest approach shown in Fig. 16. In addition, 

the mPLD-XOR approach is 1.49× more area efficient in 

average than the IMPLY Parallel approach [29], which is the 

second most area efficient approach shown in Fig. 16.  

Note that the number of memristors utilized in the FBLC 

approach increases dramatically [39] compared to other 

approaches and is not included in the graph (Fig. 16).  

A 16-bit adder is also implemented in the mPLD-XOR with 

three modulo-two counters and feedback D flip-flops where 

A=01010101and B=00110011 are used as input vectors. The 

adder is performed in 42 clock cycles each of 4ns period and 
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Fig. 13. Schematic of an mPLD-XOR with feedback D flip-flops for realizing a 3-bit multiplier. In this implementation, the number of computational steps is 12, 

and the instructions occupy 47×12 of the ReRAM. 
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Fig. 14. Schematic of a 3-bit multiplier in multilevel XOR logic structure 

where XOR terms are sums, products, XORs, or literals. This circuit is 
implemented with an mPLD-XOR with feedback circuit. The internal 

signals (IP0, IC0, IC1, and IC2) are stored in memory cells (feedback circuit) 

to decrease the size of the ReRAM. 

¬𝑎0 ¬𝑎1 ¬𝑎2 ¬𝑏0 ¬𝑏1 ¬𝑏2 0 0 0 0 0 0 0 0 0 0
¬𝑎0 ¬𝑎1 ¬𝑎2 ¬𝑏0 ¬𝑏1 ¬𝑏2 0 0 0 0 0 0 0 0 0 0
¬𝑎0 ¬𝑎1 ¬𝑎2 ¬𝑏0 ¬𝑏1 ¬𝑏2 0 0 0 0 0 0 0 0 0 0
¬𝑎0 ¬𝑎1 ¬𝑎2 ¬𝑏0 ¬𝑏1 ¬𝑏2 0 0 0 0 0 0 0 0 0 0
¬𝑎0 ¬𝑎1 ¬𝑎2 ¬𝑏0 ¬𝑏1 ¬𝑏2 0 0 0 0 0 0 0 0 0 0
¬𝑎0 ¬𝑎1 ¬𝑎2 ¬𝑏0 ¬𝑏1 ¬𝑏2 0 0 0 0 0 0 0 0 0 0

Fig. 15. 6×16 computational array for implementing a 3-bit multiplier with 
stateful logic gates. The matrix entities denote the initial states of the array.  



50% duty cycle. The average power consumption is about 

17uW based on our spice simulations where 97% of this 

power is consumed in CMOS parts of the circuit. The same 

adder is also implemented in Xilinx Artix-7 FPGA 

XC7A100T (28nm technology). The Xilinx vivado is used to 

estimate the data path delay and power consumption. The 

longest data path delay of the FPGA is estimated as 7.798ns. 

The total active circuit power is 416mW. In terms of energy, 

the mPLD-XOR circuit consumes 2.678pJ to execute the 16-

bit adder, while the Xilinx FPGA consumes 3.244nJ for 

implementing the adder.  

IX. CONCLUSION

The mPLD-XOR relies on the characteristics of self-

rectifying memristors to allow voltages to be used directly as 

inputs. The mPLD-XOR is designed to implement multi-

output functions well suited for XOR of sums or products 

structure such as arithmetic and communication functions. 

The input levels of such functions are realized with novel 

programmable diode gates and the output levels with CMOS 

modulo-two counters. The number of computational steps for 

calculating a multi-output function equals the maximum 

number of inputs to any output XOR gate when the number of 

modulo-two counters is large enough to calculate the outputs 

simultaneously. A 3-bit adder and a 3-bit multiplier are 

implemented with mPLD-XOR, and the size and performance 

of each circuit were compared with the implementation of 

stateful gates. The size of ReRAM and the number of clock 

cycles for realizing the adder in mPLD-XOR approach to the 

stateful approach are 280:957 and 8:29 respectively. For the 

3-bit multiplier, these ratios are 564:4290 and 12:65. Adding 

feedback circuits to mPLD-XOR, as shown in Fig. 13, allows 

the implementation of a multilevel XOR logic network with 

any combination of sums, products, XORs, and literals at the 

input of any XOR gate. The mPLD-XOR with feedback 

circuit has the potential to decrease the number of 

computational steps and the size of ReRAM. In realizing the 

3-bit multiplier, the size of ReRAM and the number of 

computational steps in mPLD-XOR with a feedback circuit to 

the mPLD-XOR without a feedback circuit are 564:1400 and 

12:40, respectively. A 16-bit adder is also implemented in the 

mPLD-XOR and Xilinx Artix-7 FPGA XC7A100T. The 

power consumption of the mPLD-XOR is smaller than the 

Artix-7 FPGA, but it performs slower. In addition, the size and 

delay comparisons of an N-bit adder realized with multiple 

approaches show that the mPLD-XOR adder is more area-

delay efficient. This paper presents examples demonstrating 

the benefits of using mPLD-XOR for realizing logic 

functions.  
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