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Sequence variation at ANAPC1 accounts for 24%
of the variability in corneal endothelial cell density
Erna V. Ivarsdottir 1,2, Stefania Benonisdottir1, Gudmar Thorleifsson1, Patrick Sulem 1,

Asmundur Oddsson 1, Unnur Styrkarsdottir 1, Snaedis Kristmundsdottir1, Gudny A. Arnadottir 1,

Gudmundur Thorgeirsson1,3,4, Ingileif Jonsdottir1,3,5, Gunnar M. Zoega6, Unnur Thorsteinsdottir1,3,

Daniel F. Gudbjartsson 1,2, Fridbert Jonasson3,6, Hilma Holm1 & Kari Stefansson 1,3

The corneal endothelium is vital for transparency and proper hydration of the cornea. Here,

we conduct a genome-wide association study of corneal endothelial cell density (cells/mm2),

coefficient of cell size variation (CV), percentage of hexagonal cells (HEX) and central

corneal thickness (CCT) in 6,125 Icelanders and find associations at 10 loci, including 7 novel.

We assess the effects of these variants on various ocular biomechanics such as corneal

hysteresis (CH), as well as eye diseases such as glaucoma and corneal dystrophies. Most

notably, an intergenic variant close to ANAPC1 (rs78658973[A], frequency= 28.3%)

strongly associates with decreased cell density and accounts for 24% of the population

variance in cell density (β=−0.77 SD, P= 1.8 × 10−314) and associates with increased

CH (β= 0.19 SD, P= 2.6 × 10−19) without affecting risk of corneal diseases and glaucoma.

Our findings indicate that despite correlations between cell density and eye diseases, low cell

density does not increase the risk of disease.
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Corneal diseases are among the most common causes of
visual loss worldwide and endothelial cell failure is the
leading indication for corneal transplantation1. The corneal

endothelium is the monolayer of cells at the innermost surface of
the cornea. Through an ion pump function, the endothelium is
responsible for balanced corneal hydration, thus maintaining
transparency by preventing edema and disruption of lamellar
spacing of the collagen fibrils in the corneal stroma2. Maintaining
proper function of the endothelium requires a minimum number
of endothelial cells, around 400–500 cells/mm2 3. The cells are
generally thought to be incapable of mitosis after birth but are
halted in the G1 phase of the cell cycle and their number decreases
with age2. The cell division is thought to be blocked by contact
inhibition, high concentration of negative growth factors in the
anterior chamber and by accumulation of reactive oxygen species
promoting state of stress-induced senescence3,4. The response to
cell loss includes spreading and/or migration of adjacent cells
which increase in size and become more variable in both cell size
and shape3,5.

Non-contact auto-tracking and focusing specular microscopy
provides a non-invasive analysis of the structure of the corneal
endothelium6. The equipment captures an image of the endo-
thelial cell layer and provides measures of its structure including,
cell density (cells/mm2), coefficient of cell size variation (CV),
percentage of hexagonally shaped cells (HEX) and central corneal
thickness (CCT). CCT has been studied extensively in large
genome-wide association studies (GWAS) where the measure-
ments are obtained using different types of instruments7–13.
Several CCT associating loci have been identified including
WNT10A, COL5A1, and ZNF46911. To our knowledge, however,
there are no reports of sequence variants influencing other
direct measures of endothelial structure such as cell density,
CV and HEX.

The measures of endothelial structure are used to diagnose
corneal diseases. Several corneal diseases including Fuchs endo-
thelial corneal dystrophy (FECD) and macular corneal dystrophy
(MCD) are known to have genetic components14,15. FECD is a
leading cause of corneal transplant surgery and is characterized
by premature loss of endothelial cells resulting in increased
variability in cell shape and size leading to corneal edema and
visual loss16,17. MCD is characterized by progressive spotted
corneal opacities leading to severe visual impairment, caused by
homozygous or compound heterozygous variants in the CHST6
gene (OMIM: 605294). MCD is a rare condition worldwide, but
because of the founder effect18, MCD is unusually common in
Iceland where it accounts for approximately one-third of corneal
transplantations19.

Cell density in the corneal endothelium may be reduced in
glaucoma patients20. Glaucoma is an ocular disease that affects

~3.5% of people over 40 years of age, and is a major cause of
irreversible blindness worldwide21,22. Commonly, elevated
intraocular pressure (IOP) leads to progressive damage of the
optic nerve causing visual loss and it has been postulated that
elevated IOP affects the endothelium23. The relationship between
different corneal measures and glaucoma have been investigated,
especially the role of IOP, CCT and more recently corneal hys-
teresis (CH) and corneal resistance factor (CRF)24. CH and CRF
are measures of corneal response to a rapid jet of air, where CH
is a measure of the elasticity of the cornea and CRF is an
overall indicator of the resistance of the cornea25. Lower CH has
been associated with faster rate of glaucoma progression26–28.

Here we describe our search for sequence variants associating
with measures of corneal structure, finding 10 sequence variants,
nine common and one low-frequency (minor allele frequency
(MAF) <5%), associating with CCT, cell density, CV, or HEX.
Two of these variants satisfy thresholds for genome-wide sig-
nificance for more than one trait. Seven of the associations are
novel, two are represented by coding variants and one is located
in a gene known to cause a Mendelian disorder (ADAMTS17,
OMIM: 607511). We assess the effects on ocular biomechanics,
including IOP and CH, and various eye diseases. We find a
variant near ANAPC1 that strongly associates with cell density
but not with risk of eye disease, which indicates that low cell
density alone does not affect disease development directly.

Results
Summary of the data. Endothelial images from a specular
microscopy of 6125 Icelanders were used in the analysis, pro-
viding measures of cell density, CV, and HEX. The equipment
also produced CCT measurements. These images were obtained
as a part of a comprehensive phenotyping of a general population
sample (the deCODE health study), currently including 6300
Icelanders that were between 18 and 94 years of age at the time
of recruitment (44.6% men; mean age= 55.9, standard deviation
(SD)= 15.1). We also measured several ocular biomechanics
such as CH, CRF, Goldmann correlated intraocular pressure
(IOPg), and corneal compensated intraocular pressure (IOPcc)
(Supplementary Figures 1–6).

The number of endothelial cells declines with age and
remaining cells enlarge to compensate for the cell loss.
Consequently, cell density and HEX decrease with age while
CV increases (Table 1, Fig. 1a–c and Supplementary Figure 7).
Women have considerably lower HEX than men (50.6% vs 48.3%,
P= 8.4 × 10−43; F test), while cell density and CV are slightly
higher for women (2663 vs 2639 cells/mm2, P= 1.8 × 10−3 (F
test) and 30.3 vs 29.6, P= 2.6 × 10−6 (F test), respectively). To
our knowledge, the gender differences of HEX, cell density and

Table 1 Summary of data

Mean (SD) Men’s mean (SD) Women’s mean (SD) Sex effect Sex P-value Glaucoma effect [SD] Glaucoma P-value

CD 2652 (296) 2639 (296) 2663 (294) 23.83 1.8 × 10−3 −0.35 2.1 × 10−6

CV 30.0 (5.9) 29.6 (6.7) 30.3 (5.1) 0.71 2.6 × 10−6 0.13 0.069
CCT 563 (40) 565 (40) 562 (39.5) −3.82 1.9 × 10−4 −0.25 4.7 × 10−4

HEX 49.3 (6.5) 50.6 (6.6) 48.3 (6.3) −2.29 8.4 × 10−43 −0.16 0.030
CH 10.4 (1.2) 10.2 (1.2) 10.5 (1.1) 0.28 5.7 × 10−22 −0.37 3.8 × 10−7

IOPg 14.7 (3.4) 14.6 (3.5) 14.7 (3.4) 0.13 0.15 0.18 0.014
IOPcc 15.3 (3.1) 15.4 (3.2) 15.2 (3.0) −0.19 0.015 0.29 7.3 × 10−5

CRF 13.1 (1.5) 13.0 (1.5) 13.3 (1.5) 0.29 5.7 × 10−14 −0.07 0.34

The mean and standard deviation (SD) is shown for each corneal trait obtained from the specular microscopy equipment and the ocular response analyzer, overall and separately for each sex. The effect
of sex and glaucoma status on each trait and the corresponding P-values (F test) are shown. The sample size was 6125 in total, 2733 men and 3392 women
CD cell density, CV coefficient of cell size variation, CCT central corneal thickness, HEX percentage of hexagonal cells, CH corneal hysteresis, IOPg Goldmann correlated intraocular pressure, IOPcc corneal
compensated intraocular pressure, CRF corneal resistance factor
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CV have not been reported before. Consistent with previous
reports29, CCT does not change with age and is higher for men
than women (565.4 vs 561.5 μm, P= 1.9 × 10−4; F test) (Fig. 1d).
The measurements of corneal structure are correlated, also after
adjusting for sex and age (Supplementary Table 1). The strongest
correlations are between CV and HEX (r=−0.65) and between
CV and cell density (r=−0.33).

Study design. To search for sequence variants associating with
corneal structure, we analyzed 35.2 million sequence variants
identified through whole-genome sequencing of 28,075 Icelanders
that were subsequently imputed into 155,250 chip-typed indivi-
duals, as well as their first- and second-degree relatives30,31

(Supplementary Figures 8–11). Ten sequence variants, satisfied
our genome-wide significance thresholds that are dependent on
sequence variant annotation32 (Table 2, Supplementary Table 2).

To determine whether the associating variants affect the risk of
eye diseases we performed a meta-analysis of GWAS results from
Iceland and the UK Biobank (Supplementary Table 3 and 4). We
tested the variants for association with glaucoma (8432 cases and
641,353 controls) and the sub-categories: primary open-angle
glaucoma (2296 cases and 705,937 controls), and primary angle

closure glaucoma (777 cases and 637,017 controls). We also tested
the variants for association with disorders of cornea (ICD10
code H18, 756 cases and 663,218 controls) and the sub-
categories; corneal degeneration (ICD10 code H18.4, 199 cases
and 684,021 controls), hereditary corneal dystrophies (ICD10
code H18.5, 330 cases and 683,652 controls) and keratoconus
(ICD10 code H18.6, 127 cases and 659,503 controls). We applied
a Bonferroni corrected P-value threshold based on testing ten
corneal structure variants for association with seven phenotypes
(P < 0.05/(7*10)= 7.1 × 10−4).

GWAS results. Two sequence variants associate with cell density
(Fig. 2a, Table 2). The strongest association is represented by a
common intergenic variant located 0.4 kb downstream of ANAPC1,
rs78658973[A] (MAF= 28.3%), that associates with decreased cell
density (β=−0.77 SD, P= 1.8 × 10−314; a likelihood-ratio test was
performed in all genome-wide associations) (Fig. 1e, Supplementary
Figure 12). rs78658973 is highly correlated with 113 variants (r2 >
0.8) in the region, none of which is protein coding. The most highly
correlated coding variants are two splice region variants in ANAPC1;
rs201128688 and rs142711068 (r2= 0.72 and 0.73, respectively).
The effect of rs78658973[A] conditioning on the two splice region
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Table 2 Association results

Trait Chr:Position rs-name Allele (min/maj) MAF (%) Gene/ [Locus] Coding effect LD class P-value β [SD] (95% CI) Ref.

CD 2:111726948 rs78658973 (A/T) 28.3 [ANAPC1] Intergenic 112 1.8 × 10−314 −0.77 (−0.77,−0.77)
CD 18:55586154 − CTG repeat > 33 6.1 TCF4 3 1.4 × 10−20 −0.41 (−0.49,−0.32) 35

CV 2:111726948 rs78658973 (A/T) 28.3 [ANAPC1] Intergenic 112 2.8 × 10−28 0.23 (0.19,0.27)
CV 17:14650919 rs2323458 (A/G) 36.1 17p12 Intergenic 47 6.9 × 10−13 0.14 (0.10, 0.18)
CV 8:9943404 rs10094779 (G/A) 24.1 8p23.1 Intergenic 4 7.6 × 10−12 0.15 (0.11, 0.19)
CV 11:122029470 rs76561503 (C/T) 17.9 11q24.1 Intergenic 29 3.3 × 10−10 0.16 (0.11,0.21)
CCT 16:88302168 rs12719930 (G/A) 39.4 [ZNF469] Intergenic 21 1.9 × 10−14 −0.15 (−0.19,−0.11) 13

CCT 2:218890289 rs121908120 (A/T) 2.6 WNT10A Missense 6 4.5×10−11 −0.39 (−0.51,−0.28) 9

CCT 9:134545337 rs943423 (G/A) 27.2 [COL5A1] Intergenic 0 6.1 × 10−11 −0.14 (−0.19,−0.10) 13

CCT 15:100152748 rs72755233 (A/G) 13.8 ADAMTS17 Missense 0 1.3 × 10−10 0.18 (0.12, 0.23)
CCT 12:104015054 rs117801489 (C/T) 4.3 GLT8D2 Missense 2 3.9 × 10−10 0.30 (0.20, 0.39)
HEX 18:55586154 − CTG repeat > 33 6.1 TCF4 3 5.9 × 10−18 −0.37 (−0.45,−0.28) 35

HEX 2:111726948 rs78658973 (A/T) 28.3 [ANAPC1] Intergenic 112 2.8 × 10−13 −0.16 (−0.20,−0.11)

The 10 variants identified in the GWAS on cell density (CD), CV, HEX, and CCT. Effects are shown for the minor allele. Minor allele frequency in the Icelandic population is presented. The LD class
column shows the number of highly correlated variants (r2 > 0.8). The imputation information for all these variants is > 0.99
CD cell density, CV coefficient of cell size variation, CCT central corneal thickness, HEX percentage of hexagonal cells, MAF minor allele frequency, LD linkage disequilibrium, CI confidence interval
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variants is still significant (β=−0.78 SD, P= 7.8 × 10−85), while the
effect of the splice region variants are completely explained
by rs78658973. rs78658973[A] also associates with CV (β= 0.23 SD,
P= 2.8 × 10−28) and HEX (β=−0.16 SD, P= 2.6 × 10−19), but this
is largely driven by the strong effect on cell density (CV adjusted for
cell density: β=−0.04 SD, P= 0.049; HEX adjusted for cell density:
β=−0.04 SD, P= 0.072). Interestingly, rs78658973[A] also associ-
ates with CH (β= 0.19 SD, P= 2.6 × 10−19) (Supplementary
Table 4, Fig. 3) which reflects the cornea’s ability to absorb and
dissipate energy25,33. CH and cell density are only weakly correlated
after adjusting for sex and age (r=−0.03) and the effect of
rs78658973[A] on CH is not affected by adjustment for cell density
(βadjusted= 0.21 SD, Padjusted= 1.5 × 10−18). CH is lower in patients
with glaucoma or corneal disorders like keratoconus34. However,
rs78658973 does not associate with corneal diseases or glaucoma
in our data (P > 0.03, Supplementary Table 4).

The other variant associating with cell density is a common
allele of a microsatellite at TCF4 (MAF= 6.1%), a CTG repeat of
length ≥ 33, corresponding to the expanded CTG 18.1 allele
(OMIM: 602272, allelic variant 0.0007). This microsatellite is
pathogenic according to Clinvar and has been reported to
strongly predispose to autosomal dominant FECD35–38, a disease
of the corneal endothelium that affects roughly 4% of people over
40 years old (OMIM: 602272). Consistent with the characteristics
of FECD, the expanded CTG 18.1 allele associates with lower cell
density and HEX (β=−0.38 SD, P= 1.6 × 10−19 and β=−0.37
SD, P= 5.9 × 10−18, respectively). Interestingly, it also associates
with decreased CH, CRF and IOPg (β=−0.29 SD, P= 3.1 ×
10−12, β=−0.30 SD, P= 7.9 × 10−13 and β=−0.18 SD, P=
1.7 × 10−5, respectively) while not affecting glaucoma risk (OR=
0.92, CI= (0.82;1.03), P= 0.15). Consistent with previous
reports, the expanded CTG 18.1 allele associates with hereditary
corneal dystrophies in our data (OR= 7.7, P= 3.3 × 10−31,
Supplementary Table 4).

The GWAS on HEX revealed only the two variants at ANAPC1
and TCF4 (Table 2, Fig. 2b), both of which associate more
strongly with cell density.

We identified three loci associating most strongly with CV
(Fig. 2c, Table 2). At 17p12, an intergenic variant rs2323458[A]
located ~ 300 kb downstream of HS3ST3B1, associates with
increased CV (AF= 36.1%, β= 0.14 SD, P= 6.9 × 10−13).
rs2323458 is in moderate linkage disequilibrium (LD) with
rs2323457 (r2= 0.61) which has been reported to associate
with CCT11. In our data, rs2323457 also associates with CV (β=
0.14 SD, P= 1.4 × 10−10) but conditional analysis revealed
that the effect is driven by rs2323458 (βadjusted= 0.043 SD,
Padjusted= 0.21). We did not replicate the effect of rs2323457 on
CCT (β=−0.033 SD, P= 0.13), even though the power for
replication is 94% at a two-sided significance level of 0.05.
Two more variants associate with CV: rs10094779[G] at 8p23.1
~ 40 kb upstream of MIR124-1 and rs76561503[C] at 11q24.1
~ 60 kb downstream of MIR100HG (AF= 24.2%, β= 0.15 SD,
P= 7.6 × 10−12 and AF= 17.9%, β= 0.16 SD, P= 3.3 × 10−10,
respectively). Variants at 8p23.1, between MIR124-1 and MSRA,
have been reported to associate with high myopia39. rs10094779
is only moderately correlated with the reported variants
(r2 < 0.25). Interestingly, a variant in MIR100HG, rs577948, has
also been reported to associate with myopia40. However,
rs76561503 is not correlated with the reported variant (r2= 0.03).

Five variants associated with CCT in our data (Fig. 2d,
Table 2). Three are at established CCT loci: ZNF469, WNT10A,
and COL5A18,9,41. The two novel CCT associations are with
the missense variants p.Thr446Ile in ADAMTS17 (MAF=
13.8%, β= 0.18 SD, P= 1.3 × 10−10) and p.Tyr24Cys in
GLT8D2 (MAF= 4.3%, β= 0.30 SD, P= 3.9 × 10−10). P.
Thr446Ile in ADAMTS17 has been associated with decreased
intraocular pressure42 and decreased height43. P.Thr446Ile
associates with decreased intraocular pressure in our data
(β= 0.14 SD, P= 5.8 × 10−7), but after adjusting for CCT the
association is much weaker (βadjusted= 0.06 SD, Padjusted=
0.024). Rare sequence variants in ADAMTS17 cause autosomal
recessive Weill-Marchesani syndrome, a rare connective tissue
disorder with features including microspherophakia, severe
myopia, glaucoma, cataract, and short stature (OMIM:
607511). Notably, p.Tyr24Cys in GLT8D2 associates with
increased height in a meta-analysis of the Icelandic and UK
Biobank data (β= 0.06 SD, P= 1.4 × 10−11, N= 490,381). To
understand the relationship between height and CCT, we
evaluated the correlation between the effect on height in the
Icelandic and UK Biobank data (N= 490,381) of 693 reported
adult height variants44 and their effects on CCT, but found
no correlation (r2= 0.006; P= 0.038; F test) (Supplementary
Figure 13). To validate the CCT association of the two novel
variants, we tested them in a non-overlapping sample of
1459 Icelanders with CCT measurements from the Reykjavik
Eye Study45. At a significance threshold of P < 0.05, we
replicated the associations for both p.Thr446Ile in ADAMTS17
and p.Tyr24Cys in GLT8D2 with CCT (β= 0.25 SD, P= 7.3 ×
10−3 and β= 0.11 SD, P= 0.045, respectively) (Supplementary
Table 5).

Gene expression. We examined the expression levels of the genes
at the 10 associating loci using the publicly available Ocular
Tissue Database46. For non-coding variants we looked for all
genes in a 500 kb region around the associating variant. We found
that 13 of the 15 genes at the 10 loci are expressed in all ocular
tissues (Supplementary Data 1). MIR124-1 and MIR100HG were
not found in the database, but previous studies have reported that
MIR124-1 is expressed in the human lens47 and both MIR124-1
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and MIR100HG are expressed in the human retina40,48. Expres-
sion levels varied across tissues for some genes, e.g., GLT8D2
is most highly expressed in the cornea, TCF4 in the sclera and
ANAPC1 in the optic nerve head.

Disease variants affect corneal structure. Two different muta-
tions in CHST6 are known to cause MCD in Iceland; a missense
variant p.Ala128Val (MAF= 0.66%) and a frameshift variant p.
Val6MetfsTer106 (MAF= 0.07%)15. The prevalence of MCD in
Iceland is ~ 1/13,00049. We observed that 11 out of 16 homo-
zygous carries of p.Ala128Val, and two out of three homozygous
carriers of p.Val6MetfsTer106, have been diagnosed with her-
editary corneal dystrophies (ICD10 code H18.5). We investigated
the effect of these known disease variants on the corneal measures
from the specular microscopy. P.Val6MetfsTer106 associates
with cell density and HEX (β=−3.02 SD, P= 4.5 × 10−4 and
β=−2.00 SD, P= 9.3 × 10−3, respectively) under the recessive
model. The association is due to two homozygote carriers
showing extremely low values (Supplementary Table 6.a). No
homozygote carriers of p.Ala128val participated in the deCODE
health study. We did not observe an effect of the two variants
among heterozygous carriers (Supplementary Table 6b).

Out of the 6125 study participants, 194 (3.2%) had primary
open-angle glaucoma (POAG). Among our corneal measures
from the specular microscopy, POAG correlates most strongly
with cell density (glaucoma patients have 104 cell/mm2 lower cell
density than controls, P= 2.1 × 10−6; F test). It also correlates
with CH, IOPcc and CCT (Table 1).

Due to the correlation between various corneal measures and
glaucoma status we assessed the effects of all 15 variants reported
to associate with POAG50 (Supplementary Data 2). First, we
replicated the association of 11 out of the 15 variants with POAG
(P < 0.05). The estimated replication power for the remaining
four variants at GMD2, ZFPM2, ATXN2, and PMM2 was > 99.7%
at two-sided significance level of 0.05. We investigated the effects
of the 11 replicated variants on different corneal measures
(Fig. 4a). Five of the 11 variants associate with IOPg, where the
POAG risk increasing allele associates with increased IOPg. Even
though the strongest relationship of glaucoma is with CH (CH is
lower in glaucoma patients), only two of the POAG variants
associate with CH. Counter-intuitively, the TMCO1 allele that
increases glaucoma risk associates with lower CH but the
FNDC3B allele that increases glaucoma risk associates with
greater CH. The variant in FOXC1 is the only POAG variant that
also affects cell density. The correlation between the variants’
effect on POAG and their effect on available corneal measures
were not significant for any trait, controlling the false discovery
rate at 0.05 (Supplementary Table 7).

Previously reported variants for CCT and IOP. GWASs have
been published for two corneal traits, CCT and IOP. For CCT, 49
variants have been reported7,11 and we replicate 28 of them (P <
0.05) (Supplementary Data 3). The CCT effects of these variants,
and the two novel CCT variants in ADAMTS17 and GLTD82,
correlate with their effects on CH, CRF, and IOPg (Supplemen-
tary Table 7, Supplementary Figure 14). The effects on different
corneal measures by the CCT increasing allele is shown in
Fig. 4b. A recent study using participants from the UK Biobank
(N= 115,486) identified 209 variants at 175 novel loci associating
with IOPg51. We replicate 56 out of these 209 variants in the
much smaller Icelandic data (P < 0.05) (Supplementary Data 4).
The effects on different corneal measures by the IOPg increasing
allele is shown in Fig. 4c. The effects of the IOP variants on
IOPg correlate with their effects on CH, CRF, IOPcc, and POAG
(Supplementary Table 7, Supplementary Figure 15).

Discussion
Using measurements from a specular microscopy, we discovered
seven novel variants associating with measurements of corneal
structure, i.e., CCT, cell density, CV, and HEX. We further
examined their effect on ocular biomechanics, such as CH,
CRF, and IOP, as well as examining their effects on the risk of
glaucoma and corneal diseases.

The most significant finding is the association of rs78658973
near ANAPC1 with cell density. ANAPC1 encodes the Anaphase
Promoting Complex Subunit 1, a cell cycle-regulated E3 ubiquitin
ligase that controls progression through mitosis and the G1 phase
of the cell cycle52. The complex is composed of 15–17 subunits,
which are highly conserved from yeast to humans. Mutations in
the orthologous gene in the fruitfly, shattered (shtd), result in
defective eye development53 because of disruption of the G1 cell
cycle arrest and progression through mitosis. Interestingly,
rs78658973 also strongly increases CH, independently of its effect
on cell density. CH measures ability of the corneal tissue to
dampen pressure changes; such mechanical properties of most
tissues are dominated by an extracellular matrix (ECM), in which
the connective tissue fibers provide mechanical strength54. Many
rare connective tissue disorders are characterized by both skeletal
and eye abnormalities, such as Marfan syndrome, Ehlers-Danlos
syndrome, dermatosparaxis type and Weill-Marchesani syn-
drome (OMIM: 154700, 225410, and 607511, respectively). An
intron variant in ANAPC1, rs17040773[G], in complete LD with
rs78658973[A] (r2= 1.00), has been reported to associate with
decreased bone mineral density55 and ANAPC1 is expressed in
bone (Hs.436527). A possible mechanism explaining the asso-
ciation of rs78658973 with cell density in the corneal endothelium
may be the role ANAPC1 has in controlling proliferation of the
developing corneal endothelial cells, and likewise, proliferation of
bone cells influencing bone density. However, a direct relation-
ship between rs78658973 and ANAPC1, or any other gene at the
locus, remains to be shown. The estimated fraction of variance of
cell density explained by rs78658973 is 24% which is extremely
high for such a complex human trait. In comparison, no other
variant listed in the GWAS catalog56 explains higher fraction of
variance of a quantitative phenotype available in the extensive
deCODE database (Supplementary Table 8). This finding has
clinical importance, since reduction in endothelial cell density
along with more variable cell size and shape is usually the first
sign of corneal endothelial diseases and cell density is important
when assessing risk of corneal endothelial failure prior to
intraocular surgery57. Corneal graft survival studies found cell
density lower than 1700 cells/mm2, 6 months after graft surgery
to be associated with increased risk of graft failure58. Thirty-year-
old homozygote carriers of the ANAPC1 variant have on average
2637 endothelial cells per mm2, which is less than the average
70-year old noncarriers (Fig. 1e). Further studies could assess
if carriers of the variant are more likely to suffer endothelial
decompensation after intraocular surgery or if their cornea is
associated with increased risk of corneal graft failure when
used as donors.

We also found association of variants at known disease loci,
TCF4 and CHST6 (FCED and MCD, respectively), with cell
density and HEX, demonstrating how these structural measure-
ments are affected by corneal diseases. The TCF4 variant also
strongly associates with CH and it is interesting to note that the
TCF4 and ANAPC1 variants control almost the same quantitative
corneal traits (Fig. 3) but have very different associations with
corneal disease. Furthermore, glaucoma risk is strongly associated
with lower cell density, while for example the ANAPC1 variant
that controls a quarter of the cell density variance does not
associate directly with POAG or PACG. These findings suggest
that the pathogenic processes that cause corneal diseases and
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Fig. 4 The effect of reported POAG, CCT, and IOP variants on corneal measures. Red color represents a positive effect on the corneal measures and
blue color represents a negative effect. a Effect of previously reported POAG variants on corneal traits for the POAG risk increasing allele. Effects on
the traits are shown for significant associations after adjusting for multiple testing with a false discovery rate procedure for each variant. b Effect of
previously reported CCT variants that replicate in our data (P < 0.05) and novel CCT variants on corneal measures for the CCT increasing allele.
Effects on other traits are shown for significant associations after adjusting for multiple testing with a false discovery rate procedure for each variant.
c Effect of previously reported IOPg variants that replicate in our data (P < 0.05) on corneal measures for the IOPg increasing allele. Effects on other
traits are shown for significant associations after adjusting for multiple testing with a false discovery rate procedure for each variant
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glaucoma may also lower the cell density, but low cell density in
and of itself does not increase risk of disease. In addition, we
evaluated the effects of reported POAG variants on corneal
structure to further explore the relationship between these traits.
Even though CH, cell density, and CCT are lower in POAG
patients, the effects of POAG associating variants on POAG
risk do not correlate with their effects on these traits in our data.
This suggests that these variants do not confer risk of POAG
through their effect on these corneal metrics.

Healthy corneal endothelium is necessary for visual perception
and its dysfunction is the most common reason for corneal
transplantation. Our understanding of the structure and function
of corneal endothelial cells and how they relate to diseases is
limited. The work presented here constitutes a contribution
toward shedding a light on this.

Methods
Study Subjects. Endothelial images from non-contact auto-tracking and -focusing
Konan CellCheck SL specular microscopy (Konan Medical USA Inc., Irvine, CA)
and measures of ocular biomechanics using the Reichert ocular response analyzerR

(ORA G3, Reichert Technologies, Depew, NY, USA) were obtained for 6266 Ice-
landers as a part of the deCODE health study. Participation in the deCODE health
study also includes an online questionnaire and verbal interviews about health and
lifestyle, a number of physical measurements, blood sample collection, and per-
mission to access health-related information from a range of registries and records,
including hospital data. We defined subjects in the study to have glaucoma if they
reported history of glaucoma or had a hospital discharge diagnosis of primary
open-angle glaucoma (ICD10 code H40.1). CCT associations were replicated in a
previously described dataset from the Reykjavik Eye Study59. Testing variants for
association with ocular diseases, we defined the glaucoma and corneal disorder
populations based on six different ICD diagnoses; glaucoma information was
obtained from participants in the Reykjavik Eye Study and from Icelandic oph-
thalmologists as described previously60 (ICD10 H40.1, 4004 cases and 237,214
controls), primary open-angle glaucoma (ICD10 code H40.1, 1261 cases and
303,388 controls), primary angle-closure glaucoma (ICD10 code H40.2, 78 cases
and 229,149 controls), disorders of cornea (ICD10 code H18, 133 cases and
255,274 controls), corneal degeneration (ICD10 code H18.4, 81 cases and 287,394
controls), and hereditary corneal dystrophies (ICD code H18.5, 119 cases and
301,665 controls). Written informed consent was obtained from all participants, in
accordance with the Declaration of Helsinki, the study was approved by the Ice-
landic Data Protection Authority and the National Bioethics Committee
(VSNb2015120006/03.01 with amendments).

The UK Biobank study is a large prospective cohort study of ~ 500,000 individuals
from across UK, aged between 40 and 69 at recruitment61. Extensive phenotypic and
genotypic information has been collected for the participants, including ICD coded
diagnoses from inpatient and outpatient hospital episodes. In this study, we defined
the glaucoma and corneal disorder populations based on six different ICD diagnoses;
glaucoma (ICD10 code H40, 4428 cases and 404,139 controls), primary open-angle
glaucoma (ICD10 code H40.1, 1035 cases and 402,449 controls), primary angle-
closure glaucoma (ICD10 code H40.2, 699 cases and 407,868 controls), disorders of
cornea (ICD10 code H18, 623 cases and 407,868 controls), corneal degeneration
(ICD10 code H18.4, 118 cases and 396,627 controls), and hereditary corneal
dystrophies (ICD code H18.5, 211 cases and 378,987 controls). Diagnoses were
obtained from primary or secondary diagnoses codes a participant had recorded
across all their episodes in hospital. Self-reported diagnoses were excluded from our
analysis and we only included individuals determined to be of white British
ancestry62. We did not exclude related individuals from the analysis but use LD score
regression63 to account for inflation in test statistics due to relatedness. In addition,
height measurements were available for 407,825 individuals. UK Biobank’s scientific
protocol and operational procedures were reviewed and approved by the North West
Research Ethics Committee (REC Reference Number: 06/MRE08/65), and informed
consent was obtained from all participants.

Images from Konan CellCheck SL specular microscopy. The specular micro-
scopy images were taken by specially trained nurses. One image was taken per eye.
The nurse made a visual assessment of the image and selected automated analysis
with auto trace for all normal images. Before automatic analysis, the size of cells (S,
M, L, or XL) was determined and the cell border lines were compared with the cell
borders visually.

All automated analysis were reviewed by a cornea specialist (G.M.Z.) and if
found acceptable the automated analysis was used.

Images with any abnormalities, e.g., black areas, highly irregular cell size or
shape, or poor quality images, were marked for manual analysis. These images were
reviewed and analysed with the Center Method or in a few cases with the Flex
Center Method. Images, where no cell structure was seen, were marked ungradeble.
All analysis was done by a cornea specialist (G.M.Z.).

We excluded 415 low-quality images for 276 subjects prior to the analysis by
regressing cell count against estimated cell density and removed images where the
residuals from the fitted model where <−15. Thus, the sample size reduced from
N= 6266 to N= 6125.

Whole-genome sequencing. The process used to whole-genome sequence the
28,075 Icelanders, and the subsequent imputation has been described in a recent
publication30,31. In summary, we sequenced the whole genomes of 28,075 Ice-
landers using Illumina technology to a mean depth of at least 10 × (median 32 ×).
SNPs and indels were identified and their genotypes called using joint calling with
Graphtyper64. In total, 155,250 Icelanders were genotyped using Illumina SNP
chips and their genotypes were phased using long-range phasing65. All sequenced
individuals were also chip-typed and long-range phased, which provided infor-
mation about haplotype sharing that was used to improve genotype calls. Geno-
types of the 37.6 million high quality sequence variants were imputed into all chip-
typed Icelanders. Using genealogic information, the sequence variants were also
imputed into relatives of the chip-typed to further increase the sample size for
association analysis and increased the power to detect associations. All of the
variants that were tested had imputation information over 0.8.

In UK Biobank genotyping was performed using a custom-made Affimetrix
chip, UK BiLEVE Axiom in the first 50,000 individuals66, and with Affimetrix UK
Biobank Axiom array in the remaining participants67; 95% of the signals overlap
in both chips. Imputation was performed by Wellcome Trust Centre for Human
Genetics using a combination of 1000Genomes phase 368, UK10K69 and HRC
reference panels70, for up to 92,693,895 SNPs62.

Association analysis. All quantitative ocular measurements were averaged for
both eyes, rank-based inverse normal transformed to a standard normal dis-
tribution separately for each sex and adjusted for age using a generalized additive
model71. For each sequence variant, a linear regression model, using the genotype
as an additive covariate, the transformed quantitative trait as a response and
assuming the variance–covariance matrix to be proportional to the kinship matrix,
was used to test for association.

We used LD score regression to account for distribution inflation in the dataset
due to cryptic relatedness and population stratification63. With a set of 1.1 million
variants we regressed the χ2 statistics from our GWASs against LD score and used
the intercepts as a correction factors. The estimated correction factors were 1.05,
1.03, 1.03, 1.06, 1.06, 1.05, 1.05, and 1.05 for cell density, CV, HEX, CCT, CH, CRF,
IOPg, and IOPcc, respectively.

We used logistic regression to test for association between sequence variants
and binary traits, regressing trait status against expected genotype count. In the
Icelandic data, we adjusted for sex, age or age at death, county of birth, blood
sample availability and an indicator function for the overlap of the subject’s lifetime
with the time span of phenotype collection, by including these variables in the
logistic regression model. In the UK Biobank data, we adjusted for sex and age, as
well as 40 principle components in order to adjust for population stratification.

For the meta-analysis we used a fixed-effects inverse variance method72 based
on effect estimates and standard errors from deCODE and the UK Biobank study.
Sequence variants from deCODE and the UK Biobank imputation were matched
on position and alleles.

Significance thresholds. The thresholds for genome-wide significance were esti-
mated from the Icelandic data and corrected for multiple testing with a weighted
Bonferroni adjustment using the enrichment of variant classes as weights with
predicted functional impact among association signals32. With 37.6 million
sequence variants in the Icelandic data, the weights given in Sveinbjornsson et al.
were rescaled to control the family-wise error rate. This resulted in significance
thresholds of 2.5 × 10−7 for loss-of-function variants, 5.0 × 10−8 for moderate-
impact variants, 4.5 × 10−9 for low-impact variants, 2.3 × 10−9 for other variants
within DHS sites, and 7.5 × 10−10 for remaining variants. We evaluated false dis-
covery rate, assessed with the q-value package in R. The P value cutoff of 5.0 × 10−8

corresponded to q-values of 0.0014 for cell density, 0.0035 for CV, 0.0117 for CCT,
and 0.0116 for HEX, which add up to 3.4%.

When assessing, if associating variants have an effect on other corneal trait,
we used the Benjamini–Hochberg false discovery rate (FDR) procedure controlling
the FDR at 0.05 at each variant to account for multiple testing.

Correlation between effect sizes. We assessed the relationship between the
effects of sequence variant on any two different traits by fitting a weighted linear
regression model where the effects sizes for trait 1 was regressed on effect sizes
for trait 2 and each variant was weighted by f 1� fð Þ where f is the minor allele
frequency of the variants, so that rare variants have less weight in the computation
than common variants. For binary traits we used log(OR) as effect size.

Fraction of variance explained. The fraction of variance explained is calculated
using the formula 2f 1� fð Þa2 where f is the minor allele frequency and a is the
additive effect73. Calculating the fraction of variance explained for variants in the
GWAS catalog, we estimated the effects of published variants with corresponding
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phenotypes available in the deCODE data and calculated the fraction of variance
explained using f and a obtained from the Icelandic population.

Code availability
We used the following publicly available software for the whole-genome sequencing
process:
for BWA 0.7.10 mem, see https://github.com/lh3/bwa; for Picard tools 1.117, see https://
broadinstitute.github.io/picard/; for SAMtools 1.3, see http://samtools.github.io/; for
Bedtools v2.25.0-76-g5e7c696z, see https://github.com/arq5x/bedtools2/; for GraphTyper
1.3, see https://github.com/DecodeGenetics/graphtyper; for Variant Effect Predictor, see
https://github.com/Ensembl/ensembl-vep.

Data availability
The sequence variants from the Icelandic population whole-genome sequence data have
been deposited at the European Variant Archive under accession PRJEB15197, GWAS
summary statistics for association with P < 1 × 10−6 are available in Supplementary
Data 5. The authors declare that the data supporting the findings of this study are
available within the article, it supplementary files, and upon request.
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