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Abstract: Simple methods to control the self-organization of gold atoms on commonly 
employed transparent dielectrics are presented. On one hand, surface diffusion of gold atoms 
can be suppressed to a sufficient degree as to realize ultra-thin (as low as approximately 5 
nm) void-free semi-transparent conducting gold films over macroscopic areas while, on the 
other hand, their high surface mobility can be harnessed to fabricate large-area substrates 
compatible with cell culturing and imaging, having widely tunable field-enhancement 
properties for surface-enhanced Raman scattering. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Systematic optical studies of thin gold films and gold nanoparticles can be traced back at least 
as far as to Faraday’s experiments at the Royal Institution of Great Britain in the 1850s [1]. 
Faraday prepared beaten gold leaf that he estimated to have an average thickness of 90 nm 
and stated that “we are satisfied that it is truly transparent where the gold is continuous, and 
that the light transmitted is green.” In addition, he indicated that “by chemical means, the film 
may be attenuated to such a degree as to transmit a ray so luminous as to approach to white, 
and that in parts [of the gold leaf] which have every appearance of being continuous in the 
microscope.” Faraday also prepared gold particles “too small to be recognized by the highest 
powers of the microscope” and found that “the transmitted tint became ruby or violet-ruby.” 
After performing annealing experiments on his samples, Faraday concluded that it was 
“evident that all the colours described are produced by one and the same substance, namely 
gold, the only apparent difference being the state of division and different degrees of the 
application of heat” [1]. A few years before, Sir William Robert Grove had observed that thin 
metal films of different metals could be deposited by ion impingement on metallic cathodes 
(now referred to as sputtering) [2] and with further developments in physical vapor deposition 
and, later still, the introduction of X-ray diffraction and electron and scanning probe 
microscopy techniques, studies of the optical properties of thin metal films and their 
relationship to structural and electrical properties became a major field of research, especially 
after the mid-20th century [3]. Gold has always attracted particular attention because of its 
chemical stability, most notably in the last three decades with its application in surface-
enhanced Raman scattering (SERS) and plasmonics [4], its optical properties being second 
only to silver [5], which is less chemically stable. At the beginning of the 21st century, 
advances in nanometer-scale engineering have opened up new opportunities for metal optics, 
such as the tailoring of optical properties of (meta)surfaces by patterning of thin metal films 
[6], carving of optical nanostructures out of atomically-flat single-crystal metals [7] and 
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harnessing of quantum and non-linear effects [8], to name a few examples. Furthermore, there 
has been increased focus on the study of ultra-thin (<10 nm) metal films (UTMFs), e.g., 
related to their applications in plasmonics [9] and optoelectronic devices [10]. 

The structural development of gold films during deposition on glass or similar materials 
follows a predictable pattern of island nucleation, island growth, coalescence and eventually 
the filling of voids and formation of a structurally continuous film [11]. The number and size 
distribution of nucleated islands as well as the precise deposition thickness at which 
coalescence and continuity occur depends, in general, on the deposition method and 
deposition parameters as well as on the type, temperature and surface preparation of the 
substrate. Around the percolation threshold (the point at which a film of disconnected islands 
develops into a network with long-range connectivity), a sharp increase in statistical 
fluctuation of the optical density of states is observed [12], correlated with local electric field 
enhancement and a range of interesting optical phenomena [13–15]. For gold films, even 
above the continuity threshold, the exact value of the complex dielectric function of the 
deposited material will, in general, depend on the method of preparation [16]. In this context, 
accurate methods for determining the physical structure of thin films, independent of their 
optical or electrical properties, such as measurements of X-ray reflectivity (XRR), are highly 
advantageous. Discontinuous films, on the other hand, exhibit a structure-dependent and 
anisotropic dielectric function that is not adequately described by commonly used effective-
medium approximation methods [17]. Finally, it must be kept in mind that the dielectric 
function is a classical concept that does not account for, e.g., spatial nonlocality, which may 
have significant consequences at the nanometer scale and below [18]. These facts, in addition 
to inaccuracies in some of the tabulated literature data of the dielectric function of gold over 
the past decades [16], mean that the premises of comparison between theory or numerical 
simulations and experiment must always be carefully considered. 

On dielectric substrates commonly used in plasmonics research (such as glass, thermal 
oxide, fused silica/quartz, thermosetting polymers), gold atoms exhibit high mobility, even at 
room temperature, and the deposited material therefore self-organizes into an energetically 
favorable state, i.e. either a discontinuous or continuous film, depending on the amount of 
material deposited. In the present paper, we will review some simple fabrication techniques 
that have been reported in recent years with the aim of giving researchers increased control 
over this self-organizing behavior of gold films for tuning the morphology and optical 
properties of such films on transparent dielectrics. These methods involve only standard 
cleanroom technologies and neither special substrates or deposition conditions nor metallic 
adhesion or seeding layers that can compromise the optical, electronic and physical properties 
of the overall structure [19–21]. In particular, we will consider, on one hand, the fabrication 
of ultra-thin gold films for use as semitransparent electrodes and, on the other hand, ripening 
effects in structured and disordered films functioning as SERS substrates compatible with cell 
growth. 

2. Ultra-thin structurally continuous gold films 

For a long time, it was considered “conventional wisdom” in the field of metal optics that 
fabricating structurally continuous gold layers on glass substrates below a film thickness of 
about 15 nm was not possible with standard cleanroom fabrication methods. Indeed, this was 
shown to be the case even on silanized glass, where (3-mercaptopropyl)trimethoxysilane 
(MPTS) was used to improve adhesion of gold islands on a glass surface [22]. In contrast, 
metallic seeding layers can lower the percolation threshold to as low as 1 nm [23]. Recently, 
however, it was shown that on the glassy optical polymer benzocyclobutane (BCB), a well-
known material for thin-film applications [24], the deposition thickness at which island 
coalescence and continuity were observed was significantly lowered, as compared to gold 
deposited on clean glass substrates under identical conditions [25]. The maximum optical 
transmission of a structurally continuous gold film deposited on BCB (including also the ≈4% 
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