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ABSTRACT. The efficiency of a selection index generally depends 
on the quality of the variance matrixes, which demands controlled 
experiments. Using Artificial Neural Networks (ANNs) trained from 
a selection index is advantageous for selecting genotypes since an 
ANN has the capacity to classify genotypes in an automated way. We 
propose the use of ANNs for the selection of alfalfa genotypes, based 
on a selection index. Data were collected from 77 alfalfa genotypes 
evaluated based on nine traits from four cuttings. The traits were 
divided into forage yield and nutritive value groups. In order for the 
ANNs to learn the classification pattern, the Tai index was used, 
which allows secondary traits to be included in the index to improve 
the gains of the main traits. An index was established for each group 
of traits, and based on the index scores the genotypes were 
subdivided into four classes (optimal, good, medium, and bad). After 
testing different topologies, ANNs were established for each index, 
according to the apparent error rates. The chosen ANNs were 
efficient in classifying the genotypes since the highest apparent error 
rate reached 15%, meaning that the ANNs efficiently captured the 
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data pattern. Considering the ANN classification for both groups of 
traits, there was a high degree of agreement with the classification 
obtained from the Tai index, as expected. Even in the cuttings where 
the ANNs presented the worst performance, their potential to classify 
alfalfa genotypes was clear, because the wrong classifications were 
placed in groups close to the correct ones. This ensured that the best 
genotypes did not run the risk of being discarded, since they would 
not be classified in the group of bad genotypes. The ANNs that were 
developed have good potential for use in alfalfa breeding programs. 
 
Key words: Tai index; Medicago sativa; Computational intelligence 

INTRODUCTION 
 
Alfalfa breeding programs aim to develop cultivars that, in addition to high 

yields, have a high nutritional value and tolerance to biotic and abiotic stresses (Shi et 
al., 2017). For this reason, alfalfa breeding is based on a set of relevant traits, requiring 
the adoption of selection techniques that maximize the accuracy of selection. Because 
alfalfa is a perennial crop, selection is performed using data generated from cuttings, 
estimating the dry matter yield and forage nutritive value throughout the different 
growing seasons. In this way, the data generated in each season of the year are analyzed 
and selection is carried out in order to obtain gains in the whole set of traits. 

Simultaneous selection has been the most widely used strategy in alfalfa 
breeding (Basigalup and Odorizzi, 2011). Among the many published selection indexes, 
the one proposed by Taí (1977) is applicable to selection of alfalfa genotypes, since it 
allows secondary traits of forage yield and nutritive value to be included in the index to 
improve the gains of the main traits (Cruz et al., 2014). However, the efficiency of this 
index relies on the establishment of desired gains, which may be difficult for breeders. 
Three is a need for high quality in variance and covariance matrices, which demands 
strongly controlled experiments. Thus, the analysis of a large amount of information 
generated in forage breeding programs requires that the researcher analyze the data 
repeatedly, a task that could be minimized using computational intelligence techniques 
such as Artificial Neural Networks (ANNs). 

Artificial Neural Networks are learning techniques based on models of 
biological nature inspired by the functioning of the human brain (Norvig and Russel, 
2013). Given their nonlinear structure, ANNs can achieve high efficiency in working 
with complex traits (Galvão et al., 1999) and are able to capture relationships among 
variables that are not captured by stochastic models and may generalize information to 
new cases (Mackay, 1994). Moreover, ANNs do not require very detailed information 
about the physical processes of the modeled systems. Although the use of ANNs in 
plant breeding is still restricted, they show high efficiency to solve prediction and 
classification problems (Ji et al., 2007; Gianola et al., 2011; Nascimento et al., 2013). 

The use of ANNs in alfalfa breeding programs can take place in a simple and 
automated way. In the initial breeding stages, it is possible to base selection on 
subjective criteria, from the experience of good breeders, or to adopt an appropriate 
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biometric procedure so that the genetic value of each genotype can be inferred. As 
breeding programs are dynamic, future stages may need such learning to establish a 
new selection strategy that can aggregate information from qualified breeders, accurate 
biometric techniques, and information processed within the context of computational 
intelligence. 

To that end, it is enough to have a data set of alfalfa cuttings with information 
coming from well-conducted experiments that characterize the genotype response in 
diverse environmental conditions. From this, it is possible to obtain a selection 
criterion, for example an index, and to perform the genotype classification as to the 
performance in forage yield and nutritive value. Using an established classification, an 
ANN can be trained to identify patterns and to ponder the genotype traits in the same 
way as is done in the index, and from there, to classify the genotype information that 
will be collected in future cuttings. The great advantage of using a network is that it is 
effective even for genotype evaluations with incomplete and noisy information, a fact 
that makes the extreme rigor normally needed for conducting the experiments optional. 
In addition, statistical analyses of new cuttings would become simpler and automated. 
Our objective was to adjust an ANN from an established selection index for use in the 
simultaneous selection of alfalfa genotypes of the alfalfa breeding program of Embrapa 
Pecuária Sudeste, a Brazilian government agricultural breeding program. 

MATERIAL AND METHODS 
 
Data from four alfalfa cuttings considering 77 genotypes from Embrapa 

Pecuária Sudeste were used. The cuttings were carried out in the months of November 
2015, February, May and August 2016. All cuttings were irrigated, except for the fourth 
one, on August 2016, which was grown under water deficit. 

The traits were divided into two groups, one of which included plant height, 
measured from the ground up to the inflorescence; dry matter yield (kg.ha-1), obtained 
by manually cutting the plants at eight to 10 cm above ground when each cultivar 
reached 10% of flowering or when the basal shoots reached an average height of three 
to five centimeters; and susceptibility to diseases, determined according to the 
percentage of leaf area attacked in each plot (Vasconcelos et al., 2010). In addition, 
nutritive value traits were measured, including crude protein, in vitro dry matter 
digestibility, neutral detergent fiber, acid detergent fiber, lignin, and stem/leaf ratio. 

In order for the ANN to learn the genotypes classification pattern, it was 
necessary to use previous information, in this case the selection index proposed by Taí 
(1977), which served as a learning basis for the network. An index was established for 
selection of productive genotypes and another for the genotypes of high nutritive value. 
Considering the nutritive value traits, crude protein (CP) and in vitro dry matter 
digestibility (IVDMD) were considered as the main ones, and the others as secondary.  

Among the nutritive value traits, crude protein and in vitro dry matter 
digestibility were considered as the main traits and the others as secondary. Thus, the 
genotypic aggregate (H) and the index (I) were given by:  

 

H = aଵgଵ + aଶgଶ																																																						(ݍܧ. 1) 
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I = bଵxଵ + bଶxଶ + bଷxଷ + bସxସ																																											(ݍܧ. 2) 
 

where: a: economic weights; g: genotypic values; x: phenotypic values and b: trait 
coefficients in the index. The vector of desired gains was established based on a genetic 
standard deviation for each trait (Cruz et al., 2014). Vector b was estimated from 
equations (3) and (4): 
 

Pb෠ = Ga																																																																(Eq. 3) 
 

Gb෠ = ∆gୢ																																																														(ݍܧ. 4) 
 

where: G: matrix of genotypic covariance between variables; P: matrix of phenotypic 
covariance between variables; ∆gୢ : vector of desired gains; replacing equation (4) in 
(3):  
 

a = GPିଵG∆gୢ																																																				(Eq. 5) 
 
Considering: 
 

a = ቂ
cଵ
cଶቃ and ∆gୢ = ൤dଵdଶ

൨ 
 

where: c1, c2, d1 and d2 are vectors of dimension 2 x 1. And also considering:  
 

cଶ = Φ 
ω = ቂ

ωଵଵ ωଵଶ
ωଶଵ ωଶଶ

ቃ 
 

where:	ωଵଵ, ωଵଶ,  ωଶଵ and ωଶଶ are 2 x 2 matrices. Therefore: 
 

a = ቂ
cଵ
cଶቃ = ቂ

ωଵଵ ωଵଶ
ωଶଵ ωଶଶ

ቃ ൤dଵdଶ
൨ = ൤ωଵଵdଵ ωଵଶdଶ

ωଶଵdଵ ωଶଶdଶ
൨ and 

 

∆gୢ = ൤dଵdଶ
൨ = ∆gୢ = ൤

dଵ
−ωଶଶ

ିଵωଶଵdଵ
൨ 

 
Thus, vector b was estimated by (3) or (4). Similar reasoning can be made for 

the forage yield group, in which dry matter yield was considered as the main trait and 
the others as secondary.   

After obtaining the scores, the genotypes were sorted in descending order 
according to the score obtained by the index. From this, four subgroups for forage yield 
and four for nutritive value were determined, where the genotypes were classified as 
optimal, good, medium and bad (Table 1). 
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Table 1. Classification of the 77 alfalfa genotypes according to the Tai index, regarding performance in 
nutritive value and forage yield. Numbers 1, 2, 3, and 4 classifies each genotype into optimal, good, 
medium, and bad classes, respectively, considering each cutting. 
 

Genotype Nutritive Value Yield 
Cut 1 Cut 2 Cut 3   Cut 4 Cut 1 Cut 2 Cut 3  Cut 4 

01 1 1 1 1 1 4 4 4 
02 1 4 3 3 3 3 2 1 
03 2 1 1 2 4 2 3 3 
04 2 1 2 4 1 2 1 3 
05 2 1 3 3 3 3 2 1 
06 3 4 3 1 3 3 3 2 
07 2 3 1 1 4 4 4 4 
08 3 4 4 2 3 3 3 1 
09 4 2 4 4 2 3 1 2 
10 4 2 3 3 2 2 1 1 
11 4 1 3 3 2 3 2 2 
12 4 3 4 3 1 1 1 3 
13 4 3 2 2 4 2 2 1 
14 3 4 4 2 1 1 1 2 
15 1 1 1 1 4 4 4 4 
16 3 2 3 3 4 1 1 2 
17 2 1 1 1 1 2 3 2 
18 1 1 1 1 4 4 4 4 
19 3 2 2 3 2 3 4 3 
20 2 2 3 2 4 1 2 2 
21 2 3 3 4 2 2 1 1 
22 2 2 3 3 3 1 1 2 
23 1 1 1 1 2 4 4 4 
24 3 2 2 2 2 4 3 3 
25 1 3 2 2 2 1 2 1 
26 3 4 4 4 4 1 2 1 
27 3 2 3 3 3 1 3 2 
28 3 3 3 3 4 2 2 1 
29 1 3 2 2 3 4 3 2 
30 3 2 4 2 4 3 2 2 
31 3 4 3 2 4 3 2 2 
32 2 2 2 2 1 3 4 4 
33 2 2 2 2 3 4 3 3 
34 4 3 3 3 2 2 2 1 
35 1 1 1 1 4 4 4 4 
36 1 3 2 4 3 2 4 3 
37 1 4 1 3 2 1 3 4 
38 2 3 3 4 3 2 1 3 
39 2 4 4 4 1 2 2 3 
40 4 4 4 3 1 1 1 1 
41 2 3 2 1 2 1 2 2 
42 3 3 3 2 1 2 2 2 
43 1 4 2 1 3 2 2 3 
44 3 2 1 2 1 3 3 4 
45 4 3 4 4 3 3 1 3 
46 1 4 2 3 4 1 3 3 
47 2 1 1 2 2 4 3 4 
48 4 3 2 1 1 4 2 3 
49 1 1 1 1 4 2 4 4 
50 1 1 1 1 3 4 4 4 
51 1 1 2 2 3 4 4 3 
52 4 3 2 2 4 3 3 2 
53 4 2 2 1 2 4 4 4 
54 3 2 3 3 1 3 2 2 
55 1 1 1 1 4 4 4 4 
56 3 1 2 4 1 1 3 2 
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Genotype Nutritive Value Yield 
Cut 1 Cut 2 Cut 3   Cut 4 Cut 1 Cut 2 Cut 3   Cut 4 

57 2 3 3 4 1 3 3 1 
58 2 1 1 1 3 4 4 3 
59 1 1 1 1 2 3 4 3 
60 4 2 4 4 1 2 1 1 
61 3 3 4 4 1 1 1 1 
62 4 4 4 4 4 3 1 1 
63 4 4 3 4 3 1 3 3 
64 3 4 4 4 1 1 1 2 
65 3 1 1 2 3 4 3 3 
66 4 4 4 4 2 1 1 1 
67 1 2 2 4 1 2 2 4 
68 4 2 1 1 1 3 4 4 
69 1 2 1 1 4 4 4 4 
70 2 1 1 1 1 4 4 4 
71 1 3 2 2 3 2 2 4 
72 2 4 4 3 2 2 1 1 
73 4 3 4 3 3 3 3 3 
74 2 2 3 4 4 1 3 2 
75 4 4 4 3 2 2 1 1 
76 3 4 4 3 2 1 1 1 
77 4 4 4 4 2 1 1 1 

 
In order to obtain an ANN with good generalization capacity, the forage yield and 

nutritive value data, considering the classification according to the Tai index (1977) in each 
cutting, were amplified. Using this method, the original data of each index class generated 
50 new observations, resulting in 800 new data points with yield information and 800 with 
nutritive value information (Table 2). 

 
 

Table 2. Amplification scheme of alfalfa data for the selection of the best Artificial Neural Networks for 
forage yield and nutritive value. Considering each cutting, each class of genotypes obtained by the Tai 
index (optimal, good, medium and bad) generated 50 new observations.  
 

Group Cut Classification Amplification   Group Cut Classification Amplification 

Fo
ra

ge
 Y

ie
ld

 

C1 

1 50 

N
ut

rit
iv

e 
V

al
ue

 

C1 

1 50 
2 50 2 50 
3 50 3 50 
4 50 4 50 

C2 

1 50 

C2 

1 50 
2 50 2 50 
3 50 3 50 
4 50 4 50 

C3 

1 50 

C3 

1 50 
2 50 2 50 
3 50 3 50 
4 50 4 50 

C4 

1 50 

C4 

1 50 
2 50 2 50 
3 50 3 50 
4 50   4 50 

 
The amplification process consisted of generating a random variable with normal 

distribution according to Silva et al. (2014). The values were simulated, conserving the 
means, variances and covariances of the original data of each cutting separately. Thus, the 
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data set was subdivided into 80% for training and 20% for the validation process. The 
amplification was carried out using the GENES program (Cruz, 2013). 

Artificial Neural Network modeling 
 
Two ANNs were established, one for the forage yield group and another for the 

nutritive value group. Network conformations were defined from the test of different 
topology possibilities. In all cases, the architecture used Multilayer Perceptron. The 
hyperbolic tangent function (tansig) and the logistic function (logsig) were tested. For the 
output layer, the threshold function (purelin) was used. In addition, the trainbr - 
Backpropagation training algorithm with a number of epochs equal to 7000 was used. The 
input layer of each network corresponded to the number of traits of each group. 

The number of hidden layers tested ranged from one to four and the number of 
neurons in each layer ranged from three to six neurons. The output layer was composed of a 
single neuron, represented by a vector of known elements since the learning process in this 
case was supervised. 

After testing the various topology possibilities, the networks that showed the lowest 
apparent error rates were chosen. The whole process of training and validation was 
performed using information generated in the amplification procedure. After the training 
and validation steps, ANNs were used to classify the real data of the four cuttings evaluated, 
simulating their practical use in breeding programs. The ANNs were processed using 
Matlab software (Mathworks, 2012) from GENES application scripts (Cruz, 2013). 

RESULTS AND DISCUSSION 

ANN topology for groups of traits 
 
The best ANN topology for each group of traits was chosen considering 5832 

possibilities, adopting as a criterion the apparent error rate. Of the 800 genotypes generated 
through data amplification, 640 were used for network training and 160 for validation. 
Thus, for the forage yield trait group, the topology of lower apparent error rate included six 
neurons in the first hidden layer, three in the second, and six in the third, and the activation 
functions were tansig, tansig and logsig, respectively (Figure 1A). For the nutritive value 
trait group, the topology of lower apparent error rate included six neurons in the first hidden 
layer, six in the second, and three in the third, and the activation function for all of them 
was logsig (Figure 1B). 

The apparent error rates for the Forage Yield ANN reached 15% in the validation 
and 12% in the training. For the Nutritive Value ANN the apparent error rate reached 12% 
in the validation and 7% in the training. Higher error rates for the validation step were 
observed than in the training and the maximum apparent error rate was 15%. These results 
are compatible with results reported by other researchers such as Sant'Anna (2015) in 
classificatory studies, reaffirming the great potential for generalization of neural networks 
as mentioned by Braga et al. (2011). In addition, the network was more efficient to classify 
genotypes for nutritive value than for forage yield, even presenting topologies of similar 
complexity, a fact justified by the characteristics of the data set, more distinguishable in 
terms of nutritive value than forage yield. 
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In the fourth cutting, in which genotypes were kept under water deficit, the ANN 
correctly classified 18 of the 19 bad genotypes (group four) and 15 of the 19 medium 
genotypes (group three). Even though the percentage of correct classifications in the 
optimal and good classes was lower (the ANN correctly classified 11 of the 20 optimal and 
11 of the 19 good genotypes), the high accuracy in the bad and medium classes guarantees 
the selection efficiency by eliminating inferior genotypes. In the other cuttings, accuracy 
was lower, but the wrong classifications were placed into groups close to the correct ones, 
as occurred in the third cutting, in which the ANN classified 10 genotypes correctly 
considering group one, and nine optimal genotypes (which did not enter group one) were 
classified as good (group two). 

There was high concordance between the ANN and the index for nutritive value 
traits as observed for forage yield (Table 4). In the first cut, the ANN failed to classify two 
genotypes, and in the second one there were five missing pieces of information. However, 
this fact did not reduce the generalization power of the ANN in the other scenarios. The 
accuracy for the group of optimal genotypes for cuttings one and two was high, a fact that 
was repeated in the other cuttings. In the fourth cutting, the ANN classified correctly all of 
the optimal genotypes, and most of the good, medium and bad ones. The efficiency of the 
ANN to discriminate bad genotypes in all cuttings was also high. The worst ANN 
performance occurred in the third cutting. However, similar to the ANN yield classification, 
the allocation of the genotypes that had wrong classification occurred in the near classes. 

 
 

Table 4. Classification of the 77 alfalfa genotypes obtained by the Artificial Neural Network for the 
nutritive value traits, considering four cuttings, based on the Tai index. The correct classification occurred 
when the class of a genotype obtained by the ANN was the same class established by the Taí index. 
 

Cut Tai index 
classification 

Artificial Neural Network classification 
1 2 3 4 

1 

1 15 01 02 00 
2 02 12 02 03 
3 00 01 13 05 
4 00 00 01 18 

2 

1 18 00 00 00 
2 04 10 04 00 
3 00 05 11 02 
4 00 00 02 16 

3 

1 10 09 01 00 
2 01 10 07 01 
3 00 03 13 03 
4 00 00 01 18 

4 

1 20 00 00 00 
2 03 15 01 00 
3 00 00 18 01 
4 00 00 02 17 

 
Even in the cuttings where the ANNs showed worse performance (when compared to 

the others), it was possible to observe their potential to classify alfalfa genotypes, because the 
wrong classifications were placed in groups close to the correct ones. This ensures that the best 
genotypes (optimal group) are not at risk of being discarded, since they will not be classified in 
the group of bad genotypes. Satisfactory performance of ANNs in classificatory analyses has 
been reported by several researchers, such as Barbosa et al. (2011), who studied eight traits of 
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papaya (Carica papaya); they evaluated the ANN performance compared to an Anderson 
discriminant analysis, and found ANNs with 94% accuracy, superior to that obtained by a 
discriminant analysis. A similar conclusion had already been reported by Braga et al. (2011), 
who recognized the superiority of ANNs in relation to stochastic models. For alfalfa crops, 
classificatory studies using ANNs were made by Nascimento et al. (2013) and Barroso et al. 
(2013), who compared the efficiency of adaptability and genotype stability methodologies with 
ANNs. Yet, as a disadvantage of ANNs in some situations, Barroso et al. (2013) highlight the 
time spent on data processing and the lack of knowledge about the influence of each trait on the 
response variable. 

Considering that alfalfa breeding programs’ aim to develop cultivars with high yields 
and high nutritive value, the complex genetic control of most of the traits evaluated in this study, 
and considering that the accuracy of selective process is highly influenced by environmental 
factors (Li and Brummer, 2012), the use of selection indexes proves to be a very useful tool to 
carry out selection of alfalfa genotypes. Once the researcher establishes a superior index that 
considers satisfactory weights of the traits, it is possible to use ANNs to automate the selection 
process in alfalfa breeding programs. The information obtained a priori by the index can be used 
to train an ANN so that it is able to classify new observations with the efficiency required in the 
selection process. For this to work, it is crucial that there be efficient training of the network, 
providing examples that characterize several situations. 

For the ANNs developed in this study, the training drew on the supply of examples of 
cuttings obtained at different times of the year, and this was sufficient for the ANNs to obtain 
superior performance in all of them. Even if such ANNs are tested in cuttings that were not 
included in the amplification process, it is expected that the performance in totally unknown 
cuttings also be high, since the data used for training were amplified from cuttings performed in 
representative conditions of all seasons of the year, under irrigated conditions and under water 
deficit. 

The ANNs developed in this study showed great potential for use in new alfalfa 
cuttings. The automated classification will help researchers in their decision making. Besides, 
due to the dynamism and plasticity of ANNs, they are able to improve their performance when 
new training examples are presented (Haykin, 2008). 

CONCLUSIONS 
 
The Artificial Neural Networks approach is an efficient alternative for classificatory 

studies.  ANNs are highly efficient for use in alfalfa breeding programs. 
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