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Identification of QTLs Associated with Biological
Nitrogen Fixation Traits in Soybean Using a
Genotyping-by-Sequencing Approach
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Maria Aparecida Santos, Martine Jean, Franc¢ois Belzile, and Mariangela Hungria

ABSTRACT

Although biological N fixation (BNF) is a key
process for economic cultivation of soybean
[Glycine max (L.) Merrl], the trait is often neglected
in breeding programs, mainly due to difficulties in
evaluating nodulation and N fixation parameters.
We used a genotyping-by-sequencing approach
to provide a dense genome-wide marker
coverage with 1448 single nucleotide polymor-
phisms (SNPs) distributed broadly across the
chromosomes of a soybean population. The
mapping population was composted of 113 F_
recombinant inbred lines, obtained by single-
seed descent method, derived from crossing of
soybean cultivars ‘Bossier’ (high BNF capacity)
and ‘Embrapa 20’ (medium BNF capacity). The
traits evaluated were nodule number (NN), nodule
dry weight (NDW), average NDW (ANDW,; i.e.,
NDW/NN), and shoot dry weight (SDW). A genetic
map was constructed with 1448 SNPs that
generated 35 linkage groups totaling 1793 cM,
thus covering ~72% of the genome based on the
consensus linkage map. The estimated heritability
for NN, NDW, ANDW, and SDW was 0.41, 0.30,
0.30, and 49.11, respectively. Inclusive composite
interval mapping identified two significant quan-
titative trait loci (QTLs) for ANDW at 67 cM on
chromosome 13, with a logarithm of odds (LOD)
score of 4.66. The additive effect of this locus was
-0.31 mg nodule™, and it explained 18.13% of the
phenotypic variation. Another QTL was identified
for SDW at 24 cM on chromosome 19 and exhib-
ited an LOD score of 3.93. The additive effect was
of 0.57 g plant™, and it accounted for 14.93% of
the phenotypic variation. Additive genetic effects
contribute to the final phenotype. In the present
study, Embrapa 20 was the major contributor to
ANDW, and Bossier was the major contributor to
SDW. The latter was previously reported using
simple sequence repeat markers.
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EVERAL LEGUMES, when in symbiosis with bacteria collectively

known as rhizobia, have the ability to assimilate atmospheric N,
in a process called biological N fixation (BNF). Legume—rhizobia
symbioses potentially contribute both to environmental and agri-
cultural sustainability by reducing greenhouse gas emissions,
nitrogenous water pollution, and fossil energy consumption (Serraj
etal., 1999; Kaewsuralikhit et al., 2005; Hungria and Mendes, 2015).

Soybean [Glycine max (L.) Merr.] is the most important legume
cultivated worldwide. Symbiotic associations between soybean
and Bradyrhizobium japonicum, Bradyrhizobium diazoefficiens, and
Bradyrhizobium elkanii strains are economically and environmen-
tally important; for example, savings on N fertilizer in Brazil
with the soybean crop are estimated at about US$15 billion per
cropping season (Hungria and Mendes, 2015).

Evaluation of phenotypic traits related to BNF is labor
and time consuming, and thus it has been often neglected in
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breeding programs (Dwivedi et al., 2015). To overcome
this problem, marker-assisted selection might represent a
promising alternative approach. However, the identifica-
tion of molecular markers requires knowledge about the
genomic regions and genes related to the traits of interest
(Sonah et al., 2015).

Molecular markers have been developed for most
major crop species based on several methods. Considering
BNF traits in soybean, simple sequence repeat (SSR)
markers have been used in some studies (Tanya et al.,
2005; Nicolas et al., 2006; Santos et al., 2006, 2013), and
the results obtained allowed mapping of quantitative trait
loci (QTLs) but have also indicated the need for additional
information to improve the genome coverage (Hwang et
al., 2014). Tanya et al. (2005) evaluated nodule fresh and
dry weight per plant, plant dry weight, acetylene reduc-
tion activity in 136 F,—derived recombinant inbred lines
(RILs). A genetic linkage map was constructed using
85 SSR markers. Five QTLs were associated with the
number of nodules per plant. Nicolas et al. (2006) used
45 SSR markers for nodulation (nodule number [NN]
and nodule dry weight [NDW]) and plant growth (shoot
dry weight [SDW]) phenotypes in F, | lines. A total of 21
SSR loci were mapped. Santos et al. (2006) and Santos
et al. (2013) genotyped a population of 157 F, RILs by
using 24 and 105 SSRs, respectively. Three traits (NN,
the ratio NDW, and SDW) were used in both the studies
to evaluate BNF performance. A small percentage of the
genome was covered (5 and 50%, respectively). Hwang et
al. (2014) provided more information by combining SSR
and single nucleotide polymorphism (SNP) markers when
genotyping 97 RILs of soybean, evaluated under field
experiments, for the parameters of NN, nodule weight,
and nodule size.

Among the molecular markers, SNPs are consid-
ered as highly suitable because they occur at high density
within genomes (Gaur et al., 2012). The development of
new sequencing technologies has greatly increased the
discovery of SNPs in many species (Poland et al., 2012);
however, whole-genome sequencing is still an expensive
endeavor (Metzker, 2010). Nodule number, individual
nodule weight, and nodule size are major components that
likely contribute to increased total nodule weight per plant
(Hwang et al., 2014). The population studied by Tanya et
al. (2005) showed positive correlations between N, fixation
activity from an acetylene reduction assay and NN or
nodule fresh or dry weight. Pazdernik et al. (1996) reported
that the correlation coeflicients between acetylene reduc-
tion activity and NN per plant or fresh weight per plant
were 0.45 and 0.86, respectively. Additionally, Greder et
al. (1986) and Burias and Planchon (1990) reported positive
association between nodule weight per plant and yield.
These results indirectly imply that QTLs for nodule traits
can contribute to increased N, fixation and yield.

To reduce the cost while still retaining a sufficient
number of SNPs, several methods have been developed
that involve sequencing a small fraction of the entire
genome (van Orsouw et al., 2007, Trebbi et al., 2011;
Sonah et al., 2015). A technically simple, highly multi-
plexed genotyping-by-sequencing (GBS) approach was
developed (Elshire et al.,, 2011), with potential to be
applied to all species at a low cost per sample. It is based on
high-throughput next-generation sequencing of genomic
subsets targeted by restriction enzymes.

In this study, we used the GBS approach to achieve
denser and more extensive genome coverage, among a
population of RILs previously studied by our group with
SSR markers (Santos et al., 2006, 2013), with the aim of
finding QTLs controlling BNF traits. Besides finding
QTLs, our goal was to verify the feasibility of using
GBS as a tool for soybean breeding programs aimed at
improving BNF traits.

MATERIALS AND METHODS
Plant Material and Population Development

A soybean population was obtained by crossing cultivars ‘Bossier’
and ‘Embrapa 20’. Bossier resulted from a natural mutation of
the North American cultivar ‘Lee’ (PI 548656). Lee resulted
from a cross of ‘S-100" (maternal parent) X ‘CNS’ (paternal
parent). Another name for this cultivar is D49-2524. Embrapa
20 (syn. Doko RC) was released in 1999 by Embrapa Soybean
and resulted from a backcrossing of cultivar ‘Doko’ (Doko RC4,
maternal parent) X IAC-7 (IAC-7R, paternal parent), with the
main objective of incorporation resistance to Cercospora sojina.
Both Doko and IAC-7 resulted from selections within popula-
tions of RB 72-1. Bossier and Embrapa 20 has been previously
classified as having high and medium BNF capacity, respectively,
by Nicolas et al. (2002) and in other studies by our group.

The population was developed in summer 1998, as described
previously by Nicolas et al. (2002). A cross between Bossier and
Embrapa 20 was made in at Embrapa Soybean (Parana State,
Brazil). The F, to F, generations were advanced by single-seed
descent method. The F, plants were harvested individually, and
the seeds were used for phenotypic data collection, as described
by Santos et al. (2006, 2013). In the present study, we sowed
one seed from F_ . RILs to get leaf tissue for DNA extraction.
However, some lines were lost due to some problems with
germination. For this reason, we performed the study with a
population of 131 F, RILs.

Phenotype of Traits Associated with

Biological Nitrogen Fixation

The lines of soybean were grown in pots containing 4 kg of
nonsterile soil and sand, with one plant per pot under green-
house conditions, and the experiment was performed in a
completely randomized design with eight replications (one
plant per replication). The plants were inoculated at the V2
stage of development, adding 1 mL of inoculum containing
two strains, Bradyrhizobium japonicum SEMIA 5079 (= CPAC 15
and belonging to the same serogroup as SEMIA 566 and USDA
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123) and Bradyrhizobium elkanii SEMIA 587 (1:1, v/v) (Fehr et
al., 1971). Six weeks after emergence, plants were harvested
for evaluation of BNF parameters: NN, NDW, average NDW
(ANDW), and SDW.

DNA Extraction

DNA was extracted from two to three trifoliate leaves from
each of the RILs using the DNeasy 96 plant kit (QIAGEN),
as per the manufacturer’s instructions. DNA was quantified
using a Qubit spectrophotometer (Invitrogen) and normalized
to 10 ng pL ! for GBS library preparation.

Library Preparation and Sequencing

Two multiplex (66- and 67-plex) Ape KI GBS libraries were
prepared by the Plateforme d’Analyses Génomiques (Institut
de Biologie Intégrative et des Systemes [IBIS], Laval Univer-
sity, Quebec City, QC, Canada) by using 100 ng of each DNA
sample (131 RILs and the two parental genotypes); the libraries
were prepared as described by Elshire et al. (2011) and Sonah
et al. (2013). Each GBS library was sequenced on a single
chip of an Ion Torrent ion proton sequencer at the Plateforme
d’Analyses Génomiques at Laval University.

SNP Calling and Filtration

Read processing and SNP calling were performed using the
IBIS Genotype-by-Sequencing Tool (IGST-GBS pipeline;
Sonah et al., 2013) with the soybean Glymal.01 assembly as
the reference genome. Loci displaying extreme heterozygosity
(outliers were defined as heterozygosity values that exceeded
the third quartile by more than three times the interquartile
range; 1.e., Quartile 3 + the interquartile range X 3) were
excluded from the analysis. The same filter for extreme hetero-
zygosity was also applied to lines, as well as an additional filter
to eliminate lines with large amounts of missing data (>90%).
Low-quality heterozygous genotypes (genotype quality < 30)
were converted to missing data by an in-house Python script.
The raw SNPs were then filtered using VCFtools (Danecek et
al., 2011) to keep only the SNPs located on chromosomes (and
not scaffolds) having a minimum read depth of two, no more
than 80% missing data, and a minimum minor allele frequency
of 12.5%. Finally, missing genotypes were imputed using
Beagle version 4.0 (Browning and Browning, 2007).

Map Construction and QTL Analysis

The genetic map was obtained using QTL IciMapping (version
3.2) (Wang et al., 2012). The Kosambi mapping function was
used to convert the recombination frequency into centimor-
gans. Markers in complete linkage disequilibrium (LD; i.e.,
exhibiting an identical segregation pattern) were grouped into
bin loci using the BIN tool. Linkage groups (LGs) were assem-
bled based on a minimum logarithm of odds (LOD) threshold
of 3.0. Loci assigned to a LG that differed from their known
chromosomal position on the physical map were excluded from
the analysis. Each LG was first ordered with the nnTivoOpt algo-
rithm, followed by a fine-tuning of marker order by rippling
using the SARF (sum of adjacent recombination frequencies)
criterion and a window size of eight. Afterward, the genetic
map was inspected visually, and markers with two or more

putative genotyping errors (putative double crossovers or
isolated heterozygous calls) were excluded from the analysis.
We performed QTL analysis using the inclusive composite
interval mapping (ICIM) method, implemented in the same
program used to construct the linkage map, QTL IciMapping.

RESULTS

Phenotypic Analysis and QTL Mapping

of Biological Nitrogen Fixation Traits

In the present study, BNF performance was assessed by
measuring nodulation traits NN, NDW, ANDW, and
SDW on a collection of 131 F,, RILs. The observed
values for the two parents were as follows for Bossier and
Embrapa 20, respectively: NN = 206.4 and 183.6 nodules
plant™ NDW = 699.9 and 530.0 mg plant™!, ANDW =
4.04 and 2.75 mg nodule™!, and SDW = 10.19 and 9.11 ¢
plant™'. These results confirmed the higher BNF capacity
of Bossier. For the collection of RILs, as shown in Fig. 1,
NN ranged between 110.6 and 322.8 nodules plant™,
with a mean of 216.5 & 4.18 nodules plant™ (mean error);
NDW ranged between 337.8 and 1278.0 mg nodule™,
with a mean of 757.6 + 15.95 mg nodule!; ANDW ranged
between 1.95 to 5.8 mg nodule™!, with a mean of 3.81 +
0.060 mg nodule™!; and SDW between 6.49 and 15.43 g
plant™, with a mean of 11.5 £ 0.13 g plant™. In all cases,
the range of values observed in the RILs extended those of
the two parents. Such transgressive segregation suggests that
each parent contributed both positive and negative alleles
at the loci controlling these traits. As expected (Bohrer
and Hungria, 1998), high values of coefficient of variation
were obtained for NN, NDW, ANDW (i.e., NDW/NN),
and SDW: 47.51, 51.85, 46.67, and 27.51%, respectively.
Medium to low values of estimated heritability for NN,
NDW, ANDW, and SDW were obtained: 0.41, 0.30, 0.30,
and 49.11, respectively. Finally, the distribution of values
for all four traits resembles a normal distribution (Fig. 1),
suggesting that the genetic control of these traits is complex
and potentially results from the contribution of multiple
genes. As pointed out by Hwang et al. (2014), a composite
interval mapping model for QTL analysis generally assumes
that traits follow a normal distribution.

Construction of a Genetic Map

Using GBS-Derived SNPs

A total of 90.4 and 85.3 million Ion Torrent single-end
reads were obtained for each of the two GBS libraries
(66- and 67-plex), with means of 1.1 million (range =
189,942-3,521,829) and 1.2 million (range = 305,900—
3,313,911) reads per sample, respectively. Using the
IGST-GBS pipeline, these reads were used to identify
a list of polymorphic SNP loci and to call genotypes at
each SNP locus in each RIL and the two parents. The
initial catalog of SNPs was subjected to the filtration steps
described above (see Material and Methods), resulting
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Fig. 1. Phenotypic evaluation of biological N fixation (BNF) performance for shoot dry weight (SDW), nodule number (NN), nodule dry
weight (NDW), and average nodule dry weight (ANDW; i.e., NDW/NN) using a population of 131 ., recombinant inbred lines derived from
a cross between Bossier (high BNF capacity) and Embrapa 20 (medium BNF capacity).

in a final set of 4885 high-quality SNP markers for map
construction. Four RILs with >90% missing data (due
to an insufficient number of reads) were removed from
the dataset. Additionally, 14 RILs displaying anomalously
high levels of heterozygosity (mean of 5.3% relative to a
mean of 1.7% for the rest of the lines) were also excluded
from the analysis. Therefore, the final mapping popula-
tion was composed of 113 RILs.

After assessing the redundancy between the SNP markers
with the BIN tool, 80.5% (3932) of the SNP markers were
found to be in complete LD with one or more other markers.
Such SNP markers sharing an identical segregation pattern
among the RILs were grouped into 673 bin loci (containing
2 to 134 markers, average = 5.8). However, three bin loci
were composed of SNP loci whose genomic positions were
located on two chromosomes (in all cases, Gm04 and Gm18)
and were excluded from the analysis. After an initial mapping
analysis, an additional 13 loci with inconsistent chromosomal
assignment, as well as 160 loci with low-quality genotypes,
were excluded from the analysis.

After filtering of the markers, a soybean linkage map
based on 113 soybean RILs F_ was constructed with a total
of 1450 SNPs (one SNP from each bin locus [Supplemental
Table S1], and all SNPs with a unique segregation pattern).
The resulting map is composed of 35 LGs, containing 2 to
103 markers, with an average of 39.1 SNPs (Fig. 2, Supple-
mental Table S2). The LGs themselves contained no gaps
of >20 cM; however, many chromosomes were split into
different LGs due to a lack of polymorphism between the
parents in the intervening chromosomal segments (data not
shown). Among the LGs formed, six chromosomes (Gm03,
Gmo07, Gm11, Gm13, Gm16, and Gm?20) were composed
of a single LG, 11 (Gm1, Gm2, Gm4, Gm5, Gm8, Gm10,
Gm12, Gm14, Gm15, Gm17, and Gm19) were split into
two LGs, and three (Gm6, Gm9, and Gm1l8) comprised
three LGs. These LGs can be assembled to form the gapped
chromosomes shown in Fig. 2 based on the known physical
location of the SNPs, and the total genetic distance for each
chromosome can be estimated (Table 1). The greatest map
length was obtained for chromosome 4 (101.15 ¢M) and the
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inbred lines derived from a cross between Bossier (high

The physical distance separating different LGs from
the same chromosome was generally <20 Mb. In four
cases, the gap between two LGs from the same chromo-

some was larger (Gm18

49 Mb, Gm01 = 46 Mb, Gm17
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Table 1. Description of the genetic map obtained based
on 113 F,, recombinant inbred lines derived from a cross
between Bossier (high biological N fixation [BNF] capacity)
and Embrapa 20 (medium BNF capacity).

Chromosome No. of SNPst Length
cM
GmO1 29 59.10
GmO02 81 95.50
GmO03 88 103.56
GmO04 97 10115
GmO05 52 56.41
GmO06 38 62.83
GmO07 99 120.19
GmO08 79 128.13
GmO09 49 54.00
Gm10 51 110.91
Gm11 82 11419
Gm12 71 85.69
Gmi13 83 131.35
Gm14 84 88.16
Gm15 12 106.35
Gm16 96 97.30
Gmi7 22 28.46
Gm18 69 56.55
Gmi19 73 88.67
Gm20 93 104.09
Total 1448 1792.59

T SNP, single nucleotide polymorphism.

= 34 Mb, Gm09 = 29 Mb). Overall, 93.1% of the loci
were exactly or almost exactly in the same order in the
physical and genetic map.

QTL Analysis

After filtering of SNP markers, a linkage map was
constructed based on the four traits of BNF evaluated
(NN, NDW, ANDW, and SDW) for 113 out of the 131
soybean RILs F, ; evaluated. We performed QTL mapping
for each of the four traits using ICIM. As shown in Fig. 3
and summarized in Table 2, we identified one significant
QTL for ANDW and another for SDW. With LOD scores
of 4.66 and 3.93, respectively, these QTLs for ANDW and
SDW were the only ones that reached the empirical LOD
score threshold. For the ANDW trait, the QTL was iden-
tified at 67 ¢cM on chromosome 13. The additive effect of
this locus was —0.31 mg nodule ™, and it explained 18.13%
of the phenotypic variation. The additive genetic effects
indicated major contribution of parental Embrapa 20.
The QTL for SDW was identified at 24 ¢cM on chromo-
some 19. The additive effect was of 0.57 g plant™!, and it
accounted for 14.93% of the phenotypic variation. For this
trait, the parental Bossier had greater contribution.

DISCUSSION

The detection and the exploitation of genetic variation
are critical for plant breeding. Molecular markers have
been used extensively for the development of saturated
genetic and physical maps and for the identification of

genes or QTLs controlling traits of economic importance
(Varshney et al., 2009). If a molecular marker is linked to
a trait of interest, it can be used in marker-assisted selec-
tion programs, one of the goals of QTL mapping in plants
(Varshney et al., 2009; Semagn et al., 2010).
Conventionally, QTL mapping has been performed
using a segregating biparental population. In our study, a
soybean population composed of 113 F. . RILs, derived
from a cross between Bossier and Embrapa 20 character-
ized by high and medium BNF capacity, respectively, was
investigated by using a GBS approach to search for QTLs
controlling BNF traits. We were able to obtain a more
extensive genome coverage of a RIL population than
previously studied by Tanya et al. (2005), Nicolas et al.
(2006) and Santos et al. (2006, 2013). The present study
resulted in a genetic map totaling 1793 ¢M, corresponding
to ~72% of the length of soybean consensus linkage map
derived from multiple segregating populations (2536 cM)
(Song et al, 2004). In the population with the same
parental lines, but using 157 F, _ recombinant R1Ls, Santos
et al. (2006) covered ~5% of the genome using 24 SSR
markers, and later 50% of the genome when expanded
to 105 SSR markers (Santos et al., 2013). Therefore, the
genetic map coverage achieved in the present study, with
a set of 1448 SNP markers, represents a marked improve-
ment over previous studies on this population of RILs.
The comparison of the genome coverage obtained in
our study (1792.6 ¢M) with other studies points to both
larger and smaller genetic maps. For example, Akond et al.
(2015), using soybean population derived from the cross
between ‘Hamilton’ and ‘Spencer’ covered 1423.72 ¢cM
with 1502 SNPs. On the other hand, greater length for
a genetic map derived from a single segregating popula-
tion was reported by Hwang et al. (2014), with 2241.3 cM
obtained with 664 markers (171 SSRs + 493 SNPs) and
97 RILs. In Hwang et al. (2014), many maps were inte-
grated and composed from multiple marker types and
several populations. According to Akond et al. (2013,
2015), these maps are not comparable to the map construc-
tion with only one population and one type of marker.
Soybean is an important oilseed crop, but very few high-
density genetic maps have been published for this species
(Q1i et al.,, 2014). Hyten et al. (2010, 2008) built two high-
density integrated genetic linkage maps of soybean-based
genome sequencing and high-throughput SNP genotyping.
In the map obtained in our study, chromosomes were often
composed of two different types of segments. In genomic
segments where the two parents were polymorphic, dense
marker coverage was achieved and no gaps of >20 cM were
obtained. Therefore, in these genomic regions, sufficient
marker coverage was achieved for the detection of QTLs.
Other segments of chromosomes were completely devoid
of any polymorphic markers, presumably because the
two parental lines share these segments from a common
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Fig. 3. Quantitative trait loci identified by inclusive composite interval mapping for average nodule dry weight on chromosome 13 and
shoot dry weight on chromosome 19 using a population of 113 ., inbred lines derived from a cross between Bossier (high biological N

fixation [BNF] capacity) and Embrapa 20 (medium BNF capacity).

ancestor. In such genomic regions, the parents presumably
carry the same alleles at all loci, and they cannot contribute
to the phenotypic contrast observed between the parental
lines. Such low polymorphism between parental genotypes
has been pointed out in several studies comparing modern
soybean genotypes (Hiromoto and Vello, 1986; Gizlice et
al., 1994; Abdelnoor et al., 1995).

Inclusive composite interval mapping allowed us to
identify one QTL for ANDW on chromosome 13 and
another for SDW on chromosome 19. Previously, Santos
et al. (2013), using another method (composite interval
method, CIM), also identified one QTL for SDW on chro-
mosome 19, but in a different position. Simulations showed
that ICIM is computationally less intensive, has increased

Table 2. Quantitative trait loci identified by inclusive composite interval mapping for biological N fixation (BNF) traits in a
population of 113 F,; recombinant inbred lines derived from a cross between Bossier (high BNF capacity) and Embrapa 20

(medium BNF capacity).

Significant position

Traitt Chr. Position Left Right Total SNPst LOD§ PVET| Add#
cM %
ANDW 13 67 26,581,863 26,934,841 4 4.66 18.13 -0.31
SDW 19 24 1,637,165 3,166,049 10 3.93 14.93 0.57
TANDW, average nodule dry weight; SDW, shoot dry weight.
T SNP, single nucleotide polymorphism.
§ LOD, logarithm of odds.
11 PVE, phenotypic variation explained.
# Add, additive effect.
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detection power, reduces false discovery rate, and allows
less biased estimates of QTL effects (Li et al., 2007).

The same mapping population was previously used
for mapping of BNF traits using SSR markers (Santos et
al., 2013). Except SDW, the QTLs identified for other
BNF traits could not be validated in present study, despite
using a high-density marker map. Although all SSR
markers were indeed assigned to the expected LG and
chromosome, based on their known physical position, we
observed important distortions occurring in the integrated
map. These discrepancies do not seem to be concentrated
in a subset of individuals, leading us to hypothesize that
these are not due to discrepancies in the identification or
naming of individual RILs, but rather due to genotyping
errors in the earlier SSR data. When a limited number of
SSR markers or loci are used, these errors do not prevent
the production of a linkage map, but when added to a
much denser set of SNP markers, these genotyping errors
cause conflicts that are difficult to resolve for the mapping
software and lead to significant map distortion.

It is worth mentioning that in the region where the
QTLs for SDW were identified in our study (1,637,165
[start] and 3,166,049 [end]), there are some genes that might
be related to plant growth. For example, Glyma19g022500
(located at 2,519,866 to 2,522,550) encodes a gibberellin-
regulated protein involved in several developmental and
physiological processes in plants, including leaf growth. In
a previous study, Hao et al. (2011) reported that the expres-
sion of a gene encoding a gibberellin-regulated protein
(Glymal0g40580) was upregulated 33.32-fold under
low-N conditions. The authors demonstrated differential
transcript abundance and regulation in response to low-N
stress between two soybean cultivars, one tolerant and one
sensitive to low-N conditions. According to Bottini et al.
(2004), gibberellin can be produced by endophytic bacteria
and plant-growth-promoting rhizobacteria and had a bene-
ficial effect on growth and yield. It is noteworthy that SDW
is considered an excellent parameter to estimate the contri-
bution of BNF in soybean, as shown under both greenhouse
and field conditions (Bohrer and Hungria, 1998; Hungria
and Bohrer, 2000; Souza et al., 2008).

In relation to the ANDW trait, the QTL identified
on chromosome 13 has not been reported before. This
QTL was located between SNP markers at the positions
26,581,863 and 26,934,841. The left marker was located
675 kb from the leftmost markers of a chitinase gene
(Glymal3g22350) located at 25,904,742 to 25,907,117.
Usually, chitinase activity in plants is low, but it can be
induced in soybean when in symbiosis with Bradyrhizobium
(Xie et al., 1999). In the nodulation process, chitinases
have been shown to differentially cleave nodulation
factors, and it has been proposed that they modulate the
activity of these key morphogenetic signals in the devel-
opment of the symbiosis (Salzer et al., 2000).

Both QTLs identified in our study explained a sizable
amount of the phenotypic variation for ANDW and
SDW, 18.13 and 14.93%, respectively. The Embrapa20
allele contributed to increase ANDW, whereas the Bossier
allele contributed to higher SDW (Fig. 4). The fact that
the individual QTLs identified here explained <20%
of the phenotypic variation is typical of what has been
observed in other QTL studies on BNF and is in agree-
ment with the complex nature of this trait (Santos et al.,
2013; Hwang et al., 2014).

The general means for the parameters related to BNF
evaluated in our study were higher than the mean of the
parental Bossier (high BNF capacity). Studies of quantita-
tive traits in segregating populations sometimes report the
presence of phenotypes that are very distant from those of the
parental lines (de Vicente and Tanksley, 1993; Rieseberg et
al., 1999). This phenomenon, known as transgressive segre-
gation, is a major mechanism by which extreme or novel
adaptations observed in new hybrid ecotypes or species
are thought to arise. It is a phenomenon specific of segre-
gating generations and refers to the fraction of individuals
that exceed parental phenotypic values in either a negative
or positive direction (Rieseberg et al., 1999). As pointed
out by Hwang et al. (2014), a composite interval mapping
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Fig. 4. (A) Average nodule dry weight (ANDW) of 113 F_4
recombinantinbred lines (RILs) contrasted for the single nucleotide
polymorphism (SNP) on chromosome 13, and (B) shoot dry weight
(SDW) of 113 F. 4 RILs contrasted for the SNP on chromosome 19.
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model for QTL analysis generally assumes that traits follow
a normal distribution. Furthermore, due to the distinct and
relatively variable nature of the BNF parameter, coefficients
of variation>35% are often reported for conditions (Bohrer
and Hungria, 1998; Hungria and Bohrer, 2000; Souza et
al., 2008).

Soybean is an important crop worldwide, and one impor-
tant feature is its high capacity for BNF, an attractive choice
of economic and environmental importance (Hungria and
Mendes, 2015). Nevertheless, phenotypic evaluation of BNF
traits is time and labor consuming and can show consider-
able variability depending on the environmental conditions
(Cregan and Keyser, 1986; Betts and Herridge, 1987; Bohrer
and Hungria, 1998; Hungria and Bohrer, 2000).

The use of molecular markers is currently mandatory
in plant breeding programs, and we have demonstrated
that GBS can represent a highly cost-effective and high-
throughput genotyping approach to search for molecular
markers related to BNF in the soybean genome.
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