A quantitative model of the role of soil fauna in decomposition as affected by different forested cropping systems in central Amazonia

Martius, Christopher ⁽¹⁾, Hoefer, Hubert ⁽²⁾, Beck, Ludwig ⁽²⁾ Garcia, Marcos V.B. ⁽³⁾, Luizão, Flavio ⁽⁴⁾, Franklin, Elizabeth ⁽⁴⁾, De Morais, J. Wellington ⁽⁴⁾ and Förster, Bernhard ⁽⁵⁾

⁽¹⁾ Center for Development Research, Bonn, Germany, ⁽²⁾ Staatliches Museum für Naturkunde Karlsruhe, Karlsruhe, Germany, ⁽³⁾ Embrapa-Amazônia Ocidental, Manaus, Brazil, ⁽⁴⁾ Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil, ⁽⁵⁾, ECT Oekotoxikologie GmbH, Flörsheim, Germany

The role of soil fauna in nutrient cycles of different natural and man-made ecosystems of central Amazonia (a rain forest, FLO; a secondary forest site, SEC; and two agroforestry plantation sites, POA and POC, at the campus of the Embrapa Amazônia Ocidental near Manaus) was investigated in a field study undertaken 1997-1999. Litter production was determined in weekly collections using 0.25m²-sized litter samplers established in the field sites. Litter stocks were determined on the basis of monthly collections of the litter layer using a 21 cm diameter soil corer. Biomass of fauna in litter and soil was determined in three-monthly collections using the 21 cm corer, and the respiration rates of key fauna groups were determined in an Infrared-Gas-Absorption-Spectrometer (IRGA). These and other data including decomposition rates based on litterbag experiments, and microclimatic data are used to model the role of soil fauna in the decomposition process quantitatively.