Patogenicidade de isolados de Fusarium spp. da Coleção de Microrganismos de Interesse para a Agricultura da Embrapa Soja

VENANCIO, J. F. 1; SEIXAS, C. D. S.2

¹Centro Universitário Filadélfia, ²Embrapa Soja. Londrina, Paraná, e-mail: claudine. seixas@embrapa.br

Introdução

A soja [*Glycine max* (L.) Merr.] é a oleaginosa mais cultivada no mundo (WILCOX, 2004). Um dos importantes fatores que impedem a soja de atingir altas produtividades é a ocorrência de doencas.

A síndrome da morte súbita ("Suden Death Syndrome" - SDS) da soja foi relatada pela primeira vez, em 1972, nos Estados Unidos (RUPE, 1989). No Brasil foi observada pela primeira vez na safra 1981/82 em São Gotardo, Minas Gerais, e em seguida no Distrito Federal (NAKAJIMA et al., 1996). Foi denominada podridão vermelha da raiz (PVR).

O patógeno infecta as raízes, reduzindo a massa e a nodulação. O lenho adquire coloração castanho-clara, que se estende por vários

centímetros acima do solo, mas a medula permanece clara (NAKAJIMA et al., 1996; ALMEIDA et al., 2005). A haste principal apresenta uma mancha avermelhada, logo abaixo do nível do solo, que se expande adquirindo coloração negra (NAKAJIMA et al., 1996; ALMEIDA et al., 2005). Nas folhas, os sintomas consistem de manchas cloróticas internervais, que surgem normalmente após o estádio reprodutivo R4 (FEHR et al., 1971), em infestações severas, esses podem surgir nos estádios vegetativos. Com o desenvolvimento da doença, as lesões evoluem para necrose ou formam estrias cloróticas (NAKAJIMA et al., 1996), resultando no sintoma conhecido como ''folha carijó'' (ALMEIDA et al., 2005). Os sintomas evidenciados nas folhas são consequência da ação de toxinas produzidas pelo fungo nas raízes e translocadas para a parte aérea (LI et al., 2000).

Inicialmente, o agente causal da PVR foi identificado como *Fusarium solani* (RUPE, 1987). Posteriormente, com base na especialização em relação ao hospedeiro e nos tipos de sintomas causados, o fungo foi classificado como *Fusarium solani f.* sp. *glycines* (ROY, 1997).

Estudos recentes, associando análises moleculares, morfológicas e de patogenicidade do fungo, relacionaram quatro espécies, do complexo *Fusarium solani* (FSSC), a SDS/PVR da soja: *Fusarium brasiliense*, *F. crassistipitatum*, *F. tucumaniae*, *F. virguliforme*, dessas, as três primeiras ocorrem no Brasil (AOKI et al., 2005, 2012), mas há poucas informações disponíveis sobre a sua distribuição no País.

A Coleção de Microrganismos de Interesse para a Agricultura da Embrapa Soja (CMES) contém 357 isolados de *Fusarium* spp. de diferentes regiões do Brasil, obtidos de amostras de plantas com sintomas de PVR e de solo, mas a espécie de cada isolado ainda é desconhecida, com exceção de três isolados, que foram utilizados por Aoki et al. (2005, 2012). A primeira etapa para essa identificação foi selecionar os isolados com cor de colônia característica do FSSC (azuladas, verde-azuladas, creme e brancas). Antes da caracterização morfológica e molecular, a patogenicidade dos isolados precisa ser verificada.

O objetivo deste trabalho foi testar a patogenicidade de isolados de Fusarium spp. da CMES, sendo essa a segunda etapa para se chegar a identificação dos isolados da Coleção.

Material e métodos

O teste foi conduzido no Laboratório de Fitopatologia e em casa de vegetação da Embrapa Soja, em Londrina, PR. Foi avaliada a patogenicidade de 92 isolados de *Fusarium*, obtidos de amostras de plantas com sintomas da PVR (11 isolados) e de solo (81 isolados) de áreas de cultivo de soja (Tabela 1). Três isolados, obtidos de amostras de plantas, já identificados foram incluídos como controle positivo (testemunhas): CMES 04 (*F. brasiliense*), CMES 24 (*F. crassistipitatum*) e CMES 25 (F. tucumaniae), totalizando no teste, 95 isolados.

Foram utilizados vasos com capacidade de um litro, contendo substrato (solo, areia e esterco bovino), semeando-se em cada vaso, cinco sementes de soja, da cultivar BRS 133, suscetível ao patógeno. Após a emergência das plantas foi feito o desbaste deixando-se três plantas por vaso. Foram feitas três repetições, sendo cada repetição constituída de um vaso com três plantas, totalizando nove plantas por isolado. Os 95 isolados, que estavam preservados pelo método de Castellani, foram repicados para placas de Petri (uma placas por isolado) contendo meio BDA (Batata-Dextrose-Ágar), e mantidos por 20 dias em câmaras de incubação a 28 °C com fotoperíodo de 12 horas.

Para inoculação foi empregado o método do palito de dente colonizado descrito por Keeling (1982) adaptado por Yorinori (1996). Placas de Petri contendo 150 pontas de palito-de-dente com 15 mm de comprimento, em posição vertical, foram esterilizadas. Em seguida, meio ágar-fubá foi vertido nas placas, em quantidade suficiente para que apenas 3 mm da ponta dos palitos permanecessem acima do meio de cultura. Após os 20 dias de incubação, os isolados foram repicados para essas placas (uma placa por isolado) e mantidos em câmara de incubação por 25 dias a 28 °C e fotoperíodo de 12 horas. Durante esse período foi feita a semeadura dos vasos e quando as plantas encontravam-se no estádio V2-V3 (FEHR et al., 1971), procedeu-se à

inoculação introduzindo uma ponta de palito colonizada no hipocótilo de cada planta, na altura média entre o solo e os cotilédones. Os vasos com as plantas inoculadas permaneceram em casa de vegetação, com a temperatura variando entre 25 °C a 28 °C e com irrigação de cinco minutos a cada hora, para favorecer o desenvolvimento do patógeno. Após trinta dias da inoculação foi feita a avaliação das plantas observando os sintomas de lesão a partir do ponto de infecção, murcha, folha carijó e morte de plantas. As lesões foram medidas com auxílio de régua.

Resultados e discussão

Todas as plantas inoculadas apresentaram sintoma. Portanto, os 92 isolados testados são patogênicos à soja.

Porém esses isolados apresentaram apenas lesão a partir do ponto de infecção. Não ocasionaram murcha, folha carijó ou morte de plantas. Esses sintomas foram observados apenas nas plantas inoculadas com dois dos isolados-testemunha, sendo que o CMES 04 causou folha carijó, além da lesão e o CMES 25 matou todas as plantas inoculadas. Arruda et al. (2005) também utilizou o método do palito de dente, mediu comprimento de lesão e considerou o método adequado para indicar isolados causadores de PVR mais e menos agressivos. Esses autores avaliaram o comportamento de duas cultivares frente a diversos isolados obtidos de plantas com sintomas da PVR e já identificados.

A média de comprimento de lesão dos 92 isolados variou de 2 mm a 20 mm de comprimento. Os isolados CMES 107, CMES 161, CMES 163 e CMES 179, obtidos de solo, foram os menos agressivos nesse teste, com 2 mm de comprimento médio de lesão.

Os isolados mais agressivos foram o CMES 203 com o maior tamanho médio de lesão, 20 mm, CMES 119, CMES 191, CMES 194 que provocaram lesão de 18 mm e o isolado CMES 68 que causou lesão de 16 mm em média. Desses, apenas o CMES 68 foi obtido de amostra de planta, os demais foram obtidos de solo. Apesar de terem apresentado

tamanho médio de lesão maior que o isolado-testemunha CMES 04 (14 mm), esses isolados não provocaram o sintoma de folha carijó como o CMES 04. Mueller et al. (2002) não encontraram correlação entre lesão na raiz e o sintoma foliar, o que pode explicar esse resultado.

A folha carijó é um sintoma reflexo, consequência da produção de toxinas que se translocam para a parte aérea das plantas (LI et al., 2000). Hartman et al. (2004) sugerem que juntamente com certas condições ambientais (temperatura do solo, umidade), mecanismos não tóxicos podem estar envolvidos no sintoma foliar. Considerando que todos os isolados foram submetidos à mesma condição, esses 92 isolados podem não ter provocado a folha carijó por causa de algum outro mecanismo que Hartman et al. (2004) não especifica quais seriam ou talvez não produzam a toxina em quantidade suficiente para induzir o sintoma. De qualquer forma, não ter provocado o sintoma de folha carijó não significa que esses 92 isolados não sejam causadores da PVR e que pertençam a uma das espécies descritas na literatura (AOKI et al. 2005, 2012) como causadoras dessa doenca.

Conclusão

Os isolados testados são patogênicos à soja e serão submetidos a outros estudos para determinação da espécie.

Referências

ALMEIDA, A. M. R.; FERREIRA L. P.; YORINORI, J. T.; SILVA J. F. V.; HENNING, A. A.; GODOY, C. V.; COSTAMILAN, L. M.; MEYER, M.C. Doenças da soja (*Glycine max*). In: KIMATI, H.; AMORIM, L.; REZENDE, J. A. M.; BERGAMIN FILHO, A.; CAMARGO, L. E. A. (Ed.). **Manual de Fitopatologia: doenças das plantas cultivadas**, 4. ed. São Paulo: Ceres, 2005. p. 569-588.

AOKI, T.; O'DONNELL, K.; HOMMA Y.; LATTANZI, A. R.; SCANDIANI, M. M. Sudden death syndrome of soybean in south America is caused by four species of Fusarium: *Fusarium brasiliense* sp. nov., *F. cuneirostrum* sp. nov., *F. tucumaniae*, and *F. virguliforme*.

Mycoscience, v. 46, p. 162-183, Dec. 2012.

AOKI, T.; SCANDIANI, M. M.; O'DONNELL, K. Phenotypic, molecular phylogenetic, and pathogenic characterization of *Fusarium crassistipitatum* sp. nov., a novel soybean Sudden death syndrome pathogen from Argentina and Brazil. **Mycoscience**, v. 53, p.167-186, 2012.

ARRUDA, G.M.T.; LILLER, R.N.G.; FERREIRA, M.A.S.V.; CAFÉ-FILHO, A.C. Morphological and molecular characterization of the sudden death syndrome pathogen of soybean in Brazil. **Plan Pathology**, v. 54, p. 53-65, 2005.

FEHR, W. R.; CAVINESS, C. E.; BURMOOD, D.T.; PENNINGTON, J.S. Stage of development descriptions for soybeans, *Glycine max* (L.) Merrill. **Crop Science**, v. 11, p. 929-931, 1971.

HARTMAN, G. L.; HUANG, Y. H.; LI, S. Phytotoxicity of *Fusarium solani* culture filtrates from soybeans and other hosts assayed by stem cuttings. **Australasian Plant Pathology**, v. 33, n. 1, p. 9-15, 2004.

KEELING, B.L. A seedling test for resistance to soybean stem canker caused by Diaporthe phaseolorum var. caulivora. **Phytopathology**, v.72, p.807-809, 1982.

LI, S.; HARTMAN, G. L.; LEE, B.S.; WIDHOLM, J. M.; Identification of a stress-induced protein in stem exudates of soybean seedlings root-infected with Fusarium solani f. sp. glycines culture filtrates. **Plant Physiology and Biochemistry**, v. 38, p. 803-809, 2000.

MUELLER, D. S.; LI, S.; HARTMAN, G. L.; PEDERSEN, W. L. Use of aeroponic chambers and grafting to study partial resistance to *Fusarium solani* f. sp. glycines in soybean. **Plant Disease**, v. 86, n. 11, p. 1223-1226, 2002.

NAKAJIMA, T. et al. First occurrence of sudden death syndrome of soybean in Brazil. **Japanese Agricultural Research Quarterly**, v. 30, n. 1, p. 31-34, Jan. 1996.

ROY, K. W. *Fusarium solani* on soybean roots: nomenclature of the causal agent of sudden death syndrome and identity and relevance of F. solani form B. **Plant Disease**, v. 81, p. 259-266, 1997.

RUPE, J.C. Occurrence and pathogenicity of *Fusarium solani* recovered from soybean with sudden death syndrome. **Phytopathology**, v. 77, p.1689, 1987.

WILCOX, J.R. World distribution and trade of soybean. In. BOERMA H. R.; SPECHT, J. (Ed.). **Soybeans**; improvement, production and uses. 3. ed. Madison: ASA: CSSA: SSSA, 2004. p. 1-14. (Agronomy Monograph, 16).

YORINORI, J. T. **Cancro da haste da soja**: epidemiologia e controle. Londrina, PR: Embrapa Soja, 1996. 75 p. (Embrapa Soja. Circular Técnica, 14).

Tabela 1. Identificação do isolado, local de origem (município/estado) e data de coleta dos isolados de *Fusarium* spp.

Isolado	Local de Origem	Ano de Coleta	Isolado	Local de Origem	Ano de Coleta
CMES 4	Brasília/DF	1992	CMES 117	Londrina/PR	2009
CMES 24	Cristalina/GO	2000	CMES 119	Londrina/PR	2009
CMES 25	Ponta Grossa/PR	2000	CMES 122	Londrina/PR	2009
CMES 33	Carambeí/PR	2000	CMES 124	Londrina/PR	2009
CMES 47	Ponta Grossa/PR	2001	CMES 125	Londrina/PR	2009
CMES 53	Ponta Grossa/PR	2001	CMES 126	Londrina/PR	2009
CMES 58	Pirapó/RS	2002	CMES 127	Londrina/PR	2009
CMES 68	Ponta Grossa/PR	2004	CMES 128	Londrina/PR	2009
CMES 100	Londrina/PR	2009	CMES 129	Londrina/PR	2009
CMES 106	Londrina/PR	2009	CMES 131	Londrina/PR	2009
CMES 107	Londrina/PR	2009	CMES 132	Londrina/PR	2009
CMES 109	Londrina/PR	2009	CMES 133	Londrina/PR	2009
CMES 111	Londrina/PR	2009	CMES 134	Londrina/PR	2009
CMES 112	Londrina/PR	2009	CMES 140	Londrina/PR	2009
CMES 115	Londrina/PR	2009	CMES 144	Londrina/PR	2009
CMES 145	Londrina/PR	2009	CMES 189	Londrina/PR	2009
CMES 146	Londrina/PR	2009	CMES 190	Londrina/PR	2009
CMES 147	Londrina/PR	2009	CMES 191	Londrina/PR	2009
CMES 148	Londrina/PR	2009	CMES 192	Londrina/PR	2009
CMES 150	Londrina/PR	2009	CMES 193	Londrina/PR	2009
CMES 151	Londrina/PR	2009	CMES 194	Londrina/PR	2009
CMES 152	Londrina/PR	2009	CMES 195	Londrina/PR	2009
CMES 153	Londrina/PR	2009	CMES 196	Londrina/PR	2009
CMES 154	Londrina/PR	2009	CMES 197	Londrina/PR	2009
CMES 155	Londrina/PR	2009	CMES 198	Londrina/PR	2009
CMES 157	Londrina/PR	2009	CMES 199	Londrina/PR	2009
CMES 159	Londrina/PR	2009	CMES 200	Londrina/PR	2009
CMES 160	Londrina/PR	2009	CMES 201	Londrina/PR	2009
CMES 161	Londrina/PR	2009	CMES 202	Londrina/PR	2009
CMES 162	Londrina/PR	2009	CMES 203	Londrina/PR	2009
CMES 163	Londrina/PR	2009	CMES 204	Londrina/PR	2009
CMES 164	Londrina/PR	2009	CMES 205	Londrina/PR	2009
CMES 165	Londrina/PR	2009	CMES 206	Londrina/PR	2009
CMES 168	Londrina/PR	2009	CMES 208	Londrina/PR	2009
CMES 170	Londrina/PR	2009	CMES 209	Londrina/PR	2009
CMES 171	Londrina/PR	2009	CMES 210	Londrina/PR	2009
CMES 173	Londrina/PR	2009	CMES 212	Londrina/PR	2009
CMES 175	Londrina/PR	2009	CMES 213	Londrina/PR	2009
CMES 178	Londrina/PR	2009	CMES 215	Londrina/PR	2009
CMES 179	Londrina/PR	2009	CMES 217	Londrina/PR	2009
CMES 180	Londrina/PR	2009	CMES 218	Londrina/PR	2009
CMES 181	Londrina/PR	2009	CMES 718	Rio Verde/GO	1995
CMES 182	Londrina/PR	2009	CMES 719	*	1991
CMES 183	Londrina/PR	2009	CMES 725	*	1997
CMES 184	Londrina/PR	2009	CMES 733	Londrina/PR	1999
CMES 185	Londrina/PR	2009	CMES 738	Floresta/PR	2000
CMES 187	Londrina/PR	2009	CMES 746	Balsas/MA	2005
CMES 188	Londrina/PR	2009			

^{(*):} Informações desconhecidas.