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Abstract Bacteriocins produced by lactic acid bacteria

are gaining increased importance due to their activity

against undesirable microorganisms in foods. In this study,

a concentrated acid extract of a culture of Lactobacillus

sakei subsp. sakei 2a, a bacteriocinogenic strain isolated

from a Brazilian pork product, was purified by cation

exchange and reversed-phase chromatographic methods.

The amino acid sequences of the active antimicrobial

compounds determined by Edman degradation were com-

pared to known protein sequences using the BLAST-P

software. Three different antimicrobial compounds were

obtained, P1, P2 and P3, and mass spectrometry indicated

molecular masses of 4.4, 6.8 and 9.5 kDa, respectively. P1

corresponds to classical sakacin P, P2 is identical to the

30S ribosomal protein S21 of L. sakei subsp. sakei 23 K,

and P3 is identical to a histone-like DNA-binding protein

HV produced by L. sakei subsp. sakei 23 K. Total genomic

DNA was extracted and used as target DNA for PCR

amplification of the genes sak, lis and his involved in the

synthesis of P1, P2 and P3. The fragments were cloned in

pET28b expression vector and the resulting plasmids

transformed in E. coli KRX competent cells. The trans-

formants were active against Listeria monocytogenes,

indicating that the activity of the classical sakacin P pro-

duced by L. sakei 2a can be complemented by other anti-

microbial proteins.

K. G. de Carvalho � M. F. Kruger � M. S. Barbosa �
B. D. G. M. Franco (&)

Departamento de Alimentos e Nutrição Experimental,

Faculdade de Ciências Farmacêuticas,
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Introduction

Lactic acid bacteria produce a variety of substances with

antimicrobial activity, including antimicrobial peptides

collectively known as bacteriocins [23], which are able to

inhibit foodborne pathogens and spoilage bacteria [12, 14,

15, 20, 32]. Several classifications have already been pro-

posed [12, 30, 31], but according to the most recent one [2,

23, 36], bacteriocins are grouped into four classes, based on

their structure and function: class I: lantibiotic peptides,

class II: small non-modified peptides with molecular mass

\10 kDa, class III, large proteins with molecular mass

[10 kDa. Bacteriocins of class II are subdivided into three

subgroups: type IIa corresponds to pediocin-like bacterio-

cins, type IIb are multicomponent bacteriocins and type IIc

are miscellaneous bacteriocins, a diverse group that

includes sakacins Q, T and X.

Lactobacillus sakei subsp. sakei 2a is a bacteriocino-

genic lactic acid bacterium isolated from a Brazilian pork

sausage that is capable of inhibiting the growth and the

pathology of Listeria monocytogenes in culture media, in

food systems and in the murine gastrointestinal tract [4, 13,

33]. The bacteriocin produced by this strain forms pores in

the membrane of target cells, dissipates the proton motive

force in sensitive L. monocytogenes Scott A, reduces the

intracellular ATP concentration with no detectable increase

in extracellular ATP and mediates a concentration-depen-

dent efflux of 5(6)-carboxyfluorescein from liposomes

prepared from L. monocytogenes lipids [8, 35, 39, 42].

The purification protocol used by Rosa et al. [39] was

based on salt extraction, cation exchange and reversed-

phase chromatography. Many other strategies have been

reported in the literature for the purification of antimicrobial

peptides and proteins produced and secreted by bacteria

[1, 3, 9, 21, 34, 40, 41, 44, 47]. Generally, the first step is a

precipitation with ammonium sulphate [29] or an aqueous

extraction of secreted compounds by medium acidification

to release cationic compounds bound to the bacteria cell

wall [27]. An obvious strategy for the enrichment of those

cationic antimicrobial peptides and proteins is a fraction-

ation by ion-exchange chromatography [5, 6, 11].

The fractionation of antimicrobial compounds by cation

exchange and reversed-phase chromatography suggests

that the Lactobacillus sakei subsp. sakei 2a strain is

capable of producing more than one antimicrobial peptide.

The purpose of this study was to purify and characterize

these molecules, using Edman degradation and comparison

to protein sequences deposited on the Basic Local Align-

ment Search Tool (BLAST-P) program.

Materials and methods

Bacterial cultures and media

The following strains were used (Table 1): For use, L. sakei

2a was grown at 25�C for 18 h in MRS broth (Difco,

Detroit, MI), whereas L. monocytogenes and the other

cultures were grown at 37�C for 24 h in BHI broth (Difco,

Detroit, MI).

Assay for antibacterial activity

Antibacterial activity was assayed by the double layer

diffusion test, according to Farias et al. [16]. Ten micro-

liters of the testing material was spotted onto the surface of

plates containing BHI agar (Difco). The plates were

allowed to dry, over-layed with 5 ml semi-solid BHI agar

containing 40 ll of a culture of the indicator

Table 1 Bacteriogenic and target strains used

Bacteriocinogenic strain

Lactobacillus sakei 2a

Target strains

Bacillus cereus ATCC 11778

Bifidobacterium bifidum (BB 12)

Enterobacter aerogenes ATCC 13048

Enterococcus canis 33

Enterococcus faecalis ATCC 19483

Enterococcus faecium 988

Enterococcus hirae 28

Escherichia coli ATCC 8739

Escherichia coli O157:H7 ATCC 35150

Lactobacillus acidophilus (LA 5)

Lactobacillus acidophilus (LAC 4)

Lactobacillus casei (BL 20)

Lactobacillus helveticus 1176

Lactobacillus sakei ATCC 15521

Lactobacillus paracasei (LBC 82)

Lactococcus lactis subsp. lactis 9

Listeria innocua Li7

Listeria monocytogenes ATCC 7644

Listeria monocytogenes Scott A

Listeria seeligeri

Salmonella enteriditis ATCC 13076

Salmonella typhimurium ATCC 14028

Staphylococcus aureus subsp. aureus ATCC 6541

Staphylococcus aureus subsp. aureus ATCC 29213

Staphylococcus epidermidis

Shigella sonnei

Pseudomonas aeruginosa 25723

Pseudomonas mirabilis

382 J Ind Microbiol Biotechnol (2010) 37:381–390

123



microorganism (108 CFU ml-1) and incubated at 37�C for

24 h. The formation of an inhibition halo around the

spotted material indicated a positive antagonistic result.

The double layer diffusion test was used to determine

bacteriocin activity at each step of the purification. Bac-

teriocin activity was determined using titers of a twofold

dilution. A unit of bacteriocin activity was defined as the

reciprocal of the highest dilution having a detectable zone

of inhibition and expressed as AU ml-1.

Extraction of the antimicrobial compounds adsorbed

to the L. sakei 2a cells

Eight liters of MRS broth was inoculated with 1% (v/v) of

an overnight L. sakei 2a culture in MRS broth at 25�C, and

L. sakei 2a was grown to early stationary phase (about

5 9 108 CFU ml-1). Then, pH was adjusted to 6.0 and the

medium heated to 70�C for 30 min before cell harvesting

by centrifugation at 10,000g for 15 min. Supernatant

activity was assayed for bacteriocin not adsorbed onto the

cells. After washing with 5 mmol l-1 2-(N-morpholin)-

ethanesulphonate (MES) buffer, pH 6.5, the cells were

suspended in 400 ml of 100 mmol l-1 NaCl, pH 1.5

(adjusted with 5% phosphoric acid), and mixed with a

magnetic stirrer for 1 h at 4�C [49]. Cell suspensions were

centrifuged at 10,000g for 20 min, and the supernatant was

concentrated ten times by ultra-filtration in an Amicon

System (Millipore Ind. Com. Ltda, SP, Brazil) with a

1.000-molecular-weight-cutoff membrane and then freeze-

dried. The protein concentration in the product was deter-

mined by the Bradford method [7].

Purification of the antimicrobial compounds

The acid extract from L. sakei 2a was fractionated by

cation exchange chromatography using a MONO-S (HR5/

5-Amersham) column coupled to a FPLC system (Phar-

macia, GMI, Ramsey, MN). The mobile phases were the

following: (1) 50 mmol l-1 MES buffer, pH 6.5, and (2)

50 mmol l-1 MES buffer, pH 6.5, plus 1.0 mmol l-1 of

NaCl. Proteins were eluted at 1.0 ml min-1 by a linear

NaCl gradient, from 0 to 1 mol l-1 in 75 min with detec-

tion at 280 nm. Fractions presenting antimicrobial activity

against L. monocytogenes Scott A and Enterococcus

faecalis ATCC 19483 were separately injected in a

C18-reversed-phase column (Shim-Pack ODS, 250 9 4.6

mm, 5 lm) coupled to a HPLC system (Shimadzu, Kyoto,

Japan). Mobile phases used were as follows: (1) aqueous

solution of trifluoroacetic acid (TFA) at 0.1% (by volume)

and (2) aqueous solution of acetonitrile at 80% (by volume)

containing 0.1% TFA (by volume). The compounds were

eluted by a linear gradient at 1.0 ml min-1, increasing

phase B from 0 to 100% during 30 min. The eluted

compounds presenting absorbance at 280 nm were assayed

against L. monocytogenes Scott A and E. faecalis ATCC

19483, and those presenting activity were submitted to

characterization by N-terminal protein sequencing and

mass spectrometry.

Protein sequencing

The amino acid sequences of the active antimicrobial

compounds were determined by Edman degradation in a

automated protein sequencer (Shimadzu PPSQ-21A,

Shimadzu, Kyoto, Japan) coupled to a reversed-phase

separation of PTH-amino acids in a WAKOSIL-PTH

(4.6 9 250 mm) column (Wako, Osaka, Japan) at

1.0 ml min-1, with detection at 235 nm. The obtained

sequences were compared to known protein sequences

using the BLAST-P software.

Mass spectrometry

The average molecular mass of the antimicrobial com-

pounds was determined by electrospray ionization mass

spectrometry (ESI-Q-TOF Micro�, Micromass, UK) in the

positive ion mode. Mass spectrometer calibrations were

made using sodium iodide in the 100–2,500 m/z range. The

analytes were solubilized in 100 ll of 50% (v/v) acetoni-

trile in aqueous 0.2% (v/v) formic acid at a final concen-

tration ranging from 10 to 30 lmol l-1, and applied to the

mass spectrometer by a syringe pump system at a flow rate

of 10 ll min-1. The capillary and the cone voltages were

2.5 kV and 40 V, respectively. The final spectrum was the

result of 20 combined scans. Original data (m/z) were

treated (base line subtraction, smoothing and centring), and

mass spectrum data were analyzed by the Masslynx� 4.0

software. The multiply-charge distribution spectra were

converted to singly charged spectra by using the computer

algorithm ‘‘Transform included in pack of analysis of Q-tof

Micromass.’’

Cloning of genes involved in the synthesis

of P1, P2 and P3 in E. coli

Total genomic DNA was extracted from L. sakei 2a using a

Wizard� Genomic DNA Purification System (Promega,

Madison, WI) and used as target DNA for PCR amplifi-

cation of the genes (sak, lis and his) involved in the syn-

thesis of three antimicrobial compounds (P1, P2 and P3)

selected among those produced by the L. sakei 2a strain,

after their purification and sequencing. For PCR amplifi-

cation of sak (P1), lis (P2) and his (P3) genes, the following

primers were used: (50-CCATGGATGAAATATTATGGTA

ACGGTGAG-30 and 50-GGATCCTTATTTATTCCAGCC

AGCGTTTC-30), (50-CCATGGGCAAGACAGTCGTTCG-30
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and 50-GGATCCTTAGAATTTCTTACGTTTTCTTGC-30)
and (50-CCATGGCAAACAAAGCACAATTG-30 and 50-GG

ATCCTTATTAACAGAATCCTTTAAAG-30), respectively.

The fragments of sak, lis and his genes were cloned in

pET28b expression vector (Novagen/EMD/Merck, USA)

according to the procedure recommended by the manu-

facturer, and the resulting plasmids (pET:sak, pET:lis and

pET:his), using NcoI and BamHI sites, transformed in

E. coli KRX competent cells (Promega, USA) [22].

Transformants were selected on Luria-Bertani (LB) plates

with neomycin 50 lg ml-1 at 37�C for 24 h. The selection

and identification of colonies containing plasmids sak, lis

and his with inserts in the correct orientation were

performed by PCR amplification of DNA from single

E. coli colonies using primers sak, lis and his and T7

Terminator (50-GCTAGTTATTGCTCAGCGG-30). Trans-

formed E. coli KRX was grown on LB medium, supple-

mented with neomycin 50 lg ml-1, and incubated at 37�C.

Induction of the T7 promoter of pET28b (Novagen) was

carried out as follows: an overnight culture was diluted

1:200 into fresh medium and incubated at 37�C until the

optical density at 600 nm reached 0.6. The culture was then

induced by adding 0.1% of rhamnose. A non-induced

culture was used as control. Cultures were incubated at

25�C overnight and the cells harvested by centrifugation at

6,000g for 10 min. Cells were broken by the Mini Bead-

Beater-8 (BioSpec Products, Inc., Bartlesville, OK) in PBS

buffer, and broken cells were centrifuged at 6,000g for

10 min. Supernatants were evaluated for antimicrobial

activity using L. monocytogenes Scott A as indicator strain,

using the double-layer diffusion assay [16]. The molecular

mass of the cloned peptides was confirmed by mass spec-

trometry, as described previously.

Heat treatment and effect of enzymes

To characterize the antimicrobial compounds, the producer

strain was cultivated in MRS broth for 18 h at 37�C. Cells

were removed by centrifugation (13,000g, 10 min, 4�C),

and the cell-free culture supernatant fluid was considered to

be crude antimicrobial compounds. First, the influence of

the proteases trypsin, proteinase K and pronase on antilis-

terial activity was tested. All enzymes were dissolved in

3 mmol l-1 potassium phosphate buffer (pH 7�5) and

added to the cell-free culture supernatant fluid sample.

After incubation for 24 h at 37�C, the inhibitory activity

was evaluated. The heat sensitivity was tested. The cell-

free culture supernatant fluid was heated at 60�C for 15, 30,

45 and 60 min, at 98�C for 15, 30 and 45 min, and at

121�C for 15 min, before testing the activity. To test the

influence of pH, the solution of the antimicrobial com-

pounds was adjusted to a pH of 3.0, 4.0, 5.0, 6.0, 7.0, 8.0,

9.0 or 10.0 with HCl or NaOH, mixed and allowed to stand

for a few minutes before testing the inhibitory activity. The

activity was checked as described above.

Measurements of proton motive force and pH gradient

The membrane potential (DW) of L. monocytogenes Scott

A cells was qualitatively measured with the fluorescent

probe 3,39-dipropylthiadicarbocyanine iodide [(DiSC3(5)]

(Molecular Probes Inc, Eugene, OR). Cells were harvested

in the log phase (optical density at 660 nm), washed twice

with ice-cold 50 mmol l-1 potassium HEPES (K-HEPES)

buffer, pH 7.0, resuspended in the same buffer to 1/100 of

their initial volume and stored on ice. Glucose-energized

L. monocytogenes Scott A cells (final OD660, 0.6) were

added to a stirred cuvette containing 2 ml of the K-HEPES

buffer and 10 ll DiSC3(5) (5 mmol l-1). Next, 2 ll

nigericin (1.5 nmol l-1), which dissipates the pH gradient

(DpH), and purified antimicrobial compound (10 nmol l-1,

100 nmol l-1 e 1 lmol l-1) were added.

Fluorescence measurements were performed with a Cary

Eclipse spectrofluorometer (Varian, CA) with a band-pass

width of 5 nm and wavelengths of 643 and 666 nm for

excitation and emission, respectively. The transmembrane

DpH was measured by loading L. monocytogenes Scott A

cells (OD660, 0.6) with the fluorescent probe 20-70-
bis(carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl

ester (BCECF AM) (Molecular Probes Inc.) by using an

acid shock. Glucose-energized, BCECF-loaded cells (final

OD660, 0.6) were added to a stirred cuvette containing 2 ml

of 50 mmol l-1 KPi buffer, pH 6.0. Next, 2 ll valinomycin

(1.5 nmol l-1), which dissipates the DW, and purified

antimicrobial compound (10 nmol l-1, 100 nmol l-1 e

1 lmol l-1) or 2 ll nigericin (1.5 nmol l-1) were added.

Fluorescence was measured with band-pass widths of 5.0

and 15.0 nm and wavelengths of 500 and 525 nm for

excitation and emission, respectively.

Results and discussion

Bacteriocins are secreted in the culture medium, but due

the cationic characteristics and high isoelectric points,

large amounts remain bound to the producing bacteria cell

wall. Harsh treatment of the cells, such as heating for

30 min at 70�C and then exposure to pH 1.5 for 60 min, are

strategies to release the proteins bound to the cell wall

without causing extensive leakage from the cells [17, 39].

In the present study, the same active compounds were

detected in the supernatant and in the acid-treated material.

In addition, the crude acid extract did not contain typical

intracellular proteins, confirming that the cell leakage was

minimal or even absent.
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Application of the acid extract of L. sakei 2a culture

onto a cation-exchange Mono-S column resulted in an

active fraction in the range from 0.35 to 0.55 mol l-1NaCl

(Fig. 1). As shown in Table 2, the procedure resulted in a

satisfactory purification factor (55.2). It is important to

point out that this active fraction is still a mixture of dif-

ferent cationic antimicrobial peptides and proteins. The

application of the pooled fractions onto a C18-reversed-

phase C18 column separated several substances active

against L. monocytogenes Scott A and E. faecalis ATCC

19483, as well as against some other target strains

(Table 3). Protein fractions exhibiting antibacterial activity

were pooled and re-fractionated using C18-reversed-phase

chromatography, until purity levels higher than 95% were

achieved. The protein identities were confirmed by mass

spectrometry and Edman degradation. Three proteins (P1,

P2 and P3) were consistently present in all repetitions of

the purification experiments. It was not possible to calcu-

late the purification factor for these isolated proteins and

peptide due to the reduced amount of material obtained,

which was employed for antimicrobial assays and protein

identification. The ESI Q-TOF mass spectra and the

profiles of re-fractioned proteins in C18RPC-HPLC for the

P1, P2 and P3 proteins are shown in Fig. 2. Table 4 shows

their N-terminal amino acid sequences, molecular masses

measured by ESI-MS and predicted isoelectric points.

Compound P1 presented the N-terminal sequence

KYYGNGVHXGKHSXTV, containing the consensus

region YGNGV, considered a signature of class IIa bac-

teriocins [15], and also described in bacteriocin Sakacin P

[26]. This result confirms the previous report of Rosa et al.

[39] for the bacteriocin produced by L. sakei 2a. Sakacin P

produces pores on bacterial cell membranes probably by

insertion of its N-terminal region into the bilayer and

interaction of the C-terminal domain with specific recep-

tors, causing leakage of some cellular components, but

without lysis since the pore formation is transient. Inves-

tigations using tryptophan fluorescence spectroscopy on the

interaction of Sakacin P analogues with liposomes suggest

that this bacteriocin is very selective for bilayers containing

anionic phospholipids that are typical of bacterial mem-

branes [17].

The sequence GKTVVRSNESLDDALRRFKRSVSK

AGTIQEYRKR, obtained by Edman degradation for

compound P2, is identical to the 30S ribosomal protein S21

of L. monocytogenes 1/2a F6854, E. faecalis v583 and of

L. sakei subsp. sakei 23 K [10]. This similarity suggests

that this protein may be active against L. monocytogenes

and E. faecalis, probably by interfering with ribosome

assembly and function, thus hampering protein synthesis and

thus leading to the cell death. Other ribosomal proteins were

also identified by Edman degradation and mass spectrometry

(omitted data), but their antimicrobial activity could be

assayed due to the low amount. Nevertheless, this result

indicates that L. sakei 2a secretes many ribosomal proteins.

The N-terminal sequence determined for compound P3

was NKAQLIENVASKTGLTKKDATAAVDAVFGSIQ

DTLKQGDKVQLIXFGTF, identical to a DNA-binding

HV histone produced by L. sakei subsp. sakei 23 K [10].

Like P2, this component may also interfere in the

DNA structure and replication of L. monocytogenes and

E. faecalis targets, causing cell death.

The successful cloning and expression of the genes for

sakacin (P1), 30S ribosomal protein (P2) and histone (P3)

in transformed E. coli KRX confirmed that each one of

these compounds presented antilisterial activity in addition

Fig. 1 Reversed-phase HPLC profile of active fractions obtained by

cation-exchange fractionation of the acid extract of L. sakei 2a.

Separation was conducted in a Shim-Pack ODS column

(250 9 4.6 mm, 5 lm) at room temperature. Mobile phases A and

B were 0.1% aqueous trifluoroacetic acid (TFA) and 80% aqueous

acetonitrile containing 0.1% TFA, respectively; flow rate was

1.0 ml min-1, and detection was conducted at 280 nm. The dashed
line indicates the variation of percentage of mobile phase B

Table 2 Partial purification of antimicrobial compounds produced by L. sakei subsp. sakei 2a in MRS broth

Sample Volume

(ml)

Activity

(UA/ml)

Total

activity

(UA)

Protein

(mg/ml)

Total

protein

(mg)

Specific

activity

(UA/mg)

Purification

factor

Yield

(%)

Supernatant (broth) 3,000 200 6.0 9 105 0.29 870 690 1 100

Crude extract obtained by H3PO4 treatment (pH 1.5) 200 100 2.0 9 104 0.050 10 2,000 2.90 3.33

Mono-S cation-exchange chromatography 24 800 1.9 9 104 0.021 0.504 38,000 55.2 3.2
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to their own primary function in the cases of the ribosomal

protein and the histone.

All these anti-Listeria peptides present isoelectric points

higher than 9.0 and typically around 10.0. A high affinity

for the anionic surfaces of the bacteria cell wall and

phosphate group of nucleic acids is thus expected. The

secretion pathway is not well understood, but it is well

known that polycationic peptides, especially those rich in

arginine residues, can cross lipid bilayers without causing

leakage of cell components [19, 38, 45, 46]. Other

researchers suggest that cationic peptides and proteins

cross the cell membranes through an endocytosis process

[18, 28]. A prototype for a cell-penetrating antimicrobial

peptide is Buforin II, a histone fragment isolated from the

gastric tissue of the Asian toad (Bufo bufo garagrizans).

Buforin II is capable of crossing lipid bilayers with mini-

mal perturbation, but causes cell death by intracellular

effects because of its strong affinity for nucleic acids [37].

Concerning the ribosomal proteins, it can be hypothesized

that if a given bacteria secretes part of their synthesized

ribosomal proteins, it can interfere with ribosomal assem-

bly of closely related bacteria. Wool [48] cited various

non-lethal functions for ribosomal proteins, and the present

study suggests that ribosomal peptides secreted by L. sakei

2a can be viewed as new examples of cell-penetrating

antimicrobial proteins [48].

Preliminary characterization of the antagonistic activity

confirmed the proteinaceous nature of the antimicrobial

compounds secreted by L. sakei 2a. These compounds

were sensitive to proteolytic enzymes, heat stable (main-

taining the biological activity after heating at 60, 98 and

121�C for 15 min) and active in a broad range of pH (1.5

up to 10.0) (Lima et al. submitted). Their antibacterial

spectra of the peptides and proteins are similar (Table 3),

and probiotic cultures and gram-negative strains were

resistant to all these compounds. Despite presenting an-

tilisterial activity, preliminary results indicate that the

mechanism of action of these three peptides is not the

same. Tests with the fluorescence probes DiSC3(5) and

BCECF indicated that the three compounds caused dissi-

pation of membrane potential (DW) in L. monocytogenes

Scott A (Fig. 3), but only P1 caused dissipation of DpH

(Fig. 4). The P2 and P3 proteins do not disrupt the pH

gradient, but have a significant impact on the membrane

potential of this sensitive strain. This is consistent with the

idea that the ribosomal protein and the histone do not

cause extensive membrane disruption to affect the ATP

synthase function. Other experiments indicated that the

three antimicrobial compounds caused more dissipation of

DW and DpH than nisin (1 mmol l-1) and enterocin

CRL35 (1 lmol l-1). Modification of DW has been

described already with other class IIa bacteriocins like

enterocin P [24, 25] or piscicocin CS526 [43].

Recently, Vera Pingitore et al. [47] analyzed the gen-

eration of a DpH in E. faecalis MP97 cells by determining

changes in intracellular pH with the pH-sensitive fluores-

cent probe cFDASE. Modifications in the fluorescence

intensity of this reagent by extrusion or loss of intracellular

cFDASE indicated depletion of membrane DpH. The

fluorescence intensity of the probe was increased upon

addition of Sala and Salb (different bacteriocins), indicat-

ing depletion of membrane DpH of the sensitive strain. The

capacity of Sala and Salb to dissipate Dw in the E. faecalis

MP97-sensitive strain was determined using the fluores-

cence intensity of the cyanine dye DiSC3(5). In cells

energized with glucose, rapid quenching of fluorescence

was detected upon addition of the dye, showing the gen-

eration of Dw. After the addition of Sala and Salb, an

increase in the fluorescence intensity of DiSC3(5) was

observed, indicating that the Dw of E. faecalis MP97 was

dissipated. Sala and Salb dissipated the Dw of the sensitive

Table 3 Antibacterial spectrum of P1, P2 and P3 proteins produced

by L. sakei subsp. sakei 2a, assayed by the spot on the lawn test

Target strains P1 P2 P3

Bacillus cereus ATCC 11778 - - -

Bifidobacterium bifidum (BB 12) - - -

Enterobacter aerogenes ATCC 13048 - - -

Enterococcus canis 33 ? - -

Enterococcus faecalis ATCC 19483 ? ? ?

Enterococcus faecium 988 ? - -

Enterococcus hirae 28 ? - -

Escherichia coli ATCC 8739 - - -

Escherichia coli O157:H7 ATCC 35150 - - -

Lactobacillus acidophilus (LA 5) - - -

Lactobacillus acidophilus (LAC 4) - - -

Lactobacillus casei (BL 20) - - -

Lactobacillus helveticus 1176 - - -

Lactobacillus sakei ATCC 15521 ? ? ?

Lactobacillus paracasei (LBC 82) - - -

Lactococcus lactis subsp. lactis 9 - - -

Listeria innocua Li7 ? ? ?

Listeria monocytogenes ATCC 7644 - - -

Listeria monocytogenes Scott A ? ? ?

Listeria seeligeri ? ? ?

Salmonella enteriditis ATCC 13076 - - -

Salmonella typhimurium ATCC 14028 - - -

Staphylococcus aureus subsp. aureus ATCC 6541 - - -

Staphylococcus aureus subsp. aureus ATCC 29213 - - -

Staphylococcus epidermidis ? ? ?

Shigella sonnei - - -

Pseudomonas aeruginosa 25723 - - -

Pseudomonas mirabilis - - -

?, antimicrobial activity; -, absence of antimicrobial activity
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strain more gradually than that obtained with the K? ion-

ophore valinomycin at 1 lM.

This is the first report showing that the activity of the

classical sakacin P produced by L. sakei 2a can be

complemented by other antimicrobial proteins with unex-

pected and distinct antibacterial mechanisms. This diver-

sity of antagonistic compounds probably results in different

Fig. 2 Reversed-phase chromatographic profile of the purified bac-

teriocin (P1), ribosomal protein (P2) and histone (P3). Separation was

conducted in a Shim-Pack ODS column (250 9 4.6 mm, 5 lm) at

room temperature. Mobile phases A and B were 0.1% aqueous

trifluoroacetic acid (TFA) and 80% aqueous acetonitrile containing

0.1% TFA, respectively; the flow rate was 1.0 ml min-1, and

detection was conducted at 280 nm. The dashed line indicates the

variation of percentage of mobile phase B. The inserts show the

deconvoluted ESI Q-TOF (Micromass, Manchester, UK) mass spectra

and the calculated molecular masses
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Fig. 3 Effect of the purified P1, P2 and P3 antimicrobial compounds

produced by L .sakei 2a on the DW of L. monocytogenes Scott A cells.

Fluorescence levels before the addition of purified P1, P2 and P3

antimicrobial compounds were arbitrarily designated zero, and

the increase in fluorescence upon the addition of bacteriocins

was expressed in arbitrary units (a.u.), where: a (1 lmol l-1),

b (100 nmol l-1) and c (10 nmol l-1)

0

100

200

300

400

500

600

700

0 2 4 6 8 10

Time (h)

F
lu

o
re

sc
en

ce
 (

a.
 u

.)

P1a

P1b

P1c

P2a

P2b

P2c

P3a

P3b

P3c

Fig. 4 Effect of the purified P1, P2 and P3 antimicrobial compounds

produced by L. sakei 2a on the DpH of L. monocytogenes Scott A

cells. Fluorescence levels before the addition of purified P1, P2 and

P3 antimicrobial compounds were arbitrarily designated zero, and the

increase in fluorescence upon the addition of bacteriocins was

expressed in arbitrary units (a.u.). After 7 min, nigericin

(1.5 nmol l-1) was added, where: a (1 lmol l-1), b (100 nmol l-1)

and c (10 nmol l-1)

388 J Ind Microbiol Biotechnol (2010) 37:381–390

123



mechanisms acting simultaneously, which makes the

development of bacterial resistance more difficult.
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20. Gálvez A, Abriouel H, López RL, Ben Omar N (2007) Bacte-

riocin-based strategies for food biopreservation. Int J Food

Microbiol 30:51–70

21. Ghrairi T, Frere J, Berjeaud JM, Manai M (2008) Purification and

characterisation of bacteriocins produced by Enterococcus fae-
cium from Tunisian rigouta cheese. Food Control 19:162–169

22. Hartnett J, Jill MS, Gracyalny BS, Slater MR (2006) The single

step (KRX) competent cells: efficient cloning and high protein

yields. Promega Notes 94:27–30

23. Heng NC, Burtenshaw GA, Jack RW, Tagg JR (2007) Ubericin

A, a class IIa bacteriocin produced by Streptococcus uberis. Appl

Environ Microbiol 73:7763–7766

24. Herranz C, Cintas LM, Hernandez PE, Moll GN, Driessen AJ

(2001) Enterocin P causes potassium ion efflux from Entero-
coccus faecium T136 cells. Antimicrob Agents Chemother

45:901–904

25. Herranz C, Chen Y, Chung HJ, Cintas LM, Hernandez PE,

Montville TJ, Chikindas ML (2001) Enterocin P selectively dis-

sipates the membrane potential of Enterococcus faecium T136.

Appl Environ Microbiol 67:1689–1692

26. Holck AL, Axelsson L, Huhnek K, Krockel L (1994) Purification

and cloning of sakacin-674, a bacteriocin from Lactobacillus sake
LB674. FEMS Microbiol Lett 115:143–149

27. Jamuna M, Jeevaratnam K (2004) Isolation and partial charac-

terization of bacteriocins from Pediococcus species. Appl

Microbiol Biotechnol 65:433–439

28. Jasniewski J, Cailliez-Grimal C, Millière J-B, Revol-Junelles

A-M (2008) Functional differences in Leuconostoc sensitive and

resistant strains to mesenterocin 52A, a class IIa bacteriocin. Appl

Microbiol Biotechnol 81:339–347

29. Kamoun F, Mejdoub H, Aouissaoui H, Reinbolt J, Hammami A,

Jaoua S (2005) Purification, amino acid sequence and charac-

terization of Bacthuricin F4, a new bacteriocin produced by

Bacillus thuringensis. J Appl Microbiol 98:881–888

30. Kemperman R, Jonker M, Nauta A, Kuipers OP, Kok J (2003)

Functional analysis of the gene cluster involved in production of

the bacteriocin circularin A by Clostridium beijerinckii ATCC

25752. Appl Environ Microbiol 69:5839–5848

31. Klaenhammer TR (1993) Genetics of bacteriocins produced by

lactic acid bacteria. FEMS Microbiol Rev 12:39–85

32. Knoetze H, Todorov SD, Dicks LM (2008) A class IIa peptide

from Enterococcus mundtii inhibits bacteria associated with otitis

media. Int J Antimicrob Agents 31:228–234

33. Liserre AM, Landgraf M, Destro MT, Franco BDGM (2002)

Application of a bacteriocinogenic Lactobacillus sake strain to

prevent growth of Listeria monocytogenes in Brazilian sausages
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