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A B S T R A C T

Psidium cattleianum Sabine, commonly known as araçá, is a Brazilian native fruit, which is very juicy, with sweet
to sub acid pulp and a spicy touch. The fruit can be eaten fresh or processed into juice, jellies and ice creams.
Araçás are source of vitamin C, minerals, fatty acids, polysaccharides, volatile compounds, carotenoids and
phenolic compounds, which can provide nutrients and phytochemical agents with different biological functions.
Different pharmacological studies demonstrate that P. cattleianum exerts antioxidant, antidiabetic, antic-
arcinogenic, antimicrobial, anti-inflammatory and antiaging effects. Thus, this article aims to review the che-
mical composition and biological effects reported for araçá fruit in the last years.

1. Introduction

Psidium cattleianum Sabine (Myrtaceae) is a Brazilian native species
that can be found from Bahia to Rio Grande do Sul states, and also in
the neighbor country Uruguay. It has adapted very well in tropical
climates as Hawaii and many Caribbean islands (Galho et al., 2007;
Patel, 2012). The species is characterized as a small fructiferous ever-
green tree/shrub (1–4m high) whose fruit diameters are between
2.2 cm and 5 cm, with ovoid or oblong shape, weighting less than 20 g,
with high number of seeds (Biegelmeyer et al., 2011; Castro et al.,
2004). Fig. 1 shows the most common varieties of P. cattleianum fruits
presenting yellow and red epicarp and cream or white endocarp.
However, there are also fruits with red epicarp and endocarp (Castro
et al., 2004), but they are more rare. According to the morphological
prospection of 40 accessions of Psidium spp. (araçá) from different
Brazilian ecoregions, 80% of fruits have cream endocarp, 11% white
and 9% pale red endocarp (Santos et al., 2010). Despite the color dif-
ferences among P. cattleianum fruits varieties, they are characterized by
a juicy core, with a translucent pulp filled with seeds.

Relevant synonyms for this species are Psidium littorale Raddi,
Eugenia ferruginea Sieber ex C. Presl, Guajava obovata (Mart. ex DC.)
Kuntze, P. ferrugineum C. Presl, P. indicum Bojer, P. obovatum Mart. ex
DC., P. variabile O. Berg and G. cattleiana (Afzel. ex Sabine) Kuntze.
Nevertheless, fruits are popular known in Brazil as araçá, araçá-
amarelo, araçá-vermelho, araçá-rosa, araçá-de-comer, araçá-da-praia,

araçá-de-coroa or araçá-do-campo and in other countries are known as
Cattley guava, Chinese guava, purple guava, yellow strawberry guava,
red strawberry guava, guayaba, cherry guava and lemon guava
(Bezerra, Lederman, Silva Junior, & Proença, 2010; Lisbôa, Kinupp, &
de Barros, 2011; Mitra, Irenaeus, Gurung, & Pathak, 2012).

Flowering in south of Brazil occurs in two main times, the first from
September to October and the second in December. Eventually, a third
flowering can occur in March, thus araçás can be harvest from October
to March (Raseira and Raseira, 1996). Under specific conditions, araçá
orchard (0.5 m between plants and 4.0m between rows of plants) can
produce 10 ton of fruit per ha, considering 2 kg of fruit per plant
(Franzon et al., 2009).

Araçá is very juicy fruit, with an excellent flavor and a sweet to sub
acid pulp, with a spicy touch (Biegelmeyer et al., 2011). The fruit,
consumed in natura or processed (sweets, jams and juices), has high
potential to the agri-food sector (Reissig, Vergara, Franzon, Rodrigues,
& Chim, 2016; Santos et al., 2007). Moreover, due to the bioactivity
(antiproliferative, antidiabetic and antimicrobial) of the fruit extract,
which may be related to high content of vitamin C and antioxidants, the
araçá can also be valuable to the pharmaceutical industry (Franzon
et al., 2009; Medina et al., 2011)

The bioactivity reported for araçá is mainly attributed to the high
content of phenolic compounds, which are well known secondary me-
tabolites with high antioxidant capacity. These compounds are able to
protect biological systems against the excess of free radicals and
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reactive oxygen species (Verma, Rajkumar, Banerjee, Biswas, & Das,
2013). Thus, when included in human diet they contribute to reduce
the development of degenerative diseases such as atherosclerosis,
cancer, cardiovascular diseases, diabetes among others. In addition,
araçá also contains other interesting chemical compounds such as mi-
nerals, fatty acids, sugars, volatile compounds and carotenoids that can
also contribute to human health.

Prospective applications in the agri-food sector and pharmaceutical
industry has been reviewed by Patel (2012). Since then several studies
have been conducted, providing knowledge to subsidize other appli-
cations for this species. Thus, the aim of this article was to review the
literature on the biological activities and chemical composition re-
ported for yellow and red araçá fruit in the last years.

2. Chemical composition

2.1. Araçá nutritional composition

In 100 g of araçá fresh fruit there are 81.73–84.9 g of water,
0.75–1.03 g of protein, 0.63–1.50 g of minerals, 4.32–10.01 g of car-
bohydrate, 0.42–0.55 g of lipid, 3.87–6.14 g of fiber and 26.8 kcal of
energy (Morton, 1987). When compared with apple, the most common
fruit consumed worldwide, araçá is less caloric, lower in carbohydrate
content, and higher in lipid and dietary fiber content.

Protein content in araçá was reported to decrease in function of fruit
maturation (Galho et al. 2007). Levels of protein were 93.6mg/g and
39.8 mg/g dry basis, 10 and 122 days after anthesis, respectively. Fact
explained since young fruits, normally presents higher proportions of
protoplasm in relation to dry matter Galho et al. (2007). In respect to
araçá amino acids composition, there are 382mg of total amino acids
and 154mg of essential amino acids in 100 g of araçá (Hall, Smoot,
Knight, & Nagy, 1980). Essential and non-essential amino acids present
in araçás are shown in Fig. 2. Leucine is the major essential amino acid
followed by lysine and tyrosine, isoleucine and valine while the others
are present in smaller amounts (Fig. 2) (Hall et al., 1980). Glutamine is
the main non-essential amino acid followed by asparagine, alanine,
glycine, proline, serine, arginine and hydroxyproline (Fig. 2) (Hall
et al., 1980). The recommended intake of proteins is 0.8 g/kg/day for
an adult (19–70 years old) according to the Dietary Reference Intakes.
Although the araçá consumption provides a small contribution on the
recommended intake of proteins, it can afford relevant amounts of
leucine that is the most required amino acid (42mg/kg/day).

Amino acids are important compounds for the normal human body
function. These compounds act on cellular signaling, and are regulators
of gene expression and the protein phosphorylation cascade. Besides,
amino acids are fundamental precursors for the syntheses of other ex-
tremely important compounds such as hormones and low molecular
weight nitrogenous substances (Wu, 2009).

Different groups of researchers studied the mineral composition of
mature and immature yellow araçás (Table 1). Araçá from Hawaii, re-
gardless the maturation stage, was rich in macrominerals such as po-
tassium (1.30–1.59%) and nitrogen (0.85–0.91%), and microminerals
such as iron (0.0016–0.0043%) and zinc (0.0011–0.0050%) (Adrian,
Arancon, Mathews, & Carpenter, 2015). Similar results were obtained
for yellow and red mature araçá in Brazil (Kinupp and Inchausti, 2008;
Silva, Santos, Mendes, & Martins, 2008). Minerals are involved in me-
tabolic process and they have exclusive physiological function in the
regulation and catalyzation of important cellular mechanisms (Bailey,
West, & Black, 2015).

Araçá seed contains linoleic acid as the major fatty acid in both
yellow and red varieties, with 61.01% ± 2.51% and
75.42% ± 3.50%, respectively. Oleic acid is present in higher amount
in the yellow genotype (YG) (14.99% ± 0.88%) than in red genotype
(RG) (10.83% ± 0.99%). Quantitative differences for palmitic acid
where observed among YG and RG, where the yellow one has
19.92% ± 0.26%, more than double the percentage observed in the
red one (9.12% ± 2.12%). The content of stearic acid was low in both
genotypes, 3.57% ± 0.62% in the yellow and 4.63% ± 0.40% in the
red one (Biegelmeyer et al., 2011). The lipid profile evaluation has
become an important parameter since the fatty acids are crucial for the
maintenance of a normal physiological health. Moreover, diets rich in
mono and polyunsaturated fatty acids are associated with lower risk of
development of cardiovascular diseases and atherosclerosis. For in-
stance, linoleic acid, the most representative in araçá, exerts health
benefits such as antimutagenic, anticarcinogenic (breast and skin can-
cers), thermogenic, antidiabetic, preventive of atherosclerosis, anti-
hypertensive, and stimulant of the immunological system (Koba and
Yanagita, 2014).

Fig. 1. Yellow and red araçás (from: Paulo Luiz Lanzetta Aguiar).
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Fig. 2. Essential and non-essential amino acids present in araçá.
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The contents of starch, soluble carbohydrates and reducing sugars
were reported to increase along araçá fruit maturation. At day 122
(mature stage) concentrations of 89.2, 105.7 and 26.0mg/g dry basis
were find for starch, soluble carbohydrates and reducing sugars, re-
spectively (Galho et al., 2007). Non soluble carbohydrates, represented
by cellulose, hemicellulose and lignin, were also evaluated by Galho
et al. (2007). Contents of hemicellulose (day 10 after an-
thesis= 16.3mg/g dry basis; mature stage day 122=9.7mg/g dry
basis) and lignin (day 10 after anthesis= 18.4 mg/g dry basis; mature
stage day 122= 2.8mg/g dry basis) decreased along fruit maturation,
while cellulose do not changed (23.4mg/g dry basis at day 10 after and
25.3 mg/g dry basis at mature stage day 122) (Galho et al., 2007). Total
dietary fiber, insoluble fiber, carbohydrates, total sugar and reducing
sugar contents reported by Pereira et al. (2012) for yellow genotype
was 11.95 g, 11.55 g, 15.08 g, 22.74 g and 18.6 g/100 g of dry matter,
respectively. In addition, different pectin and hemicellulose compounds
were found in the edible portion of the araçá fruit (mesocarp)
(Vriesmann, Lúcia, Petkowicz, & Borba, 2009).

The increased consumption of alimentary fibers can contribute in
the reduction of chronic diseases such as diabetes, cardiovascular dis-
eases and colon neoplasia (Bernaud and Rodrigues, 2013; Hur, Kim,
Choi, & Lee, 2013; Sriamornsak, 2003). In the human diet, pectin is
considered a dietary fiber. Different studies suggest that pectin inges-
tion can reduce cholesterol and triglycerides levels, arterial tension and
also can reduce glucose absorption. Additionally, pectin monomers,
resulted from the microbial degradation of pectin in human intestine,
was described with prebiotic effect (Nazzaro, Fratianni, Orlando, &
Coppola, 2012).

2.2. Phytochemicals

2.2.1. Vitamin C
Vitamin C, or ascorbic acid, has many physiological functions. The

two most important ones are its role on the increase of absorption of
iron from vegetal origin and its high antioxidant activity, protecting the
cell membranes and lipoproteins against the lipid peroxidation
(Figueroa-Méndez and Rivas-Arancibia, 2015). Araçá is known as a rich
source of vitamin C, with values of 200mg and 242mg per gram of
fresh fruit, for red genotype and yellow genotype, respectively
(Luximon-Ramma, Bahorun, & Crozier, 2003). Therefore, the con-
sumption of one fruit of 15 g will provide more than four times the
recommended daily intake of vitamin C for adults.

2.2.2. Volatile compounds
Volatile compounds are a diverse group of organic compounds,

generally with a low molecular weight (< 250 Da) and high vapor
pressure under ambient conditions, allowing them to readily diffuse
through the gas phase and within biological systems. In fruits, volatile
compounds are responsible for aroma characteristics, including various
chemical substances (Chitarra and Chitarra, 2005).

The volatile composition of araçá has been reported by different
authors using different techniques such as simultaneous steam dis-
tillation and extraction (Pino, Marbot, & Vázquez, 2001), hydro-
distillation (Biegelmeyer et al., 2011; Marin et al., 2008) and dynamic
headspace extraction (Egea, Pereira-Netto, Cacho, Ferreira, & Lopez,
2014).

(E)-β-caryophyllene was the major constituent in both yellow and
red araçá, in all studies. Nevertheless, due to the variability of the
sample (e.g. different locations and edaphoclimatic conditions), and the
extraction method employed, the profile of yellow and red araçá is
quite different. Apart from (E)-β-caryophyllene, hexadecanoic acid, (Z)-
3-hexenol and α-pinene were the major constituents found in red araçá
studied by (Pino et al., 2001), while β-selinene and neointermedeol
were those from the study of (Biegelmeyer et al., 2011). Concerning the
yellow araçá, neointermedeol (Marin et al., 2008), α-humulene
(Biegelmeyer et al., 2011; Marin et al., 2008), β-selinene (Marin et al.,
2008) and geraniol (Biegelmeyer et al., 2011) were the major com-
pounds.

Although, previous work (Pino et al., 2001) did not found one or
more compounds that impact the red araçá odor, they linked the araçá
flavor with the presence of aliphatic esters and terpenic compounds.
Yellow and red araçá fruit share a common citric, green and sweet
flavor pattern, however, they were distinct according to tropical fruit
characteristic, found for the YG, and tomato characteristic for the RG
(Egea et al., 2014). The compound with highest impact on both yellow
and red araçá odor characteristics were: (Z)-3-hexenal (grass, herbac-
eous), that was the main active odorant in tomato; 1,8-cineole (minty
and eucalyptus) and (Z)-1,5-Octadien-3-one (geranium). The tropical
odor associated with the yellow araçá was supposed to be for the pre-
sence of 3-mercaptohexyl acetate with fresh and citrus aroma de-
scriptors. Nevertheless, other compounds were also present and to-
gether can explain the distinction between the two genotypes. In fact
authors attribute the odor of araçá as a result of interaction of com-
pounds present in the fruit (Egea et al., 2014).

The investigation about the pharmacological activities of volatile
compounds has increased in the last years since different studies shows
their potential application on human health as antioxidant, hepato-
protective, anti-inflammatory, anticarcinogenic and anti-obesity,
among other (Ayseli and Ayseli, 2016; Vinholes, Gonçalves, et al.,
2014; Vinholes, Rudnitskaya, et al., 2014). (E)-β-Caryophyllene for

Table 1
Mineral composition of mature and immature yellow araçá and mature red araçá.

Minerals Yellow araçá Red araçá References

Mature Immature Mature

Macrominerals (%)
Ca 0.14–0.21 0.15 0.18 Adrian et al. (2015), Kinupp and Inchausti (2008), Silva et al. (2008)
Mg 0.11 0.12 0.08 Adrian et al. (2015), Kinupp and Inchausti (2008)
N 0.85 0.91 – Adrian et al. (2015)
P 0.12 0.12 0.11 Adrian et al. (2015), Kinupp and Inchausti (2008)
K 1.52 1.59 1.30 Adrian et al. (2015), Kinupp and Inchausti (2008)
S 0.07 0.07 0.06 Adrian et al. (2015), Kinupp and Inchausti (2008)
Na 0.20 0.21 0.05 Adrian et al. (2015), Kinupp and Inchausti (2008)

Microminerals (%)
B 0.0012 0.0012 0.0011 Adrian et al. (2015), Kinupp and Inchausti (2008)
Cu 0.0011 0.0008 0.0006 Adrian et al. (2015), Kinupp and Inchausti (2008)
Fe 0.0021–0.0039 0.0043 0.0016 Adrian et al. (2015), Kinupp and Inchausti (2008), Silva et al. (2008)
Mn 0.0018 0.0011 0.0018 Adrian et al. (2015), Kinupp and Inchausti (2008)
Ni 0.0001 0.0001 – Adrian et al. (2015)
Zn 0.0011–0.0050 0.0011 0.0015 Adrian et al. (2015), Kinupp and Inchausti (2008)
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instance, the major volatile compound in araçá, has antioxidant (Calleja
et al., 2013; Elmann et al., 2009; Rather et al., 2012), anticarcinogenic,
analgesic (Fidyt, Fiedorowicz, Strządała, & Szumny, 2016), hepato-
protective (Calleja et al., 2013) and neuroprotective (Chang, Kim, &
Chun, 2007) properties. Moreover, this compound attenuates hy-
perglycemia and mediated oxidative and inflammatory stress in dia-
betic rat (Basha and Sankaranarayanan, 2016) and protects plasma and
tissue glycoprotein components in streptozotocin-induced hypergly-
cemic rat (Basha and Sankaranarayanan, 2015).

2.2.3. Carotenoids
Carotenoids are a diverse group of natural pigments which have

received considerable attention since they are potential protector
agents against disturbances caused by reactive oxygen species (Fiedor
and Burda, 2014).

Levels of total carotenoids in araçá vary considerably, with values of
389.0–1084.0 µg and 364.4–1134.0 µg of equivalents of β-carotene/
100 g fresh weight (fw), for yellow and red araçá, respectively
(Denardin et al., 2014; Medina et al., 2011; Vinholes, Lemos, Barbieri,
Franzon, & Vizzotto, 2017).

Tables 2 and 3 presents the individual carotenoids reported in yellow
and red araçá genotypes, respectively. Major individual carotenoids
compounds in fresh yellow araçá were all-trans-β-cryptoxanthin

(26.4 µg ± 1.9 µg/100 g fw), all-trans-β-carotene (20.0 µg ± 4.6 µg/
100 g fw) and all-trans-lutein (15.7 µg ± 3.8 µg/100 g fw) (Silva,
Rodrigues, Mercadante, & Rosso, 2014). Although other authors found
similar composition, major compounds in skin and pulp were different
being all-trans-lutein, all-trans-antheraxanthin, all-trans-β-carotene and all-
trans-β-cryptoxanthin the most representative compounds in araçá studied
by (Ribeiro et al., 2014). Lutein was also the main carotenoid compound
in yellow araçá studied by (Pereira et al., 2012), followed by α-carotene,
zeaxanthin and β-carotene. The composition of red araçá genotype is quite
similar to the yellow one, as reported by Silva et al., 2014, with all-trans-β-
cryptoxanthin as a major compound, however all-trans-lutein was in the
second position, and all-trans-β-carotene in the third, but with very close
values (Dalla Nora, Jablonski, et al., 2014).

Carotenoids are important antioxidant compounds which ingestion
can significantly reduce the risk of diseases associated with oxidative
stress. The beneficial effects of carotenoids have been confirmed in
different types of cancer, cardiovascular and eyes disorders (Fiedor and
Burda, 2014). Improvements in baseline blood pressure, reduction of
inflammation and correction of dyslipidemias can also be highlighted
(Maria, Graziano, & Nicolantonio, 2015).

2.2.4. Phenolic compounds
The total content of phenolic compounds and flavonoids, expressed

in fresh weight, were reported to be more abundant in red araçá
(501.33 mg of gallic acid equivalents (GAE)/100 g and 200.20mg of
quercetin equivalents (QE)/100 g, respectively) than in yellow one
(292.03mg of GAE/100 g and 35.12mg of QE/100 g, respectively)
(Table 4) (Biegelmeyer et al., 2011). However, in other studies, the
total content of phenolic compounds did not differ between yellow and
red genotypes, for instance, 5372mg and 5638mg of GAE acid/100 g
and 603mg and 606mg of chlorogenic acid equivalent (CAE)/100 g,
were reported for YG and RG, respectively (Table 4) (Luximon-Ramma
et al., 2003; Vinholes et al., 2017).

Differences were observed for proanthocyanidins contents (2561mg
and 2473mg of cyanidin chloride (CE)/g in the red and in the yellow
araçá, respectively) and flavonoids contents (712mg of QE/g in the red

Table 2
Carotenoids from Psidium cattleianum yellow genotype.

Compounds Concentration Reference

Yellow genotype

skin pulp whole fruit

all-trans-Antheraxanthin 9.0a 1.6a Ribeiro et al. (2014)
all-trans-Lutein 10.0a 1.9a

15.7b
Ribeiro et al. (2014)
Silva et al. (2014)

26.4c Pereira et al. (2012)

5,6-Epoxy-β-cryptoxanthin 7.0a 2.4a Ribeiro et al. (2014)
5,8-Epoxy-β-cryptoxanthin 3.5b Silva et al. (2014)
all-trans-β-Cryptoxanthin 6.0a 3.4a

26.4
Ribeiro et al. (2014)
Silva et al. (2014)

all-trans-α-Cryptoxanthin 3.6b Silva et al. (2014)
Apocarotenoid 1.9b Silva et al. (2014)
all-trans-β-Carotene 5.9a 3.7a

20.0b
Ribeiro et al. (2014)
Silva et al. (2014)

9-cis-β-Carotene 3.0b 1.3c Pereira et al. (2012)
Silva et al. (2014)

13-cis- β-Carotene 1.2c Pereira et al. (2012)
5,6-epoxy-β-Carotene 1.2c Pereira et al. (2012)
α-Carotene 4.0c Pereira et al. (2012)
β-Carotene 2.9c Pereira et al. (2012)
all-trans-Zeaxanthin 137.5c Pereira et al. (2012)
13′-cis-β-Cryptoxanthin phytoene 0.6b Silva et al. (2014)
Cryptoxanthin 0.9c Pereira et al. (2012)

a Expressed as µg/g of extract.
b Expressed as µg/100 g fresh weight.
c Expressed as g/g dry matter.

Table 3
Carotenoids from Psidium cattleianum red genotype.

Compounds Concentrationa Reference

Red genotype
skin+ pulp

all-trans-lutein 557.8 Dalla Nora, Jablonski, et al. (2014)
all-trans-β-cryptoxanthin 1029.8
α-carotene 60.8
β-carotene 512.6
zeaxanthin 137.5

a Expressed as µg/g of extract.
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araçá against 308mg of QE/g in the yellow araçá) (Luximon-Ramma
et al., 2003). The higher amount of flavonoids in the red variety can be
explained by the presence of cyanidins.

The total content of phenolic compounds varies considerably be-
tween different accessions. Three different accessions of red araçá
showed total content of phenolic compound varying from 402.68mg to
528.30mg of GAE/100 g fresh fruit pulp (ffp), while yellow accessions
(3) varied from 581.02mg to 632.56mg of GAE/100 g ffp (Medina
et al., 2011) (Table 4). Anthocyanins were present in much higher
amounts in the red accessions (4.82–6.29mg cyanidin-3-O-glucoside
(C-3-O-G)/100 g ffp) than in the yellow ones (0.21–0.55mg C-3-O-G/
100 g ffp) (Table 4). A similar result was observed by other author
(Vinholes et al., 2017) (Table 4).

These quantitative differences observed for total phenolic content in
araçá can be due to the cultivation region, edaphoclimatic conditions
and agricultural year of the studies (Table 4). In addition, the part of the
fruit utilized and the method of extraction can also be responsible for
the observed differences. Most of the studies used the whole fruit, with
the exception of Medina et al. (2011) who evaluated the composition of
the pulp. In respect of the method of extraction, Luximon-Ramma et al.
(2003) used a multi-step extraction procedure including long periods of
maceration with solvents with different polarities and removal of fat
soluble substances prior phenolic contents analysis, while other authors
used more simple methods (Table 4).

Araçá studied by different groups of researchers showed a different
individual phenolic profile (Tables 5 and 6).

The most representative phenolic compounds in yellow genotypes
were: gallic acid and its derivatives and ellagic acid and its derivatives
Higher concentrations of phenolic compounds were found in the yellow
araçá pulp when compared with the concentration found in the yellow
araçá skin (Ribeiro et al., 2014) (Table 5). Phenolic composition of red
araçá genotypes accounts with 9 compounds, being epicatechin and
gallic acid the majors ones (Table 6). Although red and yellow araçá
genotypes have some common phenolic compounds as described by
Medina et al. (2011), there is a lack of studies comparing the full in-
dividual phenolic profile of both araçá genotypes.

Phenolic compounds are secondary metabolites of plants and are
essential for their growth and reproduction. Besides, they are formed in
stress conditions, such as infections, wounds, UV radiations among
others (Naczk and Shahidi, 2004).

There is growing evidence that consumption of phenolic compounds
present in foods may lower the risk of health disorders due to their
antioxidant activity (Shahidi and Ambigaipalan, 2015). Phenolic com-
pounds acts over reactive oxygen species and free radicals, which are in
the origin of pathophysiology of neoplasia, atherosclerosis and neuro-
degenerative diseases (Heim, Tagliaferro, & Bobilya, 2002). In fact,
major phenolic compounds present in araçás (gallic acid, ellagic acid,
epicatechin and quercetin), are described with chelating properties,
inhibition of lipid peroxidation, responsible for the maintenance of
endogenous antioxidant defense system, anti-inflammatory, anti-
proliferative and antimicrobial effects among others (Badhani, Sharma,
& Kakkar, 2015; Chanwitheesuk, Teerawutgulrag, Kilburn, &
Rakariyatham, 2007; García-Niño and Zazueta, 2015; Jagan,
Ramakrishnan, Anandakumar, Kamaraj, & Devaki, 2008; Kaur,
Velmurugan, Rajamanickam, Agarwal, & Agarwal, 2009; Long et al.,
2016; Shay et al., 2015; Tadera, Minami, Takamatsu, & Matsuoka,
2006; Wang et al., 2016). Moreover, (−)-epicatechin and quercetin are
considered good inhibitors of alfa-glucosidase and alfa-amylase, key
enzymes in the control of type II diabetes mellitus (Tadera et al., 2006).
Procyanidins, found in both araçás genotypes, also have antidiabetic
properties. It was found that they possess insulin mimetic functions,
reducing the hyperglycemia and stimulating the glucose absorption in
cell lines sensitive to insulin (Montagut et al., 2010).

3. Biological activities

3.1. Antioxidant activity

In vitro studies. P. cattleianum can be considered as a good source of
bioactive compounds with antioxidant properties (McCook-Russell,
Nair, Facey, & Bowen-Forbes, 2012; Dalla Nora, Jablonski, et al., 2014).
According to (Ribeiro et al., 2014), araçá is a potent scavenger of re-
active oxygen and nitrogen species, besides its pulp has also the po-
tential of O2

−, HOCl and 1O2 scavenger. Similar results were obtained
by (Vinholes et al., 2017) were edible portions of araçá from yellow and
red genotypes showed good inhibition properties against O2

− and hy-
droxyl radicals.

Fetter, Vizzotto, Corbelini, and Gonzales (2010) and Medina et al.
(2011) reported that araçá extracts with higher content of phenolic
compounds where those with higher antioxidant activity. Moreover, red
genotypes were more effective against DPPH than the yellow geno-
types, which authors suggest to be probably by their higher anthocya-
nins content. Nevertheless, results obtained in other study shows that
yellow araçá (IC50= 334.3 µg/mL ± 16.5 µg/mL) were more effective
against DPPH than the red genotype (IC50= 490.3 µg/mL ± 35.1 µg/
mL) (Vinholes et al., 2017).

Araçá also showed good antioxidant protection of yeast
(Saccharomyces cerevisiae) against hydrogen peroxide at a concentration
of 25%. In fact, the action was independent of genotype and extraction
solvent used, and yeast survival rates were above 80% (Medina et al.,
2011). Hydrogen peroxide is formed during the normal cell metabolism
and can cause damage to protein, lipid and DNA, mainly by the gen-
eration of hydroxyl radicals through the Haber-Weiss/Fenton (Caillet
et al., 2007).

In vivo studies. Rats fed with powdered freeze-dried araçá showed
remarkable decrease on parameters altered by oxidative stress induced
by cisplatin. Animals showed lowered levels of glucose, LDL choles-
terol, oxidized LDL cholesterol and total cholesterol when compared
with control animals (cisplatin-induced animals not feed with araçá).
Also, animals fed with araçá decreased fat deposition in the liver
showing an improvement in the lipid profile (Dalla Nora, Danelli, et al.,
2014). More recently, the administration of araçá extract (200mg/kg/
day, for 21 days) to insulin resistant rats prevented the liver lipid per-
oxidation and the formation of reactive oxygen species (de Souza
Cardoso et al., 2017).

3.2. Antidiabetic activity

In vitro studies. Araçá extracts were evaluated as potential inhibitor
of digestive enzymes and it was verified that red araçá genotypes were
able to inhibit alfa-glucosidase e alfa-amylase enzymes, being an al-
ternative to the modulation of hyperglycemia (Pacheco, 2015).
Nevertheless, araçá extracts of both genotypes were described as very
effective against alfa-glucosidase enzyme with inhibitory concentra-
tions of 50% of the enzyme, 13 times and 16 times lower than the
positive control (acarbose) (Vinholes et al., 2017).

In vivo studies. Administration of P. cattleianum extract (200mg/kg/
day, for 21 days) prevented hyperglycemia and hypertriglyceridemia in
insulin resistant rats induced by dexamethasone (de Souza Cardoso
et al., 2017). The mechanism of action of the extract was not reported
by authors. Nevertheless, this activity can be related with some of the
phenolic compounds present in araçá extracts, since these compounds
are responsible for inhibiting specific enzymes (Valko et al., 2007).
Quercetin, for instance, is considered a good inhibitor of digestive en-
zymes with IC50 almost 40 times lower than the positive control
(Vinholes et al., 2017).

3.3. Anticancer activity

Araçá extracts from red and yellow genotypes were tested (in vitro)
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as antiproliferative agents on mammary cancer cells (MCF-7) and colon
cancer cells (Caco-2 cells) using rat embryonic fibroblast cells 3T3 as
control (Medina et al., 2011). Water and acetone extracts were tested at
concentrations of 40, 60 and 80 µg/mL and it was observed a reduction
on proliferation of both cancerous cells. Results were dependent of the
concentration and independent of genotype. In addition, control cells

survival was not affected by the extracts at the highest concentration
tested. This result suggests that the araçá antiproliferative effect ob-
served for cancerous cells was other than toxicity.

3.4. Antimicrobial activity

Araçá fruit extract showed in vitro antibacterial activity against
Salmonella enteritidis, an enteric, food-borne pathogen, frequently de-
scribed in the literature on the occurrence of toxinfections in humans.
Extracts showed minimum inhibitory concentration at 5% and it was
verified that extracts with higher secondary metabolites concentrations
were more effective against the bacterial proliferation (Medina et al.,
2011). Intermediate activity was reported for araçá against Bacillus subtilis
and Staphylococcus aureus (McCook-Russell et al., 2012). The antimicrobial
activity of plants is mainly related with the presence of phenolic com-
pounds in leaves and fruits. Araçá contains flavonoids (i.e. kaempferol and
quercetin) and anthocyanidins (cyanidin) that are well recognized anti-
microbial agents. These compounds mode of action is related with their
reaction with microbial cellular membrane inactivating essential enzymes,
or forming complexes with metallic ions, limiting their accessibility to the
microbial metabolism (Medina et al., 2011).

Table 5
Individual phenolic compounds found in yellow araçá fruits.

Compounds Yellow References

skin pulp

Epicatechin 720.5–2659.5a Medina et al. (2011)
Epicatechin epicatechin 5.4b Silva et al. (2014)
Epicatechin gallate 885.0c 1603.0c Ribeiro et al. (2014)
Coumaric acid 2.6–36.0a Medina et al. (2011)
Ferulic acid 2.0–4.4a Medina et al. (2011)
Myricetin 0.1–3.8a Medina et al. (2011)
Chlorogenic acid 60.0c 121.0c Ribeiro et al. (2014)
Chlorogenic acid hexoside 29.0c 26.0c Ribeiro et al. (2014)
Gallic acid 464.0c 297.7–726.7a

1510.0c

12.2b

Medina et al. (2011)
Ribeiro et al. (2014)
Silva et al. (2014)

Galloyl hexoside 7.4b Silva et al. (2014)
Digalloyl hexoside 2.9b Silva et al. (2014)
Trigalloylquinic acid 9.0c 85.0c Ribeiro et al. (2014)
Ellagic acid 2213.0c 3818.0c Ribeiro et al. (2014)
Ellagic acid hexoside 136.0c 346.0c Ribeiro et al. (2014)
Ellagic acid pentoside 164.0c 412.0c Ribeiro et al. (2014)
Ellagic acid deoxyhexoside 1475.0c 2070.0c Ribeiro et al. (2014)
Ellagitanin-like 77.0c 1022.0c Ribeiro et al. (2014)
HHDP hexoside 5.7b Silva et al. (2014)
Di-HHDP-hexoside 222.0c 150.0c

4.0b
Ribeiro et al. (2014)
Silva et al. (2014)

Di-HHDP-hexoside isomer 3.9b Silva et al. (2014)
HHDP digalloyl hexoside 2.3b Silva et al. (2014)
HHDP digalloyl hexoside isomer 5.9b Silva et al. (2014)
Quercetin 115.0c 2.0–6.8a

32.0c
Medina et al. (2011)
Ribeiro et al. (2014)

Quercetin glucuronide 20.0c 18.0c Ribeiro et al. (2014)
Quercetin hexoside 17.5c 11.4c

6.4b
Ribeiro et al. (2014)
Silva et al. (2014)

Quercetin pentoside 39.0c 27.0c Ribeiro et al. (2014)
Quercetin deoxyhexoside 53.0c 11.2c Ribeiro et al. (2014)
Quercetin coumaroyl deoxyhexoside 15.0c 8.5c Ribeiro et al. (2014)
Methyl ellagic acid hexoside 5.2b Silva et al. (2014)
Methyl ellagic acid pentoside 5.6b Silva et al. (2014)
Methyl ellagic acid deoxyhexoside 475.0c 646.0c Ribeiro et al. (2014)
Methyl ellagic acid deoxyhexoside 34.0c 20.0c Ribeiro et al. (2014)
Methyl ellagic acid acetyl-deoxyhexoside 10.0c 2.0c Ribeiro et al. (2014)
Cinnamoyl–galloyl hexoside 573.0c 880.0c Ribeiro et al. (2014)
Vanillic acid hexoside 8.1b Silva et al. (2014)
Taxifolin hexoside 11.7b Silva et al. (2014)
Eriodictyol hexoside 4.0b Silva et al. (2014)

a Results expressed as µg/g of fresh pulp.
b Results expressed as mg/100 g of fresh pulp.
c Expressed as µg/g extract.

Table 6
Individual phenolic compounds found in red araçá fruits.

Compounds Red pulp References

Epicatechin 263.9–2130.4a Medina et al. (2011)
Coumaric acid 3.3–31.7a Medina et al. (2011)
Ferulic acid 3.3–8.1a Medina et al. (2011)
Myricetin 0.2–14.0a Medina et al. (2011)
Cyanidin-3-O-glicoside 354.7b Dalla Nora, Jablonski, et al. (2014)
Malvidin-3-O-glicoside 243.6b Dalla Nora, Jablonski, et al. (2014)
Cyanidin 87.6b Dalla Nora, Jablonski, et al. (2014)
Gallic acid 193.2–801.0a Medina et al. (2011)
Quercetin 0.2–6.6a Medina et al. (2011)

a Results expressed as µg/g of fresh pulp.
b Expressed as µg/g dry fruit.
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3.5. Anti-inflammatory activity

The in vitro anti-inflammatory activity of araçá was tested using
hexane and ethyl acetate extracts. Reported activity at 250 μg/mL were
18.3% and 26.5% inhibition of ciclooxigenase-2 enzyme by hexane and
ethyl acetate extracts, respectively (McCook-Russell et al., 2012). Au-
thors also tested isolated compounds, the mixture of ursolic and olea-
nolic acids, for instance, showed 19.4% of inhibition at the same con-
centration tested for the araçá extracts. In addition, the mixture of
isolated compounds 2-α-hydroxyursolic and 2-α-hydroxyoleanolic
acids showed inhibition of 52.9% and 43.1% for COX-2 and COX-1,
respectively (McCook-Russell et al., 2012).

3.6. Anti-aging activity

A long term in vivo experiment (8 months) carried out on adult
mices fed with araçá extract (1000mg/kg/day) showed that hippo-
campus gene expression profile were different from control animals.
Authors found that araçá altered the expression of genes associated
with regulation of essential cellular processes such as cell cycle, pro-
liferation, differentiation and signal transduction, regulate in-
flammatory genes (inhibiting inflammatory process) and up-regulate
genes encoding for proteins involved in radical scavenging (Ramirez,
Zanchin, Henriques, & Zuanazzi, 2012).

4. Conclusions

This review aimed to explore the chemical composition and biolo-
gical potential of araçás in order to valorize this native fruit. The suc-
culence and sweet taste of araçá pulp has been of interest to the food
industry. In addition, there was an increased interest in the pharma-
ceutical area due to the findings on the nutritional properties of this
fruit. Different studies indicate promising pharmacological properties
mainly related to its chemical properties. The phenolic compounds
present in araçás, such as gallic acid, ellagic acid, epicatechin and
quercetin are described by the maintenance of the endogenous anti-
oxidant defense system, anti-inflammatory, antiproliferative and anti-
microbial. Thus, araçás can be useful in the prevention and treatment of
pathologies associated to oxidative stress and aging. Moreover, it seems
to be a potential candidate to be used in the management of type 2
Diabetes mellitus.
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