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The pathogenicity of phytonematodes relies on secreted virulence factors to rewire

host cellular pathways for the benefits of the nematode. In the root-knot nematode

(RKN) Meloidogyne incognita, thousands of predicted secreted proteins have been

identified and are expected to interact with host proteins at different developmental

stages of the parasite. Identifying the host targets will provide compelling evidence

about the biological significance and molecular function of the predicted proteins.

Here, we have focused on the hub protein CSN5, the fifth subunit of the pleiotropic

and eukaryotic conserved COP9 signalosome (CSN), which is a regulatory component

of the ubiquitin/proteasome system. We used affinity purification-mass spectrometry

(AP-MS) to generate the interaction network of CSN5 in M. incognita-infected roots.

We identified the complete CSN complex and other known CSN5 interaction partners

in addition to unknown plant and M. incognita proteins. Among these, we described

M. incognita PASSE-MURAILLE (MiPM), a small pioneer protein predicted to contain a

secretory peptide that is up-regulated mostly in the J2 parasitic stage. We confirmed

the CSN5-MiPM interaction, which occurs in the nucleus, by bimolecular fluorescence

complementation (BiFC). Using MiPM as bait, a GST pull-down assay coupled with

MS revealed some common protein partners between CSN5 and MiPM. We further

showed by in silico and microscopic analyses that the recombinant purified MiPM protein

enters the cells of Arabidopsis root tips in a non-infectious context. In further detail, the

supercharged N-terminal tail of MiPM (NTT-MiPM) triggers an unknown host endocytosis

pathway to penetrate the cell. The functional meaning of the CSN5-MiPM interaction in

theM. incognita parasitism is discussed. Moreover, we propose that the cell-penetrating

properties of someM. incognita secreted proteins might be a non-negligible mechanism

for cell uptake, especially during the steps preceding the sedentary parasitic phase.
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INTRODUCTION

Root-knot nematodes (RKNs; i.e., Meloidogyne spp.) are
considered the most ubiquitous and severe phytonematodes and
can infect over 2,000 plant species, including many economically
important crops (Trudgill and Blok, 2001; Decraemer and Hunt,
2013; Jones et al., 2013). Under favorable conditions, motile
second-stage juveniles (pre-parasitic J2s) migrate and penetrate
the elongation zone of the host root tip. Becoming infective
J2s, the small animals intercellularly move up to reach the
root vascular cylinder. After their stabilization in differentiated
cells, the parasitic nematodes induce the formation of giant
cells to serve as permanent nutrient sinks for the rest of
the nematode’s sedentary life cycle (Bartlem et al., 2014). The
RKN infestation causes dramatic developmental changes via
the formation of visible gall-like organs on host roots. At
a physiological level, infective nematodes exploit key points
of vulnerability in the host plant to subvert plant immunity
and gain access to nutrients, thereby causing plant disease
(Grundler andHofmann, 2011; Bartlem et al., 2014; Toruño et al.,
2016). Analyses of transcriptional profiles displayed obvious
changes of host gene expression in response to the nematode
infection (Barcala et al., 2010; Kyndt et al., 2012; Ji et al., 2013;
Mendy et al., 2017; Yamaguchi et al., 2017). A comprehensive
functional view of nematode effectors greatly contributes to
deciphering their mode of action and to understanding how this
small animal interferes with the host cellular machinery. Many
nematode effectors manipulate different cellular pathways such
as hormone signaling, protein post-translational modifications,
redox signaling, cell wall modifications, or metabolism (Goverse
and Smant, 2014; Hewezi, 2015; Holbein et al., 2016; Ali et al.,
2017). While some of nematode effectors share similarities with
known proteins, most of them are pioneer proteins making their
characterization more challenging (Danchin et al., 2013; Rehman
et al., 2016; Kikuchi et al., 2017).

Very little is known about the molecular mechanisms
employed by secreted proteins to enter the host cell. Nematode
effectors mainly originate from specialized secretory glands
and are directly secreted through a protrusible stylet (Vieira
et al., 2011; Mitchum et al., 2013). Others are also delivered
along the nematode body, e.g., from the hypodermis onto
the cuticle surface or from the chemosensory glands (called
amphids) located on the head in the form of a prominent pore
(Davis et al., 2008; Vieira et al., 2011). Ultrastructure studies
of the plasma membrane of giant cells ingrowth revealed a
minute hole that forms a direct connection between the apoplast
and cytoplasm side through the stylet and the feeding tube
respectively (Hussey and Mims, 1991; Mitchum et al., 2013).
Some up-regulated effectors are early secreted by J2 pre-parasitic
nematodes to neutralize the host oxidative pathway or suppress
the programmed cell death by interacting with host proteins

Abbreviations: APEX, engineered ascorbate peroxidase; AP-MS, affinity-

purification—mass spectrometry; CSN, COP9 signalosome; GST, Glutathione S

Transferase; HR, hypersensitive response NTT, N-terminal tail; PLCP, papain-like

cysteine protease; PTD, protein transduction domain; RKN, root-knot nematode;

SP, secretory peptide.

located inside the root cell (Rehman et al., 2009; Postma et al.,
2012; Goverse and Smant, 2014; Ali et al., 2015; Holbein et al.,
2016; Lin et al., 2016; Gillet et al., 2017; Habash et al., 2017).
Moreover, secretome analyses of J2 pre-parasitic M. incognita
exposed to root exudates have identified hundreds of proteins,
of which a significant number are predicted to function inside
the host cell (Bellafiore et al., 2008). This biological context
underlined that certain nematode effectors are also delivered
before the formation of the giant cells and the minute pore.
Curiously, the immunocytochemical localization of such secreted
effectors has been reported both in the apoplast or the cell wall
and in the giant cell nuclei, where their function is expected (Lin
et al., 2013; Chen et al., 2017). One question arises how these
effectors reach their final destination in the host cell. An intuitive
mechanism would be the secretion of such nematode proteins in
the apoplast followed by entry into the host cell by an unknown
mechanism. This hypothesis reminds some RxLR effectors in
oomycetes that enter the host cell autonomously (Kale and
Tyler, 2011). Remarkably, this feature is closely related to those
described in cell-penetrating peptide (CPP), also called protein
transduction domain (PTD) (Milletti, 2012). None “RxLR-like
effectors” has been reported in phytonematodes so far (Hewezi
and Baum, 2013; Eves-van den Akker et al., 2014). Nevertheless,
a large variety of CPP/PTD families have been described in
plants and animals (Chang et al., 2007; Cronican et al., 2011;
Milletti, 2012; Liu et al., 2014; Chuah et al., 2015). In this
regard, there is an intriguing possibility that an unexplored
mechanism of host cell entry could exist for certain nematode
effectors.

Although numerous nematode effectors have been identified,
little is known about host proteins and biological processes
that are preferentially targeted by the nematode. In general,
protein networks are organized around a limited number of
highly connected proteins, also called hubs. To borrow the
metaphore of C. R. Landry, like a central station at an
intersection in an urban subway network, hub proteins are
located at the intersection of multiple cellular pathways involved
in developmental and environmental responses (Yu et al., 2008;
Dyer et al., 2010; Landry, 2011). In previous yeast-two hydrid
studies, the interactome analysis of the Arabidopsis-pathogen
immune network has highlighted that various effectors from
bacterial, fungal, and oomycetic pathogens interact preferentially
with 15 plant hubs (Mukhtar et al., 2011; Weßling et al.,
2014). While these pathogens are separated by two billion
years of evolutionary time, evolutionarily distant pathogens can
convergently target common host cell signaling pathways. To
our knowledge, no studies published thus far have focused
on the identification of effector/hub protein interactions in
phytonematodes. Certain “omics” analyses have reported that
M. incognita secretes thousands of putative effector-like proteins
during infection (Danchin et al., 2013; Nguyen et al., 2017). The
identification of host targets of these nematode proteins may
help to gain a better understanding of their putative biological
function. As hubs undoubtedly contribute more than other
proteins to shaping the host interactome, we postulated that some
effectors, alone or in complex, could target these proteins to
significantly facilitate RKN parasitism.
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Among the hub candidates identified in Arabidopsis, the
isoform CSN5a protein (also known as Jab1 or COPS5) is the
most targeted host hub protein that interacts with at least 30
effectors secreted by various phytopathogens (Lozano-Duran
et al., 2011; Mukhtar et al., 2011; Weßling et al., 2014). CSN5
is approximately 40 kDa protein and is highly conserved across
kingdoms, which shares ∼60% amino acid sequence identity
between plants and animals (Barth et al., 2016). CSN5 is one
of the eight subunits of the CSN complex, highly conserved
amongst eukaryotes (Chamovitz and Segal, 2001; Barth et al.,
2016). The CSN complex was first described in Arabidopsis as
a photomorphogenic regulator of light-controlled plant growth
and development (Wei et al., 1994; Chamovitz and Segal,
2001). The crystal structure of human CSN has been solved,
providing a better understanding of the CSN complex as well
as of CSN5 alone (Echalier et al., 2013; Lingaraju et al.,
2014). CSN regulates the ubiquitin/proteasome system that
specifically guides ubiquitylated proteins to the 26S proteasome
for degradation (Schwechheimer, 2004). CSN interacts with
numerous ubiquitin ligases, including the class of Cullin-RING
E3 ubiquitin ligase complexes. The CSN role is the removal of
the ubiquitin-like modifier NEDD8/RUB1, through the catalytic
core of CSN5, to convert the ubiquitin ligase into an inactive
form (Lyapina et al., 2001; Cope et al., 2002). The impairment of
CSN alters the function of hundreds ubiquitin ligases involved
in a wide variety of plant cellular processes such as hormonal
pathways (e.g., auxin, jasmonate), the cell cycle, flowering time
and immunity (Choi et al., 2014). Other CSN5 subcomplexes
exist in the cytoplasm, but their roles and protein partners
are still poorly defined (Wei et al., 2008; Schwechheimer and
Isono, 2010). CSN5 interactome maps have revealed a large
variety of interacting partners involved in the cell cycle, vesicle
trafficking and immunity (Liu et al., 2009; Bennett et al., 2010;
Mukhtar et al., 2011). Overall, CSN5 plays a central role in the
coordinate regulation of cell machineries making it an attractive
hub candidate to capture potential nematode effectors and to
study of novel molecular mechanism in parasitism.

AP-MS approach allows the isolation and identification of
proteins that interact with the “bait” protein of interest directly
in a near-cellular environment (Chen et al., 2010; Morris et al.,
2014; Van Leene et al., 2014; Dedecker et al., 2015). To address
this challenge, we have developed a Strep-tag II purification
system to isolate and identify interacting proteins of the CSN5a
isoform within the pathosystem of interest Nicotiana tabacum—
M. incognita. In addition, an attempt was to apply the engineered
ascorbate peroxidase (APEX) to label nearby proteins of CSN5a
in living cells. The labeled proteins are thereafter extracted,
purified under harsh conditions, and identified by MS. The
APEX system has emerged as a convenient and complementary
research tool, which depicted interactome maps, for example,
in human mitochondria (Rhee et al., 2013; Hung et al., 2014;
Lam et al., 2015; Lee et al., 2016), in Drosophila (Chen et al.,
2015), and more recently in yeast (Hwang and Espenshade,
2016), and C. elegans (Marx, 2015; Reinke et al., 2017). This
approach has never been applied in a plant system, and
unfortunately, our experimental APEX system failed in tobacco
plants.

In this study, we generated transgenic plants to provide
the first glimpse of protein-protein interactions toward CSN5a
duringM. incognita infection. The combination of proteomic and
bioinformatic approaches led to the identification of Minc19205.
We analyzed its expression profile during the nematode life cycle
and identified some other plant protein partners in addition to
CSN5a. The subcellular localization of the transiently expressed
Minc19205 alone and when interacting with CSN5a was verified
by fluorescence microscopy. The purification of recombinant
Minc19205 combined with fluorescence microscopy enabled us
to observe the cellular uptake of the protein in plant root tips.
The protein’s name, PASSE-MURAILLE (in English, “The passer-
through-walls”), is related to its cell-penetrating properties and
inspired by a fictional character from French literature (Aymé,
1947).

MATERIALS AND METHODS

Nematode and Plant Materials
Tobacco (Nicotiana benthamiana and N. tabacum cv. “Petit
Havana”) and tomato (Solanum lycopersicum cv. “Santa Clara”)
plants were grown in soil under greenhouse conditions with daily
watering and subjected to natural light exposure. M. incognita
race 1 was used for all experiments. The nematode culture and
extraction were performed as described by (Atamian et al., 2012).
Forty days after inoculation (dai), transgenic roots were collected
and stored at−80◦C until use.

Molecular Cloning of Plasmids
The primers and nucleotide sequences of all constructs used in
this study are given in Tables S3, S4. The soybean CSN5a-like
ortholog was identified by BlastP search with the A. thaliana
CSN5a protein sequence (accession number AT1G22920;
Uniprot Q8LAZ7) as the query sequence by using the Phytozome
website (version 10.0, phytozome.jgi.doe.gov). We identified
the soybean CSN5a-like alias Glyma.04G075000.1 (Sequence ID
KRH61926.1; Uniprot A0A0R0K5E1) by considering the score,
similarity and identity percentages of hits with E-value < 1
e−10. The software Clustal X v2.1 was used to align CSN5
amino acid sequences from different species, including the
Arabidopsis CSN5 isoforms and soybean CSN5a-like (Figure
S1A). The phylogeny tree reconstruction has been built
with the same CSN5 protein sequences using Phylogeny.fr
(http://www.phylogeny.fr/). The APEX-tagged GmCSN5
construct (named APEX-GmCSN5 for convenience) was
synthesized and cloned (Epoch Biolabs, USA, Houston) into the
derived binary pGreenII vector (Hellens et al., 2000) to generate
the plasmid pGIIH-azul-Strep-CSN5-APEX. The binary plasmid
carried the blue fluorescent protein (BFP) for use as a positive
reporter gene for plant transformation; it was constitutively
expressed under the CaMV 35S promoter and specifically
targeted to the mitochondria. With the aim to generate distinct
plasmids expressing MiPM−SP gene, we identified the MiPM−SP

gene sequence (sequence ID Minc19205) from the public
database Wormbase Parasite (http://parasite.wormbase.org/
index.html). The partial open reading frame (ORF) of MiPM−SP
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was synthesized and cloned into the pBSK vector (Epoch Biolabs,
Houston).

For subcellular localization and BiFC assays, N. benthamiana
leaves were transiently transformed to express GmCSN5 and
MiPM−SP constitutively in fusions with reporter genes. The
MiPM−SP ORF was digested and cloned with SalI and BamHI
sites in frame into the full-length ORF encoding the enhanced
green fluorescent protein (eGFP) (N- and C-terminal fusion) in
the pEZS-NL and pEZS-CL plasmids (for subcellular localization
assays). The GmCSN5 and MiPM−SP ORFs were digested and
cloned with SalI and BamHI sites into the N- and C-terminus
truncated ORF encoding a fragment of the yellow fluorescent
protein (YFP) in the pEZS-NY and pEZS-YC plasmids (for BiFC
assays).

To examine the role of MiPM−SP in hypersensitive
response (HR), the MiPM−SP ORF was cloned into the
pCAMBIA1300 vector with the NcoI and SacI restriction sites
to generate pCAMBIA1300: MiPM−SP. The HR-elicitor INF1 of
Phytophthora infestans was used as a positive control for HR (Bos
et al., 2006). For more details about the HR assays in transgenic
N. benthamiana leaves (Figure S4).

For pull-down assays, MiPM−SP was cloned into the
bacterial expression vector pETM-33b (Kanamycin resistance)
to generate the plasmid pETM-33b:GST-MiPM−SP. The
recombinant MiPM−SP protein carried a 6xHis-tag at the
N-terminal, followed by GST (glutathione S-transferase)
and then the cleavage site HRV-3C and the MiPM−SP

sequence.

Plant Transformation
N. tabacum transformation was performed according to a
previously described procedure (Clemente, 2006). T2 stable
transgenic tobacco lines were screened under hygromycin, and
the BFP fluorescence intensity in roots and leaves at different
plant development stages was analyzed. A last round of selection
was performed by the immunodetection of APEX-GmCSN5 with
an antibody anti Strep-tag II. The representative tobacco line
(named 11.11) has been selected and used in this study for APEX-
GmCSN5 detection by western blot and for protein purification
by affinity-based systems. The procedure for the APEX system
from transgenic N. tabacum plants is described in the Figure S3.

Subcellular Localization and BiFC Assays
Different plasmids of interest expressing the GmCSN5 and
MiPM−SP fusion proteins were bombarded onto detached and
well-expended leaves of 3-week-old N. benthamiana plants
by biolistic DNA delivery, as previously described (Morozov
et al., 1997; Ueki et al., 2013). For BiFC assays, the following
combinations of plasmids were tested: pEZS-NY-GmCSN5/YC-
MiPM−SP and pEZS-NY-MiPM−SP/YC-GmCSN5. A member
of the basic Leu zipper (bZIP) transcription factor family in
Arabidopsis, bZIP63 (AT5G28770), was used as a positive control
by expressing the recombinant protein in the nucleus (Walter
et al., 2004). Negative controls with plasmids expressing the
NY or the YC fragment alone were bombarded in each BiFC
experiment to verify the specificity of the interaction. At 24–
48 h after bombardment, imaging of YFP fluorescence in the

tobacco leaf epidermal cells was conducted using a confocal
laser-scanning microscope (CLSM Leica SP8). The localisation
of plant nuclei was confirmed by counterstaining with the
blue fluorescing DAPI stain (4′,6- diamidino-2-phenylindole;
1µg/ml) after incubation for 5min in the dark. DAPI was
excited at 405 nm (UV laser diode 405 nm) and detected within
the emission wavelengths 420–490 nm. The reconstitued YFP
was excited at 488 nm (laser OPSL 488) and detected within
the emission wavelengths 515–550 nm. For the subcellular
localization, the plasmids pEZS-NL-MiPM−SP and pEZS-CL-
MiPM−SP were individually tested for subcellular localization
in the epidermal cells of N. benthamiana leaves as described
previously. The GFP was excited at 488 nm (laser OPSL 488) and
detected within the emission wavelength 500–530 nm.

Developmental Expression Analysis of
MiPM in M. incognita
Total RNA was isolated from 100mg of frozen and ground eggs,
freshly hatched J2 nematodes, gall-enriched tissues from tobacco
roots collected at 3 dai (parasitic J2) and 15 dpi (J3/J4) and
fresh females collected at 25 dai. RNA was extracted by using
TRIZOL, following the manufacturer’s instructions (Invitrogen),
and treated with DNAseI (1 U/µl, Invitrogen R©). From each
sample, 2 µg of DNase-treated RNA was used as a template
for cDNA synthesis generated by using the MMLV Reverse
Transcriptase (Invitrogen) and oligodT(30) (Macrogene). A
single quantitative RT-PCR was performed in a 10 µl mixture
including 1X of SYBR Green Master Mix, 2 µl of 1:10 cDNA,
RNAse-free H2O and 0.2µM of each forward and reverse primer
(Table S3). PCR cycling parameters were set at 95◦C for 15min,
followed by 40 cycles of 95◦C for 15 s and 60◦C for 1min, with a
melting curve step subjected to gradually increased temperature
(from 60 to 94◦C, reading every 0.5◦C). The quantitative RT-
PCR analyses were performed with a 7,500 Fast Real Time
PCR system (Applied Biosystems). Each gene was analyzed in
triplicate, and the results were generated from four independent
biological experiments. Transcript levels were normalized against
the geometric mean of two M. incognita housekeeping genes,
MiActin and Mi18S (Arguel et al., 2012). Calculations were
performed by the 2−1CT method (Livak and Schmittgen, 2001).

APEX-GmCSN5 Protein Expression
The protocol for protein extraction was adapted from a previous
study (Van Leene et al., 2014) with some modifications. All
steps described were performed at 4◦C. Tobacco roots galls
or leaves (0.5 g) were ground to powder in liquid nitrogen
and homogenized in 1ml of cold extraction buffer (EB) at
pH 7.7 [100mM Tris; 150mM NaCl; 10mM MgCl2; 0.1%
CHAPS; 2.5mM EDTA; 1mM PMSF; 1mM DTT; complete
protease inhibitor cocktail (SIGMAFAST; Sigma R©) and 25
U/ml Benzonase (Promega) and 25 U/ml RNaseI (Invitrogen)].
The lysate was incubated for 1 h at 4◦C on a tube rotator
and subsequently centrifuged (14,000 rpm, 10min, 4◦C). The
soluble fraction was separated on 12% SDS-PAGE and blotted
onto nitrocellulose membrane (Amersham). Protran pore size
0.45µm). The antibody Streptactin-AP (alkaline phosphatase)
conjugate (Biorad) was used at 1:5,000 for the detection of
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GmCSN5 protein via the Strep-tag II. The colorimetric detection
of AP activity was performed with p-nitro blue tetrazolium
(NBT) as the substrate (Biorad).

Purification of APEX-GmCSN5 Protein
Complexes
The AP procedure involved the strong affinity of the Strep-
tag II for the streptactin protein (a variant of streptavidin).
The APEX-GmCSN5 protein partners were purified across three
independent biological replicates. All of steps described were
performed at 4◦C in a cold-room. First, thirty grams of tobacco
roots galls were manually ground in 100ml of cold EB buffer
during 30min. The pH of the protein extract was controlled
at 4◦C. After centrifugation, the soluble fraction was filtrated
(0.45µm) and then applied to a gravity-flow chromatography
column filled with 500 µl of equilibrated streptactin resin (GE
Healthcare). After equilibration with 3CV (column volume)
of MQ water (1ml/min) followed by 5CV of lysis buffer
(0.5ml/min), the filtrate was continually loaded (1ml/min).
Unbound proteins were washed away with 10 CV lysis buffer,
and then APEX-GmCSN5 and prey proteins were eluted with
5CV of lysis buffer supplemented with 10mM D-desthiobiotin
(Sigma). Throughout the process of protein extraction and
purification, all fractions were collected and kept on ice until their
separation on 12% SDS-PAGE gels. Protein bands were visualized
by silver staining or Coomassie staining. The detection of APEX-
GmCSN5 was confirmed by western blot as described above.
After analyzing the protein fractions, samples were pooled and
subsequently concentrated by acetone precipitation as previously
described (Murad, 2011).

Pull-Down Assays With GST-MiPM− SP

The capture of MiPM-interacting partners was achieved by GST
pull-down assay as described previously (Michon et al., 2006)
and performed from two independent biological experiments.
First, 500 µg each of purified GST-MiPM−SP and GST alone
(as negative control) were immobilized on 500 µl GSTrap resin
overnight in soft agitation at 4◦C in PBS buffer. The resin
was washed with 20 volumes of PBS buffer. Soluble proteins
from M. incognita-infected tobacco root were incubated with
the resin containing GST-MiPM−SP and GST alone for 1 h.
The resins were extensively washed and subsequently eluted
with 30mM reduced glutathione (50mM Tris-HCl pH 8.0). All
protein fractions were then separated on 12% SDS-Page with
silver staining and immunoblotted with anti-Strep-tag II to detect
APEX-GmCSN5 protein as described above. Protein samples
were precipitated before LC-MS analysis according to a previous
work (Murad, 2011).

Mass Spectrometry Analysis and Protein
Identification
The precipitated proteins were digested in-solution with trypsin
and thereafter subjected to mass spectrometry analysis by
methods previously described (Murad, 2011). Briefly, the tryptic
fragments were separated using a 2D NanoUPLC system coupled
into a SynaptG2 mass spectrometer (WATERS). NanoUPLC-
MSe data were collected in an alternating low (3 eV) and elevated

energy (ramp from 12 to 45 eV) mode of acquisition. The MS
data was assessed by the Protein Lynx Global Server (PLGS)
software (version 2.5.2) with Expression version 2 installed
and conFigd to search proteins from the available protein
sequence databases of N. tabacum (http://solgenomics.net)
and M. incognita (http://www6.inra.fr/meloidogyne_incognita;
INRA Meloidogyne resources). The criteria for the identification
of proteins also included the detection of at least three
fragment ions per peptide, six fragments per protein, the
determination of at least one peptide per protein, and the
identification of the protein was allowed with a maximum 4%
false positive discovery rate. MS data were filtered by excluding
any proteins identified by peptides in the control pull-down
(GST alone) and in GST-MiPM−SP. The putative interacting
proteins identified by affinity-based systems coupled with MS
were next characterized by in silico analyses. To determine the
identity of the prey proteins, peptide sequences were manually
annotated by BlastP search from public databases to confirm their
identity by using INRA Meloidogyne resources and Wormbase
Parasite (http://parasite.wormbase.org/index.html) concerning
nematode proteins and using National Center for Biotechnology
Information (NCBI) for plants. The nematode protein candidates
were subjected to a pipeline of available software (TargetP,
TMHMM2.0, and Phobius) to predict the signal peptide and its
respective cleavage site (Krogh et al., 2001; Emanuelsson et al.,
2007; Kall et al., 2007). The physiological and chemical properties
of M. incognita candidates were subjected to the Protparam
tool of ExPaSy and the Genesilico Metaserver (http://web.expasy.
org/protparam/; https://genesilico.pl/meta2) (Kurowski, 2003;
Gasteiger et al., 2005).

Labeling of MiPM− SP

The purified MiPM−SP protein was labeled with the commercial
fluorescent probe Alexa-488 from the Alexa Fluor protein
labeling kit (Molecular Probes) according to the manufacturer’s
instructions. The protein was dialyzed (cut-off 3 kDa, 14–
16 h, 4◦C) in PBS buffer. The integrity and the fluorescence of
the labeled protein (∗MiPM−SP) were confirmed by SDS-Page
with Coomassie blue staining and by gel-imaging equipment
(Amersham Typhoon scanner imaging system) (ex. 488/em.
520).

MiPM Protein and NTT-MiPM Uptake
Assays in Arabidopsis Roots
The putative NTT-MiPM was synthesized and labeled with the
carboxyfluorescein probe (also named 5-FAM) at the N-terminal
of its sequence by the Genescript Company. The experiment
consisted of incubating 10µM (0.1 mg/ml) of ∗MiPM−SP or
6xHis-eGFP and 1µM of ∗NTT-MiPM for 6 h in MG buffer
(10mMMgCl2 buffer pH 5.8) with Arabidopsis root tips. Before
incubation, the non-conjugated Alexa488 probe (3mM) was
neutralized at 100mM Tris-HCl (pH 8.5) to avoid unspecific
labeling of root cells. The probe was next diluted at 1µM in the
MG buffer. Plants were washed three times 5min in MG buffer,
and the root tips were observed using a confocal laser-scanning
microscope (CLSM Leica SP8). To improve the simultaneous
detection of FM4-64 and the peptide in a short time scale, we
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increased the peptide concentration to 50µM. Root tips were
incubated for 30min with FM4-64 and the peptide before a
brief washing step with MG buffer. All images were acquired
under identical microscopic parameters from two independent
biological experiments (ex. 488/em. 520).

RESULTS

In Silico Characterization of GmCSN5 and
Molecular Strategies
The highly conserved CSN5 protein displays the canonical
JAMM/MPN domain core, which is the catalytic center of CSN’s
deneddylase activity in eukaryotic organisms (Figure S1). In
some plant species, CSN5 encodes two isoforms and assemble
into distinct CSN complexes, but their functions still remains
elusive (Gusmaroli et al., 2004; Jin et al., 2014). For instance,
the Arabidopsis CSN5a and CSN5b isoforms share 86% amino
acid sequence identity and exhibit a different role in plant
development (Gusmaroli et al., 2004). The Arabidopsis CSN5a
protein is currently known to be a privileged target for a wide
range of effectors. We have thus identified the Arabidopsis
ortholog AtCSN5a in soybean (alias Glyma.04G075000.1) with
sequence identity and similarity above 80 and 86.6%, respectively
from the publicly available database Phytozome (v.10). Given
difficulties to generate soybean transgenic lines in our laboratory,
we took advantage that CSN5a is widely conserved across
multiple plant species (Figures S1A,B; Lozano-Duran et al.,
2011) to use Nicotiana tabacum as valuable surrogate system for
the generation of stable transgenic lines expressing the isoform
CSN5a-like gene of soybean (named thereafter GmCSN5).

Herein, we designed the construct to allow the capture of
tagged-GmCSN5 protein complexes based on biochemical and
proteomic strategies, respectively called StrepTrap-AP and APEX
proximity-based labeling (Figure 1A). Given the solved crystal
structure of the human CSN5 in the CSN complex (Echalier et al.,
2013), we modeled the structure of the GmCSN5 in fusion with
APEX and within the HsCSN complex (Figures S2A,B, Video
S1). Docking simulation indicated low electrostatic interaction
between the two proteins (Figure S2C), supporting a limited
steric hindrance effect at the interface between GmCSN5 and
APEX.

Identification of Candidate Proteins
Interacting With APEX-GmCSN5
We first validated the molecular characterization of transgenic
T2 N. tabacum lines (i.e., 11.7 and 11.11) stably expressing
APEX-GmCSN5 by the evaluation of its protein expression in
the roots before and after nematode infection (data not shown).
In an attempt to identify the proteins in close proximity to
GmCSN5, we examined the feasibility of the APEX system in
plants. The methodology and the results obtained are described
in the supplemental data section (Figure S3). In an effort to
identify interacting partners of GmCSN5, the APEX system was
unsuccessful.

We next assessed whether AP-MS was suitable at least to
identify APEX-GmCSN5 in interaction with tobacco proteins

related to CSN complexes. Proteins associated to APEX-
GmCSN5 were purified by StrepTrap approach from transgenic
tobacco roots infected with M. incognita (top panel, Figure 1B).
The detection of APEX-GmCSN5 (∼80 kDa) in the soluble
and elution fractions was confirmed by western blot with
the Strep-tag II antibody (bottom panel, Figure 1B). Enriched
elution fractions were subjected to in-solution trypsin digestion,
and the peptides were analyzed by nano-ultraperformance
liquid chromatography nanoUPLC-MSE. A total of 43 proteins,
including nine from M. incognita, were identified in three
independent biological experiments (Figure 1C, Table S1).
Candidate proteins identified byAP-MSwere clustered according
to their biological processes (Figure 1C).

As previously mentioned, CSN5 has been extensively
described as a central regulator of the CSN complex (Chamovitz
and Segal, 2001; Barth et al., 2016). It is worthy to note
that we successfully identified all of eight tobacco CSN
subunits (Figure 1C, Table S1). This result indicates that
the heterologous expression of APEX-GmCSN5 can efficiently
recruit the complete CSN complex of N. tabacum. Our
outcome is also in agreement with our model predicting that
the linker and APEX should not interfere with the CSN
complex (Figure S2). In addition, we identified 20 proteins
already known to interact with CSN5 protein (also known
as Jab1 or COPS5), while the rest (almost 54%) were novel
interacting proteins. The most highly represented group of
proteins (∼33%) belongs to the ubiquitin/proteasome system.
Interestingly, orthologous proteins in Arabidopsis, such as CSN
subunits and NEDD8/RUB1, bind either directly or indirectly
with AtCSN5a (Arabidopsis Interactome Mapping Consortium,
2011). We also identified cullin-related protein APC2 (anaphase
promoting complex subunit 2), which is known to be involved
in the formation of polynucleated cells during M. incognita
parasitism (de Almeida Engler et al., 2012). Another large group
(∼12%) includes the HSP (heat-shock protein) and HSC (heat-
shock cognate) protein families, which are mostly related to stress
responses and involved in protein trafficking, degradation, or
immunity (Park and Seo, 2015; Schorey et al., 2015; Fernández-
Fernández et al., 2017). While the roles of these protein-protein
interactions remain unclear (Bennett et al., 2010), another study
has proved that CSN5 contributes to the regulation of protein
sorting into exosomes, such as HSP70 proteins, in a ubiquitin-
dependent manner (Liu et al., 2009). Consistent with the function
of CSN5 in the nucleus, other co-purified proteins involved in
the RNA processing pathway were detected, e.g., the splicing
factor CC1/RBM39, also called CAPERα, which is known to
be a protein partner of CSN5 in animal (Bennett et al., 2010).
CC1/RBM39 is widely conserved among eukaryotes, with 43.1%
amino acid sequence identity shared between A. thaliana and
humans. In addition, other proteins appear to play a role in
cellular trafficking, such as actins that contribute to mediating
cellular movement (e.g., membrane recycling, carrier formation,
cargo sorting).We also noted the occurrence of proteins involved
in primary metabolism (∼22%), stress responses (∼9%), and
chromatin remodeling (∼6%).

We have also reported the capture of nine proteins
from M. incognita, five of which are clustered in similar
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FIGURE 1 | Root proteomic analysis of APEX-GmCSN5 protein partners during M. incognita infection. (A) Design of the construct APEX-GmCSN5 transformed into

N. tabacum. The Strep-tag II is fused at the N and C-terminal parts of the GmCSN5 gene (alias Glyma.04G075000.1). A flexible linker was used to fuse APEX (∼27

kDa) [Addgene number 49386; (Lam et al., 2015)] downstream to GmCSN5 (∼40 kDa). The chimeric gene is expressed under a ubiquitin promoter (PromGmUbi3;

Hernandez-Garcia et al., 2010) and the nopaline synthase terminator (TerNos). (B) M. incognita-infected tobacco root extract of the line 11.11 was purified by

StrepTrap chromatography with tagged APEX-GmCSN5 as bait. The protein samples for each purification step include the soluble fractions (S), flow-through (FT),

washes (W3, W6), and eluates (E1, E2, E3) (top panel). Immunodetection of the Strep-tag II confirmed the presence of APEX-GmCSN5 in the soluble and elution

fractions (∼80 kDa) (bottom panel). (C) Snapshot of GmCSN5-interacting proteins identified by AP-MS and classified according to their biological processes (yellow

panels). The scheme of the APEX-GmCSN5 interactome illustrates tobacco plant proteins in gray and nematode proteins in red. Conserved eukaryotic proteins

known for their interaction with CSN5 in yeast and/or animal models are indicated by the outer pink circle. M. incognita proteins (named Minc) predicted to carry a

putative secretory peptide are represented by a green circle labeled “SP.” AP-MS data was collected from three biological experiments.

biological processes to those found for the co-purified tobacco
proteins. Two nematode proteins (Minc05098 and Minc15342)
involved in RNA processing are classified as U2 small nuclear
ribonucleoprotein splicing factors (U2snRNPs). These nematode
proteins show similarities with the previously mentioned tobacco
CC1/RBM39 protein. One harbors a zinc finger RING-type
domain (Minc03797) and could be a new type of RING
E3 ligase. We also identified an actin protein (Minc06773),
another conserved protein related to the trafficking pathway.
Four other nematode proteins have not yet been described
but show similarities to the following: cytochrome c/b562
protein (Minc06717), C. elegans nas-5 protein (Minc05910), and
C. elegans Ly-6-relatedHOT-3 (Minc15973). The last, Minc19205
(named M. incognita PASSE-MURAILLE, MiPM), is a unique
protein inM. incognita without clear similarities to other known

proteins, for which gene expression has already been reported
during parasitism (Nguyen et al., 2017).

Altogether, the identification of the entire CSN complex and
other known partners from the ubiquitin/proteasome system
highlights the reliability of our methodology. The identification
of new potential interacting proteins, sometimes in agreement
with the predicted CSN5 functions, might contribute to a
better understanding of the role of this hub in plant-pathogen
interactions. Accordingly, our assay does not exclude that some
candidate proteins interact with APEX.

MiPM Is Expressed Early During Nematode
Parasitism
One of the important typical characteristics of nematode effector
proteins is the presence of a N-terminal secretory peptide
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(SP) (Danchin et al., 2013; Nguyen et al., 2017). Only MiPM
was predicted with high likelihood to contain a secretory
peptide (cut-off 0.9). The occurrence of the MiPM gene in
the M. incognita genome was verified by PCR amplification,
and the flanking regions were sequenced. We next investigated
whether MiPM is expressed during nematode parasitism. The
transcriptional expression of MiPM was assessed in different
developmental stages of M. incognita by using quantitative RT-
PCR. Compared to the egg stage, MiPM is transcriptionally
highly up-regulated at early time points during the nematode
infection. The expression of MiPM was significantly higher in
parasitic J2s (3 dai) and, then there was a gradual decreasing
in J3/J4 (15 dai) and in female stages (25 dai) (Figure 2). This
result suggests that MiPM acts during early events in nematode
infection, since infective nematodes penetrate andmigrate within
host root tips.

We next examined whether MiPM plays a possible role in
plant immunity by activating or suppressing the hypersensitive
reaction (HR) (Figure S4). In N. benthamiana leaves infiltrated
with A. tumefaciens expressing MiPM without its secretory
peptide (MiPM−SP), we did not observe HR at any time, in
contrast to those infiltrated with the oomycete HR-elicitor INF1
(used as a positive control) (Bos et al., 2006). In addition, the
ability of MiPM−SP to suppress INF1-triggered cell death was
not observed in N. benthamiana leaves under our experimental

FIGURE 2 | MiPM expression is highly up-regulated during the parasitic J2

stage of M. incognita. The MiPM expression level was evaluated by

quantitative RT-PCR at different stages of development of M. incognita, i.e.,

eggs, pre-infective second juveniles (pre-J2), parasitic second juveniles

(par-J2; 3 dai), third- and fourth-stage juveniles (J3/J4; 15 dai) and females (25

dai). Fold change values were calculated by the 2−(−11Ct) method, and the

data were normalized according to the geometric average of two reference

genes (MiActin and Mi18S) and relative to the expression in eggs (Livak and

Schmittgen, 2001; Arguel et al., 2012). Each column represents the mean and

standard deviation of four independent biological experiments.

conditions. Taken together, these results underline that the
function of MiPM in plant immunity remains inconclusive.

GmCSN5 Interacts With the Nematode
MiPM Protein
We next verified the interaction between GmCSN5 and
MiPM. We first performed a GST pull-down assay using the
recombinant protein GST-MiPM−SP or GST alone (as negative
control) with the whole lysate of M. incognita-infected root
extracts overexpressing APEX-GmCSN5. The production and
purification of the recombinant proteins are presented in the
Figure S5. Eluted proteins associated with GST-MiPM−SP or
GST were separated and visualized by silver-stained SDS-PAGE
(top panel; Figure 3A). GST-MiPM−SP-bound resin, but not the
GST control, provided enrichment in APEX-GmCSN5 detected
by western blot with the strep-tag II antibody (bottom panel;
Figure 3A). These data suggest that MiPM is associated with
APEX-GmCSN5 protein complexes.

To further identify host proteins that interact with MiPM,
we subjected proteins co-purified with GST-MiPM−SP to
NanoUPLC-MSe analysis from two independent biological
repetitions (Figure 3B; Table S2). Six proteins were previously
found by AP-MS and are mainly known as partners of CSN5:
three molecular chaperones (HSP70-18, HSC70-1, HSC70-4),
a ubiquitin protein (UBQ1), a splicing factor (CC1/RBM39),
and the CSN subunit (CSN5). We identified 23 host proteins,
but none from M. incognita. Identified proteins are classified
according to 10 biological processes including protein folding
(∼22%), RNA processing (∼13%), and ubiquitination (∼4%).
Furthermore, we identified one protein ortholog of Arabidopsis
papain-like cysteine proteases (PLCPs), which is named
RD21B protein and is considered a hub protein in plant-
pathogen interactions (Misas-Villamil et al., 2016). Altogether,
these observations are consistent with the previous AP-MS
experiments and support the hypothesis that MiPM−SP can
interact with APEX-GmCSN5.

While AP and GST pull-down experiments have shown
that MiPM interacts with APEX-GmCSN5, our results do not
rule out that MiPM specifically binds to GmCSN5 rather
than APEX. Thus, we further tested the interaction GmCSN5
(devoid of APEX)—MiPM−SP in planta by using bimolecular
fluorescence complementation (BiFC). The coding sequences of
MiPM−SP and the full-length GmCSN5 were fused N-terminally
to the coding sequences of the non-fluorescent halves of yellow
fluorescent protein (YFP) and co-bombarded in N. benthamiana
leaves. The Arabidopsis transcription factor bZIP63, known to
homodimerize in the nucleus, was used as a positive control
(Walter et al., 2004). As expected, bZIP63 co-expression led
to the detection of YFP fluorescence co-localized with the
DAPI nuclear marker. Similar to the positive control, the co-
localization of YFP and DAPI indicates the interaction of
GmCSN5 with MiPM in the nucleus (Figure 3C). By contrast,
co-expression of any those constructs with the empty YN or
YC constructs did not reconstitute the YFP fluorescence (Figure
S6). We next investigated whether MiPM−SP occurs in other
subcellular compartments. Two constructs were generated by
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FIGURE 3 | MiPM and GmCSN5 interact together in the nucleus and share common protein partners. (A) Pull-down assay of soluble proteins from M.

incognita-infected tobacco roots of the line 11.11 with the recombinant proteins GST-MiPM−SP and GST (as negative control). The soluble fraction (S), flow-through

(FT), washes (W), and eluates (E1) were separated by SDS-PAGE (top panel) and analyzed by silver staining. GST- MiPM−SP and GST migrate around 38 and 28 kDa,

respectively. APEX-GmCSN5 detection (∼80 kDa) was performed by western blot using anti-Strep-tag II antibody (bottom panel). (B) Snapshot of MiPM−SP

interacting proteins identified by GST pull-down assay followed by MS. The identified proteins were classified and labeled as mentioned in Figure 1C. Proteins

identified in association with either APEX-GmCSN5 or MiPM−SP are indicated in black. MS data was collected from two independent biological experiments. (C) The

protein interaction of MiPM−SP with GmCSN5 (devoid of APEX) was confirmed by in planta BiFC assays. At 24–48 h after co-bombardment with the combination

YN-GmCSN5/MiPM−SP-YC and YN-MiPM−SP/GmCSN5-YC, the reconstituted YFP fluorescence signal is observed in the bombarded N. benthamiana leaf

epidermal cells. The co-localisation of YFP and DAPI fluorescence indicates that MiPM−SP interacts with GmCSN5 in the nuclei. BZIP63 is the positive control, as its

dimerization occurs in the nucleus. (D) Ectopically expressed MiPM−SP-GFP co-localizes to the cell nucleus with the DAPI stain in N. benthamiana leaves. All images

were taken 24–48 h after bombardment across two independent biological experiments. BL, bright light; OL, overlay.

fusion MiPM−SP to the N- or C-terminal part of the full-length
GFP. We observed MiPM−SP-GFP mostly in the nuclei and
did not observe any signals for the construct GFP-MiPM−SP

(Figure 3D; Figure S7). In sum, the GST pull-down assay also
reveals the interaction of APEX-GmCSN5 as shown by AP-
MS, and the BiFC analysis shows that MiPM−SP interacts with
GmCSN5 in the nucleus.

Functional Characterization of MiPM as
Potential Cell-Penetrating Protein
To provide putative mechanistic details, we then performed an
in silico analysis of MiPM (Figure 4). As previously indicated,
a secretory peptide comprising a transmembrane domain was
predicted in the amino acid region 1–26 (cut-off 0.9). The
protein is acidic (pI 5.03) and small, with a molecular weight
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FIGURE 4 | In silico analysis suggests that MiPM is mostly a folded protein with a putative CPP/PTD in its N-terminal tail. In the scheme, arrows and cylinders depict

the putative secondary structures, ß-sheets and α-helices respectively. The square-motif cylinder represents the predicted transmembrane helix containing the

secretory peptide (SP). The chisel-shaped section is the predicted SP cleavage site. In the text box, the location of the predicted SP and CPP is indicated by “+.”

Aspartate (E) and glutamate (D) are indicated by a red star and arginine (R), lysine (K) and histidine (H) by blue stars. “D” indicates the prediction of a disordered region,

while secondary structures are labeled “H” for helices and “E” for beta strands.

of 10 kDa without the predicted secretory peptide. By using 17
prediction models, the consensus secondary structure prediction
reported a robust model in which ∼72% of the sequence
might be folded into alpha helix structures. Thus, MiPM is
predicted to be a stable protein. The region 27–39, located
downstream of the secretory peptide, drew particular attention.
We hypothesized that this region presents properties similar
to CPP/PTDs. This region is supercharged and an intrinsic
disorder is predicted. Given this configuration, the residues
might be solvent-exposed. Moreover, the prediction of the
secretory peptide suggests that MiPM might be released in the
apoplast of the plant root at the J2 parasitic stage during the
intercellular migration. Notably, the pH of the extracellular
space is usually estimated to be ∼5–6 in plants (Geilfus, 2017).
Histidine (H), with a pKa of ∼6.5, tends to be protonated in
the extracellular space. Given these conditions, we thus supposed
that dual histidine (H) and arginine (R) (pKa ∼12.4) residues
generate high positive charges in this region. Finally, the N-
terminal tail “GSRRHHRVQADDD” was predicted as a putative
transduction domain in MiPM (confidence 0.730). Altogether,
our in silico analysis suggests that MiPM is a unique putative
secreted protein, probably well folded and containing a putative
CPP/PTD region.

To assess our hypothesis, we investigated by fluorescence
microscopy whether MiPM could translocate across the plasma
membrane in plant cells. The cellular uptake assay is widely
used for characterizing protein translocation in animals (Kale
et al., 2010; Cronican et al., 2011; Boddey et al., 2016) and plants
(Chang et al., 2007; Dou et al., 2008; Kale et al., 2010; Plett
et al., 2011; Eggenberger et al., 2016). However, the methodology
of the protein uptake assay is currently under debate (Tyler
et al., 2013; Wawra et al., 2013; Petre and Kamoun, 2014).
Considering this controversy, we wished to take additional
precautions to avoid spurious interpretations. Indeed, the use
of tandem repeat histidines, like 6xHis-tag, has been found
to slightly promote cell entry in human cells (Liu and Gao,
2013). We previously reported the production of 6xHis-GST-
MiPM−SP (Figure S5). A HRV-3C proteolytic cleavage site

was inserted between 6xHis-GST and MiPM−SP to cause the
separation of the two proteins. Thus, the MiPM−SP used in
our bioassays is His-tag free. Subsequently, the recombinant
protein was isolated by gel filtration (Figure S8). To investigate
the translocation mechanism of MiPM, we labeled the purified
MiPM−SP at its N-terminal with Alexa488 fluorescent probe
(named ∗MiPM−SP). The protein was freshly purified, and its
integrity after the purification process was verified by SDS-
PAGE followed by fluorescence imaging (Figure S9). While no
significant fluorescent signal was detected with the neutralized
Alexa488 probe alone or with 6xHis-eGFP, a strong intracellular
accumulation of ∗MiPM−SP was visible in the root cells
(Figure 5A). Notably, a fluorescent signal becomes clear when
the contrast and lightness of the picture is increased and
shows slight translocation of 6xHis-eGFP. Probably due to the
absorption function of hairy root cells, we also detected a
strong Alexa488 probe signal in the hairy root cells (data not
shown). ∗MiPM−SP co-localized with DAPI, indicating that the
protein accumulates in the nuclei (Figure 5B). In greater detail,
∗MiPM−SP could be observed in a network spanning the cell
and in vesicle-like bodies inside the cell (Figure 5C). Overall,
this experiment demonstrates that ∗MiPM−SP translocates
into plant root tip cells and localizes in different subcellular
compartments.

We next examined whether the N-terminal tail of MiPM (i.e.,
“GSRRHHRVQADDD,” named NTT-MiPM) can autonomously
trigger cell uptake. The synthetized peptide was conjugated
with 5-FAM fluorescent marker at the N-terminal (annotated
∗NTT-MiPM). Arabidopsis root tips were incubated with the
peptide (1µM) or with the 5-FAM probe alone (Figure 6).
The peptide ∗NTT-MiPM, but not the probe alone, resulted
in the detection of a fluorescent signal in the root cells
(Figures 6A,B). However, no co-localization into the nuclei was
detected between ∗NTT-MiPM and the DAPI stain (Figure 6C).
Rather, it appears that the peptide accumulates in vesicle-
bodies or in the vacuole. It is often reported that CPP/PTDs
trigger the endocytosis pathway to translocate across the plasma
membrane (Madani et al., 2011). Therefore, we postulated that
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FIGURE 5 | MiPM−SP is internalized in Arabidopsis root cells. The purified

recombinant protein MiPM−SP was labeled with Alexa488 (*MiPM−SP ) (Figure

S9). Root tips of Arabidopsis seedlings were incubated with 10µM (0.1

mg/ml) of *MiPM−SP, 6xHis-eGFP or inactivated Alexa488 probe alone (as a

negative control) for approximately 6 h in the dark before observation by

confocal microscopy. (A) A general overview of the Arabidopsis root tips

reveals the accumulation of the green fluorescence of *MiPM−SP within plant

cells. (B) *MiPM−SP co-localizes with DAPI inside the nucleus. (C) *MiPM−SP

fluorescence shows numerous punctate spots and extended spans within the

root cell. BL, bright light; OL, overlay; λ488–520, spectral range for eGFP and

Alexa488 detection in nanometers. Bars, 100µm.

the punctate pattern might correspond to vesicle-like bodies.
To assess this hypothesis, Arabidopsis seedling roots were co-
incubated with ∗NTT-MiPM and the fluorescent endocytosis
marker FM4-64 (Figure 6D). Notably, FM4-64 penetrates the cell
within minutes and can provoke high background fluorescent
signals. To improve the simultaneous detection of FM4-64 and
the peptide in a short time scale, we increased the peptide

concentration to 50µM. Root tips were incubated for 30min
with FM4-64 and the peptide before a brief washing step.
The resulting punctate fluorescence signals formed clusters
and partially co-localized with the labeled endovesicles, which
were marked by both FM4-64 and the fluorescent peptide.
Altogether, these results indicate that NTT-MiPM can translocate
across the plasma cell membrane of the root tip cells. We also
show that the peptide stimulates an unidentified endocytosis
pathway.

DISCUSSION

Isolation and Identification of Nematode
Proteins Interacting Within GmCSN5
Protein Complexes
Tremendous efforts in “omic” technologies have identified
a variety of nematode effectors. The next challenge is to
understand how they act together to modulate the host
interactome for the benefit of the pathogen. GmCSN5 was an
interest for characterizing the interacting pathogen components
fromM. incognita via biochemical and proteomic approaches. In
this study, we originally expected AP-MS to be a complementary
approach to APEX system. Owing to a lack of conclusive data,
the AP-MS approach was finally adopted as an alternative.
Herein, we have successfully identified GmCSN5 protein
partners under near physiological conditions and in nematode
infection. The identification of the complete CSN complex
with additional known partners supports the robustness
of the AP-MS methodology. Overall, we experimentally
identified 34 proteins, including nine M. incognita proteins.
The capture of N. tabacum proteins with the soybean GmCSN5
supports the fact that these interactions are evolutionarily
conserved (Bennett et al., 2010; Lozano-Duran et al., 2011;
Barth et al., 2016). Notably, the discovery of nematode
proteins associated with these complexes in a heterologous
context allowed the illumination of some common signaling
pathways targeted by the nematode in a variety of wild
hosts. Unexpectedly, few proteins were identified in our
AP-MS approach, which is particularly surprising given
that CSN5 is a hub protein. For comparison, a previous
study reported the identification by AP-MS of 640 proteins
interacting with CSN5 in human cells (Bennett et al., 2010).
Considering the biological system employed, the accurate
protein complex retrieval is particularly sensitive (Dedecker
et al., 2015). In our study, transgenic plants grew directly in
the soil, thus even after cleaning; some traces of soil might
interfere with the stability of protein complexes during protein
extraction. Overall, we gained a broader view of the potential
pathogen components that target GmCSN5 under microbial
infection.

MiPM Is a Pioneer Protein Expressed
During Nematode Infection
MiPM is a pioneer gene encoding a protein without similarities
to known proteins and containing no detectable functional
domains. Nevertheless, it shares at least one common trait with
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FIGURE 6 | NTT-MiPM has cell-penetrating properties in Arabidopsis root cells. The root tips of Arabidopsis seedlings were incubated with 1µM of synthetized

NTT-MiPM conjugated with 5-FAM (*NTT-MiPM) for ∼4 h in the dark before observation by confocal microscopy. (A) A general overview of the Arabidopsis root tips

shows the accumulation of green fluorescence corresponding to *NTT-MiPM within plant cells. (B) *NTT-MiPM localizes in vesicle-like bodies but not in the nucleus.

(C) *NTT-MiPM does not co-localize in the nucleus with DAPI. The root tips of Arabidopsis seedlings were incubated with the DAPI stain 1 h before adding *NTT-MiPM

(50µM) for ∼30min in the dark and then observed by fluorescence imaging. (D) Co-localization of the membrane marker FM4-64 indicates that *NTT-MiPM uses an

endocytic pathway to penetrate the host cell. BL, bright light; OL, overlay; λ488–520, spectral range for eGFP and Alexa488 detection in nanometers. Bars, 100µm

(A–C) and 30µm (D).

many of the potential secreted proteins in M. incognita (Huang
et al., 2003; Danchin et al., 2013; Nguyen et al., 2017). Previous
studies suggest thatM. incognita pioneer genes encoding effectors
act as potential host specificity determinants (Jaouannet et al.,
2012; Rutter et al., 2014; Xie et al., 2016; Nguyen et al.,
2017). Herein, transcriptional expression analysis reveals that
MiPM is highly expressed at the parasitic J2 stage, when the
nematode secretes massive amounts of effectors and promotes

the formation of the giant cells (Sijmons et al., 1994; Hewezi,
2015; Rehman et al., 2016). Our data indicates that the putative
secreted MiPM protein acts during nematode infection but
without triggering HR. Moreover, our experimental assay did
not integrate all of components and complexity of an infectious
context. The methodology here implied MiPM−SP transiently
expressed in the cells of N. benthamiana independently of an
infectious context. The deciphering of the Burkholderia-human
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protein interaction network has revealed that multiple pathogen
proteins can target the same host protein (Memišević et al.,
2015). Similar features have been reported for virulence effectors
in various Arabidopsis-pathogen interactomes (Mukhtar et al.,
2011; Weßling et al., 2014). MiPM could likewise function in
complex with otherMinc proteins to effectively interfere with HR
or others pathways in plant immunity. Remarkably, MiPM−SP

pulled-down with a putative secreted PLCP called NtRD21B.
PLCPs induce defense responses and cell death and are also
commonly targeted by pathogen effectors from fungi (Shindo
et al., 2012; Lampl et al., 2013), oomycetes (Kaschani et al., 2010;
Bozkurt et al., 2011), and phytonematodes (Lozano-Torres et al.,
2012, 2014; for reviewMisas-Villamil et al., 2016). The MiPM−SP

role as potent activator of plant immunity in the apoplast
might be investigated. Some deeper molecular explorations on
the interaction of MiPM and plant immunity are necessary to
decipher the function of MiPM in parasitism.

MiPM Might Enter the Plant Cell via
Endocytosis
MiPM has cell-penetrating properties, as demonstrated by
protein uptake experiments in non-infected Arabidopsis roots.
Our comprehensive in silico and microscopic analyses show that
the portion sequence NTT-MiPM is a CPP/PTD. Nevertheless,
these data do not exclude the possibility that the core
protein could be implicated in the translocation process. At
first sight, the N-terminal region appears to be a tail-like
unstructured amino acid chain containing a basic and an
acidic region separated by hydrophobic and polar residues. Of
note, these features can also be found, for instance, in RxLR
oomycete effectors (Whisson et al., 2007). Assuming that the
histidine (H) residues of this region are protonated once in
the apoplast, the sequence “RRHHR” shares similarities with
some cationic CPP/PTDs. In the HIV transactivator protein
(Tat), the unfolded transduction domain “GRKKRRQRRRQ”
was one of the first CPP/PTDs described (Vivès et al., 1997).
The NTT of the capsid protein from the phytovirus Brome
Mosaic Virus (BMV) “RAQRRAAARR” is likewise an arginine-
rich (R) motif capable of cell entry in barley protoplasts (Qi
et al., 2011). NTT-MiPM is shorter, but the surrounding amino
acids should be integrated into the model. Indeed, rational
design and molecular evolution experiments on CPP/PTD have
highlighted some strategic positions of polar and hydrophobic
residues in a peptide or small protein. In this configuration,
CPP/PTD peptides that contain 2–6 arginine residues can be
taken up more efficiently than HIV-Tat (Nishimura et al.,
2008; Smith et al., 2008; Marks et al., 2011; Milletti, 2012;
Gautam et al., 2013). In plant antifungal defensins, the motif
“RGFRRR” located in a surface exposed loop of the core
protein is required for fungal cell entry (Sagaram et al.,
2013). The hydrophobic and polar residues “VQA” of NTT-
MiPM located between the basic and acidic motif might
determine themechanism of translocation across the host plasma
membrane.

Our microscopic analyses indicate that ∗MiPM−SP can
trigger the endocytosis pathway, which raises the intriguing

question of how MiPM translocates across the plant plasma
membrane. One hypothesis is that MiPM enters the host cells
using a receptor-mediated endocytosis. Pathogens can exploit
the function of host receptors on the plasma membrane and
thereby the endocytosis process to allow cell entry (Ewers and
Helenius, 2011; Grove and Marsh, 2011; Cossart and Helenius,
2014). For example, HIV-Tat induces a specific endocytosis
pathway called macropinocytosis at the plasma membrane,
mediated by an interaction with the specific chemokine receptor
CXCR4 (Tanaka et al., 2012). In barley protoplasts, the use
of macropinocytosis inhibitors has demonstrated the existence
of a similar uptake mechanism acting on the CPP/PTD from
the phytovirus BMV capsid protein (Qi et al., 2011). Some
specific immune receptors can be targeted. The bacterial effector
flagellin interacts with the membrane receptor FLS2 after its
endocytosis (Robatzek et al., 2006; Nathalie Leborgne-Castel
and Bouhidel, 2014; Hohmann et al., 2017). Other plant
cellular pathways could be investigated. Interestingly RD21B
localizes in different subcellular compartments such as the
apoplast, endoplasmic reticulum (ER), trans-Golgi network
(TGN)-derived endosomes and vacuoles (Hayashi et al., 2001;
Yamada et al., 2001; Bozkurt et al., 2011; Gu et al., 2012;
Lampl et al., 2013; Rustgi et al., 2017). Although it is not
clear whether RD21B can re-enter the cell by endocytosis,
RD21B appears to use the endocytosis pathway to traffic in and
out of the cell. It is tempting to speculate that MiPM could
interact a protein like RD21B to borrow an endocytosis pathway.
Moreover, the specific lipid and proteoglycan composition of
the plasma membrane, termed its ZIP code (also known as
phospholipid code) contributes to cell identity and signaling
(Walley et al., 2013; Baxter et al., 2015). For instance, the
specific binding of phosphatidylinositol-3-phosphate [PI(3)P] is
necessary for the cell entry of certain RxLR oomycete effectors
(Whisson et al., 2007; Kale et al., 2010; Sun et al., 2013).
We observed the accumulation of NTT-MiPM on the plasma
membrane. Some CPP/PTDs bind and cluster specifically with
phospholipids or proteoglycans of the cell membrane to induce
endocytosis (Belting, 2003; Fischer et al., 2005). Thus the binding
of phospholipids or other membrane components cannot be
excluded.

The membrane status responds to developmental and
environmental variations. For instance, the distribution of some
phospholipids is heterologous and clearly delineated within the
Arabidopsis shoot apical meristem (Stanislas et al., 2018). In
another example, the plant membrane lipid composition varies
in contact with pathogens and contributes the activation of plant
immunity (Zoeller et al., 2012; Walley et al., 2013). The cell
identity and the physiological context matters and might tune
cellular entry of molecules through changes in phospholipid
composition and content. As previously mentioned, some
CPP/PTDs can interact specifically with a variety of lipids. In
addition, the infectious context activates oxidoreductases on
the plasma membrane at early time points in infection. A
local production of reactive oxygen species leads to specific
lipid oxidation (Zoeller et al., 2012). Hence, the cell entry
of certain CPP/PTDs is enhanced with an elevated level of
oxidized lipids (Wang and Pellois, 2016; Wang et al., 2016).
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At another potential regulatory layer, the pH of the root
apoplast varies with circadian rythms and greatly depends
on the tissue and on environmental conditions such as
abiotic and biotic stresses (Geilfus, 2017). Biochemical models
suggest that slight environmental alkalinization induces lipid
deprotonation and enhances HIV-Tat interaction (Herce et al.,
2014). In this study, we incubated the recombinant fluorescently
labeled ∗MiPM−SP with Arabidopsis root tips free of pathogen
infection. Considering the parameters previously mentioned,
the efficiency of the cell entry of secreted CPP/PTDs, such
as MiPM, might vary with the physiological state of the
plant.

MiPM Escapes the Endosomal Trap
After cell entry, another concern for pathogenic secreted proteins
is the endosomal trap. In animals, early endosomes can turn
within minutes into late endosomes and then lysosomes (Huotari
and Helenius, 2011). In this later situation, the cargo can undergo
degradation by the proteasome. In plants, vesicles from the trans-
Golgi network act as an early endosome, and the endocytic cargo
is delivered to the vacuole or the proteasome (Paez Valencia
et al., 2016). It is remarkable to detect MiPM−SP in vesicles-
like structures as well as in the nucleus, which highlights some
ability of the protein to escape the endocytosis pathway. It is not
clear whether NTT-MiPM shares this particular characteristic,
since the peptide seems to accumulate in vesicle-like structures
or in the vacuole. Mechanistically, endosomal escape could
be initiated by the protein itself or by the recruitment of
host protein partners (Grove and Marsh, 2011; Bissig and
Gruenberg, 2013). In the first option, the molecular mechanism
has been described in viral proteins that contain a pH-dependent
membrane active peptide (Erazo-Oliveras et al., 2012; Lönn
et al., 2016; Akishiba et al., 2017). Other potential mechanisms
might involve a change in the membrane lipid composition
during endosome maturation to activate the endosolysosomal
properties of the protein (Appelbaum et al., 2012). Alternatively,
host proteins can mediate the protein sorting from endosomes
(Byk et al., 2016; Heucken and Ivanov, 2017). The ubiquitin-
proteasome system is an active regulator of endosome protein
sorting (Clague et al., 2012) and some human viruses use it
to reach the host cytoplasm (Liu et al., 2013; Su et al., 2013;
Banerjee et al., 2014; Byk et al., 2016; Rudnicka and Yamauchi,
2016). We previously mentioned that GmCSN5 interacts with
MiPM in the nucleus, as shown by BiFC. Whereas CSN5 occurs
predominantly in the CSN complex in the nucleus, other CSN5
subcomplexes exist in the cytoplasm, whose roles and protein
partners remain poorly defined (Gusmaroli et al., 2004; Wei
et al., 2008; Schwechheimer and Isono, 2010; Pick and Bramasole,
2014). A previous study has demonstrated that HsCSN5 is
involved in vesicle trafficking (Liu et al., 2009). The AP-MS
interactome of HsCSN5 has identified a conserved eukaryotic
vesicle trafficking protein closely related to the sorting nexin,
dynein, myosin, or clathrin family (Bennett et al., 2010). In
addition, the conserved JAMM/MPN domain of AMSH, an
endosome-associated ubiquitin peptidase, is determinant for the
vesicle sorting of many proteins in plants (Isono et al., 2010) and
in animals (McCullough et al., 2004). In the biological context of

our BiFC, MiPM did not traffic through the endocytic pathway,
and both proteins are produced within the cell, increasing
their chance of interaction in the nucleus. The possibility
that CSN5 regulates the endosomal sorting of MiPM can be
considered.

CONCLUSION

In our biochemical approach, some previously characterized
CSN5 interaction proteins are described such as the CSN
complex, CC1/RBM39 and APC2. We also identified the
novel nematode-secreted protein MiPM. In this study, we
focused on the MiPM−SP-GmCSN5 interaction. Our data
from affinity-based systems have identified differences,
but interestingly, a number of isolated proteins in the
two interactomes overlap (near 11%). Mechanistically, our
knowledge about these interactions and their biological
significance is fragmentary. The generation of transgenic
Arabidopsis plants expressing MiPM would be essential for
understanding its role in parasitism. The characterization
of MiPM secretion during parasitism is determinant as
well. Moreover, it is of considerable interest to fill the gaps
in our understanding of the mechanism of translocation
involving MiPM protein. Remarkably, preliminary biophysical
analyses showed that MiPM is a stable protein at various pH
values (data not shown) and can support some biochemical
modifications, such as the conjugation of a fluorescent probe.
Some proteomic approaches conjugated with proximity
labeling, such as click chemistry, have proven to be useful and
efficient for identifying proteins implicated in a specific
endocytosis pathway (Tanaka et al., 2012; McFedries
et al., 2013). Thus, the future identification of MiPM
interaction proteins during cell entry by such approaches
might contribute to a better understanding of its mode of
action.
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