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Abstract: Seeds are organs specialised in accumulating proteins, and they may provide a potential economically viable platform for the 
large-scale production and storage of many molecules for pharmaceutical and other productive sectors. Soybean [Glycine max (L.) 
Merrill] has a high seed protein content and represents an excellent source of abundant and cheap biomass. Under greenhouse conditions 
and a daily photoperiod of 23 h of light, the soybean plant’s vegetative growth can be significantly extended by inducing more than a ten-
fold increase in seed production when compared with plants cultivated under field conditions. Some factors involved in the production of 
different recombinant proteins in soybean seeds are discussed in this review. These include transgenic system, regulatory sequences and 
the use of Mass Spectrometry as a new tool for molecular characterisation of seed produced recombinant proteins. The important intrinsic 
characteristics and possibility of genetically engineering soybean seeds, using current advances in recombinant DNA technology includ-
ing metabolic engineering and synthetic biology, should form the foundation for large-scale and more precise genome modification, mak-
ing this crop an important candidate as bioreactor for production of recombinant molecules.  
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INTRODUCTION 
 Grain legumes, such as peanut, bean, soybean, lentil, pea and 
cowpea represent a significant contribution to human dietary re-
quirements and, along with cereals, compose a foundation source of 
protein and carbohydrates to fulfill large-scale food demands 
worldwide [1]. Among the legume seeds, soybean occupies an im-
portant position in the food/feed industry due to its high protein 
(and oil) content and its use as one of the most important oilseed 
crops [2]. The nutritional content of soybean grain is composed of 
approximately 40% protein and 20% oil. Soybean grain also con-
tains functional secondary metabolites that are of medical and in-
dustrial importance, such as isoflavones, lecithins, tocopherols and 
saponines [3, 4]. These characteristics are intensely exploited by 
seed processing companies, resulting in the extensive worldwide 
acreage that is devoted to soybean cultivation.  
 The United States, Brazil and Argentina are responsible for 
80% of the global production of soybean, which reached approxi-
mately 255,000 tonnes in 2011. Soybean production has almost 
doubled since 1990, mostly due to expansion of the area planted 
with soybean and the introduction of different advanced technolo-
gies, such as genomics and genetic engineering (transgenic plants), 
for soybean production [5]. Indeed, soybean has exhibited a consis-
tent increase in total yield; the maximum yields in the United States 
increased from 740 kg ha-1 to 2986 kg ha-1 in just eight decades of 
cultivation [6]. The economic importance of soybeans in industrial-
ised countries has led this crop to become a primary target for re-
combinant DNA technology. As a result genetic engineering of 
soybean is very well advanced [7, 8]. The herbicide-tolerant 
Roundup Ready soybean-derived cultivars are the most striking 
example of the success of this technology. It is estimated that 93% 
of U.S. soybean cultivation is devoted to genetically engineered 
soybeans with herbicide tolerance/insect resistance traits [6]. 
 In 2010, the commercial cultivation of the transgenic soybean 
CultivanceTM was approved in Brazil. This herbicide-tolerant culti-
var was developed through a partnership between the leading 
chemical company BASF and the Empresa Brasileira de Pesquisa  
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Agropecuária (EMBRAPA). CultivanceTM can tolerate commercial 
doses of the imidazolinone-class herbicide Imazapyr (ArsenalTM),
reaches agronomical yield requirements and meets the biosafety 
standards for environmental, agricultural and food/feed safety [1, 9-
11]. The increasing capacity to genetically engineer soybean 
through recombinant DNA technology and an increased demand for 
production of biopharmaceutical molecules, have led to our evalua-
tion of soybean seeds as potential bioreactors to produce recombi-
nant proteins of therapeutic and industrial interest. Recent estimates 
indicated that the recombinant protein market reached US$ 100 
billion in annual sales in 2010, with a projected increase of 8% per 
year for the next decade [4]. 
 The final production costs of recombinant proteins may be con-
sidered as one of the key factors in the proof of concept with regard 
to development of an economically viable plant-based production 
platform. In addition, aspects such as expression system, yields, 
purification and scale up capacities are also important when choos-
ing a suitable host as bioreactor for recombinant protein production 
[12-14]. 

SOYBEANS AS REACTORS OF RECOMBINANT PRO-
TEINS 
 Soybeans seeds have a high endogenous protein content and 
produce abundant and cheap biomass, which makes them a promis-
ing bioreactor system for the production of large amounts of re-
combinant proteins at a reduced cost [15]. Soybean seeds also pro-
vide a biochemical environment that is optimised for the long-term 
storage of these molecules [16-20]. Moreover, the stable accumula-
tion of recombinant proteins within soybean seeds may be maxi-
mised by localising the nascent polypeptides in various subcellular 
organelles of the seed, such as the vacuoles [7]. 
 Other important advantages in the use of soybeans for recombi-
nant protein production include easy scalability; a high protein 
quality, which includes most of the post-translational modifications 
required for biological activity; a reduced risk of pathogen con-
tamination; the development of marketable formulations that re-
quire no further protein purification; the well-established practices 
of cultivation and harvest; and known processing and manufactur-
ing protocols [4, 21, 22]. 
 Soybeans are a particularly interesting host for the production 
of recombinant protein synthesis because of their scale-up potential. 
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Transgenic soybeans provide a unique production facility because 
the seed yield can be considerably maximised under greenhouse 
containment through photoperiod manipulation. Thus, this large-
scale production of massive seed biomass may not only reduce the 
final production costs of a given therapeutic protein but also pro-
vide a large amount of material that is only limited by the green-
house area that is available for planting [6, 7, 19, 20, 23].  
 Recombinant DNA technology can also be used to manipulate 
soybean pathways, through metabolic engineering and synthetic 
biology, for the biosynthesis and manufacture of valuable mole-
cules [24]. By the redirection and modulation of flux through one or 
more metabolic pathways, an increased concentration of an en-
dogenous soybean compound or the production of a novel product 
can be achieved, resulting in the accumulation of different types of 
compounds, such as proteins, oils, pigments and antibiotics [25, 
26]. This technology, therefore, has the potential to have a major 
impact on the phenotypic improvement of crops that are used as 
renewable feedstocks for the production of biofuels, such as soy-
beans. 
 Crops with high endogenous protein content have become in-
teresting potential candidates for molecular farming. Therefore, 
soybeans, which naturally accumulate proteins and have a higher 
endogenous protein content than most other cultivated seed crops 
are a promising host system for the expression and production of 
recombinant proteins. The protein content of soybean can reach up 
to 40% of dry seed weight, whereas maize and rice, wheat, barley 
and canola reach protein content levels of 8-10%, 12%, 13% and 
22%, respectively [7, 27]. An additional advantage of soybean 
plants arises from the intrinsic protein/biomass ratio among the 
crops under evaluation for the production of recombinant proteins. 
Significantly high quantities of soybean biomass, including leaves 
and seeds, can be generated in less than 4 months at lower costs 
than any other grain legume, such as pea, bean or peanut. It is esti-
mated that the total protein yield per acre that can be obtained for 
soybean is double the amount for maize or rice [4, 21], which 
makes soybean an economically attractive bioreactor.  
 One important factor that is responsible for the reduction of 
soybean production costs is the absence of nitrogen fertilisation in 
the proper cultivation of the crop. Soybean roots can capture at-
mospheric nitrogen that is fixed by symbiotic soil bacteria of the 
genera Rhizobium and Bradyrhizobium and use it in the biosynthe-
sis of aminated molecules, such as plant proteins and nucleic acid 
bases [6]. Through a simple regimen of soil fertilisation and an 
increase in daylight, the metabolic flux of input energy can be redi-
rected to expand the biomass yield of soybean leaves and seeds. 
Under containment conditions, soybean grain yields can be consid-
erably maximised by delaying their flowering through a prolonged 
photoperiod. A tenfold increase in seed production (approximately 
1,000 seeds per plant) can be achieved by simply using a daily pho-
toperiod of 23 hours of light, resulting in a higher yield of the re-
combinant protein of interest [19, 20, 23, 28, 29] (Fig. 1).

Fig. (1). Adult transgenic soybean plants (5 feet tall) expressing the human 
growth hormone (hGH) after 4 months of cultivation in a greenhouse under 
a daily photoperiod of 23 h. 

 Large and structurally complex proteins, such as whole secre-
tory antibodies, can be expressed in soybean seeds as high-quality 
biosynthetic products [22, 30-32]. The enzymatic machinery of 
seed cells can promote the correct folding and most of the post-
translational modifications required for biological function at very 
little expense [33-36]. The typical yield of recombinant proteins 
that are synthesised by plant cells is low, normally ranging from 
0.001 to 1% total soluble protein (TSP). However, the accumulation 
of proteins in soybean seeds can overcome this major challenge of 
plant expression systems. The typically poor yields are frequently 
the result of low levels of transcript accumulation; protein instabil-
ity after translation [13] and/or the intrinsic molecular, chemical 
and physical structure of the target protein. 
 Some of the reasons for the low levels of protein accumulation 
in leaf tissues may be associated with the high endogenous prote-
olytic activity of hydrolases and the interference caused by phenolic 
compounds, which contribute to protein instability and present dif-
ficulties for downstream processing. In contrast to the leaves, soy-
bean seeds provide a biochemical environment that is optimised for 
the stable accumulation of large amounts of protein for many 
months, and even years, without any detectable degradation [18, 
30].  
 The use of tissue-specific promoters with strong transcriptional 
activities is crucial for increasing gene transcription and restricting 
the localisation of the recombinant protein to the seeds. The use of 
different regulatory elements in the design of expression cassettes 
can lead to a significant increase in the total soluble proteins of the 
seeds, which, in turn, makes the scalability of this system economi-
cally viable for the recovery and manufacturing of recombinant 
products [13, 14, 37]. Several well-characterised seed-specific pro-
moters have been used with a wide range of crops to specifically 
direct gene expression to the seeds. The most commonly adopted 
promoters for recombinant expression in the seeds of monocots and 
dicots are �-zein, glutenin, glutelin, �-kaffirin, �-phaseolin and the 
�-subunit of �-conglycinin genes respectively of maize, wheat, rice, 
sorghum, the common bean and soybean [18-20, 38-43]. 
 Additionally, the genome of the soybean plant has been fully 
sequenced and has a total of 46,430 predicted protein-coding genes 
[44]. This genome represents an essential framework for vast new 
experimental information, such as tissue-specific expression, which 
holds promise for the development of novel genetic engineering 
strategies. The first recombinant protein obtained in soybeans was 
accumulated using the constitutive CaMV 35S promoter. When a 
functional humanized anti-HSV glycoprotein B was produced in 
soybeans it was observed that the immunoglobulins had the same 
efficacy in preventing vaginal HSV-2 infection in mice as the same 
antibodies secreted by mammalian suspension cells [32]. This find-
ing prompted the discussion on the use of soybeans for the devel-
opment of inexpensive healthcare products because the functional 
quality of the products is equivalent to that of compounds produced 
using other systems. 
 Since the findings of Zeitlin et al. [32] were reported, diverse 
recombinant proteins with different biochemical characteristics, 
molecular weights and structures, and commercial purposes have 
been produced in genetically engineered soybeans at yields ranging 
from 0.1 to 4% of total soluble proteins in the seeds (Table 1)
 The �-subunit of the �-conglycinin promoter is particularly 
interesting for the accumulation of recombinant proteins in soybean 
seeds because it modulates the expression of �-conglycinin, which 
is the most abundant protein complex present in soybean seeds, 
attending for 25 to 45% of the protein content in the grain [54]. 
This 156 kDa trimeric protein (with �, �` and � subunits) belongs to 
the globulins 7S family of storage proteins and shares structural 
domains and post-translational processing with seed-specific rice 
glutelins [55].  
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�-Conglycinin functions as a storage protein and is mobilized at 
high rates after seed germination and during embryo nutrition, 
when the photosynthetic activity of green tissues has not yet started 
[53]. 
 The expression of the three genes that encodes each subunit 
follows a tissue-specific pattern and is strictly regulated during 
soybean embryogenesis [56]. The transcription of the �` subunit 
coding sequence in the seeds tends to occur earlier that the other 
two, frequently 12 days after pollination, but there are no signifi-
cant differences in the accumulation levels among the three 
subunits [3, 54]. 
 The �-subunit of the �-conglycinin promoter is regulated by 
complex interactions between activation sequences rich in GC, 
localized approximately 270 bp upstream of the transcription initia-
tion site, with trans activators synthesized during the maturation of 
the cotyledons [3, 56, 57]. The efficiency of this promoter was pre-
viously demonstrated by the accumulation of a maize methionine-
rich delta-zein and a synthetic anti-hypertensive, denominated no-
vokinin, both in soybean seeds [3, 45]. 
 Our research group has used the �-conglycinin promoter to 
express and accumulate a number of functional recombinant pro-
teins in soybean seeds [1, 19, 20, 23, 58]. Some of these proteins 
have major economic and social relevance because of their proven 
effectiveness against important human diseases, such as diabetes 
mellitus, growth and blood disorders, several types of cancer and 
AIDS [59-63]. These molecules can be grouped in four different 
classes according to their structure and function: human therapeutic 
proteins, recombinant antibodies, recombinant microbicides and 
immunogenic antigens. 

Human Therapeutic Proteins 
 We expressed three functional pharmaceutical proteins of 
mammalian origin in soybean seeds: two hormones, human proin-
sulin (used in the treatment of diabetes mellitus) and human growth 
hormone (a therapeutic molecule for the treatment of hypo-pituitary 
paediatric dwarfism), and one blood product, human coagulation 
factor IX (FIX), used to attenuate the symptoms of the second most 

frequent blood coagulation disorder, type-B haemophilia, which 
affects 1 in 30,000 men [18-20]. 
 Recombinant proinsulin, human growth hormone and coagula-
tion factor IX were specifically accumulated in the seeds and were 
not detected in the leaves, flowers or roots of transgenic soybean 
plants [19, 20]. We could also detect the proteins in transgenic 
seeds after 7 years of storage at room temperature with little or 
undetectable levels of degradation after compartmentalization in the 
cotyledonary protein storage vacuoles (PSVs) [18-20, 23]. Similar 
results have previously been reported in the literature, and have 
demonstrated full or partial biological activities, corroborating our 
hypothesis that accumulation in dry seeds allows long-term storage 
at ambient temperature without noticeable proteolysis or loss of 
function [8, 64, 65]. 
 The accumulation levels of recombinant human growth hor-
mone and coagulation factor IX in transgenic soybeans reached up 
to 2.9% and 0.23% of the total soluble protein content of the seeds, 
respectively, which corresponds to a production potential of 9 g of 
the hormone and 0.8 g of the coagulation factor per kg of harvested 
seeds [19, 20]. These expression levels are higher than the typical 
yields observed in the recombinant production of pharmaceuticals 
in leaves and seeds, usually less than 0.1% of total soluble proteins 
[7, 8, 38, 66-68], corroborating the efficiency of the expression 
strategy, which focused on the strong transcription rates associated 
with the �-conglycinin promoter and the post-translational stability 
provided by subcellular compartmentalization in the vacuoles [69].  

Recombinant Antibodies 
 Plants are currently recognised as promising platforms for the 
production of recombinant antibodies [30, 68]. Many examples of 
the biosynthesis of “plantibodies” in leaves and seeds of different 
plant species are reported in the literature, including secretory anti-
bodies, and derivatives such as minibodies, diabodies, Fab frag-
ments, single chain fragment variables (scFvs), antibody-fusion 
complexes and camelid heavy-chain antibodies [15, 38, 66, 70, 71]. 
 Soybean seeds have already been used as vehicles for the pro-
duction of a humanized IgG1 anti-herpes simplex virus (HSV)-2 
glycoprotein B, which prevented vaginal HSV-2 transmission in 

Table 1. Examples of Important Recombinant Proteins Produced in Transgenic Soybean Plants 

Protein Original source Intended use Reference 

IgG (HSV) Mammalian cell culture Therapeutic [32] 

�-zein Maize Nutrition [45] 

Human growth hormone (hGH) Human Therapeutic [19, 46] 

K99 fimbriae subunit antigen E. coli Vaccine [47] 

Fibroblast growth factor Human Therapeutic [48] 

Heat labile toxin (LT) B subunit E. coli Vaccine [17] 

FanC antigen E. coli Vaccine [49, 50] 

Anti-hypertensive factor Synthetic Therapeutic [3] 

Lysophosphatidic acid acyltransferase Yeast Nutrition [51] 

APase Arabidopsis Agronomic [52] 

Aspartate kinase Soybean Nutrition [53] 

Proinsulin Human Therapeutic [18] 

Coagulation factor IX (FIX) Human Therapeutic [20] 
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mice and has reached advanced stages of development as a drug for 
topical use [32]. 
 Our group expressed the 29kDa fragment of the monoclonal 
antibody IgM AcM 83D4, known as scFvDIR83D4, in transgenic 
soybean seeds [58]. This scFv is highly efficient in the recognition 
of the Tn antigen, a mucin protein with a truncated pattern of O-
linked oligosaccharides that is secreted by tumoral cells in mam-
mary glands [72]. The Tn antigen presents clinical utility as a tumor 
marker in the early stages of breast cancer and other types of tumor, 
such as ovary and colon cancers, without detectable reactivity with 
the cell surface of healthy tissues [72-75]. 
 Transgenic soybeans expressed recombinant scFvDIR83D4 as 
0.93% of total soluble proteins of the seeds, presenting a production 
potential of even 2.8 g of the antibody per kg of dry seeds. The 
post-translational stability of the protein was similar to that ob-
served for proinsulin, human growth hormone and coagulation fac-
tor IX (in preparation).  
 Another humanized scFv accumulated in soybean seeds using 
the �-subunit of �-conglycinin promoter was the scFv anti-CD18 
(36 kDa) [58], a fragment of the monoclonal anti-CD18 (IgG1) that 
specifically recognizes the neutrophil �-2 CD18 integrin, blocking 
the vascular endothelial adhesion and preventing infiltration, post-
ischemic reperfusion and other associated cardiac injuries [76-78]. 
 Analysis of mature seeds by immunocytochemistry demon-
strated that the recombinant scFv anti-CD18 molecules were de-
tected after five years of room temperature storage, mostly inside 
the lumen of the protein storage vacuoles, but at levels lower than 
0.1% of total soluble protein (in preparation).  

Recombinant Microbicides 
 Microbicides are molecules that can be topically applied to the 
vagina or rectum prior to intercourse to prevent the sexual transmis-
sion of human immunodeficiency virus (HIV) [79]. Among the 
microbicide candidate molecules, three algae lectins have proven 
their high efficiency against the HIV: cyanovirin-N (CV-N) isolated 
from the blue alga Nostoc ellipsosporum) [80]; scytovirin, from 
cyanobacterium Scytonema varium [81]; and griffithsin, from the 
red alga Griffithsia sp. [82]. 
 The molecular mechanism that inhibits viral infection is similar 
in both lectins [63]. It is based on specific binding of the microbi-
cides to N-linked glycans that are displayed on the surface of the 
HIV envelope glycoproteins, primarily gp120, but also gp160 and 
gp41, thereby avoiding the interaction of these viral proteins with 
membrane receptors CCR5 and CXCR4 present in the plasmatic 
membrane, blocking the entry of the virus into susceptible cells [83-
85]. 
 Recombinant molecules of cyanovirin-N capable of selectively 
binding to carbohydrate viral moieties under in vitro conditions 
were constitutively expressed in hydroponic culture of tobacco 
(0.85% of total soluble proteins) and as a fusion protein with the 
monoclonal antibody b12 [86, 87]. 
 Considerable amounts of functional griffithsin were obtained in 
tobacco plants using a transient expression TMV-based vector sys-
tem (1 g/kg of fresh weight), providing the purification of 60 g of 
the microbicide from 226.5 kg of processed leaves [63].  
 Our group generated independent transgenic soybean lines ex-
pressing cyanovirin-N, griffithsin and the scytovirin microbicides in 
the seeds [58]. Seeds of transgenic line 11 were able to accumulate 
high levels of cyanovirin-N (3% of total soluble proteins), and HIV 
inhibition preliminary assays with purified fractions of microbicide 
have shown the efficacy of the microbicide in preventing the in 
vitro infection of cultured CD4 cells susceptible to HIV (in prepara-
tion). 

Immunogenic Antigens 
 Some of the most promising molecules for the immunotherapy 
of cancer could also be accumulated in the seeds of transgenic soy-
bean plants using the �-subunit of the �-conglycinin promoter [58]. 
These proteins, denominated NY-ESO-1, PLAC and GAGE, are 
immunogenic antigens whose main therapeutic property is to elicit 
a spontaneous antibody and T-cell response in patients with testicu-
lar and other forms of tumours [88-91]. 
 The NY-ESO-1 antigen is encoded by the CTAG1 gene and is 
frequently expressed in some types of testicular cancer [92], 
whereas the PLAC1 gene encodes a putative protein that is highly 
expressed in placental, testicular and lung tumours [90], and the 
GAGE-1 gene is abundantly expressed in a variety of tumours, in-
cluding melanomas, sarcomas, head, neck and bladder tumours, as 
well as those associated with non-small-cell lung cancer [91]. 
 All antigens produced in soybean seeds could be identified by 
NanoLC-MSE (in preparation), and the observed that the NY-ESO-1 
antigen presented the correct N-terminal sequence and mono-
isotopic molecular masses and positions [93]. However, these com-
pounds accumulated at expression levels below 1% of the total 
soluble proteins. Currently, experiments are being carried out to 
enhance the expression levels and the downstream processing pro-
tocols. In addition, solubility of these molecules is being investi-
gated in a variety of extraction buffers to improve the separation of 
the recombinant proteins from the endogenous proteins. 

SUBCELLULAR COMPARTMENTALISATION OF PRO-
TEINS IN PROTEIN STORAGE VACUOLES OF SOYBEAN 
SEEDS
 The total yield of a given protein reflects not only the rate of its 
biosynthesis but also its degradation. Therefore, protein stability 
after translation must be considered when adopting a recombinant 
expression strategy. The compartmentalisation of the recombinant 
protein into different organelles not only enables the avoidance of 
proteolysis and unintended post-translational modifications, such as 
the addition of plant glycans that are absent in humans, but also 
decisively contributes to the attainment of the production yields that 
are required for commercialisation [8, 70, 94, 95].  
 A number of different organelles and compartments, such as 
nuclei, mitochondria, plastids, oil bodies and vacuolar compart-
ments, are available within plant cells for protein targeting [96]. 
Each of these organelles and compartments provides different post-
translational processing machineries and levels of protein stability 
[97, 98]. The recombinant proteins can also be secreted into the 
apoplast or retained in the endoplasmic reticulum (ER) [38]. The 
most studied molecular mechanism of subcellular targeting involves 
the recognition of different signal peptides, which are N- or C-
terminal protein segments with 20 to 30 amino acids, by their re-
spective RNA-protein complexes, which are called “signal recogni-
tion particles” (SRPs) [99, 100]. This hybrid complex binds specifi-
cally to one or more of the positively charged amino acids that 
flank the core of the signal peptide because the nascent protein is 
processed in the ribosome [101]. After binding, the SRP transports 
the whole protein to the membrane surface of a specific organelle, 
where there is a second intermediary protein complex that is associ-
ated with selective membrane pores, which is denominated the 
“translocation complex" or "translocon”. This recognises both the 
signal peptide and its specific SRP and promotes a series of com-
plex structural modifications that enable pore opening and the in-
ternalisation of the protein. Following protein internalisation, the 
SRP is detached, the signal peptide is cleaved and the target protein 
is released into the organelle [102, 103]. The secretory pathway, 
with its complex endomembrane net composed of extensions of the 
ER and the Golgi complex, is a common destination for the effec-
tive accumulation of proteins [104]. Because most post-transla- 
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tional processing occurs in the endomembrane system, this system 
must be a stable environment for the full activity of plant glycosi-
dases and chaperones and, therefore, provides a high level of post-
translational stability for recombinant proteins that are retained in 
the ER or Golgi apparatus [13].  
 The localisation of proteins to the ER using the C-terminal 
tetrapeptide H/KDEL is a commonly adopted strategy that consid-
erably increases the final yields of many proteins that are expressed 
in plants. This procedure permits the protein relocation from the 
Golgi apparatus to the ER lumen, which allows high levels of ac-
cumulation and prevents the addition of most undesirable plant 
glycans [34]. 
 Seed vacuoles are the intracellular endpoints of the plant secre-
tory pathway and, thus, the major sites of protein accumulation in 
seeds. There are two main classes of seed temporal organelless: the 
lytic vacuoles (LVs) and the protein storage vacuoles (PSVs) [105]. 
The LVs constitute the acidic compartments, which are the equiva-
lent of mammalian lysosomes, and function as the main plant cell 
degradation site [106]. The protein storage vacuoles are cisternae 
that are derived from the ER and are specialised in the storage of 
the large amounts of protein required for seed germination [107]. 
The cotyledonary protein storage vacuoles are therefore the pre-
ferred target sites for the long-term storage of recombinant proteins. 
The lumen of these organelles exhibits minimal protein degradation 
since there are substantially low concentrations of amino peptidases 
and large quantities of protease inhibitors inside these organelles 
[17-20, 107]. 
 The abundance of cotyledonary protein storage vacuoles in 
soybeans makes it an important temporal organelle for the accumu-
lation of high endogenous protein levels in seeds. These organelles 
are available for protein storage during the early stages of seed 
development and reach their maximal concentration and subcellular 
volume in the final stages of grain maturation [107]. Among the 
protein storage vacuoles signal peptides applied for molecular tar-
geting, the �-coixin signal peptide from the monocot Coix lacryma-
jobi was used to direct �-glucuronidase and the human growth hor-
mone to the protein storage vacuoles of tobacco seeds [108]; and 
the �-conglycinin signal peptide from soybeans targeted the accu-
mulation of a �-zein of maize and a synthetic anti-hypertensive 
factor at high levels in soybean seeds [3, 45]. Our group has used 
the �-subunit regulatory sequences of the soybean �-conglycinin 
and �-coixin genes to accumulate recombinant proteins with differ-
ent molecular weights and structures in the protein storage vacuoles 
of transgenic soybean seeds. The transgenic plants were obtained 
following a previously developed method of genetic transformation 
[10]. This method utilises direct DNA transfer through biolistics 
using the multiple shoot induction of selected herbicide-tolerant 
meristematic cells [9, 10]. 
 The accumulation kinetics of recombinant the human growth 
hormone and the coagulation factor IX in the protein storage vacu-
oles exhibited an increase throughout the first 4 weeks of the seed 
development cycle and a sensible turnover from the 6th week on-
wards, corresponding to the increasing availability of these vacu-
oles in the initial steps of seed maturation [107] (Fig. 2). 
 The sequencing of the N-terminus of the recombinant human 
growth hormone and the coagulation factor IX by nanoscale liquid 
chromatography coupled with mass spectrometry (NanoLC-MSE) 
demonstrated that the signal peptides were correctly removed and 
that the PSV targeting occurred with high specificity. There were 
no unintended post-translational modifications or protein degrada-
tion detected indicating that their localisation in the vacuoles main-
tained the protein structure and ensured their biological activity [19, 
20]. 
 Ultrastructural immunocytochemistry evaluation indicated that 
cyanovirin-N was also correctly targeted to the protein storage 

vacuoles of mature soybean seeds (Fig. 3), where it was identified 
and sequenced by NanoLC-MSE. 
 

 
Fig. (2). The human growth hormone expression kinetics. (a) Different 
phenological stages of R1 soybean seeds at 2, 4, 6, and 8 weeks after polli-
nation were used to measure the human growth hormone accumulation 
kinetics; (b) western blot analysis showing the accumulation of the human 
growth hormone protein during seed development; (c) SDS-PAGE loading 
controls of each extract of total soluble protein (~100 �g) were used to de-
termine the uniformity of the electrophoresis samples. 
 

 
Fig. (3). Ultrastructural immunocytochemistry evaluation of recombinant 
cyanovirin-N in ultra-thin sections of the soybean cotyledon showing the 
subcellular accumulation of recombinant cyanovirin-N in the protein storage 
vacuoles of transgenic seeds (A) and non-transgenic controls (B). Arrows 
indicate the recombinant molecules, which are detected alongside the lumen 
of the protein storage vacuoles in the transgenic seeds. OB = oil bodies. 

IDENTIFICATION, CHARACTERISATION AND QUANTI-
FICATION OF BIOMOLECULES BY MASS SPECTROME-
TRY IN SOYBEAN 
 Mass spectrometry (MS) has become a crucial and powerful 
tool in the pharmaceutical industry, particularly in the areas of new 
molecule discovery and molecule characterisation. As an analytical 
technique, MS allows for the measurement of mass, which is the 
inherent property of a molecule. In the last decade, MS has become 
the most potent instrument used, especially in the biological sci-
ences, biochemistry and molecular biology, because it can identify 
and characterise biomolecules, such as proteins, by determining 
their structure and amino acid sequence. Through the use of MS 
techniques, it is now possible to identify proteins in complex sam-
ples from cells or tissues enabling the identification of the relation-
ships between the physiology of an organism and its genome [93]. 
 Utilizing nanoUPLC-MSe analysis [93], we were able to detect 
and quantify different pharmaceutical recombinant proteins pro-
duced in soybean seed complex mixtures [19, 20]. (Fig. 4) shows 
three recombinant molecules that have been quantified in transgenic 
soybean seeds: cyanovirin-N [80], human growth hormone [19] and 
NY-ESO-1 antigen [93]. 
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 In this example, the recombinant proteins were detected and 
quantified at the nanogram scale based on the stoichiometric ion 
intensity values of the minimum three prototypic peptides of the 
external standard, alcohol dehydrogenase (ADH), and the identified 
protein. A relationship between the total detected protein and the 
specific protein concentration was used, which allowed the percent-
age of the expressed protein in relation to the injected volume of 
total soluble proteins to be calculated. The dynamic range detection 
of this combination of techniques (nanoLC-ESI-Q-ToF-MSE) re-
sulted in a more accurate analysis of the soybean seed proteome and 
a more refined recombinant protein expression estimate than that 
obtained with traditional ELISA and western blot methods. The 
nanoLC-ESI-Q-ToF-MSE method is also an important methodology 
for the detection of recombinant proteins with very low expression 
values or when other immunodetection methods are not possible 
due to the lack of specific antibodies, such as in the case of the NY-
ESO-1 antigen [93]. In (Table 2), the most abundant proteins in 
soybean seeds are shown. 
 The proteins shown in (Table 2) are in line with the current 
literature on soybean seed proteins, which reports that glycinin and 
�-conglycinin are the most abundant storage proteins found in soy-
bean seeds [109, 110]. Moreover, the nanoLC-MS method has been 
used for the optimised detection of proteins in laser-captured breast 
cancer tissues [111], the identification of low-abundance proteins in 
human plasma [112], the detection of differences in the expression 
of soybean plasma membrane proteins under osmotic stress [113], 
the regulation of stress in tomatoes that is induced by iron defi-
ciency [114] and the detection of neuropeptides secreted in Cancer 
borealis [115], demonstrating the wide array of applications for this 
method. Furthermore, nanoLC-MS can be used for the post-
translational characterisation of proteins, such as the identification 
of N-terminal peptide modifications in the chloroplast proteome 
[116], the analysis of human protein oxidations that result in func-
tion reduction/annulation [117] and the characterisation of the 
phosphorylation pattern of several phosphatase splice variants that 
are expressed in human cell lines [118, 119].  
 The current MS instruments not only enable the total charac-
terisation of a protein, from sequence to post-translational modifica-

tions, but also provide insight into the protein tertiary structure, 
which is usually obtained through nuclear magnetic resonance and 
X-ray diffraction. Hybrid MS machines containing an ion mobility 
(IM-MS) device are capable of distinguishing separate molecules 
that have the same mass but differential spatial structures [120]. 
IM-MS experiments can be associated with protein structure predic-
tion to obtain information on the conformation and stability of bio-
molecules [121] and for the characterisation of intact multi-protein 
complexes [122].  
 Aiming at future prospects in protein characterisation, the 
evolution of MS instruments not only allows the total characteri-
sation of a protein, from sequence to post translational modification 
but now enters a novel area once only performed by nuclear magnet 
resonance and X-ray diffraction, giving a glimpse of protein tertiary 
structure. For example, the IM-MS of multi-charged equine apo-
myoglobin (Fig. 5) is used for calculation of the collision cross-
section (CCS) of multi-charged ions in a IM-MS system [123]. 
 An exponential curve can be established between the drift time 
and the mass-to-charge ratio and used to calculate the drift velocity 
at any point in the standard drift tubes, which can, in turn, be used 
to calculate CCS. For the equation details, please refer to Giles et
al. [123]. The new MS instruments are focused on protein research 
but can also be used for other types of molecules, such as lipids, 
metabolites, drugs and carbohydrates. Consequently, the use of 
mass spectrometers in biochemistry and all other life sciences areas 
will continue to be expanded. 

BIOPHARMACEUTICAL PRODUCTS AND THE NEW 
TECHNOLOGIES FOR GENE EXPRESSION MANIPULA-
TION IN SOYBEANS 
 In order to achieve high yields of pharmaceuticals in soybean 
seeds it is necessary to overcome the usually low levels of recombi-
nant biosynthesis in plant cells [7, 14, 95, 124]. Transcription acti-
vator-like effectors (TALENs) and zinc-finger nucleases (ZFNs) are 
important auxiliary technologies in plant metabolic engineering as 
they allow site-specific manipulation of genomes and the specific 
integration of target sequences in hot spot sites on the chromatin, 

Fig. (4). Data-independent acquisition (MSE) for the identification of the percentage of total soluble proteins. The femtomolar values that were obtained in the 
experiment have been logarithmically transformed. A relationship between the total femtomolar values of each protein identified can be performed to obtain 
the percentage. The blue circles represent the soybean seed proteins that were identified using the UniProt database sequences. The red squares represent three 
recombinant proteins (cyanovirin-N, human growth hormone and NY-ESO-1 antigen) expressed in the transgenic soybean seeds. The yellow triangle indicates 
the external standard, alcohol dehydrogenase (ADH), which was used for the quantification of the identified proteins. The size of the symbols represents the 
molecular weight of the identified protein. 
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Table 2. Identification and quantification of the most abundant proteins in soybean seeds and recombinant proteins accumulated 
in transgenic soybean seeds using tryptic digestion of total soluble protein and nanoLC-MS experiments. For a more de-
tailed table, please refer to Murad et al. [93] 

Accession Description Score Average 
mass 

Coverage
(%)

fmol On 
Column 

TSP% 

CVN1_SOYBN CYANOVIRIN-N 6686.03 11354.40 51.96 512.10 1.54 

HGH1_SOYBN human Growth hormone 3993.11 22357.18 47.12 145.18 0.43 

CTG1B_HUMAN Cancer testis antigen 1 4355.03 18277.56 30.56 59.29 0.17 

Q3V5S6_SOYBN Beta conglycinin alpha subunit OS Glycine max  78643.19 70569.34 53.72 2608.00 7.84 

Q4LER6_SOYBN Beta conglycinin alpha prime subunit OS Glycine max  51535.62 72513.18 61.03 1531.12 4.60 

GLYG1_SOYBN Glycinin G1 OS Glycine max GN GY1  63053.70 56333.70 49.9 1631.81 4.90 

Q50JD8_SOYBN Beta conglycinin beta subunit Fragment OS Glycine max  40740.82 48387.21 62.38 1720.33 5.17 

GLYG2_SOYBN Glycinin G2 OS Glycine max GN Gy2  44683.35 54961.11 60.21 1442.70 4.33 

Q948X9_SOYBN Beta conglycinin alpha subunit OS Glycine max  31870.91 72760.60 36.12 995.04 2.99 

Q948Y0_SOYBN Beta conglycinin alpha prime subunit OS Glycine max  37941.53 72423.18 61.03 988.28 2.97 

C6T488_SOYBN Putative uncharacterized protein OS Glycine max  74883.94 24403.62 49.77 2359.54 7.09 

Q4LER5_SOYBN Beta conglycinin alpha subunit Fragment OS Glycine max  79047.15 70348.96 53.81 795.86 2.39 

LEC_SOYBN Lectin OS Glycine max GN LE1  17424.92 30928.01 33.68 839.03 2.52 

C6SWW4_SOYBN Putative uncharacterized protein OS Glycine max  38844.21 22731.97 59.11 976.03 2.93 

Q53WV6_SOYBN Napin type 2S albumin 3 OS Glycine max  38269.60 19030.30 36.08 1134.86 3.41 

Q70EM0_SOYBN Dehydrin OS Glycine max GN lea D 11  21909.67 23787.83 60.62 630.36 1.89 

IBBC2_SOYBN Bowman Birk type proteinase inhibitor C II OS Glycine max 26035.52 9999.68 56.63 905.69 2.72 

Q43709_SOYBN Bowman Birk proteinase isoinhibitor D II OS Glycine max 
GN GB D II  

27696.22 12351.73 56.86 512.99 1.54 

Fig. (5). IM-MS of equine apomyoglobin (16,952 Da average mass). A) The distribution of multi-charged apomyoglobin peaks as a function of the drift time in 
milliseconds. The yellow and red areas represent the high and low signal intensities, respectively, of the multi-charged isotope distribution. B) Intensity signal 
(%) as a function of the drift time in milliseconds. C) Intensity signal (%) as a function of the mass-to-charge (m/z) ratio of each multi-charged peak. The drift 
time can be used for the calculation of the collision cross section (CCS) and can be correlated with pharmacological proteins, such as cyanovirin-N, NY-ESO-1 
antigen and human growth hormone [93].
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resulting in a sophisticated and precise control of gene expression 
[125, 126]. 
 Several studies have already shown that the utilization of 
TALENs and zinc-finger nucleases in the expression strategies have 
become a choice for precise and efficient in vivo genome editing 
[127-130]. Another important aspect of the use of TALENs to 
achieve a high level of transgene expression in soybeans is that the 
DNA binding domain of TAL effectors can be linked to several 
different proteins, such as activator binding domains and chromatin 
remodeling proteins, therefore allowing genome activation and 
rapidly managing to overcome the issue of poorly accumulated 
proteins of interest [131, 132]. 
 Our group used different plasmids carrying TALENs to obtain 
transgenic soybean lines accumulating human growth hormone, 
cyanovirin-N, griffithsin and NY-ESO-1 antigen coding sequences 
inserted in the genomic site of the native �-subunit of the �-
conglycinin sequence. We believe that submitting the sequences of 
interest to control of the endogenous conglycinin tissue-specific 
promoter may significantly boost the recombinant accumulation of 
the pharmaceutical proteins [133, 134]. This expression strategy 
takes advantage of the high transcription rates associated with the 
�-subunit of the �-conglycinin promoter and simultaneously has the 
potential to provide proteome rebalancing in soybean seeds, with 
lower levels of �-conglycinin and enhanced content of foreign pro-
teins [134-136]. 
 Another important drawback associated with molecular pharm-
ing in seeds is the different post-translational processing promoted 
by mammalian and plant enzymatic machineries, notably the struc-
turally diverse complex-type N-glycans added to the Golgi when 
the proteins bypass the secretory pathway [137, 138]. In plants, the 
N-acetylglucosamine of the core is substituted by an �1,3 fucose, 
instead of the mammalian �1,6-fucose; whilst the �-mannose of the 
core is substituted by a �1,2 xylose in place of a �1,4-N-
acetylglucosamine present in mammals [138, 139]. Also, plant-
derived recombinant proteins lack the sialic acid residues that are 
found in many native human glycoproteins [137, 140]. These dif-
ferences can affect the distribution, activity and longevity of the 
recombinant proteins, and also result in allergenicity when adminis-
tered to humans [38, 67, 141]. 
 Gene silencing mediated by RNA interference (RNAi) allows 
the specific manipulation of seed glycosylation pathways in order to 
humanize the glycan structures of recombinant pharmaceutical 
glycoproteins [139]. This strategy emphasises the knock-down of 
genes that encode Golgi glycosyltransferases and the expression of 
newly synthesized mammalian galactosyl and sialyltransferases 
[140, 142]. 
 We obtained different transgenic soybean lines using the RNAi 
technology aiming to knock down, simultaneously and specifically 
in the seeds, four endogenous glycosyltransferases genes: �(1,2)-
xylosyltransferase, �(1,3)-fucosyltransferase, �(1,3)- galactosyl-
transferase and �(1,4)-fucosyltransferase. The first plants obtained 
are currently being characterized, and the N-glycosylation of en-
dogenous proteins accumulated in the seeds will be evaluated by 
nanoUPLC-MSe.

CONCLUDING REMARKS 
 Seed-based bioreactors may constitute an important alternative 
for large-scale production of recombinant proteins. The results dis-
cussed in this review demonstrate that soybean seeds are capable of 
producing a different class of functional recombinant proteins cor-
rectly targeted to the protein storage vacuoles, at suitable levels to 
enter the purification processes. As endpoints of the plant secretory 
pathway, the protein storage vacuoles are the major sites for accu-
mulation and long-term storage of proteins in seeds. The abundance 
of the temporal cotyledonary protein storage vacuoles in soybeans 
is important for accumulation of high endogenous protein levels. 

The use of different coding sequences under control of the �-
conglycinin seed-specific promoter and signal peptides was effec-
tive to direct recombinant-derived proteins to the protein storage 
vacuoles. Therefore, a better understanding of gene expression 
control is needed due to overcome the great challenge of using a 
soybean-based system for molecular farming. The maximization of 
the transgene expression levels is a key step to reach the commer-
cial scale for viable production and subsequent recovery of recom-
binant proteins. In this regard, current advances in metabolic engi-
neering and synthetic biology may lead to more precise genome 
editing and manipulation, which, in turn, should allow us to in-
crease expression levels in plants.  
 We have also demonstrated here the use of nanoUPLC-MSe

analysis as an important tool for a comparative display of protein 
expression. It has the capability not only to provide in-depth charac-
terisation of the protein content of seeds but also to qualify and 
quantify precisely the expression levels of a specific recombinant 
protein present in complex extracts with abundant endogenous stor-
age proteins. Due to its high precision in characterizing protein 
structure, sequence and accumulation level, we believe that the 
utilization of nanoUPLC-MSe is a crucial aspect to fulfill the re-
quired criteria for the commercialization of plant-derived pharma-
ceuticals.  
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