A preliminary approach to the phylogeny of the genus *Paspalum* (Poaceae)

Tatiana T. Souza-Chies^{1,2,5}, Liliana Essi², Gabriel H. Rua^{3,6}, José Francisco M. Valls⁴ & Rogéria B. Miz⁵

¹Universidade Federal do Rio Grande do Sul, Departamento de Botânica, Av. Bento Gonçalves, 9500, CEP 91501-970, Brazil (Phone: +55-51-3316-7569; Fax: +55-51-3316-7686; E-mail: tatiana.chies@ ufrgs.br); ²Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP 91501-970, Brazil; ³Facultad de Agronomía, Cátedra de Botánica Agrícola, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina; ⁴Bolsista de Produtividade em Pesquisa do Conselho Nacional de Desenvolvimento Científico e Tecnológico/CNPq., Centro Nacional de Pesquisa de Recursos Genéticos e Biotecnologia, Embrapa Cenargen, Caixa Postal 02372, 70770-900, Brasília, DF, Brazil; ⁵Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP 91501-970, Brazil; ⁶Investigador Adjunto, Consejo Nacional de Investigaciones Científicos y Técnicas, Buenos Aires, Argentina

Key words: allopolyploids, cpDNA, evolutionary relationships, Paspalum, phylogeny, ITS rDNA

Abstract

The present work intends to clarify the phylogenetic relationships among the species of *Paspalum* L. belonging to the informal groups Notata/Linearia and Dilatata, and to raise some preliminary hypotheses on the phylogeny of the genus as a whole. A combined dataset including morphological and molecular characters was used to analyze 28 species of *Paspalum* plus some representatives of related genera of the tribe Paniceae. Analyses were performed using both parsimony and maximum likelihood. The monophyly of *Paspalum* is not supported nor contradicted. The circumscription of informal groups of *Paspalum* is discussed, as well as the cladistic treatment of allopolyploid taxa, especially those comprising the Dilatata group. The relationships of members of the Dilatata with their putative progenitors is confirmed, but the monophyly of the group as a whole is not. A close relationship between *P. dilatatum* Poir. and *P. lividum* Trin. ex Schltdl. is shown. Our analysis is consistent with the monophyly of a group comprising Notata + Linearia, with a monophyletic Notata group nested within it. The delimitation of the core Notata is proposed by including *P. conduplicatum* Canto-Dorow, Valls and Longhi-Wagner, *P. notatum* Flüggé, *P. minus* E. Fourn., *P. pumilum* Nees and *P. subciliatum* Chase.

Introduction

The genus *Paspalum* L. comprises about 330 species predominantly from the New World (Clayton & Renvoize, 1986). They are recognized by their plano-convex abaxial spikelets arranged in unilateral raceme-like partial inflorescences, and, with few exceptions, by the lack of the lower glume. *Paspalum*, a member of the tribe Paniceae, is one of the ten largest genera within Poaceae (Watson & Dallwitz, 1994).

Most *Paspalum* species have a chromosome base number x = 10, with a few cases reported of x = 6 and x = 9 (Jarret, Liu & Webster, 1998). Polyploidy is a very common feature among *Paspalum* species, and it is closely related to apomixis (Quarín & Norrmann, 1990); both processes seem to have had a very important evolutionary significance within *Paspalum*. The mean diploid 2CDNA value is 1.6 pg (two species of unknown ploidy, 1.2 and 2.1), and the variation in DNA contents among *Paspalum* species is approximately 3-fold as determined by laser flow cytometry (Jarret et al., 1994; Watson & Dallwitz, 1994).

Recent molecular analyses (Gómez-Martínez & Culham, 2000; Duvall, Noll & Minn, 2001; Giussani et al., 2001) of the tribe Paniceae and the subfamily Panicoideae show that Paspalum belongs to a clade characterized by a chromosome base number x = 10 and is related to other genera having a NADP-ME photosynthetic pathway. Its more closely related taxa are Anthaenantiopsis Mez ex Pilg., Thrasyopsis Parodi, and three species currently included in Panicum L. s.l.: P. obtusum Kunth, P. validum Mez, P. tuerckheimii Hack. (Gómez-Martínez & Culham, 2000; Giussani et al., 2001; Aliscioni et al., 2003; Denham & Zuloaga, in press). As currently circumscribed, Paspalum is paraphyletic by including Thrasva Kunth, a genus which obviously intergrades with the group Decumbentes of Paspalum (Burman, 1985; Denham & Zuloaga, in press).

On the basis of exomorphological characters, the genus was subdivided into subgenera, sections, and/or informal groups by different authors (Doell, 1877; Chase, 1929, Pilger, 1929, 1940). The more widely accepted infrageneric classification was proposed by Chase (1929, and unpublished manuscript) and originally comprised two subgenera and 27 informal groups. As a consequence of the problematic circumscription of several groups and the lack of informative characters to diagnose them, Chase's grouping was repeatedly revised and modified by subsequent workers (Parodi & Nicora, unpublished; Barreto, 1974; Cialdella, Morrone & Zuloaga, 1995; Morrone, Zuloaga & Carbonó, 1995; Canto-Dorow, Longhi-Wagner & Valls, 1996; Gomes & Monteiro, 1996; Morrone, Vega & Zuloaga, 1996: Morrone et al., 2000; Denham, Zuloaga & Morrone, 2002; Oliveira & Valls, 2002; Morrone, Denham & Zuloaga, 2004) and no uniform criteria were achieved.

Meanwhile, the informal grouping remains phylogenetically uninformative. The only available studies concerning phylogeny of *Paspalum* are morphology-based and comprise reduced datasets (Aliscioni, 2002) and/or very partial species sampling (Denham et al., 2002; Rua & Aliscioni, 2002; Denham and Zuloaga, in press). Besides these studies, there is poor information about the phylogenetic relationships among *Paspalum* species.

Some informal groups are well studied due to their economic value, as is the case of the groups Dilatata, Notata and Disticha. A large number of Paspalum species are valuable as forage grasses (Ramírez, 1954; Bennett, 1962; Allem & Valls, 1987; Filgueiras, 1992; Kretschmer, Kalmbacher & Wilson, 1994), the most important of them in southern South America being P. dilatatum Poir. and P. notatum Flüggé. The species to which more extensive phylogenetic investigation efforts were devoted is Paspalum dilatatum, 'dallisgrass' (Fernandes, Barreto & Salzano, 1968; Bennett, Burson & Bashaw, 1969; Burson, Lee & Bennett, 1973; Burson, 1983, 1991a, b, 1992a, b; Espinoza & Quarín, 2000). It comprises an array of sexual tetraploid and apomictic penta- and hexaploid biotypes, and belongs to the group Dilatata, which also includes other three allopolyploid species. Species of the groups Quadrifaria (P. intermedium Munro ex Morong) and Paniculata (P. juergensii Hackel) were hypothesized to be parents of this allopolyploid complex (Burson, Lee & Benett 1973; Burson, 1983; Espinoza & Quarín, 2000). Paspalum notatum belongs to the informal group Notata, which intergrades morphologically with the groups Linearia and Alma and with P. equitans Mez, a species currently included in the group Fasciculata. In spite of considerable efforts, the taxonomic boundaries of such groups remain uncertain (Barreto, 1957; Canto-Dorow, Longhi-Wagner & Valu 1996; Oliveira & Valls, 2002).

In our days, molecular data have had a deep impact on the field of plant systematics, and the application of DNA sequence data to phylogenetic problems is now routine. Molecular data have reshaped concepts of relationships and circumscriptions at all levels of the taxonomic hierarchy (Oiu et al., 1999: Soltis, Soltis & Chase, 1999: Small, Cronn & Wendel, 2004). Most molecular data applied to plant systematics come from two main sources: chloroplast DNA (cpDNA) and nuclear ribosomal DNA (rDNA). Molecular phylogenetic studies are not yet available to the genus Paspalum, the present work being the first one to present relationships among a set of Paspalum species on the base of ITS of the rDNA and trnL intron plus the psbA-trnH intergenic spacer of the cpDNA. The ITS (Internal Transcribed Spacers of the ribosomal nuclear DNA) have been used in many phylogenetic works to reveal relationships at infrageneric level (Baldwin, 1992;

Baldwin et al., 1995), including the family Poaceae (GPWG, 2001).

The goal of the present work is to clarify the phylogenetic relationships among the species of *Paspalum* belonging to the informal groups Notata/Linearia and Dilatata, and to raise some preliminary hypotheses on the phylogeny of the genus as a whole.

Materials and methods

Taxon sampling

A set of 28 species of Paspalum were included in our analysis (Table 1), including representatives of the informal groups Dilatata and Notata/Linearia as well as several additional, presumably related species belonging to different groups (Table 1). Thrasya petrosa (Trin.) Chase was also included, for the genus Thrasya was stated to be nested within Paspalum (see Introduction). Five representatives of the genus Axonopus P. Beauv. and Steinchisma laxa (Sw.) Zuloaga, all members of the x = 10 clade of Paniceae, were either simultaneous or alternatively used as outgroup taxa. The molecular data of Steinchisma laxa were obtained from Genbank (AY142733 for trnL intron and AY129711 for ITS rDNA). Voucher specimens are listed in Table 1, including origin, chromosome counts (when available for the species or the actual accessions used) and informal grouping so far suggested in the literature.

DNA extraction, sequencing, and alignment

DNA was extracted from dehydrated leaves, following a modified CTAB method (Doyle and Doyle, 1987). The *trnL* intron were amplified following (Taberlet et al., (1991)) and for rRNA ITS the amplification followed (Desfeux et al., (1996)), to amplify the *psbA-trn*H spacer (Sang, Crawford & Stuessy, 1997), the protocol was modified using an annealing temperature of 58°C.

The PCR amplified products were purified with shrimp alkaline phosphatase and exonuclease I (Amersham Biosciences) and directly sequenced using automated sequencers ABI Prism 310 (Perkin Elmer), ABI Prism 3100 (Applied Biosystems) and Mega Bace 1000 (Amersham-Pharmacia-Biotech), and their respective recommended kits. The three fragments were sequenced for almost all species listed in Table 1. The sequences obtained were aligned with Clustal X 1.81 (Thompson et al., 1997) and manually refined. The gaps were treated as fifth state in all described analyses, although their treatment as missing data was also tried.

Morphological characters

Morphological characters were scored mainly from herbarium material at BAA, Buenos Aires, Argentina. A set of 63 characters was defined for use in the analyses (Table 2), including 45 characters of spikelets, 15 of inflorescences, and 3 of vegetative growth. Autapomorphies were not included. All but one (character 28) multistate characters were treated as non-additive. Polymorphic characters were scored as such, as recommended when the polarity of the characters is unknown from previous analyses (Kornet & Turner, 1999). Missing data (including unavailable as well as inapplicable data) represent 6% of the entries in the morphological data matrix.

Phylogenetic analysis

Three independent datasets were used for phylogenetic analyses: morphology, ITS (including ITS1 and ITS2, 508 characters) and cpDNA (including the *trnL* intron and the *psbA-trn*H spacer, 1218 characters). Three different approaches to data analysis were applied to the data matrixes: Bayesian Inference (BI), Maximum Likelihood (ML) and Maximum Parsimony (MP). The analyses were performed with the softwares Mr. Bayes 3 (Huelsenbeck & Ronquist, 2001), PAUP* 4.0 (Swofford, 2002) and T. N. T. ver. 1.0 (Goloboff, Farris & Nixon, 2003), respectively.

MP analysis was applied both to separate and combined (total evidence analysis) datasets. A heuristic search strategy was adopted, consisting of 100 random addition sequences plus TBR swapping, using Wagner trees as starting trees and holding a maximum of 10 trees each time. The trees obtained were submitted to an additional round of TBR swapping. In order to detect possible islands, the trees obtained from the abovedescribed analysis were further submitted to 1000 iterations of Parsimony Ratchet (Nixon, 1999). Branches with ambiguous support (min. length=0) were collapsed. Group support was

J		- J 0						
Species	Informal groups according to the literature	Voucher specimen ^{a,b} and germplasm accession code (BRA)	County and Brazilian state (or locality in other countries)	Lat. (S)	Long. (W)	Alt. (m)	Genbank accessions (<i>psbA-trn</i> H, intron <i>trn</i> L, ITS1 and ITS2)	Chromosome number [°] (2n)
Axonopus argentinus Parodi	1	VTsRcRm 14421, BRA-20958/002496	Bom Jardim da Serra, SC	27°38′	50°21′	800	AY769117 AY769150 AY771863 AY771863	n.a.
A. brasiliensis (Spreng.) Kuhlm.	I	VTsRcRm 14422, BRA-20958/002500	Correia Pinto, SC	27°38'	50°21'	800	AY769118 AY769151 AY771864 AY771864	n.a.
A. compressus (Sw.) P. Beauv.	I	VTsRcRm 14428, BRA-20958/002518	Capão Alto, SC	28°12'	50°45'	760	AY769119 AY769152 AY771866 AY771806	60
A. polystachyus G. A. Black	I	VTsRcRm 14412, BRA-20958/002470	Correia Pinto, SC	27°38′	50°21'	800	AY769121 AY769154 AY771887 AY771887	60
A. siccus (Nees) Kuhlm.	T	VTsRcRm 14413, BRA-20958/002488	Correia Pinto, SC	27°38′	50°21′	800	AY769120 AY769153 AY771890	n.a.
Paspalum acuminatum Raddi	Dissecta, Acuminata	VIbDp 14270, BRA-20915/021229	São Gabriel, RS	30°17′	54°23′	250	AY769123 AY769123 AY771861 AY771861	40
P. almum Chase	Notata, Alma	VTsDp 14231, BRA-20915/020991	São Borja, RS	28°39′	55°58'	120	AY769124 AY769156 AY771862	12, 24 (as <i>P</i> . hexastachyum and <i>P</i> . almum)

AY771895

Table 1. Plant materials used for DNA sequencing in this analysis, including geographic origin, vouchers, genbank accessions, chromosome counts (when available), and suggested allocation of the *Paspalum* species into informal groups

1	8

P. conduplicatum	Notata	VIbDp 14271	São	30°26′	54°17'	180	AY769126	*09
Canto-Dorow, Valls &		BRA-2091 5/021237	Gabriel, RS				AY769158	
Longhi-Wagner							AY771867	
							AY771900	
P. cromyorrhizon	Notata	VTsDp 14258,	Uruguaiana, RS	29°32′	56°49′	100	AY769127	$20, 40^*$
Trin. ex Döll		BRA-20915/021148					AY769159	
							AY771868	
							AY771901	
P. dasypleurum	Dilatata	V 12112,	Pucón, IX	n.a.	n.a.	n.a.	AY769128	40*
Kunze ex Desv.		BRA-2091 5/020273	Región, CHILE				AY769160	
							AY771869	
							AY771902	
P. dedeccae Quarín	Linearia	Rc 300,	Serranópolis, GO	18°10′	52°00'	570	AY769129	$20^*, 40$
		BRA-20915/021610					AY769161	
							AY771870	
							AY771903	
P. dilatatum Poir.	Dilatata	VGoHiCm 12030,	Lages, SC	n.a.	n.a.	n.a.	AY769130	50
Common biotype		BRA-20915/015903					AY769162	
							AY771871	
							AY771904	
P. ellipticum Döll	Linearia, Notata,	VPoBi 9284,	Itiquira, MT	n.a.	n.a.	n.a.	AY769131	20, 80
	Elliptica	BRA-20915/008168					AY769163	
							AY771872	
							AY771905	
P. equitans Mez	Fasciculata	VRcMmSv 14581,	Ponta Porã, MS	22°39′	55°37′	650	AY769132	20
		BRA-20915/023451					AY769164	
							AY771873	
							AY771906	
P. filifolium Nees ex Steud.	Linearia, Notata	VTsRcRm	Bom Jardim	28°23′	49°32'	1400	AY769133	20
		14398,	da Serra, SC				AY769165	
		BRA-20915/022250					AY771874	
							AY771907	
P. flaccidum Nees	Recta	V 14879, BRA-20915/024503	Unknown origin.	n.a.	n.a.	n.a.	AY769134	n.a.
			Cultivated at				AY769166	
			Embrapa Cenargen.				AY771875	
							AY771908	

Table 1. Continued.								
Species	Informal groups according to the literature	Voucher specimen ^{a,b} and germplasm accession code (BRA)	County and Brazilian state (or locality in other countries)	Lat. (S)	Long. (W)	Alt. (m)	Genbank accessions (<i>psbA-tmH</i> , intron <i>tmL</i> , ITS1 and ITS2)	Chromosome number ^c (2n)
P. intermedium Munro ex Morong & Britton	Quadrifaria	VQFdSv 11840, BRA-20915/012769	Naviraí, MS	n.a.	n.a.	270	AY 769135 AY 769167 AY 771876 AY 771909	20*, 40
P. ionanthum Chase	Notata	VTsZi 14288, BRA-20915/021342	Capão da Canoa, RS	29°40'	49°59′	\$	AY 769136 AY 769168 AY 771877 AY 771910	40*, 80
P. juergensii Hack.	Paniculata	VGoHiCm 11963, BRA-20915/015334	Lages, SC	27°48′	50°17′	830	AY 769137 AY 769169 AY 771878 AY 771911	20
P. lineare Trin.	Linearia	Rc 306, BRA-20915/021628	Mineiros, GO	17°35′	52°35′	650	AY 769138 AY 769138 AY 771879 AY 771912	20*, 40, 80
P. lividum Trin. ex Schltdl.	Livida	VTsDp 14254, BRA-20915/021113	Uruguaiana, RS	29°52'	57°13'	100	AY 769139 AY 769139 AY 771880 AY 771913	40*
P. maculosum Trin.	Notata, Maculosa	VTsRcRm 14345, BRA-20915/021792	Triunfo, RS	29°45'	51°36′	100	AY 769140 AY 769172 AY 771881 AY 771914	20*, 40
P. minus E. Fourn.	Notata	VRcMmSv 14573, BRA-20915/023418	Ponta Porã, MS	22°30'	55°27'	600	AY 769141 AY 769173 AY 771882 AY 771915	50*
P. notatum Flüggé	Notata	VRcMmSv 14613, BRA-20915/023558	Japorã, MS	23°29'	53°59'	260	AY 769142 AY 769174 AY 771883 AY 771916	20, 40

P. ovale Nees ex Steud.	Linearia, Ovalia	VGoSv 11280, BRA-20915/013871	Ponta Grossa, PR	25°08′	50°09'	980	AY769175 AY771884 AY771917	70*
<i>P. pallens</i> Swallen	Linearia	VSPmSv 13784, BRA-20915/020451	Santo Antonio do Leverger, MT	15°53′	56°02′	06	AY769143 AY769176 AY771885 AY771918	20
P. pauciciliatum (Parodi) Herter	Dilatata, Livida	VGoSv 11235, BRA-20915/013641	Ponta Grossa, PR	25°08'	50°09'	950	AY769144 AY769177 AY771886 AY771919	40
P. pumilum Nees	Notata	VTsZi 14280, BRA-20915/021270	Xangri-lá, RS	29°46′	50°02'	10	AY769145 AY769178 AY771888 AY771921	20*
<i>P. quarinii</i> Morrone & Zuloaga	Quadrifaria	VTsDp 14220, BRA-20915/020923	São Miguel das Missões, RS	28°24'	54°33'	300	AY769125 AY769157 AY771865 AY771898	20*, 40 (as P. brunneum Mez)
P. ramboi Barreto	Notata	VTsZi 14286, BRA-20915/021326	Capão da Canoa, RS	29°46′	50°02'	10	AY769146 AY769179 AY771889 AY771922	60*
P. subciliatum Chase	Notata	VRcMmSv 14488, BRA-20915/022853	Acreúna, GO	17°24'	50°24'	550	AY769147 AY769180 AY771891 AY771924	30, 40
P. urvillei Steud.	Dilatata	VHiCm 12004, BRA-20915/015679	Alfredo Wagner, SC	27°42'	49°20'	613	AY769148 AY769181 AY771892 AY771925	40*
P. vaginatum Sw.	Disticha	VTsRcRm 14340, BRA-20915/021741	Arroio do Sal, RS	29°28'	49°50'	Ś	AY769149 AY769182 AY771893 AY771926	20*

I able 1. Continued.								
Species	Informal	Voucher	County and	Lat.	Long.	Alt.	Genbank	Chromosome
	groups	specimen ^{a,b} and	Brazilian state	(S)	(M)	(m)	accessions	number ^c (2n)
	according	germplasm accession	(or locality in				(psbA-trnH,	
	to the	code (BRA)	other countries)				intron trnL,	
	literature						ITS1 and ITS2)	
Steinchisma laxa	I	n.a.	n.a.	n.a.	n.a.	n.a.	AY142733	n.a.
(Sw.) Zuloaga							AY129711	
Thrasya petrosa	Ι	Gr GI, BAA24128	San Javier,	n.a.	n.a.	n.a.	AY76912	n.a.
(Trin.) Chase			Ñuflo de Chávez,					
			Santa Cruz, Bolivia					
			; !		i			:

^aVouchers deposited at: BAA, Herbario Gaspar Xuarez, Buenos Aires, Argentina (Bolivian specimen); CEN, Cenargen Herbarium, Brasília, Brazil (Brazilian and Chilean specimens).

^c Sources of information on chromosome numbers (a few yet unpublished informed by J.F.M. Valls): Barreto (1983), Fernandes et al. (1974), Hickenbick et al. (1975), Honfi, Quarín and Valls (1990), Norrmann, Quarín and Killeen (1994), Pozzobon, Valls and Santos (2000), Rodrigues et al. (2001), Quarín (1974), Quarín and Caponio (1995) and Quarín ^bPlant collectors: Bi, L.Bianchetti, Cm, S.Cavalli-Molina; Dp, D.A.Palmieri; Fd, M.S.França Dantas; GI, G.I. Lavia Go, K.E.Gomes; Hi, M.C.M.Hickenbick; Ib, I. L.Barreto; K, Mm, M.D.Moraes; Pm, R.N.Pittman; Po, A.Pott; Q, C.L.Quarín; Rc, R.C.Oliveira; Rm, R.Miz; S, C.E.Simpson; Sv, G.P.Silva; Ts, T.Souza-Chies; V, J.F.M.Valls; Zi, F.Zilio. and Normann (1987).

*Chromosome counts obtained from the same accessions used here.

n.a., not available.

Table 2. Morphological characters and state assignments used in the cladistic analysis

- 1. Upper glume: not edge-forming [0], forming an edge around the lower lemma [1].
- 2. Upper glume distal portion: rounded [0], obtuse [1], acute [2], acuminate [3].
- 3. Upper glume apex: rounded [0], obtuse [1], apiculate [2], acute [3], acuminate [4], truncate [5].
- 4. Upper glume dorsum: flat [0], bowed [1], rolled [2].
- 5. Upper glume consistency: hyaline, tiny [0], membranous [1].
- 6. Upper glume number of lateral veins on each glume half: none [0], one [1], two [2], three [3], four or more [4].
- 7. Upper glume abaxial vein protrusion: not prominent [0], prominent [1].
- 8. Upper glume distal convergence of inner lateral veins: not convergent [0], convergent [1].
- 9. Upper glume vein distribution: more or less equidistant [0], lateral veins approximate towards the margins [1].
- 10. Upper glume outer vein position: sub-marginal [0], not marginal [1].
- 11. Upper glume marginal region: folded [0], flat [1].
- 12. Upper glume between-vein indumentum: glabrous to scabrous [0], pubescent at the base [1], fully pubescent [2], pubescent towards the apex [3].
- 13. Upper glume marginal region (beyond outer veins) indumentum: glabrous to scabrous [0], scarcely pubescent at base [1], pubescent [2], distally ciliate [3].
- 14. Upper glume apex: navicular or cucullate [0], flat [1], folded but distally open [2].
- 15. Upper glume surface: smooth [0], transversely crumpled or wrinkled [1].
- 16. Upper glume whether "flabby" or not: tight [0], "flabby" [1].
- 17. Upper glume symmetry: symmetrical [0], asymmetrical [1].
- 18. Lower lemma distal portion: rounded [0], obtuse [1], acute [2], acuminate [3].
- 19. Lower lemma apex: rounded [0], obtuse [1], apiculate [2], acute [3], acuminate [4], truncate [5].
- 20. Lower lemma consistency: hyaline, tiny [0], membranous [1], laterally indurate [2], fully indurate [3].
- 21. Lower lemma between-vein indumentum: glabrous [0], distally pubescent [1], basally pubescent [2], fully pubescent [3].
- 22. Lower lemma number of lateral veins on each side: none [0], one [1], two [2], three [3], four or more [4].
- 23. Lower lemma midvein: lacking [0], present [1].
- 24. Lower lemma distal convergence of inner lateral veins: not convergent [0], convergent [1].
- 25. Lower lemma marginal region: folded [0], flat [1].
- 26. Lower lemma marginal region (beyond outer veins) indumentum: glabrous [0], pubescent [1].
- 27. Lower lemma axillary flower: wanting [0], reduced to a palea [1], well developed [2].
- 28. Upper floret pigmentation: whitish [0], stramineous [1], yellow/ocraceous [2], brown [3], dark brown, shining [4].
- 29. Upper floret induration: not indurate [0], slightly indurate [1], strongly indurate [2].
- 30. Upper floret length relative to the lower lemma: nearly equal [0], conspicuously shorter [1].
- 31. Upper floret shape: elliptical [0], ovate [1], obovate [2], rhomboid [3], orbicular [4].
- 32. Upper floret base: sessile [0], "pseudo-stipitate" [1].
- 33. Upper floret lemma dorsum: more or less flattened [0], bowed towards the base [1], sharply bowed [2], gibbose [3], rolled, cylindrical [4].
- 34. Upper floret palea dorsum: convex [0], flat [1], concave [2].
- 35. Upper floret lemma apex: acute, pointed [0], acute but blunt at the very apex [1], rounded [2], acuminate [3], obtuse, blunt [4].
- 36. Upper floret epidermal papillae on the lemma: wanting [0], present [1].
- 37. Upper floret apex indumentum: wanting [0], present [1].
- 38. Upper floret palea margins: not winged [0], with non-overlapping wings [1], with overlapping wings [2].
- 39. Upper floret palea adaxial surface: smooth [0], papillose to prickled [1].
- 40. Upper floret lemma apex: open [0], cucullate [1].
- 41. Upper floret lemma margins: not thickened [0], slightly thickened [1], sharply thickened [2].
- 42. Upper floret number of lateral veins on each lemma half: none [0], one [1], two [2], three or more [3].
- 43. Upper floret midvein: lacking [0], present [1].
- 44. Upper floret anther pigmentation: yellow [0], purple-tinged [1], deep purple [2], ferrugineous [3].
- 45. Pigmentation of stigmas: whitish [0], lila [1], purple [2], yellow [3].

Table 2. Continued.

- 46. Inflorescence terminal spikelet: wanting [0], present [1].
- 47. Inflorescence arrangement of primary branches: several branches along an axis with conspicuous internodia [0], several branches the two distal ones conjugate [1], only two conjugate primary branches [2], one branch alone [3].
- 48. Maximum number of orthostichies: distichous [0], polystichous [1].
- 49. Inflorescence pubescence on pulvinula: glabrous [0], shortly pubescent [1].
- 50. Inflorescence long cilia arising from pulvinula: wanting [0], present [1].
- 51. Inflorescence a spikelet ending each primary branch: present [0], lacking, lateral spikelets becoming rudimentary towards apex [1].
- 52. Inflorescence rachis cross section [0], trigonous [1], laterally expanded into narrow wings having chlorenchyma: laterally expanded into membranous epidermal wings [2].
- 53. Inflorescence rachis venation: a midnerve thick and prominent [0], several parallel equal-range nerves [1].
- 54. Inflorescence rachis margin: smooth [0], scabrous [1], with more or less scattered cilia [2], with a dense fringe of tuberculate cilia [3].
- 55. Inflorescence rachis surface indumentum: glabrous [0], scabrous [1], pubescent [2].
- 56. Inflorescence arrangement of spikelets: solitary [0], homogeneously paired [1], proximally paniculate, distally paired [2].
- 57. Inflorescence "pedicells" cross section: terete [0], trigonous/tetragonous [1], flattened [2].
- 58. Inflorescence setae on "pedicells": wanting [0], present [1].
- 59. Inflorescence enrichment shoots: lacking [0], present [1].
- 60. Inflorescence enrichment branching pattern: paniculate [0], cymose [1], monophyadic [2].
- 61. Growth habit growth direction of rhizomes: orthotropous forming tussocks [0], shortly plagiotropous, culms bunched anyway [1], plainly plagiotropous [2].
- 62. Growth habit growth direction of the culm: orthotropous to geniculate [0], proximally plagiotropous [1], fully plagiotropous [2].
- 63. Leaf blade reduction in cross section: none leaf blade expanded throughout [0], proximally elliptical to semicircular [1], elliptical to semicircular throughout [2].

quantified through two measures: (1) the decay index of Bremer (DB, Bremer, 1994), and (2) the absolute Bootstrap Frequency (BF, Felsenstein, 1985), calculated from 1000 resampling iterations using Poisson independent re-weighting (Farris et al. in Horovitz, 1999). Morphological synapomorphies (MS) diagnosing each clade are reported when relevant.

The appropriate model of nucleotide substitution for ML and BI analyses were determined using the software Modeltest 3.06 (Posada & Crandall, 1998) using the LTR criterion. The models selected were: K80+G, to ITS matrix, HKY85+G, to chloroplast matrix, and TrN+I+G to the combined matrix. The BI was undertaken through 1,000,000 replications and ML analysis was undertaken through heuristic search, as-is option. Consistency, Retention, Rescaled Consistency and Homoplasy indexes were also calculated (respectively: CI, RI, RC, HI).

Results

Systematic relationships inferred from the combined analysis (total evidence)

The parsimony analysis of the combined data produces two equally parsimonious trees, each 1550 steps long (1206 if only informative characters are used). Searches using parsimony ratchet yielded no additional trees. In all trees (Figure 1) *Paspalum* results monophyletic (DB = 5; BF = 79). *Thrasya petrosa* appears as sister taxon of *Axonopus*, with low support.

Within *Paspalum*, three major clades are recovered in the strict consensus tree.

Clade I (DB=1; no bootstrap support; MS: characters 4, 6, 14, 22, 33, 44, and 54) links *P. flaccidum* Nees to a well-supported clade (DB=5; BF=83) formed by *P. juergensii* and *P. quarinii* Morrone and Zuloaga.

Figure 1. Strict consensus of 2 most parsimonious trees (length = 1550 steps) obtained from the combined (morphological, ITS, and cp-DNA) datasets. Figures above branches represent decay index of Bremer (BS), below branches are Bootstrap frequencies (BF). Square brackets indicate the clades discussed in the text.

Clade II (DB=5; BF=69; MS: ch 8, 11, and 41) includes the species of the Dilatata group, as well as *P. intermedium*, *P. lividum* Trin. ex Schltdl., and *P. ovale* Nees ex Steud. Within this group, sister relationships of *P. dilatatum* with *P. lividum* (DB>6; BF=96; MS: ch 73 and 81) and of both with *P. dasypleurum* Kunze ex Desv. (DB=6; BF=79; MS: ch 41) are highly supported by the combined data.

Clade III (DB=2; no BF support; MS: ch 47, 56, and 57) includes two subclades, one of them (DB=5; BF=74; MS: ch 3, 30, 37, 53, 59, 62) formed by *P. acuminatum* Raddi and *P. vaginatum* Sw., the other one (DB=1; no BF support; MS: ch 39) containing all representatives of the Notata/Linearia group, including *P. almum* Chase and *P. equitans*. Within the last clade, *P. dedeccae* Quarín and *P. ellipticum* Döll are

linked together to form a moderately supported clade (DB=2; no bootstrap support; MS: ch 44 and 63) which is sister to another clade including the remaining species of the group (DB = 1; no)bootstrap support; MS: ch 35). They are further grouped into two clades with weak support, one of them (MS: ch 3) including P. almum, P. lineare Trin., P. maculosum Trin., P. filifolium Nees ex Steud., and P. pallens Swallen, the other one (MS: ch 8, 16, 32, and 41) comprising most species currently assigned to the Notata group plus P. equitans; both clades are only supported by morphological characters. The phylogenetic relationship of P. equitans with P. ramboi Barreto is strongly supported (DB > 6; BF = 98; MS: ch 35).

Systematic relationships supported by separate datasets

The analysis of ITS data (without *Thrasya petrosa*, for which no ITS data has been available) also yielded a monophyletic *Paspalum* (DB > 6; BF = 99) with *Axonopus* as sister group (Figure 2). The Dilatata-clade (clade II) is supported (DB = 3; BF = 74) by the ITS analysis. The sister relationship of *P. juergensii* and *P. quarinii* is well supported by ITS data (DB = 2; BF = 79), as well as that of *P. equitans* and *P. ramboi* (DB = 4; BF = 96). This clade appears as sister group of *P. filifolium* (DB = 2; BF = 80), thus it contradicts the close relationship of this species with *P. pallens* recovered by the combined analysis.

The analysis of cpDNA data yields a poorly resolved consensus tree (not shown). The *Thrasya*+*Paspalum* clade is very strongly supported (DB > 6; BF = 100) by this dataset, but the monophyly of *Paspalum* itself is not supported (nor contradicted). The plastid DNA data contribute substantially to support the closest relationship of *P. dilatatum* and *P. lividum* (DB=3; BF = 98).

The ML analysis of the combined molecular matrix yielded a general topology (Figure 3) similar to that illustrated in the Figure 1 based on parsimony. As expected, the Bayesian analysis yields a tree identical to that obtained by the ML method (not shown). The Notata/Linearia clade is recovered with minor alterations by the ML-analysis, as well as a subclade corresponding to the Notata group (*sensu* Canto-Dorow, Longhi-Wagner & Valls 1996). Paspalum pallens is however not included in the Notata clade nor is sister of *P. filifolium*; it appears instead as sister taxon of *P. dedeccae* + *P. lineare*. The position of *P. vaginatum* as sister of the remaining Paspalum species may be artificial because of its incomplete plastid sequences.

In the separate analysis of morphological data (not shown) Paspalum appears as a weakly supported clade (DB = 1; no bootstrap support; MS: characters 6, 16, 28, 29, 31, 40, 50, and 52), which is sister to either Thrasya petrosa or T. petrosa + Axonopus siccus. Within Paspalum, a poorly supported major clade is recovered which includes all terminals of clade II (cf. Figure 1) plus P. ovale, P. intermedium and P. lividum; the rest of species remain as an unresolved basal polytomy. Within the major clade, which was also highly unresolved, three small sub-clades were recovered by the analysis: *P. filifolium* + *P. pallens* (DB=3;BF = 62, the only reasonably supported sub-clade), P. conduplicatum + P. maculosum, and P. acuminatum + P. vaginatum.

Finally, it is remarkable that the clade corresponding to the Notata/Linearia groups (clade III) is not individually supported by any separate dataset, and only becomes evident (although weakly supported) when the datasets are combined.

Discussion

Monophyly of the genus Paspalum

The monophyly of the genus Paspalum has been questioned on the basis of recent analyses based on molecular (Duvall et al., 2001; Giussani et al., 2001) and morphological (Denham & Zuloaga, in press) evidence. In all these analyses *Paspalum* is paraphyletic because Thrasya appears embedded within it. Thrasya seems to constitute a highly apomorphic group of species morphologically related to the informal group Decumbentes (sensu Chase, 1929) of *Paspalum* (Burman, 1985). The Decumbentes group is characterized by the frequent presence of a lower glume in at least one spikelet of each pair, the rare development of a male lower floret (both characters otherwise lacking in Paspalum), and the occurrence of a cymose-branched system of inflorescences at the axil of the 'flag leaf'.

Figure 2. Strict consensus of 411 most parsimonious trees (length = 709 steps) obtained from the ITS data. Figures above branches represent decay index of Bremer (BS), below branches are Bootstrap frequencies (BF).

Our analysis included no species of the Decumbentes group and only one species of *Thrasya*. Thus, our taxon sampling does not make possible to test the hypothesis of paraphyly of *Paspahum*. The placement of *Thrasya* as sister taxon of *Paspahum* supported by the cpDNA data

is consistent with the analyses mentioned above, but the combined analysis suggests an alternative placement of *Thrasya* as sister of *Axonopus*. Thus, the question of whether the species of *Thrasya* are nested within *Paspalum* rendering it paraphyletic, or *Thrasya* plus the Decumbentes group form a

Figure 3. Maximum Likelihood tree for the combined datasets of Paspalum and outgroups. Model TrN+I+G.

clade to be excluded from a monophyletic *Pasp-alum* remains open.

The Notata/Linearia group

The groups Notata and Linearia comprise perennial species with two conjugate racemes and solitary spikelets (Chase, 1929). The affinity between both groups was discussed elsewhere (Valls & Pozzobon, 1987; Oliveira & Valls, 2002). A common situation in *Paspalum* is that a given informal group consists of a set of 'core' species plus some 'peripheral' species which intergrade morphologically with other groups. After morphological analysis, the groups Notata and Linearia seem to agree with this pattern. Indeed, the limit between both groups is far from being clear (Oliveira & Valls, 2002).

Nevertheless, the trees yielded by the combined analysis of morphology, ITS, and cpDNA data here presented are consistent with a (weakly supported) monophyletic group (hereafter the 'Notata/Linearia clade') comprising all the Notata/Linearia species included in the analysis. This group is sister to the clade consisting of P. acuminatum and P. vaginatum, two species with subconjugate racemes and solitary spikelets, but plagiotropous growth of the culms, which are currently placed in groups Dissecta or Acuminata and Disticha, respectively. A clade corresponding almost exactly to the Notata group of most authors (hereafter the 'Notata clade') is nested within the Notata/ Linearia, whereas the Linearia group remains paraphyletic. The delimitation of a "core" Notata group would closely link P. conduplicatum, Canto-Dorow, Valls and Longhi-Wagner, P. notatum, P. minus E. Fourn., P. pumilum Nees and P. subciliatum Chase.

Paspalum almum, a species alternatively considered a member of the Notata (Barreto, 1957, 1974; Canto-Dorow, Longhi-Wagner & Valls 1996) or proposed as a distinct group, the Alma group (Parodi & Nicora, unpublished; Quarín, 1974), was placed in our analysis as sister to *P. lineare*, thus it is not consistent with its inclusion within Notata. *Paspalum almum* differs from all other species of *Paspalum* by its unusual chromosome base number x=6. Its placement within *Paspalum*, and more generally within the x=10clade of Paniceae, corroborates the hypothesis that such chromosome base number is autoapomorphic.

Paspalum maculosum, another species alternatively included in the Notata group (e.g. Chase, unpublished manuscript; Barreto, 1957, 1974; Parodi & Nicora, unpublished) or segregated, together with *P. serpentinum* Hochst., as the distinct group Maculosa (Judziewicz, 1990), resulted also placed outside the Notata clade, as sister of *P. filifolium–P. pallens*.

On the other hand, *P. equitans*, a species currently related to *P. fasciculatum* Willd. because of its flabellate inflorescences composed of several racemes (Chase, unpublished manuscript; Barreto, 1974), was consistently placed within the Notata clade and strongly supported as sister of *P. ramboi*. Remarkably, the close affinity between *P. equitans* and *P. ramboi* had been already pointed out by Barreto (1983), who indicated that both species share compression of basal leaf sheaths and spikelet shape. Moreover, *P. equitans* strongly resembles other species of the Notata/Linearia group, e.g. *P. ionanthum* Chase, because of their glabrous, solitary spikelets, and their closely packed orthotropous culms. On the other hand, more than two racemes scattered along the inflorescence axis occasionally occur in other species of the Notata group, as *P. ramboi*, *P. notatum*, *P. minus*, and *P. pumilum*. Quarín and Norrmann (1987) report a high degree of meiotic chromosome pairing in hybrids of *P. equitans x P. cromyorrhizon* Trin. ex Döll, indicating they share the same **N** genome of *P. notatum*, in spite of their full F₁ sterility.

The phylogenetic relationships of the Recta group, here represented by *P. flaccidum*, with the Notata/Linearia is not supported by our data. Its proper placement must be further explored.

The Dilatata group

A cladistic treatment of the species belonging to the Dilatata group is especially problematic because they are allopolyploids (Burson, 1991a, Souza-Chies & Cavalli-Molina, 1995, Casa et al., 2002, Machado et al., 2005), thus their evolutionary history includes at least a reticulation event.

This informal group was subject of interest since the 1950s (Bashaw & Forbes, 1958; Bashaw & Holt, 1958), particularly regarding the origin of the common dallisgrass. Previous cytogenetic studies (Burson et al., 1973; Burson, 1983, Caponio & Quarín, 1990) suggested that P. juergensii and P. intermedium (or related species belonging to groups Paniculata and Quadrifaria, respectively) can be progenitors of the tetraploid P. dilatatum, but the genomic formula of pentaand hexaploid biotypes includes a third genome. In spite of considerable research effort, the affinities of this genome remain obscure. Additionally, P. lividum was hypothesized to have contributed to the genomic formula of P. pauciciliatum (Parodi) Herter, another species of the Dilatata group (Valls, 2000).

The inclusion in a cladistic analysis of taxa of known hybrid origin can be questioned in several ways (Bachmann, 2000; Chase et al., 2003). Nevertheless, we included representatives of the Dilatata group in the present analysis with the purpose of testing the monophyly of the group as a whole, i.e. the diversification of the group after a unique hybridization event, as well as their relationships with the putative parental species.

Our ITS and combined analyses place the species of the Dilatata group within a clade including also P. intermedium, P. lividum, and P. ovale. However, separate analysis of cpDNA data does not support this placement, but suggests some species of the Dilatata to be placed near P. juergensii and P. quarinii. These results are consistent with the hypothesis that the allopolyploid Dilatata group is paternally linked with P. intermedium (or a related species), and maternally linked to P. juergensii (or a related species). This is also consistent with the fact that ITS sequences of hybrids are typically homogenized by concerted evolution (Small et al., 2004) and tend to evolve through conversion to one of the parental copies (Bachmann, 2000), usually the paternal one.

Surprisingly, *P. dilatatum* and *P. lividum* form a clade strongly supported both by ITS and cpDNA datasets. This clade maintains its identity independently of the alternative placements of the species of Dilatata by the different datasets. Such relationship deserves further investigation, including a more comprehensive dataset.

Acknowledgements

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil), the Fundação de Amparo à Pesquisa no Estado do Rio Grande do Sul (FAPERGS, Brazil) and the Universidad de Buenos Aires (Argentina) for financial support.

References

- Aliscioni, S.S., 2002. Contribución a la filogenia del género Paspalum (Poaceae): Panicoideae: Paniceae). Ann. Miss. Bot. Garden 89: 504–523.
- Aliscioni, S.S., L.M. Giussani, F.O. Zuloaga & E.A. Kellogg, 2003. A molecular phylogeny of *Panicum* (Poaceae: Paniceae): tests of monophyly and phylogenetic placement within the Panicoideae. Am. J. Bot. 90: 796–821.
- Allem, A.C. & J.F.M. Valls 1987. Recursos Forrageiros Nativos do Pantanal Mato-grossense. EMBRAPA/DID, Brasília, 339 pp.
- Bachmann, K. 2000. Molecules, morphology and maps: new directions in evolutionary genetics. Pl. Sp. Biol. 15: 197– 210.

- Baldwin, B.G., 1992. Phylogenetic utility of the Internal Transcribed Spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Mol. Phylogenet. Evol. 1(1): 3–6.
- Baldwin, B.G., M.J. Sanderson, M.J. Porter, M.F. Wojciechowski, C.S. Campbell & M.J. Donoghue, 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on Angiosperm phylogeny. Ann. Miss. Bot. Garden 82: 247–277.
- Barreto, I.L., 1957. Las especies de *Paspalum* con dos racimos conjugados en Río Grande del Sur (Brasil). Rev. Argent. Agron. 24: 89–117.
- Barreto, I.L., 1974. O gênero *Paspalum* (Gramineae) no Rio Grande do Sul. Tese de Livre-Docência em Fitotecnia. Fac. Agronomia da Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 258.
- Barreto, I.L., 1983. Una nueva especie de *Paspalum* (Gramineae) del sur de Brasil. Bonplandia 5: 291–293.
- Bashaw, E.C. & I. Forbes Jr., 1958. Chromosome numbers and microsporogenesis in dallisgrass, *Paspalum dilatatum* Poir. Agron. J. 50: 441–445.
- Bashaw, E.C. & E.C. Holt, 1958. Megasporogenesis, embryo sac development, and embryogenesis in dallisgrass, *Pasp-alum dilatatum* Poir. Agron. J. 50: 753–756.
- Bennett, H.W., 1962. Dallisgrass, Bahiagrass, and Vaseygrass, in Forages: The Science of Grassland Agriculture edited by H.D. Hughes, M.E. Heath & D.S. Metcalfe. Iowa University Press, Iowa.
- Bennett, H.W., B.L. Burson & E.C. Bashaw, 1969. Intraspecific hybridization in dallisgrass, *Paspalum dilatatum* Poir. Crop Sci. 9: 807–809.
- Bremer, K., 1994. Branch support and tree stability. Cladistics 10: 295–304.
- Burman, A.G., 1985. The genus *Thrasya* H.B.K. (Gramineae). Acta Bot. Venezuel. 14(4): 7–93.
- Burson, B.L., 1983. Phylogenetic investigation of *Paspalum dilatatum* and related species, pp. 170–173 in Proc. 14th Int. Grassl. Congr., Lexington, K.Y edited by J.A. Smith & V.W. Hays. Westview Press, Boulder.
- Burson, B.L., 1991a. Genome relationships between tetraploid and hexaploid biotypes of dallisgrass, *Paspalum dilatatum*. Bot. Gaz. 152(2): 219–223.
- Burson, B.L., 1991b. Homology of chromosomes of the X genomes in common and Uruguayan dallisgrass, *Paspalum dilatatum*. Genome 34: 950–953.
- Burson, B.L., 1992a. Cytology and reproductive behavior of hybrids between *Paspalum urvillei* and two hexaploid *P. dilatatum* biotypes. Genome 35: 1002–1006.
- Burson, B.L., 1992b. Cytogenetic relationships between Paspalum dilatatum and P. cromyorrhizon, P. indecorum, and P. laxum. Int. J. Plant Sci. 153(2): 244–249.
- Burson, B.L., H. Lee & H.W. Bennett, 1973. Genome relations between tetraploid *Paspalum dilatatum* and four diploid *Paspalum* species. Crop Sci. 13: 739–743.
- Canto-Dorow, T.S., H.M. Longhi-Wagner & J.F.M. Valls, 1996. Revisão taxonômica das espécies de *Paspalum* L. grupo Notata (Poaceae – Paniceae) do Rio Grande do Sul, Brasil. Iheringia 47: 3–44.
- Caponio, I. & C.L. Quarín, 1990. Intra- and interspecific hybridization between dallisgrass and vaseygrass. Crop Sci. 30: 362–364.

- Casa, A.M., S.E. Mitchell, C.R. Lopes & J.F.M. Valls, 2002. RAPD analysis reveals genetic variability among sexual and apomictic *Paspalum dilatatum* Poiret biotypes. J. Hered. 93: 300–302.
- Chase, A., 1929. The North American species of *Paspalum*. Contrib. U.S. Natl. Herbarium 28: 1–310.
- Chase, M.W., S. Knapp, A.V. Cox, J.J. Clarkson, Y. Butsko, J. Joseph, V. Savolainen & A.S. Parokonny, 2003. Molecular systematics, GISH and the origin of hybrid taxa in *Nicotiana* (Solanaceae). Ann. Bot. 92: 107–127.
- Cialdella, A.M., O. Morrone & F.O. Zuloaga, 1995. Revisión de las especies del género *Paspalum* (Poaceae: Panicoideaae: Paniceae), grupo *Bonplandiana*. Darwiniana 33: 67–95.
- Clayton, W.D. & S.A. Renvoize, 1986. Genera Graminum Grasses of the World. Kew Bulletin Additional Series XIII, London, 389.
- Denham S.S. & F.O. Zuloaga. Phylogenetic relationships of the Decumbentes group of *Paspalum*, *Thrasya* and *Thrasyopsis* (Poaceae: Panicoideae: Paniceae), Monocots: Comparative biology and evolution, edited by J.T. Columbus, E.A. Friar, J.M. Porter, L.M. Prince & M.G. Simpson, Rancho Santa Ana Botanic Garden, Claremont, CA. in press.
- Denham, S.S., F.O. Zuloaga & O. Morrone, 2002. Systematic revision and phylogeny of *Paspalum* subgenus Ceresia (Poaceae: Panicoideae: Paniceae). Ann. Miss. Bot. Garden 89: 337–399.
- Desfeux, C., S. Maurice, J.-P. Henry, B. Lejeune & P.-H. Gouyon, 1996. The evolution of reproductive system in the genus *Silene*. Proc. Roy. Soc. London B 263: 409–414.
- Dell, J.C. 1877. Gramineae, pp. 1–358, in Flora Brasiliensis vol.2 pars. 2, edited by C. F. P. Martius, A.G. Eichler, München.
- Doyle, J.J. & J.L. Doyle, 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19(1): 11–15.
- Duvall, M.R., J.D. Noll & A.H. Minn, 2001. Phylogenetics of Paniceae (Poaceae). Am. J. Bot. 88(11): 1988–1992.
- Espinoza, F. & C.L. Quarín, 2000. 2n + n hybridization of apomictic *Paspalum dilatatum* with diploid *Paspalum* species. Int. J. Plant Sci. 161(2): 221–225.
- Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.
- Fernandes, M.I.B.M., I.L. Barreto & F.M. Salzano, 1968. Cytogenetic, ecologic and morphologic studies in Brazilian forms of *Paspalum dilatatum*. Can. J. Genet. Cytol. 10: 131–138.
- Fernandes, M.I.B.M., I.L. Barreto, F.M. Salzano & A.M.O.F. Sacchet, 1974. Cytological and evolutionary relationships in Brazilian forms of *Paspalum* (Gramineae). Caryologia 27: 455–465.
- Filgueiras, T.S., 1992. Gramíneas forrageiras nativas no Distrito Federal, Brasil. Pesq. Agropec. Bras. 27: 1103–1111.
- Giussani, L.M., J.H. Cota-Sánchez, F.O. Zuloaga & E.A. Kellogg, 2001. A molecular phylogeny of the grass subfamily Panicoideae (Poaceae) shows multiple origins of C₄ photosynthesis. Am. J. Bot. 88(11): 1993–2012.
- Goloboff, P.A., J. Farris & K. Nixon, 2003. T.N.T.: Tree Analysis Using New Technology. Program and documentation, available from the authors, and at www.zmuc.dk/public/ phylogeny.
- Gomes, M.J.I.R. & R. Monteiro, 1996. As espécies de Paspalum L. (Poaceae) dos grupos Virgata e Quadrifaria no Brasil – distribução e ecologia. Arq. Biol. Tecnol. 39: 1013–1019.

- Gómez Martínez, R. & A. Culham, 2000. Phylogeny of the subfamily Panicoideae with emphasis on the tribe Paniceae: evidence from the trnL-F cp DNA region, in Grass Systematics and Evolution – Vol. 2 of Proceedings of the Second International Conference on the Comparative Biology of the Monocots, Sydney, September 1998, edited by W.L. Jacobs and J. Everett. CSIRO, Melbourne.
- GPWG, 2001. Phylogeny and subfamilial classification of the grasses (Poaceae). Ann. Miss. Bot. Garden 88: 373–457.
- Hickenbick, M.C.M., J.F.M. Valls, F.M. Salzano & M.I.B.M. Fernandes, 1975. Cytogenetic and evolutionary relationships in the genus *Axonopus* (Gramineae). Cytologia 40: 185–204.
- Honfi, A.M., C.L. Quarín & J.F.M. Valls, 1990. Estudios cariológicos en gramíneas sudamericanas. Darwiniana 30: 87–94.
- Horovitz, I., 1999. A report on "One Day Symposium on Numerical Cladistics". Cladistics 15: 177–182.
- Huelsenbeck, J.P. & F. Ronquist, 2001. MR. BAYES: Bayesian inference of phylogeny. Bioinformatics 17: 754–755.
- Jarret, R.L., P. Ozias-Akins, S. Phatak, R. Nadimpalli, J.R. Duncan & S. Hilliard, 1994. DNA contents in *Paspalum* species determined by flow cytometry. Genet. Res. Crop Evol. 4: 12–19.
- Jarret, R.L., Z.W. Liu & R.W. Webster, 1998. Genetic diversity among *Paspalum* spp. as determined by RFLPs. Euphytica 104: 119–125.
- Judziewicz, E.J., 1990. Poaceae (Gramineae), in Flora of the Guianas edited by A.R.A. Görts-Van Rijn. Koeltz, Königstein.
- Kornet, D.J. & H. Turner, 1999. Coding polymorphism for phylogeny reconstruction. Syst. Biol. 48: 365–379.
- Kretschmer, Jr., A.E., R.S. Kalmbacher & T.C. Wilson, 1994. Preliminary evaluation of *Paspalum atratum* Swallen (Atra *Paspalum*): a high quality, seed-producing perennial forage grass for Florida. Soil Crop Sci. Soc. Fl. Proc. 53: 60–63.
- Machado, A.C.C., J.F.M. Valls, A.P.S. Peñaloza & S. Santos, 2005. Novos biótipos pentaplóides do grupo Dilatata de *Paspalum* L. (Gramineae) no Sul do Brasil. Ciência Rural 35: 56–61.
- Morrone, O., A. Vega & F.O. Zuloaga, 1996. Revisión de las especies del género *Paspalum* (Poaceae: Panicoideae: Paniceae), grupo Dissecta (s. str.). Candollea 51: 103–138.
- Morrone, O., F.O. Zuloaga & E. Carbonó, 1995. Revisión del grupo Racemosa del género *Paspalum* (Poaceae: Panicoideae: Paniceae). Ann. Miss. Bot. Garden 82: 82–116.
- Morrone, O., S.S. Denham, S.S. Aliscioni & F.O. Zuloaga, 2000. Revisión de las especies del género *Paspalum* (Panicoideae: Paniceae), subgénero *Anachyris*. Candollea 55: 105–135.
- Morrone, O., S.S. Denham & F.O. Zuloaga, 2004. Revisión taxonómica del género *Paspalum* grupo Eriantha (Poaceae, Panicoideae, Paniceae). Ann. Miss. Bot. Garden 91: 225–246.
- Nixon, K.C., 1999. The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15: 407–414.
- Norrmann, G.A., C.L. Quarín & T.J. Killeen, 1994. Chromosome numbers in Bolivian grasses. Ann. Miss. Bot. Garden 81: 768–774.
- Oliveira, R.C. & J.F.M. Valls, 2002. Taxonomia de *Paspalum* L., grupo Linearia (Gramineae – Paniceae) do Brasil. Rev. Brasil. Bot. 25: 371–389.

- Pilger, R.K.F., 1929. Bemerkungen zur Systematik der Gattung Paspalum L. Repert. Spec. Nov. Regni Veg. 26: 228–231.
- Pilger, R.K.F. 1940. Gramineae, Panicoideae, pp. 1–208, in Die natürlichen Pflanzenfamilien, edited by A. Engler and K. Prantl, 2nd edn., 14e, W. Engelmann, Leipzig.
- Posada, D. & K.A. Crandall, 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817–818.
- Pozzobon, M.T., J.F.M. Valls & S. Santos, 2000. Contagens cromossômicas em espécies brasileiras de *Paspalum* L. (Gramineae). Acta Bot. Brasil. 14: 151–162.
- Qiu, Y-L., J. Lee, F. Bernasconi-Quadroni, D.E. Soltis, P.S. Soltis, M. Zonis, E.A. Zimmer, Z. Chen, V. Savolainen & M.W. Chase, 1999. The earliest angiosperms: evidence from mitochondrial, plastid, and nuclear genomes. Nature 402: 404–407.
- Quarín, C.L., 1974. Relaciones citotaxonómicas entre Paspalum almum Chase y P. hexastachyum Parodi (Gramineae). Bonplandia 3: 115–127.
- Quarín, C.L. & I. Caponio, 1995. Cytogenetics and reproduction of *Paspalum dasypleurum* and its hybrids with *P. urvillei* and *P. dilatatum* ssp. *flavescens*. Int. J. Plant Sci. 156: 232–235.
- Quarín, C.L. & G.A. Norrmann, 1987. Cytology and reproductive behavior of *Paspalum equitans*, *P. ionanthum*, and their hybrids with diploid and tetraploid cytotypes of *P. cromyorrhizon*. Bot. Gaz. 148: 386–391.
- Quarín, C.L. & G.A. Norrmann, 1990. Interspecific hybrids between five *Paspalum* species. Bot. Gaz. 151(3): 366–369.
- Ramírez, J.R., 1954. El pasto Rojas: una gramínea forrajera promisoria en el Paraguay. Rev. A. Agron. 21: 84–101.
- Rodrigues, L.G., S. Santos, R.C. Oliveira & A.P.S. Peñaloza, 2001. Contagens cromossômicas em espécies brasileiras de *Paspalum* L. (Gramineae), pp. 395–397, in Anais do III Simpósio de Recursos Genéticos para a América Latina e Caribe, Londrina.
- Rua, G.H. & S. Aliscioni, 2002. A morphology-based cladistic analysis of *Paspalum* sect. Pectinata (Poaceae). Syst. Bot. 27: 489–501.

- Sang, T., D.J. Crawford & T.F. Stuessy, 1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of *Paeonia (Paeoniaceae)*. Am. J. Bot. 84(8): 1120–1136.
- Small, R.L., R.C. Cronn & J.F. Wendel, 2004. Use of nuclear genes for phylogeny reconstruction in plants. Aust. Syst. Bot. 17: 145–170.
- Soltis, P.S., D.E. Soltis & M.W. Chase, 1999. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402: 402–404.
- Souza-Chies, T.T. & S. Cavalli-Molina, 1995. Variability in seed production and germination in *Paspalum* – Dilatata Group (Gramineae). Rev. Brasil. Biol. 55: 127–139.
- Swofford, D.L., 2002. PAUP: Phylogenetic Analysis Using Parsimony. Version 4. Sinauer, Sunderland, MA.
- Taberlet, P., L. Gielly, G. Pautou & J. Bouvet, 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Biol. 17: 1105–1109.
- Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin & D.G. Higgins, 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality tools. Nucleic Acids Res. 24: 4876–4882.
- Valls, J.F.M. 2000. Impacto do conhecimento citogenético na taxonomia de *Paspalum* e *Axonopus* (Gramineae), pp. 57–60, in Tópicos Atuais em Botânica: Palestras Convidadas do 51° Congresso Nacional de Botânica. Org. Taciana Barbosa Cavalcanti et al. – Brasília: EMBRAPA Recursos Genéticos e Biotecnologia/Sociedade Botânica do Brasil.
- Valls, J.F.M. & M.T. Pozzobon, 1987. Variação apresentada pelos principais grupos taxonômicos de Paspalum com interesse forrageiro no Brasil, pp. 15–21, in Anais do Encontro Internacional sobre Melhoramento Genético de Paspalum, Nova Odessa, Instituto de Zootecnia.
- Watson, L. & M.J. Dallwitz, 1994. The Grass Genera of the World. Revised edition. CAB International, Oxon, UK, 1081.